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Abstract

Massive changes in terrestrial paleoecology occurred dur-
ing the Devonian. This period saw the evolution of both 
seed plants (e.g., Elkinsia and Moresnetia), fully lami-
nate∗ leaves and wood. Wood evolved independently in 
different plant groups during the Middle Devonian (arbo-
rescent lycopsids, cladoxylopsids, and progymnosperms) 
resulting in the evolution of the tree habit at this time 
(Givetian, Gilboa forest, USA) and of various growth and 
architectural configurations. By the end of the Devonian, 
30-m-tall trees were distributed worldwide. Prior to the 
appearance of a tree canopy habit, other early plant groups 
(trimerophytes) that colonized the planet’s landscapes 
were of smaller stature attaining heights of a few meters 
with a dense, three-dimensional array of thin lateral 
branches functioning as “leaves”. Laminate leaves, as we 
now know them today, appeared, independently, at differ-
ent times in the Devonian. In the Lower Devonian, trees 
were not present and plants were shrubby (e.g., 
Aglaophyton major), preserved in a fossilized community 
at the Rhynie chert locality in Scotland and other places. 
Many of these stem-group plants (i.e., preceding the dif-
ferentiation of most modern lineages) were leafless and 
rootless, anchored to the substrate by rhizoids. The earli-
est land plant macrofossil remains date back to the 

Silurian, with the Early Silurian Cooksonia barrandei 
from central Europe representing the earliest vascular 
plant known, to date. This plant had minute bifurcating 
aerial axes terminating in expanded sporangia. Dispersed 
microfossils (spores and phytodebris) in continental and 
coastal marine sediments provide the earliest evidence for 
land plants, which are first reported from the Early 
Ordovician.

15.1  Introduction

Patricia G. Gensel and Milan Libertin

We are now approaching the end of our journey to vegetated 
landscapes that certainly are unfamiliar even to paleontolo-
gists. As we delve deeper and deeper in time, we will visit a 
succession of some of the earliest plant life to cover Earth. 
Until this point, our time has been spent in various woodland 
settings and, without a doubt, there were wooded topogra-
phies where we begin our “hike” [U1501]. But, unlike the 
past 390  million years, trees will not remain a part of the 
countryside as we step back further and further in time. Trees 
and tree-like architectures will disappear from the fossil 
record. We will see a significant decrease in the heights of the 
plants anchored to more primitive soils, and we will pass 
through the oldest shrub- or meadow-like areas where the 
tallest forms may have been only head high. As we continue 
further, plants become diminutive, barely brushing against 
our ankles but appearing, seemingly, like a carpet covering all 
available moist surfaces. And, finally, we reach a point where 
we no longer encounter evidence of the very earliest plants in 
sediments of a continental nature. Rather, minute and scat-
tered remains attributed to land plants, including their micro-
scopic parts, are now found preserved in ocean basins along 
with members of the Paleozoic fauna (see Chap. 14). Before 
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we enter the unknown, let us begin with an overview of what 
is familiar and what is unfamiliar.

Traveling up or down any major Late Devonian river by 
“dugout” canoe, we first encounter the riparian forests lining 
the riverside in which the major tree, Archaeopteris, is known 
(Fig.  15.1). The name of this woody tree is a misnomer 
because it implies that the plant is an “early (archaeo) fern 
(pteris)”. Rather, this canopy-forming tree possessed a weird 
combination, or mosaic, of gymnosperm and fern features, 
and is placed in a plant group distinctive from the others 
we’ve encountered thus far (see Sect. 15.1.1). When 
Archaeopteris colonized the landscape, the land’s surface 
was covered by a well-established tiered community. Gallery 
forests grew adjacent to swampy areas populated by sprawl-
ing shrubs (Rhacophyton) and smaller groundcover plants, 
such as Protobarinophyton. Other low-lying environments 
were colonized by the earliest tree lycopsids, including 
Lepidosigillaria or Cyclostigma, similar to those that domi-
nated wetland settings in the Carboniferous (see Chap. 13). 
By the latest Devonian, plants had evolved reproductive 
strategies to conquer seasonally dry regions outside of the 
wetlands. Here, several types of early seed plants, such as 
Elkinsia, were abundant. These forests that might seem 
familiar, in a general sense, become less familiar as we 
approach the Middle Devonian.

Middle Devonian forests can be separated into two 
types [U1502]. The forest structure that retains a familiar 
feeling is dominated by tree lycopsids such as 

Protolepidodendropsis, which were persistent into the lat-
est Paleozoic. The second forest is stranger. These puz-
zling forests were comprised of medium to very tall trees 
that bore no leaves. Each tree had a sort of crown made up 
of branches that branched and branched and branched and 
terminated in a branch. These plants, the cladoxylopsids 
Calamophyton or Eospermatopteris, first appear in the 
Middle Devonian and are successful cohabitants until the 
early Late Devonian. Lianescent (vines) and herbaceous 
plants are known to occur in some of these early forests, as 
well as ancestors to the lycopsids, the zosterophylls (see 
Box 15.1), comparable to Early Devonian taxa. Plants get 
smaller the further we regress in time, with short-stature 
riparian and coastal marsh-like vegetation expanding in 
the late Early Devonian. These replaced open areas cov-
ered by a “green fuzz” of the earliest vegetation in moist 
settings adjacent to river or ocean margins (Silurian to ear-
liest Devonian) [U1503]. Descendants of the early colo-
nizers are still found in the mosses and liverworts. Yet, we 
have no evidence that any other earliest plant group 
remained relatively static and survived until today.

Fossils representing the earliest evidence of plants, con-
sisting of small to “large” macrofossils (large being a relative 
term of only several centimeters in length) and dispersed 
spores, take us into an even stranger world. While most of 
these fossils are found in Silurian and Devonian rocks, the 
earliest evidence of plants is known from the Ordovician 
(Katian or possibly earlier; Wellman 2010). Marine rocks 
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Fig. 15.1 Archaeopteris has been described as the earliest known “modern tree”, having a woody trunk, growing to heights in excess of 30 m and 
bearing near-horizontal, helically arranged deciduous branches. (a) Artist reconstruction. Despite this, Archaeopteris has many features far 
removed from those of trees today. This progymnosperm had a pteridophytic method of reproduction and bore some of the earliest planate leaves, 
though they are remarkably fern-like in appearance. (b) Lateral branch with alternately arranged ultimate branches bearing spirally arranged, 
planar leaves. (a) © The Field Museum, GEO86500_125d and Karen Carr, Artist. With permission. (b) Image courtesy of Walter Cressler AU5
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preserve small sporangia with spore tetrads, an evolutionary 
feature ascribed to all higher plants (Steemans et al. 2009), 
as well as a myriad of dispersed spore assemblages contain-
ing similar types of spores from various parts of the globe. 
Before we machete our way through these unknown terranes, 
we need to gain an appreciation for the plant groups that 
occupied Silurian-Devonian landscapes.

15.1.1  Relationships

When fossil plants first were recognized as more than just a 
carbon smudge on a rock surface, all Early Devonian plants 
were collectively referred to as the “psilophyte flora” due to 
a similarity in growth architecture to a living plant (Arber 
1921; Axelrod 1959). Living Psilotum, the whisk fern, grows 
in subtropical and tropical parts of the Americas, Africa, 
Asia, and Australasia. This plant does not have the appear-
ance of any fern you may know. The plant body dichoto-
mizes (evenly forks) as it grows from its flat-lying stem 
(rhizome), but it lacks both roots and leaves. The reproduc-
tive sporangia develop in the axils of a small “spine” called 
an enation, and this suite of characters was thought to be 
primitive and similar to all early land plants. Hence, the idea 
of a group of “psilophytes” first conquering land. We now 
recognize a number of unique plant groups during the 
Devonian-Silurian thanks, in large part, to the paleobotanist 
Harlan Banks. Today, Psilotum is no more recognized as a 
close relative of early land plants; it is rather considered a 
basal eusporangiate fern (see Chap. 11). With the addition of 
newly discovered plant fossils in the past 50 years and the 
advent of phylogenetic techniques since his classification, 
we now understand that early plant life was a bit more com-
plex than initially proposed.

Banks (1968) presented a major reclassification of these 
plants in which he recognized at least four definable lin-
eages, plus others of less well understood affinity [U1504]. 
His four categories of earliest vascular plants are the 
Rhyniophytina [U1505], Zosterophyllophytina [U1506], 
Trimerophytina [U1507], and Lycophytina [U1508]. At the 
same time, he also provided a more rigorous framework in 
which to consider the characteristics and affinities of these 
earliest land plants. With the discovery by Beck (1962) that 
Archaeopteris and other plants possessed a combination of 
woody stems and fern-like leaves with fern-like reproduc-
tion, Banks also recognized two more advanced groups, the 
aneurophytalean and archaeopteridalean progymnosperms 
[U1509]. Kenrick and Crane (1997) undertook a cladistic 
analysis focusing on Silurian-Early Devonian plants, but 
with inclusion of some of the younger groups, to better 
understand evolutionary relationships (Box 15.1). This 
resulted in several, sometimes major, changes in their clas-
sification (Fig. 15.2) [U1510]. For greater ease of description 

in our site visits to the Siluro-Devonian, however, the terms 
rhyniophytoid, rhyniophyte, zosterophyll, trimerophyte, and 
progymnosperm, accompanied by diagnostic characters, will 
be used in the postcard descriptions to follow.

Box 15.1: Relationships of Siluro-Devonian Plants: Banks 
(1968) to Kenrick and Crane (1997) to Now

Banks (1968) subdivided the Early Devonian “psilo-
phytes” into several distinct lineages, which were rec-
ognized as subdivisions. These were the Rhyniophytina, 
Zosterophyllophytina, and Trimerophytina, and he 
clarified lineages such as Lycophytina, the cladoxylop-
sids, and the progymnosperms. The cladistic study of 
Kenrick and Crane (KC; 1997) reorganized and clari-
fied many of these groups and updated ideas about 
relationships of some Middle-Late Devonian plants.

In the KC analysis, the Rhyniophytina of Banks is 
dismembered such that some taxa represent stem lin-
eages possibly more related to lycopsids, whereas 
other taxa are now included in a redefined Rhyniopsida 
(e.g., Rhynia, Stockmansella). The Zosterophyllophytina 
are considered polyphyletic, with several stem∗ lin-
eages and two more well-defined zosterophyllaceous 
clades, called Zosterophyllopsida by KC. They consist 
of basal (e.g., most Zosterophyllum spp., 
Distichophytum) and core (e.g., Z. divaricatum, 
Oricilla, Barinophyton, Sawdonia, Serrulacaulis, 
Crenaticaulis) groups. Some (or all?) of these plants 
are a possible sister group∗ or basal to Lycopsida. 
Lycophytina, according to KC, consists of plants rang-
ing from stem taxa, including Cooksonia and Renalia, 
plus the Zosterophyllopsida and Lycopsida. Their 
Lycopsida include the “pre-lycophytes” (e.g., 
Asteroxylon, Drepanophycus) where sporangia origi-
nate from the stems, to true lycophytes including the 
Middle-Late Devonian Protolepidodendrales and 
(now) small tree lycophytes. It also is clear from sev-
eral lines of evidence, but not shown in the cladogram 
(Fig.  15.2), that lycophytes diverged in the Late 
Silurian and have been a separate lineage (consisting 
of several clades) since then (Gensel and Berry 2001). 
The Trimerophytina (e.g., Psilophyton, Pertica, 
Trimerophyton) are split into several lineages. In fact, 
the trimerophyte genus Psilophyton alone now is 
known to encompass several different taxa, each repre-
senting a distinct evolutionary line of plants. At least 
12 species of Psilophyton, of varying degrees of pres-
ervation, are described, and these vary in size, branch-
ing pattern, and presence/absence of emergences. 
Trimerophytina are considered to be basal members of 

15 Back to the Beginnings: The Silurian-Devonian as a Time of Major Innovation in Plants and Their Communities

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

https://doi.org/10.1007/978-3-030-35058-1_11


Fig. 15.2 Phylogenetic 
relationships of Devonian 
plant groups modified from 
Kenrick and Crane (1997, The 
Origin and early 
Diversification of land plants, 
Smithsonian Press

the euphyllophyte clade, or Euphyllophytina. This lin-
eage includes ferns and their relatives and lignophytes 
(including seed plants). The progymnosperms, consist-
ing of leafless, shrubby Aneurophytales and arbores-
cent, leafy Archaeopteriales, form two clades basal to 
seed plants. They differ from the latter in being free-
sporing, while sharing the presence of secondary 
xylem and phloem with seed plants. These, plus seed 
plants, are the lignophyte clade.

Some plants are difficult to place in any established 
lineage and are considered to be “of uncertain affinity” 
or some reference is made to possible affinities. For 
example, certain tiny plants with branched stems bear-
ing sporangia, but in which vascular tissue is unknown, 
are termed rhyniophytoids (Gensel 2008). More 
recently, some cryptospore-bearing plants are called 
cryptophytes (Edwards et  al. 2014), and, finally, 
another example is thenematophytes.

P. G. Gensel et al.



15.2  The Oldest Woodlands

Milan Libertin and Patricia G. Gensel

Wood evolved independently in several different plant 
groups during the Devonian (arborescent lycopsids, cladoxy-
lopsids, some trimerophytes, and progymnosperms) result-
ing in the evolution of the tree habit first seen in the Middle 
Devonian. A virtual walk in tropical wet terrains stretching 
across the latest Devonian coastal plains would allow us to 
see groves and stands of Archaeopteris, one of the first 
woody trees to attain an impressive 30-m height (Fig. 15.1). 
These forests were distributed worldwide. From first glance, 
these plants would appear to be the analog of many Neogene 
landscapes [U1511]. These forests had a towering branched 
canopy on which individual leaves grew from twigs, provid-
ing the understory with a cool, moist shade. Yet, although the 
wood of any fallen tree might not appear exactly the same as 
modern conifer woods, what was even more different was 
the way in which they reproduced. Archaeopteris was free- 
sporing, like ferns, and upon closer inspection, even the 
leaves looked “fern-like” in a number of their features 
[U1512].

15.2.1  Archaeopteris Coastal Woodlands/
Forests

Patricia G. Gensel

Coastal zones and floodplains that spread across Late 
Devonian continents hosted a vegetation that was ecologi-
cally partitioned into different paleoenvironments when 
compared to similar settings a bit deeper in time. Sediments 
in the area around Elkins, West Virginia, USA, and adjacent 
areas preserve Mid-Late Famennian (c. 368–359 Ma) plants 
[U1509]. These plants grew on soils developed on a south-
westward developing delta and floodplain complex, now 
called the Hampshire Formation. In addition to normal flu-
vial sandstone and mudstone deposits, these rocks contain at 
least two, about 1-m-thick coals (see Chap. 12). Detailed 
mapping of the coal and associated rocks and a paleoecologi-
cal census of the plant remains show that the setting repre-
sents a low-lying deltaic shoreline, which was subjected to 
coastal storm events (Scheckler 1986). Plants preserved near 
the base of the lower coal include the enigmatic Barinophyton 
sibiricum, a core-zosterophyll. Overlying the peat swamp are 
planar laminated beds in which abundant Sphenopteris foli-
age, ovules, and other seed plant remains are often preserved 
as “leaf mats,” which may have accumulated under tidal 
influence. These laminated beds terminate up section in a 
rooted zone indicating the development of an immature 

paleosol, most likely populated by Rhacophyton because 
considerable branching biomass of the plant occurs atop the 
rooting zone. These foliar axes are indicative of a scrambling 
growth habit for, what some authors consider to be, a “pre- 
fern” or an aneurophyte progymnosperm. There is some evi-
dence to support the idea that tips of “fronds”/branch systems 
could root to propagate new plants such that vegetative pro-
duction dominated the plant life cycle. If this is true, such a 
strategy could account for the high proportion of biomass in 
these coals.

The peat swamp, which now is a Late Devonian coal, was 
dominated by Rhacophyton biomass (Fig.  15.3). Although 
most of the biomass degraded to amorphous organic matter, 
pyrite concretions in the coal preserve their anatomy. The 
same proportion of Rhacophyton biomass is found in the sec-
ond, or upper, coal. Sandwiched in between these peat 
swamps are deltaic sand and mud deposits in which abun-
dant Rhacophyton [U1513] and Archaeopteris foliage and 
some stems, along with a tree lycopod similar to 
Protolepidodendropsis pulchra, are preserved. Other plant 
remains in deltaic deposits include cupules and seeds. The 
occurrence of this aneurophyte or “pre-fern” in wetland 
(peat) and better-drained soils supports the idea that 
Rhacophyton was broadly tolerant of soil differences 
(Scheckler 1986).

Non-peat-accumulating swamps, in general, are muddy 
because of a high water table in these immature soils of low 
relief. If we were to slog our way through these floodplains—
we would not actually easily walk—we would want to keep 
our feet on top of the plant cover rather than stepping in the 
mud between them. Late Devonian swampy areas were dom-
inated by the shrubby, scrambling Rhacophyton, making it 
easier for our trek, with possible rare occurrences of 
Barinophyton, the scrambling horsetail Sphenophyllum, and 
the plants that bore Eviostachya reproductive cones (stro-
bili). We would encounter early seed plants, such as Elkinsia 
(Fig. 15.4) on slightly higher ground and growing on better- 
drained soils of the stream margins. Lining the rivers, grow-
ing a kilometer or so into the floodplain, or on slightly higher 
topographies, back of the coastal area, were stands of 
Archaeopteris. Tree lycopsids, the systematic affinities of 
which are not yet known, grew somewhere between the wet-
test peat and muddy Rhacophyton swamps and the gallery 
progymnosperm forests. These forms may be precursors to 
the giant scale trees of the Carboniferous (see Chaps. 12 and 
13), but the most unique aspect of these landscapes is the 
appearance of the earliest seed-bearing plants, the gymno-
sperms. Elkinsia is the early seed plant that is most exten-
sively known in the plant fossil record, to date (Rothwell 
et al. 1989; Serbet and Rothwell 1992). It has been recon-
structed (Box 15.2) with a main stem with a rather unique 
anatomy [U1514]. In Late Devonian, seed-bearing plants 
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diversified [U1515] and spread across the landscape, begin-
ning to alter the planet’s vegetation.

15.2.2  Red Hill, Pennsylvania

Patricia G. Gensel

As the name implies, the Red Hill locality exposed a Late 
Devonian succession of red, primarily, mudrock (Fig. 15.5). 

Fig. 15.3 Rhacophyton, a fern-like plant. (a) Charcoalified remains of Rhacophyton, with a pinnate branching pattern (image courtesy of Walter 
Cressler). (b) Anatomy of central axis showing secondary, woody tissues (from Dittrich et al. (1983) Anatomy of Rhacophyton ceratangium from 
the Upper Devonian (Famennian) of West Virginia. Rev. Palaeobot. Palynol. 40:127–147 with permission from Elsevier); (c) Reconstruction of 
vegetative and fertile parts of the plant (from Andrews and Phillips (1968), Rhacophyton from the Upper Devonian of West Virginia, Bot. J. Linn. 
Soc. 61 (284): 37–64, with permission from Oxford U. Press)

Box 15.2: The Early Seed Plant Elkinsia
The plant Elkinsia has a three-lobed vascular conduct-
ing strand usually consisting of only primary xylem. 
This is surrounded by a “sparganum” cortex, a feature 
seen in the lyginopterid seed ferns (see McLoughlin 
and Bamford in Chap. 12), characterized by a distinc-
tive outer cortex of reinforced cells forming a pattern 
like Roman numerals on a clock face in cross section. 
When leaves emerged from the stem, a lobed leaf trace 
divided into two C-shaped bundles in the leaf and then 
divided up to four times more. Vegetative leaves are 
Sphenopteris-like in their leaf architecture. Cupulate 
organs (seeds) and synangia (pre-pollen organs) termi-
nated fertile axes that divided in a cross-shaped organi-
zation and lacked leaves (Serbet and Rothwell 1992). 
Scheckler (1986) suggested that Elkinsia was a pio-
neering plant and Prestianni and Gerrienne (2010) 
concur. We could walk through similar Late Devonian 
landscapes in other parts of the world and witness sim-
ilar vegetation and community organization. These 
include: Red Hill in Pennsylvania, USA; Taff’s Well 

and Avon Gorge, Great Britain; Kerry Head, Ireland; 
the Condroz sandstones, Belgium; and Oese, Germany 
(Prestianni and Gerrienne 2010). Many of these sites 
contain Late Devonian plants that are preserved away 
from their site of growth, often in marginal marine or 
lagoonal sediments. Here, plants may be associated 
with other biotic components of the Late Devonian 
biosphere. We’ll stop first at Red Hill near North Bend, 
less than a kilometer north of highway 120  in 
Gleasonton, Pennsylvania, USA.

P. G. Gensel et al.
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What is unique about this Famennian (372–359  Ma) 
sequence is the array of arthropods, fish, and early tetrapods 
(vertebrates) with anatomical features that indicate these fish 
and fish-like amphibians could survive out of the water. 
Fossil plants, the base of this food chain, are preserved in one 
thin interval but served as the habitat for terrestrial inverte-
brates including trigonotarbid arachnids and myriapods, 
both of which have been recovered from the site (Daeschler 
and Cressler III 2011). The succession consists of sandstone 
deposited in river channels, siltstone that filled abandoned 
freshwater channels and lakes, and floodplain paleosols adja-
cent to these ancient bodies of water.

The Red Hill paleoenvironment was an alluvial floodplain 
with meandering rivers often overflowing their banks and 
burying the vegetation associated with Vertisols (soils with 
shrink-swell clays) and Calcisols (calcium-rich soils). 
Meandering river channels produced an ever-changing envi-
ronment, with abandoned channels becoming quiet-water 
lakes in which a teeming vertebrate community existed. 
Remains of both plants and terrestrial arthropods are pre-

served in oxbow lake or pond deposits [U1516]. Plants 
include the progymnosperm Archaeopteris, the pre-fern 
Rhacophyton, barinophytes, two kinds of tree size lycopsids, 
and seed plants (mostly represented by their cupulate ovules, 
and some foliage that may belong to this lineage; Cressler 
2006; Cressler et al. 2010). Similar to other Late Devonian 
landscapes, Archaeopteris canopies were underlain by a 
Rhacophyton understory with various scrambling plants 
occupying the groundcover, most likely in light breaks. In 
more open sites, lycopsids grew adjacent to oxbow lakes and 
ponds, and seed plants colonized disturbed areas or those in 
which soil drainage was better. Channel deposits contain the 
vertebrate assemblage.

Fish and some of the earliest tetrapod fossils are pre-
served in freshwater lenses of silty mudrock in shallow 
channel margin, floodplain pond, and overbank pond depos-
its. Here, a stem tetrapod found outside of coeval rocks in 
Greenland was identified based on two shoulder bones (i.e., 
cleithrum∗ and scapulacoracoid). The shoulder-bone fea-
tures in Hynerpeton are advanced, indicating that the animal 

Fig. 15.4 The earliest known 
seed-bearing Elkinsia. (a) A 
reconstruction of the 
branching architecture on 
which both leaf-bearing and 
ovule-bearing axes occurred. 
(b) Laminate pinnules 
terminating axes. (c) Terminal 
cupules (ovule-bearing). (d) 
Thin section of ovule showing 
cupule (c) micropyle, and 
megaspore membrane (m). 
(modified from Serbet and 
Rothwell 1992)
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was capable of both supporting its body and powering itself 
on land [U1517] (Daeschler et  al. 1994). Hynerpeton and 
the more complete, three-dimensionally preserved Tiktaalik 
from Ellesmere Island, Arctic Canada (Daeschler et  al. 
2006), record the transition between fish with fins and tetra-
pods with limbs and digits. In addition to the shoulder gir-
dle, an unusual, isolated humerus∗ and jaw fragments of 
two different tetrapods have been collected. A single bone 
from the snout of a tetrapod resembles that of an Early 
Carboniferous tetrapod, Pederpes, from Scotland (Daeschler 
et  al. 2009). These are our deep time ancestors. Without 
their transition from a fully aquatic to a terrestrial life strat-
egy, all higher vertebrate groups we’ve seen would not have 
existed. But, because we did evolve from these stem tetra-
pod groups, it’s now only a short 4-h drive north from Red 
Hill to the town of Gilboa, New York, where our next post-
card is located.

15.2.3  Gilboa Quarry, New York, USA

Patricia G. Gensel

The localities we now visit in eastern New York State dem-
onstrate that diverse forests, where large trees of different 
affinities grew in abundance, occurred very early in time. 
Here, those trees were not only leafless but also evolved a 
very different type of rooting structure to fix themselves in a 
poorly developed soil. We will have to make our way through 
at least two plant lineages living in the understory, each of 
which grew in a slightly different mode. Undoubtedly, vari-
ous types of arthropods and spiders, as recognized from their 
fossilized exoskeletons (cuticles), were scuttling around in 
the undergrowth (e.g., Shear et al. 1987, 1989).

Late Middle Devonian fossil-tree stumps, preserved in 
life position and bearing radiating roots, were discovered in 
the 1870s at several horizons in the Riverside Quarry at 
Gilboa, New York [U1518]. These tree stumps were named 
Eospermatopteris by one of the first female paleontologists, 

Fig. 15.5 The Famennian age, char-bearing outcrop at Red Hill, Pennsylvania, USA. (photo PG Gensel)

P. G. Gensel et al.
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Winifred Goldring (1924; Fig. 15.6), and were widely cited 
as evidence of the Earth’s “oldest forest” (e.g., Goldring 
1927). These trees were not restricted to the quarried expo-
sure because Eospermatopteris stumps also were found in 
nearby outcrops. In the early 2000s, impressions and flat-
tened stem casts extending across a quarry floor not far from 
the Gilboa site, at South Mountain, showed a basal trunk 
comparable to Eospermatopteris and a crown region with 
attached, digitately divided, upward-extending branch sys-
tems (Fig. 15.6). Each branch division bore sterile and fertile 
appendages that allowed their identification with plants pre-
viously known from Belgium and Venezuela as the cladoxy-
lopsid Wattieza (Pseudosporochnales) (Stein et  al. 2007). 
Wattieza is a very strange plant [U1519]. It grew to a height 
of at least 8 m with a trunk bearing large branches in vertical 
ranks (Stein et al. 2007). The much-divided branches bore 
smaller divided, leafless terminal units that, in some cases, 
bore sporangia that shed spores. These trees belong to an 
extinct group, the pseudosporochnaleans, sometimes 
believed to be related to ferns—new data may revise that 
idea. It appears that the stems were fast-growing and 
“cheaply” constructed. The center of these trunks was hol-
low and encircled by many conducting (vascular) strands in 
the periphery (Stein et al. 2012). The trunks were surrounded 
by roots near the base, with a growth strategy similar to liv-
ing palms or tree ferns. The sedimentology indicates a series 
of burial events affected these forests which were frequently 
disturbed, followed by their reestablishment in new soil hori-
zons. Looking at the face of a rock exposure, if lucky enough, 

provides a view about the spacing of trees along a single 
plane. To understand the forest structure, though, you have to 
be able to see it from above.

Stein and others were able to access the original Riverside 
Quarry site for a limited time when the area was cleaned of 
backfill and the quarry floor exposed. That exposure revealed 
remnants of a forest at soil level. New Eospermatopteris 
casts were retrieved from the backfill, and the cleaned forest 
floor showed numerous root mounds with radiating axes and 
a central depression (representing the base of the plant) with 
downward growing roots. A large portion of the quarry was 
plan-mapped and displayed the spatial distribution of the 
Eospermatopteris/Wattieza plants (the two named fossil- 
genera can be referred to the same reconstruction of an 
ancient “whole plant”). These trees often grew in clusters 
and were of different diameters at the time of preservation, 
suggesting an uneven aged stand (Stein et al. 2012). Roots 
extend from above the bases outward across the paleosol as 
well as downward from the basal region. Another important 
discovery was that at least two other plant types were found 
on the forest floor. One is a woody rhizome with adventitious 
roots and aerial branch systems. The branching pattern in 
aerial axes, along with the anatomy preserved in the rhizome, 
is consistent with these plants being related to the aneuro-
phytalean progymnosperms, a group that is known from 
numerous other Middle Devonian localities. Like 
Archaeopteris, aneurophytes grew woody stems and repro-
duced by spores but were smaller in stature (as presently 
known) and presumed to have been leafless and shrubby 

Fig. 15.6 The Middle 
Devonian cladoxylalean fern, 
Eospermatopteris. (a) Stump 
excavated from Schoharie 
Reservoir, Gilboa, New York. 
(photo: R.A. Gastaldo) (b) 
Tree cast and reconstruction 
of cladoxylalean fern (from 
Stein et al. 2007, Giant 
cladoxylopsid trees resolve 
the enigma of Earth’s earliest 
forest stumps at Gilboa 
(Nature 446 (7138) with 
permission, Springer Nature)
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[U1516]. The rhizomes curve around the bases of 
Eospermatopteris (Wattieza) tree bases, and sometimes 
approach them as if, in life, they may have been vines. The 
anatomy and branching system of these scrambling vines are 
similar to the aneurophytalean Tetraxylopteris. A few of 
these are preserved up to 4 m in length, associated with distal 
branches of an upright tree lycopsid [U1520], indicating the 
heterogeneous nature of this forest.

The forests in Gilboa are interpreted to have grown in a 
coastal wetland setting, with frequent marine incursions that 
buried successive forests. Originally, the paleoenvironment 
had been interpreted as a wetland swamp, but the underlying 
paleosol is well-developed, as are those from other Devonian 
sites (Morris et al. 2015) and may indicate that these plants 
grew in better drained conditions. Stein et  al. (2012) indi-
cated that this forest type may not be too different from 
coeval Archaeopteris-dominated ones. It is, therefore, inter-
esting that an exposed quarry floor in nearby Cairo, 
New  York, provides evidence that both Eospermatopteris 
and Archaeopteris coexisted, the latter being more abundant 
(Fig.  15.7). Archaeopteris has a rooting system that is 
broadly spreading and branched and is considered to pene-

trate more deeply into the soil (Fig. 15.7). Hence, the rooting 
architecture of this plant is more modern-looking and, per-
haps, altered soil composition and weathering patterns in the 
latest Devonian (Algeo and Scheckler 1998, 2010; Algeo 
et al. 2001; Stein 2018). There is evidence that these soils 
also supported other groundcover.

Smaller plants, of various systematic affinities, probably 
grew under or around these trees. The apparently rhizoma-
tous lycopsid Leclercqia is abundant in the Gilboa region 
(Banks et al. 1972), and the zosterophylls Serrulacaulis and 
cf. Sawdonia sp. (Hueber and Banks 1979; Hueber and 
Grierson 1961) are preserved in nearby deposits of similar 
age. Several genera of aneurophytaleans also are known, 
including Relimmia and Tetraxylopteris. Most likely we only 
know of their more distal (terminal) branch systems, rather 
than the entire plant, itself. And, several authors think that 
some of these plants were shrubby besides their interpreted 
scrambling or nearly lianous growth strategies. The pseudo-
sporochnalean Calamophyton is represented in North 
America by its distal branch systems, but nearly whole plants 
were recently described from quarries in Germany [U1521] 
(Giesen and Berry 2013).

15.3  Middle Devonian Coastal Marshes

Robert A. Gastaldo

Only about 900 km geographically from the Gilboa forests 
of New York State, but nearly eight million years older in 
time, we head to Devonian rocks exposed in the conifer for-
ests of northern Maine, USA (Fig. 15.8a, d). Here, our post-
card is of an idyllic trout stream in Baxter State Park, where 
the air is scented by balsam fir resins, are the remnants of 
latest early (Emsian) or earliest middle (Eifelian) Devonian 
rocks [U1522]. The outcrops, exposed at the surface follow-
ing the last glacial episode that scoured this landscape some 
12,000 years ago, are not very impressive. All of these are of 
low relief, and many are covered in a carpet of recent mosses 
and club mosses, and we do not have to go back thousands of 
years in time to understand why the fossil plants preserved in 
the Trout Valley Formation became a turning point in our 
insight into early terrestrial communities. For that, we have 
to turn our attention to the second half of the twentieth 
century.

The United States Geological Survey (USGS) began a 
national mapping program following the end of the Second 
World War, targeting rural parts of the country that had, yet, 
to be detailed. Douglas Rankin, a USGS geologist, spent part 
of his early career with the Maine Geological Survey and 
began mapping northern Maine. Here, he discovered what 
looked to be compression-impression remains of rare plant 
fossils then known as “psilophytes”. These were examined 

Fig. 15.7 Trunk and tree base of Archaeopteris. (a) Silicified stump 
(photo: PG Gensel). (b) The tree base and rooting structure of 
Archaeopteris outlined on a paleosol exposed in the Cairo Quarry, 
Town of Cairo Public Works, New York, USA. (photo: R.A. Gastaldo)

P. G. Gensel et al.
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by Erling Dorf who recognized their significance, and one of 
the first reports on these plants was published shortly there-
after (Dorf and Rankin 1962). With the recognition that early 
land plants are preserved in Maine and in coeval strata of 
New Brunswick, Canada, a series of studies over the past 
60 years have added to our understanding of their evolution-
ary history and paleoecology (e.g., Kasper Jr et  al. 1988; 
Allen and Gastaldo 2006). Both the environmental setting 
and the early land plants, themselves, are very different from 
the mosses and club mosses now covering the floor of 
Maine’s northern balsam fir forests.

Rocks of the Trout Valley Formation were deposited as 
pebble conglomerate, fluvial and nearshore (marine) sand-
stone bodies, and muddy tidal flats. These sediments repre-
sent an estuarine coastal zone flanking an extinguished 
volcanic island, the remnants of which are now the Traveler 
Rhyolite against which the Trout Valley rocks lie (Allen and 
Gastaldo 2006). There is some evidence of in situ (autoch-
thonous) preservation of the vegetation, in the form of very 
fine, vertically oriented rootlets, which colonized the mud-

flats [U1523]. But, the majority of fossil material is  preserved 
on the bedding surfaces of tidal channels that traversed the 
mudflats (Fig.  15.8c, d). Here, aerial axes up to 50  cm in 
length, with lateral dichotomizing appendages, are aligned 
parallel to one another, (Fig. 15.8c) mimicking their original 
growth architectures in life. This “biological” orientation is 
the result of fibrous, longitudinal tissues, appearing as stria-
tions, which developed in the walls of these thin axes to 
assist in an erect growth habit. The two most conspicuous 
plants are Psilophyton and Pertica (Fig. 15.9), true vascular 
plants assigned to the early group called trimerophytes 
[U1520]. Intermixed or interbedded with dense Psilophyton 
and Pertica mats are other vascular plants belonging to vari-
ous early clades [U1524]. These include Sciadophyton 
(embryophyte of unknown affinity); Sporogonites (a possi-
ble bryophyte); Taeniocrada (rhyniophyte); and 
Drepanophycus, Kaulangiophyton, and Leclercqia (lycop-
sids; Andrews et al. 1977; Kasper Jr et al. 1988; Allen and 
Gastaldo 2006).

Fig. 15.8 Middle Devonian Trout Valley Formation, Maine, USA. (a) Outcrop localities along Trout Brook, Baxter State Park, Maine. (b) Low-
angle trough cross-bedded siltstone of tidal origin in which the fossil flora is preserved. (c) Glacially exposed, fossiliferous bedrock along the 
margins of Trout Brook. P. Gensel and J. Allen. (d) Bedding surface of tidal siltstone in which biotically oriented axes of Psilophyton are exposed. 
Scales in dm and cm. (photos: RA Gastaldo)
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The biotically oriented assemblages in the Trout Valley 
Formation are unusual for several reasons. Trimerophyte, 
rhyniophyte, and lycophyte remains are preserved in associ-
ation with molluscan bivalves of various affinities, eurypter-
ids, and trace fossils (ichnofossils), all of which are 
interpreted from brackish water (estuarine) settings [U1525] 
(Selover et al. 2005; Gastaldo 2016). Hence, it seems plau-
sible that these early colonizing plants were tolerant of fluc-
tuating coastal salinities. If true, this interpretation may also 
explain two facets of their preservation. Trimerophytes grew 
aerial axes from a surficial or shallowly buried axis or rhi-
zome. Yet, the only evidence of rooting structures is verti-
cally oriented rootlets that are unattached to a rhizome. 
Similarly, there is no evidence that the biotically ordered 
axes (Fig. 15.8d) are attached to any rhizomatous organ. The 
axis from which these plants developed is missing. Second, 
most of these aerial axes rotted and filled with mud before 
burial, resulting in internal casts. Saltwater incursion into 
these marshlands in response to coastal subsidence, then, 
would be responsible for their death, loss of any evidence of 
rhizomes through rotting, and the easy transport via tidal 
activity of the aerial axes into tidal channels where they are 

preserved. We have to dare to head farther northward into 
eastern Canada where these plant groups are best preserved 
to gain insights into coastal plains of the Devonian.

15.4  Late Early Devonian Floras of Gaspé 
and New Brunswick: Coastal Margins 
and Intermontane Rivers and Lakes

Patricia G. Gensel

Several localities in the Canadian provinces of New 
Brunswick and Quebec have been the source of information 
about Emsian (408–393 Ma) plants since the initial descrip-
tion of the genus Psilophyton by Dawson (1859) from the 
Gaspé Peninsula, Quebec, and adjacent regions of northern 
New Brunswick. Dawson (e.g., 1870, 1871) described other 
plant taxa, some included in Psilophyton and some not. 
Additional collections and studies by paleobotanists in both 
areas, especially in past decades, have clarified various taxa 
and produced a picture of a diverse late Early Devonian flora. 
These plants are mostly smaller and simpler than those from 

Fig. 15.9 Middle Devonian 
“trimerophytes”. (a) 
Psilophyton forbseii showing 
pseudomonopodial main axes 
from which laterals branched 
dichotomously (3×; photo PG 
Gensel). (b) Psilophyton 
crenulatum recovered via 
maceration (Yale University 
image). (c) Psilophyton 
coniculum stem anatomy 
(from Trant and Gensel 1985, 
Branching in Psilophyton: a 
new species from the Lower 
Devonian of New Brunswick, 
Am. J. Bot. 72(8): 1256–
1273, with permission from 
Wiley Press); (d) Pertica 
quadrifaria. (photo RA 
Gastaldo). (e) Axial anatomy 
of a new taxon reminiscent of 
Pertica (photo courtesy of PG 
Gensel)

P. G. Gensel et al.
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the Middle Devonian but include some that provide indica-
tions of the ones known mainly from the Middle Devonian.

15.4.1  Gaspé Battery Point Formation (Gaspé 
Sandstone Group), Emsian

The Battery Point Formation, outcropping on both the north 
and south shore of Gaspé Bay, Quebec, Canada, consists of a 
coarsening-up clastic wedge, located at 10–20° S latitude in 
Emsian times. This paleolatitude places it near the equator 
with a prevailing tropical climate. Unlike Red Hill (see Sect. 
15.2.2), there are no calcretes or other sedimentary features 
indicative of seasonal dryness, and the plants probably grew 
under moderate rainfall. The Cap-aux-Os Member is the 
most plant-rich component of the Battery Point Formation 
and has been extensively studied sedimentologically (e.g., 
Griffing et al. 2000). It is in this depositional context that we 
understand these early Devonian plants.

The sedimentary facies in the Cap-aux-Os Member are 
dominated by sandstones of various internal architectures, 
and three different fluvial associations are identified. River 
deposits at the base of the succession are large multistory 
sandstone bodies with interbedded thinner mudstone 
(Association 1). These rocks are overlain by gray mudstone 
with thin sandstone sheets or single-story sandstone bodies 
(Association 2). The uppermost interval (Association 3) con-
sists of relatively coarse-grained, multistory sandstone bod-
ies with uncommon thinner red mudstone intervals [U1526]. 
There is evidence of bedding with wave- or current-ripple 
marks, trace fossils, and disarticulated cephalaspid fish skel-
etons in some intervals. Desiccation-cracked mudstones pre-
serve articulated lingulid brachiopods, and in dark gray shale 
and siltstone acritarch microfossils, small bivalves, and bra-
chiopods can be found. The most current interpretation is 
that these rocks represent fluvial and delta-plain deposits 
close to the coastline, with some intervals interpreted as hav-
ing been close to the tidal limit of tidally influenced lowlands 
(Griffing et al. 2000; Hotton et al. 2001). The vegetation that 
grew across these coastal zones commonly is found at or 
near their sites of growth.

Many fossil-plant assemblages, buried in situ, form 
monospecific stands, although attached rooting structures 
are not found. Rather, putative rhizomes and rooting struc-
tures are preserved in other intervals and may extend into 
underlying beds beneath some axes (Elick et al. 1998; Gensel 
and Berry 2001; Hotton et al. 2001). Plants preserved near 
their sites of growth include the majority of trimerophyte and 
rhyniophyte remains. Hotton et  al. (2001) note that these 
occur in shaley (mudstone) drapes over channel-form sand-
stone bodies. They suggest that the plants were growing 
along channel margins or channel bar tops and probably 
detached and transported a short distance prior to burial. 

Others, especially zosterophylls, were established in low, 
wet areas and buried by flood deposits. A few plants may 
have had specific growth conditions limiting their distribu-
tion. For example, the zosterophylls Sawdonia ornata and 
Crenaticaulus [U1527], commonly found associated with 
brackish and marine invertebrate fossils, are interpreted as 
being located near a coastline where washover occurred. 
Spongiophyton and Prototaxites were transported, some-
times in a more fragmentary form, from floodplains or a 
riparian habit, and deposited in channel-bar and channel-fill 
deposits of main river channels. But, one genus of early plant 
is cosmopolitan.

In our rambles, we will encounter large stands of 
Psilophyton, probably along the river channel margins and 
within stands of different zosterophylls in some of the 
marshes (see Sect. 15.3). Psilophyton plants grew to a height 
of several decimeters with slender (c. 4 mm), dichotomizing 
stems (Fig. 15.9b). Lateral branches divided in a similar pat-
tern and are either the same or slightly smaller diameter than 
the central erect axes. They terminate in pointed (acuminate) 
tips or pairs of spindle-shaped (fusiform) sporangia, forming 
loose clusters, and which dehisce (burst open) longitudinally 
[U1528]. The plant’s anatomy consists of an unlobed core of 
vascular tissue in which the first developed conducting cells 
differentiate in the center. This anatomy is seen to persist in 
lateral branches. The anatomy of one of its species, 
Psilophyton dawsonii from the south shore of Gaspé, is the 
most completely known. As we’ve seen previously, 
Psilophyton is a very common element in Gaspé and New 
Brunswick and the Trout Valley Formation in Maine. It also 
is known from the early Devonian of Wales, England, 
Belgium, possibly the Czech Republic, and Germany. Only 
one species is recorded in China and is of Pragian age (411–
408 Ma). However, some early referrals of plant remains to 
Psilophyton have since been shown to be inaccurate. The 
devil lies in the details, also in plant identification, as we will 
see when studying some of Gaspé’s plant fossils.

Some rooting structures, or “rhizomes,” from Gaspé, 
attributed to Psilophyton by Dawson, are now known to rep-
resent another plant (Hotton et al. 2001). Their anatomy is 
very different from what we know from Psilophyton dawso-
nii. Smooth, wide axes, bifurcating at long intervals, bear 
rounded scars and exhibit a dark central strand. Unpublished 
specimens show similar axes with laterally attached ovoid 
sporangia with a thickened base (Gensel, pers. obs.), leaving 
a round scar when detached and, thus, are similar to 
Stockmansella (Fairon-Demaret 1985, 1986). That taxon, 
along with Rhynia, is currently viewed as part of the 
Rhyniopsida (Kenrick and Crane 1997). The Gaspé plant’s 
water-conducting cells also resemble Stockmansella in 
exhibiting a unique wall pattern, with tiny holes perforating 
the walls and randomly oriented thickenings (Hueber 1983; 
Hotton et al. 2001; Gensel pers. obs.). A second taxon from 
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this clade, Huvenia, may also be present in the Gaspé flora 
(Hotton et  al. 2001). Rooting structures were not the only 
plant remains erroneously referred to as Psilophyton in the 
past.

Psilophyton princeps var. ornatum was described by 
Dawson based on vegetative remains, and its actual affinity 
was questioned for many years. Ultimately, the plant’s suite 
of characters was recognized as similar to the zosterophyl-
lophytes, and the plant renamed Sawdonia ornata (Hueber 
1971). Stems are covered in tapered spine-like emergences 
and are similar to specimens from Abitibi River, Ontario, in 
which lateral sporangia occur (Hueber 1964; Hueber and 
Banks 1967). Sawdonia and other anatomically preserved 
zosterophylls exhibit an ovoid water-conducting central cyl-
inder, which develops from the outside to the center (the 
opposite direction of what we know from Psilophyton). 
Recently studied fertile remains from Gaspé also reveal dif-
ferences on the lateral sporangia of the plant, which are 
short-stalked and possess two valves of unequal size, with 
emergences covering the larger abaxial valve (Gensel and 
Berry 2016). Apart from rooting structures now referred to as 
rhyniopsids and vegetative remains reidentified as 
 zosterophylls, stems initially attributed to Psilophyton were 
found to be different taxa as well.

Large stems up to 1  cm wide, from which regularly 
arranged lateral branches grew, terminating in tight clusters 
of fusiform∗ sporangia, are now attributed to the trimero-
phytes (Banks 1968). These plants also occur at Cap-aux-Os. 
One taxon was based on specimens originally labeled 
Psilophyton robustius (Dawson 1871) and was redescribed, 
more than 80  years later, as Trimerophyton robustius by 
Hopping (1956). These large axes exhibit a lateral branching 
pattern that divides into three branches (trichotomous), 
instead of two, with some branches terminating in tight clus-
ters of sporangia. Other specimens, possibly from the same 
sequence, were described as Pertica varia by Granoff et al. 
(1976). The plant fossils consist of up to 0.75 m-long, incom-
plete main axes from which regularly arranged, clearly sec-
ondary lateral branches depart. These laterals may retain a 
central branch or continue to subdivide dichotomously. Some 
of the more dichotomous branches terminate in tight clusters 
of sporangia. These plants may represent the tallest of known 
late Early Devonian vascular plants and probably attained 
heights of a few meters. But, trimerophytes and zosterophylls 
were not the only Emsian coastal zone vegetation.

Lycopsids obtained from the Battery Point Formation 
include Drepanophycus spinaeformis, a plant with branching 
rhizomes, possible rooting structures and short to long, some-
times curved (falcate) leaves (Grierson and Hueber 1967). 
Fertile remains of these plants from New Brunswick show 
that stalked sporangia developed along the stem and occur 
among the leaves (Li and Edwards 1995). Renalia hueberi, 
probably an early member of the lycophyte lineage, occurs at 

a different outcrop on the north shore of Gaspé Bay (Gensel 
1976). The main stems are tiny, the axes of approximately 
1 mm in width, and specimens are up to only a few centime-
ters in length. Lateral branches divide unequally and may be 
terminated in kidney-shaped (reniform) sporangia. A dark 
strand evident in stems indicates the presence of vascular tis-
sue but cellular patterns are unknown. There are other plant 
types noted and described from this locality (Andrew and 
Gensel 1984; Hotton et  al. 2001), but we end our postcard 
tour of the Gaspé with mention of a most enigmatic plant.

Prototaxites is the elephant in the Emsian room. It is a 
giant (Fig. 15.10). Dawson (1859) first described the taxon 
based on silicified trunk-like structures and, now, it is known 
to occur not only in the Gaspé Bay area but also at Pointe-a- 
la-Croix, Gaspé, in northern Maine, and several other Early 
to Late Devonian localities in the United States, Europe, and 
North Africa [U1529]. The best-preserved specimens consist 
of wide “stems” that attained nearly 1 m in diameter, whereas 
Moroccan specimens are up to 8 m in length (Boyce et al. 
2007). Various ideas as to what these “logs” represent have 
been presented, ranging from a prototypical conifer (Dawson) 
to alga, rolled-up liverwort, and even fungus. Hueber (2001) 
suggested the preserved structures most closely resemble the 
fruiting body of a fungus. This, in turn, raises questions 
about a carbon source for such a large organism and has 
spurred additional research resulting in some controversial 
interpretations of this organism (Graham et  al. 2010; 
Retallack and Landing 2014). However, we will not delve 
into this scientific discussion here and instead travel further 
to northern New Brunswick.

15.4.2  Campbellton Formation, Emsian, New 
Brunswick: Enlarging our Postcard View 
of an Early Devonian Landscape

Driving along the winding New Brunswick coast on Route 
132 for about 4 h, we eventually arrive in Campbellton. We 
will briefly visit another Early Devonian locality of northern 
New Brunswick contemporaneous, in part, with Gaspé. 
Here, plants are preserved in both coastal and inland settings. 
Outcrops of the Campbellton Formation extend, discontinu-
ously, from Campbellton to Dalhousie, New Brunswick (not 
Nova Scotia). Detailed stratigraphic studies by Kennedy and 
Gibling (2011), along with a subsequent consideration of the 
depositional environments and plants preserved therein, 
were published by Kennedy et al. (2012). The western-most 
outcrops near Campbellton were deposited along a Devonian 
coastline, with one horizon burying remains of Psilophyton 
crenulatum in volcanic ashfall. Similar to other ashfall burial 
sites (see Chap. 13), preservation is exceptional (Fig. 15.11). 
Eastern outcrops are interpreted as intermontane fluvial or 
lacustrine, inland floodplain deposits, or mass flow deposits.

P. G. Gensel et al.
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We’ve seen this vegetation before. Plants similar at the 
generic level to Psilophyton, and Pertica [U1530], 
Drepanophycus, and possibly Sawdonia, as well as new taxa 
of zosterophylls and lycopsids [U1531], occur. One of the 
earliest occurrences of the lycophyte Leclercqia is here, as 
well as two strange taxa, Chaleuria and Oocampsa, which 
differ from each other and from the major Devonian plant 
lineages [U1532]. Chaleuria and Oocampsa both exhibit 
broad main stems, up to 1 cm in diameter, which may have 
been partly rhizomatous and partly upright. In contrast to 
other plants we’ve encountered, the lateral branches of these 
are dense and spirally arranged. The lateral branches in 
Chaleuria have dichotomizing, spirally arranged ultimate 
branches with fusiform, terminal sporangia in which two 
sizes and two kinds of spores were produced. This condition 
has been interpreted as incipient heterospory, a more derived 
mode of reproduction in spore-producing plants (Andrews 
et al. 1974). In Oocampsa, lateral branches are more dichot-

omously to pinnately divided, terminating in clusters of 
ovoid erect sporangia. Large, zonate spores are quite  different 
from spores known from other early Devonian plants 
(Wellman and Gensel 2004). Unfortunately, most plant 
assemblages were transported, to some degree, before burial 
and preservation, leaving us without any specific environ-
mental context, although it is believed that these plants 
exhibited less niche partitioning than was suggested for 
Gaspé.

15.5  Rhynie, the Oldest Vegetated Hot 
Springs

Milan Libertin and Patricia G. Gensel

It is a quick trip across the Atlantic “pond” to the village of 
Rhynie in northeastern Scotland, approximately 50  km 

Fig. 15.10 Prototaxites, a 
giant fungus. (a) Erect mold 
of Prototaxites in siltstone, 
Dalhousie Junction, New 
Brunswick, Canada. 
R.A. Gastaldo for scale; edges 
of mold marked by yellow 
arrows. (photo courtesy of 
M. Gibling). (b) Small 
silicified Prototaxites (photo 
courtesy of PG Gensel). (c) 
Transverse section of silicified 
specimen showing tubular 
nature of cells (from 
Retallack and Landing 2014. 
Affinities and architecture of 
Devonian trunks of 
Prototaxites loganii. 
(Mycologia 106(6):1143–
1158, with permission, Wiley 
Press)
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northwest of Aberdeen. It is hard to imagine that this area 
hosts one of the most important and famous localities of 
early Paleozoic plants when we walk through the country-
side (Fig. 15.12a). There is no rock exposed at the surface. 
Rather, it lies beneath the green pasture lands studded with 
livestock as pictured on our postcard. The locality, known as 
the Rhynie chert, first was discovered by examining loose 
blocks turned up in the soil during plowing or as part of the 
stone walls edging the fields. Around 1912, during one of his 
collecting trips, Dr. William Mackie (for whom geology was 
a hobby) found fragments of fossiliferous chert in the dry 
stone walls, possibly while sitting on one and eating his 
lunch [U1533] (Andrew and Gensel 1984). He recognized 
that the chert contained plants entombed in the silicates and 
took them to Robert Kidston. Along with W. H. Lang, the 
chert was sectioned and studied, and they produced a series 
of papers (1917–1921) providing initial descriptions of the 
fossilized plants. In recent decades, trenches were dug in 
selected areas to collect additional plant material, and later 

excavations were undertaken to study the lateral and vertical 
extent of the deposits. Major drilling and mapping led by 
geologists at the University of Aberdeen, with the assistance 
of many collaborators, has resulted in a much-improved 
understanding of the geology and of the environment in 
which this earliest ecosystem is preserved (Edwards et  al. 
2018a, https://www.abdn.ac.uk/rhynie).

The paleoenvironment in which the Rhynie chert formed 
is surrounded by sandstone and mudrock (shale) and is simi-
lar to today’s hot spring-and-geyser landscape in Yellowstone 
National Park, Wyoming, USA (Rice et al. 2003). The fos-
siliferous cherts were deposited in a tectonic sedimentary 
basin in which volcanic activity occurred. Sandstone depos-
its reflect deposition in a braided river system with andesitic 
(igneous lava rock) flows associated with the fault systems 
along the margin of the basin. Surface water penetrated 
through porous sediment in the floodplain to a depth where 
these were heated by hydrothermal activity. Hydrothermally 
influenced sediments were intruded by dykes of andesitic 
lava and accelerated hydrothermal reaction, pushing heated, 
silica-rich waters to the surface. Hot springs formed sinter 
layers that penetrated and enveloped everything living 
around the hot spring, preserving an intact biota in various 
stages of vegetative growth and reproduction (Fig. 15.12b).

Plants are preserved in growth position by the sinter, and 
their spatial distribution is locked into the deposit. The plant 
and invertebrate community lived around a shallow, tempo-
rary, freshwater lake, adjacent to active geysers. The permin-
eralization was so thorough and rapid that even the finest 
anatomical details have been preserved, providing insight 
into the life history of several early plant genera. One of the 
most thoroughly investigated groups in the Rhynie chert is 
the rhyniophytes (Kerp 2018). In addition, several types of 
algae (Taylor et al. 1997), fungi (Remy et al. 1994; Taylor 
et  al. 1999), and arthropods (proto-spiders, harvestmen, 
nematodes) are found (see summary by Dunlop and 
Garwood 2018).

One of the most common plants close to the hot springs is 
the genus Aglaophyton, currently considered a pro- 
tracheophyte [U1534]. It grew with an equally dividing (iso-
tomous) branched rhizome, with hair-like extensions called 
rhizoids that acted to affix the plant to the ground surface and 
facilitate mineral uptake (Fig.  15.12b). Aerial axes devel-
oped from the rhizomes, some of which are preserved with 
terminal oval-shaped sporangia. Conducting cells in this 
plant exhibit a unique wall pattern, with anatomical affinities 
similar to some mosses (Fig.  15.12c). As with other early 
plants, Aglaophyton had no leaves or roots. Another taxon, 
Rhynia, initially considered similar to Aglaophyton, bore 
sporangia on terminating lateral branches and tracheid-like 
conducting cells (Box 15.3). It is considered part of the 
Rhyniopsida clade. Gametophytes [U1535], which are mul-
ticellular, haploid, sexual structures in plants, are known in 

AU8

Fig. 15.11 Lower Devonian assemblages from Campbellton, New 
Brunswick, Canada. (a) Typical outcrop along the shores of Chaleur 
Bay (photo courtesy of PG Gensel). (b) Transported assemblage of bio-
logically ordered axes of lycopsid affinity (photo courtesy of RA 
Gastaldo)

P. G. Gensel et al.
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considerable detail, including the structures containing egg 
and sperm (Kerp et  al. 2003; Taylor et  al. 2005). Both of 
these taxa exhibit endophytic (within the plant cells) fungi 
that probably aided in water uptake (VA mycorrhizae). The 
Rhynie flora was more diverse than just rhyniophytes.

Fig. 15.12 The Early Devonian (Pragian) Rhynie chert, Aberdeenshire, preserved the oldest documented terrestrial ecosystem. (a) The Rhynie 
chert is not surficially exposed but, rather, is the bedrock beneath green pastures. (b) Polished specimen of the Rhynie chert showing vertically 
preserved stems of early land plants. (c) Transverse section of Aglaophyton stem showing anatomy. (With permission by the University of 
California-Berkeley Museum of Paleontology) (d) Fungal association preserved in cells

Box 15.3: Evolution of Specialized Water-Conducting 
Cells in Silurian-Devonian Plants
Most bryophytes (mosses) lack specialized water- 
conducting cells, with the exception of certain taxa, 
where centrally located cells exhibit either smooth or 
finely pitted, or otherwise ornamented walls. All of 
these cells apparently lack lignin (a complex organic 
polymer providing structural support in cell walls). 
Extant vascular plants are defined, in part, by the pres-
ence of specialized, dead, lignified water-conducting 

cells in their xylem. These are called tracheids or, in 
flowering plants, tracheids and vessel elements. These 
cells exhibit particular patterns of lignified secondary 
walls—annular, helical, scalariform, or pitted—
depending on whether cells differentiated early or later 
in stem or root or by plant group. The presence of lig-
nin promotes preservation and has provided useful 
characters for distinguishing taxa or lineages and dis-
criminating between stem and root structures.

We find several different developmental patterns 
when we examine the earliest plants and go back in 
time. For example, rhyniophytoids lack any evidence 
of such lignified cells, whereas others show centrally 
located cells that differ in wall thickness or pattern 
than those of the rest of the stem. These latter forms are 
more comparable to cells of some bryophytes. In other 
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Nothia aphylla is another well-preserved plant more 
closely related to the zosterophyll clade (Kerp et al. 2001). It 
had spreading rhizomes, perhaps partly below ground, with 
rhizoids, and upright axes that branched dichotomously. The 
aerial axes were covered by elliptical emergences, many 
topped by a stoma (a specialized gas exchange structure). 
Sporangia producing only one type of spore developed near 
branch tops. To release the spores, each sporangium opened 
around the margins of the sporangium. Nothia was a geo-

phyte in that it grew in sandy soils and reproduced clonally. 
Underground rhizomes survived from season to season, and 
elevated axes grew again annually. Another geophyte, the 
proto-lycopsids, also is part of the hot spring landscape.

A vascular plant, allied to the lycopsids, is the genus 
Asteroxylon. These plants also grew in sandy substrates more 
distant from the main sinter zone, but still were permineral-
ized by silica (Kerp 2018). The rhizomes of Asteroxylon 
were geotropic, growing into the soil substrate [U1536]. 
Rooting structures branched equally (isotomous) whereas 
aerial stems, 1–2 cm wide and possibly up to 40 cm in height, 
branched unequally (anisotomous). These are covered with 
helically arranged, unvascularized leaf-like structures, and 
vascular strands extend into the cortex almost, but not quite, 
to the level of leaf-like attachment. Both aerial axes and the 
leaf-like structures possessed stomata. The internal anatomy 
exhibits several features not found in other groups at the 
time. The xylem in the aerial axes consists of lignified, sim-
ple conducting cells (tracheids) with closely spaced thicken-
ings that encircle the cell (annular thickening). Their 
arrangement forms a star-shaped pattern. Similar to lycop-
sids, the sporangia of Asteroxylon are kidney-shaped (reni-
form) and developed on a short stalk (pedicel). Fertile zones 
are arranged spirally on axes interspersed among sterile ones 
(Kerp et al. 2013). This arrangement indicates the potential 
for periodic sexual reproduction promoted by changing envi-
ronmental conditions. Dispersed spores described from these 
sediments indicate that the vegetation of the larger region 
was more diverse than the plant association preserved in the 
Rhynie chert (Wellman 2010).

Significant discoveries in this locality include another 
part of the Rhynie ecosystem, the fungi (Fig.  15.12d) 
[U1537]. Fungi serve several functions in an ecosystem, 
ranging from mutualistic to saprophytic. Rhynie fungi may 
be some of the best detailed forms, with mutualistic fungi 
allied to Glomales found inside plants (Taylor et  al. 1992; 
Krings et al. 2017), as well as saprophytic forms degrading 
them (Taylor et al. 2003). The relationship between the water 
fungus Sorodiscus, which attacked the cells of the alga 
Palaeonitella, is one of the first examples of parasitism in the 
fossil record (Taylor et al. 1992).

The preservation of extremely minute details, which 
allows the investigation of vascular systems, reproductive 
organs, spores, generation of gametes, and even seasonal 
growth of plants, allows us to recreate a picture of the entire 
Rhynie hot spring ecosystem (Channing and Edwards 2009). 
These fossil Lagerstätten with complex preservation poten-
tial are very valuable [U1538]. They are windows, frozen in 
time, that enhance our understanding of early vascular plant 
evolution (Trewin and Kerp 2018).It was the exquisite pres-
ervation of the plants in the Rhynie chert that convinced ear-
lier geologists and botanists that pre-Carboniferous terrestrial 
plants existed.

early plant lineages of the Silurian to mostly Early 
Devonian, the following unique types of water- 
conducting cells, considered lignified and closer to tra-
cheids, have been recognized:

• A late Silurian–Early Devonian Cooksonia, C. per-
toni, exhibits tracheids with two wall layers and 
annular secondary wall thickenings facing the cell 
center (lumen).

• S-type cells are typical of rhyniopsid tracheids. 
These have a two-layered wall that consists of a thin 
resistant layer facing the hollow center of the cell 
(lumen) and an outer, less resistant spongy layer. 
The resistant layer is covered in minute pores. The 
wall is helically thickened, with the gyre of the 
helix at different angles.

• G-type cells are found in zosterophylls, Asteroxylon, 
and probably Baragwanathia (Lycopsida). This cell 
type exhibits tracheids with two wall layers, the 
inner decay- resistant one with closely spaced annu-
lar thickenings and a non-resistant outer layer. The 
spaces in between the inner decay-resistant layer 
often show a number of small openings.

• P-type tracheids are typical of Psilophyton and 
Pertica (basal euphyllophytes or former trimero-
phytes). The two- layered wall exhibits an inner 
decay-resistant layer that is closely spaced, parallel, 
and interconnected. This layer developed overarch-
ing edges (scalariform-bordered thickenings), and 
the decay-resistant layer in between thickenings 
exhibits one or more rows of round openings (pits). 
Less resistant material formed the outer wall and 
the area within the scalariform thickenings.

Recent discoveries have shown some plants, similar 
to Psilophyton, but with secondary xylem, exhibit 
round-oval bordered pits in primary and P-type pitting 
in secondary xylem (Franhueberia). By end of Early 
Devonian, secondary wall thickenings (pitting pat-
terns) were more similar to those of extant plants, first 
appearing in lycopsids.

P. G. Gensel et al.
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15.6  Bathurst Island, Canada: 
A Counterview to the Hot Springs

Patricia G. Gensel

We now travel from the modern conveniences found in one 
small village in Aberdeenshire, Scotland, to a very remote 
island setting in the high Arctic where we’ll get a different 
perspective on late Silurian and Early Devonian vegetation. 
Back in time, this island was part of a large tectonic block 
located around the equator. In contrast to the mostly small 
and simple rhyniophytoids described from many Silurian 
localities in Laurussia, Baltica, and South American assem-
blages, a walk through these equatorial regions brings us to 
another worldly view. Late Silurian plants in eastern Bathurst 
Island, Nunavut, Canada, are somewhat familiar in their 
basic architecture and structure (Basinger et al. 1996; Kotyk 
et al. 2002). Plants attained several centimeters in length and 
stems were as wide as 4 mm, more closely resembling Early 
Devonian taxa. Unlike fossil-plant assemblages we’ve previ-
ously visited, these are preserved in offshore, deep marine, 
fly ash deposits (“Bathurst Island beds”) securely dated as 
Silurian (late Ludlow or Ludfordian, 426–423 Ma) based on 
graptolites, conodonts, and brachiopods (see Chap. 14, for 
more information on these early animals). The sedimento-
logical context of these assemblages indicates that the plants 
were deposited by mudflows in a marine basin, where they 

were quickly buried with little biological (bioturbation) 
activity to alter them. These mudrocks now are exposed 
mostly along stream margins on the island.

Transport of the plants to the marine realm resulted in 
their partial deterioration and most appear as incomplete 
portions of vegetative or fertile structures. Stem fragments, 
some with spines, are associated with fertile specimens that 
are referable to seven distinct taxa previously known only 
from the Early Devonian. They represent members of the 
zosterophyllopsids and plants bearing terminal sporangia 
more similar to typical rhyniophytoids, although larger in 
size.

The zosterophylls preserved here include taxa that vary 
mostly in the structure and organization of their sporangia. 
These reproductive structures can be organized in a helical or 
subopposite arrangement (different species of 
Zosterophyllum), or they can be borne in dense, two rowed 
spikes oriented toward one side of the stem (Distichophytum). 
A zosterophyll that had first been found on Bathurst Island, 
Macivera gracilis, exhibits sporangia that are longer than 
wide and located only in the distal regions of a branched 
stem. The Silurian species of these genera are smaller in size 
than their Devonian congenerics.

A brief visit to the Early Devonian (Pragian, 411–408 Ma) 
of Bathurst Island provides insight into the significance of 
these fossils [U1539]. The assemblage (Kotyk 1998) is dom-
inated by zosterophylls, especially different types of the gen-
era Zosterophyllum and Distichophytum. These differ mainly 

Fig. 15.13 Late Silurian to 
Early Devonian plants from 
Bathurst Island, Arctic 
Canada. (a) Bathurstia sp. (b, 
c) Zosterophyllum sp. (from 
Kotyk et al. 2002. 
Morphologically complex 
plant macrofossils from the 
Late Silurian of Arctic 
Canada, Am. J. Bot. 80(6): 
1004–1013, with permission, 
Wiley Press), color photos PG 
Gensel
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in size, being considerably larger than their Silurian counter-
parts. Here, we also find the (pre)-lycophyte Drepanophycus, 
some with putative rooting structures (Kotyk 1998). Kotyk 
and Basinger (2000) published a description of another zos-
terophyll, Bathurstia denticulata, where axes are covered 
with emergences and one specimen is exceptionally pre-
served attached to its rhizome [U1540]. Parts of the K-type 
branching pattern of this taxon appear to be rooting struc-
tures as well as aerial fertile axes (Fig. 15.13). Other taxa 
also occur on Bathurst Island and can be found in localities 
across different present continents.

Early Devonian and latest Silurian rhyniophyoids and 
zosterophllopsids are reported from China, Europe, and 
South America. For example, the Pragian Posongchong 
Formation in China is very rich in zosterophylls (Hao and 
Xue 2013). Fossils from localities in the Přídolí (423–
419 Ma) of Podolia, Czech Republic (Bohemia), and Brazil 
are entities larger than the tiny rhyniophytoids noted above 
and below. Even without consideration of controversial plant 
assemblages in Australia (e.g., Tims and Chambers 1984), 
the Bathurst Island fossils, and possibly those from Podolia 
and Brazil, indicate that plants more complex than rhynio-
phytoids existed in the late Silurian. Additionally, the occur-
rence of very similar zosterophylls and lycopsids over more 
than 25  million years tells us that these groups remained 
relatively static over that time span. Thus, the more complex 
and larger plants in these Silurian deposits indicate an earlier 
appearance of most vascular plant clades than the fossil 
record currently shows. This conclusion is supported by the 
dispersed spore record.

15.7  The Diminutive World of the Clee Hills 
of Shropshire

Ian Glasspool

In 1937, William H. Lang published “On the plant-remains 
from the Downtonian of England and Wales”. This seminal 
paper focused on transitional Downtonian (uppermost 
Ludlow to Lochkovian; c. 425–411 Ma) successions from the 
Clee Hills of Shropshire in the Welsh Borderlands of the 
United Kingdom [U1541]. During the late Silurian, the local-
ity was along the margin of the Laurussian continent. It’s now 
time to head back across the pond to see what Lang first 
observed, and what has subsequently been much expanded 
upon by Dianne Edwards (e.g., Edwards et al. 2014).

Examining what had been thought to be unpromising fos-
sil remains from terrestrial rocks, Lang was able to describe 
a highly diminutive (<10 cm tall; Edwards 1996), taxonomi-
cally simplistic, rootless, and leafless flora that included the 
first description of the now iconic genus Cooksonia [U1542]. 
Lang’s localities, including Ludford Lane, Perton Quarry, 

Targrove, and Tin Mill Race, continue to be studied and are 
advancing our understanding of the evolution of early land 
plant body plans and their paleoecology, as well as offering 
insights into plant-arthropod interactions and latest Silurian–
earliest Devonian food webs. Paleobotanically, these sites 
have demonstrated that Cooksonia pertoni had both tracheids 
and stomata, and that its spores varied over time (an example 
of cryptic evolution; Fanning et  al. 1988). These localities 
have also yielded a far greater range of rhyniophytoids than 
had previously been appreciated, with Cooksonia-like plants 
such as Hollandophyton colliculum, Tortilicaulis offaeus, 
Culullitheca richardsonii, Fusiformitheca fanningiae, and 
others (Morris et  al. 2011, 2018a). Much of this new evi-
dence is not derived from the adpression fossils of Cooksonia 
that are so familiar in classic textbooks. Rather, our insights 
come from exquisite three-dimensional and anatomically 
preserved charred fossils that represent some of the earliest 
evidence of wildfire known on the planet (Fig.  15.14; 
Glasspool et al. 2006). Studied by SEM, these fossils exhibit 
incredible, even subcellular, anatomic details. These details 
reveal an early terrestrial flora characterized by “crypto-
gamic covers”, a soil crust comprising a complex of bacteria, 
cyanobacteria, algae, fungi, lichens, nematophytes (an enig-
matic group that may have fungal affinities; Edwards et al. 
2018b), basal tracheophytes (e.g., Cooksonia hemi-
sphaerica), and cryptophytes (e.g., Edwards et  al. 2014). 
Although these floras have been termed “Lilliputian” 
(Edwards 1996), their role in early terrestrialization and the 
evolving biogeochemical carbon cycle of the latest Silurian 
and earliest Devonian is anything but small.

15.8  Pre-Devonian Land Plants

Ian GlasspoolJiri Kvaček,  and Milan Libertin

There are a number of small-stature plants and enigmatic 
plant groups that appear in the pre-Devonian fossil record. 
Some of these forms look like plants, while others are more 
amorphous in their organization. We have seen the iconic 
oldest truly vascular plant (Lang 1937; Edwards et al. 1992), 
Cooksonia, in Shropshire, but species assigned to it are 
known from several localities in Europe, North America, 
northern Africa, South America, and China (Taylor et  al. 
2009). The oldest currently known species, and one of the 
larger plants, is C. barrandei from the Czech Republic 
(Fig.  15.15) [U1537], and similar to many other localities 
from which it is described, the Czech rocks are not of conti-
nental origin. These fossils are described from the middle 
Silurian Monograptus belophorus marine Biozone of 
Wenlockian age (432  Ma; Libertín et  al. 2018a, b). Like 
other members of the group, C. barrandei has twice- 
branched, relatively “robust” axes up to 1 mm in width, bear-
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ing terminal funnel-form sporangia [U1543]. Slightly 
younger examples of the genus Cooksonia (e.g., C. pertoni, 
C. cambrensis, and C. hemisphaerica) have been described 
from Wenlockian strata in County Tipperary, Ireland 
(Edwards et al. 1983). Due to many examples being excep-
tionally preserved as charcoal, the species C. pertoni is prob-

ably the most comprehensively studied of all Cooksonia 
species (see Morris et al. 2012). Whereas different examples 
of this species are morphologically and anatomically homol-
ogous, four subspecies are recognized based on differences 
in the spores found in situ in their sporangia (Fanning et al. 
1988; Habgood et al. 2002; Morris et al. 2012).

Fig. 15.14 Early Devonian plants from Shropshire, United Kingdom. (a) A compression specimen, the counterpart to the lectotype of Cooksonia 
pertoni from the Přídolí at Perton Lane, the surrounding black patches may be Nematothallus. NHM V58010 Scale bar = 2 mm. (from Edwards 
and Kenrick 2015. The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) ‘On plant- remains from the 
Downtonian of England and Wales’. Phil. Trans. Roy. Soc. Lond., with permission). (b) A cryptophytic plant with a simple, fusiform sporangium 
from the Lochkovian of North Brown Clee Hill assignable to Fusiformitheca fanningiae () Scale bar = 500 μm. (from Wellman et  al. 1998. 
Permanent dyads in sporangia and spore masses from the Lower Devonian of the Welsh Borderland, Bot. J. Linn. Soc. 127(2): 117–147, with 
permission, Oxford Univ. Press.) (c) The lower surface of the thallus of Nematothallus sp., Ludlow, Upper Silurian, Downton Castle Sandstone 
Formation, Ludford Lane. This specimen illustrates the tripartite organization, from left to center: cortex, palisade tissue and fused basal layer. 
Scale bar = 200 μm. (Edwards et al. 2013. Contributions to the diversity in cryptogamic covers in the Mid- Palaeozoic: Nematothallus-revisited. 
Bot. J. Linn. Soc. 173:505–534, with permission, Oxford Univ. Press) (d) Differentially charred axis of Hollandophyton colliculum from the basal 
Přidolí of Ludford Lane. (from Glasspool et al. 2004. Charcoal in the Silurian as evidence of the earliest wildfires. Geology 32(5):381–383 with 
permission, Geol.Soc.America) (e) Charred, anatomically preserved Cooksonia pertoni subsp. apiculispora from the Lochkovian of Brown Clee 
Hill, Shropshire, containing Aneurospora newportensis spores. Scale bar = 500 μm. (from Edwards et al. 1992. A vascular conducting strand in the 
early land plant Cooksonia. Nature 357(6380): 683, with permission, Springer Nature)
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Cooksonias are currently placed in the polysporangio-
phytes, which are sporangia-bearing plants that may, or may 
not, contain vascular tissues. The small size of many 
Cooksonia and other rhyniophytoid taxa has led to the ques-
tion of whether they were able to adequately photosynthe-
size, or if they may have remained attached to their 
gametophyte structure for that purpose (Boyce et al. 2007). 
There are a variety of Cooksonia forms, some of which have 
been assigned to more than one lineage. For example, the 
genus Aberlemnia is morphologically very similar to 
Cooksonia, but its sporangia are bilobate, opening with two 
flaps. Based on this character, Gonez and Gerrienne (2010) 
assigned it to the stem or basal lycopsids. Perhaps the best 
known, possible early lycopsid is Baragwanathia [U1544]. 
This plant gained notoriety due to its presumed late Silurian 
age, large size, and relative organizational complexity that 
often rendered it subject to debate (Hueber 1983; Garratt 
et  al. 1984). First described by Lang and Cookson (1935) 

from the late Silurian of Yea, in Victoria, Australia, it now 
has been reported from other Early Devonian localities 
including Canada (Hueber 1983) and China (Hao and Xue 
2013). Baragwanathia grew along the ground (procumbent) 
and had forking, branched axes that gave rise directly to 
occasional roots [U1545]. Similar to zosterophylls and other 
lycopsids, the central conducting cylinder formed from a 
star-shaped arrangement of tracheids. The sporangia grew in 
the axils of vascularized microphylls, which were helically 
arranged on the axes. Other stem group lycopsids of late 
Silurian age were discussed in Sect. 15.6.

Several other late Silurian plants had similar growth 
architectures to Cooksonia. Steganotheca (Edwards 1970) is 
somewhat more equally branched than Cooksonia and has 
elongate, striated, and flat-topped sporangia terminally 
arranged on gradually widening axes. This plant is known 
from the late Silurian to earliest Devonian. Although it is 
considered to be a vascular plant, there is no definitive proof, 
to date, about either the presence or character of tracheids in 
the axes. Recently, the genus Tichavekia was found in asso-
ciation with Cooksonia in the Prague Basin (Kraft et  al. 
2018). The plant axes attained lengths of at least 14 cm and 
branched up to five times equally (isotomously), each branch 

Fig. 15.15 Cooksonia barrandei. (a) Isotomously branched axis with 
sporangia, Loděnice, Špičatý vrch—Barrandovy Jámy, Czech Republic. 
Scale bar  =  10  mm. (b) Reconstruction by Jiří Svoboda. (Both with 
permission Wiley Press)

Fig. 15.16 (a, b): Fragment of Nematothallus williamii, Lochkovian, 
Shropshire in two magnifications of the same specimen showing a pat-
tern typical for Nematothallus cuticle. Arrows indicate positions of lat-
eral branches or areas. Scale bar 100 μm. (from Edwards et al. 2013. 
Contributions to the diversity in cryptogamic covers in the Mid- 
Palaeozoic: Nematothallus-revisited. Bot. J. Linn. Soc. 173:505–534, 
with permission, Oxford Univ. Press)
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being no wider than 1 mm [U1539]. The terminal dichoto-
mies of the plant were short and tipped with oval sporangia 
forming groups of four. In addition to the rhyniophytoids, 
other pre-Devonian plants did not possess true stems, vascu-
lar tissue, or sporangia, such as the nematophytes.

The curious group of the nematophytes have long been 
considered neither alga nor vascular plant, leading some to 
consider them transitional forms [U1546]. New data indicate 
otherwise. One such genus is Nematothallus (Lang 1937) 
and often is preserved as either a resistant cuticle, with “cell 
outlines” or on which there are openings that may have func-
tioned similarly to stomata. Some specimens consist of cuti-
cle with underlying wefts or aligned tubes, and occasional 
banded tubes may occur intermixed. It now seems that 
Nematothallus is either a fungus or lichen, and some other 
layered tubes with cuticle might represent lichens (Fig. 15.16; 
Honegger et  al. 2012; Edwards et  al. 2013). Some of the 
ornamented (banded) tubes may represent epibionts 
(microbes living on or within these organisms). Another 
intriguing type of fossil is Parka (Fleming 1831), a flattened 
oval (thallus) with rounded bodies on it, present in the late 
Silurian and continuing into the Early Devonian. Its similar-
ity to a charophycean green alga, Coleochaete (where 
zygotes appear as round to oval bodies on the algal thallus) is 
interesting because molecular phylogenies identify charo-
phyceans as the sister group of the land plants. An organism 
like Parka can help us figure out the aspect of their possible 
common ancestor.

Other enigmatic plants include flattened axial structures, 
up to 20 cm in length, that most probably represent cuticles 
of stems. One example is Orestovia (Ergolskaya 1936) 
occurring in the Early Devonian of the Kuznetsk basin of 
Siberia. Primitive stomata, conducting cells, and spores have 
been interpreted in the taxon (Kräusel and Venkatachala 
1966). Details of their sunken stomata, shown in thin sec-
tions, are known from specimens that lacked any associated 
spores or conducting cells (Gensel and Johnson 1994). 
Orestovia and some related forms have extremely thick and 
resistant cuticles and form thick deposits of so-called paper 
coal in the Lower Devonian of Russia, which have been used 
as a fuel source.

15.9  The Oldest Evidence 
for the Colonization of Land

Milan LibertinJiri Kvaček,  and Ian Glasspool

The oldest evidence of land being colonized by plants comes 
from the dispersed spore record (Gensel 2008; Rubenstein 
et al. 2010). Derived plants can be distinguished from algal 
precursors by their spores, which are developed into tetrads 
via meiosis, encased in a sporopollenin wall, and, subse-

quently, separated (Strother and Taylor 2018). The majority 
of the early spores (Box 15.4) are cryptospores, occurring in 
obligate tetrads, dyads (pairs), or singularly as monads. 
Ultrastructural data and in situ cryptospores suggest a bryo-
phyte and/or basal polysporangiophyte∗ affinity. Trilete 
spores, ones with a Y-shaped scar delimiting site of opening 
for spore germination, are typical of vascular plants and only 
a few bryophytes. Early records of trilete spores consistently 
came from the Llandovery (basal Silurian, 444–433  Ma) 
until a recent report by Steemans et al. (2009), in which sev-
eral types of trilete spores were reported from the upper 
Ordovician (Katian, 543–445 Ma) of Saudi Arabia. In many 
Silurian samples, cryptospores and/or trilete spores may co- 
occur with isolated cuticles or tubes of uncertain affinity, 
which could be remnants of nematophytes.

Box 15.4: Cryptospores Differ from Acritarchs and Trilete 
Spores
Permanent tetrahedral tetrads in which trilete marks, 
typical of vascular plant spores, first are detected were 
reported by Gray and Boucot (1971) from early-to-
mid-Llandovery (444–433  Ma) rocks of New  York 
State. They regarded permanent tetrads and perma-
nent monads lacking a haptotypic∗ mark as being 
derived from land plants, not algae. In fact, Gray 
(1985) argued they exhibited features closer to liver-
worts. Richardson (1985) coined a term for these, plus 
dyads and monads lacking a haptotypic mark, namely 
cryptospores.

Cryptospores occur as monads (single spore), per-
manent dyads (two fused spores), or tetrads (four fused 
spores) (Figs. 15.17, 15.18, and 15.19) [U1542]. Some 
tetrads are enclosed in an outer envelope, whereas 
other examples are not. Spore assemblages containing 
cryptospores are found in Cambrian (but see below) to 
Devonian sediments, mainly from the paleotropics, 
and in marine to terrestrial deposits. They are different 
from acritarchs in that they exhibit a more robust wall 
and/or occur in tetrads.

The oldest fragments of a sporangium in which 
cryptospores, in the form of permanent tetrads, are 
found, comes from the Llanvirn (Ordovician; 475 Ma) 
of Oman. Analysis of their wall ultrastructure supports 
a possible liverwort affinity (Wellman et  al. 2003). 
Other ultrastructural studies of cryptospore walls from 
Darriwilian-aged (467–458  Ma) material show the 
presence of homogeneous wall structure. This is a 
characteristic of living embryophytes where the layer 
is secreted by an active tapetum. The presence of a 
tapetum has been used to imply that these Ordovician 
cryptospores developed inside a sporangium, although 
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To gain an impression of how the earliest land plant veg-
etation may have looked, we must return and visit two places 
in the Welsh Basin, both in Shropshire. The first locality is 
from the latest Silurian (Přídolí, c. 419 Ma); a second  locality, 
a profile of the Brown Clee Hill, is about four million years 
younger. Very small but remarkably well-preserved mesofos-

Fig. 15.17 Fossil plant fragments from the Ordovician (Llanvirn, 475 million years ago) of Oman. (a) SEM of fragment of sporangium containing 
naked permanent tetrads. Note the presence of sporangium covering in the bottom right-hand corner (arrow). Scale bar 50 mm. (b) Close-up of a 
illustrating the spore contents. Scale bar 20 mm. (c) Close-up of a illustrating spores overlying the sporangium covering. Scale bar 20 mm. (d, e) 
Close-up of a illustrating individual spore tetrad. Scale bar 5 mm. (f) Specimen CW47f. SEM of relatively complete sporangium, with a large patch 
of sporangium covering preserved (arrow). Scale bar 75 mm. (g) Close-up of illustrating the nature of the sporangium covering. Scale bar 30 mm. 
(h) Specimen CW47i. SEM of an envelope-enclosed permanent tetrad that is preserved in a fragmentary sporangium. Note the muri ornamenting 
the envelope (arrow). Scale bar 10 mm. (Wellman et al. 2003. Nature 425(6955):248–9 © Springer Nature with permission)

AU9

AU10

AU11

fossilized sporangia of this antiquity are not known 
(Taylor et  al. 2017). Other cryptospores exhibit a 
multi-laminated wall as found in many liverwort 
spores. The extant liverwort Haplomitrium gibbsiae 
has also been shown to regularly produce cryptosporic 
permanent dyad pairs (Renzaglia et al. 2015).

The parent plant fossils from which cryptospores 
have been obtained were recently placed into the group 
cryptophytes. This is a basal group of early land plants 
such as those described by Edwards et  al. (2014). 
However, this category might not encompass all types 
known from the dispersed spore record. More recently, 
Cambrian forms have been referred to as streptophytic 
algae (in the plant clade), rather than a taxon related to 
other green algae (Strother 2016). Cryptospores 
(Fig.  15.18) dominated spore assemblages until the 
late Ordovician when a few trilete forms, single spores 
resulting from disassociated tetrads, appeared in small 
numbers. These became more diverse and abundant in 

the Silurian, particularly the Wenlock (Steemans et al. 
2009, 2010; Wellman et al. 2013).

The oldest trilete spores are known from the mid- 
to Late Ordovician of Saudi Arabia based on chitino-
zoan and acritarch biostratigraphy (Steemans et  al. 
2009). These forms range from Katian (453–445 Ma) 
to Hirnantian (see Chap. 14) and may represent the 
earliest evidence of vascular plants [U1548]. However, 
trilete spores occur in some mosses, although many 
are alete (without a lete mark). It remains probable 
that plants producing trilete monads may have come 
from a broader morphological group of basal 
embryophyta.

P. G. Gensel et al.
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sils containing cryptospores occur in both sites (e.g., Morris 
et al. 2018a). Based on studies from these localities, it is pos-
sible to say that producers of cryptospores grew to only a few 
millimeters in size and probably had a stature similar to 
small mosses (bryophytes) (Steemans et  al. 2009; Kenrick 
et al. 2012). Even at these small sizes, we can discriminate 
several different cryptophyte groups. Partitatheca includes 
plants with dichotomously branched axes terminated by spo-
rangia with stomata, which conform to a cooksonioid appear-
ance. But, these plants produced permanent dyads with a 
laminated spore-wall structure that are assigned to the dis-
persed spore genus Cymbohilates (Edwards et  al. 2012). 
Lenticulatheca, recognized in the same assemblage, has dis-
coid sporangia, containing similar dyads of the same group 
(Cymbohilates). Axes of Grisellatheca were terminated by 
short, dichotomously branched axes bearing slightly elon-
gate sporangia, and these contain permanent tetrads of the 
Tetrahedrates-type (Edwards et al. 2014). Dispersed forms 
of cryptospore occur earlier in southern Gondwana, and 
apparently radiated into Avalonia, then Euroamerica, and 
Baltica (Wellman et al. 2013).

15.10  Discussion

Patricia G. Gensel and Milan Libertin

Colonization of land by photosynthesizing plants is one of 
the most important evolutionary events in the history of the 
biosphere and appears to have occurred in several steps, 
beginning in the Late Ordovician, or possibly the Cambrian, 
and continuing into the Devonian (Strother and Taylor 2018). 
There are several requirements for an organism to survive 
and propagate on land. One critical abiotic parameter was the 
presence of an ozone layer, at least a weak one, to block cos-
mic (radioactive) and ultraviolet radiation, which damages 
cellular DNA.  Only after an ozone layer was generated, 
could organisms colonize land! Algae were the first plants to 
abandon fully marine chemistries and move, initially, into 
the intertidal brackish zone and, later, freshwater environ-
ments. Algal groups diversified during the early Paleozoic 
and included single-celled flagellated organisms to highly 
diversified thalli, measuring up to several meters in length. 
Some green algae, primarily brittleworts, Zygnematophyceae, 
and related charophycean algae achieved significant diver-
sity during the Ordovician, and it seems likely that they 

Fig. 15.18 Cryptospores. (a) Permanent spore tetrad in tightly attached tetrahedral configuration. Tetrahedraletes sp. of Hirnantian age. (b) 
Cryptospore spore tetrad in planar configuration, Tetraplanisporites of Hirnantian age. (c) Broken tetrahedral cryptospore tetrad of Imperfectotriletes 
vavrdovii; spores have broken away from a permanent tetrad. (d) Permanent cryptospore dyad, Dyadospora murusdensa. (e) Permanent crypto-
spore dyad, Dyadospora cf. D. murusattenuata. (f) Permanent cryptospore tetrad enclosed in a reticulate synoecosporal wall, Velatitetras cf. V. 
retimembrana. All originate from the Power Glen Formation, Hirnantian age. Balls Falls Provincial Park, Ontario, Canada. (Images courtesy of P 
Strother)
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Fig. 15.19 Cryptospores. (a) 
Permanent spore tetrad in 
tightly attached tetrahedral 
configuration. Tetrahedraletes 
sp. of Hirnantian age. (b) 
Cryptospore spore tetrad in 
planar configuration, 
Tetraplanisporites of 
Hirnantian age. (c) Broken 
tetrahedral cryptospore tetrad 
of Imperfectotriletes 
vavrdovii; spores have broken 
away from a permanent 
tetrad. (d) Permanent 
cryptospore dyad, 
Dyadospora murusdensa. (e) 
Permanent cryptospore dyad, 
Dyadospora cf. D. 
murusattenuata. (f) 
Permanent cryptospore tetrad 
enclosed in a reticulate 
synoecosporal wall, 
Velatitetras cf. V. 
retimembrana. All originate 
from the Power Glen 
Formation, Hirnantian age. 
Balls Falls Provincial Park, 
Ontario, Canada. (Images 
courtesy of P. Strother)AU12

Fig. 15.20 Phylogenetic relationships between the major Paleozoic plant groups (modified from Kenrick and Crane 1997)

P. G. Gensel et al.



inhabited shallow water settings and perpetually damp near-
shore environments. A move to conquer moist to dry land 
followed with the advent of evolutionary innovations 
[U1549]. Although the unfiltered sunlight on land facilitated 
photosynthesis, heat affected internal cellular water and 
nutrient relationships. To prevent desiccation, a sheathing in 
a resistant compound evolved. Several lines of evidence are 
used to clarify relationships of chlorophytes (green algae) 
and their descendants, including photosynthetic pigments 
(chlorophyll A and B), a common storage product (starch), 
and molecular features. Chlorophytes, though, are not closely 
related to terrestrial green plants. Rather, a separate branch 
of the green algae, the charophytes are considered to be their 
sister taxa (Fig. 15.20; McCourt et al. 2004). The emergence 
of terrestrial plants is still not well understood, because the 
soft tissue of these colonizers had a very low preservation 
potential.

Two primary hypotheses are put forth for the emergence 
of vascular plants. The first is that vascular plants evolved 
from mosses and their ancestors, plants that produced one 
type of sporangium (monosporangiate plants; Graham et al. 
2000). The alternative view is that they evolved from the pre-
decessors of hornworts, from plants in which more than one 
type of sporangia developed (polysporangiate; Puttick et al. 
2018). On the basis of the most recent phylogenetic analysis 
(Morris et  al. 2018b), it seems that vascular plants have a 
common ancestor with hornworts.

Beginning some 432 million years ago until the end of the 
Devonian, approximately 75  million years in duration, we 
have seen in this chapter a considerable change in plant type, 
size, diversity, and complexity. We have witnessed major 
innovations in plant organs such as the first appearance of 
leaves and roots, changing reproductive modes, and the evo-
lution of wood (secondary xylem; Box 15.5).

The end of our adventurous journey is the most important 
event in the history of plant evolution. This is their adapta-
tion from a fully aquatic to a fully terrestrial environment. In 
addition to features discussed earlier, this phenomenon is 
associated with the development of a two-parted life strat-
egy, involving evolution of a longer-lived, complex sporo-
phyte generation, along with adaptations necessary to sustain 
life on land. In plants other than bryophytes, an independent 
diploid sporophyte generation, namely the diploid roots, 
stems, and leaves represent an evolutionary novelty. 
Hypotheses as to the evolution of a dominant sporophyte- 
based plant include the homologous and antithetic theories.

The homologous origin of alternation of land plant gen-
erations that was originally introduced by Čelakovský (1874) 
supposes that land plants arose from ancestors of green algae 
with isomorphic (equal morphologies) haploid and diploid 
phases. On the other hand, the antithetic (or interpolation) 
hypothesis supposes a heteromorphic (two different mor-
phologies) haploid and diploid phase, where the haploid 
gametophyte phase was gradually reduced. The diploid spo-
rophyte became more complex as mitotic cell division in the 
zygote formed a multicellular structure as a result of delayed 
meiosis (Bower 1908). Ideas as to how this dominant sporo-
phyte generation evolved over the gametophyte are still 
under discussion, with ideas about Early Devonian gameto-
phytes recently presented (Kerp et al. 2003; Kenrick 2018).

Box 15.5: Evolution of Vascular Cambium Producing 
Secondary Xylem and Phloem
Gerrienne et  al. (2011) reported the occurrence of 
plant stems appearing similar in size and morphology 
to Psilophyton from the Pragian of France and the 
Emsian of New Brunswick. These fossils possess 
aligned conducting cells (tracheids) in their xylem 
associated with features typical of secondary xylem as 
is produced by the activity of newly activated stem 
cells referred to as a vascular cambium (VC). In extant 
plants, and in other groups with a VC, both secondary 
xylem and secondary phloem (food-conducting cells) 
are normally produced. But, in these plants, preserva-
tion ends outside the secondary xylem with the excep-
tion of a few squashed thin-walled cells that may be 
remnants of the VC.  This discovery pushes back in 

time the presence of secondary tissues, or wood, and 
suggests that perhaps attaining the type of wood preva-
lent in seed plants, characteristic of Devonian to recent 
plants, occurred in a stepwise manner.

Plants exhibiting secondary xylem include:

• Armoricaphyton chateaupannense (Strullu-Derrien 
et al. 2014); Pragian, France

• Unnamed plant (Gerrienne et  al. 2011; Gensel 
2018); Emsian, New Brunswick, Canada

• Franhueberia gerriennii (Hoffman and Tomescu 
2013); Emsian of Gaspé, Canada

• As yet undescribed trimerophyte (Gensel 2018); 
Emsian, Gaspé, Canada

All these fossils exhibit a haplostelic primary 
xylem, with up to 24 rows of aligned tracheids. These 
tracheids also show signs of a doubling in places and 
spaces where presumably less resistant cells of rays 
(typical of secondary xylem) occurred. The earliest 
occurrence of a bifacial VC, producing both secondary 
xylem and phloem, and also periderms, is Middle 
Devonian. This feature is found in aneurophytalean 
progymnosperms.
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Land plant diversification [U1550] significantly influ-
enced the development of the lithosphere and, in turn, other 
Earth systems in many different chemical and physical ways 
[U1551]. Probably, the most significant of these was that of 
soil development and the stabilization of continental sedi-
ments. Terrestrial plants affected weathering and erosion 
and, as a consequence, fluvial systems (Gibling and Davies 
2012; Gibling et al. 2014). The expansion and diversification 
of land plants impacted climate, especially in incorporation 
of CO2 into organic carbon that either was held by plants, 
incorporated into soil, or transported to the oceans (Berner 
and Kothavala 2001). The fossil record of this time period 
demonstrates that nearly every important phase of plant evo-
lution happened in the Devonian (and according to H.  P. 
Banks, “the rest is icing on the cake”).

15.11  Conclusions

As we have walked through these landscapes, it is clear that 
the earliest land plants, now extinct, were very different from 
those that we see around us at present and some interpreta-
tion is needed [U1552]. The earliest land plants of the latest 
Silurian and Early Devonian generally lacked recognizable 
roots and leaves and, in some cases, vascular tissue, giving 
one the impression that these were nothing more than 
branched sticks. Shortly thereafter, emergences begin to 
develop along these axes, increasing the body area over 
which photosynthesis could possibly occur. As internal water 
and gas exchange relationships became more complex, we 
find that two innovations evolve. The first is evidence of 
some type of vascular tissue, ranging from lignified tracheids 
similar to those in extant plants to water-conducting cells 
with different wall patterns, or no wall pattern more similar 
to bryophyte-grade conducting cells. The second is the 
appearance of stomata, regulatory structures that provide a 
means to move CO2 from the atmosphere to photosynthesiz-
ing cells, and let the byproduct, O2, be emitted back to the 
atmosphere despite the presence of a waterproof cuticle. As 
photosynthesis became more efficient and the need to uptake 
water increased, root-like and true root structures, many with 
mycorrhizal (fungal) associations, evolved. Propagation and 
population sustainability are always needed for any species 
to survive. Hence, the evolution of the sporangium, the struc-
ture in which meiosis occurs to produce haploid spores. 
Sporangia were borne first terminally or laterally on stems, 
singly or in groups. Sporangia vary widely in shape, pres-
ence, or absence and, if present, location on the stem, type of 
dehiscence structure, and spore type. But, releasing spores 
into a hostile environment also required protection from des-
iccation, a problem solved by terrestrial plant ancestors that 
had evolved a resistant and robust spore-wall chemical, spo-
ropollenin. These innovations set the stage for the conquest 

of all continental environments, the establishment of a myr-
iad of ecosystems, and an ever-changing planetary surface, 
with the comings and goings of plant groups over the course 
of the Phanerozoic.

Questions

 1. What defines a forest? When do the earliest forests 
occur? How are they different from extant ones? Be able 
to describe two types of plants that form the canopy of 
an early forest. What forms of preservation have enabled 
us to recognize the existence of forests? What limita-
tions do we have in terms of characterizing early 
forests?

 2. Where are plants preserved, and inferred to have grown, 
during the Late, Middle, and Early Devonian, respec-
tively? What type of vegetation was present?

 3. What is an embryophyte? A cryptophyte? Alga or 
fungus.

 4. Some plant stems, and/or sporangia, are covered with 
emergences, and these frequently are used to define 
taxa. What are these structures?

 5. Name several major innovations in plant size, anatomi-
cal organization, architecture, or reproduction that 
occurred in the Silurian-Devonian. What is the signifi-
cance of each in terms of changes to Earth systems or to 
the composition of vegetation types? What is the earliest 
record of each?

 6. What features distinguish a progymnosperm, such as 
Tetraxylopteris or Archaeopteris?

 7. What are three characteristics of early seed plants, and 
why are they significant for their survival?

 8. Know basic features of the four main lineages of early 
vascular plants (rhyniaceans, zosterophylls, trimero-
phytes, and progymnosperms) and provide an exemplar 
genus for each. Potential exemplar genera are Cooksonia, 
Sawdonia, Zosterophyllum, Psilophyton, Pertica, 
Rhynia, Aglaophyton

 9. Lycopsids (zosterophylls + Lycophytes) are known to be 
a distinct lineage since the late Silurian. What defines a 
lycophyte versus a zosterophyll? When do lycopsids 
become tree-like? Are they similar today?

 10. What role did the following plants play in structuring 
vegetation, affecting soils or Earth processes, or in evolu-
tionary changes in lineages? Eospermatopteris/Wattieza, 
Rhacophyton, Archaeopteris, Protolepidodendropsis, 
Leclercqia, Elkinsia, and its relatives.

 11. What is a Fossil Lagerstätte? Why might the Rhynie 
chert be considered a Fossil Lagerstätte?

 12. Some paleobotanists suggest that lichens, which today 
are pioneer plants in establishing soils, existed during 
the Devonian. What taxa may represent lichens? Fungi? 
How might nematophytes address this question?

P. G. Gensel et al.
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