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Chapter 5

Differentiation

5.1 Real-valued functions of a real variable
5.2 Differentiability of functions from R¢ to R

5.3 Complex functions of a real variable

We will soon integrate complex-valued functions of a real variable, e.g., functions f : I — C where I = [a,b]. As we
discussed previously in the course, C is simply R? with an additional multiplication structure. Its metric is given

by the norm/modulus
2| = la+ib] = |(a,b)| = Va* + b?

for z = a+ ib € C. The following proposition simply translates our general notion of continuity (for functions
between metric spaces) into the context of the complex modulus and the real and imaginary parts of a complex-
valued function.

Proposition 5.1. Let I C R be an intervall] and let f : I — C. We write f = u + iv where u = Re(f) and
v =Im(f) are the real and imaginary parts of f, respectively, both of which are necessarily real-valued functions on
1.

1. For a point xo € I, f is continuous at xq if, for all € > 0, there is a § = d(e, x) for which

|f(@) = f(zo)] = V/(u(@) — u(x0))? + (v(z) — v(z0))? <€

whenever
|z — zo| < 4.

2. For a point xg € I, f is continuous at xg if and only if its real and imaginary parts are continuous at xg. In
this case,

flzo) = lim f(z) = <lim u(x)) +i ( lim v(x)) = u(w) + iv(xo).

T—T0o Tr—rxo Tr—rT0o

3. f is continuous on I if and only if its real and imaginary parts are continuous on I.

4. [ is uniformly continuous on I if and only if its real and imaginary parts are uniformly continuous on I.

IThat is, I = (a,b), (a,b], [a,b), or [a,d]) where —co < a < b < co.

9
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As an exercise, you should prove (or convince yourself that you could prove) the proposition above. Let’s now
talk about differentiability. Viewing C as R?, we can recognize the real and imaginary parts of f : I — C as the
components of f, i.e., f = (Re(f),Im(f))". In this sense, f is differentiable at x¢ € I if

f(zo+h) = f(zo) + Df(xo)h + E(h)|A]|

where £(h) — 0 as h — 0 where Df is a 2x 1 column vector consisting of the “partial” derivatives of the components
of f. The following proposition connects our vector-valued notion of differentiability to a (new) complex-valued
one. While it might appear obvious, the proposition is stronger than that which guarantees the existence of partial
derivatives (Theorem 9.17 of Rudin) we discussed in class.

Proposition 5.2. Let f : I — C where I is an interval. Given xg € I, f is differentiable at zo if and only if
u = Re(f) and v =Im(f) are differentiable (as real-valued functions) at xo. In this case,

f(o +h})1_ flao) _ (lim u(zo +h})L—u(xo)> +i (

h—0

lim v(xo + h) — v(xo)
h—0 h

li = v’ .

Lim ) u'(xo) + v’ (x0)

We shall recognize the above limit as the derivative of f at xo (instead of the (equivalent) 2 x 1 derivative matriz)
and denote it by f'(zg) or %(xo).

Exercise 5.1:
Let f: I — C where I is an interval®}
1. Prove the proposition above.

2. Assume that f and g are complex-valued functions on I, both of which are differentiable at zy. Use
the proposition (and your knowledge of the algebra of derivatives of real-valued functions of a real
variable) to prove the following statements:

(a) For z = a+ib € C, the function x — zf(z) is differentiable at xz¢ with derivative (zf)'(z¢) =
2f'(@o).

(b) f+ g is differentiable at xo with (f + ¢)' (x0) = f'(x0) + ¢’ (z0).

(c) fg is differentiable at x¢ with (fg) (zo) = f'(z0)g(zo) + f(z0)g’ (z0)-

“You may assume [ is open for simplicity.

Exercise 5.2:

In this exercise, you can assume that the sine and cosine functions are everywhere differentiable on R, have
the derivatives you know them to have, and satisfy the trigonometric identities cos(A+ B) = cos(A) cos(B) —
sin(A) sin(B) and sin(A + B) = sin(A) cos(B) + sin(B) cos(A). With this, define Cis : R — C by

Cis(0) = cos(0) + isin(h)
for 6 € R.
1. Show that |Cis(f)| =1 for all 6 € R.
2. Show that Cis(0; + 63) = Cis(6) Cis(62).
3. Using the previous proposition, show that Cis is differentiable at 6y = 0 and Cis’(0) = 1.

4. Use the above to show that Cis is everywhere differentiable and Cis’(#) = i Cis(6) for all § € R.
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5. It is customary to write Cis(x) = € (a fact which will be later justified by series) and, henceforth, we
shall adopt this notation completely. In this new notation, write out all conclusions to the above four
items.

6. Show that every complex number z € C can be written as
z = |z|e?

form some 6 € (—m, 7], called the phas of z. Note here

“When z # 0, 6 can be shown to be unique in this range.

5.3.1 Some Notation

We have recently been talking about continuous and differentiable functions. It’s helpful to give some notation to
collections of such functions; we shall later come back and discuss metrics and norms on them.

Definition 5.3. Let X and Y be non-empty sets.

1. We say that a function a real or complex-valued function f on X is bounded proved that
[flloc == sup | f(z)] < oo.
zeX

We shall denote the collection of bounded real and complex-valued function on X by B(X;R) and B(X;C)
respectively. When the context of R or C is made clear, we may simply write B(X) to denote the relevant
choice of these sets.

2. In the case that X and Y are metric spaces (with metrics dx and dy ), we denote by C°(X;Y) the set of
continuous functions f: X =Y, i.e.,

CUX;Y)={f:X = Y| fis continuous on X} .
We shall pay special attention to the cases in which’Y =R or C.

3. In the case that X = I = [a,b], we shall denote by C™(I;R) the set of functions f on X which are n-times

differentiable and
drf
M = —~ ¢ C%L;R).
f on €O (LR
Similarly, C™(I;C) is the set of complez-valued functions f on I with f() = sz € C%I;C). When the

context is clear, we may drop the second entry and simply write C™(I) to mean C™(I;R) or C™(I;C).

4. Finally, the set of smooth real-valued functions on I is
C*(L;R) = () C"(I;R)
n=1

and, similarly, the set of smooth complex-valued functions on I is

C>=(I;C) = ﬁ ™ (I;C).
n=1

11
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Chapter 6

The Riemann-Darboux integral

In this chapter, we cover the basic properties of the Riemann-Darboux integral, whose name gives homage to
Bernhard Riemann and Jean Gaston Darboux. As stated in lecture, it turns out that even this integral —the
integral you’ve known and studied since your first brush with calculus — is insufficient for a comprehensive theory of
analysis. To treat the comprehensive theory, in earnest, one needs the Lebesgue theory of integration. Though we
will try to explore the necessity of Lebesgue integration later (while illustrating the shortcomings of the Riemann-
Darboux integral), we first need to lay the groundwork for the Riemann-Darboux integral. This is the subject to
which we now turn.

6.1 The Riemann-Darboux Integral for Real-Valued Functions
Definition 6.1. Consider an interval I = [a,b] where —oco < a < b < c0.
1. A partition P of I is a finite subset P = {xg,x1,22,...,2x} of I such that

a=Tg <21 <x2<---<xTN_1<Tg =D

2. Given such a partition P, we shall write
Axp =) — Ty

fork=1,2,..., K. The norm or size of the partition is, by definition,

8. If P and Q are partitions of I, we say that Q is a refinement of P if P C Q.

Though a partition P is simply a finite subset of I (which is enumerated, increasing, and includes both endpoints),
you should picture P as dividing up the interval I into the subintervals [zr_1, zx| of length Axy for k =1,2,..., K.

Definition 6.2. Given a bounded real-valued function f € B(I) and a partition P of I, define

mp = inf  f(z) and Mp= sup f(x)

Tp—1ST<w) Tp—1<z<wz)

for each k = 1,2,... k. With these, we define the upper and lower Darboux sums of f with respect to the
partition P respectively by

K K
U(f,P)=> MyAz, and L(f,P)=> myAzy.
k=1 k=1

13
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Because f is bounded on I, its infimum and supremum exists on ever subinterval of I and therefore U(f, P) and
L(f, P) will always exists (as finite numbers) for any bounded function f and any partition P of I. The numbers
U(f,P) and L(f, P) are respectively overestimates and underestimates for the (signed) area under the graph of f
on the interval I, when this area is a sensible notion. These estimates are produced by forming rectangles above
and below the graph of f where the width of the rectangles are determined by the subdivisions of I produced by
the partition P. Note here

By properties of the supremum and infimum, observe that

L(f.P) <U(f,P). 6.1)

an inequality which holds for every partition P and every bounded function f : I — R.

It is helpful to think about a refinement @ of a partition P as one which produces, generally, finer subdivisions than
those given by P — hence the name “refinement”. With the aim of comparing upper and lower sums, we need the
following lemma. The lemma says essentially that finer divisions of I yield “better” estimates for the area under
the graph of f.

Lemma 6.3. Let P and @ be partitions of I and suppose that Q is a refinement of P. For any f € B(I),
L(f,P) < L(f,Q) and U(f,Q) <U(f,P).

Proof. Let f € B(I) and P be a partition of I. For any y € I \ P, observe that P U {y} it a refinement of P (with
one extra element) and, for some j = 1,2,..., K, it must be that

Ti—1 <y <z,

i.e., y falls in the jth subinterval of the original partition P. In this case, we have

K K
L(f,P) = ZmnAxk =mj(x; —xj_1)+ Z mpAzy.
k=1 k=1,k#j

Observe that, for m; = inf,, | <<z, f(2),

< . - . < . — .
mj < wjj%fzgy flx) ==m(zj-1,y) and m; < yglilézj f(x) == m(y, z;)

since both infima above are taken over smaller sets. Consequently,

K
L(f,P) = mj(z; —xzj_1)+ Z mEAxy
k=1,k#£]
K
= my(z;—y)+mily—za)+ D mplay
k=1,k#]
K
< myz) (@ —y) +mzny)y—z)+ Y meAag.
k=1.k#j

Since the partition P U {y} gives all the same subintervals of I as P except that it splits the subinterval [z;_1, z;]
into two subintervals, [z;_1,y] and [y, x;], we recognize that the final summation above is simply the lower sum,
L(f,PU{y}). Hence

L(f,P) < L(f,PU{y}). (6.2)
For the upper sum, we see that
sup f(z) < M; and sup f(z) < M;
zj—1<z<y y<z<z;

14
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and with this, an analogous argument to that made for lower sums yields
U(f, PUiy}) <U(f, P). (6.3)

With these two inequalities, we let () be any refinement of P so that we may write

Q:Pu{y17y2>“‘7ys}

where ys € I\ P for s =1,2,...,s. By repeated application of the inequality (6.2)), we find

L(f,P) < L(f,PU{y}) < L(f,PU{y1} U{ya}) < -+ S L(f, PU{pn} U{y2} U--- U{ys}) = L(f, Q).

By an analogous argument, making use of (6.3), we find

Uf,P)>U(f,PU{yn}) 2U(f, PU{yn}U{y2}) = 2 U(f,PU{n} U{ya} U---U{ys}) = U(/,Q)
and so the proof is complete. O

Thinking back to our picture of the area under the graph, which we will soon interpret as the integral, we expect
the lower sums to be underestimates for this area and the upper sums to be overestimates. Equivalently, we can
start to think of the integral as a number which sits below all of the upper sums and above all of the lower sums.
To think about how to approximate this number, we need to invoke the notion of supremum and infimum. To this
end, we’ll need another lemma which will help us to make sure the infimum and supremum exist.

Lemma 6.4. Let f € B(I) and let P and Q be partitions of I. Then
=) (i1 £0)) < L(P) < UGQ) < 0= 0) (sup 5 (0))
x e
Proof. We first note that the trivial partition T = {a, b} = {xo,x1} has

L(fj)zimk(xk—xk_l)=m1<w1—xo>=( it f@) (o1 —a0) = (0= o) (it 7o)

zo<z<z1 zel

and

1
U(f,T)= ZMk(l‘k —Zp—1) = My(x1 — o) = ( sup f(x)) (x1 —xp) = (b—a) (supf(x)) .
k=1

zo<z<wy zel
Thus, for any partitions P and ), Lemma [6.3] guarantees that
- (0l f@) ~LED LA wd UGQ <UD =0-0) (s /(o)
x e

because P and @ are necessarily refinements of 7T'. It remains to establish the inner inequality.
To this end, observe that the union R = P U Q is also a partition of I for it is necessarily a finite subset of I
which contains a and b. Further, R is a refinement of both partitions P and ). Thus, by another appeal to Lemma

and in view of , we have
L(f,P) < L(f,R) <U(f,R) <U(f,Q)

which guarantees that L(f, P) < U(f,Q) as was asserted. O

Let’s isolate some conclusions of the preceding lemma. First, it says that, for any partition P of I,

L P) < 0 a) (s 7))

zel

15
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Hence, the set
{L(f,P): P is a partition of I}

is a set of real numbers which is bounded above (it is, in fact, bounded above by every upper sum) and hence its
supremum exists (and is finite). Thus, we define

L(f) = sup L(f,P)

where this supremum is taken over all partitions P of I. This is called the lower Darboux sum of f on I; it is
also sometimes referred to as the lower Darboux integral. Analogously, Lemma [6.4] guarantees that the infimum
of all upper sums exists and so we define the upper Darboux sum of f on [ as

U(f) = inf U(f, P);

we may also refer to this as the upper Darboux integral. As we’ve established quite a few inequalities involving
upper and lower sums pertaining to the same and different partitions of I, it’s helpful to have some sense of how
U(f) and L(f) compare for a given bounded function f : I — R. To this end, lets fix a partition @ of I and note
that, in view of Lemma [6.4]

L(f,P)<U(f.Q)

for all partitions P of I. Thus, U(f, Q) is an upper bound of the set of real numbers {L(f, P) : P is a parition of I}.
By the defining property of the supremum, we have

L(f) = sup L(f,P)<U(f,Q).

Noting however that ) was arbitrary, we see that L(f) is a lower bound for U(f, @) for all partitions @ of I. By
the defining property of the infimum, we have

L(f) = wtU(f,Q) = U(]).

Let’s summarize this information.

Proposition 6.5. Let f : I — R be a bounded function, i.e., f € B(I;R). Then the upper and lower Darboux
sums,

U)=nfUGLP)  and  L() = swp L(f, )

both exist. Furthermore,

L(f) <U(f).

This exercise will give you an idea of what’s going on in the above construction. In what follows, we will
focus on the interval I = [0,1]. For each N =1,2,...,, we shall consider the (regular) partition

PN:{xO<x1<~~<xN:1}:{xn:%:n:(),l,l...,N}

of the interval I.
1. For the function f(x) =1 for 0 < z < 1, compute U(f, Py) and L(f, Px).

(a) Is it true that L(f, Py) < U(f, Pn)?
(b) Show that limy o (U(f, Pn) — L(f, Pn)) = 0.

2. For the function f(z) =z for 0 < 2 < 1, compute U(f, Py) and L(f, Py).

16
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\.

(a) Is it true that L(f, Px) < U(f, Pn)?
(b) Show that limy oo (U(f, Pn) — L(f, Py)) = 0.

3. For the Dirichlet function f defined by

)1 z€Q
w={; 158

for 0 <z < 1, compute U(f, Py) and L(f, Px).

(a) Is it true that L(f, Px) < U(f, Pn)?
(b) Does limy_o0 (U(f, Pn) — L(f, Pn)) = 07

. For the first two examples above, you've seen a sequence (an enumerated collection) of partitions { Py}

for which

N—o0

In view of Proposition [6.5] and the above fact, does it suffice to conclude that

Prove your assertion (or find a counter example).

. Is it true that if there is a sequence of partitions { Py} for which

lim (U(f7PN)7L(faPN)) 7£07

N—oc0

then
L(f) #U(f)?

Prove your assertion (or find a counter example).

J

Finding motivation in the preceding example and returning again to our intuition of areas, we would hope that a
sensible notion of area under the graph could be gotten by approximating the area from above by upper sums and
from below by lower sums. Thus, if such an area does exist, we would hope that the supremum of all the lower sums
coincides with the supremum of all the lower sums and so the inequality of the preceding proposition is actually an
equality. This is exactly the right idea and we give this situation a name.

Definition 6.6. Let f € B(I;R) and let L(f) and U(f) denote their lower and upper Riemann-Darbouz sums,
respectively. We say that f is Riemann integrable (or Riemann-Darboux integrable) on I and write f € R(I;R) if
U(f) = L(f). In this case, the Riemann-Darboux integral of f is defined to be the number

b
/ fdr=U(f) = L(f).

This number will also be denoted in the following (numerous) ways:

[ 1= [ s@a= [ swa= [r@w=

As suprema and infima can be difficult to compute, the remainder of this section is dedicated to establishing various
conditions under which we can decide if a given function is integrable. Along the way, we will also establish a few
basic properties of the integral. First, let’s write down an e-characterization of integrability due to Riemann.

17
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Theorem 6.7 (Riemann’s Condition for Integrability). Let f € B(I). Then f € R(I;R) if and only if the following
conditions is satisfied:

For each € > 0, there is a partition P. of I for which U(f, P.) — L(f, P.) < e.

Proof. We first suppose that f is Riemann integrable. By the e-characterization of the supremum, let @ be a
partition for which L(f) — L(f, Q1) < €/2. Similarly, by the characterization for infimum, let Q2 be a partition of
I for which U(f,Q2) — U(f) < €/2. With these partitions in mind, we set P. = 1 U Q2 and observe that P, is a
refinement of both Q1 and Q2. By Lemma[6.3| we have L(f, P.) > L(f,Q1) and U(f, P.) < U(f,Q2) and thus

U(f, Pe) = L(f, P) < U(f,Q2) — L(f, Q1) <U(f) +€¢/2 = (L(f) —€/2) = U(f) = L(f) + &

Of course, because f € R(I), U(f) = L(f) and so the above inequality shows that U(f, P.) — L(f, P.) < e.
Conversely, let’s assume that the desired property holds. Let € > 0, and using the property select a partition P
for which U(f, P) — L(f, P) < e. As U(f) and L(f) are constructed from infima and suprema respectively, we have

In view of Proposition we also have U(f) — L(f) > 0. Hence, to each € > 0, we have
0<U(f) - L(f) <e

We may therefor conclude that U(f) = L(f) for the only number “lodged” between zero and every positive number
is the number zero itself. O

Theorem 6.8. Let I = [a,b]. If f € R(I;R) and h is a real-valued function which is continuous on the closure of
the range of f, then the composition h o f is Riemann-Darbouz integrable on I, i.e., ho f € R(I;R).

Proof. We shall establish integrability of the composition h o f using Theorem and, to this end, we fix € > 0.

We recall that Riemann-Darboux integrable functions are bounded by definition. Thus, the range of f is a
bounded set and so its closure is compact by the Heine-Borel theorem. So, ¢ is a continuous function on a compact
set and it is therefore bounded and uniformly continuous (By Theorem 4.19 in Rudin). Let M’ > 0 be such that
|ho f(z)] < M’ for all z € I and select 0 < § for which

whenever |p — g| < §. In fact, we may select 0 further so that

€ €
VT so that 2M'6 < 3

Armed with this § and thanks to Theorem we may chose a partition P of I for which

0<d<

K
U(f,P) = L(f, P) = Y _(My — mp)Az, < &
k=1
Let’s now consider analogous sums for the composition, h o f, with this partition P. For k =1,2,..., K, set
M, = sup (hof)(x) and my, = inf  (ho f)(x).
Tp_1<zx<zk Tp—1<T<Tg
Define
G={k=1,2,...K| My —my <} and B={12,...,K}\G=1{k=1,2,...,K| M —my > §}.

For k € G, we have
[f(2) = f(y)l < My —mp <0

18
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whenever z,y € [zg_1, zk]. Thus by the uniform continuity of h,

Mi—mi= s (h(J@)-h(f@) < s |(ho @)~ (ho Nw)| < 57

Tp—1<T,y<z) zrp—1<z,y<w) (b* a)

whenever k € G. Consequently,

, , € € €
— [ [ — = —.
E (M, — mj,)Axy < 50 —a) E Axy < 50 —a) (b—a) 5
keG keG

Now, for k € B, observe that

My —mp= sup  h(f(z))+ sup (=h(f(z)) <M +M =2M
Tp—1<z<T) Tp—1<T<T)
SO
K
) Z(M{c — mﬁc)Axk < 2M' Z 0Axy < 2M’ Z(Mk — mk)Aack < 2M’ Z(Mk — mk)Awk < 2M’52
keB keB keB k=1

and therefore .
Z(M,’C —mj,) Az <2M'6 < 3
keB

since we have chosen § so that 0 < 6 < €/(4M"). All together, we have

K
U(ho f,P)— L(ho f,P) = z:(M,'c —m},)Axy, = Z(M,Q —my,)Axy + z:(M,’C —mj)Axy < % + % =
k=1 keG keB

Thus, ho f € R(I;R). O

With this result, we obtain two immediate corollaries. The first is proven by applying the Theorem [6.8]in the case
that h(z) = 22 and h(x) = |z|, both of which are continuous everywhere.

Corollary 6.9. If f € R(I;R) where I = [a,b], then f* and |f| are both in R(I;R).

Corollary 6.10. Continuous real-valued functions (on an interval I = [a,b]) are Riemann-Darbouz integrable, i.e.,
C°(I;R) C R(I;R).

Proof. Using the result of the previous exercise, we know the identify function Id(z) = z is Riemann-Darboux

integrable on [a,b] (and, in fact, f:a:dx = (b—a)?/2). If f is any continuous function on [a, b], then f = fold €
R(I;R) thanks to Theorem O

As evidenced by the theorem above and its corollaries, the characterization given by Theorem is very useful in
theoretical arguments but it is sometimes hard to implement in practice. Our next result is one that is a little easier
to implement and also involves so-called Riemann sums that you might remember from your first-year calculus
course. First, let’s precisely introduce the notion of Riemann sum.

Definition 6.11. Let I = [a,b] and P = {zg,x1,%2,...,2Nn} be a partition of I. A set of points {x},x5,..., 2%}
is said to be admissible for P if xp—1 <} <z for k=1,2,...,N. Given a function f on I, a Riemann sum for
f associated to P is a sum of the form

N
> fah) Ay,

k=1

where the collection of points {x5,x%,..., 2%} at which f is evaluated is admissible for P.

In this language, we have the following theorem of Darboux which characterizes integrability (and the integral) in
terms of Riemann sums.
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Theorem 6.12. Let f € B(I;R). Then f € R(I;R) if and only if there is a number T such that, for every e > 0,
there is a § > 0 such that

K
T-— Z flzr)Axg| < e (6.4)
k=1
whenever P is a partition of I with |P|| < ¢ and {xF,25,...,2%} is a set of points in I admissible for P. In this

case,

I:/abf.

The proof of this theorem is (necessarily and unavoidably) extremely technical. Though you should read the
theorem’s proof in detail, it might makes sense to skip it in your first reading — come back to it when you really
want (and are ready) to think about the details.

Proof. We first prove that the condition (6.4)) guarantees the integrability of f and that Z is its integral. To this
end, let € > 0 and, in view of (6.4)), choose § > 0 such that, for any partition P with ||P|| < §,

K
. €
7- Z:lf(xk)Axk <3
whenever {z§, x5, ..., 2%} is admissible for P. Let’s choose (and fix) some partition P with ||P|| < § so that the

above holds (for instance, you can simply choose a regular partition with sufficiently small increments) and write

P ={xo,21,..., 2K}
For each k =1,2,..., K, using the e-characterizations of suprema and infima, let’s choose two points z} and yj in
[€g—1,zk] With
€ €
k < f(xy) and flyp) <my +

4(b—a)’

With these estimates, we have

K K
U(f,P) = L(f,P) = > MAwp— Y mpAxy
= k=1

=
=

K K
< S (e g5g ) An - X (100 - 155 ) A
k=1 k=1
K K K 2%
= Z f(xR)Ar — Z fye) Az, + Z mﬁxk
k=1 k=1 k=1
K K ¢ K
k=1 k=1 k=1
K K p
= D fap)An, —T+T - fyp)Ax| + 3
kl_(l k_; 6
< Do fapAm—I|+ |- fyp)Azi| + 3
k=1 k=1
< 1 + Z + 5 = €;

here, we have used the fact that the points {z}} and {y}} are both chosen to be admissible for P (so that (6.4) is
valid). Thus, we have found a partition P = P, for which U(f, P) — L(f,P) < € and so f € R(I;R) by virtue of
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Theorem By similar computations (which you should do!), we also find that

b b

/f—I:U(f)—IgU(f,P)—I<e and I—/fzI—L(f)SI—L(f7P)<e.
b

z_/ f

b
7- / f
a
as was asserted.

We now prove the “forward” direction. Assume that f € R(I;R), set

Iz/abf,

and let € > 0 be arbitrary but fixed. Our goal is to find a ¢ > 0 for which (6.4]) holds for every partition P with
IP|| < ¢ and every set of points admissible for P. First, using Theorem let’s select a partition

In other words,

and since € > 0 is arbitrary, we conclude

Py ={yo,y1,-- -, yn—1,Yn}

of [a, b] for which

U(f.Po) = L(f.Po) < 7.

We note that, since Z = U(f) = L(f) must be “lodged” between U(f, Py) and L(f, Py) we see that
|R—ﬂ<§ (6.5)

whenever R is a number with
€
L(f7P0) - Z < RS U(f,P())

6 = min 1Pl ¢
2 'SNM

where M > 0 is an upper bound for |f| on I. It remains to show that this ¢ actually does what we need it to.

Let P = {zo,x1,...,Zx} be any partition of [a,b] with |P|| < § and let {z},3,..., 2%} be a collection of
points which is admissible for P. By the way that we choose § < || Pyl|/2, P must be “finer” than Py (not that it is
necessarily a refinement, but its increments are necessarily smaller. To see this precisely, set kg = 0, ky = K and,
forn=1,2,...,N —1,

With Py (and hence N) fixed, set

kn =min {k| zr > yn}.

Observe,
{$0,l’1, e 73:/61—1} g [y07y1]7
{Zhys Thy1s - Tho—1} € [y1, 92,
and, in general, forn =1,2,..., N,
{xkn_1axkn_1+1a s 7‘rkn*1} - [ynflvyn]'
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In this way, we have placed “most” of the subintervals for the partition P within subintervals of Fy; there are, at
most, only a “small” number (N to be exact) of subintervals of P which straddle elements of Py — we’ll deal with

these separately. For now, observe that for n =1,2,..., N,
Fn—1
Z Al‘k = ijn_l — xkna
k=kn,_1+1

Yo — Yn—-1+ @hp—1 — Yn) + Yn—1 — Tk, _,)
= Ayp+ (@k,—1 —Yn) + Yn—1 — Tk, _,)-

By our choice of k,,, we have

0<yn—k,-1 <k, —Tk,—1 <0 and 0<zk, , —Yn-1<(Th,_, = Th,_,-1) <0
so that
kp—1
Ay, —25< > Az < Ay, (6.6)
k=kn_1+1

forn=1,2,...,N. Set
K
k=1

and observe that

R = [f(z7)Az1 + f(z3)Azs + - + f(ah, _1) Azg, 1] + flzg,) Az,
+ [f(@h, 1) A%k, 11 + f(0h, 42) ATy 42 + -+ - + f(2), 1) ATk, 1] + f(zr,)Axy,
+ [f(@h,_ 1) ATk, 1 + f(@h,_ 2) ATk, 42+ + [(2h, 1) Az, —1] + f(zy, ) Az,
+ [f(xZN,1+1)A‘TkN71+1 + f(xltN,1+2>A‘TkN71+2 + f($ZN71>Aka*1] + f(sz)Aka
Equivalently,
N kn—1

= > 3 f(xkAmk—kaxk YAz,

n=1k=k,_1+1
=: R1+ Rs.

Let’s estimate the inner summations in the first term above. Since z} € [zr—1, k] C [Yn—1,yn] for all k,_1 +1 <

k <k, —1, it follows from and our definitions of M,, and m,, (as ingredients for the upper and lower Darboux
sums for Py) that

kn—1 k=k,—1 k=k,—1
mp (Ay, — 20) < Z mp Az, < Z flap)Axy < Z M, Az, < M, Ay,
k=k,_1+1 k=k,_1+1 k=k,_1+1
for each n =1,2,..., N. Summing over n, we obtain
N
L(f,Py) =26 Y mn < Ry <U(f, Py)
n=1
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and because

N
2 m

n=1

<N max {|lm,|} < NM,
n=1,2,....N

this guarantees
L(f.Po) = § < L(f.Po) = 26MN < Ry < U(J, Pv).

In view of (6.5)), we conclude that
1T - Ry| < g

For the term Ry, we simply observe that

N
|Ra| = | flan)Az,| < MNG <
n=1

<
5

Combining the two preceding estimates, we find that

:|I—R|:|I—R1—R2|§|I—R1|+|R2|<§+§<e

K
71— fap) A,
k=1

as required. WOOF. O

Now that we’ve done the hard work of proving Darboux’s theorem, let’s see it bear fruit.
Corollary 6.13. Let I = [a,b] and consider the sequence of regular partitions {Pn} given by
k(b —a)

N

for k = 0,1,2,...N. Also, suppose that, for each N, {z%,z5,...,2%} C I is some choiccﬂ of points which is
admissible for Pn. Then, if f € R(I;R),

Py={x,€l|k=0,...,N} where Tp=a+

b N N
. . . b—a .
[ 7=t 2 st = i P50 s
k=1 k=1
In particular, this holds for any real-valued continuous function on I (in view of Corollary .
Proof. Let € > 0 and, in view of Theorem let & > 0 be such that

b K
JAEED SIS
@ k=1

whenever ||P|| < 0. By the Archimedian property, select Ny for which (b — a)/Ny < ¢ and observe that ||Py| =
(b—a)/N < (b—a)/Ny < 6 whenever N > Ny so that

b N
/f—ZﬂﬁM%
a k=1

<€

N

[ 13 e’y

k=1

< €.

O

Our next corollary of Darboux’s theorem guarantees that R(I;R) is a vector space over R and f +— [ ; [ is a linear
transformation from this vector space into R (i.e., it is a “linear functional”).

Theorem 6.14. Let I = [a,b] and f,g € R(I;R). Then, for any real numbers o and 8, af + fg € R(I;R) and

/abaf+,6’g=a/abf+ﬁ/:g~

1This could be a choice of left or right endpoints, or midpoints.
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Prove the theorem. Hint: Let € > 0. Choose §; so that

b K
€
— Tp)Azy| < s
|7 > saidn) < oty
whenever P is a partition with |P|| < é1 and {z},x3,...,2}} are admissible for the partition. Similarly,
choose 05 so that
b K ¢
99— _9(@)Azy| <
/ 2 gl 208+ 1)
whenever P is a partition with || P|| < 02 and {z}, 23, ..., 2} } are admissible for P. Now, set § = min{dy, d»}.

Exercise 6.3: When modifying a function doesn’t change its integral

Let I = [a,b] and suppose that f € R(I;R). Given g: I = R, set D = {x € I| f(z) # g(z)}.

1. Using only the definitions and results in the present section of the notes, prove the following statement:
If D is finite, then g € R(I;R) and
b b
fo=]7
a a

2. Does the result above still hold if D is countably infinite? If so, prove it. If not, produce a counterex-
ample (and work the details).

Exercise 6.4:

Let I = [a,b] and let ¢ and d be such that a < ¢ < d < b so that J = [¢,d] C I. Define the so-called
characteristic function

1,(z) = (6.7)

{1 c<z<d
0 else
of J. Prove the following statements:

1. If f € R(I;R), then f € R(J;R).

2. If f € R(I;R), then f-1; € R(I;R).

3. If f € R(I;R), then

[ s@ae= [ s e

. J

Use the above exercises to prove the following proposition. Also, using a diagram, explain why the proposition
makes sense using “areas”.

Proposition 6.15. Let I = [a,b] and a < ¢ <b. If f € R(I;R), then f € R([a,c];R) N R([c,b];R) and

/abf(m)dx = /acf(x)dx—k/cbf(x)dx.
2
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We finish this section showing that the product of Riemann-integrable functions is Riemann integrable. Com-
bining this with Theorem this shows, in particular, that R(I;R) is a commutative ring.

Proposition 6.16. Let f,g € R(I;R), then their product fg is also a member of R(I;R).
Proof. Observe that
1
fo=5((f+9° = —g°)

and since sums (Theorem [6.14), squares (Corollary [6.9), and linear combinations (Theorem [6.14)) of integrable
functions are integrable, fg € R(I;R). O

6.2 The Riemann-Darboux Integral as a “signed” integral

When we think of doing integration (by approximations via Riemann sums), we think about summing up areas
under rectangles as we move (along a partition) from a to b. The concept of “moving” is associated with an
understanding that we have some direction in mind — from left to right. If you've taken a course in vector calculus,
this interpretation coincides with the notion that “work” is calculated via a line integral along a path traveled from
a point A to a point B. If we were to reverse that path, we would gain the energy lost doing that work. For this
interpretation to make sense, we make the following convention.

Convention 6.17 (The Signed Integral). If f € R([a,b]; R where a < b, the integral of f from b to a is defined by

/baf(x)das/abf(:c)dx.

As we will see, this convention is one that will allow us to understand the interplay between integrals and derivatives
a la the Fundamental theorem of calculus. With this convention, we obtain the following “generalization” of
Proposition 77

Theorem 6.18. Let I be an interval and f € R(I;R). Then, for any numbers a,b,c € I (they do not need to have
any specific order nor be endpoints), then

/abf(x)dx - /acf(a:) der/cbf(z) dz.

Proof. By Exercise 6.4, we know that f is Riemann-Darboux integrable on every subinterval of I. Thus, to prove
the theorem, it suffices to check the formula for all permutations (of orders) of a,b, and ¢. From Proposition
the formula clearly holds for a < b < ¢. Let’s consider the case that b < a < ¢. To this end, we have

/bcf(:c)dx:/baf(x)d:v—k/:f(x)dx:—/abf(x)dx—i—/acf(x)dx

where we have used Proposition [6.15 and our convention. Rearranging and invoking the convention one more time,

we have
/abf(x)dx:/:f(x)dx—/bcf(x)dx:/acf(x)dx+/cbf(m)dx,

Checking all other cases is done similarly. O

6.3 The Riemann-Darboux integral for Complex-valued functions

Armed with the notions of integration and integrability for real-valued functions f on I, it is easy to generalize
these to complex-valued functions.
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Definition 6.19. Let I = [a,b] and consider a complez-valued function f: I — C. In this case f is necessarily of
the form

f(@) = u(z) +iv(z)

for x € I where u,v : I — R. We saw that f is Riemann integrable on I if u and v are Riemann integrable on I
(i.e., u,v € R(I;R)) and we define the integral of f on I to be the complex number

/If(x)da:: (/Iu(x)dx) +i </Iv(x)dx>.

The set of complez-valued function on the interval I is denoted by R(I;C). We will also use the notations
b b
[1=[1=] t@a
I a a

Let’s make a few notes concerning the above definition. First, the functions u and v are called the real and imaginary
parts of f respectively. We'll often write f = Re(f) + ¢Im(f) where Re(f) = v and Im(f) = v. In the (special)
case in which f is a real-valued function from I to R, we can write f = Re(f) + ¢Im(f) = Re(f) +i0 = f +i0 and

so here
/If:/Re(f)—l—i/IO:/IRe(f)(m)dx—i—iO:/IRe(f)(x)dac

because the integral of the zero function is just 0. In this way we observe that the definition of the Riemann integral
for complex-valued functions is an extension of the Riemann integral for real-valued functions (as it recaptures the
real-valued version of the Riemann integral). For this reason, we will sometimes write R(I) = R(I;C) and note
that R(I;R) C R(I) by the above argument.

to denote the integral of f € R(I;R).

Now that we know what integrability means, it’s high time to give some properties of the integral.
Theorem 6.20. Let I = [a,b] C R.

1. For any complex numbers o and § and any f,g € R(I) , the linear combination af + Bg € R(I) and

J@r+sn=afr+s s

This says that R(I) is a vector space over C and the integral (viewed as a function f — [, f) is linear map
from R(I) to C.

2. If f,g € R(I), then the product fg € R(I).

3. Constant functions are Riemann-integrable and for any constant function x — « where o € C,

/Ia:a(b—a).

4. The set of continuous functions C°(I;C) are Riemann integrable. That is, C°(I;C) C R(I).

Proof. Exercise O

Exercise 6.6:

In this exercise, you prove the real-valued analogue of the scalar multiplication portion of Item 1 of the
proposition above. Throughout this exercise, ¢ is a real number.
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1. First, given a non-empty bounded set A of R, we denote by cA the set of numbers of the form ¢ - a
where a € A. That is, cA = {z € R: 2 = ca for a € A}. If ¢ > 0, prove that

supcA =csup 4 and inf cA = cinf A.

2. If ¢ < 0, formulate and prove an analogous statement for sup cA and inf cA.

3. For the remainder of this exercise, g : I — R will be an arbitrary bounded function. We will assume
now that ¢ > 0 and denote by cg the real-valued function on I defined by (cg)(x) = cg(x) for z € I.
Use your result from Item 1 to prove that

U(cg,P)=cU(g,P) and L(cg, P) =cL(g,P).
for any partition P of I.

4. Continuing under the assumption that ¢ > 0, prove that U(cg) = c¢- U(g) and L(cg) = c¢- L(g).

5. Use the item above to prove that, if ¢ > 0, g € R(I) if and only if cg € R(I) and

c/gz/cg.
I I

6. Comment on how the previous steps change if we allow ¢ to be non-positive. In particular, is it still
true that cg € R(I) if and only if g € R(I)?

. J

Another important property of the integral is captured by the following proposition.
Proposition 6.21. Let f € R(I), then the function |f|: I — R defined by

fl(@) = |f(2)] = V/(Re(f(2))? + Im(f(x))? forzel

[al= [

To prove the proposition, we will first need a lemma.

is Riemann integrable and

Lemma 6.22. Let hy,hy € R(I) be real-valued functions (i.e., hi,ha € R(I;R)) such that hi(x) < hao(z) for all

x e l. Then
/hlg/hz.
I I

Prove the lemma above. Hint: Start by showing that non-negative functions have non-negative integrals.
Then use Item 1 of Theorem [6.14

Exercise 6.7:

Proof. Let f € R(I) and write f = u + v € R(I). By definition, we have that u,v € R(I;R) and

= VT

Since the squares of real-valued integrable functions are integrable (Corollary , the sums of Riemann integrable
functions are integrable (Theorem [6.14]), and the square root (as a continuous function) applied to a non-negative
Riemann integrable function is integrable by virtue of Theorem we conclude that the complex modulus of f,
|f], is in R(I;R).
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Since f f is a complex number, the last result of Exercise 5.2 guarantees a 6 € (—m, «] for which

-1

In view of Item 1 of Theorem this guarantees that

/If‘ :/Ie_i‘gf:/l(e_i‘gf(x)) dx:/IRe(e_ief(x))dx—i—i/jIm(e_wf(x))dx

As the left hand side of the above equation is purely real, this ensures that the purely imaginary part of the right
hand side is zero and therefore

4 M—WU)

Now, for each x € I,

Re(e " f(z)) < \/(Re(e""f(w)))2 + (Im(e= f(2)))? = e f(x)] = | ()]

where we have used the fact that |zw| = |z||w| for complex numbers z,w. Thus, by Lemma we have

ﬂ [res@nan< [isela= [1r

as desired. 0

6.4 The Fundamental Theorem of Calculus

We now have done enough to establish the famous fundamental theorems of calculus.

Theorem 6.23 (The Fundamental Theorem of Calculus, Part I). Let f € R(I;C) where I = [a,b] and define
F:T1—-Cbby
7) = / F(t) dt

1. F is Lipschitz in I and, in particular, F € C°(I;C).

2. If f is continuous at xg € I, then F is differentiable at x¢ and

o) = [ Fle)a

Proof. Since Riemann-Darboux integrable functions are bounded, let M be such that |f(z)| < M for all x € I. By
Proposition Lemma we have
y y Y
[ wal< [oras [Taa=are-y

/;f(t)dt—/ayf(t)dt'—

for z > y. From this, we see that F' is Lipschitz. This proves the first item.

= f(zo).

T=X0

[F(z) = Fy)| =
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For the second item, let € > 0 and, given the continuity of f at xg, let 6 > 0 be such that |f(x) — f(zg)| < €
whenever |z — | < §. With this, observe that

e e I O E WUL
= [ - df
SR rerrl OBV
L
whenever |& — zo| < 6. O

Theorem 6.24 (The Fundamental Theorem of Calculus, Part IT). Let I = [a,b]. If f € R(I,C) and F : [a,b] — C
is a differentiable function for which F'(z) = f(x) for x € [a,b]. Then

b
F(b) — F(a) = / (@) da.

Proof. Let’s first assume that F' and f are real valued and let € > 0. By virtue of Theorem [6.12] select a partition
P ={x1,x9,...,2x} for which

b K
[ @y =3 i,
a k=1

<€
whenever {z7,25,...,2%} is admissible for P. Because the given function F' is differentiable on [a, b], it is differ-
entiable on every subinterval [zp_1, k] and, by the mean value theorem, for each k = 1,2,..., K, there is some

¢k € [xg—1, 2] for which
F(xr) — F(xp-1) = F'(cx)(xr — xp—1) = f(cn)Axy,

where we have used the hypothesis that F’ = f. In particular, the collection {c;,cs,...,cx} is admissible for P
and so we have

< €.

b K
[ #@yde = 3 (Plaw) - Plasoy)
a k=1

Observe that the above sum is “telescoping” so that

K
Y (F(xx) = F(zp-1)) = Flog)— Fleg-1) + F(Xk-1) — F(Xk_2)
k=1
+F(Xg—2)+ - — F(x2)
+F(z2) — F(z1) + F(21) — F(2o)
Fleg)+04+0+---0— F(x)
— F(b) - F(a).
Consequently,

< €.

b
/ f(z) dx — (F(b) - F(a))

Since this is true for every € > 0, it must hold that

b
F(b) — F(a) = / f(z)dx.
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For the general result where F' and f are complex-valued, we simply apply this argument to their real and imaginary
parts and make use of Proposition and the definition of the integral of complex-valued functions. O

IBP
Our next proposition is often called the “change of variables formula”. Because the proof is somewhat technical
(and is actually best done in the context of the Riemann-Steiltjes integral), I have decided to prove only a special
case.

Proposition 6.25 (Change of variables formula). Let A < B and a < b be real numbers and suppose that h :
[A, B] = [a,b] is a strictly increasing function mapping [A, B] onto [a,b] with derivative b’ € R([A, B]). Also, let
f € R([a,b]). Then the function x — (f o h)(x)h'(x) = f(h(z))h' (x) is integrable on [A, B] and

/ab f(z)dx = /[a’b] f= /[A7B](foh) b= /AB F(h(2)H (z) dz

Proof. We shall prove the theorem under the (slightly more restrictive) hypotheses that f € C°(I) and h € C(I; R);
the general proof is best done in the context of the Riemann-Steiltjes integral and a proof can be found in Rudin,
Theorem 6.19. Since h and h’ are real valued, it suffices to assume that f is also real valued, for the general result
can be gotten by simply piecing real and imaginary parts together. Define F : [a,b] — R by

F(z) = / o

and observe that, because f is continuous on [a,b], F' is differentiable on [a,b] and F’' = f by the FTC1. Define
G:[A,B] - R by

G) = [ (om0
for y € [A, B] and observe (in view of our hypotheses) that
G'(y) = (foh)()M'(y)
for y € [A, B] thanks to FTC1. With this, let’s define F'[a,b] — R by
F(z) = (Goh™)(z) = G(h™!(x))

for x € [a,b]. Since h € C*([a,b],R) and strictly increasing, the inverse function theorem guarantees that h~1 is
differentiable on its domain and

1
A (z)=—— >0
(7Y (@) =
for all y = h='(z) € [A, B]. Applying the Chain rule and FTC1, we conclude that F is differentiable on [a, ] and
@) = ) L = S ) L =

for x € [a,b]. By the mean value theorem, it follows that F' and F can differ only by a constant C, i.e.,
F(z) = F(z)+C
for all « € [a,b]. In particular,

A

_ a h=1(a)
C = F(a) — Fla) = f(t)dt—/ (foh)(t)h’(t)dt:O—/ (F o BYOR (£)dt =0 — 0 =0

A
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It should be noted that the proposition above has a very beautiful generalization to integration in R? in which the
derivative h’ is replaced by the Jacobean determinant of h’s d-dimensional analogous. This generalization is an
essential tool used in the theory of integration on manifolds.

6.4.1 Averages and the Mean Value Theorem for Integrals

If we think about the integral of a function over an interval as a sum, then it is reasonable to think of the integral
divided by the length of the interval as its average. In fact, let’s make this a definition:

Definition 6.26. Let f € R(I;R). Then, for any interval J = [c,d] C I, the average value of f on J is the number

d
Avey (J) = dic/ (@) da.

Example 6.1: Just some average examples

Let’s compute some averages.

1. Consider f :[0,1] — R given by f(z) = z. Using the result of your homework,

1

1 1 1
Aver([0,1]) = 7—5 i vdr=1-3 = .

2. Consider the function g : R — R defined by

) = 1 te (kk+1] when k is even
T =11 te (kk+1] when k is 0dd

It is not difficult to see that g is Riemann-Darboux integrable on any compact interval. For simplicity,
let’s determine its average over intervals of the form J = [0, T]. Denote by T} the largest integer with
To <T,ie., To = |T|. Then, by Theorem Addition,

T T To—1 (k41
/g(t)dt = /g(t)dt—i—Z/ g(t) dt
0 To o Ik
T To—l

|
—_
~—
3
QU
S
+
0
Nt
E
U
S

1 Tpis odd
0 T,iseven

= (@ -To)(-1)™ + {

Consequently,
1 T (T — Tp)(—1)To L Ty is odd
A 0,7)) = —— t)ydt = —F—— r
Veg([ ,T7) T-0J/, g9(t) T + 0 Ty is even.

. J

In looking at the examples above, we ask: Can a function be equal to its average value? The first example above
is certainly “yes” as f(z) = 1/2 when « = 1/2. The second, however, is no. note. Perhaps, it’s not surprising that
this has to do with continuity.

Theorem 6.27 (The mean value theorem for integrals). Let f € R(I;R). If f is continuous on I, then there exists
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ce I with

b
£0) = tves(D) = - [ 1@y

Proof. By virtue of Lemma [6.4] and the integrability of f, we have

b
(- a)int f(0) <L P) S [ £2UULP) <0 a)sup f(a)

zel
for every partition P of I. Consequently,

b
inf f(a) < Avey(fa.t) = 7= [ 1 <sup fla),

Since f is continuous, the extreme value theorem guarantees that the infimum and supremum above are attained on
the interval I. With this observation, the above inequality says that Ave([a,b]) is a real number sitting in between
two values of f on the interval [a, b] and hence there must be some ¢ € [a, b] for which f(c) = Avey([a, b]) thanks to
the intermediate value theorem. O

The mean value theorem for integrals furnishes another way to prove FTC, Part 1 in the special case that
f € C°(I;R). In particular, use the Mean Value Theorem for integrals to show that, if f € C°([a,b];R) C
R(I;R), we have

= " f@ydt = f().

Failure of the RD integral
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Chapter 7

The Essence of Convergence

In this chapter, we discuss the convergence of functions. Specifically, we discuss the ways in which a sequence of
functions converges (or does not converge) to some other function. As you saw when you first learned about Power
series, it is really useful to approximate a given function (say e*) by simple and easy-to-understand functions (say,
the sequence of polynomials 1,1+z,1+x+22/2,1+x+22/2+23/6,...) and developing a theory for doing so is our
present goal. This theory is somewhat delicate and complicated. As we will see, there are many inequivalent ways
(an infinite number) to define what it means for a sequence of functions to converge to another function — and each
has a use that is important/applicable in some context (e.g., linear programming, solving differential equations,
Fourier analysis, probability). Below, we introduce our first notion of convergence called “pointwise” convergence.

Definition 7.1. Let (X,d) be a metric space and let {f,} be a sequence of complez-valued functions on X, i.e.,
fn: X = C foreachn=1,2,...,N. Let f : X = C be another function. We say that the sequence {f,} converges
pointwise to f on X if, for each x € X,

lim f,(x) = f(z).

n—oo

The important thing to note about the above definition is that the x is chosen before the limit is taken. Stated
with €’s and N’s, the above definition is as follows:

The sequence of functions f, converges to f pointwise on X if, for each € > 0 and x € X, there is an N € N
(depending on both € and z) for which

|fr(x) — f(z)] <€ whenever n > N.

Example 7.1:

In this example, we consider a sequence of real-valued functions converging pointwise on the interval I = [0, 1].
For each natural number n, define f, : I — R C C by

fn(x) =z"

for x € I and n € N. We observe that, for 0 <z < 1,

lim f,(x) = lim 2" =0
n— oo n— oo

and, for x =1,
lim f,(z) = lim 1" =1.

n—oo n—oo
Thus, our sequence of functions converges uniformly to the function f : I — R defined by
0 0<x<1
€Tr) =
rw={) 0%
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for z € I. The graphs of f, are illustrated for n = 1,2,...,20 in Figure

0.9F

0.8

0.7 4

0.5 i

0.4 h

01} 1

Figure 7.1: A famous picture: The graphs of f,(z) = 2" forn =1,2,...,20.

It is important to note that each function f,, is continuous on I, however, the limit function f is not
continuous on I. This illustrates that nice properties like continuity can be “broken” under taking pointwise
limits.

A much stronger notion of convergence is captured by the following definition.

Definition 7.2. Let {f,} be a sequence of complex-valued functions on X. Let f : X — C be another complez-
valued function on X. We say that the sequence {f,} converges uniformly to f on X if, for all € > O there exists
N €N for which

|fu(z) — f(z)| <e whenever x €I and n> N.

In contrast to the definition of pointwise convergence, the definition of convergence requires that the integer N
depend only on € and be independent of x € X. This notion is illustrated in Figure In the figure, we see
the graph of a real-valued function f (in black) in the center of a “band” of radius ¢ (in red). For a sequence
of functions {f,} to converge uniformly to f (on an interval) means that, for sufficiently large n, the graph of f,
is completely contained in the band of radius € surrounding f; the blue line is an example of the graph of one such f,.

We further illustrate this definition with some examples.

Consider the sequence {f,} of functions defined on the interval I = [—m, x| by
fn(x) = cos(x/n) —1/2

for € I and n € N. The graphs of f,, are illustrated for n = 1,2,...10 in Figure

34



Really Real Analysis Supplementary Course Notes Evan Randles

Figure 7.2: An illustration of uniform convergence

—0.5}+ 4

—-1.5
—4 -3 -2 -1 (o] 1 2 3 4

Figure 7.3: The graphs of f,(z) = cos(z/n) —1/2 for n =1,2,...,10.

The figure suggests that the sequence {f,} converges to the constant function f(z) =1/2 as n — oo. Let’s
prove that, not only does it converge to f(x) =1/2, it does so uniformly.
Let € > 0 and select N € N such that N > 7/,/e. Recalling the inequality for cosine,

| cos(0) — 1| < |62 for all # € R

which can be gotten from the mean value theorem or the racetrack principle, we observe that, for any n > N
and x € I = [—m, 7],

$2 2

[Fa@) = f(@)] = | cos(w/n) = 1/2 = 1/2| = |cos(a/n) = 1| < 5 < = <
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because n2 > N2 > 72 /€. The careful reader should note that the above estimate holds for all z € T and
for all n > N (and not for a particular z). We have shown that the sequence {f,} converges uniformly to

f(z)=1/2.

Given an interval I, we recall the supremum norm defined, for f: I — C by

1flloc = sup | f ()]
xzel

In this exercise, you will prove that || - || is a bona fide norm on the space of bounded complex-valued
functions on I.

1. Prove that, for any pair of bounded functions function f and g,
1f + gllso < [l flloc + llglloo-

2. Prove that, for each complex number o and bounded function f: I — C,

leflloo = lall[ flloo
where || is the complex modulus of a.
3. Prove that, for a bounded function f, ||f||o = 0 if and only if f(z) =0 for all z € I.

4. Given a sequence {f,} of bounded complex-valued functions on I and f : I — C, prove that the
sequence {f,} converges uniformly to f if and only if

nh—>H;o | fn = flloo = 0.

As the notion of “Cauchy sequence” is essential for the convergence for complex-numbers and, in fact, provides a
characterization for convergence as you proved in Homework 1, we have a similar Cauchy property for functions
which characterizes uniform convergence. This characterization is outlined in the following theorem.

Theorem 7.3. Let {f,} be a sequence of complex-valued functions on an interval I C R. The sequence {fn}
converges uniformly (to some function f) on I if and only if it satisfies the following property:

(UC) For all € > 0, there exists a natural number N such that

|fr(z) = fm(x)] <€ whenever x € I and n,m > N.

The equivalent property (UC) is called the Uniform Cauchy condition. Any sequence of functions {f,} satisfying
the condition is said to be uniformly Cauchy on I.

Proof. Let us first assume that {f,} converges uniformly to a function f on I. Let € > 0 and by our supposition
let N be a natural number for which

[fn(z) = f(@)] < €/2

for all n > N and x € I. Then, for any n,m > N, we have

[fn(@) = fm(@)] = |fu(x) = f(2) + f(2) = [ (2)] < [fu(x) = f(2)[ 4+ [f(2) = fm(2)] <

DN o

for all z € I. Thus the sequence {f,} is uniformly Cauchy on I.
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Conversely, let’s assume that the sequence f,(z) is uniformly Cauchy on I. This implies, in particular, that
{fn(z)} is a Cauchy sequence of complex numbers for each x € I. Because all Cauchy sequences of complex numbers
converge, for each x € I, the limit lim,, o, f(2) exists and we will denote its value by f(x), which is just a complex
number. In this way, we produce a function f : I — C simply by identifying each x with the value of the limit
lim,, o fn(x), i.e., defining

f(z) = lim f,(x)

n—oo

for each € I. So now we have a candidate (f) for the uniform limit. It remains to show that our sequence, in
fact, converges uniformly to this f. To see this, we let € > 0 and choose a natural number N for which
€
‘fn(x) - fm(m)‘ < 5
for all n,m > N and = € I. Now, let © € I and n > N be arbitrary (but fixed). The convergence of the numerical
sequence {f,(z)} guarantees that there is some natural number N, > N for which
€

[fm(z) = fl2)] <

2
whenever m > N,. In particular, this works when m = N, > N and so
[Fal@) = F@] = (@) = I (@) + (@) = F@)] < |fale) = F(@)] + | (@) = F@)] < 5+ 5 =
Thus, to each € > 0, we have found a natural number N for which
[fu(z) = f2)] <€
whenever « € I and n > N. Therefore, {f,} converges uniformly on I (to f). O

Corollary 7.4. Let B = B(X;C) denote the set of bounded complex-valued function on X and define

doo(f:9) = |lf = gllec = sup [f(x) — ()]
reX

for f,g € B. Then (B,d) is a complete metric space.

Proof. In the previous exercise 7.1, you showed that || - || defined a norm on B and, as each norm defines a metric
in precisely the way above, we conclude that (B, d) is a metric space. Let {f,} be a Cauchy-sequence in in this
metric, i.e., for every € > 0, there exists IV for which

doo(fn7fm) = Sup |fn<x) - fm($)| <€
reX

whenever n,m > N. In particular,

for all x € X and n,m > N. Hence, {f,} is uniformly Cauchy. By the Theorem {fn} is uniformly convergent
to some f: X — C and, in view of the Exercise 7.1,

lim doo(fp, f) = lim [|f, — f|| = 0.
n—r oo n—roo
It simply remains to show that f € B. To this end, let ¢ = 1 and let N be such that

whenever n > N. In particular, we have

sup [F(@) = lIfllee < 1f = fivlloo + 1fwlloo < T+ [ llyinfty < oo
S
where we have used the fact that fy € B and hence || fn|loo is finite. O
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Theorem extremely useful when one has a sequence of nice functions (which is uniformly Cauchy) but has no
obvious candidate for the uniform limit. Here, of course, infinite series comes to mind.

Definition 7.5. Let {f,} be a sequence of complez-valued functions on I. The (formal) sum ) f, is called a
series of functions. To investigate the convergence of Y fn, we define, for each N =1,2,...,

N
SN(m):an(x) forxel.
n=1

The functions S1,Sa, ..., form a sequence of complex-valued functions on I, {Sn}, called the sequence of partial
sums for the series Y, fn. If, for each x € I, the limit

lim Sy(z)

N —o0

exists, we say that the series ), f, converges on I. In this case, the limit is a function S : I — R defined by

S(z)= lim Sy(z)= lim Y fu(z)

and we write

to denote this function, called the sum of the series. We say that the series ) f, converges uniformly on I if its
sequence of partial sums {Sy} converges uniformly on I to the sum of the series.

As with numerical series, one can often learn that a series converges without ever knowing its sum. For instance,
the integral test from calculus shows that the series of numbers

=1
>
n=1

converges (this is p-series for p = 3). Though it can be approximated to any degree of accuracy, its sum it unknown.
With this in mind, it is important to have various test for series (uniform) convergence without knowing the limit.
The following corollary of Theorem [7.3] gives us exactly this.

Corollary 7.6 (Uniform Cauchy Criterion). Let {f,} be a sequence of complex-valued functions on I and consider
the series ), fn. The series ) fn converges uniformly on I if and only if the following property is satisfied:

For all € > 0, there is a natural number N for which

k=m

> i)
k=n

for allz € I and m >n > N. This property is called the Uniform Cauchy Criterion for the series y, fn.

<€

In this exercise, you will prove Corollary and then use the corollary to establish sufficient conditions for
the absolute convergence of power series — things you will remember from calculus (M122).

1. Using Theorem prove Corollary
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2. If a series ) f, of functions {f,,} converges uniformly on I, prove that {f,} converges uniformly to
the zero function on I.

3. For the remainder of this exercise, we fix a positive constant M and define I = [-M, M] C R. Given
a sequence of complex-numbers {c,}, consider the sequence of complex-valued functions {f,} on I
defined by

fulz) = G n

T onl

for x € I. If the sequence {c,} is bounded, i.e., sup,cy |cn| < 00, use Corollary (and no other

convergence test) to prove that the series
oo

> e
n!

n=1

converges uniformly on I.

4. Let f: I — C be infinitely differentiable and assume that sup,,_q ;. | (0)] < oo; here f(M(0) is the
nt®_derivative of f at 0. Use the previous item to prove that the series

— /") ,
Zo n! v

converges uniformly on I . This series is called the Maclaurin series for f. (Your proof here should be
approximately one sentence).

5. Looking back at Item 3, find a condition on the sequence {ci } which is less restrictive than boundedness

and which still guarantees that the series
o0

I
n!

n=1
converges uniformly on I. Hint: You should take a look at Stirling’s formula (which you can take
for granted as long as you interpret the formula/approximation correctly). If you're interested, a nice
proof of Stirling’s formula can be found in Exercise 5 of Homework 2 for my Math 122 class.

7.0.1 Properties of Uniform Convergence

In this short subsection, we discuss some properties preserved under uniform convergence. Specifically, we focus on
continuity and integration. Let’s consider a couple of examples.

Example 7.3:

Given 0 < 0 < 1, let Is = [-1 44,1 — §] and consider the series
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To see this, we first observe that the partial sums {Sy} satisfy the formula

1— I.NJrl

N
Sn(z) = Zw” =
n=0

1—2

for x € I5. The validity of this formula can be seen by multiplying both sides by 1 — 2 and simplifying.
To see that this series converges uniformly, let € > 0 and choose M to be a natural number for which
M > 1n(ed)/In(1 — 4). For any = € I5 and N > M, observe that

1 1—$N+1 _ ‘.T|N+1 (1_5)N+1
1—z -z | |1-=z — )

@) - Sx(o)] = | <e
where we have used the fact that N +1 > M > In(ed)/In(1 — §). Therefore, we have proved that this series

converges uniformly to f. I encourage you to show that this series converges uniformly using only Corollary
(and not making reference to f).

An important thing to note about the above example is that, each Sy(x) is continuous and the limit function
f(z) = 1/(1 — x) is also continuous on the interval Iy, a fact that was also true in the preceding example. This
stands in contrast to the Example [7] in which the limit function failed to be continuous. As it turns out, this is a
key difference between pointwise convergence and uniform convergence. This is detailed in the following theorem,
whose proof Is needed, Evan!

Theorem 7.7. Let {f,} be a sequence of complez-valued functions on I and suppose that {f,} converges uniformly
to a function f: I — C. If each function f, is continuous, i.e., {fn} C C°(I;C), then f is necessarily a continuous
function.

Proof. To show that f is continuous on I, we must show that, for each « € I and € > 0, there is a § > 0 for which
|f(z) — f(y)| < € whenever |z —y| < §. To this end, let x € I and € > 0 be fixed. Since {f,} converges uniformly
to f on I, let N be such that |f,(y) — f(y)| < €/3 whenever n > N and y € I. In particular, |fn(y) — f(y)| < €/3
for all y € I. Now, because fy is continuous on I, it is continuous at x € I and so there is a 6 > 0 for which
|fn(x) — fn(y)| < €/3 whenever |x — y| < §. Thus, for y € T with |« — y| < §, we have

@) = F@)] < 1f@) = fn @) + [ fn (@) = Iv@)]+ x) — S0l < 5+ 5+ 5
O

Let’s explore some other important properties of uniform convergence. Our next result shows that uniform conver-
gence plays nicely with the Riemann-Darboux integral.

Theorem 7.8. Let {f,} be a sequence of complex-valued functions which converges uniformly to a function f : I —
C; here, I = [a,b]. If each function f, is Riemann-integrable, i.e., {f,} C R(I), then f is Riemann-integrable and

lim /\fn—f\ =0.
n— oo I
Further
lim fn= / I
n— o0 I
Proof. We first show that the limit f is Riemann-integrable by showing its real and imaginary parts, u and v are
Riemann-integrable. For each n, denote by wu,, and v, the real and imaginary parts of f, respectively. We will show
that v and v are Riemann integrable by appealing to the e — P characterization, Theorem Let’s first focus on

the real parts {u,} and u. Let € > 0 and, by the uniformly convergence of {f,}, let N be a natural number for
which

[un(@) = u(@)] < V/(un(z) = u(@)? + (va(z) — v(2))? = |fal@) — f(2)| < €/4(b —a)
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for all x € I and n > N. In particular, upon setting ug = uy, this yields the inequality

ug(x) — m < u(z) < up(z) + 4(bi )

(7.2)

for all € I. This inequality implies that u is bounded on the interval I in view of our hypothesis that ug = uy €
R(I). By virtue of Theorem let P be a partition of I for which U(ug, P) — L(ug, P) < €/2. For this partition,
the inequality (7.2) guarantees that

Ulu,P) = Z( sup u<x>>><xn—xn1>

n \Zn-15z<Ty

2 ( SR, @ 4<b>> o)
< U(UO7P)+Zm(xn_xn—l)

< Uug, P) + i
Similarly, the inequality guarantees the analogous lower estimate
memfigL@P)
Together, these estimates guarantees that

U, P) ~ L(u, P) < Uluo, P) ~ L{ug, P) + 5 < 5 + 5 = ¢

and from this we can conclude that v € R(I). A completely analogous argument shows that v € R(I) and so, by
the definition of Riemann-integrability for complex-valued functions, the limit function f € R(I).

Let us now prove the statements concerning the limit lim,, ., f 1 1fn = fl. In view of the definition of the
L*°-norm, we have

for all z € T and n € N. In view of Lemma [6.22] we have
0 [ <15ue) = S@ldo < [ 1 fldo= b= ) fu~ fl
I I
Thus, by virtue of Exercise 9 and the squeeze theorem, the preceding inequality shows that

lim /'fn_f|:O
n—oo I

because ||fr, — flloo — 0 as n — oco.
Finally, by virtue of Theorem [6.20] and Proposition [6.2I] we have

/Ifn—/lf‘:’/l(fn—f)‘</I|fn—f|

for all n. Another appeal to the squeeze theorem (and the preceding limit) guarantees that

lim ﬁ:/ﬁ
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Corollary 7.9. Let {f,} be a sequence of complez-valued functions on I = [a,b] and suppose that the series >~ o fn
converges uniformly on I. If each f, is Riemann-integrable, then the sum of the series is Riemann-integrable and

AN WS

Proof. The hypothesis that Y ; f,, converges uniformly means that the sequence of partial sums {Sy} defined by

N
=2 Fala)
n=0

for x € I converges uniformly on I. Also, the supposition that each f, is Riemann-integrable guarantees that each
partial sum is Riemann-integrable in view of Theorem By the (finite) linearity of the integral, we have

/IsNzi/Ifn

for each natural number N. Thus, an appeal to the preceding theorem guarantees that the limit ZZOZO fn =
limy o0 Sy is Riemann-integrable and

/an—/ lim SN—ngnoo SN—ngnOOZ/fm

in particular, the limit on the right exists. Of course, this is what it means for the series of the numbers [ 1 Jn to

converge and so we have
[eS) N oo
= gm 3 [ =3
n=0 n=0 n=0

7.0.2 The Weierstrass M-test

We’ve been developing the theory of uniform convergence for sequences of functions. Along the way, we’ve proved
some results about the uniform convergence of series of functions, the most important of which is Corollary [7.6]
This corollary showed that a series is uniformly convergent if and only if it satisfies the Uniform Cauchy Criterion.
As you saw in Exercise 10, while this criterion/condition is very useful, it is not terribly easy to apply. Our main
result of this section, the M-test of Weierstrass, gives an relatively straightforward condition guaranteeing that a
given series converges uniformly. We will then amass some facts following from this result which will be used in our
study of Fourier series.

Theorem 7.10 (The Weierstrass M-test). Let I = [a,b] be an interval and consider a sequence of bounded complex-
valued functions {fn} on I. For each n € N, set

M, = || fallo = SUPI’|fn(x)|-
xre

If the series Y .~ | M, converges, then the series Y | fn converges uniformly on I.

Before giving the proof, observe that the series > > | M, is a series of non-negative numbers and determining the
convergence of this series is the subject matter of introductory calculus. This is usually an easier condition to verify
that the Cauchy criterion.
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Proof. We will verify that the Cauchy criterion (Corollary [7.6) is satisfied for the series ) fn. To this end, let
e > 0. Given that ) M, converges, its partial sums are necessarily a Cauchy sequence and so there must be some
natural number N for which

ZMk< Z Mk_ZMk—ZMk_

k=n—1

<e€

> -3

whenever m > n > N. Here, we have used the fact that M > 0 for all k. Observe now that, for any z € I and
m >n > N, the triangle inequality guarantees that

S H@| <D RIS Ifillo =D M <,
k=n k=n k=n k=n

as desired. O

Following directly from Theorems and [7.7 and Corollary we obtain the following corollary.

Corollary 7.11. Let I be an interval and let { fi.} be a sequence of complex-valued functions on I, i.e., {fr} C C(I).
For each n € N, set

M, = || follo = sup | fu(z)]-
zel

If the series Y .~ | M, converges, then > - | fn converges uniformly on I and its sum

n=1

is a continuous function on I, i.e., f € C(I). Further,

/f/Zh—Z/h

Proof. The statement regarding uniform convergence follows directly from Theorem Because f,, is continuous
for each n, the partial sums {S,,} are necessarily continuous functions on I. The uniform convergence of the series
is the statement that the partial sums converge uniformly to the sum of the series and so, by virtue of Theorem [7.7]
the sum f is necessarily continuous on /. Finally, upon noting that {f,} C C(I) C R(I), an appeal to Corollary
gives the final statement immediately. O

Exercise 7.3: T

he Weierstrass M-test says that the “M condition”, i.e., the condition that E;o:l M, converges, is a sufficient
condition for the uniform convergence of the series Y f,,. This is in contrast to Corollary which gives
a condition both necessary and sufficient for uniform convergence. Show that that “M condition” (of the
Weierstrass M-test) is not necessary for convergence. That is, find a sequence of functions {f,} on an
interval I for which Y7 | f,, converges uniformly yet > >° M,, = co for M,, = || fu||c. Hint: A nice example
can be produced which is an alternating series. Feel free to use results from introductory calculus (such as
the alternating series test).

7.0.3 Defining Convergence with the Integral: A glimpse at Lebesgue norms

As the supremum norm || - || allows us to measure the “size” of a function bounded function (and with it you
were able to characterize uniform convergence), the integral also allows us to measure the “size” of a function by
integrating its absolute value. Measuring the size of functions with the integral turns out to be a very fruitful
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activity. To formalize things, I will take this opportunity to introduce a class of “norms” on functions, called the
Lebesgue norms or the LP norms, of which the supremum norm is an important example. To this end, we fix an
interval I and, for each 1 < p < 0o, we define the LP(I) norm of a function f € R(I) by

1= (/ f(x)lpd:ﬂ)l/p.

1fllp = 1flloc = sup | f ()]
zel

For p = oo, we have as before

for f € R(I). For each 1 < p < 00, each LP norm gives us a different way to measure the “size” of a function. Let’s
accumulate some facts about these norms.

Proposition 7.12. Given an interval I and 1 < p < oo, let | - ||, denote the LP(I) norm defined above. Then, for
any f,g € R(I) and a € C, we have

1.
Ifllp =0
2.
lleef{lp = Ted 1 £l
3.
1f+ gl < 1 £llo + llglly
Truthfully, the above proposition only guarantees that || - ||, is a so-called semi-norm on R(I) because there are

non-zero functions f € R(I) for which || f|, = 0.

Proof. As you have already shown that these properties hold when p = oo (Exercise 9), we shall assume that
1 < p < oo. Now, because the integral of a non-negative function is non-negative, the validity of Item 1 is clear.
Also, for f € R(I) and a € C,

lafIE = (lafll)? = / af (@) di = / P f(@)[P de = |af? / F(@)P de

from which we immediately obtain Item 2. It remains to prove Item 3, also called Minkowski’s inequality. This
inequality is most easily obtained using the machinery of measure theory, though our proof here only relies on the
convexity of the function C 3 z — |z|?, a fact which can be established using only elementary calculus.

To this end, we first assume show that, if hq, he € R(I) are such that ||hq]|p, ||he|l, < 1, then, for any 0 <¢ <1,
[th1 + (1 — t)ha|l, < 1. This is equivalently the statement that the unit ball

By ={h € R(I) : ||n], <1}

is a convex set. Let us fix 0 < ¢ < 1 and hq, he € B, and observe that the convexity of the map z — |z|? guarantees
that
thi(z) + (1 — t)he(z)[? < tlhi ()P + (1 = t)[he(z)”

for all x € I. T’ll make note that the convexity used here for complex numbers is also called the supporting
hyperplane property and can be understood geometrically as the graph of the function |z|P always living below its
secant lines/planes. In view of this inequality, the monotonicity of the integral guarantees that

/|th1(x)+(1—t)h2(x)\pdx gt/|h1(x)|pdx+(1—t)|h2(x)|”dac
I I

or equivalently
[thy + (1 = D)ha|[y < tllhally + (1 = t)[|h2]l}.
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Recalling that ||h1]|, < 1 and |lhz|, < 1, we conclude that
[thy + (1= t)ho|p <t-14+(1—t)-1=1

and so |thy + (1 — t)hz||, < 1, as was asserted.
We now get to the task at hand. Let f,g € R(I) and we shall assume that || f||, and ||g||, are non-zero (treating
these trivial cases is much more simple). We write
(R SRV PR N | PR BV S
LAl +lglle 1 llp + gl (11 Il + glls llglly 11l
where t = || f|l,/(Il fllp+1lgllp) is @ number between 0 and 1. By virtue of Item 2, both hy = f/| fl|, and he = g/ gllp
have LP norm 1. In view of the property proved in the preceding paragraph, we conclude that

9
91l

H f+g
I £llp + llgllp

Therefore, a final appeal to Item 2 gives the inequality

= |lths + (1 — t)ha|l, < 1.
p

1
o 1 gl <1
£l + llglle '

from which the desired result follows without trouble. O

With these norms and this way of measuring functions, we can define new notions of convergence. To this end,
given a sequence of functions {f,} C R(I) and f € R(I), we say that {f,} converges to f in LP(I) or with respect
to the LP? norm if

Jim [ fo = fllp = 0.

There are three LP norms that will be of particular interest for us, p = 1, 2 and oco. In the case that p = 2, there is
an additional structure with which you are already familiar from linear algebra, the inner product (a generalization
of the dot product). For integrable functions f and g, we define the L? inner product of f and g to be the number

- / f(2)g(@) da

As it is easy to verify using properties of the integral, the L?(I) inner product satisfies the following properties:

1.
(f,9) =g, f) for f,g€ R(I)
2.
(af +Bh,g) = alf,g) + B(h,g) for f,g,h € R(I) and o, € C.
3.

(g,af + Bh)y =alg, )+ Blg,h) for f,g,h € R(I) and o, f € C.

We also notice, that the L? inner product recaptures the L? norm:

i1 = ( | |f<z>|2dx)1/2 -(/ f(w)f(x)dfc>1/2 — VT

for f € R(I). An extremely important property of the L? inner product is captured by the following theorem.
Theorem 7.13 (The Cauchy-Schwarz Inequality). For any f,g € R(I),

(F ol < [ fll=llgll2
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Proof. Let’s first assume that hy, ho € R(I) have |||z = ||h2||2 = 1. We observe that, for any = € I,
0 < (|ha ()] = [ha(@)))? = ([ha (@) + [ha(2)* = 2|k ()] h2(2)]) -

Therefore ) )
[ha(z)]® | |ho(z)|
+
2 2
for all x € I. By virtue of Proposition [6.2I] the preceding inequality shows that

/Ihl(x)hg(x) dx
[ Im@liha(e)] da

1 2 1 2
< §/I|h1(m)| dw+§‘/1|h2(a:)| dx

1 1
< Slml+ S lnal3 = 1.

7 (@)]lhe(2)] <

[(h1, ha)| =

IN

Thus |(h1, he)| < 1 whenever hq, hy € R(I) have unit L?-norm. Now, given any f, g € R(I) with non-zero L? norms,
we observe that hy = f/||f|l2 and ho = g/||g|l2 have ||h1||2 = ||h2||2 = 1 and so by the properties of the L? inner
product outlined above

(£ = [ fll=llgll2

S 9>‘ -
<||f27||g”2 £ 12llgll2l ¢, h2)l < 11 ll2llgll2

as desired.

Finally, let us assume that ||f|l2 = 0 or ||g|]]2 = 0. In this final case, our job is to show that (f,g) = 0 because
the right-hand side of the Cauchy-Schwarz inequality is zero. Without loss of generality we assume that ||g|2 = 0
and observe that, for all ¢t € R,

If +tgll3

(f+tg, f+tg) = (f. f)+(f.tg) + (tg, [) + (tg,tg)
IF113 + (£ tg) + (F tg) + £2[|gll5

I£1I5 + 2Re((f, tg)) + 0

I£115 + 2t Re((f, 9))

where we have used the fact that ¢ is real and z + Z = 2Re z for any complex number z (this is something you
should check). In view of the equation above, we have

0 < |If]12 + 2t Re((f, g))

for all t € R. I claim that this inequality implies that Re((f,g)) = 0. If Re({f,g)) # 0, then setting ¢t =
—(IIfII3 + 1)/ Re({f, g)) in the above inequality yields

/113 +1 ) 2 2 2
0< f2+2(— Re((f,g)) = [IF12 = 21 f12 =2 = —(|IfII? + 2
I1£112 Re((f.9)) ((f:9)) = IIfll2 = 2[1 7112 £z +2)
which is impossible because || f||3 +2 > 2 > 0. From this we conclude that Re((f, g)) = 0. An analogous argument
(done by expanding ||f + itg||3) shows that Im((f,g)) = 0. All together, we conclude that (f, g) = 0. O

There are many generalizations of the Cauchy-Schwarz inequality that turn out to be useful for Fourier analysis.
The following one, which we give without proof, is called Holder’s inequality [?] . The theorem essentially says that
the integral of a product of functions f and ¢ is bounded above in absolute value by the L? norm of f and the L9
norm of g where 1 < p,q < oo are such that

-+-=1

p q
Such a pair p and ¢ are said to be conjugate exponents and here we assume the convention that 1/00 = 0. So, for
example p = 2 and g = 2 are conjugate exponents. Also p =1 and ¢ = oo are conjugate exponents.

46



Really Real Analysis Supplementary Course Notes Evan Randles

Theorem 7.14 (Holder’s inequality). Let 1 < p,q < 0o be conjugate exponents. Then, for any f,g € R(I), the
product fg is integrable and

’/ f@)g(@) dz| < | Flllllls

Exercise 7.4: T

hough we’ve already proven the triangle inequality for the LP norm (also called the Minkowski inequality),
please show that the triangle inequality

1+ gllp < [1£llo + llgll

is a consequence of Holder’s inequality (and thus the latter is more “fundamental”). Hint: First observe that
[f(x) + g(@)[P < |f(x) + g(@)[P~(|f(z)| + |g(z)]) for all z. Then apply Hélder’s inequality to the terms on
the right-hand side.

As an application of Holder’s inequality, we have the following theorem which gives a relationship to convergence
between LP norms.

Theorem 7.15. Let I = [a,b] be a bounded interval and let {f,} be a sequence in R(I). Also, let f € R(I). Given
any 1 <r <s<oo, if

lim ||f, — flls=0 then  lim ||f, — f|l» =0.

n— oo n— oo

If you take a course in measure theory, you will learn that this result depends critically on the fact that I = [a, b]
is a bounded interval . Before giving the proof (taking Holder’s inequality for granted), we note that it implies the
following statement (as a special case).

I Tim [fo— fleo=0 then lim ||fn— f|r = lim /|fn(x)—f(:c)|dx:O.

This statement should be familiar as it recaptures Theorem [7.8] in view of the correspondence between uniform
convergence and convergence in the L* norm. Now let’s prove the theorem.

Proof. Fixing 1 <r < s, set p = s/r and observe that p > 1. In the case that r = s = 0o, the assertion is obvious.
We therefore assume that r < co and, in view of Hélder’s inequality, we obtain

[ = fII7 = /I|fn($) — ()" dz = /1 |fu(@) = f(2)]" - Lda < [|(fu — £) 1Ll (7:3)

where ¢ is the conjugate exponent to p and 1 is the constant function. If p = oo, necessarily s = oo, ¢ = 1 and we
have

[ = )7 llp = 590 | ) = S = 1 = Flle (7.4)
x
In this case, combining the two preceding inequalities guarantee that

1fr = FlI7 < W fn = FISN = 10 = FIIS16 — al

or, equivalently,

[ fa = fllr < (0—a)""[| fo — flloo-

([ 15t~ sy as )
([0 = s a v

(I fn = FUDYP = | fo — FIZP = |1 £ — £

If p < o0, we note that

(=)l
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where we have used the fact that pr = s and s/p = r. Combining this with (7.3) yields
1 = FIIm < W = FUEIRG = [ = FIEIL g

and therefore
fn = Flle < [fn = FUNTNL"
Finally, noting that

1/q 1/
14 =((b—-a)/? g<oo
Il = {if e ek

(as long as we interpret 1/0o0 = 0, we have

1o = £l < 1 = Fllsb = )7 = 0= )iy = £l (7.5)
where we have used the fact that 1 = % + qu = 1 4+ L. Combining both cases (7.3) and (7.5]) (and using the

rq
conventions that 1/0 = co and 1/00 = 0, we obtain

1fn = Fllr < b= a) =] = £14

whenever 1 < r < s. Finally, if the sequence {f,} has lim,,, || fr. — f||s = 0, the preceding inequality guarantees
that lim, e || fr — fll» = 0. O

Example 7.4: T

o illustrate the preceding theorem, let’s construct a sequence of functions which converge to the zero function
with respect to the L*® norm for “small” s but diverge in the L® norm for “large” s. To this end, set I = [—1, 1]
and fix 0 < a < 0o. For each n € N, define

falz) =nt%e ™2l for —1<z<1.

We are assuming the convention that n'/® = n® = 1 when a = co. Figure illustrates fo and f1o in the
case that a = 1.

10

-1.0 -0.5 0.0 0.5 1.0

Figure 7.4: The graphs of fy and f19 when a = 1.

A study of this particular sequence of functions provides a nice way to understand which factors contribute
to the L® norm of a function. For this sequence f,, for a value of a < oo, we see that the peaks at f,(x)
(which happen at = 0) grow unboundedly while the graphs become more and more narrow as n — oo.
In terms of area under the graph, which is the essential contributor to the L® norms, this can be seen as a
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competition between growing height and shrinking width. Let’s nail things down precisely.
As suggested by the figure, it is easily verified that, for each n, f, is continuous on the interval I, i.e.,

{fn} C C(I), and therefore {f,} is a sequence of Riemann integrable functions. Let’s compute the L°(I)
norms of this sequence: For s = oo, we have

1 £alls = I fnlloo = sup|fu(@)| = n*/®.
xel

for each n € N. For 1 < s < oo, we have

1/s
e = ( [15utolt o)
1 1/s
— (/ ns/ae—snhn\ dl‘)
-1
1 1/s
_ nl/a <2/ e SnT d(E)
0

— 1/s
et ()

—sn =0

1/s
_ nl/a <2> (1 _ efsn)l/s

sn

1/s 1/s
_ p(/a=1/s) (2) <1 L >
S eén

for each n € N. We therefore have the following behavior: if s < a, then 1/a —1/s < 0 (where we can’t have
s =00) and so

lim ||fn —Olls = Lm [|[fulls = lim n!/97Y3(2/5)Y/5(1 —1/e™)Y/* =0 (2/s)/* -1 =0.
n—roo n—r oo n—roo

Consequently, if s < a, {f,} converges to the zero function with respect to the L*(I) norm. If s > a, then,

for s = oo,

lim | f, — 0], = lim n*/* =00
n— oo n—oo

and, for s < oo 1/a—1/s >0,

: . — 9 (1/a—1/s) 1/s1 _ snyl/s _ & a<s
T ([ — 0]l = lim n (2/5)/*(1 = 1/e™) { S/
In other words, the sequence {f,,} converges to 0 for all s < a (all small s) and does not converge to 0 for
all s > a (all large s). In particular, upon fixing s < a, if < s, then {f,} converges to zero in both L* and
L™ norms. If r > s, then it is possible to {f,} to not converge to zero in the L" norm (namely, when r > a)
while still converging to zero in the L® norm. As it must be, this is consistent with the preceding theorem.
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