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Abstract

We consider a class of homogeneous partial differential operators on a finite-dimensional vector space
and study their associated heat kernels. The heat kernels for this general class of operators are seen
to arise naturally as the limiting objects of the convolution powers of complex-valued functions on
the square lattice in the way that the classical heat kernel arises in the (local) central limit theorem.
These so-called positive-homogeneous operators generalize the class of semi-elliptic operators in the
sense that the definition is coordinate-free. More generally, we introduce a class of variable-coefficient
operators, each of which is uniformly comparable to a positive-homogeneous operator, and we study the
corresponding Cauchy problem for the heat equation. Under the assumption that such an operator has
Hölder continuous coefficients, we construct a fundamental solution to its heat equation by the method
of E. E. Levi, adapted to parabolic systems by A. Friedman and S. D. Eidelman. Though our results in
this direction are implied by the long-known results of S. D. Eidelman for 2~b-parabolic systems, our focus
is to highlight the role played by the Legendre-Fenchel transform in heat kernel estimates. Specifically,
we show that the fundamental solution satisfies an off-diagonal estimate, i.e., a heat kernel estimate,
written in terms of the Legendre-Fenchel transform of the operator’s principal symbol–an estimate which
is seen to be sharp in many cases.
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1 Introduction

In this article, we consider a class of homogeneous partial differential operators on a finite dimensional
vector space and study their associated heat kernels. These operators, which we call nondegenerate-
homogeneous operators, are seen to generalize the well-studied classes of semi-elliptic operators introduced
by F. Browder [13], also known as quasielliptic operators [62], and a special “positive” subclass of semi-
elliptic operators which appear as the spatial part of S. D. Eidelman’s 2~b-parabolic operators [36]. In
particular, this class of operators contains all integer powers of the Laplacian. We begin this introduction
by motivating the study of these homogeneous operators by first demonstrating the natural appearance of
their heat kernels in the study of convolution powers of complex valued functions. To this end, consider a
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finitely supported function φ : Zd → C and define its convolution powers iteratively by

φ(n)(x) =
∑
y∈Zd

φ(n−1)(x− y)φ(y)

for x ∈ Zd where φ(1) = φ. In the special case that φ is a probability distribution, i.e., φ is non-
negative and has unit mass, φ drives a random walk on Zd whose nth-step transition kernels are given
by kn(x, y) = φ(n)(y−x). Under certain mild conditions on the random walk, φ(n) is well-approximated by
a single Gaussian density; this is the classical local limit theorem. Specifically, for a symmetric, aperiodic
and irreducible random walk, the theorem states that

φ(n)(x) = n−d/2Gφ(x/
√
n) + o(n−d/2)

uniformly for x ∈ Zd, where Gφ is the generalized Gaussian density

Gφ(x) =
1

(2π)d

∫
Rd

exp
(
− ξ · Cφξ

)
e−ix·ξ dξ =

1

(2π)d/2
√

detCφ
exp

(
−
x · Cφ−1x

2

)
; (1)

here, Cφ is the positive definite covariance matrix associated to φ and · denotes the dot product [48,53,57].
The canonical example is that in which Cφ = I (e.g. Simple Random Walk) and in this case φ(n) is
approximated by the so-called heat kernel

Kn
(−∆)(x) = n−d/2Gφ(x/

√
n) = (2πn)−d/2 exp

(
−|x|

2

2n

)
.

In addition to its natural appearance as the attractor in the local limit theorem, Kt
(−∆)(x) is a fundamental

solution to the heat equation
∂t + (−∆) = 0.

In fact, this connection to random walk underlies the heat equation’s probabilistic/diffusive interpretation.
Beyond the probabilistic setting, this link between convolution powers and fundamental solutions to partial
differential equations persists as can be seen in the following examples.

Example 1. Consider φ : Z2 → C defined by

φ(x1, x2) =
1

22 + 2
√

3
×



8 (x1, x2) = (0, 0)

5 +
√

3 (x1, x2) = (±1, 0)

−2 (x1, x2) = (±2, 0)

i(
√

3− 1) (x1, x2) = (±1,−1)

−i(
√

3− 1) (x1, x2) = (±1, 1)

2∓ 2i (x1, x2) = (0,±1)

0 otherwise.
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(a) Re(φ(n)) for n = 100
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(b) Re(e−iπx2/3Kn
Λ) for n = 100

Figure 1: The graphs of Re(φ(n)) and Re(e−iπx2/3Kn
Λ) for n = 100.

Analogous to the probabilistic setting, the large n behavior of φ(n) is described by a generalized local
limit theorem in which the attractor is a fundamental solution to a heat-type equation. Specifically, the
following local limit theorem holds (see [53] for details):

φ(n)(x1, x2) = e−iπx2/3Kn
Λ(x1, x2) + o(n−3/4)

uniformly for (x1, x2) ∈ Z2 where KΛ is the “heat” kernel for the heat-type equation ∂t + Λ = 0 where

Λ =
1

22 + 2
√

3

(
2∂4

x1
− i(
√

3− 1)∂2
x1
∂x2 − 4∂2

x2

)
.

This local limit theorem is illustrated in Figure 1 which shows Re(φ(n)) and the approximation Re(e−iπx2/3Kn
Λ)

when n = 100.

Example 2. Consider φ : Z2 → R defined by φ = (φ1 + φ2)/512, where

φ1(x1, x2) =



326 (x1, x2) = (0, 0)

20 (x1, x2) = (±2, 0)

1 (x1, x2) = (±4, 0)

64 (x1, x2) = (0,±1)

−16 (x1, x2) = (0,±2)

0 otherwise

and φ2(x1, x2) =



76 (x1, x2) = (1, 0)

52 (x1, x2) = (−1, 0)

∓4 (x1, x2) = (±3, 0)

∓6 (x1, x2) = (±1, 1)

∓6 (x1, x2) = (±1,−1)

±2 (x1, x2) = (±3, 1)

±2 (x1, x2) = (±3,−1)

0 otherwise.
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(a) φ(n) for n = 10, 000 (b) Kn
Λ for n = 10, 000

Figure 2: The graphs of φ(n) and Kn
Λ for n = 10, 000.

In this example, the following local limit theorem, which is illustrated by Figure 2, describes the limiting
behavior of φ(n). We have

φ(n)(x1, x2) = Kn
Λ(x1, x2) + o(n−5/12)

uniformly for (x1, x2) ∈ Z2 where KΛ is again a fundamental solution to ∂t + Λ = 0 where, in this case,

Λ =
1

64

(
−∂6

x1
+ 2∂4

x2
+ 2∂3

x1
∂2
x2

)
.

Example 3. Consider φ : Z2 → R defined by

φ(x, y) =



3/8 (x1, x2) = (0, 0)

1/8 (x1, x2) = ±(1, 1)

1/4 (x1, x2) = ±(1,−1)

−1/16 (x1, x2) = ±(2,−2)

0 otherwise.

Here, the following local limit theorem is valid:

φ(n)(x1, x2) =
(

1 + eiπ(x1+x2)
)
Kn

Λ(x1, x2) + o(n−3/4)

uniformly for (x1, x2) ∈ Z2. Here again, the attractor KΛ is the fundamental solution to ∂t + Λ = 0 where

Λ = −1

8
∂2
x1

+
23

384
∂4
x1
− 1

4
∂x1∂x2 −

25

96
∂3
x1
∂x2 −

1

8
∂2
x2

+
23

64
∂2
x1
∂2
x2
− 25

96
∂x1∂

3
x2

+
23

384
∂4
x2
.
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The operators appearing in the above examples share two important properties: homogeneity and pos-
itivity. While we make these notions precise in the next section, loosely speaking, homogeneity is the
property that Λ “plays well” with some dilation structure on Rd, though this structure is different in each
example. Further, homogeneity for Λ is reflected by an analogous one for the corresponding heat kernel
KΛ; in fact, the specific dilation structure is, in some sense, selected by φ(n) as n → ∞ and leads to
the corresponding local limit theorem. We encourage the reader to see the recent article [53] for a more
thorough study of these examples and, in general, a more through study of local limit theorems. As we
have often found–through local limit theorems and otherwise–knowledge of the attractor KΛ informs our
study of convolution powers (see Theorem 1.6 and Section 5.1 of [53]).

The prototypical examples of homogeneous operators considered in this article are the so-called semi-
elliptic operators originally introduced by F. Browder in [13] and shortly appearing thereafter in L.
Hörmander’s treatise on linear partial differential operators [45, 46]. Given d-tuple of positive integers
n = (n1, n2, . . . , nd) ∈ Nd+ and a multi-index β = (β1, β2, . . . , βd) ∈ Nd, set |β : n| =

∑d
k=1 βk/nk. Consider

the constant coefficient partial differential operator

Λ =
∑
|β:n|≤1

aβD
β

with principal part (relative to n)

Λp =
∑
|β:n|=1

aβD
β,

where aβ ∈ C and Dβ = (i∂x1)β1(i∂x2)β2 · · · (i∂xd)βd for each multi-index β ∈ Nd. Such an operator is
said to be semi-elliptic if the symbol of Λp, defined by Pp(ξ) =

∑
|β:n|=1 aβξ

β for ξ ∈ Rd, is non-vanishing
away from the origin. If Λ satisfies the stronger condition that RePp(ξ) is strictly positive away from the
origin, we say that it is positive-semi-elliptic. What seems to be the most important property of semi-
elliptic operators is that their principal part Λp is homogeneous in the following sense: If given any smooth
function f we put δt(f)(x) = f(t1/n1x1, t

1/n2x2, . . . , t
1/ndxd) for all t > 0 and x = (x1, x2, . . . , xd) ∈ Rd,

then
tΛ = δ1/t ◦ Λp ◦ δt

for all t > 0. This homogeneous structure was used explicitly in the work of F. Browder and L. Hörmander
and, in this article, we generalize this notion. Our generalization captures the operators appearing in
Examples 1, 2 and 3.

As mentioned above, the class of semi-elliptic operators was introduced by F. Browder in [13] who
studied spectral asymptotics for a related class of variable-coefficient operators (operators of constant
strength). Semi-elliptic operators appeared later in L. Hörmander’s text [45] as model examples of hypoel-
liptic operators on Rd beyond the class of elliptic operators. Around the same time L. R. Volevich [62]
independently introduced the same class of operators but instead called them “quasi-elliptic”. Since then,
the theory of semi-elliptic operators, and hence quasi-elliptic operators, has reached a high level of sophis-
tication and we refer the reader to the articles [1–5,13,43–47,58,60], which use the term semi-elliptic, and
the articles [10–12, 15, 18–33, 40, 50, 52, 59, 61, 62], which use the term quasi-elliptic, for an account of this
theory. We would also like to point to the 1971 paper of M. Troisi [59] which gives a more complete list of
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references (pertaining to quasi-elliptic operators).

Shortly after F. Browder’s paper [13] appeared, S. D. Eidelman considered a subclass of semi-elliptic
operators on Rd+1 = R⊕ Rd (and systems thereof) of the form

∂t +
∑

|β:2m|≤1

aβD
β = ∂t +

∑
|β:m|≤2

aβD
β, (2)

where m ∈ Nd+ and the coefficients aβ are functions of x and t. Such an operator is said to be 2m-parabolic
if its spatial part,

∑
|β:2m|≤1 aβD

β, is (uniformly) positive-semi-elliptic. We note however that Eidelman’s

work and the existing literature refer exclusively to 2~b-parabolic operators, i.e., where m = ~b, and for
consistency we write 2~b-parabolic henceforth [36, 37]. The relationship between positive-semi-elliptic op-
erators and 2~b-parabolic operators is analogous to the relationship between the Laplacian and the heat
operator and, in the context of this article, the relationship between nondegenerate-homogeneous and
positive-homogeneous operators described by Proposition 2.4. The theory of 2~b-parabolic operators, which
generalizes the theory of parabolic partial differential equations (and systems), has seen significant ad-
vancement by a number of mathematicians since Eidelman’s original work. We encourage the reader to see
the recent text [37] which provides an account of this theory and an exhaustive list of references. It should
be noted however that the literature encompassing semi-elliptic operators and quasi-elliptic operators, as
far as we can tell, has very few cross-references to the literature on 2~b-parabolic operators beyond the
1960’s. We suspect that the absence of cross-references is due to the distinctness of vocabulary.

Returning to our discussion of convolution power examples, we note that the operators appearing in
Examples 1 and 2 are both positive-semi-elliptic and consist only of their principal parts. This is easily
verified, for n = (4, 2) = 2(2, 1) in Example 1 and n = (6, 4) = 2(3, 2) in Example 2. In contrast to
Examples 1 and 2, the operator Λ which appears in Example 3 is not semi-elliptic in the given coordinate
system. After careful study, the Λ appearing in Example 3 can be written equivalently as

Λ = −1

8
∂2
v1

+
23

384
∂4
v2

(3)

where ∂v1 is the directional derivative in the v1 = (1, 1) direction and ∂v2 is the directional derivative in
the v2 = (1,−1) direction. In this way, Λ is seen to be semi-elliptic with respect to some basis {v1, v2} of
R2. For this reason, our formulation of nondegenerate-homogeneous operators (and positive-homogeneous
operators), given in the next section, is made in a basis independent way.

The subject of this paper is an account of positive-homogeneous operators, a class of operators which
generalize semi-elliptic operators, and their corresponding heat equations. In Section 2, we introduce
positive-homogeneous operators and study their basic properties; therein, we show that each positive-
homogeneous operator is semi-elliptic in some coordinate system. Section 3 develops the necessary back-
ground to introduce the class of variable-coefficient operators studied in this article; this is the class of
(2m,v)-positive-semi-elliptic operators introduced in Section 4–each of which is comparable to a constant-
coefficient positive-homogeneous operator. In Section 5, we study the heat equations corresponding to
uniformly (2m,v)-positive-semi-elliptic operators with Hölder continuous coefficients. Specifically, we use
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the famous method of E. E. Levi, adapted to parabolic systems by A. Friedman and S. D. Eidelman, to
construct a fundamental solution to the corresponding heat equation. Our results in this direction are
captured by those of S. D. Eidelman [36] and the works of his collaborators, notably S. D. Ivashyshen and
A. N. Kochubei [37], concerning 2~b-parabolic systems. Our focus in this presentation is to highlight the
essential role played by the Legendre-Fenchel transform in heat kernel estimates which, to our knowledge,
has not been pointed out in the context of semi-elliptic operators. In a forthcoming work, we study an
analogous class of operators, written in divergence form, with measurable-coefficients and their correspond-
ing heat kernels. This class of measurable-coefficient operators does not appear to have been previously
studied. The results presented here, using the Legendre-Fenchel transform, provides the background and
context for our work there.

1.1 Preliminaries

Fourier Analysis: Our setting is a real d-dimensional vector space V equipped with Haar (Lebesgue)
measure dx and the standard smooth structure; we do not affix V with a norm or basis. The dual space
of V is denoted by V∗ and the dual pairing is denoted by ξ(x) for x ∈ V and ξ ∈ V∗. Let dξ be the
Haar measure on V∗ which we take to be normalized so that our convention for the Fourier transform and
inverse Fourier transform, given below, makes each unitary. Throughout this article, all functions on V and
V∗ are understood to be complex-valued. The usual Lebesgue spaces are denoted by Lp(V) = Lp(V, dx)
and equipped with their usual norms ‖ · ‖p for 1 ≤ p ≤ ∞. In the case that p = 2, the corresponding
inner product on L2(V) is denoted by 〈·, ·〉. Of course, we will also work with L2(V∗) := L2(V∗, dξ); here
the L2-norm and inner product will be denoted by ‖ · ‖2∗ and 〈·, ·〉∗ respectively. The Fourier transform
F : L2(V)→ L2(V∗) and inverse Fourier transform F−1 : L2(V∗)→ L2(V) are initially defined for Schwartz
functions f ∈ S(V) and g ∈ S(V∗) by

F(f)(ξ) = f̂(ξ) =

∫
V
eiξ(x)f(x) dx and F−1(g)(x) = ǧ(x) =

∫
V∗
e−iξ(x)g(ξ) dξ

for ξ ∈ V∗ and x ∈ V respectively.
For the remainder of this article (mainly when duality isn’t of interest), W stands for any real d-

dimensional vector space (and so is interchangeable with V or V∗). For a non-empty open set Ω ⊆W , we
denote by C(Ω) and Cb(Ω) the set of continuous functions on Ω and bounded continuous functions on Ω,
respectively. The set of smooth functions on Ω is denoted by C∞(Ω) and the set of compactly supported
smooth functions on Ω is denoted by C∞0 (Ω). We denote by D′(Ω) the space of distributions on Ω; this
is dual to the space C∞0 (Ω) equipped with its usual topology given by seminorms. A partial differential
operator H on W is said to be hypoelliptic if it satisfies the following property: Given any open set Ω ⊆W
and any distribution u ∈ D′(Ω) which satisfies Hu = 0 in Ω, then necessarily u ∈ C∞(Ω).

Dilation Structure: Denote by End(W ) and Gl(W ) the set of endomorphisms and isomorphisms of W
respectively. Given E ∈ End(W ), we consider the one-parameter group {tE}t>0 ⊆ Gl(W ) defined by

tE = exp((log t)E) =

∞∑
k=0

(log t)k

k!
Ek
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for t > 0. These one-parameter subgroups of Gl(W ) allow us to define continuous one-parameter groups
of operators on the space of distributions as follows: Given E ∈ End(W ) and t > 0, first define δEt (f) for
f ∈ C∞0 (W ) by δEt (f)(x) = f(tEx) for x ∈ W . Extending this to the space of distribution on W in the
usual way, the collection {δEt }t>0 is a continuous one-parameter group of operators on D′(W ); it will allow
us to define homogeneity for partial differential operators in the next section.

Linear Algebra and Polynomials: Given a basis w = {w1, w2, . . . , wd} of W , we define the map
φw : W → Rd by setting φw(w) = (x1, x2, . . . , xd) whenever w =

∑d
l=1 xlwl. This map defines a global

coordinate system on W ; any such coordinate system is said to be a linear coordinate system on W . By
definition, a polynomial on W is a function P : W → C that is a polynomial function in every (and
hence any) linear coordinate system on W . A polynomial P on W is called a nondegenerate polynomial if
P (w) 6= 0 for all w 6= 0. Further, P is called a positive-definite polynomial if its real part, R = ReP , is
non-negative and has R(w) = 0 only when w = 0.

The Rest: Finally, the symbols R,C,Z mean what they usually do, N denotes the set of non-negative
integers and I = [0, 1] ⊆ R. The symbols R+, N+ and I+ denote the set of strictly positive elements of R, N
and I respectively. Likewise, Rd+, Nd+ and Id+ respectively denote the set of d-tuples of these aforementioned
sets. We say that two real-valued functions f and g on a set X are comparable if, for some positive constant
C, C−1f(x) ≤ g(x) ≤ Cf(x) for all x ∈ X; in this case we write f � g. Adopting the summation notation
for semi-elliptic operators of L. Hörmander’s treatise [46], for a fixed n = (n1, n2, . . . , nd) ∈ Nd+, we write

|β : n| =
d∑

k=1

βk
mk

.

for all multi-indices β = (β1, β2, . . . , βd) ∈ Nd. Finally, throughout the estimates made in this article,
constants denoted by C will change from line to line without explicit mention.

2 Homogeneous operators

In this section we introduce two important classes of homogeneous constant-coefficient on V. These op-
erators will serve as “model” operators in our theory in the way that integer powers of the Laplacian
serves a model operators in the elliptic theory of partial differential equations. To this end, let Λ be a
constant-coefficient partial differential operator on V and let P : V∗ → C be its symbol. Specifically, P is
the polynomial on V∗ defined by P (ξ) = e−iξ(x)Λ(eiξ(x)) for ξ ∈ V∗ (this is independent of x ∈ V precisely
because Λ is a constant-coefficient operator). We first introduce the following notion of homogeneity of
operators; it is mirrored by an analogous notion for symbols which we define shortly.

Definition 2.1. Given E ∈ End(V), we say that a constant-coefficient partial differential operator Λ is
homogeneous with respect to the one-parameter group {δEt } if

δE1/t ◦ Λ ◦ δEt = tΛ

for all t > 0; in this case we say that E is a member of the exponent set of Λ and write E ∈ Exp(Λ).
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A constant-coefficient partial differential operator Λ need not be homogeneous with respect to a unique
one-parameter group {δEt }, i.e., Exp(Λ) is not necessarily a singleton. For instance, it is easily verified
that, for the Laplacian −∆ on Rd,

Exp(−∆) = 2−1I + od

where I is the identity and od is the Lie algebra of the orthogonal group, i.e., is given by the set of
skew-symmetric matrices. Despite this lack of uniqueness, when Λ is equipped with a nondegenerateness
condition (see Definition 2.2), we will find that trace is the same for each member of Exp(Λ) and this
allows us to uniquely define an “order” for Λ; this is Lemma 2.10.

Given a constant coefficient operator Λ with symbol P , one can quickly verify that E ∈ Exp(Λ) if and only
if

tP (ξ) = P (tF ξ) (4)

for all t > 0 and ξ ∈ V∗ where F = E∗ is the adjoint of E. More generally, if P is any continuous function
on W and (4) is satisfied for some F ∈ End(V∗), we say that P is homogeneous with respect to {tF } and
write F ∈ Exp(P ). This admitted slight abuse of notation should not cause confusion. In this language,
we see that E ∈ Exp(Λ) if and only if E∗ ∈ Exp(P ).

We remark that the notion of homogeneity defined above is similar to that put forth for homogeneous
operators on homogeneous (Lie) groups, e.g., Rockland operators [38]. The difference is mostly a matter of
perspective: A homogeneous group G is equipped with a fixed dilation structure, i.e., it comes with a one-
parameter group {δt}, and homogeneity of operators is defined with respect to this fixed dilation structure.
By contrast, we fix no dilation structure on V and formulate homogeneity in terms of an operator Λ and
the existence of a one-parameter group {δEt } that “plays” well with Λ in sense defined above. As seen in
the study of convolution powers on the square lattice (see [53]), it useful to have this freedom.

Definition 2.2. Let Λ be constant-coefficient partial differential operator on V with symbol P . We say
that Λ is a nondegenerate-homogeneous operator if P is a nondegenerate polynomial and Exp(Λ) contains a
diagonalizable endomorphism. We say that Λ is a positive-homogeneous operator if P is a positive-definite
polynomial and Exp(Λ) contains a diagonalizable endomorphism.

For any polynomial P on a finite-dimensional vector space W , P is said to be nondegenerate-homogeneous
if P is nondegenerate and Exp(P ), defined as the set of F ∈ End(W ) for which (4) holds, contains a
diagonalizable endomorphism. We say that P is positive-homogeneous if it is a positive-definite polynomial
and Exp(P ) contains a diagonalizable endomorphism. In this language, we have the following proposition.

Proposition 2.3. Let Λ be a positive homogeneous operator on V with symbol P . Then Λ is a nondegenerate-
homogeneous operator if and only if P is a nondegenerate-homogeneous polynomial. Further, Λ is a positive-
homogeneous operator if and only if P is a positive-homogeneous polynomial.

Proof. Since the adjectives “nondegenerate” and “positive”, in the sense of both operators and polynomials,
are defined in terms of the symbol P , all that needs to be verified is that Exp(Λ) contains a diagonalizable
endomorphism if and only if Exp(P ) contains a diagonalizable endomorphism. Upon recalling that E ∈
Exp(Λ) if and only if E∗ ∈ Exp(P ), this equivalence is verified by simply noting that diagonalizability is
preserved under taking adjoints.
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Remark 1. To capture the class of nondegenerate-homogeneous operators (or positive-homogeneous oper-
ators), in addition to requiring that that the symbol P of an operator Λ be nondegenerate (or positive-
definite), one can instead demand only that Exp(Λ) contains an endomorphism whose characteristic poly-
nomial factors over R or, equivalently, whose spectrum is real. This a priori weaker condition is seen to
be sufficient by an argument which makes use of the Jordan-Chevalley decomposition. In the positive-
homogeneous case, this argument is carried out in [53] (specifically Proposition 2.2) wherein positive-
homogeneous operators are first defined by this (a priori weaker) condition. For the nondegenerate case,
the same argument pushes through with very little modification.

We observe easily that all positive-homogeneous operators are nondegenerate-homogeneous. It is the “heat”
kernels corresponding to positive-homogeneous operators that naturally appear in [53] as the attractors of
convolution powers of complex-valued functions. The following proposition highlights the interplay between
positive-homogeneity and nondegenerate-homogeneity for an operator Λ on V and its corresponding “heat”
operator ∂t + Λ on R⊕ V.

Proposition 2.4. Let Λ be a constant-coefficient partial differential operator on V whose exponent set
Exp(Λ) contains a diagonalizable endomorphism. Let P be the symbol of Λ, set R = ReP , and assume
that there exists ξ ∈ V∗ for which R(ξ) > 0. We have the following dichotomy: Λ is a positive-homogeneous
operator on V if and only if ∂t + Λ is a nondegenerate-homogeneous operator on R⊕ V.

Proof. Given a diagonalizable endomorphism E ∈ Exp(Λ), set E1 = I ⊕ E where I is the identity on R.
Obviously, E1 is diagonalizable. Further, for any f ∈ C∞0 (R⊕ V),(

(∂t + Λ) ◦ δE1
s

)
(f)(t, x) =

(
∂t
(
f
(
st, sEx

))
+ Λ

(
f
(
st, sEx

)))
= s(∂t + Λ)(f)(st, sEx) = s

(
δE1
s ◦ (∂t + Λ)

)
(f)(t, x)

for all s > 0 and (t, x) ∈ R⊕ V. Hence

δE1

1/s ◦ (∂t + Λ) ◦ δE1
t = s(∂t + Λ)

for all s > 0 and therefore E1 ∈ Exp(∂t + Λ).
It remains to show that P is positive-definite if and only if the symbol of ∂t + Λ is nondegenerate. To

this end, we first compute the symbol of ∂t + Λ which we denote by Q. Since the dual space of R ⊕ V is
isomorphic to R⊕V∗, the characters of R⊕V are represented by the collection of maps (R⊕ V) 3 (t, x) 7→
exp(−i(τt+ ξ(x))) where (τ, ξ) ∈ R⊕ V∗. Consequently,

Q(τ, ξ) = e−i(τt+ξ(x)) (∂t + Λ) (ei(τt+ξ(x)) = iτ + P (ξ)

for (τ, ξ) ∈ R⊕ V∗. We note that P (0) = 0 because E∗ ∈ Exp(P ); in fact, this happens whenever Exp(P )
is non-empty. Now if P is a positive-definite polynomial, ReQ(τ, ξ) = ReP (ξ) = R(ξ) > 0 whenever
ξ 6= 0. Thus to verify that Q is a nondegenerate polynomial, we simply must verify that Q(τ, 0) 6= 0 for
all non-zero τ ∈ R. This is easy to see because, in light of the above fact, Q(τ, 0) = iτ + P (0) = iτ 6= 0
whenever τ 6= 0 and hence Q is nondegenerate. For the other direction, we demonstrate the validity of
the contrapositive statement. Assuming that P is not positive-definite, an application of the intermediate
value theorem, using the condition that R(ξ) > 0 for some ξ ∈ V∗, guarantees that R(η) = 0 for some
non-zero η ∈ V∗. Here, we observe that Q(τ, η) = i(τ + ImP (η)) = 0 when (τ, η) = (− ImP (η), η) and
hence Q is not nondegenerate.
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We will soon return to the discussion surrounding a positive-homogeneous operator Λ and its heat operator
∂t + Λ. It is useful to first provide representation formulas for nondegenerate-homogeneous and positive-
homogeneous operators. Such representations connect our homogeneous operators to the class of semi-
elliptic operators discussed in the introduction. To this end, we define the “base” operators on V. First,
for any element u ∈ V, we consider the differential operator Du : D′(V) → D′(V) defined originally for
f ∈ C∞0 (V) by

(Duf)(x) = i
∂f

∂u
(x) = i

(
lim
t→0

f(x+ tu)− f(x)

t

)
for x ∈ V. Fixing a basis v = {v1, v2, . . . , vd} of V, we introduce, for each multi-index β ∈ Nd, Dβ

v =
(Dv1)β1 (Dv2)β2 · · · (Dvd)

βd .

Proposition 2.5. Let Λ be a nondegenerate-homogeneous operator on V. Then there exist a basis v =
{v1, v2, . . . , vd} of V and n = (n1, n2, . . . , nd) ∈ Nd+ for which

Λ =
∑
|β:n|=1

aβD
β
v. (5)

where {aβ} ⊆ C. The isomorphism En
v ∈ Gl(V), defined by En

vvk = (1/nk)vk for k = 1, 2, . . . , d, is a
member of Exp(Λ). Further, if Λ is positive-homogeneous, then n = 2m for m = (m1,m2, . . . ,md) ∈ Nd+
and hence

Λ =
∑
|β:m|=2

aβD
β
v.

We will sometimes refer to the n and m of the proposition as weights. Before addressing the proposition,
we first prove the following mirrored result for symbols.

Lemma 2.6. Let P be a nondegenerate-homogeneous polynomial on a d-dimensional real vector space W.
Then there exists a basis w = {w1, w2, . . . , wd} of W and n = (n1, n2, . . . , nd) ∈ Nd+ for which

P (ξ) =
∑
|β:n|=1

aβξ
β

for all ξ = ξ1w1+ξ2w2+· · ·+ξdwd ∈W where ξβ := (ξ1)β1 (ξ2)β2 · · · (ξd)βd and {aβ} ⊆ C. The isomorphism
En

w ∈ Gl(V), defined by En
wwk = (1/nk)wk for k = 1, 2, . . . , d, is a member of Exp(P ). Further, if P is a

positive-definite polynomial, i.e., it is positive-homogeneous, then n = 2m for m = (m1,m2, . . . ,md) ∈ Nd+
and hence

P (ξ) =
∑
|β:m|=2

aβξ
β

for ξ ∈W .

Proof. Let E ∈ Exp(P ) be diagonalizable and select a basis w = {w1, w2, . . . , wd} which diagonalizes E,
i.e., Ewk = δkwk where δk ∈ R for k = 1, 2, . . . , d. Because P is a polynomial, there exists a finite collection
{aβ} ⊆ C for which

P (ξ) =
∑
β

aβξ
β

11



for ξ ∈W . By invoking the homogeneity of P with respect to E and using the fact that tEwk = tδkwk for
k = 1, 2, . . . , d, we have

t
∑
β

aβξ
β =

∑
β

aβ(tEξ)β =
∑
β

aβt
δ·βξβ

for all ξ ∈W and t > 0 where δ · β = δ1β1 + δ2β2 + · · ·+ δdβd. In view of the nondegenerateness of P , the
linear independence of distinct powers of t and the polynomial functions ξ 7→ ξβ, for distinct multi-indices
β, as C∞ functions ensures that aβ = 0 unless β · δ = 1. We can therefore write

P (ξ) =
∑
β·δ=1

aβξ
β (6)

for ξ ∈ W . We now determine δ = (δ1, δ2, . . . , δd) by evaluating this polynomial along the coordinate
axes. To this end, by fixing k = 1, 2, . . . , d and setting ξ = xwk for x ∈ R, it is easy to see that the
summation above collapses into a single term aβx

|β| where β = |β|ek = (1/δk)ek (here ek denotes the usual
kth-Euclidean basis vector in Rd). Consequently, nk := 1/δk ∈ N+ for k = 1, 2, . . . , d and thus, upon
setting n = (n1, n2, . . . , nd), (6) yields

P (ξ) =
∑
|β:n|=1

aβξ
β

for all ξ ∈ W as was asserted. In this notation, it is also evident that En
w = E ∈ Exp(P ). Under the

additional assumption that P is positive-definite, we again evaluate P at the coordinate axes to see that
ReP (xwk) = Re(ankek)xnk for x ∈ R. In this case, the positive-definiteness of P requires Re(ankek) > 0 and
nk ∈ 2N+ for each k = 1, 2, . . . , d. Consequently, n = 2m for m = (m1,m2, . . . ,md) ∈ Nd+ as desired.

Proof of Proposition 2.5. Given a nondegenerate-homogeneous Λ on V with symbol P , P is necessarily a
nondegenerate-homogeneous polynomial on V∗ in view of Proposition 2.3. We can therefore apply Lemma
2.6 to select a basis v∗ = {v∗1, v∗2, . . . , v∗d} of V∗ and n = (n1, n2, . . . , nd) ∈ Nd+ for which

P (ξ) =
∑
|β:n|=1

aβξ
β (7)

for all ξ = ξ1v
∗
1 + ξ2v

∗
2 + · · · ξdv∗d where {aβ} ⊆ C. We will denote by v, the dual basis to v∗, i.e.,

v = {v1, v2, . . . , vd} is the unique basis of V for which v∗k(vl) = 1 when k = l and 0 otherwise. In view
of the duality of the bases v and v∗, it is straightforward to verify that, for each multi-index β, the
symbol of Dβ

v is ξβ in the notation of Lemma 2.6. Consequently, the constant-coefficient partial differential
operator defined by the right hand side of (5) also has symbol P and so it must be equal to Λ because
operators and symbols are in one-to-one correspondence. Using (5), it is now straightforward to verify that
En

v ∈ Exp(Λ). The assertion that n = 2m when Λ is positive-homogeneous follows from the analogous
conclusion of Lemma 2.6 by the same line of reasoning.

In view of Proposition 2.5, we see that all nondegenerate-homogeneous operators are semi-elliptic in some
linear coordinate system (that which is defined by v). An appeal to Theorem 11.1.11 of [46] immediately
yields the following corollary.

Corollary 2.7. Every nondegenerate-homogeneous operator Λ on V is hypoelliptic.

12



Our next goal is to associate an “order” to each nondegenerate-homogeneous operator. For a positive-
homogeneous operator Λ, this order will be seen to govern the on-diagonal decay of its heat kernel KΛ

and so, equivalently, the ultracontractivity of the semigroup e−tΛ. With the help of Lemma 2.6, the few
lemmas in this direction come easily.

Lemma 2.8. Let P be a nondegenerate-homogeneous polynomial on a d-dimensional real vector space W .
Then limξ→∞ |P (ξ)| =∞; here ξ →∞ means that |ξ| → ∞ in any (and hence every) norm on W .

Proof. The idea of the proof is to construct a function which bounds |P | from below and obviously blows
up at infinity. To this end, let w be a basis for W and take n ∈ Nd+ as guaranteed by Lemma 2.6; we have
En

w ∈ Exp(P ) where En
wwk = (1/nk)wk for k = 1, 2, . . . , d. Define | · |nw : W → [0,∞) by

|ξ|nw =

d∑
k=1

|ξk|nk

where ξ = ξ1w1+ξ2w2+· · ·+ξdwd ∈W . We observe immediately En
w ∈ Exp(|·|nw) because tE

n
wwk = t1/nkwk

for k = 1, 2, . . . , d. An application of Proposition 3.2 (a basic result appearing in our background section,
Section 3), which uses the nondegenerateness of P , gives a positive constant C for which |ξ|nw ≤ C|P (ξ)|
for all ξ ∈W . The lemma now follows by simply noting that |ξ|nw →∞ as ξ →∞.

Lemma 2.9. Let P be a polynomial on W and denote by Sym(P ) the set of O ∈ End(W ) for which
P (Oξ) = P (ξ) for all ξ ∈ W . If P is a nondegenerate-homogeneous polynomial, then Sym(P ), called the
symmetry group of P , is a compact subgroup of Gl(W ).

Proof. Our supposition that P is a nondegenerate polynomial ensures that, for each O ∈ Sym(P ), Ker(O)
is empty and hence O ∈ Gl(W ). Consequently, given O1 and O2 ∈ Sym(P ), we observe that P (O−1

1 ξ) =
P (O1O

−1
1 ξ) = P (ξ) and P (O1O2ξ) = P (O2ξ) = P (ξ) for all ξ ∈ W ; therefore Sym(P ) is a subgroup of

Gl(W ).
To see that Sym(P ) is compact, in view of the finite-dimensionality of Gl(W ) and the Heine-Borel

theorem, it suffices to show that Sym(P ) is closed and bounded. First, for any sequence {On} ⊆ Sym(P )
for which On → O as n→∞, the continuity of P ensures that P (Oξ) = limn→∞ P (Onξ) = limn→∞ P (ξ) =
P (ξ) for each ξ ∈ W and therefore Sym(P ) is closed. It remains to show that Sym(P ) is bounded; this
is the only piece of the proof that makes use of the fact that P is nondegenerate-homogeneous and not
simply homogeneous. Assume that, to reach a contradiction, that there exists an unbounded sequence
{On} ⊆ Sym(P ). Choosing a norm | · | on W , let S be the corresponding unit sphere in W . Then there
exists a sequence {ξn} ⊆W for which |ξn| = 1 for all n ∈ N+ but limn→∞ |Onξn| =∞. In view of Lemma
2.8,

∞ = lim
n→∞

|P (Onξn)| = lim
n→∞

|P (ξn)| ≤ sup
ξ∈S
|P (ξ)|,

which cannot be true for P is necessarily bounded on S because it is continuous.

Lemma 2.10. Let Λ be a nondegenerate-homogeneous operator. For any E1, E2 ∈ Exp(Λ),

trE1 = trE2.
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Proof. Let P be the symbol of Λ and take E1, E2 ∈ Exp(Λ). Since E∗1 , E
∗
2 ∈ Exp(P ), tE

∗
1 t−E

∗
2 ∈ Sym(P )

for all t > 0. As Sym(P ) is a compact group in view of the previous lemma, the determinant map det :
Gl(V∗)→ C∗, a Lie group homomorphism, necessarily maps Sym(P ) into the unit circle. Consequently,

1 = |det(tE
∗
1 t−E

∗
2 )| = | det(tE

∗
1 ) det(t−E

∗
2 ) = |ttrE∗

1 t− trE∗
2 | = ttrE

∗
1 t− trE∗

2

for all t > 0. Therefore, trE1 = trE∗1 = trE∗2 = trE2 as desired.

By the above lemma, to each nondegenerate-homogenerous operator Λ, we define the homogeneous order
of Λ to be the number

µΛ = trE

for any E ∈ Exp(Λ). By an appeal to Proposition 2.5, En
v ∈ Exp(Λ) for some n ∈ N+ and so we observe

that

µΛ =
1

n1
+

1

n2
+ · · ·+ 1

nd
. (8)

In particular, µΛ is a positive rational number.

2.1 Positive-homogeneous operators and their heat kernels

We now restrict our attention to the study of positive-homogeneous operators and their associated heat
kernels. To this end, let Λ be a positive-homogeneous operator on V with symbol P and homogeneous
order µΛ. The heat kernel for Λ arises naturally from the study of the following Cauchy problem for
the corresponding heat equation ∂t + Λ = 0: Given initial data f : V → C which is, say, bounded and
continuous, find u(t, x) satisfying {

(∂t + Λ)u = 0 in (0,∞)× V
u(0, x) = f(x) for x ∈ V.

(9)

The initial value problem (9) is solved by putting

u(t, x) =

∫
V
Kt

Λ(x− y)f(y) dy

where K
(·)
Λ (·) : (0,∞)× V→ C is defined by

Kt
Λ(x) = F−1

(
e−tP

)
(x) =

∫
V∗
e−iξ(x)e−tP (ξ) dξ

for t > 0 and x ∈ V; we call KΛ the heat kernel associated to Λ. Equivalently, KΛ is the integral (con-
volution) kernel of the continuous semigroup {e−tΛ}t>0 of bounded operators on L2(V) with infinitesimal
generator −Λ. That is, for each f ∈ L2(V),

(
e−tΛf

)
(x) =

∫
V
Kt

Λ(x− y)f(y) dy (10)
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for t > 0 and x ∈ V. Let us make some simple observations about KΛ. First, by virtue of Lemma 2.8, it
follows that Kt

Λ ∈ S(V) for each t > 0. Further, for any E ∈ Exp(Λ),

Kt
Λ(x) =

∫
V∗
e−iξ(x)e−P (tE

∗
ξ) dξ

=

∫
V∗
e−i(t

−E∗
)ξ(x)e−P (ξ) det(t−E

∗
) dξ =

1

ttrE

∫
V∗
e−iξ(t

−Ex)e−P (ξ) dξ =
1

tµΛ
K1

Λ(t−Ex)

for t > 0 and x ∈ V. This computation immediately yields the so-called on-diagonal estimate for KΛ,

‖e−tΛ‖1→∞ = ‖Kt
Λ‖∞ =

1

tµΛ
‖K1

Λ‖∞ ≤
C

tµΛ

for t > 0; this is equivalently a statement of ultracontractivity for the semigroup e−tΛ. As it turns out, we
can say something much stronger.

Proposition 2.11. Let Λ be a positive-homogeneous operator with symbol P and homogeneous order µΛ.
Let R# : V→ R be the Legendre-Fenchel transform of R = ReP defined by

R#(x) = sup
ξ∈V∗
{ξ(x)−R(ξ)}

for x ∈ V. Also, let v and m ∈ Nd+ be as guaranteed by Proposition 2.5. Then, there exit positive constants
C0 and M and, for each multi-index β, a positive constant Cβ such that, for all k ∈ N,∣∣∣∂ktDβ

vK
t
Λ(x− y)

∣∣∣ ≤ CβC
k
0k!

tµΛ+k+|β:2m| exp

(
−tMR#

(
x− y
t

))
(11)

for all x, y ∈ V and t > 0. In particular,

∣∣Kt
Λ(x− y)

∣∣ ≤ C

tµΛ
exp

(
−tMR#

(
x− y
t

))
(12)

for all x, y ∈ V and t > 0.

Remark 2. In view of (8), the exponent on the prefactor in (11) can be equivalently written, for any
multi-index β and k ∈ N, as µΛ + k + |β : 2m| = k + |1 + β : 2m| = |1 + 2km + β : 2m| where
1 = (1, 1, . . . , 1).

We prove the proposition above in the Section 5; the remainder of this section is dedicated to discussing
the result and connecting it to the existing theory. Let us first note that the estimate (11) is mirrored
by an analogous space-time estimate, Theorem 5.3 of [53], for the convolution powers of complex-valued
functions on Zd satisfying certain conditions (see Section 5 of [53]). The relationship between these two
results, Theorem 5.3 of [53] and Proposition 2.11, parallels the relationship between Gaussian off-diagonal
estimates for random walks and the analogous off-diagonal estimates enjoyed by the classical heat ker-
nel [42].
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Let us first show that the estimates (11) and (12) recapture the well-known estimates of the theory of
parabolic equations and systems in Rd – a theory in which the Laplacian operator ∆ =

∑d
l=1 ∂

2
xl

and its
integer powers play a central role. To place things into the context of this article, let us observe that,
for each positive integer m, the partial differential operator (−∆)m is a positive-homogeneous operator on
Rd with symbol P (ξ) = |ξ|2m; here, we identify Rd as its own dual equipped with the dot product and
Euclidean norm | · |. Indeed, one easily observes that P = | · |2m is a positive-definite polynomial and
E = (2m)−1I ∈ Exp((−∆)m) where I ∈ Gl(Rd) is the the identity. Consequently, the homogeneous order
of (−∆)m is d/2m = (2m)−1 tr(I) and the Legendre-Fenchel transform of R = ReP = | · |2m is easily
computed to be R#(x) = Cm|x|2m/(2m−1) where Cm = (2m)1/(2m−1)− (2m)−2m/(2m−1) > 0. Hence, (12) is
the well-known estimate ∣∣∣Kt

(−∆)m(x− y)
∣∣∣ ≤ C

td/2m
exp

(
−M |x− y|

2m/(2m−1)

t1/(2m−1)

)

for x, y ∈ Rd and t > 0; this so-called off-diagonal estimate is ubiquitous to the theory of “higher-order”
elliptic and parabolic equations [16, 35, 39, 54]. To write the derivative estimate (11) in this context, we
first observe that the basis given by Proposition 2.5 can be taken to be the standard Euclidean basis,
e = {e1, e2, . . . , ed} and further, m = (m,m, . . . ,m) is the (isotropic) weight given by the proposition.

Writing Dβ = Dβ
e = (i∂x1)β1(i∂x2)β2 · · · (i∂xd)βd and |β| = β1 + β2 + · · · + βd for each multi-index β, (11)

takes the form ∣∣∣∂ktDβKt
(−∆)m(x− y)

∣∣∣ ≤ C

t(d+|β|)/2m+k
exp

(
−M |x− y|

2m/(2m−1)

t1/(2m−1)

)
for x, y ∈ Rd and t > 0, c.f., [35, Property 4, p. 93].

The appearance of the 1-dimensional Legendre-Fenchel transform in heat kernel estimates was previously
recognized and exploited in [8] and [9] in the context of elliptic operators. Due to the isotropic nature
of elliptic operators, the 1-dimensional transform is sufficient to capture the inherent isotropic decay of
corresponding heat kernels. Beyond the elliptic theory, the appearance of the full d-dimensional Legendre-
Fenchel transform is remarkable because it sharply captures the general anisotropic decay of KΛ. Consider,
for instance, the particularly simple positive-homogeneous operator Λ = −∂6

x1
+ ∂8

x2
on R2 with symbol

P (ξ1, ξ2) = ξ6
1 + ξ8

2 . It is easily checked that the operator E with matrix representation diag(1/6, 1/8),
in the standard Euclidean basis, is a member of the Exp(Λ) and so the homogeneous order of Λ is µΛ =
tr(diag(1/6, 1/8)) = 7/24. Here we can compute the Legendre-Fenchel transform of R = ReP = P directly
to obtain R#(x1, x2) = c1|x1|6/5 + c2|x2|8/7 for (x1, x2) ∈ R2 where c1 and c2 are positive constants. In
this case, Proposition 2.11 gives positive constants M1,M2 and C for which

|Kt
Λ(x1 − y1, x2 − y2)| ≤ C

t7/24
exp

(
−

(
M1
|x1 − y1|6/5

t1/5
+M2

|x2 − y2|8/7

t1/7

))
(13)

for (x1, x2), (y1, y2) ∈ R2 and t > 0. We note however that Λ is “separable” and so we can write
Kt

Λ(x1, x2) = Kt
(−∆)3(x1)Kt

(−∆)4(x2) where ∆ is the 1-dimensional Laplacian operator. In view of Theorem

8 of [8] and its subsequent remark, the estimate (13) is seen to be sharp (modulo the values of M1,M2 and
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C). To further illustrate the proposition for a less simple positive-homogeneous operator, we consider the
operator Λ appearing in Example 3. In this case,

R(ξ1, ξ2) = P (ξ1, ξ2) =
1

8
(ξ1 + ξ2)2 +

23

384
(ξ1 − ξ2)4

and one can verify directly that the E ∈ End(R2), with matrix representation

Ee =

(
3/8 1/8
1/8 3/8

)
in the standard Euclidean basis, is a member of Exp(Λ). From this, we immediately obtain µΛ = tr(E) =
3/4 and one can directly compute

R#(x1, x2) = M1|x1 + x2|2 +M2|x1 − x2|4/3

for (x1, x2) ∈ R2 where M1 and M2 are positive constants. Consequently,

|Kt
Λ(x1 − y1, x2 − y2)| ≤ C

t3/4
exp

(
−

(
M1
|(x1 − y1) + (x2 − y2)|2

t
+M2

|(x1 − y1)− (x2 − y2)|4/3

t1/3

))

for (x1, x2), (y1, y2) ∈ R2 and t > 0. Furthermore, m = (1, 2) ∈ N2
+ and the basis v = {v1, v2} of R2

given in discussion surrounding (3) are precisely those guaranteed by Proposition 2.5. Appealing to the
full strength of Proposition 2.11, we obtain positive constants C,M1 and M2 and, for each multi-index β,
a positive constant Cβ such that, for each k ∈ N,∣∣∣∂ktDβ

vKΛ(x1 − y1, x2 − y2)
∣∣∣

≤
CβC

k
0k!

t3/4+k+|β:2m| exp

(
−

(
M1
|(x1 − y1) + (x2 − y2)|2

t
+M2

|(x1 − y1)− (x2 − y2)|4/3

t1/3

))

for (x1, x2), (y1, y2) ∈ R2 and t > 0.

In the context of homogeneous groups, the off-diagonal behavior for the heat kernel of a positive Rockland
operator (a positive self-adjoint operator which is homogeneous with respect to the fixed dilation structure)
has been studied in [7, 34, 41] (see also [5]). Given a positive Rockland operator Λ on homogeneous group
G, the best known estimate for the heat kernel KΛ, due to Auscher, ter Elst and Robinson, is of the form

|Kt
Λ(h−1g)| ≤ C

tµΛ
exp

(
−M

(
‖h−1g‖2m

t

)1/(2m−1)
)

(14)

where ‖ · ‖ is a homogeneous norm on G (consistent with Λ) and 2m is the highest order derivative ap-
pearing in Λ. In the context of Rd, given a symmetric and positive-homogeneous operator Λ with symbol
P , the structure GD = (Rd, {δDt }) for D = 2mE where E ∈ Exp(Λ) is a homogeneous group on which Λ
becomes a positive Rockland operator. On GD, it is quickly verified that ‖ · ‖ = R(·)1/2m is a homogeneous
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norm (consistent with Λ) and so the above estimate is given in terms of R(·)1/(2m−1) which is, in general,
dominated by the Legendre-Fenchel transform of R. To see this, we need not look further than our previous
and simple example in which Λ = −∂6

x1
+∂8

x2
. Here 2m = 8 and so R(x1, x2)1/(2m−1) = (|x1|6 + |x2|8)1/7. In

view of (13), the estimate (14) gives the correct decay along the x2-coordinate axis; however, the bounds
decay at markedly different rates along the x1-coordinate axis. This illustrates that the estimate (14) is
suboptimal, at least in the context of Rd, and thus leads to the natural question: For positive-homogeneous
operators on a general homogeneous group G, what is to replace the Legendre-Fenchel transform in heat
kernel estimates?

Returning to the general picture, let Λ be a positive-homogeneous operator on V with symbol P and
homogeneous order µΛ. To highlight some remarkable properties about the estimates (11) and (12) in this
general setting, the following proposition concerning R# is useful; for a proof, see Section 8.3 of [53].

Proposition 2.12. Let Λ be a positive-homogeneous operator with symbol P and let R# be the Legendre-
Fenchel transform of R = ReP . Then, for any E ∈ Exp(Λ), I − E ∈ Exp(R#). Moreover R# is
continuous, positive-definite in the sense that R#(x) ≥ 0 and R#(x) = 0 only when x = 0. Further, R#

grows superlinearly in the sense that, for any norm | · | on V,

lim
x→∞

|x|
R#(x)

= 0;

in particular, R#(x)→∞ as x→∞.

Let us first note that, in view of the proposition, we can easily rewrite (12), for any E ∈ Exp(Λ), as∣∣Kt
Λ(x− y)

∣∣ ≤ C

tµΛ
exp

(
−MR#

(
t−E(x− y)

))
for x, y ∈ V and t > 0; the analogous rewriting is true for (11). The fact that R# is positive-definite
and grows superlinearly ensures that the convolution operator e−tΛ defined by (10) for t > 0 is a bounded
operator from Lp to Lq for any 1 ≤ p, q ≤ ∞. Of course, we already knew this because Kt

Λ is a Schwartz
function; however, when replacing Λ with a variable-coefficient operator H, as we will do in the sections
to follow, the validity of the estimate (12) for the kernel of the semigroup {e−tH} initially defined on
L2, guarantees that the semigroup extends to a strongly continuous semigroup {e−tHp} on Lp(Rd) for
all 1 ≤ p ≤ ∞ and, what’s more, the respective infinitesimal generators −Hp have spectra independent
of p [17]. Further, the estimate (12) is key to establishing the boundedness of the Riesz transform, it
is connected to the resolution of Kato’s square root problem and it provides the appropriate starting
point for uniqueness classes of solutions to ∂t + H = 0 [6, 51]. With this motivation in mind, following
some background in Section 3, we introduce a class of variable-coefficient operators in Section 4 called
(2m,v)-positive-semi-elliptic operators, each such operator H comparable to a fixed positive-homogeneous
operator. In Section 5, under the assumption that H has Hölder continuous coefficients and this notion of
comparability is uniform, we construct a fundamental solution to the heat equation ∂t +H = 0 and show
the essential role played by the Legendre-Fenchel transform in this construction. As mentioned previously,
in a forthcoming work we will study the semigroup {e−tH} where H is a divergence-form operator, which
is comparable to a fixed positive-homogeneous operator, whose coefficients are at worst measurable. As
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the Legendre-Fenchel transform appears here by a complex change of variables followed by a minimization
argument, in the measurable coefficient setting it appears quite naturally by an application of the so-called
Davies’ method, suitably adapted to the positive-homogeneous setting.

3 Contracting groups, Hölder continuity and the Legendre-Fenchel trans-
form

In this section, we provide the necessary background on one-parameter contracting groups, anisotropic
Hölder continuity, and the Legendre-Fenchel transform and its interplay with the two previous notions.

3.1 One-parameter contracting groups

In what follows, W is a d-dimensional real vector space with a norm | · |; the corresponding operator norm
on Gl(W ) is denoted by ‖ · ‖. Of course, since everything is finite-dimensional, the usual topologies on W
and Gl(W ) are insensitive to the specific choice of norms.

Definition 3.1. Let {Tt}t>0 ⊆ Gl(W ) be a continuous one-parameter group. {Tt} is said to be contracting
if

lim
t→0
‖Tt‖ = 0.

We easily observe that, for any diagonalizable E ∈ End(W ) with strictly positive spectrum, the corre-
sponding one-parameter group {tE}t>0 is contracting. Indeed, if there exists a basis w = {w1, w2, . . . , wd}
of W and a collection of positive numbers λ1, λ2, . . . , λd for which Ewk = λkwk for k = 1, 2, . . . , d, then the
one parameter group {tE}t>0 has tEwk = tλkwk for k = 1, 2, . . . , d and t > 0. It then follows immediately
that {tE} is contracting.

Proposition 3.2. Let Q and R be continuous real-valued functions on W . If R(w) > 0 for all w 6= 0
and there exists E ∈ Exp(Q) ∩ Exp(R) for which {tE} is contracting, then, for some positive constant C,
Q(w) ≤ CR(w) for all w ∈W . If additionally Q(w) > 0 for all w 6= 0, then Q � R.

Proof. Let S denote the unit sphere in W and observe that

sup
w∈S

Q(w)

R(w)
=: C <∞

because Q and R are continuous and R is non-zero on S. Now, for any non-zero w ∈ W , the fact that tE

is contracting implies that tEw ∈ S for some t > 0 by virtue of the intermediate value theorem. Therefore,
Q(w) = Q(tEw)/t ≤ CR(tEw)/t = CR(w). In view of the continuity of Q and R, this inequality must
hold for all w ∈W . When additionally Q(w) > 0 for all non-zero w, the conclusion that Q � R is obtained
by reversing the roles of Q and R in the preceding argument.

Corollary 3.3. Let Λ be a positive-homogeneous operator on V with symbol P and let R# be the Legendre-
Fenchel transform of R = ReP . Then, for any positive constant M , R# � (MR)#.
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Proof. By virtue of Proposition 2.5, let m ∈ Nd+ and v be a basis for V and for which E2m
v ∈ Exp(Λ).

In view of Proposition 2.12, R# and (MR)# are both continuous, positive-definite and have F 2m
v :=

I − E2m
v ∈ Exp(R#) ∩ Exp((MR)#). Upon noting that F 2m

v vk = ((2mk − 1)/2mk)vk for k = 1, 2, . . . , d,
we immediately conclude that {tF 2m

v } is contracting and so the corollary follows directly from Proposition
3.2.

Lemma 3.4. Let P be a positive-homogeneous polynomial on W and let n = 2m ∈ Nd+ and w be a basis
for W for which the conclusion of Lemma 2.6 holds. Let R = ReP and let β and γ be multi-indices such
that β ≤ γ (in the standard partial ordering of multi-indices); we shall assume the notation of the lemma.

1. For any n ∈ N+ such that |β : m| ≤ 2n, there exist positive constants M and M ′ for which

|ξγνβ−γ | ≤M(R(ξ) +R(ν))n +M ′

for all ξ, ν ∈W .

2. If |β : m| = 2, there exist positive constants M and M ′ for which

|ξγνβ−γ | ≤MR(ξ) +M ′R(ν)

for all ν, ξ ∈W .

3. If |β : m| = 2 and β > γ, then for every ε > 0 there exists a positive constant M for which

|ξγνβ−γ | ≤ εR(ξ) +MR(ν)

for all ν, ξ ∈W .

Proof. Assuming the notation of Lemma 2.6, let E = E2m
w ∈ End(W ) and consider the contracting group

{tE⊕E} = {tE ⊕ tE} on W ⊕W . Because R is a positive-definite polynomial, it immediately follows that
W ⊕W 3 (ξ, ν) 7→ R(ξ) +R(ν) is positive-definite. Let | · | be a norm on W ⊕W and respectively denote
by B and S the corresponding unit ball and unit sphere in this norm.

To see Item 1, first observe that

sup
(ξ,ν)∈S

|ξγνβ−γ |
(R(ξ) +R(ν))n

=: M <∞

Now, for any (ξ, ν) ∈ W ⊕W \ B, because {tE⊕E} is contracting, it follows from the intermediate value
theorem that, for some t ≥ 1, t−(E⊕E)(ξ, ν) = (t−Eξ, t−Eν) ∈ S. Correspondingly,

|ξγνβ−γ | = t|β:2m||(t−Eξ)γ(t−E)β−γ |
≤ t|β:2m|M(R(t−Eξ) +R(t−Eν))n

≤ t|β:m|/2−nM(R(ξ) +R(ν))n

≤ M(R(ξ) +R(ν))n

because |β : m|/2 ≤ n. One obtains the constant M ′ and hence the desired inequality by simply noting
that |ξγνβ−γ | is bounded for all (ξ, ν) ∈ B.
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For Item 2, we use analogous reasoning to obtain a positive constant M for which |ξγνβ−γ | ≤M(R(ξ)+
R(ν)) for all (ξ, ν) ∈ S. Now, for any non-zero (ξ, ν) ∈W ⊕W , the intermediate value theorem gives t > 0
for which tE⊕E(ξ, ν) = (tEξ, tEν) ∈ S and hence

|ξγνβ−γ | ≤ t−|β:2m|M(R(tEξ) +R(tEν)) = M(R(ξ) +R(ν))

where we have used the fact that |β : 2m| = |β : m|/2 = 1 and that E ∈ Exp(R). As this inequality must
also trivially hold at the origin, we can conclude that it holds for all ξ, ν ∈W , as desired.

Finally, we prove Item 3. By virtue of Item 2, for any ξ, ν ∈W and t > 0,

|ξγνβ−γ | = |(tEt−Eξ)γνβ−γ | = t|γ:2m||(t−Eξ)γνβ−γ |
≤ t|γ:2m| (MR(t−Eξ) +M ′R(ν)

)
= Mt|γ:2m|−1R(ξ) +M ′t|γ:2m|R(ν).

Noting that |γ : 2m| − 1 < 0 because γ < β, we can make the coefficient of R(ξ) arbitrarily small by
choosing t sufficiently large and thereby obtaining the desired result.

3.2 Notions of regularity and Hölder continuity

Throughout the remainder of this article, v will denote a fixed basis for V and correspondingly we henceforth
assume the notational conventions appearing in Proposition 2.5 and n = 2m is fixed. For α ∈ Rd+, consider
the homogeneous norm | · |αv defined by

|x|αv =

d∑
i=1

|xi|αi

for x ∈ V where φv(x) = (x1, x2, . . . , xd). As one can easily check,

|tAαx|αv = t|x|αv

for all t > 0 and x ∈ V where Aα ∈ End(V) is represented by the matrix

(Aα)v = diag(α−1
1 , α−1

2 , . . . , α−1
d )

with respect to the basis v.

Definition 3.5. Let m ∈ Nd+. We say that α ∈ Rd+ is consistent with m if

Aα = ω(I − E) (15)

for some ω > 0 where Aα is as above and E is that which appears in Proposition 2.5.

As one can check, α is consistent with m if and only if α = a−1ω where

ω =

(
2m1

2m1 − 1
,

2m2

2m2 − 1
, . . . ,

2md

2md − 1

)
. (16)
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Definition 3.6. Let Ω ⊆ Ω′ ⊆ V and let f : Ω′ → C. We say that f is v-Hölder continuous on Ω if for
some α ∈ Id+ and positive constant M ,

|f(x)− f(y)| ≤M |x− y|αv (17)

for all x, y ∈ Ω. In this case we will say that α is the v-Hölder exponent of f . If Ω = Ω′ we will simply
say that f is v-Hölder continuous with exponent α.

The following proposition essentially states that, for bounded functions, Hölder continuity is a local prop-
erty; its proof is straightforward and is omitted.

Proposition 3.7. Let Ω ⊆ V be open and non-empty. If f is bounded and v-Hölder continuous of order
α ∈ Id+, then, for any β < α, f is also v-Hölder continuous of order β.

In view of the proposition, we immediately obtain the following corollary.

Corollary 3.8. Let Ω ⊆ V be open and non-empty and m ∈ Nd+. If f is bounded and v-Hölder continuous
on Ω of order β ∈ Id+, there exists α ∈ Id+ which is consistent with m for which f is also v-Hölder continuous
of order α.

Proof. The statement follows from the proposition by choosing any α, consistent with m, such that α ≤
β.

The following definition captures the minimal regularity we will require of fundamental solutions to the
heat equation.

Definition 3.9. Let n ∈ Nd+, v be a basis of V and let O be a non-empty open subset of [0, T ] × V.
A function u(t, x) is said to be (n,v)-regular on O if on O it is continuously differentiable in t and has

continuous (spatial) partial derivatives Dβ
vu(t, x) for all multi-indices β for which |β : n| ≤ 1.

3.3 The Legendre-Fenchel transform and its interplay with v-Hölder continuity

Throughout this section, R is the real part of the symbol P of a positive-homogeneous operator Λ on V.
We assume the notation of Proposition 2.12 (and hence Proposition 2.5) and write E = E2m

v . Let us first
record two important results which follow essentially from Proposition 2.12.

Corollary 3.10.
R# � | · |ωv.

where ω was defined in (16).

Proof. In view of Propositions 2.5 and 2.12, F 2m
v = I −E2m

v ∈ Exp(R#)∩Exp(| · |ωv). After recalling that
{tF 2m

v } is contracting, Proposition 3.2 yields the desired result immediately.

By virtue of Proposition 2.12, standard arguments immediately yield the following corollary.

Corollary 3.11. For any ε > 0 and polynomial Q : V → C, i.e., Q is a polynomial in any coordinate
system, then

Q(·)e−εR#(·) ∈ L∞(V) ∩ L1(V).
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Lemma 3.12. Let γ = (2mmax − 1)−1. Then for any T > 0, there exists M > 0 such that

R#(x) ≤MtγR#(t−Ex)

for all x ∈ V and 0 < t ≤ T .

Proof. In view of Corollary 3.10, it suffices to prove the statement

|tEx|ωv ≤Mtγ |x|ωv

for all x ∈ V and 0 < t ≤ T where M > 0 and ω is given by (16). But for any 0 < t ≤ T and x ∈ V,

|tEx|ωv =

d∑
j=1

t1/(2mj−1)|xj |ωj ≤ tγ
d∑
j=1

T (1/(2mj−1)−γ)|xj |ωj

from which the result follows.

Lemma 3.13. Let α ∈ Id+ be consistent with m. Then there exists positive constants σ and θ such that
0 < σ < 1 and for any T > 0 there exists M > 0 such that

|x|αv ≤Mtσ(R#(t−Ex))θ

for all x ∈ V and 0 < t ≤ T .

Proof. By an appeal to Corollary 3.10 and Lemma 3.12,

|x|ωv ≤MtγR#(t−Ex)

for all x ∈ V and 0 < t ≤ T . Since α is consistent with m, α = a−1ω where a is that of Definition
3.5, the desired inequality follows by setting σ = γ/a and θ = 1/a. Because α ∈ Id+, it is necessary that
a ≥ 2mmin/(2mmin − 1) whence 0 < σ ≤ (2mmin − 1)/(2mmin(2mmax − 1)) < 1.

The following corollary is an immediate application of Lemma 3.13.

Corollary 3.14. Let f : V → C be v-Hölder continuous with exponent α ∈ Id+ and suppose that α is
consistent with m. Then there exist positive constants σ and θ such that 0 < σ < 1 and, for any T > 0,
there exists M > 0 such that

|f(x)− f(y)| ≤Mtσ(R#(t−E))θ

for all x, y ∈ V and 0 < t ≤ T . In particular, this estimate holds for the coefficients of H.
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4 On (2m,v)-positive-semi-elliptic operators

In this section, we introduce a class of variable-coefficient operators on V whose heat equations are studied
in the next section. These operators, in view of Proposition 2.5, generalize the class of positive-homogeneous
operators. Fix a basis v of V, m ∈ Nd+ and, in the notation of the previous section, consider a differential
operator H of the form

H =
∑
|β:m|≤2

aβ(x)Dβ
v =

∑
|β:m|=2

aβ(x)Dβ
v +

∑
|β:m|<2

aβ(x)Dβ
v

:= Hp +Hl

where the coefficients aβ : V→ C are bounded functions. The symbol of H, P : V×V∗ → C, is defined by

P (y, ξ) =
∑
|β:m|≤2

aβ(y)ξβ =
∑
|β:m|=2

aβ(y)ξβ +
∑
|β:m|<2

aβ(y)ξβ

:= Pp(y, ξ) + Pl(y, ξ).

for y ∈ V and ξ ∈ V∗. We shall call Hp the principal part of H and correspondingly, Pp is its principal
symbol. Let’s also define R : V∗ → R by

R(ξ) = RePp(0, ξ) (18)

for ξ ∈ V∗. At times, we will freeze the coefficients of H and Hp at a point y ∈ V and consider the constant-
coefficient operators they define, namely H(y) and Hp(y) (defined in the obvious way). We note that, for
each y ∈ V, Hp(y) is homogeneous with respect to the one-parameter group {δEt }t>0 where E ∈ Gl(V) is
defined by its matrix representation

Ev = diag{(2m1)−1, (2m2)−1, . . . , (2md)
−1}

in the basis v; i.e., it is homogeneous with respect to the same one-parameter group of dilations at each
point in space. This also allows us to uniquely define the homogeneous order of H by

µH = trE = (2m1)−1 + (2m2)−1 + · · ·+ (2md)
−1. (19)

As in the constant-coefficient setting, Hp(y) is not necessarily homogeneous with respect to a unique group
of dilations, i.e., it is possible that Exp(Hp(y)) contains members of Gl(V) distinct from E. However,
we shall henceforth only work with the endomorphism E, defined above, for worrying about this non-
uniqueness of dilations does not aid our understanding nor will it sharpen our results. Let us further
observe that, for each y ∈ V, Pp(y, ·) and R are homogeneous with respect to {tE∗}t>0 where E∗ ∈ Gl(V∗).

Definition 4.1. The operator H is called (2m,v)-positive-semi-elliptic if for all y ∈ V, RePp(y, ·) is a
positive-definite polynomial. H is called uniformly (2m,v)-positive-semi-elliptic if it is (2m,v)-positive-
semi-elliptic and there exists δ > 0 for which

RePp(y, ξ) ≥ δR(ξ)

for all y ∈ V and ξ ∈ V∗. When the context is clear, we will simply say that H is positive-semi-elliptic and
uniformly positive-semi-elliptic respectively.
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In light of the above definition, a semi-elliptic operator H is one that, at every point y ∈ V, its frozen-
coefficient principal part Hp(y), is a constant-coefficient positive-homogeneous operator which is homo-
geneous with respect to the same one-parameter group of dilations on V. A uniformly positive-semi-
elliptic operator is one that is semi-elliptic and is uniformly comparable to a constant-coefficient positive-
homogeneous operator, namely Hp(0). In this way, positive-homogeneous operators take a central role in
this theory.

Remark 3. In view of Proposition 2.5, the definition of R via (18) agrees with that we have given for
constant-coefficient positive-homogeneous operators.

Remark 4. For an (2m,v)-positive-semi-elliptic operator H, uniform semi-ellipticity can be formulated in
terms of RePp(y0, ·) for any y0 ∈ V; such a notion is equivalent in view of Proposition 3.2.

5 The heat equation

For a uniformly positive-semi-elliptic operator H, we are interested in constructing a fundamental solution
to the heat equation,

(∂t +H)u = 0 (20)

on the cylinder [0, T ]×V; here and throughout T > 0 is arbitrary but fixed. By definition, a fundamental
solution to (20) on [0, T ]× V is a function Z : (0, T ]× V× V→ C satisfying the following two properties:

1. For each y ∈ V, Z(·, ·, y) is (2m,v)-regular on (0, T )× V and satisfies (20).

2. For each f ∈ Cb(V),

lim
t↓0

∫
V
Z(t, x, y)f(y)dy = f(x)

for all x ∈ V.

Given a fundamental solution Z to (20), one can easily solve the Cauchy problem: Given f ∈ Cb(V), find
u(t, x) satisfying {

(∂t +H)u = 0 on (0, T )× V
u(0, x) = f(x) for x ∈ V.

This is, of course, solved by putting

u(t, x) =

∫
V
Z(t, x, y)f(y) dy

for x ∈ V and 0 < t ≤ T and interpreting u(0, x) as that defined by the limit of u(t, x) as t ↓ 0. The
remainder of this paper is essentially dedicated to establishing the following result:

Theorem 5.1. Let H be uniformly (2m,v)-positive-semi-elliptic with bounded v-Hölder continuous coef-
ficients. Let R and µH be defined by (18) and (19) respectively and denote by R# the Legendre-Fenchel
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transform of R. Then, for any T > 0, there exists a fundamental solution Z : (0, T ]× V× V→ C to (20)
on [0, T ]× V such that, for some positive constants C and M ,

|Z(t, x, y)| ≤ C

tµH
exp

(
−tMR#

(
x− y
t

))
(21)

for x, y ∈ V and 0 < t ≤ T .

We remark that, by definition, the fundamental solution Z given by Theorem 5.1 is (2m,v)-regular. Thus
Z is necessarily continuously differentiable in t and has continuous spatial derivatives of all orders β such
that |β : m| ≤ 2.

As we previously mentioned, the result above is implied by the work of S. D. Eidelman for 2~b-parabolic
systems on Rd (where ~b = m) [36,37]. Eidelman’s systems, of the form (2), are slightly more general than
we have considered here, for their coefficients are also allowed to depend on t (but in a uniformly Hölder
continuous way). Admitting this t-dependence is a relatively straightforward matter and, for simplicity of
presentation, we have not included it (see Remark 5). In this slightly more general situation, stated in
Rd and in which v = e is the standard Euclidean basis, Theorem 2.2 (p.79) [37] guarantees the existence
of a fundamental solution Z(t, x, y) to (2), which has the same regularity appearing in Theorem 5.1 and
satisfies

|Z(t, x, y)| ≤ C

t1/(2m1)+1/(2m2)+···+1/(2md)
exp

(
−M

d∑
k=1

|xk − yk|2mk/(2mk−1)

t1/(2mk−1)

)
(22)

for x, y ∈ Rd and 0 < t ≤ T where C and M are positive constants. By an appeal to Corollary 3.10, we
have R# � | · |ωv and from this we see that the estimates (21) and (22) are comparable.

In view of Corollary 3.8, the hypothesis of Theorem 5.1 concerning the coefficients of H immediately imply
the following a priori stronger condition:

Hypothesis 5.2. There exists α ∈ Id+ which is consistent with m and for which the coefficients of H are
bounded and v-Hölder continuous on V of order α.

5.1 Levi’s Method

In this subsection, we construct a fundamental solution to (20) under only the assumption that H, a uni-
formly (2m,v)-positive-semi-elliptic operator, satisfies Hypothesis 5.2. Henceforth, all statements include
Hypothesis 5.2 without explicit mention. We follow the famous method of E. E. Levi, c.f., [49] as it was
adopted for parabolic systems in [35] and [39]. Although well-known, Levi’s method is lengthy and tedious
and we will break it into three steps. Let’s motivate these steps by first discussing the heuristics of the
method.

We start by considering the auxiliary equation(
∂t +

∑
|β:m|=2

aβ(y)Dβ
v

)
u = (∂t +Hp(y))u = 0 (23)
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where y ∈ V is treated as a parameter. This is the so-called frozen-coefficient heat equation. As one easily
checks, for each y ∈ V,

Gp(t, x; y) :=

∫
V∗
e−iξ(x)e−tPp(y,ξ)dξ (x ∈ V, t > 0)

solves (23). By the uniform semi-ellipticity of H, it is clear that Gp(t, ·; y) ∈ S(V) for t > 0 and y ∈ V. As
we shall see, more is true: Gp is an approximate identity in the sense that

lim
t↓0

∫
V
Gp(t, x− y; y)f(y) dy = f(x)

for all f ∈ Cb(V). Thus, it is reasonable to seek a fundamental solution to (20) of the form

Z(t, x, y) = Gp(t, x− y; y) +

∫ t

0

∫
V
Gp(t− s, x− z; z)φ(s, z, y)dzds

= Gp(t, x− y; y) +W (t, x, y) (24)

where φ is to be chosen to ensure that the correction term W is (2m,v)-regular, accounts for the fact that
Gp solves (23) but not (20), and is “small enough” as t→ 0 so that the approximate identity aspect of Z
is inherited directly from Gp.

Assuming for the moment that W is sufficiently regular, let’s apply the heat operator to (24) with the goal
of finding an appropriate φ to ensure that Z is a solution to (20). Putting

K(t, x, y) = −(∂t +H)Gp(t, x− y; y),

we have formally,

(∂t +H)Z(t, x, y) = −K(t, x, y) + (∂t +H)

∫ t

0

∫
V
Gp(t− s, x− z; z)φ(s, z, y) dz ds

= −K(t, x, y) + lim
s↑t

∫
V
Gp(t− s, x− z; z)φ(s, z, y) dz

−
∫ t

0

∫
V
−(∂t +H)Gp(t− s, x− z; z)φ(s, z, y) dz ds

= −K(t, x, y) + φ(t, x, y)−
∫ t

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds (25)

where we have made use of Leibniz’ rule and our assertion that Gp is an approximate identity. Thus, for
Z to satisfy (20), φ must satisfy the integral equation

K(t, x, y) = φ(t, x, y)−
∫ t

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds

= φ(t, x, y)− L(φ)(t, x, y). (26)

27



Viewing L as a linear integral operator, (26) is the equation K = (I − L)φ which has the solution

φ =
∞∑
n=0

LnK (27)

provided the series converges in an appropriate sense.

Taking the above as purely formal, our construction will proceed as follows: We first establish estimates
for Gp and show that Gp is an approximate identity; this is Step 1. In Step 2, we will define φ by (27)
and, after deducing some subtle estimates, show that φ’s defining series converges whence (26) is satisfied.
Finally in Step 3, we will make use of the estimates from Steps 1 and 2 to validate the formal calculation
made in (25). Everything will be then pieced together to show that Z, defined by (24), is a fundamental
solution to (20). Our entire construction depends on obtaining precise estimates for Gp and for this we
will rely heavily on the homogeneity of Pp and the Legendre-Fenchel transform of R.

Remark 5. One can allow the coefficients of H to also depend on t in a uniformly continuous way, and
Levi’s method pushes though by instead taking Gp as the solution to a frozen-coefficient initial value prob-
lem [36,37].

Step 1. Estimates for Gp and its derivatives
The lemma below is a basic building block used in our construction of a fundamental solution to (20) via
Levi’s method and it makes essential use of the uniform semi-ellipticity of H. We note however that the
precise form of the constants obtained, as they depend on k and β, are more detailed than needed for the
method to work. Also, the partial differential operators Dβ

v of the lemma are understood to act of the x
variable of Gp(t, x; y).

Lemma 5.3. There exist positive constants M and C0 and, for each multi-index β, a positive constant Cβ
such that, for any k ∈ N,

|∂ktDβ
vGp(t, x; y)| ≤

CβC
k
0k!

tµH+k+|β:2m| exp
(
−tMR# (x/t)

)
(28)

for all x, y ∈ V and t > 0.

Before proving the lemma, let us note that tR#(x/t) = R#(t−Ex) for all t > 0 and x ∈ V in view of
Proposition 2.12. Thus the estimate (28) can be written equivalently as

|∂ktDβ
vGp(t, x; y)| ≤

CβC
k
0k!

tµH+k+|β:2m| exp(−MR#(t−Ex)) (29)

for x, y ∈ V and t > 0. We will henceforth use these forms interchangeably and without explicit mention.
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Proof. Let us first observe that, for each x, y ∈ V and t > 0,

∂ktD
β
vGp(t, x; y) =

∫
V∗

(Pp(y, ξ))
kξβe−iξ(x)e−tPp(y,ξ) dξ

=

∫
V∗

(Pp(y, t
−E∗

ξ))k(t−E
∗
ξ)βe−iξ(t

−Ex)e−Pp(y,ξ)t− trE dξ

= t−µH−k−|β:2m|
∫
V∗

(Pp(y, ξ))
kξβe−iξ(t

−Ex)e−Pp(y,ξ)d ξ

where we have used the homogeneity of Pp with respect to {tE∗} and the fact that µH = trE. Therefore

tµH+k+|β:2m|(∂ktD
β
vGp(t, · ; y))(tEx) =

∫
V∗

(Pp(y, ξ))
kξβe−iξ(x)e−Pp(y,ξ)dξ (30)

for all x, y ∈ V and t > 0. Thus, to establish (28) (equivalently (29)) it suffices to estimate the right hand
side of (30) which is independent of t.

The proof of the desired estimate requires making a complex change of variables and for this reason
we will work with the complexification of V∗, whose members are denoted by z = ξ− iν for ξ, ν ∈ V∗; this
space is isomorphic to Cd. We claim that there are positive constants C0,M1,M2 and, for each multi-index
β, a positive constant Cβ such that, for each k ∈ N,

|(Pp(y, ξ − iν))k(ξ − iν)βe−Pp(y,ξ−iν)| ≤ CβCk0k!e−M1R(ξ)eM2R(ν) (31)

for all ξ, ν ∈ V∗ and y ∈ V. Let us first observe that

Pp(y, ξ − iν) = Pp(y, ξ) +
∑
|β:m|=2

∑
γ<β

aβ,γξ
γ(−iν)β−γ

for all z, ν ∈ V∗ and y ∈ V, where aβ,γ are bounded functions of y arising from the coefficients of H
and the coefficients of the multinomial expansion. By virtue of the uniform semi-ellipticity of H and the
boundedness of the coefficients, we have

−RePp(y, ξ − iν) ≤ −δR(ξ) + C
∑
|β:m|=2

∑
γ<β

|ξγνβ−γ |

for all ξ, ν ∈ V∗ and y ∈ V where C is a positive constant. By applying Lemma 3.4 to each term |ξγνβ−γ |
in the summation, we can find a positive constant M for which the entire summation is bounded above by
δ/2R(ξ) +MR(ν) for all ξ, ν ∈ V∗. By setting M1 = δ/6, we have

−RePp(y, ξ − iν) ≤ −3M1R(ξ) +MR(ν) (32)

for all ξ, ν ∈ V∗ and y ∈ V. By analogous reasoning (making use of item 1 of Lemma 3.4), there exists a
positive constant C for which

|Pp(y, ξ − iν)| ≤ C(R(ξ) +R(ν))

29



for all ξ, ν ∈ V∗ and y ∈ V. Thus, for any k ∈ N,

|Pp(y, ξ − iν)|k ≤ Ckk!

Mk
1

(M1(R(ξ) +R(ν)))k

k!
≤ Ck0k!eM1(R(ξ)+R(ν)) (33)

for all ξ, ν ∈ V∗ and y ∈ V where C0 = C/M1. Finally, for each multi-index β, another application of
Lemma 3.4 gives C ′ > 0 for which

|(ξ − iν)β| ≤ |ξβ|+ |νβ|+
∑

0<γ<β

cγ,β|ξγνβ−γ | ≤ C ′ ((R(ξ) +R(ν))n + 1)

for all ξ, ν ∈ V∗ where n ∈ N has been chosen to satisfy |β : 2nm| < 1. Consequently, there is a positive
constant Cβ for which

|(ξ − iν)β| ≤ CβeM1(R(ξ)+R(ν)) (34)

for all ξ, ν ∈ V∗. Upon combining (32), (33) and (34), we obtain the inequality∣∣∣Pp(y, ξ − iν)k(ξ − iν)βe−Pp(y,ξ−iν)
∣∣∣ ≤ CβCk0k!e−M1R(ξ)+(M+2M1)R(ν)

which holds for all ξ, ν ∈ V∗ and y ∈ V. Upon paying careful attention to the way in which our constants
were chosen, we observe the claim is established by setting M2 = M + 2M1.

From the claim above, it follows that, for any ν ∈ V∗ and y ∈ V, the following change of coordinates
by means of a Cd contour integral is justified:∫

V∗
(Pp(y, ξ))

kξβe−iξ(x)e−Pp(y,ξ) dξ =

∫
ξ∈V∗

(Pp(y, ξ − iν)k(ξ − iν)βe−i(ξ−iν)(x)e−Pp(y,ξ−iν) dξ

= e−ν(x)

∫
ξ∈V∗

(Pp(y, ξ − iν)k(ξ − iν)βe−iξ(x)e−Pp(y,ξ−iν) dξ.

Thus, by virtue of the estimate (31),∣∣∣∣∫
V∗

(Pp(y, ξ))
kξβe−iξ(x)e−Pp(y,ξ) dξ

∣∣∣∣ ≤ CβC
k
0k!e−ν(x)eM2R(ν)

∫
V∗
e−M1R(ξ) dξ

≤ CβC
k
0k!e−(ν(x)−M2R(ν))

for all x, y ∈ V and ν ∈ V∗ where we have absorbed the integral of exp(−M1R(ξ)) into Cβ. Upon
minimizing with respect to ν ∈ V∗, we have∣∣∣∣∫

V∗
(Pp(y, ξ))

kξβe−iξ(x)e−Pp(y,ξ)dξ

∣∣∣∣ ≤ CβCk0k!e−(M2R)#(x) ≤ CβCk0k!e−MR#(x) (35)

for all x and y ∈ V because

−(M2R)#(x) = − sup
ν
{ν(x)−M2R(ν)} = inf

ν
{−(ν(x)−M2R(ν))};

in this we see the natural appearance of the Legendre-Fenchel transform. The replacement of (M2R)#(x)
by MR#(x) is done using Corollary 3.3 and, as required, the constant M is independent of k and β. Upon
combining (30) and (35), we obtain the desired estimate (28).
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As a simple corollary to the lemma, we obtain Proposition 2.11.

Proof of Proposition 2.11. Given a positive-homogeneous operator Λ, we invoke Proposition 2.5 to obtain
v and m for which Λ =

∑
|β:m|=2 aβD

β
v. In other words, Λ is an (2m,v)-positive-semi-elliptic operator

which consists only of its principal part. Consequently, the heat kernel KΛ satisfies Kt
Λ(x) = Gp(t, x; 0) for

all x ∈ V and t > 0 and so we immediately obtain the estimate (11) from the lemma.

Making use of Hypothesis 5.2, a similar argument to that given in the proof of Lemma 5.3 yields the
following lemma.

Lemma 5.4. There is a positive constant M and, to each multi-index β, a positive constant Cβ such that

|Dβ
v[Gp(t, x; y + h)−Gp(t, x; y)]| ≤ Cβt−(µH+|β:2m|)|h|αv exp(−tMR#(x/t)

for all t > 0, x, y, h ∈ V. Here, in view of Hypothesis 5.2, α is the v-Hölder continuity exponent for the
coefficients of H.

Lemma 5.5. Suppose that g ∈ Cb((t0, T ] × V) where 0 ≤ t0 < T < ∞. Then, on any compact set
Q ⊆ (t0, T ]× V, ∫

V
Gp(t, x− y; y)g(s− t, y) dy → g(s, x)

uniformly on Q as t→ 0. In particular, for any f ∈ Cb(V),∫
V
Gp(t, x− y; y)f(y) dy → f(x)

uniformly on all compact subsets of V as t→ 0.

Proof. Let Q be a compact subset of (t0, T ]× V and write∫
V
Gp(t, x− y; y)g(s− t, y) dy

=

∫
V
Gp(t, x− y;x)g(s− t, y) dy +

∫
V

[Gp(t, x− y; y)−Gp(t, x− y;x)]g(s− t, y) dy

:= I
(1)
t (s, x) + I

(2)
t (s, x).

Let ε > 0 and, in view of Corollary 3.11, let K be a compact subset of V for which∫
V\K

exp(−MR#(z)) dz < ε

where the constant M is that given in (28) of Lemma 5.3. Using the continuity of g, we have for sufficiently
small t > 0,

sup
(s,x)∈Q
z∈K

|g(s− t, x− tEz)− g(s, x)| < ε.
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We note that, for any t > 0 and x ∈ V,∫
V
Gp(t, x− y;x) dy = e−tPp(x,ξ)

∣∣∣
ξ=0

= 1.

Appealing to Lemma 5.3 we have, for any (s, x) ∈ Q,

|I(1)
t (s, x)− g(s, x)| ≤

∣∣∣ ∫
V
Gp(t, x− y;x)(g(s− t, y)− g(s, x)) dy

∣∣∣
≤

∫
V
|Gp(1, z;x)(g(s− t, x− tEz)− g(s, x))| dz

≤ 2‖g‖∞C
∫
V\K

exp(−MR#(z)) dz

+C

∫
K

exp(−MR#(z))|(g(s− t, x− tEz)− g(s, x))| dz

≤ εC
(

2‖g‖∞ + ‖e−MR#‖1
)

;

here we have made the change of variables: y 7→ tE(x − y) and used the homogeneity of Pp to see that

tµHGp(t, t
Ez;x) = Gp(1, z;x). Therefore I

(1)
t (s, x)→ g(s, x) uniformly on Q as t→ 0.

Let us now consider I(2). With the help of Lemmas 3.13 and 5.4 and by making similar arguments to
those above we have

|I(2)
t (s, x)| ≤ C‖g‖∞

∫
V
t−µH |x− y|αv exp(−MR#(t−E(x− y)) dy

≤ ‖g‖∞Ctσ
∫
V
t− trE(R#(t−E(x− y)))θ exp(−MR#(t−E(x− y))) dy

≤ ‖g‖∞Ctσ
∫
V

(R#(x))θ exp(−MR#(z)) dz ≤ ‖g‖∞C ′tσ

for all s ∈ (t0, T ], 0 < t < s− t0 and x ∈ V; here 0 < σ < 1. Consequently, I
(2)
t (s, x)→ 0 uniformly on Q

as t→ 0 and the lemma is proved.

Combining the results of Lemmas 5.3 and 5.5 yields at once:

Corollary 5.6. For each y ∈ V, Gp(·, · − y; y) is a fundamental solution to (23).

Step 2. Construction of φ and the integral equation

For t > 0 and x, y ∈ V, put

K(t, x, y) = −(∂t +H)Gp(t, x− y; y)

=
(
Hp(y)−H

)
Gp(t, x− y; y)

=

∫
V∗
e−iξ(x−y)

(
Pp(y, ξ)− P (x, ξ)

)
e−tPp(y,ξ) dξ
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and iteratively define

Kn+1(t, x, y) =

∫ t

0

∫
V
K1(t− s, x, z)Kn(s, z, y) dzds

where K1 = K. In the sense of (27), note that Kn+1 = LnK.

We claim that for some 0 < ρ < 1,

|K(t, x, y)| ≤ Ct−(µH+1−ρ) exp(−MR#(t−E(x− y))) (36)

for all x, y ∈ V and 0 < t ≤ T where M and C are positive constants. Indeed, observe that

|K(t, x, y)| ≤
∑
|β:m|=2

|aβ(y)− aβ(x)||Dβ
vGp(t, x− y; y)|+ C

∑
|β:m|<2

|Dβ
vGp(t, x− y; y)|

for all x, y ∈ V and t > 0 where we have used the fact that the coefficients of H are bounded. In view of
Lemma 5.3, we have

|K(t, x, y)| ≤
∑
|β:m|=2

|aβ(y)− aβ(x)|Ct−(µH+1) exp(−MR#(t−E(x− y)))

+Ct−(µH+η) exp(−MR#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T where

η = max{|β : 2m| : |β : m| 6= 2 and aβ 6= 0} < 1.

Using Hypothesis 5.2, an appeal to Corollary 3.14 ensures that

|K(t, x, y)| ≤ Ctσ−(µH+1)(R#(t−E(x− y)))θ exp(−MR#(t−E(x− y)))

+Ct−(µH+η) exp(−MR#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T where θ is positive and 0 < σ < 1. Our claim is then justified by choosing
ρ = max{σ, 1− η} and adjusting the constants C and M appropriately.

Taking cues from our heuristic discussion, we will soon form a series whose summands are the functions
Kn for n ≥ 1. In order to talk about the convergence of this series, our next task is to estimate these
functions and in doing this we will observe two separate behaviors: a finite number of terms will exhibit
singularities in t at the origin; the remainder of the terms will be absent of such singularities and will be
estimated with the help of the Gamma function. We first address the terms with the singularities.

Lemma 5.7. Let 0 < ρ < 1 and M > 0 be as above. For any positive natural number n such that
ρ(n− 1) ≤ µH + 1 and ε > 0 for which εn < 1, there is a constant Cn(ε) ≥ 1 such that

|Kn(t, x, y)| ≤ Cn(ε)t−(µH+1−nρ) exp(−M(1− εn)R#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T .

33



Proof. In view (36), it is clear that the estimate holds when n = 1. Let us assume the estimate holds for
n ≥ 1 such that ρn < 1 + µH and ε > 0 for which εn < ε(n+ 1) < 1. Then

|Kn+1(t, x, y)| ≤
∫ t

0

∫
V
Cn(ε)(t− s)−(µH+1−nρ)C1(ε)s−(µH+1−ρ)

× exp(−Mε,nR
#((t− s)−E(x− z))) exp(−MR#(s−E(z − y))) dz ds (37)

for x, y ∈ V and 0 < t ≤ T where we have set Mε,n = M(1− εn). Observe that

R#(t−E(x− y)) = sup{ξ(x− y)− tR(ξ)}
= sup{ξ(x− z)− (t− s)R(ξ) + ξ(z − y)− sR(ξ)}
≤ R#((t− s)−E(x− z)) +R#(s−E(z − y)) (38)

for all x, y, z ∈ V and 0 < s ≤ t and therefore

exp(−Mε,nR
#((t− s)−E(x− z))) exp(−MR#(s−E(z − y)))

≤ exp(−Mε,n+1R
#(t−E(x− y))) exp(−εnM(R#((t− s)−E(x− z) +R#(s−E(z − y))). (39)

Combining (37), (38) and (39) yields

|Kn+1(t, x, y)|

≤ C1(ε)Cn(ε) exp(−Mε,n+1R
#(t−E(x− y)))

∫ t

0

∫
V

(t− s)−(µH+1−nρ)s−(µH+1−ρ)

× exp(−εnM(R#((t− s)−E(x− z) +R#(s−E(z − y))) dz ds

≤ C1(ε)Cn(ε) exp(−Mε,n+1R
#(t−E(x− y)))

×
[
(t/2)−(µH+1−nρ)

∫ t/2

0

∫
V
s−(µH+1−ρ) exp(−εnMR#(s−E(z − y))) dz ds

+(t/2)−(µH+1+ρ)

∫ t

t/2

∫
V

(t− s)−(µH+1−nρ) exp(−εnMR#((t− s)−E(x− z))) dz ds
]

≤ C1(ε)Mn(ε) exp(−Mε,n+1R
#(t−E(x− y)))

×
[
(t/2)−(µH+1−nρ)

∫ t/2

0
s−(1−ρ) ds

∫
V

exp(−εnMR#(z)) dz

+(t/2)−(µH+1+ρ)

∫ t/2

0
s−(1−n)ρds

∫
V

exp(−εnMR#(z)) dz
]

≤ Cn+1(ε)t−(µH+1−(n+1)ρ) exp(−Mε,n+1R
#(t−E(x− y))

for all x, y ∈ V and t > 0 where we have put

Cn+1(ε) = C1(ε)Cn(ε)
n+ 1

nρ
2µH+(1−(n+1)ρ)

∫
V

exp(−εnMR#(z)) dz

and made use of Corollary 3.11.
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Remark 6. The estimate (38) is an important one and will be used again. In the context of elliptic
operators, i.e., where R#(x) = Cm|x|2m/(2m−1), the analogous result is captured in Lemma 5.1 of [35]. It
is interesting to note that S. D. Eidelman worked somewhat harder to prove it. Perhaps this is because
the appearance of the Legendre-Fenchel transform wasn’t noticed.

It is clear from the previous lemma that for sufficiently large n, Kn is bounded by a positive power of t.
The first such n is n̄ := dρ−1(trE + 1)e. In view of the previous lemma,

|Kn̄(t, x, y)| ≤ Cn̄(ε) exp(−M(1− εn̄)R#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T where we have adjusted Cn̄(ε) to account for this positive power of t. Let
δ < 1/2 and set

ε =
δ

n̄
, M1 = M(1− δ) and C0 = max

1≤n≤n̄
Cn(ε).

Upon combining proceeding estimate with the estimates(36) and (38), we have

|Kn̄+1(t, x, y)|

≤ C2
0

∫ t

0

∫
V

(t− s)−(µH+(1−ρ))

× exp(−MR#((t− s)−E(x− z)) exp(−M(1− εn̄)R#(s−E(z − y))) ds dz

≤ C2
0 exp(−M1R

#(t−E(x− y)))

∫ t

0

∫
V

(t− s)−(µH+(1−ρ)) exp(−CδR#((t− s)−E(z))) dz ds

≤ C0(C0F )
tρ

ρ
exp(−M1R

#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T where

F =

∫
V

exp(−MδR#(z)) dz <∞.

Let us take this a little further.

Lemma 5.8. For every k ∈ N+,

|Kn̄+k(t, x, y)| ≤ C0

Γ(ρ)

(C0FΓ(ρ))k

k!
tρk exp(−M1R

#(t−E(x− y))) (40)

for all x, y ∈ V and 0 < t ≤ T . Here Γ(·) denotes the Gamma function.

Proof. The Euler-Beta function B(·, ·) satisfies the well-known identity B(a, b) = Γ(a)Γ(b)/Γ(a+ b). Using
this identity, one quickly obtains the estimate

k−1∏
j=1

B(ρ, 1 + jρ) =
Γ(ρ)k−1

Γ(1 + kρ)
≤ Γ(ρ)k−1

k!
.
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It therefore suffices to prove that

|Kn̄+k(t, x, y)| ≤ C0(C0F )k
k−1∏
j=0

B(ρ, 1 + jρ)tkρ exp(−M1R
#(t−E(x− y))) (41)

for all x, y ∈ V and 0 < t ≤ T .
We first note that B(ρ, 1) = ρ−1 and so, for k = 1, (41) follows directly from the calculation proceeding

the lemma. We shall induct on k. By another application of (36) and (38), we have

Jk+1(t, x, y) :=
[
C2

0 (C0F )k
k−1∏
j=0

B(ρ, 1 + jρ)
]−1
|Kn̄+k+1(t, x, y)|

≤
∫ t

0

∫
V

(t− s)−(µH+(1−ρ))s−kρ exp(−MR#((t− s)−E(x− z)))

× exp(−M1R
#(s−E(z − y))) dz ds

≤ exp(−M1R
#(t−E(x− y)))

×
∫ t

0

∫
V

(t− s)−(µH+(1−ρ))s−kρ exp(−MδR#((t− s)−E(x− z))) dz ds

for all x, y ∈ V and 0 < t ≤ T . Upon making the changes of variables z → (t − s)−E(x − z) followed by
s→ s/t, we have

Jk+1(t, x, y) ≤ exp(−M1R
#(t−E(x− y)))F

∫ 1

0
(t− st)ρ−1(st)kρt ds

≤ exp(−M1R
#(t−E(x− y)))Ft(k+1)ρB(ρ, 1 + kρ)

for all x, y ∈ V and 0 < t ≤ T . Therefore (41) holds for k + 1 as required.

Proposition 5.9. Let φ : (0, T ]× V× V→ C be defined by

φ =
∞∑
n=1

Kn.

This series converges uniformly for x, y ∈ V and t0 ≤ t ≤ T where t0 is any positive constant. There exists
C ≥ 1 for which

|φ(t, x, y)| ≤ C

tµH+(1−ρ)
exp(−M1R

#(t−E(x− y))) (42)

for all x, y ∈ V and 0 < t ≤ T where M1 and ρ are as in the previous lemmas. Moreover, the identity

φ(t, x, y) = K(t, x, y) +

∫ t

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds (43)

holds for all x, y ∈ V and 0 < t ≤ T .
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Proof. Using Lemmas 5.7 and 5.8 we see that

∞∑
k=1

|Kn(t, x, y)| ≤ C0

[ n̄∑
n=1

t−(µH+(1−nρ)) +
1

Γ(ρ)

∞∑
k=1

(C0FΓ(ρ))k

k!
tkρ
]

exp(−M1R
#(t−E(x− y)))

for all x, y ∈ V and 0 < t ≤ T from which (42) and our assertion concerning uniform convergence follow.
A similar calculation and an application of Tonelli’s theorem justify the following use of Fubini’s theorem:
For x, y ∈ V and 0 < t ≤ T ,∫ t

0

∫
V
K(t− s, x, z)φ(s, z, y) ds dz =

∞∑
n=1

∫ t

0

∫
V
K(t− s, x, z)Kn(s, z, y) dz ds

=
∞∑
n=1

Kn+1(t, z, y) = φ(t, x, y)−K(t, x, y)

as desired.

The following Hölder continuity estimate for φ is obtained by first showing the analogous estimate for K
and then deducing the desired result from the integral formula (43). As the proof is similar in character
to those of the preceding two lemmas, we omit it. A full proof can be found in [37, p.80]. We also note
here that the result is stronger than is required for our purposes (see its use in the proof of Lemma 5.12).
All that is really required is that φ(·, ·, y) satisfies the hypotheses (for f) in Lemma 5.11 for each y ∈ V.

Lemma 5.10. There exists α ∈ Id+ which is consistent with m, 0 < η < 1 and C ≥ 1 such that

|φ(t, x+ h, y)− φ(t, x, y)| ≤ C

tµH+(1−η)
|h|αv exp(−M1R

#(t−E(x− y)))

for all x, y, h ∈ V and 0 < t ≤ T .

Step 3. Verifying that Z is a fundamental solution to (20)

Lemma 5.11. Let α ∈ Id+ be consistent with m and, for t0 > 0, let f : [t0, T ] × V → C be bounded and
continuous. Moreover, suppose that f is uniformly v-Hölder continuous in x on [t0, T ]× V of order α, by
which we mean that there is a constant C > 0 such that

sup
t∈[t0,T ]

|f(t, x)− f(t, y)| ≤ C|x− y|αv

for all x, y ∈ V. Then u : [t0, T ]× V→ C defined by

u(t, x) =

∫ t

t0

∫
V
Gp(t− s, x− z; z)f(s, z) ds dz

is (2m,v)-regular on (t0, T )× V. Moreover,

∂tu(t, x) = f(t, x) + lim
h↓0

∫ t−h

t0

∫
V
∂tGp(t− s, x− z; z)f(s, z) dz ds (44)
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and for any β such that |β : m| ≤ 2, we have

Dβ
vu(t, x) = lim

h↓0

∫ t−h

t0

∫
V
Dβ

vG(t− s, x− z; z)f(s, z) dz ds (45)

for x ∈ V and t0 < t < T .

Before starting the proof, let us observe that, for each multi-index β,

|Dβ
vGp(t− s, x− z; z)f(s, z)| ≤ C(t− s)−(µH+|β:2m|) exp(−MR#((t− s)−E(x− z)))|f(s, z)|.

Using the assumption that f is bounded, we observe that∫ t

t0

∫
V
|Dβ

vGp(t− s, x− z; z)f(s, z)| dz ds

≤ C

∫ t

t0

∫
V

(t− s)−µH+|β:2m| exp(−MR#((t− s)−E(x− z))) dz ds

≤ C

∫ t

t0

∫
V

(t− s)−|β:2m| exp(−MR#(z)) dz ds

≤ C

∫ t

t0

(t− s)−|β:2m| ds

for all t0 ≤ t ≤ T and x ∈ V. When |β : m| < 2,∫ t

t0

(t− s)−|β:2m| ds (46)

converges and consequently

Dβ
vu(t, x) =

∫ t

t0

∫
V
Dβ

vGp(t− s, z − x; z)f(s, z) dz ds

for all t0 ≤ t ≤ T and x ∈ V. From this it follows that Dβ
vu(t, x) is continuous on (t0, T )×V and moreover

(45) holds for such an β in view of Lebesgue’s dominated convergence theorem. When |β : m| = 2, (46)
does not converge and hence the above argument fails. The main issue in the proof below centers around
using v-Hölder continuity to remove this obstacle.

Proof. Our argument proceeds in two steps. The fist step deals with the spatial derivatives of u. Therein,
we prove the asserted x-regularity and show that the formula (45) holds. In fact, we only need to consider
the case where |β : m| = 2; the case where |β : m| < 2 was already treated in the paragraph proceeding
the proof. In the second step, we address the time derivative of u. As we will see, (44) and the asserted
t-regularity are partial consequences of the results proved in Step 1; this is, in part, due to the fact that
the time derivative of Gp can be exchanged for spatial derivatives. The regularity shown in the two steps
together will automatically ensure that u is (2m,v)-regular on (t0, T )× V.
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Step 1. Let β be such that |β : m| = 2. For h > 0 write

uh(t, x) =

∫ t−h

t0

∫
V
Gp(t− s, x− z; z)f(s, z) dz ds

and observe that

Dβ
vuh(t, x) =

∫ t−h

t0

∫
V
Dβ

vGp(t− s, x− z; z)f(s, z) dz ds

for all t0 ≤ t − h < t ≤ T and x ∈ V; it is clear that Dβ
vuh(t, x) is continuous in t and x. The fact that

we can differentiate under the integral sign is justified because t has been replaced by t− h and hence the
singularity in (46) is avoided in the upper limit. We will show that Dβ

vuh(t, x) converges uniformly on all

compact subsets of (t0, T ) × V as h → 0. This, of course, guarantees that Dβ
vu(x, t) exists, satisfies (45)

and is continuous on (t0, T )× V. To this end, let us write

Dβ
vuh(t, x) =

∫ t−h

t0

∫
V
Dβ

vGp(t− s, x− z; z)(f(s, z)− f(s, x)) dz ds

+

∫ t−h

t0

∫
V
Dβ

vGp(t− s, x− z; z)f(s, x) dz ds

=: I
(1)
h (t, x) + I

(2)
h (t, x).

Using our hypotheses, Corollary 3.8 and Lemma 3.13, for some 0 < σ < 1 and θ > 0, there is M > 0 such
that

|f(s, z)− f(s, x)| ≤ C(t− s)σ(R#((t− s)−E(x− z)))θ

for all x, z ∈ V, t ∈ [t0, T ] and s ∈ [t0, t]; consequently

|Dβ
vGp(t− s, x− z; z)(f(s, z)− f(s, x))|

≤ C(t− s)−(µH+1)tσ(R#(t−E(x− z)))θ exp(−MR#((t− s)−E(x− z)))
≤ C(t− s)−(µH+(1−σ)) exp(−MR#(t− s)−E(x− z))

for all x, z ∈ V, t ∈ [t0, T ] and s ∈ [t0, t]. This estimate guarantees that

I(1)(t, x) :=

∫ t

t0

∫
V
Dβ

vGp(t− s, x− z; z)(f(s, z)− f(s, x)) dz ds

exists for each t ∈ [t0, T ] and x ∈ V. Moreover, for all t0 ≤ t− h < t ≤ T and x ∈ V,

|I(1)(t, x)− I(1)
h (t, x)| ≤

∫ t

t−h

∫
V
|Dβ

vGp(t− s, x− z; z)(f(s, z)− f(s, x))| dz ds

≤ C

∫ t

t−h

∫
V

(t− s)σ−1 exp(−MR#(z)) dz ds ≤ Chσ.

From this we see that limh↓0 I
(1)
h (t, x) converges uniformly on all compact subsets of (t0, T )× V.
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We claim that for some 0 < ρ < 1, there exists C > 0 such that∣∣∣ ∫
V
Dβ

vGp(t− s, x− z; z) dz
∣∣∣ ≤ C(t− s)−(1−ρ) (47)

for all x ∈ V and s ∈ [t0, t]. Indeed,∫
V
Dβ

vGp(t− s, x− z; z) dz

=

∫
V
Dβ

v[Gp(t− s, x− z; z)−Gp(t− s, x− z; y)]
∣∣
y=x

dz +
[
Dβ

v

∫
V
Gp(t− s, x− z; y) dz

]∣∣
y=x

.

The first term above is estimate with the help of Lemma 5.4 and by making arguments analogous to those
in the previous paragraph; the appearance of ρ follows from an obvious application of Lemma 3.13. This
term is bounded by C(t− s)−(1−ρ). The second term is clearly zero and so our claim is justified.

By essentially repeating the arguments made for I
(1)
h and making use of (47), we see that

lim
h↓0

I
(2)
h (t, x) = I(2)(t, x) =:

∫ t

t0

∫
V
Dβ

vGp(t− s, x− z; z)f(s, x) dz ds

where this limit converges uniformly on all compact subsets of (t0, T )× V.

Step 2. It follows from Leibnitz’ rule that

∂tuh(x, t) =

∫
V
Gp(h, x− z; z)f(t− h, z) dz +

∫ t−h

t0

∫
V
∂tGp(t− s, x− z; z)f(s, z) dz ds

=: J
(1)
h (t, x) + J

(2)
h (t, x)

for all t0 < t− h < t < T and x ∈ V. Now, in view of Lemma 5.5 and our hypotheses concerning f ,

lim
h↓0

J
(1)
h (t, x) = f(t, x)

where this limit converges uniformly on all compact subsets of (t0, T )× V.
Using the fact that ∂tGp(t− s, x− z; z) = −Hp(z)Gp(t− s, x− z; z), we see that

lim
h↓0

J
(2)
h (t, x) = lim

h↓0

∫ t−h

0

∫
V

(
−

∑
|β:m|=2

aβ(z)Dβ
v

)
Gp(t− s, x− z; z)f(s, z) dz ds

= −
∑
|β:m|=2

lim
h↓0

∫ t−h

0

∫
V
Dβ

vGp(t− s, x− z; z)(aβ(z)f(s, z)) dz ds

for all t ∈ (t0, T ) and x ∈ V. Because the coefficients of H are v-Hölder continuous and bounded, for each
β, aβ(z)f(s, z) satisfies the same condition we have required for f and so, in view of Step 1, it follows

that J
(2)
h (t, x) converges uniformly on all compact subsets of (t0, T )× V as h→ 0. We thus conclude that

∂tu(t, x) exists, is continuous on (t0, T )× V and satisfies (44).
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Lemma 5.12. Let W : (0, T ]× V× V→ C be defined by

W (t, x, y) =

∫ t

0

∫
V
Gp(t− s, x− z; z)φ(s, z, y) dz ds,

for x, y ∈ V and 0 < t ≤ T . Then, for each y ∈ V, W (·, ·, y) is (2m,v)-regular on (0, T )× V and satisfies

(∂t +H)W (t, x, y) = K(t, x, y). (48)

for all x, y ∈ V and t ∈ (0, T ). Moreover, there are positive constants C and M for which

|W (t, x, y)| ≤ Ct−µH+ρ exp(−MR#(t−E(x− y))) (49)

for all x, y ∈ V and 0 < t ≤ T where ρ is that which appears in Lemma 5.7.

Proof. The estimate (49) follows from (28) and (42) by an analogous computation to that done in the
proof of Lemma 5.7. It remains to show that, for each y ∈ V, W (·, ·, y) is (2m,v)-regular and satisfies (48)
on (0, T )× V. These are both local properties and, as such, it suffices to examine them on (t0, T )× V for
an arbitrary but fixed t0 > 0. Let us write

W (t, x, y) =

∫ t

t0

∫
V
Gp(t− s, x− z; z)φ(s, z, y) dz ds+

∫ t0

0

∫
V
Gp(t− s, x− z; z)φ(s, z, y) dz ds

=: W1(t, x, y) +W2(t, x, y)

for x, y ∈ V and t0 < t < T . In view of Lemmas 5.10 and 5.11, for each y ∈ V, W1(·, ·, y) is (2m,v)-regular
on (t0, T )× V and

(∂t +H)W1(t, x, y) = ∂tW1(t, x, y) +
∑
|β:m|≤2

aβ(x)Dβ
vW1(t, x, y)

= φ(t, x, y) + lim
h↓0

∫ t−h

t0

∫
V
∂tGp(t− s, x− z; z)φ(s, z, y) dz dy

+ lim
h↓0

∫ t−h

t0

∫
V

∑
|β:m|≤2

aβ(x)Dβ
vGp(t− s, x− z; z)φ(s, z, y) dz ds

= φ(t, x, y) + lim
h↓0

∫ t−h

t0

∫
V

(∂t +H)Gp(t− s, x− z; z)φ(s, z, y) dz ds

= φ(t, x, y)− lim
h↓0

∫ t−h

t0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds (50)

for all x ∈ V and t0 < t < T ; here we have used the fact that

(∂t +H)Gp(t− s, x− z; z) = −K(t− s, x, z).

Treating W2 is easier because Gp(t − s, x − z, z) and its derivatives remain bounded for z, x ∈ V and
0 < s ≤ t0. Consequently, derivatives may be taken under the integral sign and so it follows that, for each
y ∈ V, W2(·, ·, y) is (2m,v)-regular on (t0, T )× V and

(∂t +H)W2(t, x, y) = −
∫ t0

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds (51)
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for x ∈ V and t0 < t < T . We can thus conclude that, for each y ∈ V, W (·, ·, y) is (2m,v)-regular on
(t0, T )× V and, by combining (50) and (51),

(∂t +H)W (t, x, y) = φ(t, x, y)− lim
h↓0

∫ t−h

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds

for x ∈ V and t0 < t < T . By (36), Proposition 5.9 and the Dominated Convergence Theorem,

lim
h↓0

∫ t−h

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds =

∫ t

0

∫
V
K(t− s, x, z)φ(s, z, y) dz ds

= φ(t, x, y)−K(t, x, y)

and therefore
(∂t +H)W (t, x, y) = K(t, x, y)

for all x, y ∈ V and t0 < t < T .

The theorem below is our main result. It is a more refined version of Theorem 5.1 because it gives an
explicit formula for the fundamental solution Z; in particular Theorem 5.1 is an immediate consequence
of the result below.

Theorem 5.13. Let H be a uniformly (2m,v)-positive-semi-elliptic operator. If H satisfies Hypothesis
5.2 then Z : (0, T ]× V× V→ C, defined by

Z(t, x, y) = Gp(t, x− y; y) +W (t, x, y) (52)

for x, y ∈ V and 0 < t ≤ T , is a fundamental solution to (20). Moreover, there are positive constants C
and M for which

|Z(t, x, y)| ≤ C

tµH
exp

(
−tMR#

(
x− y
t

))
(53)

for all x, y ∈ V and 0 < t ≤ T .

Proof. As 0 < ρ < 1, (49) and Lemma 5.3 imply the estimate (53). In view of Lemma 5.12 and Corollary
5.6, for each y ∈ V, Z(·, ·, y) is (2m,v)-regular on (0, T )× V and

(∂t +H)Z(t, x, y) = (∂t +H)Gp(t, x− y, y) + (∂t +H)W (t, x, y)

= −K(t, x, y) +K(t, x, y) = 0

for all x ∈ V and 0 < t < T . It remains to show that for any f ∈ Cb(V),

lim
t→0

∫
V
Z(t, x, y)f(y) dy = f(x)

for all x ∈ V. Indeed, let f ∈ Cb(V) and, in view of (49), observe that∣∣∣∣∫
V
W (t, x, y)f(y)

∣∣∣∣ ≤ Ctρ‖f‖∞
∫
V
t−µH exp(−MR#(t−E(x− y)))dy

≤ Ctρ‖f‖∞
∫
V

exp(−MR#(y)) dy ≤ Ctρ‖f‖∞
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for all x ∈ V and 0 < t ≤ T . An appeal to Lemma 5.5 gives, for each x ∈ V,

lim
t→0

∫
V
Z(t, x, y)f(y)dy = lim

t→0

∫
V
Gp(t, x− y; y)f(y) dy + lim

t→0

∫
V
W (t, x, y)f(y) dy

= f(x) + 0 = f(x)

as required. In fact, the above argument guarantees that this convergence happens uniformly on all compact
subsets of V.

We remind the reader that implicit in the definition of fundamental solution to (20) is the condition that

Z is (2m,v)-regular. In fact, one can further deduce estimates for the spatial derivatives of Z, Dβ
vZ, of

the form (11) for all β such that |β : 2m| ≤ 1 (see [37, p. 92]). Using the fact that Z satisfies (20) and H’s
coefficients are bounded, an analogous estimate is obtained for a single t derivative of Z.

References

[1] T. Apel, T. Glaig and S. Nicaise. A priori estimates for finite element methods for H(2,1)-elliptic
equations. Num. Func. Anal. Opt., 35(2):153-176, 2014.

[2] R. Artino. On semielliptic boundary value problems. T. Math. Anal. Appl., 42(3):610-626, 1973.

[3] R. Artino. Completely semielliptic boundary value problems. Portugal. Math., 50(2): 185-192, 1993.

[4] R. Artino and J. Barros-Neto. Regular semielliptic boundary value problems. J. Math. Anal. Appl.,
61(1):40-57, 1977.

[5] R. Artino and J. Barros-Neto. Semielliptic pseudodifferential operators. J. Funct. Anal., 129(2):471-
496, 1995.

[6] P. Auscher, S. Hofmann, A. McIntosh and P. Tchamitchian. The Kato square root problem for higher
order elliptic operators and systems on Rn.

[7] P. Auscher, A. F. M. ter Elst, D. Robinson. On positive Rockland operators. Colloq. Math., 67(2),
197-216 (1994)

[8] G. Barbatis and E. B. Davies. Sharp bounds on heat kernels of higher order uniformly elliptic operators.
J. Operator Theory, 36:179-198, 1996.

[9] S. Blunk and P. C. Kunstmann. Generalized Gaussian Estimates and the Legendre transform. J.
Operator Theory, 53(2), 351-365 (2005)

[10] L. N. Bondar’. Solvability of boundary value problems for quasielliptic systems in weighted Sobolev
spaces. J. Math. Sci., 186(3):364-378, 2012.

[11] L. N. Bondar’. Conditions for the solvability of boundary value problems for quasi-elliptic systems in
a half-space. Differ. Equ., 48(3):343-353, 2012.

43



[12] L. N. Bondar’ and G. V. Demidenko. Quasi-elliptic operators and Sobolev-type equations. Sib. Math.
J., 49(5):842-851, 2008.

[13] F. Browder. The asymptotic distribution of eigenfunctions and eigenvalues for semi-elliptic differential
operators. PNAS, 43(3):270-273, 1957.

[14] P. Butzer and H. Berens. Semi-groups of Operators and Approximation. Springer-Verlag New York
Inc., N.Y., 1967.
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[46] L. Hörmander. The Analysis of Linear Partial Differential Operators II. Springer-Verlag, Berlin, 1983.

[47] Y. Kannai. On the asymptotic behavior of resolvent kernels, spectral functions and eigenvalues of
semielliptic systems. Ann. Scuola Norm. Sup. Pisa, 23:563-634, 1969.

[48] G. Lawler and V. Limic: Random walk: a modern introduction. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, N.Y., 2010.

[49] E. E. Levi. Sulle equazioni lineare totalmente ellittiche alle derivate paraziali. Rend. Circ. Mat.
Palermo, 24:275-317, 1907.

[50] T. Matsuzawa. On quasi-elliptic boundary problems. Trans. Amer. Math. Soc., 133:241-265, 1968.

[51] El Maati Ouhabaz. Analysis of Heat Equations on Domains. London Mathematical Society Mono-
graphs, Princeton University Press, Princeton NJ, 2005.
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