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Abstract

Boring Split Links and Unknots

by

Scott Allen Taylor

Boring is an operation that converts a knot or two-component link Lα in

a 3–manifold M into another knot or two-component link Lβ . It general-

izes many classical operations in knot theory, such as rational tangle re-

placement and the Kirby band move. It is particularly interesting to ask

about the properties of Lβ if Lα is a split link or unknot. Boring is the

knot-theory version of an operation, called “refilling a meridian”, on a 3–

manifold M containing a genus two handlebody W . Refilling a meridian is,

in turn, an example of the well-known operation of adding a 2–handle to

the boundary of a 3–manifold. This dissertation develops sutured manifold

techniques which are useful for studying essential surfaces in 3–manifolds

obtained by adding a 2–handle to the boundary of a 3–manifold. Some

of the main results include criteria guaranteeing that a knot or link Lβ ob-

tained by boring a split link is hyperbolic, a solution for a large class of pairs

(M,W ) of a conjecture of Scharlemann concerning refilling meridians of a

genus two handlebody, and criteria guaranteeing that adding a 2–handle to a

genus two boundary component of a simple 3–manifold produces a simple

3–manifold.
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These results also give new proofs of classical theorems concerning ratio-

nal tangle replacement and Seifert surfaces of tunnel number one knots and

links. For example, new proofs are given of the fact that composite knots

have unknotting number greater than one, that genus is super-additive un-

der band connect sum, and that tunnel number one knots and links have a

minimal genus Seifert surface disjoint from a given tunnel.
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Notation and Conventions

M usually a compact, orientable 3–manifold containing a genus

2–handlebody

W a genus 2 handlebody

N a compact, orientable 3–manifold; often M−W̊

F a boundary component, usually of genus 2, of N; often the

boundary of W

a an essential curve in F

α the core of a 2–handle attached to F along a

α the cocore of the 2–handle with core α

b an essential curve in F

β usually the core of a 2–handle attached to b; occasionally a

1–complex in a sutured manifold

β the cocore of the 2–handle with core β

b∗ if b is non-separating, a curve bounding a thrice-punctured

sphere with ∂η(b)⊂ F

β ∗ the core of a 2–handle attached to b∗

xv



N[a] the 3–manifold obtained by attaching a 2–handle to the curve

a

M[α] the 3–manifold obtained by refilling the meridian α of W

∂X the boundary of a space X

∂1N[a] ∂N−F

∂0N[a] ∂N[a]−∂1N

γ sutures on ∂N[a]

γ̂ sutures on ∂0N[a]; that is γ ∩∂0N[a]

η(X) a closed regular neighborhood of a space X

cl(X) the closure of a space X

X̊ , intX the interior of the space X

|X | the number of connected components of X

Q usually a parameterizing surface in a sutured manifold

Q usually a surface in N[b] whose intersection with N is a pa-

rameterizing surface.

q usually the number of components of ∂Q parallel to b

q∗ usually the number of components of ∂Q parallel to b∗

q̃ q+q∗

Sn the n–dimensional sphere.

D2 the 2–dimensional unit disc

I the unit interval

N the natural numbers

We work in the smooth or PL category; in particular, all surfaces in 3–

manifolds are tame. All homology and cohomology groups have integer

coefficients.
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CHAPTER 1

Boring Knots and Refilling Meridians

1.1. Boring and Genus 2 Handlebodies

Given a genus two handlebody W embedded in a 3–manifold M, a knot or

two-component link can be created by choosing an essential disc α ⊂W

and boundary-reducing W along α . That is, W − η̊(α) is the regular neigh-

borhood of a knot or link Lα . We say that the exterior M[α] of this regular

neighborhood is obtained by refilling the meridian disc α [S5]. Similarly,

given a knot or link Lα ⊂ M we can obtain another knot or link Lβ by the

following process:

(1) Attach an arc to Lα forming a graph

(2) Thicken the graph to form a genus two handlebody W .

(3) Choose a meridian β for W and refill β .

The arc in step (1) and the handlebody in step (2) are called the boring

arc and the boring handlebody respectively. Refilling the meridian α of

the added arc returns Lα . Any two knots in S3 can be related by such a

move if we allow α and β to be disjoint; just let W be a neighborhood of

the wedge of the two knots. We’ll restrict attention, therefore, to meridians

of W which cannot be isotoped to be disjoint. If a knot or link Lβ can be

obtained from Lα by this operation say that Lβ is obtained by boring Lα .
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Since the relation is symmetric we may also say that Lα and Lβ are related

by boring.

EXAMPLE. Every tunnel number 1 knot or link in S3 can be obtained by

boring a split link or unknot using an unknotted genus 2 handlebody W (i.e.

a handlebody which is half of a genus 2 Heegaard splitting for S3). Figure

1.1 shows how the trefoil knot can be obtained from the unknot by boring.

FIGURE 1.1. Cutting along one of the pictured discs pro-
duces an unknot; cutting along the other produces a trefoil
knot.

Boring generalizes several well-known operations in knot theory. These in-

clude rational tangle replacements such as band sums and crossing changes

and the Kirby band move [K1, FR]. Figures 1.2 and 1.3 show an exam-

ple of how a Kirby band move can be accomplished by boring. The band

move begins with a framed oriented link and creates another framed link

by attaching a band which joints one component to a push-off of the other

component. (In the figures, the framing of the knot on the right is ±3, de-

pending on orientations.)

Figure 1.4 shows how a rational tangle replacement can be accomplished

with boring. One disc has boundary the equator of the ball. The other disc

is formed by banding two ends of the attached one-handles together by a

2



FIGURE 1.2. An example of a Kirby band move.

FIGURE 1.3. The Kirby band move from Figure 1.2 as bor-
ing. Cutting along one of the pictured disc produces the orig-
inal link; cutting along the other disc produces the link after
the band move.

band which can be isotoped into the four-punctured sphere. In the figure,

only the core of the band is drawn.

FIGURE 1.4. A rational tangle replacement operation is boring.
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By work of Bleiler, Eudave-Muñoz, Scharlemann, and others, rational tan-

gle replacements producing split links and unknots are fairly well under-

stood; this understanding motivates many of the results contained in this

thesis. Section 1.4 describes rational tangle replacements and their connec-

tion to the operations of boring and refilling. Many classical theorems are

reproved from this new perspective in Section 8.4. New information about

essential surfaces in the exterior of such a knot or link is also obtained.

Sections 8.2 and 8.3 carry out this study.

Shifting away from a knot-theoretic viewpoint to a 3-manifold-theoretic

viewpoint, we can view the operation of refilling meridians as a special

case of 2–handle attachment. The main question under consideration is,

“Given an essential curve in the boundary of a 3–manifold, what conditions

guarantee that attaching a 2–handle to that curve produces a 3–manifold

which is irreducible and boundary-irreducible?” Typically this question is

answered by placing elementary conditions on the original 3–manifold (e.g.

irreducible, boundary-irreducible, simple) and then bounding the intersec-

tion number between any two curves which produce reducible or boundary-

reducible 3–manifolds.

This thesis proves two new theorems about attaching 2–handles to non-

separating curves on a genus two boundary component. These are described

in the next section.
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1.2. 2–handle addition

Let N be an orientable 3-manifold and F 6= S2 a non-empty boundary com-

ponent. If a ⊂ F is an essential simple closed curve, we can form a new

3-manifold N[a] by attaching a 2–handle to a. Let H = α×I where α is a 2–

disc and let f : ∂α× I → η(a) be a homeomorphism such that f (∂α) = a.

If F is not a torus, N[a] is defined to be N ∪ f H. If F is a torus, N ∪ f H has

an additional spherical boundary component which was obtained by cut-

ting F along a and attaching α × ∂ I to the boundary of F . Form N[a] by

gluing a 3–ball to this spherical boundary component. When F is a torus,

attaching a 2–handle to N along a in F is more conventionally known as

Dehn-filling N with slope a in F . For a genus 2 handlebody W embedded

in a 3–manifold M, refilling a meridian α of W is equivalent to attaching a

2–handle to M−W̊ along ∂α .

A fundamental result of Jaco [J] (generalizing a result of Przytycki) says

that if F is compressible in N but F−a is incompressible in N then N[a] has

incompressible boundary. Attempts to extend this result usually attempt to

to compare the manifolds obtained by attaching a 2–handle to a curve a⊂ F

and by attaching a 2–handle to a curve b⊂ F where a and b are curves that

cannot be isotoped to be disjoint. The goal is then to conclude something

about the geometry of the curves a and b based on the structures of N[a] and

N[b]. Much is known about the case when F is a torus. For example, if N is

a knot exterior in S3 and a is a meridian of F then if N[b] is reducible a and

b intersect exactly once [GLu1]. (The Cabling Conjecture asserts that, in

fact, the knot is a cable knot and the surgery slope the slope of the cabling
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annulus. This is discussed more in Section 8.3). Other Dehn-surgery results

(e.g. [GW]) include (often sharp) upperbounds on the minimal intersection

number ∆(a,b) of a and b if N is hyperbolic but neither N[a] nor N[b] is

hyperbolic.

When F is not a torus, far less is known. Still, there are some important re-

sults. Scharlemann and Wu [SW], for example, prove that if N is hyperbolic

then if N[a] is reducible and N[b] is boundary-reducible, either a and b can

be isotoped into a common once-punctured torus or ∆ = 0. More recently,

Zhang, Qiu, and Li [ZQL] have shown that if N is hyperbolic, if a and b are

separating curves, and N[a] and N[b] are reducible then ∆ ≤ 4. They have

also shown [LQZ] that if N is hyperbolic and F has genus 2 then there is

at most one separating slope a so that N[a] is boundary-reducible. (In this

paper, hyperbolic will always mean the same thing as simple. That is, N

is simple if it is irreducible, boundary-irreducible, anannular, and atoroidal.

Since we are always studying compact orientable 3–manifolds with non-

spherical boundary, by Thurston’s geometrization theorem this is equivalent

to having a finite volume hyperbolic structure on the manifold obtained by

removing torus boundary components. We do not use this fact.)

Here are two new results concerning 2–handle addition.

THEOREM 6.1. Suppose that F has genus 2, that N is compact, orientable,

and irreducible, that ∂N−F consists of tori, that N is boundary-irreducible,

and that there is no essential annulus in N with both boundary components

parallel to a⊂ F or both boundary components parallel to b⊂ F. If a and b

6



are non-isotopic separating non-parallel curves, then one of N[a] and N[b]

is irreducible.

THEOREM 6.2. Suppose that F has genus 2, and that N is simple. Suppose

that a and b are non-isotopic separating curves on F. Suppose that N[a] is

reducible. Then if N[b] is non-simple it contains an essential annulus with

boundary on non-torus components of ∂N[b] and ∆ = 4.

1.3. Scharlemann’s Conjecture

The remaining results concern the situation of refilling meridians α and β

of a genus 2 handlebody W embedded in a 3–manifold M. Scharlemann,

in the paper [S5] which introduces this idea, formulated a conjecture about

circumstances guaranteeing that M[α] or M[β ] would be irreducible and

boundary-irreducible. He proved the conjecture, or closely related state-

ments, in several situations, most prominently when ∂W compresses in

N = M− W̊ or when at least one of α or β is non-separating. He sug-

gests that sutured manifold theory might aid in the complete resolution of

the conjecture.

In this paper, a solution using sutured manifold theory is given for a number

of 3–manifolds M and a number of embeddings of W in M. Here is the result

which is most easily stated. More detail on Scharlemann’s conjecture and

other related results are given in Section 7.1.

THEOREM 7.4. Let M be a compact, orientable 3–manifold other than S1×

S2 or a lens space. Assume that any two curves of ∂M which compress in

M are on the same component of ∂M. Suppose that W is a genus two

7



handlebody embedded in M such that W intersects every essential sphere in

M at least three times and every essential disc at least two times. Suppose

also that N = M − W̊ is irreducible. Let α and β be essential discs in

W which cannot be isotoped to be disjoint. Assume that M[α] and M[β ]

contain no essential disc which is contained in N and that ∂α and ∂β do

not compress in N.

Then one of M[α] and M[β ] is irreducible and if both are irreducible then

one is not a solid torus. Furthermore if ca ⊂ ∂M is a curve which com-

presses in M[α] and cb ⊂ ∂M is a curve which compresses in M[β ] then ca

and cb cannot be isotoped to be disjoint.

1.4. Rational Tangle Replacement

Returning to a knot-theoretic interpretation of refilling meridians of a genus

2 handlebody, we can use sutured manifold theory to learn a great deal

about knots or links which differ from an unknot or split link by a rational

tangle. For the definitions of various types of tangles, I follow Eudave-

Muñoz [EM2].

A tangle (B,τ) is a properly embedded pair of arcs τ in a 3–ball B. Two

tangles (B,τ) and (B,τ ′) are equivalent if they are homeomorphic as pairs.

They are equal if there is a homeomorphism of pairs which is the identity

on ∂B. The trivial tangle is the pair (D2 × I,{−.5, .5}× I). A rational

tangle is a tangle equivalent to the trivial tangle. Each rational tangle (B,r)

has a disc Dr ⊂ B separating the strands of r (each of which is isotopic into

∂B). The disc Dr is called a trivializing disc for (B,r). The distance d(r,s)

8



between two rational tangles (B,r) and (B,s) is simply the minimal inter-

section number |Dr ∩Ds|. We will often write d(Dr,Ds) instead of d(r,s).

A prime tangle (B,τ) is one without local knots (i.e. every meridional an-

nulus is boundary-parallel) and where no disc in B separates the strands of

τ .

Given a knot Lβ ⊂ M and a 3–ball B′ intersecting Lβ in two arcs such that

(B′,B′∩Lβ ) = (B′,rβ ) is a rational tangle, to replace (B′,rβ ) with a rational

tangle (B′,rα) is to do a rational tangle replacement on Lβ . Notice that

that η(Lβ )∪B is a genus 2 handlebody W . The knots or links Lβ and Lα can

be obtained by refilling the meridians β and α respectively. If M = S3 then

(B,τ) = (S3− B̊′,Lβ − B̊′) is a tangle. Figure 1.5 depicts a rational tangle

replacement converting the unlink to the Hopf link and how to achieve this

by boring. Notice that this rational tangle operation is simply a crossing

change. Since 2d(α,β ) = ∆(∂α,∂β ), for a crossing change d = 2. We

will use the notation of this paragraph whenever we consider rational tangle

replacement.

In [EM2], Eudave-Muñoz states the following related theorems. He proves

theorems (EM 1) - (EM 3). Theorems (BS 4), (S 5), and (EM 6) were

proven previously by Bleiler and Scharlemann [BS1, BS2], Scharlemann

[S1], and Eudave-Munoz [EM1], respectively. Gordon and Luecke [GLu2]

have given different proofs of Theorems (EM 1) - (EM 3).

THEOREM (Eudave-Muñoz). Suppose that a rational tangle replacement

of distance d on a knot or link Lβ produces a knot or link Lα . Let (B,τ),

(B′,rα) and (B′,rβ ) be as above.

9



FIGURE 1.5. A rational tangle replacement converting the
unlink to the Hopf link.

(EM 1) If (B,τ) is prime and Lα and Lβ are composite then d ≤ 1.

(EM 2) If (B,τ) is prime, if Lα is a split link and if Lβ is composite then

d ≤ 1.

(EM 3) If (B,τ) is any tangle and if Lα and Lβ are split links, then rα = rβ .

(BS 4) If (B,τ) is a prime tangle and if Lα and Lβ are both unknots, then

rα = rβ .

(S 5) If (B,τ) is any tangle, if Lβ is a trivial knot and if Lα is a split link

then (B,τ) is a rational tangle and d ≤ 1.

(EM 6) If (B,τ) is prime, if Lβ is a composite knot or link and if Lα is the

unknot, then d ≤ 1.

The work in this paper can be used to give new proofs of all but the first. In

fact, we give two new proofs of Theorems (EM 2), (EM 3) and (S 5).

10



The histories of (S 5) and (EM 6) are interesting. Consider a split link L

in S3 with components L0 and L1 and an embedding b : I× I → S3 so that

b(I×{i}) is contained on Li for i ∈ ∂ I and so that b(I× I̊) is disjoint from

L. We can form a knot K = L0#bL1 by forming the band sum of L0 and L1

using the band b. K is defined to be

K =
(
L−b(I×∂ I)

)
∪b(∂ I× I).

See Figure 1.6 for an example.

FIGURE 1.6. A band sum creating the granny knot

We often ignore the distinction between the function b and its image. If the

band intersects a splitting sphere for L in a single arc then K is the connected

sum of L0 and L1 and b is a trivial band. By looking at a regular neighbor-

hood of b(I× [.25, .75]), K and L are easily seen to differ by rational tangles

distance 1 apart.

Matumoto [K2, Problem 1.2 A] asked: if K is the unknot, must L be the

unlink and b a trivial band? Scharlemann [S1] answered this in the affirma-

tive using a purely combinatorial argument. Later, Gabai and Scharlemann

11



independently and simultaneously proved that the genus of K is at least the

sum of the genera of L0 and L1, answering a question of Lickorish [K2,

Problem 1.1]. Gabai’s proof [G4] was a simple application of his sutured

manifold theory [G1, G2, G3] and a trick of Abby Thompson. Scharle-

mann’s proof [S3] was an application of combinatorial sutured manifold

theory, his de-foliated version of Gabai’s machinery. It is fairly easy to see

that the statement of (S 5) includes Scharlemann’s original band sum the-

orem (see Section 8.4). The methods of this paper also give a new proof

of Gabai and Scharlemann’s theorem on the superadditivity of genus under

band sum.

The unknotting number of a knot is the minimal number of crossing changes

necessary to convert the knot into the unknot. It has long been conjec-

tured that unknotting number is additive with respect to connected sum [K2,

Problem 1.69 B ]. A weaker conjecture (due to de Souza) is that the con-

nected sum of n knots has unknotting number at least n [K2, Problem 1.69

A]. For n = 2, this was proven by Scharlemann [S2] using a completely

combinatorial argument. It was later reproven by Scharlemann and Thomp-

son [ST1] using combinatorial sutured manifold theory. Theorem (EM 6)

is a generalization of this fact that was proven completely combinatorially

(without sutured manifold theory). The present work continues the tradi-

tion of using sutured manifold theory to reprove and extend theorems orig-

inally proved combinatorially. The methods of this paper have the added

advantage that, in some circumstances, they significantly simplify previ-

ously existing sutured manifold theory proofs, for example the proof that

an unknotting number one knot is prime.
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Generalized crossing changes (see Figure 1.7) are another type of rational

tangle replacment. These have been extensively studied by Scharlemann

and Thompson [ST1] and Lackenby [L1, L3] using a Dehn surgery de-

scription of generalized crossing changes. Since the inequalities I obtain

are similar to Lackenby’s, I will briefly summarize one of his results.

FIGURE 1.7. A generalized crossing change

A crossing disc D ⊂ S3 for a knot K ⊂ S3 is a disc which is intersected by

the knot exactly twice with intersection number zero. Let L = ∂D be the

crossing link. Performing ±1/n Dehn-surgery (n ∈ N) on L (using merid-

ian/longitude coordinates) produces a generalized crossing change of order

n using L. Notice that a generalized crossing change of order n can also be

described as a rational tangle replacement of one tangle by a tangle of dis-

tance d = 2n away. A Seifert surface for a knot or link L is an orientable

surface S without closed components for which ∂S = L. We will usually

work with the surface S− η̊(L) which we also refer to as a Seifert surface.

A consequence of Lackenby’s result [L1, Corollary 3.5] is:

THEOREM. Let K be a non-trivial knot in S3 and K′ a knot obtained by a

generalized crossing change of order d/2 > 1 using L. Suppose that the

genus of K′ is strictly less than that of K and that F is a properly embedded
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orientable surface in the exterior of K. Then there is an ambient isotopy of

L in S3− η̊(K) so that after the isotopy

−χ(F)≥ (d−1)|F ∩L|

Lackenby’s work actually applies to Dehn twists about knots other than

those bounding crossing discs. The results of this paper provide similar,

but more limited, information about knots and links obtained from a split

link or unknot by boring or rational tangle replacement. Here are simplified

versions of two theorems for boring operations more general then rational

tangle replacement. Section 1.5 describes some results pertaining to Dehn

Surgery.

The first theorem turns out to be related to two theorems of Scharlemann

and Thompson. The first [ST1] states that either a satellite torus for a knot

can be isotoped to be disjoint from a given crossing disc or there is a min-

imal genus Seifert surface for the new knot which intersects the crossing

link in no more than two points. (Lackenby’s previously mentioned result

is closely related to this fact.) The second related theorem of Scharlemann

and Thompson [ST2] states that a tunnel for a tunnel number one knot can

be isotoped and slid to be disjoint from a minimal genus Seifert surface.

These connections are explained more in Section 7.

THEOREM 7.5. Suppose that Lα is a knot or link in S3 obtained by bor-

ing a knot or link Lβ using handlebody W. Suppose that either α is non-

separating or ∂W − ∂α is incompressible in N. Suppose also that one of

the following holds:
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• Lβ is an unknot

• Lβ is a split link and ∂W −∂β is incompressible in N.

Then there is a minimal genus Seifert surface for Lα which is disjoint from

α .

The second theorem, at the cost of putting more hypotheses on the embed-

ding of W in M = S3, studies circumstances guaranteeing that a knot or link

Lβ obtained by a split link (for example) is hyperbolic.

THEOREM 7.8. Suppose that Lβ is a knot or link obtained by boring the

link Lα using a handlebody W ⊂ S3 with N = S3−W̊ boundary-irreducible.

Suppose that Lα is a split link or that there is no minimal genus Seifert

surface for Lα disjoint from α . If the exterior of Lβ contains an essential

annulus or torus then one of the following holds:

(1) There is an essential torus in N

(2) There is an essential annulus in the exterior of Lβ which is dis-

joint from β and which is either disjoint from or has meridional

boundary on some component of Lβ .

(3) ∆ = 2 and if there is an essential annulus then there is one which

is either disjoint from or has meridional boundary on some com-

ponent of Lβ .

Returning to rational tangle replacement here are two theorems similar to

Lackenby’s. The first is a restatement of Theorem 7.7 for rational tangle

replacement.
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SIMPLIFIED COROLLARY 8.4. Suppose that Lβ ⊂ S3 is obtained by a ra-

tional tangle replacement of distance d ≥ 1 on a split link or unknot Lα .

Assume that (B,τ) is prime and that there does not exist an essential disc in

the exterior of Lα which is disjoint from α . Then Lβ has a minimal genus

Seifert surface Q disjoint from β such that one of the following holds:

• β is properly isotopic into Q

• −χ(Q)≥ d and Lα is a split link

• −χ(Q)≥ d−1 and Lα is an unknot.

An example is given which shows that the first possibility cannot be elimi-

nated.

We can also obtain an inequality similar to Lackenby’s for studying essen-

tial planar surfaces with meridional boundary in the exterior of a knot Lβ .

THEOREM 8.6. Suppose that the knot or link Lβ is obtained from a knot

or link Lα by a rational tangle replacement of distance d ≥ 1. Suppose

that (B,τ) is prime and that Lα is a split link or does not contain a minimal

genus Seifert surface disjoint from the arc α . If Lβ has an essential properly

embedded meridional planar surface with m boundary components, then it

contains such a surface Q with |∂Q| ≤ m such that either Q is contained in

B or

|Q∩β |(d−1)≤ |∂Q|−2.
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1.5. Dehn Surgery Results

The results of this paper can be applied to surfaces other than essential

spheres, discs, meridional planar surfaces, and Seifert surfaces. Planar sur-

faces and punctured tori with non-meridional boundary are a particularly

interesting class of surfaces. Theorems about such surfaces can often be

translated into statements about the results of Dehn surgery on such a knot

or link.

The cabling conjecture postulates that surgery on a non-trivial knot in S3

produces a reducible manifold only if the knot is cabled and the surgery

slope is the slope of the cabling annulus. Gordon and Luecke [GLu1] have

shown that if a knot has a reducing surgery then the surgery slope is an

integer. The answer to the question of what 2–component links have re-

ducing surgeries is likely much more complicated. Reducing surgeries on

2–component links are easy to create: most every surgery on a split link in

S3 produces a reducible manifold. If the surgery slopes are integers and a

Kirby band-move is performed, the resulting link is likely not a split link

but still has a surgery producing a reducible manifold. Another way of cre-

ating such a 2–component link is to take a knot with a reducing surgery as

one component and take any knot in its complement with the meridional

surgery as the other component. One could then perform a Kirby band-

move on these knots, producing a still more complicated 2–component link

with a reducing surgery.

More complicated than the cabling conjecture is the question of what Dehn

surgeries on what hyperbolic knots in S3 will produce a manifold containing
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an essential torus. Gordon and Luecke [GLu3] have shown that such a Dehn

surgery slope must be either an integer or half an integer. Furthermore, they

have shown [GLu4] that the only hyperbolic knots with half integer surgery

slope producing a toroidal manifold are the knots and surgeries described

by Eudave-Muñoz [EM5].

If Dehn surgery on a hyperbolic knot or link K with slope r (if K is a link

with n components, r is an n-tuple of slopes, one on each component) pro-

duces a reducible or toroidal manifold it is not difficult to show that there

is, in the complement of K, an essential planar surface or punctured torus

whose slope on K is the the surgery slope. The final result we shall men-

tion here in the introduction concerns the possibilities for essential planar

surfaces and punctured tori in the exterior of a knot or link obtained by ra-

tional tangle replacement on a split link. The theorem is not sufficient for

understanding reducing and toroidal surgeries on such a knot or link due

to the possibility of the second conclusion. It may, however, be helpful for

understanding Dehn surgery on a strongly invertible knot or link. Hirasawa

and Shimokawa [HS], for example, proved that if attaching a band to a non-

trivial (2,2p) torus link produces an unknot then the band is “standard”, i.e.

can be isotoped into the essential annulus. This is used to prove that no

Dehn surgery on a strongly invertible knot can yield the lens space L(2p,1)

for any p ∈ Z.

SIMPLIFIED THEOREM 8.8. Suppose that Lβ is a knot or link obtained by

rational tangle replacement of distance d on a knot or link Lα . Suppose

that (B,τ) is prime and that Lα is a split link or does not contain a minimal
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genus Seifert surface disjoint from α . Then if Lβ contains an essential pla-

nar surface or punctured torus in its exterior there is such a surface Q such

that one of the following holds:

• Lβ is a link and ∂Q is disjoint from some component of Lβ .

• Q is disjoint from β and β is isotopic into Q.

• Q has meridional boundary on some component of Lβ .

• d ≤ 3.

In the non-simplified version of the theorem, much more information is

given concerning the last case.

1.6. Technical Advances

Other interesting aspects of the present work are certain technical advances

pertaining to sutured manifold theory and combinatorial methods in the

study of 2–handle addition. An overview of combinatorial sutured mani-

fold theory is given in Section 2; for the moment some familiarity with the

theory is assumed.

Vaguely speaking, the significance of the sutured manifold theory results in

this thesis is that they “relativize” previously existing methods in sutured

manifold theory. Combinatorial sutured manifold theory has often relied

on certain (non-empty) 1–complexes properly embedded in the manifold.

For all previous applications (that I am aware of) the 1–complex has been

either a knot [S3, S4], an edge with a loop at each vertex [S3, EM3, EM4],

or a single vertex with two loops attached [ST1, Ko, EM4]. Alternatively,

many other sutured manifold theory results [G4, S3, L2] have not used a
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1–complex at all, but have instead taken a sutured manifold hierarchy to be

disjoint from a certain torus boundary component. At the end of the hier-

archy, a solid torus is attached to that torus component and the results are

analyzed. Both philosophies are present in the current work. The “first su-

tured manifold theorem” does not (in principle) use a 1–complex and stud-

ies hierarchies which are disjoint from a certain annulus in the boundary

of the manifold. (For technical reasons, however, the proof is best written

using a 1–complex.) At the end of the hierarchy the result of attaching a

2–handle to the annulus is analyzed. The “second sutured manifold theo-

rem” takes the 1–complex in the sutured manifold to be an arc. Theorem

9.1 of [S3] is adapted by replacing the knot in that theorem with the arc.

As part of that process, certain well-known combinatorial structures (e.g.

Scharlemann cycles) are adapted and reworked.

The first sutured manifold result is usually more powerful, but the second

sutured manifold result does have its uses. Some of these uses are explored

in Section 9.

Before the first and second sutured manifold results are stated and proved,

a quick overview of combinatorial sutured manifold theory is given.
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CHAPTER 2

Combinatorial Sutured Manifold Theory

2.1. Introducing Sutured Manifold Theory

In [S3], Scharlemann introduced a combinatorial version of Gabai’s sutured

manifold theory [G1, G2, G3]. A much fuller exposition of combinatorial

sutured manifold theory can be found in Scharlemann’s paper. In this intro-

duction, I focus only on those aspects which will be used in what follows.

The notation is chosen to correspond to that used by Scharlemann. It is not

necessarily the notation which will be used later. For example, in this sec-

tion β will be a 1–complex, but in later sections β will be a disc in a genus

2 handlebody.

DEFINITION. A sutured manifold (M,γ,β ) consists of a compact oriented

3–manifold M, a collection of oriented simple closed curves γ ⊂ ∂M, and a

finite 1–complex β ⊂ M. Either γ or β may be the empty set. Let A(γ) =

η(γ) and let T (γ) be a collection of tori in ∂M which are disjoint from

γ . If ∂M is non-empty we require cl(∂M− (γ ∪ T (γ)) to consist of two

(possibly disconnected) surfaces each with boundary equal to γ and whose

intersection is exactly γ . The intersection of one of these surfaces with

∂M−A(γ) is called R+ = R+(γ) and the intersection of the other surface

with ∂M−A(γ) is called R− = R−(γ). (See Figure 2.4.) We consider the
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surfaces to be given normal orientations so that R+ has outward pointing

normal and R− has inward pointing normal.

We require the 1–complex β to be properly embedded in M; that is, ∂β =

β ∩ ∂M consists of the valence 1 vertices of β . We say that M has the

sutured manifold structure (M,γ,β ), often abbreviated to (M,γ) when β is

unambiguous. The notation R± will indicate R+(γ) or R−(γ) and R(γ) will

indicate R+∪R−. In this paper, β will either be empty or will be a properly

embedded arc.

Sutured manifold theory is most useful when H2(M,∂M) is non-trivial.

Note that this is always the case when ∂M 6= ∅. If ∂M consists entirely

of tori then M has a sutured manifold structure with γ = ∅.

3–manifolds containing incompressible surfaces have long been studied by

using hierarchies. Sutured manifold theory studies hierarchies of sutured

3–manifolds. The theory is both more powerful, and more complicated

than, typical hierarchy arguments. The main tool for studying and using

hierarchies of sutured manifolds is the Thurston norm, or more generally, a

β -norm.

DEFINITION. For a compact connected surface S ⊂ M in general position

with respect to the 1–complex β , let

χβ (S) = max
(
0, |S∩β |−χ(S)

)
where χ(S) denotes the euler characteristic of S. For a disconnected com-

pact surface S let χβ (S) be the sum of χβ (Si) over all components Si of S.
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For a class a ∈ H2(M,X) define

χβ (a) = inf{χβ (S) : S is an embedded representative of a}.

If β = ∅, then χβ : H2(M,X)→ Z+ is the Thurston norm, otherwise it is

called a β -norm.

Of utmost importance is the notion of β–tautness for both surfaces in a

sutured manifold (M,γ,β ) and for a sutured manifold itself.

DEFINITION. Let S be a properly embedded surface in M.

• S is β–minimizing in H2(M,∂S) if χβ (S) = χβ [S,∂S].

• S is β–incompressible if S−β is incompressible in M−β .

• S is β–taut if it is β–incompressible, β–minimizing in

H2(M,η(∂S)) and each edge of β intersects S with the same sign.

If β = ∅ then we say either that S is ∅–taut or that S is taut in the

Thurston norm.

DEFINITION. (M,γ,β ) is β–taut if

• ∂β is disjoint from A(γ)∪T (γ)

• T (γ), R+(γ), and R−(γ) are all β–taut.

• M is β–irreducible; that is, M−β is irreducible.

Notice that if (M,γ) is β–taut then χβ (R+) = χβ (R−) and no edge of β

has both endpoints in R±. If β = ∅ we will often abbreviate “∅–taut” to

simply “taut”. Figure 2.1 depicts several easy examples. In A) the manifold

is a 3–ball with a single suture on its boundary. It is ∅–taut. In B) (M,γ)
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is a 3–ball with a single suture on ∂M and arcs β joining R+ to R−. It is

both β–taut and ∅–taut. Example C) is similar to B) except that there are

three sutures on ∂M. In this case (M,γ) is β–taut but not ∅–taut. Example

D) depicts a solid torus with two parallel sutures on the boundary. As long

as the sutures are not meridians of the solid torus, the sutured manifold is

∅–taut.

γ

A.

C.

β

B.

D.

FIGURE 2.1. Four easy examples

This thesis is most interested in the situation when β is an arc properly

embedded in a 3–manifold. The following are, therefore, important exam-

ples of sutured manifolds. Their claims follow easily from the preceding

definitions.

EXAMPLE. Let M be a compact, oriented 3–manifold with toral boundary

and let T1 and T2 be distinct torus components of ∂M. Let β be a properly

embedded arc in M with an endpoint on each of T1 and T2 and let b be

a meridian curve on ∂η(β ). Suppose that M − η̊(β ) is irreducible and

that ∂ (M− η̊(β ))− b is incompressible in M− η̊(β ). Let γ = ∅, T (γ) =
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∂M−(T1∪T2). Let R+ = T1 and R− = T2. Then (M,γ,β ) is β–taut (Figure

2.2.A) and (M− η̊(β ),b) is ∅–taut (Figure 2.2.B).

R+ R− R+ R−
A. B.

FIGURE 2.2. When β is an arc joining two distinct bound-
ary components

EXAMPLE. Let M be a compact, oriented 3–manifold with toral boundary.

Let T1 be a torus component of ∂M. Let β be a properly embedded arc in M

with endpoints on T1 and let b be a meridian curve on ∂η(β ). Suppose that

M− η̊(β ) is irreducible. Choose parallel curves γ ⊂ T1 which separate the

endpoints of β . If ∂ (M− η̊(β ))− (b∪ γ) is incompressible in M− η̊(β )

then (M,γ,β ) is a β–taut sutured manifold (Figure 2.3.A). Also, (M,γ ∪b)

is taut (Figure 2.3.B).

Since we are interested in hierarchies of sutured manifolds we need to spec-

ify the sorts of surfaces along which we will be decomposing our sutured

manifolds.

DEFINITION. Suppose that (M,γ,β ) is a sutured manifold.

(1) A conditioned surface S ⊂ M is an oriented properly embedded

surface such that:
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R+ R− R+ R−

A. B.

FIGURE 2.3. When β is an arc joining a boundary compo-
nent to itself

• If T is a component of T (γ) then ∂S∩T consists of coherently

oriented parallel circles.

• If A is a component of A(γ) then S∩A consists of either circles

parallel to γ and oriented the same direction as γ or arcs all

oriented in the same direction.

• No collection of simple closed curves of ∂S∩R(γ) is trivial

in H1(R(γ),∂R(γ)).

• Each edge of β which intersects S∪R(γ) does so always with

the same sign.

(2) A product disc is a disc I× I ⊂ M− η̊(β ) such that I×{0} ⊂

R+(γ), I×{1} ⊂ R−(γ), and {0,1}× I ⊂ A(γ). See Figure 2.4.

(3) A product annulus is an annulus S1×I⊂M−η̊(β ) such that S1×

{0} ⊂ R+, and S1×{1} ⊂ R−. A product annulus is β -nontrivial

if it cannot be extended to an embedding D2× I ⊂M− η̊(β ) with

D2×{0} ⊂ R+ and D2×{1} ⊂ R−. See Figure 2.5.
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R+ R−

γ

FIGURE 2.4. A product disc.

R+ R−

γ

FIGURE 2.5. A product annulus.

If (M,γ,β ) is a sutured manifold and S⊂M is a conditioned surface, prod-

uct disc, or β -nontrivial product annulus, the manifold M′ = M− η̊(S) in-

herits a natural sutured manifold structure (M′,γ ′,β ′). The 1–complex β ′

is simply β − η̊(S); we will often continue to refer to β ′ as β . The sutures

γ ′ are obtained by taking the “oriented double-curve sum” of ∂S and γ . See

Figure 2.6 for an example and refer to [G1, S3] for more details. (The as-

sumption that S is a conditioned surface, product disc, or product annulus

is not strictly necessary, the weaker assumption that S is a “decomposing
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surface” [S3, Definition 2.3] will do, but this notion is not necessary for this

paper.) We say that (M,γ) S→ (M′,γ ′) is a sutured manifold decomposi-

tion. It is a β–taut sutured manifold decomposition if (M,γ) is β–taut and

(M′,γ ′) is β ′–taut.

R+ R−

γ γ ′

FIGURE 2.6. Forming γ ′ by decomposing along a surface

Conditioned surfaces and decompositions along them play an important role

in this paper, so it will be useful to note the following theorem and some

aspects of its proof.

THEOREM 2.1. Let (M,γ) be a β–taut sutured manifold and let y be a

non-trivial element of H2(M,∂M). Then there exists a conditioned surface

(S,∂S) ⊂ (M,∂M) containing no closed components such that [S,∂S] = y.

Furthermore, S is β–taut and the decomposition of M along S is β–taut.

PROOF. This is a combination of Theorems 2.5 and 2.6 of [S3]. The

surface S is formed by beginning with a surface σ in M, representing y,

such that ∂σ fulfills the requirements for the boundary of a conditioned

surface. (That such a surface exists is a consequence of [S3, Theorem 2.5].)
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The required surface S is then formed by taking the oriented sum of S with

some number of copies of R+ and some number of copies of R−. �

DEFINITION. A β–taut sutured manifold hierarchy is a finite sequence of

β–taut sutured manifold decompositions

(M0,γ0)
S1→ (M1,γ1)

S2→ . . .
Sn→ (Mn,γn)

for which

(1) each Si is a conditioned surface, product disc, or β -nontrivial prod-

uct annulus

(2) If either end of a product annulus Si+1 bounds a disk in R(γi) then

no component of β which intersects the disk is an edge isotopic

into the annulus

(3) H2(Mn,∂Mn) = 0, implying that ∂Mn is a union of spheres.

We now state the two fundamental theorems of combinatorial sutured mani-

fold theory. The first states that β–tautness can be carried down a hierarchy

and the second (perhaps, the more amazing) states that β–tautness can be

carried up a hierarchy.

THEOREM 2.2 (Theorem 4.19 of [S3]). Every β–taut sutured manifold ad-

mits a β–taut sutured manifold hierarchy. For a given a ∈ H2(M,∂M), the

hierarchy can be chosen so that the first surface in the hierarchy represents

a.

THEOREM 2.3 (Corollary 3.9 of [S3] ). Suppose that

(M0,γ0)
S1→ (M1,γ1)

S2→ . . .
Sn→ (Mn,γn)
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is a sequence of sutured manifold decompositions in which

• no component of M0 is a solid torus disjoint from β and γ0

• each Si is either a conditioned surface, a product disc, or a β -

nontrivial product annulus.

• no closed component of any Si separates.

Then if (Mn,γn) is β–taut, every decomposition in the series is β–taut.

Typically these two theorems are used in conjunction. To illustrate this

here are rough outlines (including several serious imprecisions) of the main

sutured manifold theorems of this paper. For the first (Section 3.1), suppose

that (N,γ ∪a) is a ∅–taut sutured manifold and that a⊂ ∂N is an essential

simple closed curve. Take a ∅–taut sutured manifold hierarchy of N

(N,γ ∪a) = (N0,γ0∪a) S1→ (N1,γ1∪a) S2→ . . .
Sn→ (Nn,γn∪a)

except instead of stopping when H2(Nn,∂Nn) = 0, stop when H2(Nn,∂Nn−

η̊(a)) = 0. That is, cut along conditioned surfaces, product discs, and prod-

uct annuli disjoint from a as much as possible, and then stop. It turns out

that such a modified notion of hierarchy exists. Attach a 2–handle to a in

∂Nn and examine what happens. In an ideal world, Theorem 2.3 would tell

us that if (Nn[a],γn) is ∅–taut then so is (N[a],γ) unless a component of

N[a] is a solid torus disjoint from γ . A moment’s thought however shows

that, as phrased, the hypotheses that the surfaces Si be conditioned surfaces,

product discs, or product annuli in (Ni−1[a],γi) for Theorem 2.3 may not be

satisfied. In the proof of the first sutured manifold theorem, a more subtle

argument is used. The argument still relies on Theorem 2.3.
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For the second sutured manifold theorem (Section 3.2), let (N,γ,β ) be a

β–taut sutured manifold with β a properly embedded arc. Take a β–taut

sutured manifold hierarchy of N

(N,γ) S1→ (N1,γ1)
S2→ . . .

Sn→ (Nn,γn)

stopping when H2(Nn,∂Nn) = 0. The sutured manifold (Nn,γn,βn) is βn–

taut. A combinatorial argument at this final stage will show that (in certain

circumstances) (Nn,γ) is also ∅–taut. Then Theorem 2.3 shows that, unless

a component of N is a solid torus disjoint from γ and β , (N,γ) is ∅–taut.

The main tools needed for making combinatorial arguments are parameter-

izing surfaces.

DEFINITION. A parameterizing surface Q in a sutured manifold (M,γ,β )

is a surface (Q,∂Q) ⊂ (M− η̊(β ),∂ (M− η̊(β ))) such that no component

of Q is a disc with boundary in R±.

We would like to be able to manage the the interactions between a param-

eterizing surface and a sutured manifold hierarchy. Fortunately, this can be

done, perhaps at the cost of slightly changing the hierarchy. The details are

slightly complicated and not terribly relevant for what follows, so we sum-

marize the main points. Suppose that (M,γ,β ) S→ (M′,γ ′,β ′) is a β–taut

sutured manifold decomposition. If S is a conditioned surface, then the de-

composition respects Q if Q∩M′ is still a parameterizing surface. This can

always be arranged by replacing S with the surface obtained by taking the

double curve sum of S and some number of copies of R+ and some number

of copies of R− [S3, Lemma 7.5]. If S is a product disk or β -nontrivial
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product annulus we also want to arrange the decomposition so that it “re-

spects” Q. This can be done after isotoping S and Q, boundary-compressing

Q using discs contained in S, and then removing discs of Q with boundary

contained in R(γ). After such operations the surface Q′ = Q− η̊(S) is then a

parameterizing surface for M′. We say that a β–taut hierarchy respects Q if

at each stage Q′ is formed by the processes just described. By Theorem 7.8

of [S3] we may assume that a β–taut sutured manifold hierarchy respects a

given parameterizing surface. Even though the parameterizing surface Qn

at the end of a hierarchy may not be a subset of Q (due to product discs

and annuli), Lackenby [L1] notes that there is a collection of discs D ⊂ Qn

such that each disc in D is a regular neighborhood of a point in ∂Qn and

Qn−D ⊂ Q. Thus it is easy to take information about Qn and translate it

into information about Q.

To a parameterizing surface Q we associate a number I(Q) called the index

of Q. Let ψ be a compact 1-manifold (possibly with boundary) embedded

(but not necessarily properly embedded) in ∂ (M− η̊(β )). Assume that ψ

is in general position with respect to γ . Define µ(ψ) to be the number of

essential arcs of ψ ∩η(E ) where E is the set of edges of β . (Notice that

if β is a single loop, then µ(ψ) = 0.) Define ν(ψ) to be the number of

essential arcs of ψ ∩A(γ). The index of Q is then defined to be I(Q) =

µ(∂Q)+ ν(∂Q)− 2χ(Q). In [S3], I(Q) has an additional term K . This

is a function, which can be chosen somewhat arbitrarily, on arcs passing

through vertices of β . Since in this work, we choose K to be zero, we

make no further mention of it.
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EXAMPLE. Figure 2.7 depicts a portion of a sutured manifold with a pa-

rameterizing surface. In the figure, four pieces of sutures are shown and

β consists of four arcs. The surface Q is a twice-punctured torus. Each

boundary component of Q crosses the sutures four times and crosses arc

components of β twice. Thus I(Q) = 4+8−2(−2) = 16.

FIGURE 2.7. The parameterizing surface is a twice-
punctured torus.

The usefulness of the index comes from the following theorem.

THEOREM 2.4 ([S3, Lemmas 7.5 and 7.6]). Suppose that

(M,γ,β ) S→ (M′,γ ′,β ′)

is a β–taut sutured manifold decomposition adapted to the parameterizing

surface Q ⊂ M− η̊(β ) with Q′ the resulting parameterizing surface in M′.

Then I(Q′)≤ I(Q). In fact, if S is a conditioned surface then I(Q′) = I(Q).

33



There are two very simple types of parameterizing surfaces which are of

particular importance. Suppose that b is an arc component of β and that Q

is a disc with boundary consisting of two arcs, one an essential arc in ∂η(β )

and the other an arc on ∂M which crosses exactly one suture. Then Q is said

to be a cancelling disc for b. See Figure 2.8 for an example. Suppose that

b′ is also an arc component of β (possibly equal to b). If ∂Q consists of

four arcs, one an essential arc in ∂η(b), one an essential arc in ∂η(b′) and

two arcs in R(γ) then Q is said to be an amalgamating disc for b. If b′ 6= b

it is a (non-self) amalgamating disc for b. Figure 2.9 depicts both a (non-

self) amalgamating disc and a self-amalgamating disc. Notice that if Q is a

connected parameterizing surface with I(Q) = 0 then either Q is an annulus

or torus disjoint from γ ∪η(β ) or it is a disc disjoint from η(β ) or it is a

cancelling or amalgamating disc for some arc of β .

Q

FIGURE 2.8. Q is a cancelling disc.

2.2. Conversing with Sutured Manifold Theory

Although sutured manifold theory is interesting in its own right, we would

like to be able to translate conclusions about sutured manifolds and β–taut
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Q Q

A. B.

FIGURE 2.9. A) Q is a (non-self) amalgamating disc. B) Q
is a self-amalgamating disc.

conditioned surfaces into conclusions which do not need to use the language

of sutured manifold theory.

We will need two different methods for converting from a β -norm to the

Thurston norm. Here are two methods for doing so. The first converts an

arc component of β into a suture. When β consists of a single arc, we can

use tautness in the Thurston norm of M−η(β ) (with an additional suture)

to conclude that M is taut in the β -norm.

LEMMA 2.5 ([S4, Lemma 2.3]). Suppose that (M,γ,β ) is a sutured man-

ifold with b an arc component of β having one end in each of R±. Let

M′ = M− η̊(b). and let γ ′ be γ together with a meridional curve on the

boundary of the regular neighborhood of b. Then (M,γ,β ) is β–taut if and

only if (M′,γ ′,β −b) is (β −b)–taut.

The other method of converting from a β -norm to the Thurston norm is

most useful at the end of a β–taut hierarchy. We often hope to achieve ∅–

tautness by showing that β is a collection of arcs in the final stage of the
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hierarchy and each arc can be cancelled using a cancelling disc or (non-self)

amalgamating disc.

LEMMA 2.6 ([S3, Lemmas 4.3 and 4.4]). Suppose that (M,γ,β ) is a β–taut

sutured manifold and that b is an arc component of β lying on a cancelling

disc or (non-self) amalgamating disc. Then (M,γ,β −b) is a (β −b)–taut

sutured manifold.

Torus components of ∂M which are disjoint from β may or may not have

sutures, as desired. Since, however, a higher genus component of ∂M may

not be β -minimizing, it may be necessary to place sutures on those compo-

nents in order to give M a β–taut sutured manifold structure. Techniques

for doing so are described in [S4] and [L2]. We will ultimately need a

slight variation of those results, but that discussion is deferred until we have

described the specific sutured manifolds of interest in this paper.
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CHAPTER 3

Adding a 2–handle to a sutured manifold

This section describes two methods for proving that the manifold N[a] ob-

tained by adding a 2–handle to a curve a on a genus two or greater boundary

component F of a compact, connected, orientable 3–manifold N is taut. We

denote the core of the 2–handle by α so that ∂α = a. The cocore of the 2–

handle η(α) is an arc α . Suppose that sutures γ ⊂ ∂N disjoint from a have

been chosen so that (N,γ ∪ a) is a taut sutured manifold, or, equivalently

(Lemma 2.5), so that (N[a],γ) is an α–taut sutured manifold.

Suppose that B = {b1, . . . ,b|B|} are pairwise disjoint, pairwise nonparallel

essential curves in F each of which intersects a∪ γ minimally. Suppose

that Q⊂N is a surface with qi boundary components parallel to bi. Let ∂0Q

denote the boundary components of Q which are not parallel to any curve in

B. Assume that ∂Q intersects γ∪a minimally. Suppose also that |∂Q∩a|>

0 and that no component of Q is a sphere or disc disjoint from a∪ γ . We

think of Q as being Q∩N where Q is a surface in the manifold obtained

from attaching 2–handles along the curves of B and filling in any 2–sphere

boundary components with 3–balls. Q is obtained from Q by attaching discs

to the components of ∂Q parallel to curves in B. We then have ∂0Q = ∂Q.

Define ∆i = |bi∩a|, ∆∂ = |∂0Q∩a|, νi = |bi∩ γ|, ν∂ = |∂0Q∩ γ| and

K(Q) =
|B|

∑
i=1

qi(∆i−νi−2)+(∆∂ −ν∂ ).
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3.1. The first sutured manifold theorem

We begin with a definition.

DEFINITION. An a–boundary compressing disc for Q is a boundary com-

pressing disc D with ∂D consisting of two arcs δ ∪ε so that δ ∩ε = ∂δ = ∂ε

and δ is an essential arc in Q and ε is a subarc of some essential simple

closed curve in η(a)⊂ F .

EXAMPLE. See Figure 3.1. In that figure, we are looking down α , the

cocore of the 2–handle α . The parameterizing surface Q runs along α twice,

that is |∂Q∩a|= 2. An a–boundary compressing disc D for Q is shown at

the far end of α .

D Q

α

FIGURE 3.1. An a–boundary compression.

THEOREM 3.1. Let (N,γ ∪a) and Q be as described above. If either of the

following holds:

• (N[a],γ) is not taut

• There exists a surface S in N[a] which is disjoint from α , is a con-

ditioned surface in N[a], and is taut in N but is not taut in N[a].
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then one of the following holds:

(1) N[a] contains an essential separating sphere intersecting α exactly

twice and which cannot be isotoped to intersect that arc any fewer

times. Furthermore, this sphere bounds a non-trivial homology

ball in N[a].

(2) There is an a–boundary compressing disc for Q

(3) −2χ(Q)≥ K(Q).

The remainder of this section proves the theorem. The proof was inspired

by Lackenby’s work [L1] on Dehn surgery on linking number zero knots in

sutured manifolds.

We begin by creating a sequence of taut sutured manifold decompositions

of (N,γ ∪ a). In order to effectively apply the main theorems of combi-

natorial sutured manifold theory, this sequence will need to be constructed

in a particular fashion. The next lemma will provide the surfaces that are

essential for creating a useful sutured manifold hierarchy.

LEMMA 3.2. Suppose that (X ,Γ∪ a) is a taut sutured manifold and that

H2(X [a],∂X [a]) 6= 0. Then, in X [a], there is a conditioned surface S which

is disjoint from α . S is a taut conditioned surface in X and ∂S∩η(a) = 0.

PROOF. By the proofs of Theorems 2.5 and 2.6 of [S2], given a non-

trivial homology class z ∈ H2(X [a],∂X [a]) there exists a taut conditioned

surface S′ in the α–taut sutured manifold (X [a],Γ,α). After possibly re-

placing z with −z we may assume that α has algebraic intersection number
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i≥ 0 with S′. By the choice of orientation of the arc α , α has algebraic in-

tersection number −1 with R+(Γ). The surface S′′ which is the the double

curve sum of S′ with i copies of R+(Γ) has algebraic intersection num-

ber zero with α . Notice that ∂S′′ satisfies the necessary criteria for S′′ to

be conditioned in (X ,Γ∪ a). Tube together points of opposite intersec-

tion number to create from S′′ a surface S which is disjoint from α and for

which ∂S = ∂S′′. The surface S is a conditioned surface in (X ,Γ∪ a). We

may therefore replace S with a taut surface in (X ,Γ∪ a) having the same

boundary. �

To create a taut sutured manifold decomposition that is adapted to the pa-

rameterizing surface Q, we may need to take the double curve sum of

our favorite conditioned surface S in a sutured manifold (X ,Γ∪ a) with

some number k of copies of R+(Γ∪ a) and some number l of copies of

R−(Γ∪a), creating the surface Sk,l . We then decompose using the surface

Sk,l instead of S. The conditioned surfaces that we use will be the ones pro-

vided by Lemma 3.2. Performing the double curve sums creates boundary

components of Sk,l which are located in η(a). Attaching discs to each of

those boundary components creates a surface Sa
k,l ⊂ X [a]. The surface Sa

k,l

can also be created by taking the double curve sum of S with k copies of

R+(Γ)⊂ X [a] and l copies of R−(Γ)⊂ X [a].

The next lemma guarantees that if we use such a surface to perform a de-

composition of the sutured manifold (X [a],Γ,α) then all but one arc of

α −η(Sa
k,l) can be cancelled. Let ∗a denote the point on α to which the

curve a retracts under the standard retraction of η(α) to α . If (X [a],Γ,α)
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is a sutured manifold which is decomposed along a surface Σ which is dis-

joint from ∗a, call any component of α − η̊(Σ) which doesn’t contain ∗a a

residual arc. If such an arc is converted into a suture (Lemma 2.5), call the

resulting suture a residual suture.

LEMMA 3.3. Suppose Sa
k,l ⊂ X [a] be a surface created from the S provided

by Lemma 3.2. Then after decomposing X [a] along Sa
k,l there exists a can-

celling disc or a self-amalgamating disc for each residual arc.

PROOF. Suppose that α
′ is a residual arc. Since S is disjoint from a,

each endpoint of α
′ is on R±(Γ) or on a pushed off copy of R±(Γ). In other

words, since α
′ is a residual arc both endpoints are on different copies of

R+(Γ) or on different copies of R−(Γ). Let P be the product region R±× I

between these copies. Then each component of S∩P is an (arc)× I or an

S1× I. The arc α
′ = α ∩P is a copy of (point)× I.

If the component of (R±×{0})− S containing the endpoint of α
′ has any

part of its boundary intersecting ∂ (R±×{0}) choose a path p in that com-

ponent from ∂α
′ to ∂ (R±×{0}). If not, then there is an essential closed

curve p in that component which passes through the endpoint of α
′ and is

isotopic to a component of ∂S. In the first case, p× I is a cancelling disc

for α
′ and in the second case, p× I is a self-amalgamating disc for α

′. �

In creating a hierarchy of (N,γ ∪a) it may be necessary to eliminate index

zero discs. Certain index-zero discs need to be treated carefully. To that

end, suppose that (X [a],Γ,α) is a sutured manifold with α a collection

of arcs. Suppose that D ⊂ X [a] is a cancelling disc for a component α
′

of α . A regular neighborhood of D is a 3–ball B containing α
′. Cutting
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open X [a] along the disc E = cl(∂B∩ X̊) produces a sutured manifold, one

component of which is a 3–ball containing α
′. The 3–ball has a single

suture in its boundary. We may then remove the arc α
′ without affecting α-

tautness. The other component is the sutured manifold we would obtain by

cancelling the arc α
′ in X [a]. By converting all arcs to sutures we obtain a

decomposition of (X ,Γ∪a) which eliminates the index zero disc D. Indeed,

by decomposing along E but not the disc D we can eliminate an index-zero

disc in X without cutting along a or a residual suture. This is at the cost

of introducing a component which is a solid torus having two longitudinal

sutures in its boundary. Exactly one of those sutures is either a or a residual

suture. If it is a residual suture call the component a residual torus.

Suppose that D ⊂ X [a] is a self-amalgamating disc for a component α
′ of

α . Then slightly enlarging it produces a non-trivial product annulus A in

X . There is a parallelism of α in X [a] into A. After decomposing X [a]

along A there is a cancelling disc for α
′ which may then be eliminated as

above. Notice that since each component of ∂S is essential in ∂X [a] (by

the construction of S in Lemma 3.2) the product discs created by the self-

amalgamating discs of Lemma 3.3 have ends which are essential in ∂X [a].

Thus, if a product annulus created from a self-amalgamating disc has both

ends inessential in ∂X [a] it must have arisen from a self-amalgamating disc

for the suture a. But it is easy to see that in this case all such product annuli

must have both ends essential in ∂X [a]. This observation will be useful in

the proof of Lemma 3.5 below.
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LEMMA 3.4. There is a taut sequence of sutured manifold decompositions

(†) (N,γ ∪a) = (N0,γ0∪a) S1→ (N1,γ1∪a) S2→ . . .
Sn→ (Nn,γn∪a)

adapted to the parameterizing surface Q such that

(1) each decomposition is either a decomposition along an product

disc or product annulus or along a surface Sk,l given by Lemma

3.3. If the product disc intersects a residual suture then the de-

composition is performed as described above. All decompositions

along product annuli arise from this method of eliminating product

discs, as described above.

(2) H2(Nn[a],∂Nn[a]) = 0 where a is the curve a together with all the

residual sutures.

(3) If a component of Nn does not contain a, it is either a residual torus

or a 3–ball containing a single suture in its boundary.

Another formulation of (2) is that if we convert a and all residual sutures to

arcs, the resulting manifold has trivial homology relative to its boundary.

PROOF. This is essentially the proof that taut sutured manifold hierar-

chies exist (Theorem 2.2). The proof of that theorem makes the hierarchy

stop when H2(Nn,∂Nn) = 0. By Lemma 3.2, we can instead stop the hier-

archy when H2(Nn[a],∂Nn[a]) = 0. If it is necessary to eliminate a product

disc which intersects twice a residual suture or the suture a then the de-

composition should be performed as described previously. By Lemma 3.3,

there exists such a product disc for all residual sutures. Hence, all resid-

ual sutures end up in residual tori. Any component of Nn which does not
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contain a residual suture or a must be a 3–ball with a single suture in its

boundary since (Nn,γn∪a) is taut and H2(Nn[a],∂Nn[a]) = 0. �

Let N′ denote the component of Nn which contains a. We can now use the

hypotheses of the theorem we are trying to prove to conclude that (N′[a],γn∩

N′) is not taut.

LEMMA 3.5. (N′[a],γn∩N′) is not taut.

PROOF. Since a component of Nn−N′ is either a 3–ball with a single

suture in its boundary or a residual torus, all components of Nn[a]−N′[a]

are ∅–taut. Thus, if (N′[a],γn∩N′) is taut, so is (Nn[a],γn−a).

Convert the hierarchy (†) into a sequence of sutured manifold decomposi-

tions of the sutured manifold (N[a],γ,α) by converting the suture a into an

arc α and any surface Sk,l into Sa
k,l as described previously. Let Sa

1 denote

the result of applying this conversion to S1. Then each surface in the hier-

archy is either a product disc, non-trivial product annulus (by the remarks

preceding Lemma 3.4), or conditioned surface. Thus, if (Nn[a],γn− a) is

∅-taut, by Theorem 2.3, (N[a],γ) is taut and Sa
1 is taut. The surface Sa

1 is

obtained by taking the double curve sum of S with k copies of R+(γ) and l

copies of R−(γ). If S is not ∅–taut, then it does not minimize the Thurston

norm (in H2(N[a],∂S)). But in this case, the double curve sum of S with k

copies of R+ and l copies of R− is not Thurston norm minimizing either,

implying that Sa
1 is not taut, a contradiction. Thus, if (N′[a],γn∩N′) is taut

so is (Nn[a],γn−a). In which case, we can also conclude that (N[a],γ) and

S are taut. But this contradicts the hypotheses of our theorem. �
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REMARK. Here is a brief aside to explain the route taken for the proof up

until this point. Psychologically, it would be easier to have taken an α–taut

hierarchy of (N[a],γ). However, would need that at the end of the hierarchy

there is at most one arc which cannot be cancelled. This requires that the

conditioned surfaces be taken to be disjoint from α (except for the result

of double curve summing with R±. A priori decompositions along such

surfaces may not be α–taut. There is then no clear way to guarantee that

the sutured manifold at the end is α–taut, in other words that it has the

structure that we will now be making use of. Furthermore, it is unclear

whether or not such a sequence of decompositions can be guaranteed to

terminate. The proof given here avoids these difficulties by constructing

taut decompositions of (N,γ ∪a).

Carefully examining N′ will enable us to conclude the proof of the theorem.

LEMMA 3.6. ∂N′ is a torus and N′[a] is an integer homology ball.

PROOF. The proof is similar to [L2, Lemma A.4]. Let A = ∂N′− η̊(a).

By construction of the hierarchy, H2(N′,A) = 0. Thus, by duality for man-

ifolds with boundary H1(N′,η(a)) = 0. By the Universal Coefficient The-

orem, H1(N′,η(a)) = 0. From the exact sequence for the homology of the

pair (N′,η(a)), H1(η(a)) surjects onto H1(N′). Thus, H1(N′) is cyclic.

Since H2(N′,A) = 0, by the long exact sequence for the pair (N′,A), H1(A)

injects into H1(N′). Since A is a surface and ∂η(a) has two components, A

is a collection of spheres and either an annulus or two discs. Since a does

not compress in N, A does not contain a disc. The existence of a sphere

would contradict tautness of N′, and so A is an annulus.
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Since H1(A) is isomorphic to Z and it injects into the cyclic group H1(N′),

H1(N′) is also isomorphic to Z. Since η(a) is an annulus and since H1(η(a))

surjects H1(N′), the inclusion of η(a) into N′ induces an isomorphism on

first homology. Since A is an annulus and H2(N′,A) = 0, the exact sequence

for the pair (N′,A) shows that H2(N′) = 0. It is then easy to see that N′[a]

is a homology ball. �

Since (N′,(γn∪a)∩N′) is a sutured manifold and ∂N′ is a torus containing

the suture a there must be an odd number r of other sutures. The proof of

the theorem concludes by examining two cases. The first case is when r = 1

and the second case is when r ≥ 3.

Suppose that r = 1. Then ∂N′[a] is a sphere containing a single suture.

Since (N′[a],γn∩N′) is an integer homology ball (Lemma 3.6) which is not

taut, the integer homology ball is not a 3–ball. Push ∂N′[a] slightly into

N[a]. Then, ∂N′[a] must be a reducing sphere for N[a] which is intersected

exactly twice by α and which bounds a non-trivial integer homology ball.

If α could be isotoped to intersect the sphere ∂N′[a] fewer times, it could be

isotoped to be disjoint from that sphere and N′ would be reducible, contrary

to the hypothesis that (N,γ ∪a) is taut. Hence, conclusion (1) holds.

Suppose, therefore, that r ≥ 3. Let Qn be the parameterizing surface in Nn

obtained from Q. Since index does not increase during a hierarchy Theorem

2.4, the index of Qn is no more than the index of Q. No component of Qn

is a sphere or a disc disjoint from γn, hence each component of Qn has non-

negative index. Suppose that ζ is a component of ∂Qn which crosses a at

least once. Let A = ∂N′− η̊(a). If ζ ∩A contains an arc inessential in A
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then either there is an isotopy of Q reducing |∂Q∩η(a)| or an outermost

such arc in A bounds an a–boundary compressing disc D for Q in N. The

former is forbidden by our hypothesis that ∂Q intersects η(a) minimally

and the latter is the second of our conclusions. We may, therefore, assume

that ζ is an essential loop in the torus ∂N′ which intersects η(a) minimally

a positive number of times. Hence, ζ intersects all r +1 sutures on ∂N′.

Let Q′ be a component of Qn such that at least one component of ∂Q′ inter-

sects η(a). Notice that −2χ(Q′) ≥ −2. Let zQ′ = |∂Q′∩η(a)|. Then ∂Q′

has at least zQ′(r +1) intersections with the sutures γn. Hence,

I(Q′)≥ zQ′(r +1)−2χ(Q′)≥ zQ′(r +1)−2≥ zQ′(r−1).

Then,

I(Qn)≥∑ I(Q′)≥ (r−1)∑zQ′

where the sums are taken over all components Q′ of Q which have at least

one boundary component intersecting η(a). By the construction of Qn from

Q, we have that ∑zQ′ = |∂Q∩a|. Thus,

|∂Q∩ γ|+ |∂Q∩a|−2χ(Q) = I(Q)≥ I(Qn)≥ (r−1)|∂Q∩a|.

Consequently,

|∂Q∩ γ|−2χ(Q)≥ (r−2)|∂Q∩a| ≥ |∂Q∩a|

since r ≥ 3.
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Recalling that Q is obtained from Q by removing qi discs with boundary

parallel to bi, that |∂Q∩ γ| = ∑qiνi + ν∂ , that |∂Q∩a| = ∑qi∆i + ∆∂ , and

that χ(Q) = χ(Q)−∑qi we obtain:

∑qiνi +ν∂ −2χ(Q)+2∑qi ≥∑qi∆i +∆∂ .

It is easy to rearrange this to obtain

−2χ(Q)≥ K(Q)

as desired. �

3.2. The second sutured manifold theorem

In this section we show how to extend the argument of Theorem 9.1 of [S3]

to allow non-planar parameterizing surfaces Q and how to replace the knot

in that theorem with the arc α .

DEFINITION. An a–torsion 2g–gon is a disc D ⊂ N− η̊(Q) such that ∂D

is divided into 2g subarcs δ1,ε1, . . .δg,εg. Each subarc δi is an essential arc

in Q. The subarcs εi are mutually parallel arcs in η(a)− ∂Q all with the

same orientation and all subarcs of essential circles in η(a). Since they are

mutually parallel they are contained in a rectangle R⊂ (F−∂Q), with two

edges of R subarcs of ∂Q. We require that the surface obtained by attaching

R to Q be orientable.

EXAMPLE. Figure 3.2 shows a hypothetical example. The surface outlined

with dashed lines is Q. It has boundary components on F . There are two

such boundary components pictured. The curve running through Q and F
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could be the boundary of an a–torsion 4–gon. Notice that the arcs ε1 and

ε2 are parallel and oriented in the same direction. Attaching the rectangle

containing those arcs as two of its edges to Q produces an orientable surface.

δ1

Q

δ2

ε2 ε1

F

FIGURE 3.2. The boundary of an a–torsion 4–gon.

REMARK. The reason for the name a–torsion 2g–gon will be clear in Sec-

tion 5. In that section |B| ≤ 2. It will be shown that if Q is a sphere or disc

and there is an a–torsion 2g–gon for Q = Q∩N with g≥ 2 then H1(N[b1])

is not torsion-free (in fact, N[b1] will contain a lens space summand). In

general, however, the existence of an a–torsion 2g–gon does not guarantee

that H1(N[b1]) has torsion.

Notice that an a–torsion 2–gon is an a–boundary compressing disc. The

main result of this section is similar to the first sutured manifold theorem
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except that instead of considering conditioned taut surfaces in N we con-

sider conditioned α–taut surfaces in N[a]. The possible existence of an

a–torsion 2g–gon is weaker then the corresponding conclusion in the first

sutured manifold theorem. We do not need to worry about an essential

sphere in N[a] intersecting α twice, but we do need to worry that N[a] may

have torsion in first homology.

THEOREM 3.7 (cf. [S3, Theorem 9.1] and [S4, Proposition 4.1]). Suppose

that (N[a],γ) is α–taut and that either

• N[a] is not ∅–taut

• there is a conditioned α–taut surface S⊂N[a] which is not ∅–taut.

• N[a] is homeomorphic to a solid torus S1×D2 and α cannot be

isotoped so that its projection to the S1 factor is monotonic.

Then at least one of the following holds:

• There is an a–torsion 2g–gon for Q for some g ∈ N

• H1(N[a]) contains non-trivial torsion

• −2χ(Q)≥ K(Q).

REMARK. If α can be isotoped to be monotonic in the solid torus N[a] then

it is, informally, a “braided arc”. The contrapositive of this aspect of the

theorem is similar to the conclusion in [G2] and [S4] that if a non-trivial

surgery on a knot with non-zero wrapping number in a solid torus produces

a solid torus then the knot is a 0 or 1-bridge braid.

The remainder of this section proves the theorem. Following [S4], define a

Gabai disc for Q to be an embedded disc D⊂ N[a] such that
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• |α ∩ D̊| > 0 and all points of intersection have the same sign of

intersection

• |Q∩∂D|< |∂Q∩η(a)|

The next proposition points out that the existence of a Gabai disc guarantees

the existence of an a–boundary compressing disc or an a–torsion 2g–gon.

PROPOSITION 3.8. If there is a Gabai disc for Q then there is an a–torsion

2g–gon.

PROOF. Let D be a Gabai disc for Q. The intersection of Q with D

produces a graph Λ on D. The vertices of Λ are ∂D and the points α ∩D.

The latter are called the interior vertices of Λ. The edges of Λ are the arcs

Q∩D. A loop is an edge in Λ with initial and terminal points at the same

vertex. A loop is trivial if it bounds a disc in D with interior disjoint from

Λ.

To show that there is an a–torsion 2g–gon for Q, we will show that the

graph Λ contains a “Scharlemann cycle” of length g. The interior of the

Scharlemann cycle will be the a–torsion 2g–gon. In our situation, Scharle-

mann cycles will arise from a labelling of Λ which is slightly non-standard.

Traditionally, when α is a knot instead of an arc, the labels on the endpoints

of edges in Λ, which are used to define “Scharlemann cycles”, are exactly

the components of ∂Q. In our case, since each component of ∂Q likely

intersects ∂α more than once we need to use a slightly different labelling.

After defining the labelling and the revised notion of “Scharlemann cycle”,

it will be clear to those familiar with the traditional situation that the new

Scharlemann cycles give rise to the same types of topological conclusions
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as in the traditional setting. The discussion is modelled on Section 2.6 of

[CGLS].

A Scharlemann cycle of length 1 is defined to be a trivial loop at an interior

vertex of Λ. We now work toward a definition of Scharlemann cycles of

length g > 1. Without loss of generality, we may assume that |α ∩D| ≥ 2.

Recall that the arc α always intersects the disc D with the same sign. There

is, in F , a regular neighborhood A of a such that D∩F ⊂ A. We may choose

A so that ∂A⊂ D∩F . Let ∂±A be the two boundary components of A. The

boundary components of Q all have orientations arising from the orientation

of Q and β . We may assume by an isotopy that all the arcs ∂Q∩A are fibers

in the product structure on A. Cyclically around A label the arcs of ∂Q∩A

with labels c1 . . .cµ . Let C be the set of labels. Being a submanifold of ∂Q,

each arc is oriented. Say that two arcs are parallel if they run through A in

the same direction (that is, both from ∂−A to ∂+A or both from ∂+A to ∂−A).

Call two arcs antiparallel if they run through A in opposite directions. Note

that since the orientations of D̊∩∂W in A are all the same, an arc intersects

each component of D̊∩∂W with the same algebraic sign.

Call an edge of Λ with at least one endpoint on ∂D a boundary edge and

call all other edges interior edges. As each edge of Λ is an arc and as all

vertices of Λ are parallel oriented curves on ∂W , an edge of Λ must have

endpoints on arcs of C = {c1, . . . ,cµ} which are antiparallel. We call this

the parity principle (as in [CGLS]). Label each endpoint of an edge in Λ

with the arc in C on which the endpoint lies.

52



We will occasionally orient an edge e of Λ; in which case, let ∂−e be the tail

and ∂+e the head. A cycle in Λ is a subgraph homeomorphic to a circle. An

x–cycle is a cycle which, when each edge e in the cycle is given a consistent

orientation, has ∂−e labelled with x ∈ C . Let Λ′ be a subgraph of Λ and let

x be a label in C . We say that Λ′ satisfies condition P(x) if:

P(x): For each vertex v of Λ′ there exists an edge of Λ′ incident to v with

label x connecting v to an interior vertex.

LEMMA 3.9 ([CGLS, Lemma 2.6.1]). Suppose that Λ′ satisfies P(x). Then

each component of Λ contains an x–cycle.

PROOF. The proof is the same as in [CGLS]. �

A Scharlemann cycle is an x–cycle σ where the interior of the disc in D

bounded by σ is disjoint from Λ. See Figure 3.3. Since each intersection

point of D∩α has the same sign, the set of labels on a Scharlemann cycle

contains x and precisely one other label y, a component of C adjacent to x

in A. The arc y and the arc x are antiparallel by the parity principle. The

length of the Scharlemann cycle is the number of edges in the x–cycle.

LEMMA 3.10 ([CGLS, Lemma 2.6.2]). If Λ contains an x–cycle, then it

contains a Scharlemann cycle.

PROOF. The proof is again the same as in [CGLS]. �

REMARK. In [CGLS], there is a distinction between x–cycles and, so-

called, great x–cycles. We do not need this here because all components

of D∩F are parallel in η(∂α) as oriented curves.
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FIGURE 3.3. A Scharlemann cycle of length 4 bounding an
a–torsion 8-gon.

The next corollary explains the necessity of considering Scharlemann cy-

cles.

COROLLARY 3.11 ([CGLS]). If ∂D intersects fewer than |∂Q∩A| edges

of Λ then Λ contains a Scharlemann cycle.

PROOF. As ∂D contains fewer than |∂Q∩A| endpoints of boundary-

edges in Λ there is some x ∈ C which does not appear as a label on a

boundary edge. As every interior vertex of Λ contains an edge with label x

at that vertex, none of those edges can be a boundary edge. Consequently, Λ

satisfies P(x). Hence, by Lemmas 3.9 and 3.10, Λ contains a Scharlemann

cycle of length g (for some g). �

In A there is a rectangle R with boundary consisting of the arcs x and y and

subarcs of ∂A. See Figure 3.4. Because α always intersects D with the

same sign, ∂D always crosses R in the same direction. This shows that the

arcs εi are all mutually parallel in F . The arcs x and y are antiparallel, so
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FIGURE 3.4. The rectangle R.

attaching R to Q produces an orientable surface. Hence, the interior of the

Scharlemann cycle is an a–torsion 2g–gon. �

We now proceed with proving the contrapositive of the theorem. Suppose

that none of the three possible conclusions of the theorem hold. Let

(N[a],γ) S1→ (N1,γ1)
S2→ . . .

Sn→ (Nn,γn)

be an α–taut sutured manifold hierarchy for (N[a],γ) which is adapted to

Q. The surface S1 may be obtained from the surface S by performing the

double-curve sum of S with k copies of R+ and l copies of R− (Theorem

2.1).

Since −2χ(Q) < K(Q), simple arithmetic shows that I(Q) < 2|∂Q∩η(a)|.

Since there is no a–torsion 2g–gon for Q, by the previous proposition, there

is no Gabai disc for Q. The proof of [S3, Theorem 9.1] shows that (Nn,γn) is

also ∅–taut, after substituting the assumption that there are no Gabai discs

for Q in N wherever [S3, Lemma 9.3] was used (as in [S4, Proposition
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4.1]). In claims 3, 4, and 11 of [S3, Theorem 9.1] use the inequality I(Q) <

2|∂Q∩A| to derive a contradiction rather than the inequalities stated in the

proofs of those claims.

The sutured manifold hierarchy above is a sequence of sutured manifold

decompositions satisfying the requirements of Theorem 2.3 (with empty

1–complex). Hence, the hierarchy is ∅–taut, (N[a],γ) is a ∅–taut sutured

manifold and S1 is a ∅–taut surface. Suppose that S is not ∅–taut. Then

there is a surface S′ with the same boundary as S but with smaller Thurston

norm. Then the double-curve sum of S′ with k copies of R+ and l copies

of R− has smaller Thurston norm than S1, showing that S1 is not ∅–taut.

Hence, S is ∅–taut.

The proof of [S3, Theorem 9.1] concludes by noting that at the final stage

of the hierarchy, there is a cancelling or (non-self) amalgamating disc for

each remnant of α . When N[a] is a solid torus the only ∅–taut conditioned

surfaces are unions of discs. If S is chosen to be a single disc then S1 is

isotopic to S. To see this, notice that R± is an annulus and so the double-

curve sum of S with R± is isotopic to S. Hence, the hierarchy has length

one and the cancelling and (non-self) amalgamating discs show that α is

braided in N[a]. �
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CHAPTER 4

Placing Sutures

Let N be a compact, orientable, irreducible 3–manifold with F ⊂ ∂N a

component containing an essential simple closed curve a. Suppose that

∂N −F is incompressible in N. For effective application of the first and

second sutured manifold theorems, we need to choose curves γ on ∂N[a]

so that (N[a],γ) is α–taut and (N,γ ∪ a) is ∅–taut. With our applica-

tions in mind, we restrict our attention to the situation when the bound-

ary component F containing a has genus 2. Define ∂1N[a] = ∂N−F and

∂0N[a] = ∂N[a]−∂1N[a].

For the moment, we consider only the choice of sutures γ̂ on ∂0N[a]. If a

is separating, so that ∂0N[a] consists of two tori joined by the arc α , we

do not place any sutures on ∂0N[a], i.e. γ̂ = ∅. (Figure 4.1.A.) If a is

non-separating, choose γ̂ to be a pair of disjoint parallel loops on F−η(a)

which separate the endpoints of α . (Figure 4.1.B.)

If we are in the special situation of “refilling meridians”, we will want to

choose the curves γ̂ more carefully. Recall that in this case N ⊂ M and F

bounds a genus 2 handlebody W ⊂ (M− N̊). The curves a and b bound in

W discs α and β respectively.

Assuming that the discs β and α have been isotoped to intersect minimally

and non-trivially the intersection α ∩ β is a collection of arcs. An arc of
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α

α

FIGURE 4.1. Choosing γ̂ .

α ∩β which is outermost on β cobounds with a subarc ψ of b a disc with

interior disjoint from α . This disc is a meridional disc of a (solid torus)

component of ∂W − η̊(α). The arc ψ has both endpoints on the same com-

ponent of ∂η(a) ⊂ F . We, therefore, define a meridional arc of b− a to

be any arc of b− η̊(a) which together with an arc in ∂η(α)∩W̊ bounds a

meridional disc of W − η̊(α). If a is non-separating, then the existence of

meridional arcs shows that every arc of b− η̊(a) with endpoints on the same

component of ∂η(a) ⊂ F is a meridional arc of b− a. An easy counting

argument shows that if a is non-separating then there are equal numbers of

meridional arcs of b− a based at each component of ∂η(a) ⊂ F . Hence,

when a is non-separating, the number of meridional arcs of b−a, denoted

Ma(b) is even. Some meridional arcs are depicted in Figure 4.2.

Returning to the definition of the sutures γ̂ , we insist that when “refilling

meridians” and when α is non-separating, the curves γ̂ be meridional curves
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FIGURE 4.2. Some meridional arcs on ∂W

of the solid torus W − η̊(α) which separate the endpoints of α and which

are disjoint from the meridional arcs of b−a for a specified b.

We now show how to define sutures γ̃ on non-torus components of ∂1N[a].

Let T (γ) be all the torus components of ∂1N[a]. If ∂1N = T (γ) then γ̃ = ∅.

Otherwise, the next lemma demonstrates how to choose γ̃ so that, under

certain hypotheses, (N,γ ∪a) is taut, where γ = γ̂ ∪ γ̃ .

LEMMA 4.1. Suppose that F−(γ∪a) is incompressible in N. Suppose also

that if ∂1N[a] 6= T (γ) then there is no essential annulus in N with boundary

on γ̂ ∪ a. Then γ̃ can be chosen so that (N,γ ∪ a) is ∅–taut and so that

(N[a],γ) is α–taut. Furthermore, if c ⊂ ∂1N[a] is a collection of disjoint,

non-parallel curves such that:

• |c| ≤ 2

• All components of c are on the same component of ∂1N[a]

• No curve of c cobounds an essential annulus in N with a curve of

γ̂ ∪a

• If |c|= 2 then there is no essential annulus in N with boundary c
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• If |c|= 2 and a is separating, there is no essential thrice-punctured

sphere in N with boundary c∪a.

then γ̃ can be chosen to be disjoint from c.

The main ideas of the proof are contained in Section 5 of [S4] and Theorem

2.1 of [L2]. In [S4], Scharlemann considers “special” collections of curves

on a non-torus component of ∂N. These curves cut the component into

thrice-punctured spheres. Exactly two of the curves in the collection bound

once-punctured tori. In those tori are two curves of the collection which are

called “redundant”. The redundant curves are removed and the remaining

curves form the desired sutures. Scharlemann shows how to construct such

a special collection which is disjoint from a set of given curves and which

gives rise to a taut-sutured manifold structure on the manifold under con-

sideration. Lackenby, in [L2], uses essentially the same construction (but

with fewer initial hypotheses) to construct a collection of curves cutting the

non-torus components of ∂N into thrice-punctured spheres, but where all

the curves are non-separating. We need to allow separating curves in the

sutures as c may contain separating curves. By slightly adapting Scharle-

mann’s work, in the spirit of Lackenby, we can make do with the hypotheses

of the lemma, which are slightly weaker than what a direct application of

Scharlemann’s work would allow.

PROOF. Let τ be the number of once-punctured tori in ∂N with bound-

ary some component of c∪ a. Since all components of c are on the same

component of ∂N, τ ≤ 4 with τ ≥ 3 only if a is separating.
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Say that a collection of curves on ∂N is pantsless if, whenever a thrice-

punctured sphere has its boundary a subset of the collection, all components

of the boundary are on the same component of ∂N. If a is non-separating,

then τ ≤ 2. Hence, either τ ≤ 2 or c∪a∪ γ̂ is pantsless.

Scharlemann shows how to extend the set c to a collection Γ, such that

there is no essential annulus in N with boundary on Γ∪a∪ γ̂ and the curves

Γ cut ∂N into tori, once-punctured tori, and thrice-punctured spheres. Fur-

thermore, if c∪ a∪ γ̂ is pantsless, then so is Γ∪ a∪ γ̂ . An examination of

Scharlemann’s construction shows that all curves of Γ− c may be taken to

be non-separating. Thus, the number of once-punctured tori in ∂N with

boundary on some component of Γ∪ a is still τ . If Γ cannot be taken to

be a collection of sutures on ∂N, then, by construction, |c| = 2, one curve

of c bounds a once-punctured torus in ∂N containing the other curve of c.

The component of c in the once-punctured torus is “redundant” (in Scharle-

mann’s terminology). If no curve of c is redundant, let γ̃ = Γ; otherwise,

form γ̃ by removing the redundant curve from Γ. Let γ ′ = γ̃∪a∪ γ̂ . We now

have a sutured manifold (N,γ ′). Notice that the number of once-punctured

torus components of ∂N− γ ′ is equal to τ .

We now desire to show that (N,γ ′) is ∅–taut. If it is not taut, then R±(γ)

is not norm-minimizing in H2(N,η(∂R±)). Let J be an essential surface in

N with ∂J = ∂R± = γ ′. Notice that χ∅(R±) = −χ(∂N)/2 and that |γ ′| =

−3χ(∂N)/2− τ .
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Recall that either τ ≤ 2 or γ ′ is pantsless. Suppose, first, that τ ≤ 2. Since no

component of J can be an essential annulus, by the arguments of Scharle-

mann and Lackenby, χ∅(J)≥ |∂J|/3 = |γ ′|/3. Hence,

χ∅(J)≥−χ(∂N)/2− τ/3.

Since τ ≤ 2 and since χ∅(J) and −χ(∂N)/2 are both integers, χ∅(J) ≥

|∂N|/2 = χ∅(R±). Thus, when τ ≤ 2, (N,γ ′) is a ∅–taut sutured manifold.

Suppose, therefore that γ ′ is pantsless. Recall that τ ≤ 4. We first examine

the case when each component of J has its boundary contained on a single

component of ∂M. Let J0 be all the components of J with boundary on a

single component T of ∂N. Let τ0 be the number of once-punctured torus

components of T − γ ′. Notice that τ0 ≤ 2. The proof for the case when

τ ≤ 2, shows that χ∅(J0) ≥ χ∅(R±∩T ). Summing over all component of

∂N shows that χ∅(J)≥ χ∅(R±), as desired.

We may, therefore, assume that some component J0 of J has boundary on at

least two components of ∂N. Since γ ′ is pantsless, χ∅(J0)≥ (|∂J0|+2)/3.

For the other components of J we have, χ∅(J− J0)≥ |∂ (J− J0)|/3. Thus,

χ∅(J)≥ |γ ′|+2
3

≥−χ(∂N)
2

+
2− τ

3

Since τ ≤ 4 and since χ∅(J) and−χ(∂N)/2 are both integers, we must have

χ∅(J) ≥ −χ(∂N)/2 = χ∅(R±), as desired. Hence, (N,γ ′) = (N,γ ∪ a) is

∅–taut. Consequently, by Lemma 2.5, (N[a],γ) is α–taut. �
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REMARK. The assumption that all components of c are contained on the

same component of ∂M can be weakened to a hypothesis on the number τ .

For what follows, however, our assumption suffices.

We will be interested in when a component of ∂N−F becomes compress-

ible upon attaching a 2–handle to a ⊂ F and also becomes compressible

upon attaching a 2–handle to b ⊂ F . If such occurs, the curves c of the

previous lemma will be the boundaries of the compressing discs for that

component of ∂N. Obviously, in order to apply the lemma we will need to

make assumptions on how that component compresses.
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CHAPTER 5

Constructing Q

The typical way in which we will apply the two main theorems is as follows.

Suppose that a and b are simple closed curves on a genus two component

F ⊂ ∂N and that there is an “interesting” surface R⊂ N[b]. We will want to

use this surface to show that either−2χ(R)≥K(R) or N[a] is taut. A priori,

though, the surface R = R∩N may have a–boundary compressing discs or

a–torsion 2g–gons. The purpose of this section is to show how, given the

surface R we can construct another surface Q which will, hopefully, have

similar properties to R but be such that Q = Q∩N does not have a–boundary

compressing discs or a–torsion 2g–gons. This goal will not be entirely

achievable, but Theorem 5.1 shows how close we can come. Throughout we

assume that N is a compact, orientable, irreducible 3–manifold with F ⊂ ∂N

a component having genus equal to 2. Let a and b be two essential simple

closed curves on F so that a and b intersect minimally and non-trivially.

As before, let ∂1N = ∂1N[b] = ∂N− ∂F and let ∂0N[b] = ∂N[b]− ∂1N[b].

∂0N[b] has one or two components, depending on whether b is separating

or non-separating. Let T0 and T1 denote these components, with T0 = T1 if

b is non-separating.

Before stating the theorem, we make some important observations about

N[b] and surfaces in N[b]. If b is non-separating, there are multiple ways to

obtain a manifold homeomorphic to N[b]. Certainly, attaching a 2–handle
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to b is one such way. If b∗ is any curve in F which cobounds in F with

∂η(b) a thrice-punctured sphere, then attaching 2–handles to both b∗ and

b creates a manifold with a spherical boundary component. Filling in that

sphere with a 3–ball creates a manifold homeomorphic to N[b]. We will

often think of N[b] as obtained in this fashion. Say that a surface Q ⊂ N[b]

is suitably embedded if each component of ∂Q−∂Q is a curve parallel to

b or to some b∗. We denote the number of components of ∂Q−∂Q parallel

to b by q = q(Q) and the number parallel to b∗ by q∗ = q∗(Q). If b is

separating, define b∗ = ∅. Let q̃ = q+q∗. Define ∆ = |b∩a|, ∆∗ = |b∗∩a|,

ν = |b∩ γ|, and ν∗ = |b∗∩ γ|. We then have

K(Q) = (∆−ν−2)q+(∆∗−ν
∗−2)q∗+∆∂ −ν∂ .

Define a slope on a component of ∂N[b] to be an isotopy class of pairwise

disjoint, pairwise non-parallel curves on that component. The set of curves

is allowed to be the empty set. Place a partial order on the set of slopes

on a component of ∂N[b] by declaring r ≤ s if there is some set of curves

representing r which is contained in a set of curves representing s. Notice

that ∅≤ r for every slope r. Say that a surface R⊂N[b] has boundary slope

∅ on a component of ∂N if ∂Q is disjoint from that component. Say that a

surface R ⊂ N[b] has boundary slope r 6= ∅ on a component of ∂N if each

curve of ∂R on that component is contained in some representative of r and

every curve of a representative of r is isotopic to some component of ∂R.

Define a surface to be essential if it is incompressible, boundary-incom-

pressible and has no component which is boundary-parallel or which is a

2–sphere bounding a 3–ball. The next theorem takes as input an essential
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surface R⊂N[b] and gives as output a surface Q such that Q = Q∩N can (in

many circumstances) be effectively used as a parameterizing surface in the

first and second sutured manifold theorems. The remainder of the section

will be spent proving it.

THEOREM 5.1. Suppose that R ⊂ N[b] is a suitably embedded essential

surface and suppose either

(I) R is a collection of essential spheres and discs, or

(II) N[b] contains no essential sphere or disc.

Then there is a suitably embedded incompressible and boundary-incom-

pressible surface Q ⊂ N[b] with the following properties. (The properties

have been organized for convenience. The properties marked with a “*”

are optional and need not be invoked.)

• Q is no more complicated than R:

(C1) (−χ(Q), q̃(Q))≤ (−χ(R), q̃(R)) in lexicographic order

(C2) The sum of the genera components of Q is no bigger than the

sum of the genera of components of R

(C3) Q and R represent the same class in H2(N[b],∂N[b])

• The options for a–boundary compressions and a–torsion 2g–gons

are limited:

(D1) Either there is no a–boundary compressing disc for Q or q̃ =

0.
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(*D2) If no component of R is separating and if q̃ 6= 0 then there is

no a–torsion 2g–gon for Q.

(D3) If Q is a disc or 2–sphere then either N[b] has a lens space

connected summand or there is no a–torsion 2g–gon for Q

with g≥ 2.

(D4) If Q is a planar surface then either there is no a–torsion 2g–

gon for Q with g ≥ 2 or attaching 2–handles to ∂N[b] along

∂Q produces a 3–manifold with a lens space connected sum-

mand.

• The boundaries are not unrelated:

(*B1) Suppose that (II) holds, that we are refilling meridians, that no

component of R separates, and that ∂R has exactly one non-

meridional component on each component of ∂0N[b]. Then Q

has exactly one boundary component on each component of

∂0N[b] and the slopes are the same as those of ∂R∩∂0N[b].

(B2) If ∂R∩ ∂1N is contained on torus components of ∂1N or if

neither (D2) or (B1) are invoked, then the boundary slope of Q

on a component of ∂1N[b] is less than or equal to the boundary

slope of R on that component.

(B3) If (D2) is not invoked and if the boundary slope of R on a

component of ∂0N[b] is non-empty then the boundary slope of

Q on that component is less than or equal to the boundary

slope of R.
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Property (B1), which is the most unpleasant to achieve, is present to guar-

antee that if R is a Seifert surface for Lβ then Q (possibly after discarding

components) is a Seifert surface for Lβ . This is not used subsequently in this

dissertation, but future work is planned which will make use of it. However,

achieving property (D2) which is used here, requires similar considerations.

The only difficulty in proving the theorem is keeping track of the listed

properties of Q and R. Eliminating a–boundary compressions is psycholog-

ically easier than eliminating a–torsion 2g–gons, so we first go through the

argument that a surface Q exists which has all but properties (D2) - (D4).

The argument may be easier to follow if, on a first reading, R is considered

to be a sphere or essential disc. The proof is based on similar work in [S5],

which restricts R to being a sphere or disc.

The main purpose of assumptions (I) and (II) is to easily guarantee that

the process for creating Q described below terminates. We will show that

if q̃(R) 6= 0 and there is an a–boundary compressing disc or a–torsion 2g-

gon for R = R∩N then there is a sequence of operations on R each of

which reduces a certain complexity but preserves the properties listed above

(including essentiality of R). If (I) holds, the complexity is simply q̃. If (II)

holds, the complexity is (−χ(R), q̃(R)) (with lexicographic ordering). If

(II) holds, it is clear that−χ(R) is always non-negative. Thus each measure

of complexity has a minimum. The process stops either when q̃ = 0 or when

the minimum complexity is reached.
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5.1. Eliminating a–boundary compressions

Assume that q̃ 6= 0 and that there is an a–boundary compressing disc D for

R with ∂D = δ ∪ ε where ε is a subarc of some essential circle in η(a).

There is no harm in considering ε ⊂ a−∂R.

Case 1: b separates W. In this case, η(β )− intR consists q−1 copies

of D2× I labelled W1, . . . ,Wq−1. There are two components T0 and T1 of

∂0N[b] = ∂N[b]− ∂N, both tori. The frontiers of the Wj in η(β ) are discs

β1, . . . ,βq, each parallel to β , the core of the 2–handle attached to b. Each

1-handle Wj lies between β j and β j+1. The torus T0 is incident to β1 and

the torus T1 is incident to βq. See Figure 5.1.

T0 W1 Wq−1 T1

β1 βq

FIGURE 5.1. The tori and 1-handles Wj

The interior of the arc ε ⊂ F is disjoint from ∂R. Consider the options for

how ε could be positioned on W :

Case 1.1: ε lies in ∂Wj∩F for some 1≤ j ≤ q−1. In this case, ε must

span the annulus ∂Wj ∩F . The 1-handle Wj can be viewed as a regular

neighborhood of the arc ε . The disc D can then be used to isotope Wj
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through ∂D∩ R reducing |R∩ β | by 2. See Figure 5.2. This maneuver

decreases q̃(R). Alternatively, the disc E describes an isotopy of R to a

surface Q in N[b] reducing q̃. Clearly, Q satisfies the (C) and (B) properties.

R
δ

Wj

FIGURE 5.2. The disc D describes an isotopy of R.

Suppose, then, that ε is an arc on T0 or T1. Without loss of generality, we

may assume it is on T0.

Case 1.2: ε lies in T0 and has both endpoints on ∂R. This is impossible

since R was assumed to be essential in N[b] and q̃ > 0.

Case 1.3: ε lies in T0 and has one endpoint on ∂β1 and the other on

∂R. The disc D guides a proper isotopy of R to a surface Q in N[b] which

reduces q̃. See Figure 5.3. Clearly, the (C) and (D) properties are satisfied.

T0
∂R

D

R

β1

FIGURE 5.3. The disc D describes an isotopy of R.
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Case 1.4: ε lies in T0 and has endpoints on ∂β1. Boundary-compressing

R− β̊1 produces a surface J with two new boundary components on T0, both

of which are essential curves. They are oppositely oriented and bound an

annulus containing β1. If ∂R∩ T0 6= ∅ then these two new components

have the same slope on T0 as ∂R, showing that property (B4) is satisfied. It

is easy to check that χ(J) = χ(R) and that q̃(J) = q̃(R)−1, so that (C1) is

satisfied. Clearly, (C2), (C3), and (B3) are also satisfied.

If J were compressible, there would be a compressing disc for R by an outer-

most arc/innermost disc argument. Thus, J is incompressible. Suppose that

E is a boundary-compressing disc for J in N[b] with ∂E = κ ∪λ where κ

is an arc in ∂N[b] and λ is an arc in J. Since R is boundary-incompressible,

the arc κ must lie on T0 (and not on T1). Since T0 is a torus, either some

component of J is a boundary-parallel annulus or J (and, therefore, R) is

compressible. We may assume the former. If J has other components apart

from the boundary-parallel annulus, discarding the boundary-parallel an-

nulus leaves a surface Q satisfying the (C) and (B) properties. We may,

therefore, assume that J in its entirety is a boundary-parallel annulus.

Since χ(R) = χ(J), since J is a boundary-parallel annulus and since ∂J has

two more components then ∂R, R is an essential torus. However, using D

to isotope η(δ ) ⊂ R into T0 and then isotoping J into T0 gives a homotopy

of R into T0, showing that it is not essential, a contradiction.

Thus, after possibly discarding a boundary-parallel annulus from J to obtain

L we obtain a non-empty essential surface in N[b] satisfying the first five

required properties. If we do not desire property (B1) to be satisfied, take
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Q = L. Notice that this step may, for example, convert an essential sphere

into two discs or an essential disc with boundary on ∂1N[b] into an annulus

and a disc with boundary on ∂0N[b]. This fact accounts for the delicate

phrasing of the (B) properties.

Suppose, therefore, that we wish to satisfy (B1). Among other properties,

we assume that R has a single boundary component on T0.

There is an annulus A⊂ T0 which is disjoint from β1⊂ T0, which has interior

disjoint from ∂L, and which has its boundary two of the two or three com-

ponents of ∂L. See Figure 5.4. In the figure, the dashed line represents the

arc ε . The two circles formed by joining ε to ∂β1 are the two new bound-

ary components of L. Since, they came from a boundary-compression, they

are oppositely oriented. If ∂R has a single component on T0 (indicated by

the curve with arrows in the figure) then it must be oriented in the oppo-

site direction from one of the new boundary components of ∂L. Attaching

A to L creates an orientable surface and does not increase negative euler

characteristic or q̃.

T0

β1

FIGURE 5.4. The annulus A lies between ∂R and one of the
new boundary components of L.
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Thus, if |∂R∩ T0| ≤ 1, L∪A is well-defined. It may, however, be com-

pressible or boundary-compressible. Since it represents the homology class

[R] in H2(N[b],∂N[b]), as long as that class is non-zero we may thoroughly

compress and boundary-compress it, obtaining a surface J. Discard all null-

homologous components of J to obtain a surface Q. By assumption (II), we

never discard an essential sphere or disc. Notice that since ∂R has a single

boundary component on T1, the surface Q will also have a single bound-

ary component on T1. I.e. discarding separating components of J does not

discard the component with boundary on T1. Boundary-compressing J may

change the slope of ∂J on non-torus components of ∂1N[b]. Discarding sep-

arating components may convert a slope on a torus component to the empty

slope. Nevertheless, properties (B2) and (B3) still hold.

If a component of J is an inessential sphere then either LA contained an

inessential sphere or the sphere arose from compressions of LA. Suppose

that the latter happened. Then after some compressions LA contains a solid

torus and compressing that torus creates a sphere component. Discarding

the torus instead of the sphere shows that this process does not increase

negative euler characteristic. If LA contains an inessential sphere, this com-

ponent is either a component of L and therefore of R or it arose by attaching

A to two disc components, D1 and D2, of L. The first is forbidden by the as-

sumption that R is essential and the second by (II). Consequently, negative

euler characteristic is not increased.

Notice that, in general, compressing LA may increase q̃, but because−χ(Q)

is decreased, property (C1) is still preserved and complexity is decreased.

Since we assume (II) for the maneuvre, if (I) holds at the end of this case
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we can still conclude that q̃ was decreased. (This is an observation needed

to show that the construction of Q for the conclusion of the theorem termi-

nates.)

Case 2: b is non-separating and q∗ 6= 0. This is very similar to Case 1.

In what follows only the major differences are highlighted.

Since q∗ 6= 0, the cocore β
∗

of the 2–handle attached to b∗ and the cocore

β form an arc with a loop at one end. Let U = η(β ∗ ∪ β ). Then U −R

consists of a solid torus q∗−1 copies of D2× I labelled W ∗
1 , . . . ,W ∗

q∗−1 with

frontier in U consisting of discs β ∗1 , . . . ,β ∗q∗ parallel to β ∗ (the core of the 2–

handle attached to b∗), a 3–ball P with frontier in U consisting of 3 discs:

β ∗q∗, β1, and βq, q−1 copies of D2× I labelled W1, . . . ,Wq−1 with frontiers

β1, . . . ,βq consisting of discs parallel to β . See Figure 5.5. ∂0N[b] consists

of a single torus T0.

T0

β ∗1

W ∗
1 W ∗

q∗−1 P

βq

Wq−1

W2

β2

W1
β1

FIGURE 5.5. The torus, pair of pants, and 1-handles.
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Case 2.1 : ε is not located in P . This is nearly identical to Case 1. To

achieve (B1), an “annulus attachment” trick like that in Case 1.4 is neces-

sary.

Case 2.2: ε is located in P . Since ∂R is essential in N[b] and since R

is embedded, ∂R is disjoint from P . The arc ε has its endpoints on exactly

two of {∂β ∗q∗,∂β1,∂βq}. Denote by x and y the two discs containing ∂ε and

denote the third by z. That is, {∂x,∂y,∂ z}= {∂β ∗q∗,∂β1,∂βq}. Boundary-

compressing cl(Q− (x∪ y)) along D removes ∂x and ∂y as boundary com-

ponents of R and adds another boundary-component parallel to ∂ z. Attach

a disc in F parallel to z to this new component, forming J. J is isotopic in

N[b] to R (Figure 5.6) and is, therefore, essential and satisfies the (C) and

(B) properties.

z

x

y

P

D

R

FIGURE 5.6. The disc D in Case 2.2
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Case 3: b is non-separating and q∗ = 0. Since b is non-separating,

η(β )−Q consists of copies of D2× I labelled W1, . . . ,Wq−1 which are sep-

arated by discs β1, . . . ,βq each parallel to β so that each Wi is adjacent to

βi and βi+1 where the indices run mod q. ∂0N[b] is a single torus T0. See

Figure 5.7.

T0

βq

Wq−1

W2

W1
β1

β2

FIGURE 5.7. The solid torus and 1-handles Wj

We need only consider the following cases, as the others are similar to prior

cases.

Case 3.4: ε is located on T0 and either both endpoints are on ∂β1 or

both are on ∂βq. The arc ε is a meridional arc. Suppose, without loss of

generality, that ∂ε ⊂ ∂β1. Boundary-compress R− β̊1 along D. This creates

a surface J with boundary on T0. After possibly discarding a boundary-

parallel annulus J is essential and the (C) properties hold as well as (B2)

and (B3). We need to show that (B1) can be achieved, if desired.
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Suppose that we are in the situation of “refilling meridians” so that N ⊂ M

and F bounds a genus 2 handlebody W in M−N with a and b bounding

discs in W . Then since the endpoints of ε are on the same component of

∂η(a)⊂ F , ε is a meridional arc of b−a. If ∂R is not meridional on T0 this

case, therefore, cannot occur. Thus, the (C) and (B) properties hold.

Case 3.5: ε is located on T0 and has one endpoint on β1 and the other

on βq. The disc D guides an isotopy of R to a surface Q which is suitably

embedded in M[β ] and has q∗(Q) = 1. We have q̃(Q) = q̃(R)− 1. The

surface Q can also be created by boundary-compressing R− (β1∪βq) with

D and then adding a disc β ∗ to the new boundary component. See Figure

5.6. Clearly, the (C) and (B) properties hold.

The previous cases have each described an operation on R which produces

an essential surface Q having the (C) and (B) properties. Furthermore, the

maneuvre described in each case strictly decreases complexity. Thus, after

repeating the operation enough times either the surface Q will have q̃(Q) =

0 or there will be no a–boundary compressions for Q. That is, the (C) and

(B) properties hold and, in addition, (D1) holds.

5.2. Eliminating a–torsion 2g–gons

We may now assume that there is an a–torsion 2g–gon D for Q with g ≥ 2

(since an a–torsion 2–gon is an a–boundary compressing disc). For ease of

notation, relabel and let R = Q and R = Q. By the definition of a–torsion

2g–gon, there is a rectangle E containing the parallel arcs ∂D∩F which,

when attached to R, creates an orientable surface. Two opposite edges of

77



∂E lie on ∂R and the other two are parallel (as un-oriented arcs) to the arcs

of ∂D∩F . Denote the components of ∂R containing the two edges of ∂E

by ∂x and ∂y. It is entirely possible that ∂x = ∂y. If ∂x is a component of

∂R−∂R, let βx denote the disc in R−R which it bounds. Similarly define

βy.

Suppose that R is a planar surface or 2–sphere. Let N̂ be the 3–manifold

obtained from N[b] by attaching 2–handles to ∂N[b] in such a way that each

component, but one, of ∂J bounds a disc in N̂. Attach these discs to R

forming a surface R̂. Since R was a planar surface or 2–sphere, R̂ is a disc

or 2–sphere. A regular neighborhood of R̂∪E is a solid torus and the disc D

is in the exterior of that solid torus and winds longitudinally around it n≥ 2

times. Thus η(R̂∪E ∪D) is a lens space connected summand of N̂. Hence,

redefining Q = J we satisfy the (C), (B), and (D) properties.

We may, therefore, assume that R is not a planar surface or 2–sphere. We

need to show that we can achieve (D2) in addition to the (C), (B), and (D1)

properties. The surface R′ = (R− (βx∪βy))∪E is compressible by the disc

D. Compress it to obtain an orientable surface J. Notice that

(−χ(J), q̃(J)) < (−χ(R), q̃(R)).

Analyzing the position of E as we did the position of ε in the previous sec-

tion and possibly performing the “annulus attachment trick”, we can guar-

antee that the (C) and (B) properties are satisfied. If the ends of E are both

on ∂R then the boundary of J may have different slope from the boundary

of R. Whether or not we perform the annulus attachment trick, the surface
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J may be inessential. Compressing, boundary compressing, and discard-

ing null-homologous components produces a non-empty essential surface

Q satisfying properties (B) and (C). Considerations similar to those nec-

essary for achieving (B1) in case 1.4 explain why (B2) is phrased as it is.

(B3) is incompatible with (D2) since discarding components may discard

∂R∩ ∂0N[b] converting a non-empty slope to an empty slope. A future at-

tempt to eliminate an a–boundary compressing disc or a–torsion 2g–gon

may then introduce new boundary components on ∂0N[b] of different slope.

As before, complexity has been strictly decreased for both assumptions (I)

and (II). Of course, we may now have additional a–boundary compressing

discs or a–torsion 2g–gons to eliminate as in the previous section. Since all

these operations lower complexity, the process terminates with the required

surface Q. �

The surface Q produced by the previous theorem may be disconnected. (For

example, if b is separating it is possible we could start with R being a disc

with boundary on T0 and end up with Q the union of an annulus with bound-

ary on T0∪T1 and a disc with boundary on T1.) The next corollary puts our

minds at rest by elucidating when we can discard components to arrive at a

connected surface Q.

COROLLARY 5.2. The following statements are true:

• If R is a collection of spheres or discs then after discarding com-

ponents of the surface Q created by Theorem 5.1 we may assume

that Q is an essential sphere or disc such that q̃(Q) ≤ q̃(R) and

conclusions (B2), (B3), (D1), (D3), and (D4) hold.
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• If N[b] does not contain an essential disc or sphere, then we may

assume the Q produced by Theorem 5.1 to be connected and Con-

clusions (C1), (C2), (B2), and (D1) - (D4) hold. Furthermore, if R

is non-separating, so is Q.

PROOF. Suppose that R is a collection of spheres or a discs and let Q̃

be the surface produced by Theorem 5.1. Since −χ(R) < 0, by conclusions

(C1) and (C2) of that theorem, −χ(Q̃) < 0 and each component of Q̃ is a

planar surface or Q̃ is a sphere. Indeed, at least one component Q of Q is

a sphere or disc. By conclusion (D1), either Q̃ is disjoint from β or there

is no a–boundary compressing disc for Q̃∩N. If there is an a–boundary

compressing disc for Q∩N then an outermost arc argument shows that there

would be one for Q̃∩N. Thus, either Q is disjoint from β or there is no

a–boundary compressing disc for Q. As argued in the proof of Theorem

5.1, if there is an a–torsion 2g–gon for Q, then N[b] contains a lens-space

connected summand. It is clear, therefore, that the required conclusions

hold.

Suppose that N[b] contains no essential disc or sphere. Let Q̃ be the surface

produced by Theorem 5.1 and notice that Q̃ contains no disc or sphere com-

ponents. Choose a component Q̃0 of Q̃ and discard the other components.

Neither negative euler charactistic nor q̃ are raised. If R was non-separating,

choose Q̃0 to be non-separating. Either Q̃0 satisfies the conclusion of the

Corollary or q̃(Q̃0) > 0 and there is an a–boundary compressing disc or

a–torsion 2g–gon for Q̃0 ∩N. Apply the theorem with R = Q̃0 and notice

80



that the surface Q̃1 produced has strictly smaller complexity. Thus, repeat-

ing this process, each time discarding all but one component, we eventually

obtain the connected surface Q promised by corollary. �
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CHAPTER 6

Degenerating Handle Additions

Most of the applications of the main results will concern refilling meridians

of genus 2 handlebodies, but first we prove some fairly general results about

2–handle addition to a genus 2 boundary component. These theorems will

be proved without using the second sutured manifold theorem. The proofs

are very similar, with the second being more difficult.

THEOREM 6.1. Suppose that F has genus 2, N is compact, orientable,

and irreducible, ∂N−F is empty or consists of tori, that N is boundary-

irreducible and that there is no essential annulus in N with both boundary

components parallel to a ⊂ F or both boundary components parallel to

b ⊂ F. If a and b are separating non-parallel curves, then one of N[a] and

N[b] is irreducible.

PROOF. Suppose that N[b] is reducible. Since there is no essential an-

nulus in N with boundary parallel to a, there is no essential 2-sphere in N[a]

minimally intersecting α twice. By Lemma 4.1, (N,a) is a taut sutured

manifold. Let R be an essential sphere or disc in N[b] and apply Theorem

5.1 to obtain a surface Q. By Corollary 5.2, we may assume that Q is a

sphere or disc. Since N is irreducible and boundary-irreducible, q̃(Q) > 0.

Furthermore, there is no a–boundary compressing disc for Q.
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Since b is separating, q∗ = 0 and since a is separating ν = ν∂ = 0. Since a

and b are both separating ∆≥ 2. Hence,

K(Q) = q(∆−2)+∆∂ ≥ 0.

In particular, −2χ(Q) < K(Q). There is no essential annulus in N with

boundary parallel to a. Hence, α does not intersect an essential sphere in

N[a] exactly twice without being able to be isotoped to be disjoint from it.

By the first sutured manifold theorem, (N[a],∅) must be taut. Therefore,

N[a] is irreducible. �

Our second theorem is similar, but has stronger assumptions and conclu-

sions.

THEOREM 6.2. Suppose that F has genus 2, and that N is simple. Suppose

that a and b are non-isotopic separating curves on F. Suppose that N[a] is

reducible. Then if N[b] is non-simple, it contains an essential annulus with

boundary on non-torus components of ∂N[b] and ∆ = 4.

PROOF. Notice, first, that since a and b are separating, ∆ is even and

positive. If ∆ were equal to two then a− b would have a single arc on

each once-punctured torus component of F − b, implying that a was non-

separating. Thus, ∆≥ 4.

Now suppose that N[b] contains a surface R which is an essential sphere,

disc, torus, or annulus. Let Q be the surface obtained by applying Corollary

5.2 to R. The surface Q is still an essential sphere, disc, annulus, or torus. It

is not disjoint from a since N is simple and ∆ > 0. Furthermore, there is no
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a-boundary compressing disc for Q. We may assume that out of all such Q,

q has been minimized. If Q is an annulus, suppose for the time being that

∂Q does not have all its boundary components on non-torus components of

∂N−F . Since a and b are separating, γ̂ = ∅ and b∗ = ∅.

If Q has a boundary component on a non-torus component of ∂N−F , let c

be that component of ∂Q. Since N is simple, c satisfies the requirements for

an application of Lemma 4.1. Let γ be the sutures provided by that lemma.

Notice that q > 0 since N is simple. We may now apply the first sutured

manifold theorem. Since N does not contain an essential annulus, conclu-

sion (1) does not occur. By the construction of Q, there is no a–boundary

compressing disc for Q. Thus,

(∆−2)q+∆∂ ≤−2χ(Q).

Hence,

∆≤ 2+(−∆∂ +−2χ(Q))/q≤ 2−∆∂ /q.

Since ∆∂ is non-negative, we have ∆ = 2. This contradicts our initial obser-

vation that ∆≥ 4.

We may, therefore, assume that Q is an annulus with both boundary com-

ponents on non-torus components of ∂N−F . Let G be the components of

∂N −F containing ∂Q. Let N′ be the manifold obtained by doubling N

along G. That is, N′ is formed by gluing a copy N2 of N to N1 = N along

G. Let Fi, ai, bi, Qi be the copy of F , a, b, and Q lying in Ni. The gluing

should be performed so that Q′ = Q∪Q2 is a punctured torus in N′[b1] with
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punctures on F2 parallel to b2. It is easy to show that N′ is simple. Notice

that N′[a] is reducible.

Let Q′ = Q′∩N′. Suppose that D is an a1–boundary compressing disc for Q′

with ε = ∂D∩F1. Since N1 and N2 are simple, we may assume that D∩G

consists of arcs which are essential in Q′. Since there is no a–boundary

compressing disc for Q in N, this collection of arcs is non-empty. Since G

is disjoint from F1, there is some arc of D∩G which is outermost on D and

does not contain ε in the outermost disc it bounds. Let E be the outermost

disc containing that arc. Then E is a boundary compressing disc for Q1 or

Q2. Without loss of generality, suppose it to be Q1. Since Q is essential

in N1[b1], the arc ∂E ∩Q must be inessential in Q. Cutting Q along ∂E

produces a surface with an annulus component and a disc component. Since

N1[b1] contains no essential discs, the disc component must be inessential.

But this implies that there is an isotopy of Q reducing q, contradicting our

choice of Q. Hence, there is no a1–boundary compressing disc for Q′.

Let c = b2 and apply Lemma 4.1 to construct sutures γ on ∂N′ which are dis-

joint from c so that (N′,γ∪a1) is a taut sutured manifold. Since all boundary

components of Q′ are parallel to b2, ∆∂ = ν∂ = 0. Also,−2χ(Q′) = 2q since

Q′ is a punctured torus with q boundary components. If −2χ(Q) < K(Q)

then the first sutured manifold theorem shows that N′[a1] is irreducible, a

contradiction. Hence, −2χ(Q)≥ K(Q). Thus,

2q≥ q(∆−2).

Solving for ∆, we observe ∆≤ 4. Since ∆≥ 4, we conclude ∆ = 4. �
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REMARK. A separating curve in ∂N is an example of what Scharlemann

and Wu [SW] call a basic curve. They prove that if N is simple and one

of a and b is basic, then if N[a] is reducible and N[b] is boundary-reducible

then a and b can be isotoped to be disjoint. They conjecture that if both a

and b are basic and neither N[a] nor N[b] is simple then ∆≤ 5. Theorem 6.2

gives some evidence for their conjecture.
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CHAPTER 7

Refilling Meridians

We now turn to applying the sutured manifold theorems to “refilling merid-

ians”. For the remainder, suppose that M is a 3–manifold containing an

embedded genus 2 handlebody W . Let N = M−W̊ . Let α and β be two

essential discs in W isotoped to intersect minimally and non-trivially. Let

a = ∂α , b = ∂β , b∗ = ∂β ∗, M[α] = N[a], and M[β ] = N[b]. Recall that

Lα and Lβ are the cores of the solid tori produced by cutting W along α

and β respectively. If we need to place sutures γ̂ on F = ∂W we will do

so as described in Section 4. We begin by briefly observing that for any

suitably embedded surface Q⊂M[β ], with boundary disjoint from γ ∩∂M,

K(Q)≥ 0.

If α is separating,

K(Q) = q(∆−2)+q∗(∆∗−2)+∆∂ .

Since b, b∗, and a all bound discs in W , ∆ is at least two. If q∗ 6= 0, then ∆∗

is also at least two. Thus, K(Q)≥ 0.

Recall (Section 4) that if α is non-separating, any arc of b− η̊(a) with

endpoints on the same component of ∂η(a) is a meridional arc of b− a.

The number of these meridional arcs is denoted Ma(b) and it is always

even and always at least two since there are the same number of meridional
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arcs based at each component of ∂η(a)⊂F . The sutures γ̂ are disjoint from

these meridional arcs. Since any arc of b−a which is not a meridional arc

intersects exactly one suture exactly once, we have

∆−ν = Ma(b)≥ 2

and

∆
∗−ν

∗ ≥Ma(b∗)≥ 2.

Since ∂Q is disjoint from b∪b∗, it is also disjoint from the meridional arcs

of b−a. Consequently, each arc of ∂Q−a intersects γ̂ at most once. Hence,

∆∂ −ν∂ ≥ 0. When α is non-separating, we, therefore, have

K(Q)≥ q(Ma(b)−2)+q∗(Ma(b∗)−2)+∆∂ −ν∂ ≥ 0.

Before proceeding to more interesting results, we need to know that there

are taut conditioned Seifert surfaces.

LEMMA 7.1. Suppose that M = S3. Then there is a Seifert surface S for Lα

which is disjoint from α (i.e. lies in N) and is a taut conditioned surface in

N with boundary disjoint from a.

PROOF. First we show that Lα does contain a conditioned Seifert sur-

face disjoint from α . Choose a Seifert surface Σ0 ⊂ N[a] for Lα . If Lα is

a link, Σ0 may not be connected. Since ∂Σ0 is a longitudinal on ∂N[a], we

may assume (when α is non-separating) that it intersects γ exactly twice.

Calculate the algebraic intersection number between α and each component

of Σ0. If it is n 6= 0, an endpoint of α may be isotoped around ∂S3[α]
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creating n intersections of sign −n/|n|. Perform the isotopy so that ∂α is

always disjoint from γ . Rather than isotoping α , we may instead isotope Σ0.

We take this latter viewpoint. The requirement, from the former viewpoint,

that ∂α be disjoint from γ guarantees that, from the latter viewpoint, if α is

non-separating then ∂Σ0 still intersects each component of γ exactly once.

We may, therefore, assume that the intersection number of α with each

component of Σ0 is zero. Choosing an arc σ of α − Σ0 with endpoints

creating intersections of opposite sign on the same component of Σ0, we

attach a tube containing σ to Σ0, decreasing |Σ0 ∩α| (but increasing the

genus of Σ0). The algebraic intersection number of α and Σ0 is still zero.

Continuing in this manner, we may construct a conditioned Seifert surface

Σ for Lα which is disjoint from α . Out of all Seifert surfaces for Lα which

are disjoint from α and which have boundary ∂Σ choose one of minimal

genus and call it S. Then S is a taut conditioned surface in N. �

REMARK. Notice that even though ∂S (where S is the surface created by

the previous lemma) is a longitude on ∂0N[a] (when α is separating) it may

intersect meridional arcs of b− a more than once. It must, however, inter-

sect them at least once. See Figure 7.1 for a depiction of the “spiralling ∂α”

viewpoint.

An easier proof, which is omitted, gives:

LEMMA 7.2. Suppose that M = S3. Then there is a Seifert surface S⊂ N[a]

for Lα which is an α–taut conditioned surface.

89



γ

∂η(a)
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FIGURE 7.1. The result of spiralling ∂α around ∂0N[a]

7.1. Scharlemann’s Conjecture

Studying the operation of refilling meridians, Scharlemann [S5] was led to

the following definitions and conjecture.

Define (M,W ) to be admissible if

(A0) every sphere in M separates

(A1) M contains no lens space connected summands

(A2) Any two curves in ∂M which compress in M are isotopic in ∂M

(A3) M−W is irreducible

(A4) ∂M is incompressible in N.

He conjectured

CONJECTURE. If (M,W ) is admissible then one of the following occurs

• M = S3 and W is unknotted (i.e. N is a handlebody)

• At least one of M[α] and M[β ] is irreducible and boundary-irre-

ducible

• α and β are “aligned” in W .
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The definition of “aligned” is rather complicated and is not needed for what

follows, so I will not define it here. I will only remark that it is a notion

which is independent of the embedding of W in M.

Scharlemann proved the following:

THEOREM (Scharlemann).

• If ∂W compresses in N then the conjecture is true.

• If ∆≤ 4 then the conjecture is true.

• If α is separating and M contains no summand which is a non-

trivial rational homology sphere then one of M[α] and M[β ] is

irreducible and boundary-irreducible.

• If both α and β are separating then the conjecture is true. If, in ad-

dition, ∆ ≥ 6 one of M[α] and M[β ] is irreducible and boundary-

irreducible.

With a slight variation on the notion of “admissible”, Scharlemann’s Con-

jecture can now be completed for a large class of manifolds.

Define the pair (M,W ) to be licit if the following hold:

(L0) H2(M) = 0.

(L1) H1(M) is torsion-free.

(L2) No curve on a non-torus component of ∂M which compresses in

M bounds an essential annulus in N with a meridional curve of ∂W

(that is, a curve on ∂W which bounds a disc in W ).

(L3) N is irreducible

(L4) ∂M is incompressible in N.
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The major improvement provided by the next theorem is that the case of

non-separating meridians can be effectively dealt with. The theorem com-

pletes Scharlemann’s conjecture for pairs (M,W ) which are both licit and

admissible.

THEOREM 7.3 (Modified Scharlemann Conjecture). Suppose that (M,W )

is licit and that α and β are two essential discs in W. Make the following

incompressibility assumptions:

• If α is separating, then ∂W −a is incompressible in N.

• If β is separating, then ∂W −b is incompressible in N.

• If α is non-separating, then there is no essential disc in M[α]

which is disjoint from α .

• If β is non-separating, then there is no essential disc in M[β ] which

is disjoint from β .

Then either α and β can be isotoped to be disjoint or all of the following

hold:

• One of M[α] or M[β ] is irreducible

• If one of M[α] or M[β ] is reducible then no curve on ∂M com-

presses in the other.

• No curve on ∂M compresses in both M[α] and M[β ].

• If ∂M = ∅ then one of M[α] or M[β ] is irreducible and boundary-

irreducible (i.e. not a solid torus).

The theorem would certainly be easier to state if we replaced the incom-

pressibility assumptions with the assumption that ∂W was incompressible
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in N. However, we require the stated assumptions later. Conditions (L0) and

(L1) are stronger than Conditions (A0) and (A1) but are used to guarantee

that H1(M[α]) and H1(M[β ]) are torsion-free; this is required for the appli-

cation of the second sutured manifold theorem. Condition (L2) is neither

stronger nor weaker than Condition (A2) since we allow multiple curves on

∂M to compress in M but forbid the existence of certain annuli. To show

that some condition like (A2) was required, Scharlemann points out the fol-

lowing example:

EXAMPLE. Let M be a genus 2–handlebody and let W ⊂M so that M−W̊

is a collar on ∂W . (That is, M is a regular neighborhood of W .) Then con-

ditions (A0), (A1), (A3), (A4), (L0), (L1), (L3), and (L4) are all satisfied.

But given any essential disc α ⊂W , M[α] is obviously boundary-reducible.

Both (A2) and (L2) rule out this example.

PROOF. Suppose, without loss of generality, that M[β ] is reducible or

boundary-reducible. We begin by showing that H1(M[α]) is torsion-free.

Consider M as the union of V = W − η̊(α) and M[α]. Using assumption

(L0) that H2(M) = 0, we see that the Mayer-Vietoris sequence gives the

exact sequence:

0→ H1(∂V )
φ→ H1(M[α])⊕H1(V )

ψ→ H1(M)→ 0.

Suppose that x is an element of H1(M[α]) and that n∈N is such that nx = 0.

Then nψ(x,0) = ψ(nx,0) = 0. Since H1(M) is torsion-free, ψ(x,0) = 0.

Thus, by exactness, (x,0) is in the image of φ . Let y ∈ H1(∂V ) be in the

preimage of (x,0). Also, φ(ny) = nφ(y) = (nx,0) = (0,0). From exactness,
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we know that φ is injective. Hence, ny = 0 ∈ H1(∂V ). The boundary of V

is a collection of tori and, therefore, H1(∂V ) is torsion-free. Consequently,

y = 0. Therefore, x = 0 and H1(M[α]) is torsion-free.

Assume that ∆ > 0. We will now show that M[α] is irreducible and that if

a curve on ∂M compresses in M[β ] then it does not compress in M[α] and

that if M[β ] is reducible then no curve of ∂M compresses in M[α]. If ∂M is

compressible in M[β ], let cβ be a curve on ∂M which compresses in M[β ].

If cβ = ∅, let c be any curve on ∂M which compresses in M, otherwise let

c = cβ .

By Lemma 4.1 and our incompressibility assumptions, we may choose su-

tures γ on ∂M[α] so that γ̂ = γ ∩ ∂0M[α] is chosen as usual and so that

γ ∩ c = ∅ and (M[α],γ) is an α–taut sutured manifold. Let R be either

an essential sphere, an essential disc with boundary cβ = c, or an essen-

tial disc with boundary on ∂0M[β ]. Let Q be the result of applying Corol-

lary 5.2 to R. Q is an essential sphere, an essential disc with boundary cβ ,

or an essential disc with boundary on ∂0M[β ]. By the irreducibility of N

and the incompressibility assumptions, q̃(Q) > 0. Consequently, by Corol-

lary 5.2, there are no a–boundary compressing discs or a–torsion 2g–gons.

Since K(Q) ≥ 0 and −2χ(Q) < 0, by the second sutured manifold theo-

rem (M[α],γ) is ∅–taut. In particular, M[α] is irreducible and c does not

compress in M[α] since otherwise R±(γ) would not be taut in M[α].

Thus, either the theorem is true or both M[α] and M[β ] are irreducible but

have boundary-compressing discs on ∂W . Suppose the latter. Since ∂0M[α]

and ∂0M[β ] are both collections of tori, the presence of a compressing disc
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implies either reducibility or that M[α] and M[β ] are solid tori. Thus, we

may assume both are solid tori. This implies that M = S3. By the first su-

tured manifold theorem and Lemma 7.1, there is a taut conditioned Seifert

surface for Lα which is disjoint from α . Since M[α] is a solid torus, this

surface must be a disc lying in N. This, however, contradicts the incom-

pressibility assumptions. Thus, M[α] is not a solid torus, and the theorem

is true. �

REMARK. At the cost of adding hypotheses on the embedding of W in M,

the conditions for being “licit” can be significantly weakened. For example,

the hypotheses on the curves c, a, and b of Lemma 4.1 can be substituted

for (L2). An examination of the homology argument at the beginning of the

proof shows that (L0) can be be replaced with the assumption that Lα and

Lβ are null-homologous in M. Another way of changing assumptions would

be to make greater use of the first sutured manifold theorem which does

not require that M[α] be torsion-free in first homology. The next theorem

provides an example.

THEOREM 7.4. Suppose that any two curves of ∂M which compress in M

are on the same component of ∂M. Suppose that W is a genus two handle-

body embedded in M such that W intersects every essential sphere in M at

least three times and every essential disc at least two times. Suppose also

that N = M−W̊ is irreducible. Let α and β be essential discs in W which

cannot be isotoped to be disjoint. Assume that M[α] and M[β ] contain no

essential disc which is contained in N and that ∂α and ∂β do not compress

in N. Then the following hold:
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• One of M[α] and M[β ] is irreducible and is not a solid torus

• If one of them is reducible the other is boundary-irreducible.

• If ca ⊂ ∂M is a curve which compresses in M[α] and if cb ⊂ ∂M

is a curve which compresses in M[β ] then ca and cb cannot be

isotoped in ∂M to be disjoint.

PROOF. Without loss of generality, assume that M[β ] is reducible or

boundary-reducible and let Q be an essential sphere or disc obtained by

applying Corollary 5.2, as before. If ∂Q is on ∂M then we may assume that

∂Q = cb. Let T = T (γ) be the torus components of ∂M.

We need to place sutures on ∂M. To do this, we’ll define curves c that can be

used in Lemma 4.1. If Q is a sphere or disc with boundary on ∂0M[β ]∪T ,

define cβ = ∅. Otherwise, let cβ = cb. If no curve of ∂M disjoint from cb

compresses in M[α], then let cα = ∅. If cb compresses in M[α], let cα = cb.

If cb does not compress in M[α] but a curve ca disjoint from cb does, let

cα = ca. Define c = cα ∪ cβ and notice that if |c| = 2, there is no essential

annulus in N with boundary equal to c. Also, if a component of c bounds an

essential annulus with a curve of γ̂ ∪a then, because, the components of γ̂ ∪

a bound discs in W , W would intersect a compressing disc for ∂M exactly

once. This is forbidden by our hypotheses. Furthermore, if |c|= 2 then one

component, cα , of c bounds a disc in M[α] and the other component cβ = cb

does not. If a is separating, |c| = 2, and c∪ a bounds an essential thrice-

punctured sphere in M[α], then attaching discs to cα and to a shows that

cβ = cb = c− cα compresses in M[α], but this contradicts the construction
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of cα . Thus c satisfies the criteria for an application of Lemma 4.1. Let

γ = γ̃ ∪ γ̂ be the sutures on ∂M[α] provided by that Lemma.

If M[α] is reducible or if cα 6= ∅ then (M[α],γ) is not taut. If M[α] is a

solid torus, then, by our hypotheses, every taut conditioned surface with

boundary on ∂0M[α], of which there is one (Lemma 7.1), intersects α . We

can, therefore, apply the first sutured manifold theorem. Since Q is a disc or

sphere, −2χ(Q) < K(Q). By the construction of Q, there is no a–boundary

compressing disc for Q in N = M−W̊ . Thus, M[α] contains an essential

separating sphere S intersecting α twice and which cannot be isotoped to

intersect α fewer times. The sphere S bounds a non-trivial homology ball.

Because W intersects every essential sphere in M at least three times, S can-

not be an essential sphere for M. Let B be the ball in M which S bounds.

Notice that this implies that M is a non-trivial homology sphere. Since S

is separating and B is not contained in M[α], ∂0M[α]⊂ B. Attaching η(α)

to B produces a solid torus V containing W , with ∂V compressible in V [α]

and V −W̊ irreducible. Notice that (V,W ) is licit. Thus, we may apply the

Modified Scharlemann Conjecture to conclude that V [β ] is irreducible and

that ∂V [β ] does not compress in V [β ]. Thus, Q intersects ∂V and an in-

nermost disc of intersection D on Q is a compressing disc for ∂V contained

outside V . (Inessential curves of intersection should first be eliminated by

an innermost disc argument.) If ∂D intersected a meridian curve on ∂V ex-

actly once, ∂D would run exactly once along a regular neighborhood of α .

D then guides an isotopy of α into B, contradicting the construction of S. If

∂D is a meridional curve of ∂V , then W is contained in an S1×S2 summand

of M. If ∂D intersects every meridional curve of ∂V more than once then
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W is contained in a lens space connected summand of M. By hypothesis,

W intersects every reducing sphere in M, so M is S1× S2 or a lens space.

Both possibilities contradict our previous conclusion that M was a homol-

ogy sphere. Hence, M[α] is irreducible, ∂0M[α]∪ T is incompressible in

M[α], and cα = ∅. �

The next section contains more applications of the first sutured manifold

theorem.

7.2. Essential surfaces in the exteriors of bored unknots and split links

Recall that if α is an essential disc in W which cannot be isotoped to be

disjoint from β then Lβ is obtained from Lα by boring (and vice versa).

Our first result generalizes a property of tunnel number 1 knots.

THEOREM 7.5. Suppose that Lα is a knot or link in S3 obtained by bor-

ing a knot or link Lβ using handlebody W. Suppose that either α is non-

separating or that ∂W −∂α is incompressible in N. Suppose also that one

of the following holds:

• Lβ is an unknot

• Lβ is a split link and ∂W −∂β is incompressible in N.

Then there is a minimal genus Seifert surface for Lα which is disjoint from

α .
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PROOF. If α is non-separating, γ 6= ∅. Since ∂W − (a∪ γ) consists of

two thrice-punctured spheres each with meridional boundary, it is incom-

pressible in N. If α is non-separating, by hypothesis ∂W − ∂α is incom-

pressible in N. Thus, in either case, by Lemma 4.1, (N,γ ∪ a) is taut. Let

R be an essential disc or sphere in S3[β ] and let Q be the disc or sphere

provided by Corollary 5.2. If Lβ is a split link then since ∂W − ∂β is in-

compressible in N, q̃ > 0. If q̃ = 0 then Lβ is an unknot and Q is disjoint

from β , but since it is a disc, there is no a–boundary compressing disc for

it. Furthermore, in this case, ∂Q must intersect the meridional arcs of a−b.

Thus, whether or not q̃ is zero, Q has no a–boundary compressing discs and

is not disjoint from a. Recall that −2χ(Q) < 0≤ K(Q).

By the first sutured manifold theorem and Lemma 7.1, Lα has a minimal

genus Seifert surface disjoint from α (that is, contained in N). �

COROLLARY 7.6 ([ST2, Proposition 4.2]). If α is a tunnel for a tunnel

number one knot or link Lα , Lα has a minimal genus Seifert surface disjoint

from α .

PROOF. As noted in the introduction, every tunnel number one knot or

link can be obtained by boring an unknot Lβ using the standard unknotted

genus two handlebody in S3. Conversely, a tunnel for a non-trivial tunnel

number one knot or link is a boring arc for converting the knot or link into

the unknot Lβ . Thus, unless α is separating and ∂W −∂α is compressible

in N, the corollary follows immediately from Theorem 7.5.
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We may, therefore, assume that Lα is a split link. The surface ∂W is a genus

two Heegaard surface for S3[α]. If Lα is a split link, S3[α] contains an es-

sential sphere, so by Haken’s Lemma for Heegaard splittings there is an

essential sphere P intersecting the Heegaard surface in a single loop. One

side of the Heegaard surface is a compressionbody with two boundary com-

ponents, each a torus. Thus, P must intersect that compressionbody in the

unique (up to isotopy) essential disc. That disc is parallel to α . ∂W − η̊(P)

has two components each of which is a genus one Heegaard splitting for the

exterior of a component of Lα . The only knot with a genus one Heegaard

splitting for its exterior is the unknot and so Lα is the unlink of two com-

ponents. Since the connected sum of Heegaard splittings is well-defined

α ∩ (S3− η̊(P)) consists of two unknotted arcs. Thus, each component of

Lα bounds a disc disjoint from α and the corollary is proved when Lα is a

split link. �

REMARK. The proof of the previous corollary is not any better than Scharle-

mann and Thompson’s proof. Indeed, their proof is certainly easier to un-

derstand than the arguments of this paper. However, it is interesting to note

that they do rely on a theorem of Gabai which was proved using sutured

manifold theory. The point of Theorem 7.5 is that a rather significant prop-

erty of tunnel number one knots has a natural generalization to knots and

links obtained by boring an unknot.

Using Theorem 7.5, we can reverse the roles of α and β to obtain:

THEOREM 7.7. Suppose that Lβ ⊂ S3 is obtained by boring a split link or

unknot Lα . If Lα is a split link, assume that ∂W − ∂α is incompressible
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in N. If Lα is an unknot, assume that there does not exist an essential disc

in S3[α] disjoint from α . Then Lβ is not a split link or unknot and Lβ has

a minimal genus Seifert surface Q properly embedded in S3[β ], which is

disjoint from β and for which one of the following is true:

• −2χ(Q)≥ ∆∂ −ν∂

• There is an a–boundary compressing disc for Q in N

REMARK. Corollary 8.4 rephrases this theorem for rational tangle replace-

ments. Following that theorem, there is an example which shows that the

possibility that there is an a–boundary compressing disc for Q cannot be

eliminated. Notice that if β is isotopic with fixed endpoints to a non-trivial

arc in Q then there is an a–boundary compressing disc for Q in S3.

PROOF. The Modified Scharlemann Conjecture shows that Lβ is not a

split link or unknot.

By Theorem 7.5, applied with α and β reversed, there is a minimal genus

Seifert surface Q for Lβ which is disjoint from β ; that is, it is contained in

N. The only way in which Q could be disjoint from the meridional arcs of

a− b is if β were separating and Q had boundary on a single component

of Lβ . This contradicts the definition of Seifert surface for Lβ , so Q is not

disjoint from η(a).

If there is an a–boundary compressing disc for Q in N, we are done, so

suppose that no such disc exists. If −2χ(Q) < K(Q) the first sutured man-

ifold theorem and Lemma 7.1 imply that S3[α] is irreducible and that there

is a minimal genus Seifert surface for Lα which is disjoint from α . The
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first option means that Lα isn’t a split link and the second that Lα isn’t an

unknot since ∂W −∂α is incompressible. Hence, −2χ(Q)≥ K(Q). Since

Q is disjoint from β , q = q∗ = 0. The given inequality follows from the

definition of K(Q). �

With the stronger assumption that ∂W is incompressible in N, we can re-

strict the possibilities for obtaining a non-hyperbolic knot or link from a

split link by boring.

THEOREM 7.8. Suppose that Lβ is a knot or link obtained by boring the

link Lα using a handlebody W ⊂ S3 with N = S3−W̊ boundary-irreducible.

Suppose that Lα is a split link or that there is no minimal genus Seifert

surface for Lα disjoint from α . If the exterior of Lβ contains an essential

annulus or torus then one of the following holds:

(1) There is an essential torus in N

(2) There is an essential annulus in the exterior of Lβ disjoint from β

and which is either disjoint from or has meridional boundary on

some component of Lβ .

(3) ∆ = 2 and if there is an essential annulus then there is one which

is either disjoint from or has meridional boundary on some com-

ponent of Lβ .

EXAMPLE. Figure 1.6 shows that a composite knot can be obtained from

a split link by a band sum. Thickening the band and the unknot gives us

W , and the exterior of W is boundary-irreducible. This shows that the third

case can arise.
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Both versions of the second conclusion are possible. Figure 7.2 shows a

spine for a genus two handlebody. The “S”-shaped arc is disjoint from an

essential meridional annulus A. Refilling the meridian of that arc creates

a split link with one component a trefoil and the other component an un-

knot. It is not hard to show that the exterior of the handlebody is boundary-

irreducible. Using the “S” shaped arc to perform a band-sum creates a knot

Lβ which is the connected sum of a trefoil and a 61 knot1.

FIGURE 7.2. Performing a rational tangle replacement on
the “S” shaped arc leaves the meridional annulus untouched.

Figure 7.3 shows a split link Lα consisting of a trefoil (drawn so the “ca-

bling” annulus is visible) and an unknot. There is an “S” shaped arc joining

them. On the trefoil the annulus has boundary slope ±6. Use the “S”-

shaped arc to perform a Kirby band move of the unknot over the trefoil

(giving the trefoil a framing of ±6). We now have a new link Lβ with one

component the trefoil. By construction the cabling annulus for the trefoil

persists into Lβ . It is not difficult to show that the exterior of the handlebody

is boundary-irreducible.

It is easy to use a “satellite construction” to concoct an example of the first

possibility. Figure 7.4 shows a spine for a genus two handlebody W inside

1Thanks to Jiho Kim’s KnotSketcher and Charles Livingston’s KnotFinder for help with
this calculation.
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a knotted solid torus ∂V . Cutting the edge of the spine containing the local

trefoil produces the unlink Lα in S3. By the Modified Scharlemann Conjec-

ture, ∂V remains essential in the exterior of any knot or link Lβ obtained

from Lα by boring using W . It is easy to show that ∂W is incompressible in

both V −W̊ and S3−W̊ .

FIGURE 7.3. Performing a Kirby band move using the “S”
shaped arc leaves the trefoil’s essential annulus untouched.

FIGURE 7.4. An essential torus in the exterior of W .

PROOF OF THEOREM 7.8. Suppose that there is no essential torus in

N. The Modified Scharlemann Conjecture shows that Lβ is not an unknot

or split link; consequently, there is no essential disc or sphere in S3[β ].
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Let R be an essential annulus or torus in S3[β ] and apply Corollary 5.2,

obtaining a connected surface Q. Since Q is not a sphere or disc and since

−χ(Q) ≤ −χ(R), Q is an annulus or torus. Since the genus of Q is no

higher than the genus of R, if R was an annulus, then Q is an annulus. If Q

is disjoint from β then it is contained in N and must be an annulus by our

initial assumption that N contains no essential torus. In this case, if there

is an a–boundary compression for Q, N would contain an essential disc,

contradicting the assumption that ∂W is incompressible in N.

We may, therefore, assume that there is no a–boundary compressing disc for

Q. If Q is completely disjoint from a, then Q is an annulus which is disjoint

from the meridional arcs of a−b. From our observations about meridional

arcs, this means that Q ⊂ N is an annulus which is either disjoint from or

has meridional boundary on one component of ∂S3[β ].

Suppose, therefore, that Q is not completely disjoint from a. Notice that

because α is separating, α must intersect any reducing sphere for S3[α]

an odd number of times. Thus, by the first sutured manifold theorem,

−2χ(Q)≥ K(Q). Since χ(Q) = 0 and since K(Q)≥ 0 we have K(Q) = 0.

That is,

q(∆−2)+q∗(∆∗−2)+∆∂ = 0.

Since each term is non-negative, each term must be zero. Hence ∆∂ = 0,

implying that either Q is a torus or it is an annulus with boundary disjoint

from or consisting of meridians on some component of ∂S3[β ]. If q∗ 6= 0,

then β is non-separating and we must have ∆∗ = 2. Since b∗ intersects each

meridional arc of a− b at least twice, this means that there is exactly one
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such meridional arc. The number of meridional arcs is even, so this is a

contradiction. If q 6= 0 then we have ∆ = 2. If both q and q∗ are equal to

zero, then since ∆∂ = 0, Q is an annulus disjoint from a, a possibility we

have already considered. �

In the next section, we study rational tangle replacement as a particular type

of boring.
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CHAPTER 8

Rational Tangle Replacement

Suppose that Lβ is a knot or link in S3 and that B′ ⊂ S3 is a ball intersecting

Lβ in two strands rβ so that (B′,rβ ) is a rational tangle. We will always

assume that no component of Lβ is disjoint from B′. If (B′,rα) is any other

rational tangle, then the knot or link Lα = (Lβ −B′)∪ rα is obtained by

a rational tangle replacement on Lβ . Let (B,τ) = (S3− B̊′,Lβ − B̊′) be

the complementary tangle. In section 1.4, the terminology associated to

rational tangle replacement was defined. We now briefly recall some of this

terminology and notation.

Let α and β be trivializing discs for rα and rβ respectively (isotoped to

intersect minimally) and let W = η(Lβ )∪B′ = η(Lα)∪B′. Notice that if

α and β are not disjoint then Lβ and Lα are related by boring using boring

handlebody W . The distance between rα and rβ is defined to be d = ∆/2.

Since S3 is prime and, therefore, has no non-trivial homology sphere con-

nected summands, the first sutured manifold theorem is particularly useful.

Let N = S3−W̊ = B− η̊(τ).

Before stating the applications, we state and prove some lemmas which

allow the terminology of tangle sums and rational tangle replacement to be

converted into the terminology of boring.
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8.1. Boring and Rational Tangle Replacement

LEMMA 8.1. Let (B,τ) be a tangle. Suppose that c is an essential separat-

ing curve on ∂B− τ . If ∂N− c is compressible in N then c compresses in

N.

PROOF. Let d be an essential curve in ∂N−c which bounds a disc D⊂

N. Since c is separating and ∂N has genus two, d is a curve in a once-

punctured torus. Thus, it is either non-separating or parallel to c. In the

latter case, we are done, so suppose that d is non-separating. Let D+ and

D− be parallel copies of D so that d is contained in an annulus between ∂D+

and ∂D−. Use a loop which intersects d exactly once to band together D+

and D−, forming a disc D′. The boundary of D′ is an essential separating

curve in the once-punctured torus. ∂D′ is, therefore, parallel to c. Hence, c

compresses in N. �

LEMMA 8.2. Suppose that (B,τ) and (B′,rα) are tangles embedded in S3

with (B′,rα) a rational tangle so that ∂B = ∂B′ and ∂τ = ∂ rα . Suppose

that (B′,rβ ) is rational tangle of distance at least one from (B′,rα). Define

the sutures γ ∪a on ∂N as before. If

• α is non-separating in the handlebody W = B′∪η(τ), or

• if (B,τ) is a prime tangle, or

• if (B,τ) is a rational tangle and ∂α does not bound a trivializing

disc for (B,τ), or

• if ∂α does not compress in (B,τ)
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then ∂W−(γ∪a) is incompressible in N. Consequently, (N,γ∪a) is ∅–taut

and (N[a],γ) is α–taut.

PROOF. If α is non-separating then any compressing disc for ∂W −

(γ ∪ ∂α) would have meridional boundary, implying that S3 had a non-

separating 2–sphere. Thus, we may suppose that α is separating. If (B,τ)

is prime, there is no disc separating the strands of τ . Similarly, if (B,τ) is a

rational tangle but a does not bound a trivializing disc then a does not com-

press in (B,τ). Thus, for the remaining three hypotheses, we may assume

that a does not compress in (B,τ). By Lemma 8.1, ∂N− a is incompress-

ible in N, as desired. By Lemma 4.1, (N,γ ∪ a) is taut and (N[a],γ) is

α–taut. �

One pleasant aspect of working with rational tangle replacements is that we

can make explicit calculations of K(Q). Here are two lemmas which we

jointly call the Tangle Calculations.

TANGLE CALCULATIONS I (β separating). Suppose that Lβ is a link ob-

tained from Lα by a rational tangle replacement of distance d using W. Let

Q be a suitably embedded surface in the exterior S3[β ] of Lβ . Let ∂1Q be

the components of ∂Q on one component of ∂S3[β ] and ∂2Q be the compo-

nents on the other. Let ni be the minimum number of times a component of

∂iQ intersects a meridian of ∂S3[β ].

• If Lα is a link then

K(Q)≥ 2q(d−1)+d(|∂1Q|n1 + |∂2Q|n2).
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• If Lα is a knot then

K(Q)≥ 2q(d−1)+(d−1)(|∂1Q|n1 + |∂2Q|n2).

PROOF. Since Lβ is a link, β is separating. Thus, q∗ = 0. Since a and

b are contained in ∂B′ = ∂B every arc of b−a is an meridional arc. Hence,

ν = 0. By definition 2d = ∆.

Let T be a component of ∂S3[β ]. Without loss of generality, suppose that

the components of ∂Q on T are ∂1Q. Since every arc of a− b is merid-

ional, there exist d meridional arcs on each component of ∂S3[β ]. Thus,

each component of ∂1Q intersects a at least dn1 times. Each component of

∂2Q intersects a at least dn2 times. Consequently, |∂1Q∩ a| ≥ |∂1Q|n1d.

Similarly, |∂2Q∩a| ≥ |∂2Q|n2d. Hence,

∆∂ ≥ d(|∂1Q|n1 + |∂2Q|n2).

If α is non-separating, the curves γ are also meridian curves of Lβ . Thus, γ

is intersected ni times by each component of ∂iQ. Hence, if Lα is a knot,

ν∂ = |∂1Q|n1 + |∂2Q|n2.

The result follows. �

TANGLE CALCULATIONS II (β non-separating). Suppose that Lβ is a knot

obtained from Lα by a rational tangle replacement of distance d using W.

Let Q be a suitably embedded surface in the exterior S3[β ] of Lβ . Suppose

that each component of ∂Q intersects a meridian of ∂S3[β ] n times.
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• If Lα is a link then

K(Q)≥ 2q(d−1)+2q∗(2d−1)+2d|∂Q|n.

• If Lβ is a knot then

K(Q)≥ 2(d−1)(q+2q∗)+2(d−1)|∂Q|n.

PROOF. These calculations are similar to the calculations of the previ-

ous lemma, so we make only a few remarks. First, since b∗ and ∂η(b)

cobound a thrice-punctured sphere, every meridional arc of a−b intersects

b∗ at least twice. Since every arc of a− b is meridional, there are ∆ such

arcs. Hence ∆∗ ≥ 4d. Secondly, if Lα is a knot, then b∗ intersects γ twice

and b intersects γ not at all. Thus,

q(∆−ν−2)+q∗(∆∗−ν
∗−2)≥ q(2d−2)+q∗(4d−4).

The given inequality follows. �

Our last observation concerns the implications of an a–boundary compress-

ing disc.

LEMMA 8.3. Suppose that Q is an incompressible and boundary-incom-

pressible surface in S3[β ] disjoint from β . If all components of ∂Q are

meridians then there does not exist an a–boundary compressing disc join-

ing two components of ∂Q. If ∂Q has components on all components of

∂S3[β ] and no component is a meridian, then if there is an a–boundary

compression for Q in S3−W̊ the arc β is properly isotopic into Q.
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PROOF. Notice, first, that if all components of ∂Q are meridians then

∂Q∩a = ∅, since all arcs of a−b are meridional. Thus, if all components

of ∂Q are meridional there can be no a–boundary compressing disc for Q.

Suppose therefore that ∂Q intersects each component of ∂S3[β ] and that

no component of ∂Q is a meridian. Let D be an a–boundary compression.

Let ε = ∂D∩ ∂W . It is a component of a− ∂Q. Since Q is boundary

incompressible in S3[β ], the arc runs at least once across η(b). Since no

component of ∂Q is a meridian and since it intersects each component of

∂S3[β ], each arc of a− ∂Q which runs across η(b) does so exactly once.

Hence, after pushing ε into W slightly, η(β ) can be viewed as a regular

neighborhood of ε . Then D guides an isotopy of β into Q. See Figure

8.1. �

∂Q

β

a

ε

FIGURE 8.1. The arc β is parallel to ε .

8.2. Seifert surfaces

We begin by restating Theorem 7.7 for rational tangles:
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COROLLARY 8.4. Suppose that Lβ ⊂ S3 is obtained by a rational tangle

replacement of distance d ≥ 1 on a split link or unknot Lα . If Lα is a split

link, assume that a is incompressible in B− τ . If Lα is an unknot, assume

that there does not exist an essential disc in S3[α] disjoint from α . Then Lβ

has a minimal genus Seifert surface Q disjoint from β such that one of the

following holds:

• β is properly isotopic into Q

• −χ(Q)≥ d and Lα is a split link

• −χ(Q)≥ d−1 and Lα is an unknot.

PROOF. The assumption that if α is separating then a is incompressible

in B−τ implies (Lemma 8.2) that ∂N−a is incompressible in N. Applying

Theorem 7.7, we produce the Seifert surface Q and either there is an a–

boundary compressing disc for Q ⊂ N or −2χ(Q) ≥ K(Q). If the former

happens, by Lemma 8.3, we conclude that β is properly isotopic into Q.

Suppose, therefore, that −2χ(Q) ≥ K(Q). Using the Tangle Calculations

and the fact that q = q∗ = 0 we see that if Lα is a link, then −2χ(Q)≥ 2d.

If Lα is a knot, then −2χ(Q) ≥ 2(d − 1). The given inequalities follow

immediately. �

A pleasing corollary is Gabai and Scharlemann’s result that genus is super-

additive under band sum. A band sum is a rational tangle replacement of

distance 1 on a split link.
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COROLLARY 8.5 (Gabai [G2], Scharlemann [S3]). Suppose that K1#bK2 is

the band sum of knots K1 and K2. Then

genus(K1#bK2)≥ genus(K1)+genus(K2)

with equality only if K1 and K2 have minimal genus Seifert surfaces disjoint

from the band.

PROOF. The statement holds if the band sum is a connected sum (i.e.

if the band intersects a splitting sphere exactly once), so we may assume

that the band intersects every essential sphere in the exterior of Lα = K1∪

K2 more than once. Let W = η(K1 ∪K2 ∪ b) where b is the band. (Note

the ambiguity associated with the letter ‘b’ in this context.) Let α be a

disc in η(b) intersected once transversally by the core of b. Let β be a

disc intersecting α once and which is “parallel” to the cocore of the band

so that Lβ = K1#bK2. Since the band sum is not a connected sum, ∂W −

∂α is incompressible in S3−W̊ (Lemma 8.2). Applying Corollary 8.4, we

produce a minimal genus Seifert surface Q for Lβ which is disjoint from β ,

the cocore of the band. The proof now proceeds as in [G2] and [S3]. �

Superadditivity of genus under band sum provides a more interesting esti-

mate of the genus of a knot Lβ obtained by a rational tangle replacement

on a split link than does Corollary 8.4. To see this, notice that the rational

tangle replacement on a split link can be seen as a band sum of knots K1

and K2 with a 2–bridge knot K3 inserted in the middle of the band. By mov-

ing the 2–bridge knot along the band so that it is close to K2, we see that
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Lβ = K1#b(K3#K2). Thus, by supperadditivity of genus under band sum,

genus(Lβ )≥ genus(K1)+genus(K3)+genus(K2).

I believe that the result of Corollary 8.4 for Lβ an unknot is genuinely new.

Similar to the previous case, this result can be interpreted as a result about

attaching a band to a 2–bridge knot or link. However, not every such band

attachment can be described as a rational tangle replacement on the unknot.

The application of the Band Sum Genus theorem to rational tangle replace-

ment on a split link is used in the next example to show that the possibility

that β is isotopic into Q cannot be removed from Corollary 8.4.

EXAMPLE. Figure 8.2 depicts the diagram of a 937 knot1 Lβ . The indicated

rational tangle replacement converts Lβ into a split link Lα . The rational

tangle replacement has distance d = 5. In the diagram, it is not difficult to

find a Seifert surface S for Lβ consisting of an annulus and three twisted

bands. Two of the bands have one half twist each and the third has three

half twists. Thus, −χ(S) = 3 and genus(S) = 2. Lβ is the band sum of

the unknot with a figure eight knot. The band is not disjoint from Seifert

surfaces for the unknot and the figure eight knot. Hence, by Corollary 8.5, Q

is a minimal genus Seifert surface for Lβ . It is easy to see that β is isotopic

into Q.

REMARK. Scharlemann and Thompson [ST2] have shown that, in many

cases, a tunnel for a tunnel number 1 knot can be isotoped and slid to lie in

a minimal genus Seifert surface for the knot. Since tunnel number 1 knots

1Thanks to Jiho Kim’s KnotSketcher and Charles Livingston’s KnotFinder for help with
this calculation.
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FIGURE 8.2. The knot Lβ and a rational tangle replacement.

are those knots which are obtained by boring the unknot or unlink using

an unknotted handlebody, perhaps the first possible conclusion of Corollary

8.4 points to a more general phenomenon.

8.3. Planar Surfaces, Punctured Tori, and Rational Tangle

Replacement

We now use sutured manifold techniques to study planar surfaces and punc-

tured tori in the exterior of a knot or link Lβ obtained by rational tangle

replacement on Lα .

THEOREM 8.6. Suppose that Lβ is a knot or link obtained by a rational

tangle replacement of distance d ≥ 1 on the knot or link Lα . Suppose that

either Lα is a knot or that ∂W −∂α does not compress in N. Suppose also

that Lα is a split link, or does not contain a minimal genus Seifert surface

disjoint from α . Then, if Lβ has an essential properly embedded meridional

planar surface with m boundary components, it contains such a surface Q
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with |∂Q| ≤ m such that either Q is disjoint from β or

|Q∩β |(d−1)≤ |∂Q|−2

PROOF. Since either ∂W − ∂α is incompressible in N or α is non-

separating, by Lemma 8.2, (N,γ ∪a) is a taut sutured manifold. If Lβ were

a split link or unknot, by the first sutured manifold theorem, Lα would not

be a split link and would have a minimal genus Seifert surface disjoint from

α , a contradiction. Hence Lβ is not a split link or unknot.

Use Corollary 5.2 to obtain the connected planar surface Q ⊂ N[b] and as-

sume that Q is not disjoint from β . Since Q is connected and has euler

characteristic not lower than our original planar surface, |∂Q| ≤ m. The

boundary of Q is meridional, by construction, since each arc of a− b is

meridional. Since Q is, by assumption, not disjoint from β , q̃ > 0 and there

is no a–boundary compressing disc for Q.

By the first sutured manifold theorem and Lemma 7.1, we conclude that

K(Q)≤−2χ(Q). Since ∂Q is disjoint from a∪ γ , if Lα is a link we obtain:

2q(d−1)+2q∗(2d−1)≤−2χ(Q).

If Lα is a knot, then

2(q+2q∗)(d−1)≤−2χ(Q).

Since 4q∗(d − 1) ≤ 2q∗(2d − 1), we may conclude (whether or not α is

separating) that 2(q + 2q∗)(d− 1) ≤ −2χ(Q). Q is a planar surface with

|∂Q| boundary components, implying that −2χ(Q) = 2|∂Q|−4. Plugging
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into our inequality and dividing by two, we obtain

(q+2q∗)(d−1)≤ |∂Q|−2.

A slight isotopy pushing the discs in Q with boundary parallel to b∗ converts

each such disc to two discs each with boundary parallel to b. Hence, after

the isotopy |Q∩β |= q+2q∗. Consequently,

|Q∩β |(d−1)≤ |∂Q|−2

as desired. �

A crossing change or generalized crossing change of a knot K is achieved

by choosing a disc D ⊂ S3 which is pierced twice by K with opposite sign

and by performing a ±1/n Dehn-surgery on ∂D with n ∈ N. If n = 1, the

new knot is obtained by changing the crossing of K. It is easy to see that a

generalized crossing change can be achieved by rational tangle replacement

of distance d = 2n.

COROLLARY 8.7 (Scharlemann [S1], Scharlemann and Thompson [ST1]).

No generalized crossing change on a composite knot will produce the un-

knot.

PROOF. Suppose that Lβ = K1#K2 is an unknotting number one knot

with K1 and K2 non-trivial knots. Let D be a crossing disc for Lβ such that

±1/n surgery on ∂D converts Lβ to the unknot Lα . Let W = η(Lβ ∪D) and

notice that Lα can be obtained from Lβ by a rational tangle replacement of

distance d = 2n. Notice that α is non-separating.
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Apply Theorem 8.6 beginning with an essential meridional annulus in S3[β ].

The surface Q is then either an essential annulus or an essential disc. Since

Lβ is not the unknot, Q is an annulus. If it were disjoint from β , the cross-

ing change would be a crossing change on either K1 or K2 and so would

not convert Lβ into the unknot. The inequality |Q∩β |(d− 1) ≤ |∂Q| − 2

becomes

0≤ |Q∩β |(d−1)≤ 0,

implying that Q is disjoint from η(b) after all. This contradiction shows

that Lβ cannot be a composite unknotting number one knot. �

In fact, in the spirit of Theorem 7.8, the results of this paper can be used to

prove a (weak) version of Scharlemann and Thompson [ST1] about chang-

ing a crossing on a satellite knot. (See Section 8.4). As in Scharlemann and

Thompson’s work, this can be used to give another proof that unknotting

number one knots are prime. The previous corollary, however, is an easier

proof of that fact.

If a non-trivial surgery on a hyperbolic knot or link Lβ ⊂ S3 produces a

manifold containing an essential sphere or torus, it is easy to show that

the exterior of Lβ contains an essential planar surface or punctured torus.

The remaining theorem examines the possibilities for such surfaces in the

exterior of a knot Lβ obtained by rational tangle replacement on a split link

or knot without a minimal genus Seifert surface disjoint from the boring

arc.

THEOREM 8.8. Suppose that Lβ is a knot or link obtained by rational tangle

replacement of distance d ≥ 1 on a knot or link Lα using handlebody W.
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Suppose either that α is non-separating or that ∂W −∂α is incompressible

in N. Suppose also that Lα is a split link or does not have a minimal genus

Seifert surface disjoint from α . Then, if Lβ contains an essential planar

surface or punctured torus in its exterior, there is such a surface Q satisfying

one of the following:

(1) Lβ is a link and ∂Q is disjoint from some component of Lβ .

(2) Q is disjoint from β and β is isotopic into Q.

(3) Q has meridional boundary on some component of Lβ

(4) Lβ and Lα are both links, d = 2, and Q is a punctured torus disjoint

from β with integer slope on both components of ∂S3[β ].

(5) Lβ is a link, Lα is a knot, d ≤ 2, and Q is a planar surface.

(6) Lβ is a link, Lα is a knot, d ≤ 3, and Q is a punctured torus.

(7) Lβ is a knot, Lα is a link, d = 1, Q is a punctured torus with ∂Q

having integer slope.

(8) Lβ and Lα are both knots, d = 1 and Q is a planar surface.

(9) Lβ and Lα are both knots, d ≤ 2 and Q is a punctured torus.

PROOF. Since α is non-separating or ∂W −∂α is incompressible in N,

Lemma 8.2 implies that (N,γ ∪a) is taut. By hypothesis, there is an essen-

tial planar surface or punctured torus in S3[β ]. Apply Corollary 5.2 to obtain

a connected surface Q. Q is a planar surface or a punctured torus. Assume

that none of options (1), (2), or (3) occur. By Lemma 8.3, there is no a–

boundary compressing disc for Q. If Q is disjoint from a then it is disjoint

from all meridional arcs of a−b and so must have meridional boundary or

must be disjoint from some component of ∂S3[β ], contradicting our denial
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of (1) and (3). Hence, we may apply the first sutured manifold theorem to

conclude that −2χ(Q) ≥ K(Q). Let s = 2 if Q is a planar surface and let

s = 0 if Q is a punctured torus. We now consider the possibilites for α and

β . We use the notation and results of the Tangle Calculation Lemmas.

Case 1: β and α are both separating. In this case, notice that d ≥ 2.

Since −2χ(Q) =−2s+2(|∂1Q|+ |∂2Q|) we have

−2s+2(|∂1Q|+ |∂2Q|)≥ 2q(d−1)+d(|∂1Q|n1 + |∂2Q|n2).

Rearrange this to obtain

−2s≥ 2q(d−1)+ |∂1Q|(dn1−2)+ |∂2Q|(dn2−2).

If Q is a planar surface, then we must have either dn1 < 2 or dn2 < 2. Since

d, n1, and n2 are all non-zero by hypothesis, we contradict the observation

that d ≥ 2. Hence Q is not a planar surface.

If Q is a punctured torus, then we must have dn1 ≤ 2 and dn2 ≤ 2. Since

d ≥ 2, we must have d = 2 and n1 = n2 = 1. This is conclusion (4).

Case 2: β is separating and α is non-separating. We have

−2s+2(|∂1Q|+ |∂2Q|)≥ 2q(d−1)+(d−1)(|∂1Q|n1 + |∂2Q|n2).

Rearranging, we obtain

−2s≥ 2q(d−1)+ |∂1Q|((d−1)n1−2)+ |∂2Q|((d−1)n2−2).
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Therefore, we have (d−1)n1 ≤ 2 or (d−1)n2 ≤ 2. If Q is a planar surface

the inequalities are strict. This produces conclusion (5). Otherwise, we

obtain conclusion (6).

Case 3: β is non-separating and α is separating. Now we have,

−2s+2|∂Q| ≥ 2q(d−1)+2q∗(2d−1)+2d|∂Q|n.

Rearranging we find

−2s≥ 2q(d−1)+2q∗(2d−1)+ |∂Q|(2dn−2).

Since d, n, and |∂Q| are all positive, s = 0 and d = n = 1. This is conclusion

(7).

Case 4: β and α are both non-separating. Finally, we have

−2s≥ 2(q+2q∗)(d−1)+2|∂Q|((d−1)n−1)

If s = 2, then (d−1)n < 1 implying d = 1. If s = 0, then (d−1)n≤ 1. This

implies d ≤ 2. These are conclusions (8) and (9). �

8.4. More Classical Results

Our final look at rational tangle replacement will be to provide new proofs

of several results of Eudave-Muñoz and others. The introduction listed six

theorems, of which we can reprove five. The original proofs of all six theo-

rems relied heavily on very complicated combinatorial arguments. In some

sense, the arguments given here are more complicated in that they rely on
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sutured manifold theory and the additional work of this thesis. The present

arguments, however, have the advantage of unifying most of the previous

results. There is the additional hope that new proofs of the classical results

can pave the way for proofs of related unsolved problems in knot theory.

We begin by proving the five theorems just mentioned; they will be re-

peated here for the convenience of the reader. Weakened forms of two more

theorems of Eudave-Muñoz will be given new proofs subsequently. All of

the proofs in this section are very similar to prior proofs. We give them for

completeness and to demonstrate the relative ease (given the machinery)

with which they can be proven.

THEOREM (EM 2). If (B,τ) is prime, if Lα is a split link, and if Lβ is

composite then d(α,β )≤ 1.

PROOF. Since (B,τ) is prime, by Lemma 8.2, (S3[α],γ) is α–taut and

(N,γ ∪ a) is ∅–taut. Let R be an essential meridional annulus in S3[β ].

Apply Corollary 5.2 to obtain an essential annulus or disc Q. If Q is a disc,

it must have meridional boundary since it was obtained by an a–boundary

compression of a meridional annulus and all arcs of a− b are meridional.

This cannot occur since S3 has no non-separating 2–spheres. Hence, Q is

an essential meridional annulus. If Q were disjoint from β it would be

contained in (B,τ). The boundary of Q, in that case, must be on a single

string of τ and so τ would contain a local knot, contradicting the assumption

that (B,τ) is prime. Thus q̃(Q) > 0. We may now apply either of the first or

second sutured manifold theorems to conclude that −2χ(Q) ≥ K(Q) ≥ 0.
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Since Q is an annulus, we have K(Q) = 0 which by the Tangle Calculations

implies that d ≤ 1. �

THEOREM (EM 3). If (B,τ) is any tangle and if Lα and Lβ are split links,

then rα = rβ .

PROOF. It suffices to show that α and β are disjoint. Suppose first that

both ∂N−∂α and ∂N−∂β are compressible in N = B− η̊(τ). By Lemma

8.1, since α is separating, a = ∂α compresses in N. That is, there is a disc

Da in B with boundary a separating the strings of τ . Similarly, there is a

disc Db in B with boundary b = ∂β separating the strings of τ . An easy

innermost disc/outermost arc argument shows that Da and Db are isotopic.

In particular, a and b are isotopic in ∂B− τ which implies that rα = rβ .

Thus we may assume, without loss of generality, that ∂W −∂α is not com-

pressible in N. Let R be an essential sphere in S3[β ] and apply Corollary 5.2

to obtain an essential sphere or disc Q. Since a− b consists of meridional

arcs, Q is not disjoint from η(a). If Q is a disc disjoint from β , there is

no a–boundary compressing disc for Q. If Q is a sphere, q̃ > 0. Thus, we

may apply either the first or second sutured manifold theorem to conclude

that S3[α] is irreducible or that α and β are disjoint. If the latter is true,

rα = rβ . �

THEOREM (BS 4). If (B,τ) is a prime tangle and if Lα and Lβ are both

unknots, then rα = rβ .

PROOF. Suppose that rα 6= rβ so that d ≥ 1. As in the proof of Theorem

(EM 2), (N,γ ∪ a) is ∅–taut. Let R be an essential disc in S3[β ]. Let Q
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be a disc obtained by an application of Corollary 5.2. As in the proof of

Theorem (EM 3), Q is not disjoint from a and if it is disjoint from β there is

no a–boundary compressing disc. The first sutured manifold theorem then

guarantees that there is a minimal genus Seifert surface for Lα which is

disjoint from α . If Lα is an unknot, this surface S is a disc. Consider S∩∂B.

Since S∩α = ∅, the intersection consists of two arcs. If the outermost discs

of S−∂B were located in B, at least one of the strands of τ is isotopic into

∂B in the complement of the other strand. Thus, there would be a disc

separating the strands of τ , contrary to the hypothesis that (B,τ) is prime.

Thus, the two strands of τ are parallel in B by the middle rectangle of S−

∂B. Reversing the roles of α and β in the preceding argument, we see that

the two strands of τ are isotopic by a disc disjoint from ∂β . Consequently

b and a are parallel in ∂B− τ . Hence, α and β are parallel, contrary to our

initial assumption that d ≥ 1. �

THEOREM (S 5). If (B,τ) is any tangle and Lβ is a trivial knot and Lα a

split link then (B,τ) is a rational tangle and d ≤ 1.

PROOF. Notice first that (B,τ) can have no local knots since Lβ is the

unknot. Thus, if ∂W − ∂α is compressible in N, (B,τ) is a rational tangle

with trivializing disc having boundary ∂α (Lemma 8.1).

Suppose that ∂W −∂α is incompressible in N. Use Corollary 5.2 to choose

a disc Q in S3[β ]. By the first or second sutured manifold theorems, S3[α]

is irreducible, a contradiction.

Thus, (B,τ) is a rational tangle. It remains to prove that d ≤ 1. Since Lβ

is the unknot, a double-branched cover of S3 with branch set Lβ is S3. The
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preimage B̃ of B is an unknotted solid torus. There is a correspondence be-

tween rational tangle replacement and Dehn-surgery in the double-branched

cover. Replacing (B′,rβ ) with (B′,rα) converts the double-branched cover

to a lens space, S3 or S1 × S2. In the double branched cover, the Dehn

surgery is achieved by making a curve in ∂ B̃ which intersects a meridian of

B̃ d times bound a disc in the complementary solid torus. Since Lα is a split

link, the double branched cover of S3 over Lα is reducible. Thus, it must be

S1×S2 and d must be one, as desired. �

REMARK. In the proof of (S 5), note that even without proving d ≤ 1,

we have provided a new proof of Scharlemann’s band sum theorem [S1]:

If K = K1#bK2 is the unknot then the band sum is the connected sum of

unknots. To see this note that W is η(K1∪K2∪b) where b is the band. The

tangle (B,τ) is (S3 − η̊(b),(K1 ∪K2)− η̊(b)). Since ∂β is a loop which

encircles the band, ∂β only bounds a disc in (B,τ) when the band sum is a

connected sum and K1 and K2 are unknots.

THEOREM (EM 6). If (B,τ) is prime and Lβ is a composite knot or link

and Lα is the unknot, then d ≤ 1.

PROOF. Suppose d ≥ 1. First, suppose that there is no essential disc in

S3[α] which is disjoint from α . Let Q be the result of applying Corollary

5.2 to an essential meridional annulus in S3[β ]. Since Lβ is not the unknot,

Q is also a meridional annulus. It cannot be contained in B, since (B,τ) is

prime. By Theorem 8.6,

|Q∩β |(d−1)≤ 0.
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Hence, d = 1, as desired.

FIGURE 8.3. Enlarging a disc of parallelism to an annulus.

Suppose, therefore, that S3[α] contains an essential disc which is disjoint

from α . As in (BS 4), the two strands of τ must be parallel. Let A be an

annulus in B− τ made by doubling and slightly enlarging the disc of paral-

lelism (see Figure 8.3). Since (B,τ) is prime, A is an essential annulus in

B− τ . Let D± be the two discs in ∂B with boundary ∂A and which contain

∂τ . Create a torus T = A∪ (∂B− (D+∪D−)). By an isotopy, we may as-

sume that T and Q are disjoint or intersect in circles which are essential in

both. If the former, then Q⊂ B and we contradict the assumption that (B,τ)

has no local knots. Since every S2 ⊂ S3 separates, there are two circles of

Q∩T which are outermost on Q. (That is, the circles adjacent to ∂Q are

distinct.) By cutting and pasting T and Q along those circles we can turn T

into two meridional annuli. Continuing in this way to eliminate in pairs cir-

cles of Q∩T we turn T into a collection of meridional annuli disjoint from

the original torus T . Equivalently, we see that the torus T was formed by

tubing together meridional annuli. Hence, there is an essential meridional
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annulus for Lβ contained in B (since (B′,rβ ) is a rational tangle). This,

however, contradicts the assumption that (B,τ) was prime. �

We now prove weak versions of two more theorems of Eudave-Muñoz

[EM4]. There are several reasons why these versions are weaker.

(1) We are not allowing τ to contain circles in addition to the two

arcs. Our methods could easily be extended to take care of this

situation, since the main theorems allow ∂N to have additional

torus components.

(2) It is not a priori clear that the conversion of a surface R to a surface

Q of the same topological type using Corollary 5.2 can always be

accomplished by an isotopy. A closer analysis of the methods of

that theorem might show that in all situations of interest (e.g. if

S3[β ] does not contain an essential disc) it can be.

(3) In several of the possible conclusions of the first theorem we leave

out certain very strong statements. More will be said about this

after the proof.

Finally, a knot or link is doubly composite if there is an essential Conway

sphere dividing the knot or link into two prime tangles.

THEOREM 8.9 (Eudave-Muñoz). Suppose that (B,τ) is prime and that Lβ

is doubly composite. Let Lα be obtained by a rational tangle replacement

of distance d from Lβ . Then one of the following holds

(1) There is an essential Conway sphere for Lβ contained in B.

(2) d ≤ 1
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(3) S3−Lα is irreducible and there is a minimal genus Seifert surface

for Lα which is disjoint from α (i.e. intersects ∂B in two arcs only).

(4) d = 3 and there is an essential Conway sphere for Lβ intersecting

∂B in exactly one circle.

(5) d = 2 and there is an essential Conway sphere for Lβ intersecting

∂B in two circles.

(6) d = 2 and there is an essential Conway sphere for Lβ intersecting

∂B in one circle.

PROOF. Since (B,τ) is prime, by Lemma 8.2, (N,γ∪a) is taut. Let R be

an essential Conway sphere for Lβ dividing Lβ into two prime tangles. Ap-

ply Corollary 5.2 to obtain an essential connected meridional planar surface

Q with no more boundary components than R. (The surface is guaranteed to

be meridional, since all arcs of a−b are meridional.) Since every 2–sphere

in S3 separates, Q has either 2 or 4 boundary components. If Q were an

annulus it would be disjoint from the Conway sphere and would contradict

the assumption that the Conway sphere divided Lβ into two prime tangles.

Hence, Q is a Conway sphere. Assume that the first two possibilities do not

occur, so that Q∩β 6= 0 and d ≥ 2. From the Tangle Equations, we see that

K(Q)≥ 2(d−1)(q+2q∗). Also, −2χ(Q) = 4. If −2χ(q) < K(Q) then by

the first sutured manifold theorem and Lemma 7.1 there is a Seifert surface

for Lα disjoint from α , and so (3) holds. Clearly this occurs if d ≥ 3 since

q+2q∗ ≥ 1. We may, therefore, assume that −2χ(Q)≥ K(Q). Hence:

2≥ (d−1)(q+2q∗).
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Suppose that d = 3. Then 1 ≥ q + 2q∗ ≥ 1, implying conclusion (4). If

d = 2, then 2≥ q+2q∗ ≥ 1, implying that if q∗ > 0 then q = 0 and q∗ = 1.

If q∗ = 1 then a slight isotopy of Q moves the intersection curve of Q parallel

to b∗ to two intersection curves both parallel to b. Thus (5) or (6) holds. �

REMARK. Now that the theorem has been proven it’s worth remarking on

the third much more significant reason why our version is weaker than

Eudave-Muñoz’s. Eudave-Muñoz is able to conclude that in cases (4) and

(5), S3[α] is irreducible and there is a minimal genus Seifert surface for Lα

which is always intersected in the same direction by α . In these cases, since

−2χ(Q) ≥ K(Q) the methods of this paper cannot give these conclusions.

However, these conclusions are very similar to the sorts of results given by

an application of the second sutured manifold theorem. This suggests that

perhaps the inequality−2χ(Q)≥K(Q) in the second sutured manifold the-

orem could be made strict. Also, since these conclusions are different than

what would be given by the first sutured manifold theorem, perhaps the in-

equality must always be strict in that theorem. That is, perhaps the second

sutured manifold theorem can be strengthed in a way that the first one can’t

be. Eudave-Muñoz first proves a slightly stronger version of the theorem

above (using different sutured manifold theorems) and then gives a sepa-

rate lengthy combinatorial argument to obtain the much stronger version of

conclusions (4) and (5).

We may also obtain a version of [EM2, Theorem 1.4]. This theorem gen-

eralizes a theorem of Scharlemann and Thompson [ST1]. It can be used to

give another proof that unknotting number one knots are prime.
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THEOREM 8.10 (Eudave-Muñoz). Suppose that (B,τ) is prime and Lβ is a

satellite knot or link. Then one of the following holds:

• There is an essential torus in the exterior of Lβ which is contained

in B.

• d ≤ 1.

• Lα has a minimal genus Seifert surface S for which S∩∂B consists

of two arcs (i.e. S is disjoint from α).

PROOF. Since (B,τ) is prime, by Lemma 8.2, (N,γ ∪ a) is taut. Let R

be an essential torus in S3[β ] and apply Corollary 5.2 to obtain a surface Q.

Since Lα and Lβ are related by a rational tangle replacement, Q is either an

essential meridional annulus or an essential torus. Q cannot be an essential

meridional annulus disjoint from β since (B,τ) is prime. If it is a torus

disjoint from β then it is contained in B, the first conclusion. Thus, we may

assume that q̃ > 0. If 0 = −2χ(Q) < K(Q), by the first sutured manifold

theorem, the third possible conclusion holds. Suppose, therefore, that 0 ≥

K(Q). Thus,

0 = K(Q)≥ 2(d−1)(q+2q∗)≥ 0

and q̃ > 0, we conclude that d = 1. This is the second possible conclusion.

�

131



CHAPTER 9

Intersections of ∅–taut Surfaces

The previous applications have shown that in many situations the first su-

tured manifold theorem is more useful than the second sutured manifold

theorem. There are, however, two situations when the second is more use-

ful. The first situation is when there is in N[a] an essential separating sphere

intersected twice by α . The second is when we wish to study a homology

class in H2(N[a],∂N[a]) which is not represented by a surface disjoint from

α . The propositions of this section consist of observations which can dra-

matically simplify the combinatorics of such a situation. Let N be a com-

pact, orientable 3–manifold with F ⊂ ∂M a genus 2 boundary component.

Let a,b⊂ F be essential curves which cannot be isotoped to be disjoint and

suppose that (N[a],γ) is α–taut, as in Chapter 4.

9.1. Intersection Graphs

PROPOSITION 9.1. Let (N[a],γ) and b be as above and suppose that z ∈

H2(N[a],∂N[a]) is a non-trivial homology class. Suppose that N[a] does

not contain an essential disc disjoint from α . Then z is represented by an

embedded conditioned α–taut surface P. Furthermore, for any such P , ei-

ther P is disjoint from α or P = P∩N contains no b–boundary compressing

discs or b–torsion 2g–gons.
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PROOF. Let P be a conditioned α–taut surface. (Such a surface is guar-

anteed to exist by Theorem 2.1.) Suppose that P is not disjoint from α .

Recall from the definition of “α–taut” that α intersects P always with the

same sign. Suppose that D is a b–torsion 2g–gon for P. If g = 1, D is a

b–boundary compressing disc for P. Let εi be the arcs ∂D∩F . Let R be the

rectangle containing the εi from the definition of b–torsion 2g–gon. Sup-

pose that the ends of R are on components of ∂P−∂P. The endpoints of the

εi have signs arising from the intersection of ∂D with ∂P. Since α always

intersects P with the same sign an arc εi has the same sign of intersection at

both its head and tail. Since the arcs are all parallel, all heads and tails of all

the εi have the same sign of intersection. However, an arc of ∂D∩P must

have opposite signs of intersection, arising as it does from the intersection

of two surfaces. This implies that the head of some εi has a sign different

from the tail of some εi, a contradiction. Hence, at least one end of R must

lie on a component of ∂P.

If one end of R is on ∂P−∂P denote that component by a1 and call the disc

which it bounds in P, α1. If both ends of R are on ∂P, let α1 = ∅. Attach R

to P−α1 creating a surface P̃. The disc D is contained in N and, therefore,

had interior disjoint from α . Compress P̃ using D and continue to call the

result P̃.

An easy calculation shows that if α1 6= ∅, then χ(P̃) = χ(P) but |α ∩ P̃|=

|α ∩P|−1. Similarly, if α1 = ∅, then −χ(P̃) =−χ(P)−1 and |α ∩ P̃| =

|α ∩P|. If χα(P) 6= |α ∩P|−χ(P) then a component of P is a disc disjoint

from α or a sphere intersected by α once. Either of these contradict our

hypotheses on N[a]. Hence, χα(P) = |α ∩P|−χ(P).
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Similarly, χα(P̃) = |α ∩ P̃| − χ(P̃). Hence, χα(P̃) = χα(P)− 1. Since α

always intersects P̃ with the same sign, P is not α–taut, a contradiction.

Hence, there are no b–torsion 2g–gons for P. �

REMARK. As Scharlemann notes in [S5], when a and b are non-separating

it can be difficult to use combinatorial methods to analyze the intersection

of surfaces in N[a] and N[b]. The primary reason for this is the need to

work with a∗ and b∗ boundary components on the surfaces. The previous

proposition shows that when the surfaces in question are α–taut and β–taut

and not disjoint from α and β , respectively, there is no need to consider a∗

and b∗ curves.

The remainder of this section develops notation for studying the intersection

graphs of such surfaces. Let P⊂N[a] be an α–taut surface and let Q⊂N[b]

be a β–taut surface. Suppose that P and Q are not disjoint from α and β

respectively. By Proposition 9.1 there is no b–torsion 2g–gon for P = P∩N

and no a–torson 2g–gon for Q = Q∩N.

In section 3.2, we defined intersection graphs between Q and a disc D.

We now define, in a similar fashion, intersection graphs between P and

Q. Orient P (respectively, Q) so that all boundary components of ∂P−∂P

(∂Q−∂Q, respectively) are parallel on η(α) (η(β ), respectively). The in-

tersection of P and Q forms graphs Λα and Λβ on P and Q. A component

of ∂P− ∂P or ∂Q− ∂Q is called an interior boundary component. The

vertex of Λα or Λβ to which it corresponds is called an interior vertex.

Label the components of ∂Q ∩ η(a) as 1 . . .µQ and the components of

∂P∩η(b) as 1 . . .µP. The labels should be in order around η(a) and η(b).

134



An endpoint of an edge on an interior vertex of Λα corresponds to an arc

of ∂Q∩ ∂η(α). Give the endpoint of the edge the label associated to that

arc. Similarly, label all endpoints of edges on interior vertics of Λβ . A

Scharlemann cycle is a type of cycle which bounds a disc in P (Q, respec-

tively). The interior of the disc must be disjoint from Λα (Λβ ) and all of the

vertices of the cycle must be interior vertices. Furthermore, the cycle can

be oriented so that the tail end of each edge has the same label. This is the

same notion of Scharlemann cycle as in Section 3.3.2, but adapted to the,

possibly non-planar, surfaces P and Q.

LEMMA 9.2. There is no Scharlemann cycle in Λα or Λβ .

PROOF. Were there a trivial loop at an interior vertex or a Scharlemann

cycle in Λα or Λβ , the interior would be an a or b–torsion 2g–gon, contra-

dicting Proposition 9.1. �

The next lemma may be useful at some point in the future. It shows that if

P is a disc, the presence of loops is strongly restricted:

LEMMA 9.3. If P is a disc, then every loop in Λα is based at ∂P.

PROOF. Suppose that P is a disc and that there is a loop based at an inte-

rior vertex of Λα . A component X of the complement of the loop in P does

not contain ∂P. The loop is an x–cycle and Lemma 3.10 then guarantees

the existence of a Scharlemann cycle in X , contrary to Lemma 9.2. �
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9.2. When the exterior of W is anannular.

We conclude this section with an application to refilling meridians of a

genus 2 handlebody whose exterior is irreducible, boundary-irreducible,

and anannular. It is based on the ideas in [SW]. Suppose that M is the

exterior of a link in S3. Suppose that W ⊂ M is a genus 2 handlebody em-

bedded in M. Let N = M−W̊ .

THEOREM 9.4. Suppose that N is irreducible, boundary-irreducible and

anannular. Suppose that α and β are non-separating meridians of W such

that ∆ > 0. Suppose that neither M[α] nor M[β ] contain an essential disc

or sphere. Suppose also that in H2(M[α],∂M) there is a homology class

za which cannot be represented by a surface disjoint from α and that in

H2(M[β ],∂M) there is a homology class zb which cannot be represented

by a surface disjoint from β . Then there is a ∅–taut surface P ⊂ M[α]

representing za intersecting α p times and an ∅–taut surface Q ⊂ M[β ]

representing zb intersecting β q times such that one of the following occurs:

(1) −2χ(P)≥ p(Mb(a)−2)

(2) −2χ(Q)≥ q(Ma(b)−2)

(3) All of the following occur:

• Q is β–taut

• P is α–taut.

• pq∆≤ 18(p−χ(P))(q−χ(Q))

• ∆ < 9
2Ma(b)Mb(a)

136



PROOF. Notice that the right hand side of the inequalities in (1) and (2)

are K(P) and K(Q) respectively. Choose a taut representative in M[β ] for

zb and apply Theorem 5.1, obtaining Q. Since negative euler characteristic

is not increased and M[β ] does not contain an essential disc or sphere, Q is

also taut. If (1) holds, we are done, so assume that−2χ(Q) < K(Q). Recall

that Q is not disjoint from α . Apply the second sutured manifold theorem

to obtain a surface P⊂M[α] representing za. (The surface P is the surface S

in the statement of that theorem.) P is both α–taut and ∅–taut. If (2) holds,

we are done, so assume −2χ(P) < K(P). Applying the second sutured

manifold theorem again, with α and β reversed, we find a β–taut and ∅–

taut surface in M[β ] representing zb. We may call this surface Q, forgetting

the previous one. Consider the the graphs formed by the intersection of P

and Q; let Λα be the graph on P and Λβ the graph on Q. Lemma 9.2 assures

us that there is no trivial loop based at an interior vertex of either graph.

LEMMA 9.5.

pq∆≤ 18(p−χ(P))(q−χ(Q))

PROOF OF LEMMA 9.5. By [SW, Lemma 2.1], if two edges of P∩Q

are parallel in both Λα and Λβ , there is an essential annulus in N, contrary

to our assumption that N is anannular. The proof proceeds as in [SW].

Each interior boundary component of P intersects ∂Q, q∆ times. Thus

|∂Q∩∂P| ≥ pq∆. Therefore, Λα and Λβ each have at least pq∆/2 edges.

Claim: Λα has at least pq∆

6(p−χ(P)) mutually parallel edges.

This claim is similar to work in [GLi]. Let Λ′ be the graph obtained by

combining each set of parallel edges of Λα into a single edge. Since Λ′ has
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no loops at interior vertices and no parallel edges, by applying the formula

for the euler characteristic of a closed surface we obtain:

χ(P)+ |∂P| = V −E +F

≤ p+ |∂P|−E +(2/3)E

= p+ |∂P|− (1/3)E

V , E, and F represent the number of vertices, edges, and faces of Λ′. Thus,

E ≤ 3(p−χ(P)). Let n be the largest number of mutually parallel edges in

Λα . Then, since there are at least pq∆/2 edges in Λα , we have

pq∆/(2n)≤ E ≤ 3(p−χ(P)).

The claim follows.

A similar argument shows that if a graph in Q has more than 3(q− χ(Q))

edges than two of them are parallel. Hence, since there are no mutually

parallel edges in Λα and Λβ we must have:

pq∆

6(p−χ(P))
≤ 3(q−χ(Q))

whence the lemma and the first inequality of Conclusion 3 follow. �

We now proceed with the proof of the theorem. Since we are assuming that

neither (1) nor (2) hold, we have

−χ(P) < K(P)/2 = p(Mb(a)−2)/2

−χ(Q) < K(Q)/2 = q(Ma(b)−2)/2
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Plugging into the inequality from the lemma, we obtain

pq∆ < 18pq
(

1+
Mb(a)−2

2

)(
1+

Ma(b)−2
2

)
.

Since neither p nor q is zero, we divide and simplify to obtain:

∆ < 9Mb(a)Ma(b)/2.

�

REMARK. The point of the previous theorem is that, under the specified

conditions, either we obtain a bound on the euler characteristic of surfaces

representing the homology classes za or zb or we obtain a restriction on the

number of non-meridional arcs of a− b and b− a. For example, suppose

that discs α and β are chosen so that za is represented by a once-punctured

torus, and so that Mb(a) = Ma(b) = 6. Then −2χ(P) = 2 < 4p = K(P).

Then if zb is also represented by a once punctured torus, we have ∆ < 162.

Since ∆ is even, this implies ∆≤ 160.
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