MA 122: Weekly HW 3

Answer these questions on a separate sheet of paper. Remember that your work must be very neat and complete.

Problem 1: Let (a_i) be a sequence such that each a_i is one of the following numbers:

$$\{0,1,2,3,4,5,6,7,8,9\}$$

(a) Prove that the series

$$\sum_{i=1}^{\infty} \frac{a_i}{10^i}$$

converges. (Hint: Use the comparison test.)

(b) Explain the relevance of (a) to explaining why there exist numbers with an infinite number of digits to the right of the decimal point.

Problem 2: Consider the series

$$1 + 3x + 9x^2 + 27x^3 + 81x^4 + \dots$$

- (a) Use the obvious pattern to write the series in summation notation.
- (b) Explain why the series is a geometric series.
- (c) For what values of x does the series converge?

Problem 3: Determine whether or not the following series converge or diverge. If a sequence has both positive and negative terms also determine if the sequence is absolutely convergent.

- (a) $\sum_{n=1}^{\infty} \frac{3}{n+2}$
- (b) $\sum_{n=1}^{\infty} \frac{3}{\sqrt{3+n}}$
- (c) $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$
- (d) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n + 2}$
- (e) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$
- (f) $\sum_{n=2}^{\infty} \frac{3^n}{(n-2)!}$
- (g) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{3+n}}$
- (h) $\sum_{i=0}^{\infty} \frac{(-1)^i \pi^{2i}}{(2i)!}$

Problem 4: Find the radius and interval of convergence for each of the following power series.

(a)
$$\sum_{i=0}^{\infty} \frac{x^{2i}}{(2i)!}$$

(b) $\sum_{n=0}^{\infty} nx^n$
(c) $\sum_{n=0}^{\infty} (n!)x^n$
(d) $\sum_{n=0}^{\infty} 5^n x^n$

(b)
$$\sum_{n=0}^{\infty} nx^n$$

(c)
$$\sum_{n=0}^{\infty} (n!) x^n$$

(d)
$$\sum_{n=0}^{\infty} 5^n x^n$$

Problem 5: For each of the following functions, find its Maclaurin series and determine the radius and interval of convergence.

(a)
$$f(x) = \frac{1}{1-x}$$
.

(a)
$$f(x) = \frac{1}{1-x}$$
.
(b) $f(x) = e^{x^2}$. (Hint: substitute x^2 into the Maclaurin series for e^x .)

Problem 6: Let f(x) = |x-2|. Recall that this means that

$$f(x) = \begin{cases} -(x-2) & x \le 2\\ (x-2) & x \ge 2 \end{cases}$$

- (a) Find a formula for the *n*th MacLaurin polynomial for f(x).
- (b) Find an upperbound (in terms of x) for the absolute value of the error $E_n(x)$ of the *n*th MacLaurin polynomial of f(x) in terms of x for x > 0.
- (c) For what values of x does the $|E_n(x)| \to 0$ as $n \to \infty$? What happens for the other values of x?
- (d) What is the MacLaurin series for f(x)?
- (e) What is the interval of convergence of the MacLaurin series for f(x)?
- (f) Write a few sentences discussing the significance of the results of (c) and (e).