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These are some supplementary course notes for Real Analysis (Math 338). As we go forward in the course, I plan
to build these notes out and tailor them to suit our needs. For this reason, please check these frequently as I will
often make corrections and changes without explicit warning. Also, if you find or suspect an error typo – no matter
how trivial – please email me to let me know!

1 Complex functions of a real variable

We will soon integrate complex-valued functions of a real variable, e.g., functions f : I → C where I = [a, b]. As we
discussed previously in the course, C is simply R2 with an additional multiplication structure. Its metric is given
by the norm/modulus

|z| = |a+ ib| = |(a, b)| =
√
a2 + b2

for z = a + ib ∈ C. The following proposition simply translates our general notion of continuity (for functions
between metric spaces) into the context of the complex modulus and the real and imaginary parts of a complex-
valued function.

Proposition 1.1. Let I ⊆ R be an interval2 and let f : I → C. We write f = u + iv where u = Re(f) and
v = Im(f) are the real and imaginary parts of f , respectively, both of which are necessarily real-valued functions on
I.

1. For a point x0 ∈ I, f is continuous at x0 if, for all ϵ > 0, there is a δ = δ(ϵ, x) for which

|f(x)− f(x0)| =
√
(u(x)− u)(x0))2 + (v(x)− v(x0))2 < ϵ

whenever
|x− x0| < δ.

2. For a point x0 ∈ I, f is continuous at x0 if and only if its real and imaginary parts, Re(f) and Im(f), are
continuous at x0. In this case,

f(x0) = lim
x→x0

f(x) =

(
lim

x→x0

u

)
+ i

(
lim

x→x0

v

)
= Re(f)(x0) + i Im(f)(x0).

3. f is continuous on I if it is continuous at every x0 ∈ I. Further, it is continuous on I if and only if its real
and imaginary parts, Re(f) and Im(f), are continuous on I.

4. f is uniformly continuous on I if and only if its real and imaginary parts, u and v, are uniformly continuous
on I.

As an exercise, you should prove (or convince yourself that you could prove) the proposition above. Let’s now
talk about differentiability. Viewing C as R2, we can recognize the real and imaginary parts of f : I → C as the
components of f , i.e., f = (Re(f), Im(f))⊤. In this sense, f is differentiable at x0 ∈ I if

f(x0 + h) = f(x0) +Df(x0)h+ E(h)|h|

where E(h) → 0 as h → 0 where Df is a 2×1 column vector consisting of the “partial” derivatives of the components
of f . The following proposition connects our vector-valued notion of differentiability to a (new) complex-valued
one. While it might appear obvious, the proposition is stronger than that which guarantees the existence of partial
derivatives (Theorem 9.17 of Rudin) we discussed in class.

2That is, I = (a, b), (a, b], [a, b), or [a, b]) where −∞ ≤ a < b ≤ ∞.
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Proposition 1.2. Let f : I → C where I is an interval. Given x0 ∈ I, f is differentiable at x0 if and only if
u = Re(f) and v = Im(f) are differentiable (as real-valued functions) at x0 and

f ′(x0) := lim
h→0

f(x0 + h)− f(x0)

h

=

(
lim
h→0

u(x0 + h)− u(x0)

h

)
+ i

(
lim
h→0

v(x0 + h)− v(x0)

h

)
= u′(x0) + iv′(x0).

In this case, we recognize the complex number f ′(x0) =
df
dx (x0) (instead of its derivative matrix) as the derivative

of f at x0.

Exercise 1

Let f : I → C where I is an intervala.

1. Prove the proposition above.

2. Assume that f and g are complex-valued functions on I, both of which are differentiable at x0. Use the
proposition (and your knowledge of the algebra of derivatives of real-valued functions of a real variable)
to prove the following statements:

(a) For z = a+ib ∈ C, the function x 7→ zf(x) is differentiable at x0 with derivative (zf)′(x0) = zf ′(x0).

(b) f + g is differentiable at x0 with f ′(x0) + g′(x0).

(c) fg is differentiable at x0 with (fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).

aYou may assume I is open for simplicity.

Exercise 2

In this exercise, you can assume that the sine and cosine functions are everywhere differentiable on R, have
the derivatives you know them to have, and satisfy the trigonometric identities cos(x + y) = cos(x) cos(y) −
sin(x) sin(y) and sin(x+ y) = sin(x) cos(y) + sin(y) cos(x). With this, define Cis : R → C by

Cis(x) = cos(x) + i sin(x)

for x ∈ R.

1. Show that |Cis(x)| = 1 for all x ∈ R.

2. Show that Cis(x+ y) = Cis(x) Cis(y).

3. Using the previous proposition, show that Cis is differentiable at x0 = 0 and Cis′(0) = i.

4. Use the above to show that Cis is everywhere differentiable and Cis′(x) = iCis(x) for all x ∈ R.

5. It is customary to write Cis(x) = eix (a fact which will be later justified by series) and, henceforth, we
shall adopt this notation completely. In this new notation, write out all conclusions to the above four
items.

1.1 Some Notation

We have recently been talking about continuous and differentiable functions. It’s helpful to give some notation to
collections of such functions; we shall later come back and discuss metrics and norms on them.
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Definition 1.3. Let X and Y be non-empty sets.

1. We say that a function a real or complex-valued function f on X is bounded proved that

∥f∥∞ := sup
x∈X

|f(x)| < ∞.

We shall denote the collection of bounded real and complex-valued function on X by B(X;R) and B(X;C)
respectively. When the context of R or R is made clear, we may simply write B(X) to denote the relevant
choice of these sets.

2. In the case that X and Y are metric spaces (with metrics dX and dY ), we denote by C0(X;Y ) the set of
continuous functions f : X → Y , i.e.,

C0(X;Y ) = {f : X → Y | f is continuous on X} .

We shall pay special attention to the cases in which Y = R or C.

3. In the case that X = I = [a, b], we shall denote by Cn(I;R) the set of functions f on X which are n-times
differentiable and

f (n) =
dnf

dxn
∈ C0(I;R).

Similarly, Cn(I;C) is the set of complex-valued functions f on I with f (n) = dnf
dxn ∈ C0(I;C). When the

context is clear, we may drop the second entry and simply write Cn(I) to mean Cn(I;R) or Cn(I;C).

2 The Riemann-Darboux integral

In this short section, we cover the basic properties of the Riemann-Darboux integral, whose name gives homage to
Bernhard Riemann and Jean Gaston Darboux. As stated in lecture, it turns out that even the Riemann integral
–the integral you’ve known and studied since your first brush with calculus – is insufficient for a comprehensive
theory of analysis. To treat the comprehensive theory, in earnest, one needs the Lebesgue theory of integration.
Though we will try to explore the necessity of Lebesgue integration later (while illustrating the shortcomings of the
Riemann-Darboux integral), we first need to lay the groundwork for the Riemann-Darboux integral. This is the
subject to which we now turn.

Definition 2.1. Consider an interval I = [a, b] where −∞ < a < b < ∞.

1. A partition P of I is a finite subset P = {x0, x1, x2, . . . , xN} of I such that

a = x0 < x1 < x2 < · · · < xN−1 < xN = b.

2. Given such a partition P , we shall write
∆xk = xk − xk−1

for k = 1, 2, . . . , N . The norm or size of the partition is, by definition,

∥P∥ = max
k=1,2,...,N

∆xk.

3. If P and Q are partitions of I, we say that Q is a refinement of P if P ⊆ Q.

Though a partition P is simply a finite subset of I (which is enumerated, increasing, and includes both endpoints),
you should picture P as dividing up the interval I into the subintervals [xn−1, xn] of length ∆xn for n = 1, 2, . . . , N .
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Definition 2.2. Given a bounded real-valued function f ∈ B(I) and a partition P of I, define

mn = inf
xn−1≤x≤xn

f(x) and Mn = sup
xn−1≤x≤xn

f(x)

for each n = 1, 2, . . . , N . With these, we define the upper and lower Darboux sums of f with respect to the
partition P respectively by

U(f, P ) =

N∑
n=1

Mn∆xn and L(f, P ) =

N∑
n=1

mn∆xn.

Because f is bounded on I, its infimum and supremum exists on ever subinterval of I and therefore U(f, P ) and
L(f, P ) will always exists (as finite numbers) for any bounded function f and any partition P of I. The numbers
U(f, P ) and L(f, P ) are respectively overestimates and underestimates for the (signed) area under the graph of f
on the interval I, when this area is a sensible notion. These estimates are produced by forming rectangles above
and below the graph of f where the width of the rectangles are determined by the subdivisions of I produced by
the partition P . Note here

By properties of the supremum and infimum, observe that

L(f, P ) ≤ U(f, P ), (1)

an inequality which holds for every partition P and every bounded function f : I → R.

It is helpful to think about a refinement Q of a partition P as one which produces, generally, finer subdivisions than
those given by P – hence the name “refinement”. With the aim of comparing upper and lower sums, we need the
following lemma. The lemma says essentially that finer divisions of I yield “better” estimates for the area under
the graph of f .

Lemma 2.3. Let P and Q be partitions of I and suppose that Q is a refinement of P . For any f ∈ B(I),

L(f, P ) ≤ L(f,Q) and U(f,Q) ≤ U(f, P ).

Proof. Let f ∈ B(I) and P be a partition of I. For any y ∈ I \ P , observe that P ∪ {y} it a refinement of P (with
one extra element) and, for some k = 1, 2, . . . , N , it must be that

xk−1 < y < xk,

i.e., y falls in the kth subinterval of the original partition P . In this case, we have

L(f, P ) =

N∑
n=1

mn∆xn = mk(xk − xk−1) +

N∑
n=1,n̸=k

mn∆xn.

Observe that, for mk = infxk−1≤x≤xk
f(x),

mk ≤ inf
xk−1≤x≤y

f(x) := m(xk−1, y) and mk ≤ inf
y≤x≤xk

f(x) := m(y, xk)

since both infima above are taken over smaller sets. Consequently,

L(f, P ) = mk(xk − xk1
) +

N∑
n=1,n̸=k

mk∆xn

= mk(xk − y) +mk(y − xk−1) +

N∑
n=1,n̸=k

mk∆xn

≤ m(y, xk)(xk − y) +m(xk−1, y)(y − xk−1) +

N∑
n=1,n̸=k

mk∆xn.

4



Really Real Analysis Supplementary notes for MA338 Evan Randles

Since the partition P ∪ {y} gives all the same subintervals of I as P except that it splits the subinterval [xk−1, xk]
into two subintervals, [xk−1, y] and [y, xk], we recognize that the final summation above is simply the lower sum,
L(f, P ∪ {y}). Hence

L(f, P ) ≤ L(f, P ∪ {y}). (2)

For the upper sum, we see that

sup
xk−1≤x≤y

f(x) ≤ Mk and sup
y≤x≤xk

f(x) ≤ Mk

and with this, an analogous argument to that made for lower sums yields

U(f, P ∪ {y}) ≤ U(f, P ). (3)

With these two inequalities, we let Q be any refinement of P so that we may write

Q = P ∪ {y1, y2, . . . , yl}

where yj ∈ I \ P for j = 1, 2, . . . , l. By repeated application of the inequality (2), we find

L(f, P ) ≤ L(f, P ∪ {y1}) ≤ L(f, P ∪ {y1} ∪ {y2}) ≤ · · · ≤ L(f, P ∪ {y1} ∪ {y2} ∪ · · · ∪ {yl}) = L(f,Q).

By an alaogous argument, making use of (3), we find

U(f, P ) ≥ U(f, P ∪ {y1}) ≥ U(f, P ∪ {y1} ∪ {y2}) ≥ · · · ≥ U(f, P ∪ {y1} ∪ {y2} ∪ · · · ∪ {yl}) = U(f,Q)

and so the proof is complete.

Thinking back to our picture of the area under the graph, which we will soon interpret as the integral, we expect
the lower sums to be underestimates for this area and the upper sums to be overestimates. Equivalently, we can
start to think of the integral as a number which sits below all of the upper sums and above all of the lower sums.
To think about how to approximate this number, we need to invoke the notion of supremum and infimum. To this
end, we’ll need another lemma which will help us to make sure the infimum and supremum exist.

Lemma 2.4. Let f ∈ B(I) and let P and Q be partitions of I. Then(
inf
x∈I

f(x)

)
(b− a) ≤ L(f, P ) ≤ U(f,Q) ≤

(
sup
x∈I

f(x)

)
(b− a)

Proof. We first note that the trivial partition T = {a, b} = {x0, x1} has

L(f, T ) =

1∑
n=1

mn(xn − xn−1) = m1(x1 − x0) =

(
inf

x0≤x≤x1

f(x)

)
(x1 − x0) =

(
inf
x∈I

f(x)

)
(b− a)

and

U(f, T ) =

1∑
n=1

mn(xn − xn−1) = m1(x1 − x0) =

(
sup

x0≤x≤x1

f(x)

)
(x1 − x0) =

(
sup
x∈I

f(x)

)
(b− a).

Thus, for any partitions P and Q, Lemma 2.3 guarantees that(
inf
x∈I

f(x)

)
(b− a) = L(f, T ) ≤ L(f, P )

and

U(f,Q) ≤
(
sup
x∈I

f(x)

)
(b− a)

because P and Q are necessarily refinements of T . It remains to establish the inner inequality.

5
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To this end, observe that the union R = P ∪ Q is also a partition of I for it is necessarily a finite subset of I
which contains a and b. Further, R is a refinement of both partitions P and Q. Thus, by another appeal to Lemma
2.3 and in view of (1), we have

L(f, P ) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q)

which guarantees that L(f, P ) ≤ U(f,Q) as was asserted.

Let’s isolate some conclusions of the preceding lemma. First, it says that, for any partition P of I,

L(f, P ) ≤
(
sup
x∈I

f(x)

)
(b− a).

Hence, the set
{L(f, P ) : P is a partition of I}

is a set of real numbers which is bounded above and hence its supremum exists (and is finite). Thus, we define∫
I

f(x) dx = L(f) = sup
P

L(f, P )

where this supremum is taken over all partitions P of I. This is called the lower Darboux sum of f on
I. Analogously, Lemma 2.4 guarantees that the infimum of all upper sums exists and so we define the upper
Darboux sum of f on I as ∫

I

f(x) dx = U(f) = inf
P

U(f, P )

As we’ve established quite a few inequalities involving upper and lower sums pertaining to the same and different
partitions of I, it’s helpful to have some sense of how U(f) and L(f) compare for a given bounded function f : I → R.
To this end, lets fix a partition Q of I and note that, in view of Lemma 2.4,

L(f, P ) ≤ U(f,Q)

for all partitions P of I. Thus, U(f,Q) is an upper bound of the set of real numbers {L(f, P ) : P is a parition of I}.
By the defining property of the supremum, we have

L(f) = sup
P

L(f, P ) ≤ U(f,Q).

Noting however that Q was arbitrary, we see that L(f) is a lower bound for U(f,Q) for all partitions Q of I. By
the defining property of the infimum, we have

L(f) ≤ inf
Q

U(f,Q) = U(f).

Let’s summarize this information.

Proposition 2.5. Let f : I → R be a bounded function, i.e., f ∈ B(I). Then the upper and lower Darboux sums,∫
I

f(x) dx = U(f) = inf
P

U(f, P )

and ∫
I

f(x) dx = L(f) = sup
P

L(f, P ),

exist. Furthermore, ∫
I

f(x) dx ≤
∫
I

f(x) dx.

6
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Exercise 3

This exercise will give you an idea of what’s going on in the above construction. In what follows, we will focus
on the interval I = [0, 1]. For each N = 1, 2, . . . ,, we shall consider the (regular) partition

PN = {x0 < x1 < · · · < xN = 1} =
{
xn =

n

N
: n = 0, 1, 2, . . . , N

}
of the interval I.

1. For the function f(x) = 1 for 0 ≤ x ≤ 1, compute U(f, PN ) and L(f, PN ).

(a) Is it true that L(f, PN ) ≤ U(f, PN )?

(b) Show that limN→∞(U(f, PN )− L(f, PN )) = 0.

2. For the function f(x) = x for 0 ≤ x ≤ 1, compute U(f, PN ) and L(f, PN ).

(a) Is it true that L(f, PN ) ≤ U(f, PN )?

(b) Show that limN→∞(U(f, PN )− L(f, PN )) = 0.

3. For the Dirichlet function f defined by

f(x) =

{
1 x ∈ Q
0 x /∈ Q

for 0 ≤ x ≤ 1, compute U(f, PN ) and L(f, PN ).

(a) Is it true that L(f, PN ) ≤ U(f, PN )?

(b) Does limN→∞(U(f, PN )− L(f, PN )) = 0?

4. For the first two examples above, you’ve seen a sequence (an enumerated collection) of partitions {PN}
for which

lim
N→∞

(U(f, PN )− L(f, PN )) = 0.

In view of Proposition 2.5 and the above fact, does it suffice to conclude that∫
I

f(x) dx =

∫
I

f(x) dx?

Prove your assertion (or find a counter example).

5. Is it true that if there is a sequence of partitions {PN} for which

lim
N→∞

(U(f, PN )− L(f, PN )) ̸= 0.,

then ∫
I

f(x) dx ̸=
∫
I

f(x) dx?

Prove your assertion (or find a counter example).

Finding motivation in the preceding example and returning again to our intuition of areas, we would hope that a
sensible notion of area under the graph could be gotten by approximating the area from above by upper sums and
from below by lower sums. Thus, if such an area does exist, we would hope that the supremum of all the lower sums

7
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coincides with the supremum of all the lower sums and so the inequality of the preceding proposition is actually an
equality. This is exactly the right idea and we give this situation a name.

Definition 2.6. Let f ∈ B(I) and let

U(f) =

∫
I

f(x) dx and L(f) =

∫
I

f(x) dx

be its upper and lower Darboux sums. We say that f is Riemann integrable on I and write f ∈ R(I) if U(f) = L(f).
In this case, the Riemann integral of f is defined to be the number∫

I

f(x) dx = U(f) = L(f).

Using the ϵ-characterization of suprema and infima, we have the following characterization for integrability.

Proposition 2.7. Let f ∈ B(I). Then f ∈ R(I) (that is, Riemann integrable) if and only if the following conditions
is satisfied:

For each ϵ > 0, there is a partition Pϵ of I for which U(f, Pϵ)− L(f, Pϵ) < ϵ.

Proof. We first suppose that f is Riemann integrable. By the ϵ-characterization of the supremum, let Q1 be a
partition for which L(f)− L(f,Q1) < ϵ/2. Similarly, by the characterization for infimum, let Q2 be a partition of
I for which U(f,Q2) − U(f) < ϵ/2. With these partitions in mind, we set Pϵ = Q1 ∪Q2 and observe that Pϵ is a
refinement of both Q1 and Q2. By Lemma 2.3, we have L(f, Pϵ) ≥ L(f,Q1) and U(f, Pϵ) ≤ U(f,Q2) and thus

U(f, Pϵ)− L(f, Pϵ) ≤ U(f,Q2)− L(f,Q1) < U(f) + ϵ− (L(f)− ϵ/2) = U(f)− L(f) + ϵ.

Of course, because f ∈ R(I), U(f) = L(f) and so the above inequality shows that U(f, Pϵ)− L(f, Pϵ) < ϵ.
Conversely, let’s assume that the desired property holds. Let ϵ > 0, and using the property select a partition P

for which U(f, P )−L(f, P ) < ϵ. As U(f) and L(f) are constructed from infima and suprema respectively, we have

U(f)− L(f) ≤ U(f, P )− L(f, P ) < ϵ.

In view of Proposition 2.5, we also have U(f)− L(f) ≥ 0. Hence, to each ϵ > 0, we have

0 ≤ U(f)− L(f) < ϵ.

We may therefor conclude that U(f) = L(f) for the only number “lodged” between zero and every positive number
is the number zero itself.

Armed with the notions of integration and integrability for real-valued functions f on I, it is easy to generalize
these to complex-valued functions.

Definition 2.8. Let I = [a, b] and consider a complex-valued function f : I → C. In this case f is necessarily of
the form

f(x) = u(x) + iv(x)

for x ∈ I where u, v : I → R. We saw that f is Riemann integrable on I if u and v are Riemann integrable on I
and we define the integral of f on I to be the complex number∫

I

f(x) dx =

(∫
I

u(x) dx

)
+ i

(∫
I

v(x) dx

)
.

With a slight abuse of notation, we write f ∈ R(I) and so R(I) is then taken to be the set of Riemann-integrable
complex-valued functions on I. We will also use the notations∫

I

f =

∫ b

a

f =

∫ b

a

f(x) dx

to denote the integral of f .

8
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Let’s make a few notes concerning the above definition. First, the functions u and v are called the real and imaginary
parts of f respectively. We’ll often write f = Re(f) + i Im(f) where Re(f) = u and Im(f) = v. In the (special)
case in which f is a real-valued function from I to R, we can write f = Re(f) + i Im(f) = Re(f) + i0 = f + i0 and
so here ∫

I

f =

∫
Re(f) + i

∫
I

0 =

∫
I

Re(f)(x) dx+ i0 =

∫
I

Re(f)(x) dx

because the integral of the zero function is just 0. In this way we observe that the definition of the Riemann integral
for complex-valued functions is an extension of the Riemann integral for real-valued functions (as it recaptures the
real-valued version of the Riemann integral).

Now that we know what integrability means, it’s high time to give some properties of the integral.

Proposition 2.9. Let I = [a, b] ⊆ R.

1. For any complex numbers α and β and any f, g ∈ R(I) , the linear combination αf + βg ∈ R(I) and∫
I

(αf + βg)) = α

∫
I

f + β

∫
I

g.

This says that R(I) is a vector space over C and the integral (viewed as a function f →
∫
I
f) is linear map

from R(I) to C.

2. If f, g ∈ R(I), then the product fg ∈ R(I).

3. Constant functions are Riemann-integrable and for any constant function x 7→ α where α ∈ C,∫
I

α = α(b− a).

4. The set of continuous functions C(I) are Riemann integrable. That is, C(I) ⊆ R(I).

Proof. As the first statement was partially covered in Homework 1 (see also the exercise below), I’ll omit the proof
and refer the reader to [?] for details. See [?] for the proof of Item 2, as well. I will prove Items 3 and 4 here.

3. Let’s first consider the constant function 1. This function is obviously bounded and, as it is real-valued, let’s
show that it is integrable by computing its upper and lower sums. For any partition P = {a = x0 < x1 <
x2 < · · · < xN = b}, we have

Mn = sup
xn−1≤x≤xn

1 = 1 = inf
xn−1≤x≤xn

1 = mn

for each n = 1, 2, . . . , n and therefore

U(1, P ) =

N∑
n=1

Mk(xn − xn−1) =

N∑
n=1

1(xn − xn−1) = b− a

and

L(1, P ) =

N∑
n=1

mn(xn − xn−1) =

N∑
n=1

1(xn − xn−1) = b− a.

Since the above is true for any partition P , we have

U(1) = inf
P

U(1, P ) = inf
P
(b− a) = b− a = sup

P
(b− a) = sup

P
L(1, P ) = L(f)

from which we conclude that the constant function 1 is Riemann-integrable and∫
I

1 = b− a.

9
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Now, given any complex number α, α = α · 1 and so, by Item 1 and the fact that 1 ∈ R(I), α ∈ R(I) and∫
I

α =

∫
I

α · 1 = α

∫
I

1 = α(b− a)

as desired.

4. We will begin by proving the result for continuous real-valued functions. To this end, let g : I → R be
continuous on the interval I = [a, b]. Our proof makes use of two essential results from analysis, both of
which rely on the interval I being closed and bounded (compact). First, in view of Theorem 4.15 of [?], g
is necessarily a bounded function. Second, by virtue of Theorem 4.19 of [?], g is uniformly continuous on I.
That is, to each positive number ϵ > 0, there is δ > 0 for which

|g(x)− g(y)| < ϵ whenever |x− y| < δ.

With these facts in mind, let’s show that g is Riemann-integrable by meeting the equivalent condition of
Proposition 2.7. To this end, we note that g is bounded and we fix ϵ > 0. In view of the uniform continuity
of g, let δ > 0 be such that

|g(x)− g(y)| < ϵ

2(b− a)
whenever |x− y| < δ.

With this δ, let’s consider the “regular” partition

P = {a = x0 < x1 < · · · < xN = b} =
{
a+

n

N
(b− a) : n = 0, 1, . . . , N

}
where N ∈ N is chosen so that N > (b−a)/δ and so (b−a)/N < δ. By this choice, let’s make some observations.
First, for any n = 1, 2, . . . , N , if

x, y ∈ [xn−1, xn] =

[
a+

n− 1

N
(b− a), a+

n

N
(b− a)

]
, then |x− y| < (b− a)

N
< δ.

and so |g(x) − g(y)| < ϵ/2(b − a) in view of the uniform continuity of g. So, for each n = 1, 2, . . . , N and
y ∈ [xn−1, xn],

g(y)− ϵ

2(b− a)
< g(x) <

ϵ

2(b− a)
+ g(y)

and so ϵ/2(b− a) + g(y) is an upper bound for {g(x) : x ∈ [xn−1, xn]}. Consequently,

Mn = sup
xn−1≤x≤xn

g(x) ≤ ϵ

2(b− a)
+ g(y)

in view of the definition of the supremum. Because y ∈ [xn−1, xn] was arbitrary, the above inequality shows
that Mn − ϵ/2(b− a) is a lower bound for the set {g(y) : y ∈ [xn−1, xn]} and so

Mn − ϵ

b− a
≤ inf

xn−1≤y≤xn

g(y) = mn.

In this way we have established that

Mn −mn <
ϵ

2(b− a)

for each n = 1, 2, . . . , N . Correspondingly,

U(g, P )− L(g, P ) =

N∑
n=1

Mk(xn − xn−1)−
N∑

n=1

mn(xn − xn−1)

=

N∑
n=1

(Mn −mn)(xn − xn−1)

<

N∑
n=1

ϵ

(2(b− a)
(xn − xn−1) =

ϵ

2(b− a)

N∑
n=1

(xn − xn−1) =
ϵ

2
< ϵ.

10
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In view of Proposition 2.7, we can therefore conclude that g ∈ R(I).

Finally, let f ∈ C(I) be a arbitrary complex-valued continuous function on I. An appeal to your result
from Homework 1 shows that the real and imaginary parts of f , Re(f) and Im(f) are necessarily continuous
real-valued functions on I. Thus, by virtue of our result in the previous paragraph, Re(f) and Im(f) are both
Riemann-integrable. By definition (of integrability for complex-valued functions), we conclude that f ∈ R(I).

Exercise 4

In this exercise, you prove the real-valued analogue of the scalar multiplication portion of Item 1 of the
proposition above. Throughout this exercise, c is a real number.

1. First, given a non-empty bounded set A of R, we denote by cA the set of numbers of the form c ·a where
a ∈ A. That is, cA = {x ∈ R : x = ca for a ∈ A}. If c > 0, prove that

sup cA = c supA and inf cA = c inf A.

2. If c < 0, formulate and prove an analogous statement for sup cA and inf cA.

3. For the remainder of this exercise, g : I → R will be an arbitrary bounded function. We will assume now
that c > 0 and denote by cg the real-valued function on I defined by (cg)(x) = cg(x) for x ∈ I. Use your
result from Item 1 to prove that

U(cg, P ) = cU(g, P ) and L(cg, P ) = cL(g, P ).

for any partition P of I.

4. Continuing under the assumption that c > 0, prove that U(cg) = c · U(g) and L(cg) = c · L(g).

5. Use the item above to prove that, if c > 0, g ∈ R(I) if and only if cg ∈ R(I) and

c

∫
I

g =

∫
I

cg.

6. Comment on how the previous steps change if we allow c to be non-positive. In particular, is it still true
that cg ∈ R(I) if and only if g ∈ R(I)?

Another important property of the integral is captured by the following proposition.

Proposition 2.10. Let f ∈ R(I), then the function |f | : I → R defined by

|f |(x) = |f(x)| =
√
(Re(f(x))2 + Im(f(x))2 for x ∈ I

is Riemann integrable and ∣∣∣∣∫
I

f

∣∣∣∣ ≤ ∫
I

|f |.

As it is somewhat involved, we will not show that f ∈ R(I) guarantees that |f | ∈ R(I). For this, we refer the reader
to Theorem 6.13 of [?]. We will however prove the inequality. We first need a lemma.

Lemma 2.11. Let h1, h2 ∈ R(I) be real-valued functions such that h1(x) ≤ h2(x) for all x ∈ I. Then∫
I

h1 ≤
∫
I

h2.

11
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Exercise 5

Prove the lemma above. Hint: Start by showing that non-negative functions have non-negative integrals. Then
use Item 1 of Proposition 2.9.

Proof. Let f be an arbitrary complex-valued Riemann-integrable function on I and, in accordance with the remark
preceding Lemma 2.11 we will take for granted that |f | ∈ R(I). In view of Exercise 2 (below), there is θ ∈ (−π, π]
for which ∣∣∣∣∫

I

f

∣∣∣∣ = e−iθ

(∫
I

f

)
.

In view of Item 1 of Proposition 2.9, this guarantees that∣∣∣∣∫
I

f

∣∣∣∣ = ∫
I

e−iθf =

∫
I

(
e−iθf(x)

)
dx =

∫
I

Re(e−iθf(x)) dx+ i

∫
I

Im(e−iθf(x)) dx.

As the left hand side of the above equation is purely real, this ensures that the purely imaginary part of the right
hand side is zero and therefore ∣∣∣∣∫

I

f

∣∣∣∣ = ∫
I

Re(e−iθf(x)) dx.

Now, for each x ∈ I,

Re(e−iθf(x)) ≤
√
(Re(eiθf(x)))2 + (Im(e−iθf(x)))2 = |e−iθf(x)| = |f(x)|

where we have used the fact that |zw| = |z||w| for complex numbers z, w. Thus, by Lemma 2.11, we have∣∣∣∣∫
I

f

∣∣∣∣ ≤ ∫
I

Re(e−iθf(x)) dx ≤
∫
I

|f(x)| dx =

∫
I

|f |

as desired.

Exercise 6

Prove that, for each complex number z = a+ ib ∈ C, there exists θ ∈ (−π, π] for which

e−iθz = |z| =
√

a2 + b2.

In this way, every complex-number z can be written as

z = |z|eiθ

for some θ ∈ (−π, π] called the phasea of z.

aWhen z ̸= 0, θ can be shown to be unique in this range.

3 Mean Value Theorems and the Fundamental Theorem of Calculus

kdkdkdk
Our next proposition is often called the “change of variables formula”. Because the proof is somewhat technical
(and is actually best done in the context of the Riemann-Steiltjes integral), I have decided to omit it.

12
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Proposition 3.1 (Change of variables formula, Theorem 6.19 of [?]). Let A < B and a < b be real numbers
and suppose that h : [A,B] → [a, b] is a strictly increasing function mapping [A,B] onto [a, b] with derivative
h′ ∈ R([A,B]). Also, let f ∈ R([a, b]). Then the function x 7→ (f ◦h)(x)h′(x) = f(h(x))h′(x) is integrable on [A,B]
and ∫ b

a

f(x) dx =

∫
[a,b]

f =

∫
[A,B]

(f ◦ h) · h′ =

∫ B

A

f(h(x))h′(x) dx

It should be noted that the proposition above has a very beautiful generalization to integration in Rd in which the
derivative h′ is replaced by the Jacobean determinant of h’s d-dimensional analogous. This generalization is an
essential tool used in the theory of integration on manifolds.

We end this section by treating a nice result which says that each Riemann-integrable function is “close” in a certain
sense to a continuous function.

Proposition 3.2. Suppose that f ∈ R(I) and f is bounded by B, i.e., |f(x)| ≤ B for all x ∈ I. Then there exists
a sequence of continuous functions {fk} ⊆ C(I) such that

sup
x∈I

|fk(x)| ≤ B

for all k ∈ I and

lim
k→∞

∫
I

|f(x)− fk(x)| dx = 0.

Proof. See Lemma 1.5 of Stein-Shakarchi appendix

4 The essence of convergence

In introductory calculus (Math 121/161 and 122/162), you learned about the notion of convergence for sequences of
real numbers. This notion was captured by saying, given a sequence of real numbers {an} and another real number
a, the sequence {an} converges to a if the terms of the sequence an can be made arbitrarily close to a by taking
n sufficiently large. This idea is essentially unchanged when we talk about convergence of sequences of complex
numbers. This is captured in the following definition.

Definition 4.1. Let {wn} be a sequence of complex numbers (written {wn} ⊆ C) and let w be another complex
number. We say that the sequence {wn} converges to w if the following condition is satisfied. For all ϵ > 0, there
exists a natural number N (written N ∈ N) for which

|wn − w| < ϵ whenever n ≥ N.

The essential difference between the definitions of convergence for real and complex numbers is the way that distance
(and closeness) is measured. In the above definition, the symbol | · | means the complex modulus and is defined by

|z| =
√

a2 + b2.

for a complex number z = a+ ib where this symbol is taken to mean the absolute value when applied to real num-
bers. As you have already explored this in Homework 1, I won’t expound upon convergence of real and complex
numbers further here. Let’s instead move into a discussion concerning convergence of functions, which is the main
notion of interest for the discussion of Fourier series.

Just as we think of a sequence of complex numbers converging to another complex number, in studying convergence
of functions, we are interested in the study of a sequence of complex-valued functions {fn} defined on some set
I getting “close” to another function f . A moment’s thought about this invokes many questions, primarily the
question of what it means to be “close”. To that end, we will examine several inequivalent notions of closeness and
convergence for functions. The first of which (and one of the weakest) is captured by the following definition.

13
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Definition 4.2. Let I be an interval of the real line and let {fn} be a sequence of complex-valued functions on I,
i.e., fn : I → C for each n = 1, 2, . . . . Let f : I → C be another function. We say that the sequence {fn} converges
to f pointwise on I if, for each x ∈ I,

lim
n→∞

fn(x) = f(x).

The important thing to note about the above definition is that the x is chosen before the limit is taken. Stated
with ϵ’s and N ’s, the above definition is as follows:

The sequence of functions fn converges to f pointwise on I if, for each ϵ > 0 and x ∈ I, there is an N ∈ N
(depending on both ϵ and x) for which

|fn(x)− f(x)| < ϵ whenever n ≥ N.

Example 1

In this example, we consider a sequence of real-valued functions converging pointwise on the interval I = [0, 1].
For each natural number n, define fn : I → R ⊆ C

fn(x) = xn

for x ∈ I and n ∈ N. We observe that, for 0 ≤ x < 1,

lim
n→∞

fn(x) = lim
n→∞

xn = 0

and, for x = 1,
lim

n→∞
fn(x) = lim

n→∞
1n = 1.

Thus, our sequence of functions converges uniformly to the function f : I → R defined by

f(x) =

{
0 0 ≤ x < 1

1 x = 1

for x ∈ I. The graphs of fn are illustrated for n = 1, 2, . . . , 20 in Figure 1.

14



Really Real Analysis Supplementary notes for MA338 Evan Randles

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: A famous picture: The graphs of fn(x) = xn for n = 1, 2, . . . , 20.

It is important to note that each function fn is continuous on I, however, the limit function f is not continuous
on I. This illustrates that nice properties like continuity can be “broken” under taking pointwise limits.

A much stronger notion of convergence is captures by the following definition.

Definition 4.3. Let {fn} be a sequence of complex-valued functions on I. Let f : I → C be another complex-valued
function on I. We say that the sequence {fn} converges uniformly to f on I if, for all ϵ > 0 there exists N ∈ N for
which

|fn(x)− f(x)| < ϵ whenever x ∈ I and n ≥ N.

In contrast to the definition of pointwise convergence, the definition of convergence requires that the integer N
depend only on ϵ and be independent of x ∈ I. This notion is illustrated in Figure 2. In the figure, we see
the graph of a real-valued function f (in black) in the center of a “band” of radius ϵ (in red). For a sequence
of functions {fn} to converge uniformly to f (on an interval) means that, for sufficiently large n, the graph of fn
is completely contained in the band of radius ϵ surrounding f ; the blue line is an example of the graph of one such fn.

We further illustrate this definition with some examples.

Example 2

Consider the sequence {fn} of functions defined on the interval I = [−π, π] by

fn(x) = cos(x/n)− 1/2

for x ∈ I and n ∈ N. The graphs of fn are illustrated for n = 1, 2, . . . 10 in Figure 3.

15



Really Real Analysis Supplementary notes for MA338 Evan Randles

Figure 2: An illustration of uniform convergence
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Figure 3: The graphs of fn(x) = cos(x/n)− 1/2 for n = 1, 2, . . . , 10.

The figure suggests that the sequence {fn} converges to the constant function f(x) = 1/2 as n → ∞. Let’s
prove that, not only does it converge to f(x) = 1/2, it does so uniformly.

Let ϵ > 0 and select N ∈ N such that N > π/
√
ϵ Recalling the inequality for cosine,

| cos(θ)− 1| ≤ |θ2| for allθ ∈ R

which can be gotten from the mean value theorem or the racetrack principle, we observe that, for any n ≥ N
and x ∈ I = [−π, π],

|fn(x)− f(x)| = | cos(x/n)− 1/2− 1/2| = | cos(x/n)− 1| ≤ x2

n2
≤ π2

n2
< ϵ

16
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because n2 ≥ N2 > π2/ϵ. The careful reader should note that the above estimate holds for all x ∈ I and
for all n ≥ N (and not for a particular x). We have shown that the sequence {fn} converges uniformly to
f(x) = 1/2.

Exercise 7

Given an interval I, we recall the supremum norm defined, for f : I → C by

∥f∥∞ = sup
x∈I

|f(x)|.

I this exercise, you will prove that ∥ ·∥∞ is a bona fide norm on the space of bounded complex-valued functions
on I.

1. Prove that, for any pair of bounded functions function f and g,

∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞.

2. Prove that, for each complex number α and bounded function f : I → C,

∥αf∥∞ = |α|∥f∥∞

where |α| is the complex modulus of α.

3. Prove that, for a bounded function f , ∥f∥∞ = 0 if and only if f(x) = 0 for all x ∈ I.

4. Given a sequence {fn} of bounded complex-valued functions on I and f : I → C, prove that the sequence
{fn} converges uniformly to f if and only if

lim
n→∞

∥fn − f∥∞ = 0.

As the notion of “Cauchy sequence” is essential for the convergence for complex-numbers and, in fact, provides a
characterization for convergence as you proved in Homework 1, we have a similar Cauchy property for functions
which characterizes uniform convergence. This characterization is outlined in the following theorem.

Theorem 4.4. Let {fn} be a sequence of complex-valued functions on an interval I ⊆ R. The sequence {fn}
converges uniformly (to some function f) on I if and only if it satisfies the following property:

(UC) For all ϵ > 0, there exists a natural number N such that

|fn(x)− fm(x)| < ϵ whenever x ∈ I and n,m ≥ N.

The equivalent property (UC) is called the Uniform Cauchy condition. Any sequence of functions {fn} satisfying
the condition is said to be uniformly Cauchy on I.

Proof. Let us first assume that {fn} converges uniformly to a function f on I. Let ϵ > 0 and by our supposition
let N be a natural number for which

|fn(x)− f(x)| < ϵ/2

for all n ≥ N and x ∈ I. Then, for any n,m ≥ N , we have

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| ≤ ϵ

2
+

ϵ

2
= ϵ

for all x ∈ I. Thus the sequence {fn} is uniformly Cauchy on I.

17
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Conversely, let’s assume that the sequence fn(x) is uniformly Cauchy on I. This implies, in particular, that
{fn(x)} is a Cauchy sequence of complex numbers for each x ∈ I. Because all Cauchy sequences of complex numbers
converge, for each x ∈ I, the limit limn→∞ fn(x) exists and we will denote its value by f(x), which is just a complex
number. In this way, we produce a function f : I → C simply by identifying each x with the value of the limit
limn→∞ fn(x), i.e., defining

f(x) = lim
n→∞

fn(x)

for each x ∈ I. So now we have a candidate (f) for the uniform limit. It remains to show that our sequence, in
fact, converges uniformly to this f . To see this, we let ϵ > 0 and choose a natural number N for which

|fn(x)− fm(x)| < ϵ

2

for all n,m ≥ N and x ∈ I. Now, let x ∈ I and n ≥ N be arbitrary (but fixed). The convergence of the numerical
sequence {fn(x)} guarantees that there is some natural number Nx ≥ N for which

|fm(x)− f(x)| < ϵ

2

whenever m ≥ Nx. In particular, this works when m = Nx ≥ N and so

|fn(x)− f(x)| = |fn(x)− fNx
(x) + fNx

(x)− f(x)| ≤ |fn(x)− fNx
(x)|+ |fNx

(x)− f(x)| < ϵ

2
+

ϵ

2
= ϵ.

Thus, to each ϵ > 0, we have found a natural number N for which

|fn(x)− f(x)| < ϵ

whenever x ∈ I and n ≥ N . Therefore, {fn} converges uniformly on I (to f).

The above theorem is extremely useful when one has a sequence of nice functions (which is uniformly Cauchy) but
has no obvious candidate for the uniform limit. Here, of course, infinite series comes to mind.

Definition 4.5. Let {fn} be a sequence of complex-valued functions on I. The (formal) sum
∑

n fn is called a
series of functions. To investigate the convergence of

∑
n fn, we define, for each N = 1, 2, . . . ,

SN (x) =

N∑
n=1

fn(x) for x ∈ I.

The functions S1, S2, . . . , form a sequence of complex-valued functions on I, {SN}, called the sequence of partial
sums for the series

∑
n fn. If, for each x ∈ I, the limit

lim
N→∞

SN (x)

exists, we say that the series
∑

n fn converges on I. In this case, the limit is a function S : I → R defined by

S(x) = lim
N→∞

SN (x) = lim
N→∞

N∑
n=1

fn(x)

and we write
∞∑

n=1

fn(x) = S(x)

to denote this function, called the sum of the series. We say that the series
∑

n fn converges uniformly on I if its
sequence of partial sums {SN} converges uniformly on I to the sum of the series.

18
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As with numerical series, one can often learn that a series converges without ever knowing its sum. For instance,
the integral test from calculus shows that the series of numbers

∞∑
n=1

1

n3

converges (this is p-series for p = 3). Though it can be approximated to any degree of accuracy, its sum it unknown.
With this in mind, it is important to have various test for series (uniform) convergence without knowing the limit.
The following corollary of Theorem 4.4 gives us exactly this.

Corollary 4.6 (Uniform Cauchy Criterion). Let {fn} be a sequence of complex-valued functions on I and consider
the series

∑
n fn. The series

∑
n fn converges uniformly on I if and only if the following property is satisfied.

For all ϵ > 0 there is a natural number N for which∣∣∣∣∣
k=m∑
k=n

fk(x)

∣∣∣∣∣ < ϵ

for all x ∈ I and m ≥ n ≥ N . This property is called the Uniform Cauchy Criterion for the series
∑

n fn.

Exercise 8

In this exercise, you will prove Corollary 4.6 and then use the corollary to establish sufficient conditions for
the absolute convergence of power series – things you will remember from calculus (M122).

1. Using Theorem 4.4, prove Corollary 4.6.

2. If a series
∑

n fn of functions {fm} converges uniformly on I, prove that {fn} converges uniformly to
the zero function on I.

3. For the remainder of this exercise, we fix a positive constant M and define I = [−M,M ] ⊆ R. Given a
sequence of complex-numbers {cn}, consider the sequence of complex-valued functions {fn} on I defined
by

fn(x) =
cn
n!

xn

for x ∈ I. If the sequence {cn} is bounded, i.e., supn∈N |cn| < ∞, use Corollary 4.6 (and no other
convergence test) to prove that the series

∞∑
n=1

cn
n!

xn

converges uniformly on I.

4. Let f : I → C be infinitely differentiable and assume that supn=0,1,... |f (n)(0)| < ∞; here f (n)(0) is the

nth-derivative of f at 0. Use the previous item to prove that the series

∞∑
n=0

f (n)(0)

n!
xn

converges uniformly on I . This series is called the Maclaurin series for f . (Your proof here should be
approximately one sentence).
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5. Looking back at Item 3, find a condition on the sequence {ck} which is less restrictive than boundedness
and which still guarantees that the series

∞∑
n=1

cn
n!

xn

converges uniformly on I. Hint: You should take a look at Stirling’s formula (which you can take for
granted as long as you interpret the formula/approximation correctly). If you’re interested, a nice proof
of Stirling’s formula can be found in Exercise 5 of Homework 2 for my Math 122 class.

4.1 Properties of Uniform Convergence

In this short subsection, we discuss some properties preserved under uniform convergence. Specifically, we focus on
continuity and integration. Let’s consider a couple of examples.

Example 3

Given 0 < δ < 1, let Iδ = [−1 + δ, 1− δ] and consider the series

∞∑
n=0

xn

for x ∈ Iδ. We claim that this series converges uniformly on Iδ to the function

f(x) =
1

1− x
. (4)

To see this, we first observe that the partial sums {SN} satisfy the formula

SN (x) =

N∑
n=0

xn =
1− xN+1

1− x

for x ∈ Iδ. The validity of this formula can be seen by multiplying both sides by 1 − x and simplifying.
To see that this series converges uniformly, let ϵ > 0 and choose M to be a natural number for which
M > ln(ϵδ)/ ln(1− δ). For any x ∈ Iδ and N ≥ M , observe that

|f(x)− SN (x)| =
∣∣∣∣ 1

1− x
− 1− xN+1

1− x

∣∣∣∣ = |x|N+1

|1− x|
≤ (1− δ)N+1

δ
< ϵ

where we have used the fact that N + 1 > M ≥ ln(ϵδ)/ ln(1 − δ). Therefore, we have proved that this series
converges uniformly to f . I encourage you to show that this series converges uniformly using only Corollary
4.6 (and not making reference to f).

An important thing to note about the above example is that, each SN (x) is continuous and the limit function
f(x) = 1/(1 − x) is also continuous on the interval Iδ, a fact that was also true in the preceding example. This
stands in contrast to the Example 4 in which the limit function failed to be continuous. As it turns out, this is a
key difference between pointwise convergence and uniform convergence. This is detailed in the following theorem,
whose proof can be found in [?] (see Theorem 7.12 therein).

Theorem 4.7. Let {fn} be a sequence of complex-valued functions on I and suppose that {fn} converges uniformly
to a function f : I → C. If each function fn is continuous, i.e., {fn} ⊆ C(I), then f is necessarily a continuous
function.

Let’s explore some other important properties of uniform convergence. Our next result shows that uniform conver-
gence plays nicely with the Riemann-Darboux integral.
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Theorem 4.8. Let {fn} be a sequence of complex-valued functions which converges uniformly to a function f : I →
C; here, I = [a, b]. If each function fn is Riemann-integrable, i.e., {fn} ⊆ R(I), then f is Riemann-integrable and

lim
n→∞

∫
I

|fn − f | = 0.

Further

lim
n→∞

∫
I

fn =

∫
f.

Proof. We first show that the limit f is Riemann-integrable by showing its real and imaginary parts, u and v are
Riemann-integrable. For each n, denote by un and vn the real and imaginary parts of fn respectively. We will show
that u and v are Riemann integrable by appealing to the ϵ− P characterization, Proposition 2.7. Let’s first focus
on the real parts {un} and u. Let ϵ > 0 and, by the uniformly convergence of {fn}, let N be a natural number for
which

|un(x)− u(x)| ≤
√
(un(x)− u(x))2 + (vn(x)− v(x))2 = |fn(x)− f(x)| < ϵ/4(b− a)

for all x ∈ I and n ≥ N . In particular, upon setting u0 = uN , this yields the inequality

u0(x)−
ϵ

4(b− a)
< u(x) < u0(x) +

ϵ

4(b− a)
(5)

for all x ∈ I. This inequality implies that u is bounded on the interval I in view of our hypothesis that u0 = uN ∈
R(I). By virtue of Proposition 2.7, let P be a partition of I for which U(u0, P )−L(u0, P ) < ϵ/2. For this partition,
the inequality (5) guarantees that

U(u, P ) =
∑
n

(
sup

xn−1≤x≤xn

u(x)

)
)(xn − xn−1)

≤
∑
n

(
sup

xn−1≤x≤xn

u0(x) +
ϵ

4(b− a)

)
(xn − xn−1)

≤ U(u0, P ) +
∑
n

ϵ

4(b− a)
(xn − xn−1)

≤ U(u0, P ) +
ϵ

4
.

Similarly, the inequality (5) guarantees the analogous lower estimate

L(u0, P )− ϵ

4
≤ L(u, P )

Together, these estimates guarantees that

U(u, P )− L(u, P ) ≤ U(u0, P )− L(u0, P ) +
ϵ

2
<

ϵ

2
+

ϵ

2
= ϵ

and from this we can conclude that u ∈ R(I). A completely analogous argument shows that v ∈ R(I) and so, by
the definition of Riemann-integrability for complex-valued functions, the limit function f ∈ R(I).

Let us now prove the statements concerning the limit limn→∞
∫
I
|fn − f |. In view of the definition of the

L∞-norm, we have
|fn(x)− f(x)| ≤ ∥fn − f∥∞

for all x ∈ I and n ∈ N. In view of Lemma 2.11, we have

0 ≤
∫
I

≤ |fn(x)− f(x)| dx ≤
∫
I

∥fn − f∥∞ dx = (b− a)∥fn − f∥∞.
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Thus, by virtue of Exercise 9 and the squeeze theorem, the preceding inequality shows that

lim
n→∞

∫
I

|fn − f | = 0

because ∥fn − f∥∞ → 0 as n → ∞.
Finally, by virtue of Propositions 2.9 and 2.10, we have∣∣∣∣∫

I

fn −
∫
I

f

∣∣∣∣ = ∣∣∣∣∫
I

(fn − f)

∣∣∣∣ ≤ ∫
I

|fn − f |

for all n. Another appeal to the squeeze theorem (and the preceding limit) guarantees that

lim
n→∞

∫
I

fn =

∫
I

f.

Corollary 4.9. Let {fn} be a sequence of complex-valued functions on I = [a, b] and suppose that the series
∑∞

n=0 fn
converges uniformly on I. If each fn is Riemann-integrable, then the sum of the series is Riemann-integrable and∫

I

∞∑
n=0

fn =

∞∑
n=0

∫
I

fn.

Proof. The hypothesis that
∑∞

n=0 fn converges uniformly means that the sequence of partial sums {SN} defined by

SN (x) =

N∑
n=0

fn(x)

for x ∈ I converges uniformly on I. Also, the supposition that each fn is Riemann-integrable guarantees that each
partial sum is Riemann-integrable in view of Proposition 2.9. By the (finite) linearity of the integral, we have∫

I

SN =

N∑
n=0

∫
I

fn

for each natural number N . Thus, an appeal to the preceding theorem guarantees that the limit
∑∞

n=0 fn =
limN→∞ SN is Riemann-integrable and∫

I

∞∑
n=0

fn =

∫
I

lim
N→∞

SN = lim
N→∞

∫
I

SN = lim
N→∞

N∑
n=0

∫
I

fn;

in particular, the limit on the right exists. Of course, this is what it means for the series of the numbers
∫
I
fn to

converge and so we have ∫
I

∞∑
n=0

fn = lim
N→∞

N∑
n=0

∫
I

fn =

∞∑
n=0

∫
I

fn.

4.2 The Weierstrass M-test

We’ve been developing the theory of uniform convergence for sequences of functions. Along the way, we’ve proved
some results about the uniform convergence of series of functions, the most important of which is Corollary 4.6.
This corollary showed that a series is uniformly convergent if and only if it satisfies the Uniform Cauchy Criterion.
As you saw in Exercise 10, while this criterion/condition is very useful, it is not terribly easy to apply. Our main
result of this section, the M -test of Weierstrass, gives an relatively straightforward condition guaranteeing that a
given series converges uniformly. We will then amass some facts following from this result which will be used in our
study of Fourier series.
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Theorem 4.10 (The Weierstrass M -test). Let I = [a, b] be an interval and consider a sequence of bounded complex-
valued functions {fn} on I. For each n ∈ N, set

Mn = ∥fn∥∞ = sup
x∈I

|fn(x)|.

If the series
∑∞

n=1 Mn converges, then the series
∑∞

n=1 fn converges uniformly on I.

Before giving the proof, observe that the series
∑∞

n=1 Mn is a series of non-negative numbers and determining the
convergence of this series is the subject matter of introductory calculus. This is usually an easier condition to verify
that the Cauchy criterion.

Proof. We will verify that the Cauchy criterion (Corollary 4.6) is satisfied for the series
∑

n fn. To this end, let
ϵ > 0. Given that

∑
n Mn converges, its partial sums are necessarily a Cauchy sequence and so there must be some

natural number N for which
m∑

k=n

Mk ≤
m∑

k=n−1

Mk =

m∑
k=1

Mk −
n∑

k=1

Mk =

∣∣∣∣∣
m∑

k=1

Mk −
n∑

k=1

Mk

∣∣∣∣∣ < ϵ

whenever m ≥ n ≥ N . Here, we have used the fact that Mk ≥ 0 for all k. Observe now that, for any x ∈ I and
m ≥ n ≥ N , the triangle inequality guarantees that∣∣∣∣∣

m∑
k=n

fk(x)

∣∣∣∣∣ ≤
m∑

k=n

|fk(x)| ≤
m∑

k=n

∥fk∥∞ =

m∑
k=n

Mk < ϵ,

as desired.

Following directly from Theorems 4.10 and 4.7 and Corollary 4.9, we obtain the following corollary.

Corollary 4.11. Let I be an interval and let {fk} be a sequence of complex-valued functions on I, i.e., {fk} ⊆ C(I).
For each n ∈ N, set

Mn = ∥fn∥∞ = sup
x∈I

|fn(x)|.

If the series
∑∞

n=1 Mn converges, then
∑∞

n=1 fn converges uniformly on I and its sum

f(x) =

∞∑
n=1

fn(x)

is a continuous function on I, i.e., f ∈ C(I). Further,∫
I

f =

∫
I

∞∑
n=1

fn =

∞∑
n=1

∫
fn.

Proof. The statement regarding uniform convergence follows directly from Theorem 4.10. Because fn is continuous
for each n, the partial sums {Sn} are necessarily continuous functions on I. The uniform convergence of the series
is the statement that the partial sums converge uniformly to the sum of the series and so, by virtue of Theorem 4.7,
the sum f is necessarily continuous on I. Finally, upon noting that {fn} ⊆ C(I) ⊆ R(I), an appeal to Corollary
4.9 gives the final statement immediately.

Exercise 9

The Weierstrass M -test says that the “M condition”, i.e., the condition that
∑∞

n=1 Mn converges, is a sufficient
condition for the uniform convergence of the series

∑
fn. This is in contrast to Corollary 4.6 which gives a

condition both necessary and sufficient for uniform convergence. Show that that “M condition” (of the
Weierstrass M -test) is not necessary for convergence. That is, find a sequence of functions {fn} on an interval
I for which

∑∞
n=1 fn converges uniformly yet

∑∞
n Mn = ∞ for Mn = ∥fn∥∞. Hint: A nice example can
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be produced which is an alternating series. Feel free to use results from introductory calculus (such as the
alternating series test).

4.3 Defining Convergence with the Integral: A glimpse at Lebesgue norms

As the supremum norm ∥ · ∥∞ allows us to measure the “size” of a function bounded function (and with it you
were able to characterize uniform convergence), the integral also allows us to measure the “size” of a function by
integrating its absolute value. Measuring the size of functions with the integral turns out to be a very fruitful
activity. To formalize things, I will take this opportunity to introduce a class of “norms” on functions, called the
Lebesgue norms or the Lp norms, of which the supremum norm is an important example. To this end, we fix an
interval I and, for each 1 ≤ p < ∞, we define the Lp(I) norm of a function f ∈ R(I) by

∥f∥p =

(∫
I

|f(x)|p dx
)1/p

.

For p = ∞, we have as before
∥f∥p = ∥f∥∞ = sup

x∈I
|f(x)|

for f ∈ R(I). For each 1 ≤ p ≤ ∞, each Lp norm gives us a different way to measure the “size” of a function. Let’s
accumulate some facts about these norms.

Proposition 4.12. Given an interval I and 1 ≤ p ≤ ∞, let ∥ · ∥p denote the Lp(I) norm defined above. Then, for
any f, g ∈ R(I) and α ∈ C, we have

1.
∥f∥p ≥ 0

2.
∥αf∥p = |α|∥f∥p

3.
∥f + g∥p ≤ ∥f∥p + ∥g∥p

Truthfully, the above proposition only guarantees that ∥ · ∥p is a so-called semi-norm on R(I) because there are
non-zero functions f ∈ R(I) for which ∥f∥p = 0.

Proof. As you have already shown that these properties hold when p = ∞ (Exercise 9), we shall assume that
1 ≤ p < ∞. Now, because the integral of a non-negative function is non-negative, the validity of Item 1 is clear.
Also, for f ∈ R(I) and α ∈ C,

∥αf∥pp = (∥αf∥p)p =

∫
I

|αf(x)|p dx =

∫
I

|α|p|f(x)|p dx = |α|p
∫
I

|f(x)|p dx

from which we immediately obtain Item 2. It remains to prove Item 3, also called Minkowski’s inequality. This
inequality is most easily obtained using the machinery of measure theory, though our proof here only relies on the
convexity of the function C ∋ z 7→ |z|p, a fact which can be established using only elementary calculus.

To this end, we first assume show that, if h1, h2 ∈ R(I) are such that ∥h1∥p, ∥h2∥p ≤ 1, then, for any 0 ≤ t ≤ 1,
∥th1 + (1− t)h2∥p ≤ 1. This is equivalently the statement that the unit ball

Bp = {h ∈ R(I) : ∥h∥p ≤ 1}

is a convex set. Let us fix 0 ≤ t ≤ 1 and h1, h2 ∈ Bp and observe that the convexity of the map z 7→ |z|p guarantees
that

|th1(x) + (1− t)h2(x)|p ≤ t|h1(x)|p + (1− t)|h2(x)|p
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for all x ∈ I. I’ll make note that the convexity used here for complex numbers is also called the supporting
hyperplane property and can be understood geometrically as the graph of the function |z|p always living below its
secant lines/planes. In view of this inequality, the monotonicity of the integral guarantees that∫

I

|th1(x) + (1− t)h2(x)|p dx ≤ t

∫
I

|h1(x)|p dx+ (1− t)|h2(x)|p dx

or equivalently
∥th1 + (1− t)h2∥pp ≤ t∥h1∥pp + (1− t)∥h2∥pp.

Recalling that ∥h1∥p ≤ 1 and ∥h2∥p ≤ 1, we conclude that

∥th1 + (1− t)h2∥pp ≤ t · 1 + (1− t) · 1 = 1

and so ∥th1 + (1− t)h2∥p ≤ 1, as was asserted.
We now get to the task at hand. Let f, g ∈ R(I) and we shall assume that ∥f∥p and ∥g∥p are non-zero (treating

these trivial cases is much more simple). We write

f + g

∥f∥p + ∥g∥p
=

∥f∥p
∥f∥p + ∥g∥p

f

∥f∥p
+

∥g∥p
∥f∥p + ∥g∥p

g

∥g∥p
= t

f

∥f∥p
+ (1− t)

g

∥g∥p

where t = ∥f∥p/(∥f∥p+∥g∥p) is a number between 0 and 1. By virtue of Item 2, both h1 = f/∥f∥p and h2 = g/∥g∥p
have Lp norm 1. In view of the property proved in the preceding paragraph, we conclude that∥∥∥∥ f + g

∥f∥p + ∥g∥p

∥∥∥∥
p

= ∥th1 + (1− t)h2∥p ≤ 1.

Therefore, a final appeal to Item 2 gives the inequality

1

∥f∥p + ∥g∥p
∥f + g∥p ≤ 1

from which the desired result follows without trouble.

With these norms and this way of measuring functions, we can define new notions of convergence. To this end,
given a sequence of functions {fn} ⊆ R(I) and f ∈ R(I), we say that {fn} converges to f in Lp(I) or with respect
to the Lp norm if

lim
n→∞

∥fn − f∥p = 0.

There are three Lp norms that will be of particular interest for us, p = 1, 2 and ∞. In the case that p = 2, there is
an additional structure with which you are already familiar from linear algebra, the inner product (a generalization
of the dot product). For integrable functions f and g, we define the L2 inner product of f and g to be the number

⟨f, g⟩ =
∫
I

f(x)g(x) dx.

As it is easy to verify using properties of the integral, the L2(I) inner product satisfies the following properties:

1.
⟨f, g⟩ = ⟨g, f⟩ for f, g ∈ R(I)

2.
⟨αf + βh, g⟩ = α⟨f, g⟩+ β⟨h, g⟩ for f, g, h ∈ R(I) and α, β ∈ C.

3.
⟨g, αf + βh⟩ = α⟨g, f⟩+ β⟨g, h⟩ for f, g, h ∈ R(I) and α, β ∈ C.
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We also notice, that the L2 inner product recaptures the L2 norm:

∥f∥2 =

(∫
I

|f(x)|2 dx
)1/2

=

(∫
I

f(x)f(x) dx

)1/2

=
√
⟨f, f⟩

for f ∈ R(I). An extremely important property of the L2 inner product is captured by the following theorem.

Theorem 4.13 (The Cauchy-Schwarz Inequality). For any f, g ∈ R(I),

|⟨f, g⟩| ≤ ∥f∥2∥g∥2
Proof. Let’s first assume that h1, h2 ∈ R(I) have ∥h1∥2 = ∥h2∥2 = 1. We observe that, for any x ∈ I,

0 ≤ (|h1(x)| − |h2(x)|)2 =
(
|h1(x)|2 + |h2(x)|2 − 2|h1(x)||h2(x)|

)
.

Therefore

|h1(x)||h2(x)| ≤
|h1(x)|2

2
+

|h2(x)|2

2
for all x ∈ I. By virtue of Proposition 2.10, the preceding inequality shows that

|⟨h1, h2⟩| =

∣∣∣∣∫
I

h1(x)h2(x) dx

∣∣∣∣
≤

∫
I

|h1(x)||h2(x)| dx

≤ 1

2

∫
I

|h1(x)|2 dx+
1

2

∫
I

|h2(x)|2 dx

≤ 1

2
∥h1∥22 +

1

2
∥h2∥22 = 1.

Thus |⟨h1, h2⟩| ≤ 1 whenever h1, h2 ∈ R(I) have unit L2-norm. Now, given any f, g ∈ R(I) with non-zero L2 norms,
we observe that h1 = f/∥f∥2 and h2 = g/∥g∥2 have ∥h1∥2 = ∥h2∥2 = 1 and so by the properties of the L2 inner
product outlined above

|⟨f, g⟩| = ∥f∥2∥g∥2
∣∣∣∣〈 f

∥f∥2
,

g

∥g∥2

〉∣∣∣∣ = ∥f∥2∥g∥2|⟨h1, h2⟩| ≤ ∥f∥2∥g∥2

as desired.
Finally, let us assume that ∥f∥2 = 0 or ∥g∥2 = 0. In this final case, our job is to show that ⟨f, g⟩ = 0 because

the right-hand side of the Cauchy-Schwarz inequality is zero. Without loss of generality we assume that ∥g∥2 = 0
and observe that, for all t ∈ R,

∥f + tg∥22 = ⟨f + tg, f + tg⟩ = ⟨f, f⟩+ ⟨f, tg⟩+ ⟨tg, f⟩+ ⟨tg, tg⟩
= ∥f∥22 + ⟨f, tg⟩+ ⟨f, tg⟩+ t2∥g∥22
= ∥f∥22 + 2Re(⟨f, tg⟩) + 0

= ∥f∥22 + 2tRe(⟨f, g⟩)

where we have used the fact that t is real and z + z = 2Re z for any complex number z (this is something you
should check). In view of the equation above, we have

0 ≤ ∥f∥22 + 2tRe(⟨f, g⟩)

for all t ∈ R. I claim that this inequality implies that Re(⟨f, g⟩) = 0. If Re(⟨f, g⟩) ̸= 0, then setting t =
−(∥f∥22 + 1)/Re(⟨f, g⟩) in the above inequality yields

0 ≤ ∥f∥22 + 2

(
− ∥f∥22 + 1

Re(⟨f, g⟩)

)
Re(⟨f, g⟩) = ∥f∥22 − 2∥f∥22 − 2 = −(∥f∥22 + 2)

which is impossible because ∥f∥22 + 2 ≥ 2 > 0. From this we conclude that Re(⟨f, g⟩) = 0. An analogous argument
(done by expanding ∥f + itg∥22) shows that Im(⟨f, g⟩) = 0. All together, we conclude that ⟨f, g⟩ = 0.
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There are many generalizations of the Cauchy-Schwarz inequality that turn out to be useful for Fourier analysis.
The following one, which we give without proof, is called Hölder’s inequality [?] . The theorem essentially says that
the integral of a product of functions f and g is bounded above in absolute value by the Lp norm of f and the Lq

norm of g where 1 ≤ p, q ≤ ∞ are such that
1

p
+

1

q
= 1.

Such a pair p and q are said to be conjugate exponents and here we assume the convention that 1/∞ = 0. So, for
example p = 2 and q = 2 are conjugate exponents. Also p = 1 and q = ∞ are conjugate exponents.

Theorem 4.14 (Hölder’s inequality). Let 1 ≤ p, q ≤ ∞ be conjugate exponents. Then, for any f, g ∈ R(I), the
product fg is integrable and ∣∣∣∣∫

I

f(x)g(x) dx

∣∣∣∣ ≤ ∥f∥p∥g∥q.

Exercise 10

Though we’ve already proven the triangle inequality for the Lp norm (also called the Minkowski inequality),
please show that the triangle inequality

∥f + g∥p ≤ ∥f∥p + ∥g∥p

is a consequence of Hölder’s inequality (and thus the latter is more “fundamental”). Hint: First observe that
|f(x) + g(x)|p ≤ |f(x) + g(x)|p−1(|f(x)|+ |g(x)|) for all x. Then apply Hölder’s inequality to the terms on the
right-hand side.

As an application of Hölder’s inequality, we have the following theorem which gives a relationship to convergence
between Lp norms.

Theorem 4.15. Let I = [a, b] be a bounded interval and let {fn} be a sequence in R(I). Also, let f ∈ R(I). Given
any 1 ≤ r ≤ s ≤ ∞, if

lim
n→∞

∥fn − f∥s = 0 then lim
n→∞

∥fn − f∥r = 0.

If you take a course in measure theory, you will learn that this result depends critically on the fact that I = [a, b]
is a bounded interval . Before giving the proof (taking Hölder’s inequality for granted), we note that it implies the
following statement (as a special case).

If lim
n→∞

∥fn − f∥∞ = 0 then lim
n→∞

∥fn − f∥1 = lim
n→∞

∫
I

|fn(x)− f(x)| dx = 0.

This statement should be familiar as it recaptures Theorem 4.8 in view of the correspondence between uniform
convergence and convergence in the L∞ norm. Now let’s prove the theorem.

Proof. Fixing 1 ≤ r ≤ s, set p = s/r and observe that p ≥ 1. In the case that r = s = ∞, the assertion is obvious.
We therefore assume that r < ∞ and, in view of Hölder’s inequality, we obtain

∥fn − f∥rr =

∫
I

|fn(x)− f(x)|r dx =

∫
I

|fn(x)− f(x)|r · 1 dx ≤ ∥(fn − f)r∥p∥∥1∥q (6)

where q is the conjugate exponent to p and 1 is the constant function. If p = ∞, necessarily s = ∞, q = 1 and we
have

∥(fn − f)r∥p = sup
x∈I

|fn(x)− f(x)|r = ∥fn − f∥r∞. (7)
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In this case, combining the two preceding inequalities guarantee that

∥fn − f∥rr ≤ ∥fn − f∥r∞∥1∥1 = ∥fn − f∥r∞|b− a|

or, equivalently,
∥fn − f∥r ≤ (b− a)1/r∥fn − f∥∞.

If p < ∞, we note that

∥(fn − f)r∥p =

(∫
I

(|fn(x)− f(x)|r)p dx

)
=

(∫
I

|fn(x)− f(x)|pr dx
)1/p

= (∥fn − f∥ss)1/p = ∥fn − f∥s/ps = ∥fn − f∥rs

where we have used the fact that pr = s and s/p = r. Combining this with (6) yields

∥fn − f∥rr ≤ ∥fn − f∥rs∥1∥q = ∥fn − f∥rs∥1∥q

and therefore
∥fn − f∥r ≤ ∥fn − f∥s∥1∥1/rq .

Finally, noting that

∥1∥q =

{(∫
I
1q
)1/q

= (b− a)1/q q < ∞
1 q = ∞

= (b− a)1/q

(as long as we interpret 1/∞ = 0, we have

∥fn − f∥r ≤ ∥fn − f∥s(b− a)1/rq = (b− a)(
1
r−

1
s )∥fn − f∥s (8)

where we have used the fact that 1
r = 1

rp+
1
rq = 1

s+
1
rq . Combining both cases (6) and (8) (and using the conventions

that 1/0 = ∞ and 1/∞ = 0, we obtain

∥fn − f∥r ≤ (b− a)(
1
r−

1
s )∥fn − f∥s

whenever 1 ≤ r ≤ s. Finally, if the sequence {fn} has limn→∞ ∥fn − f∥s = 0, the preceding inequality guarantees
that limn→∞ ∥fn − f∥r = 0.

Example 4

To illustrate the preceding theorem, let’s construct a sequence of functions which converge to the zero function
with respect to the Ls norm for “small” s but diverge in the Ls norm for “large” s. To this end, set I = [−1, 1]
and fix 0 < a ≤ ∞. For each n ∈ N, define

fn(x) = n1/ae−n|x| for − 1 ≤ x ≤ 1.

We are assuming the convention that n1/a = n0 = 1 when a = ∞. Figure 4 illustrates f2 and f10 in the case
that a = 1.
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Figure 4: The graphs of f2 and f10 when a = 1.

A study of this particular sequence of functions provides a nice way to understand which factors contribute to
the Ls norm of a function. For this sequence fn, for a value of a < ∞, we see that the peaks at fn(x) (which
happen at x = 0) grow unboundedly while the graphs become more and more narrow as n → ∞. In terms of
area under the graph, which is the essential contributor to the Ls norms, this can be seen as a competition
between growing height and shrinking width. Let’s nail things down precisely.

As suggested by the figure, it is easily verified that, for each n, fn is continuous on the interval I, i.e.,
{fn} ⊆ C(I), and therefore {fn} is a sequence of Riemann integrable functions. Let’s compute the Ls(I)
norms of this sequence: For s = ∞, we have

∥fn∥s = ∥fn∥∞ = sup
x∈I

|fn(x)| = n1/a.

for each n ∈ N. For 1 ≤ s < ∞, we have

∥fn∥s =

(∫
I

|fn(x)|s dx
)1/s

=

(∫ 1

−1

ns/ae−sn|x| dx

)1/s

= n1/a

(
2

∫ 1

0

e−snx dx

)1/s

= n1/a21/s
(
e−snx

−sn

∣∣x=1

x=0

)1/s

= n1/a

(
2

sn

)1/s (
1− e−sn

)1/s
= n(1/a−1/s)

(
2

s

)1/s(
1− 1

esn

)1/s

for each n ∈ N. We therefore have the following behavior: if s < a, then 1/a− 1/s < 0 (where we can’t have
s = ∞) and so

lim
n→∞

∥fn − 0∥s = lim
n→∞

∥fn∥s = lim
n→∞

n1/a−1/s(2/s)1/s(1− 1/esn)1/s = 0 · (2/s)1/s · 1 = 0.
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Consequently, if s < a, {fn} converges to the zero function with respect to the Ls(I) norm. If s ≥ a, then, for
s = ∞,

lim
n→∞

∥fn − 0∥s = lim
n→∞

n1/a = ∞

and, for s < ∞ 1/a− 1/s ≥ 0,

lim
n→∞

∥fn − 0∥s = lim
n→∞

n(1/a−1/s)(2/s)1/s(1− 1/esn)1/s =

{
∞ a < s

(2/s)1/s a = s.
.

In other words, the sequence {fn} converges to 0 for all s < a (all small s) and does not converge to 0 for all
s ≥ a (all large s). In particular, upon fixing s < a, if r ≤ s, then {fn} converges to zero in both Ls and Lr

norms. If r > s, then it is possible to {fn} to not converge to zero in the Lr norm (namely, when r ≥ a) while
still converging to zero in the Ls norm. As it must be, this is consistent with the preceding theorem.
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