
Math 338 Homework 7 Due: April 20th

Math 338: Homework 7

Please complete the exercises below and write up your solutions consistent with the directions in the syllabus. Your
solutions are due on Saturday, April 20th in the appropriate box outside my office door. If you get stuck on any
part of the homework, please come and see me. More importantly, have fun!

1 Single-variable differentiation

Exercise 1. Below is a list of functions mapping real numbers to real numbers (though sometimes the domain will
be a proper subset of real numbers). For each function:

a. Determine the function’s natural domain.

b. Identify the difference quotient and its domain. Note: Rudin uses ϕ and I use ∆f (t;x). Whichever one you
decide to use is fine with me.

c. Using the definition in terms of the difference quotient, determine where (within its domain) the function is
differentiable, in this case, determine the value of the derivative.

d. Using the definition in terms of the difference quotient, determine where the function is not differentiable within
its domain.

Of course, your arguments should be rigorous. You can use anything in Chapters 1-4 of Rudin, but please don’t
use anything beyond the very first definition in Chapter 5 of Rudin.

1. Given m, b ∈ R, consider the “affine” function T (x) = mx+ b for x ∈ R.

2. For C ̸= 0 and α ∈ Z, p(x) = Cxα.

3. x 7→
√
x.

4. x 7→ |x|.

Exercise 2. In class I stated the following characterization of differentiability:

Theorem 1. Let I be an interval in R, f : I → R, and x ∈ I. Then f is differentiable at x if and only if there is
a linear function L : R → R (which is necessarily of the form L(h) = Dh where D = (m) is a 1× 1 matrix with its
single entry m ∈ R) for which

f(x+ h)− f(x)− L(h) = E(h) |h| (1)

where E is a real-valued function having the property that

lim
h→0

E(h) = 0. (2)

In this case, L(h) = Dh where D = (f ′(x)).

Prove the theorem. Hint: If you first assume that f is differentiable at x (using the definition at the beginning
of Chapter 5 of Rudin), then define L(h) = (f ′(x))h = f ′(x)h and

E(h) = f(x+ h)− f(x)− L(h)

|h|

for h such that x+h ∈ I. Your job is then to show that E satisfies (1) and (2). Conversely, assume that you have a
linear map L(h) = (m)h and E satisfying (1) and (2). Then, you must show that f is differentiable and m = f ′(x).
In the course of your argument, you might find the need the following lemma:
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Lemma 2. Let g be a real valued function defined on an interval containing 0. Then

lim
h→0

g(h) = 0 if and only if lim
h→0

|g(h)| = 0.

If you use the lemma, you must also prove it.

Exercise 3. The chain rule for single-variable function is the following.

Theorem 3. Given intervals I and J , let f : I → R be such that f(I) ⊆ J and let g : J → R. We define the
composition g ◦ f : I → R by

g ◦ f(x) = g(f(x))

for x ∈ I. If f is differentiable at x and g is differentiable at y = f(x), then g ◦ f is differentiable at x and

(g ◦ f)′(x) = g′(f(x))f ′(x).

1. Use Theorem 1 (directly) to prove the chain rule. Note/Hint: Your proof should be easier than (and distinct
from) Rudin’s. If it isn’t, something is going wrong and you should come and chat with me. To get started,
write out (1) and (2) for f at x and g at y = f(x) (making sure to label the E ′s differently). Then put them
together.

2. Use the chain rule (and the definition of the derivative) to differentiate the following functions (including
saying where they are differentiable and finding their derivative everywhere it is possible).

(a)

h(x) =

{
x2 cos(1/x) x ̸= 0

0 x = 0.

(b)

j(x) = ee
ee

ex

Hint: Though we have not proved it, you may assume that the exponential and cosine functions have the
derivative you know them to have.

2 Multivariate Calculus

In what follows, I will discuss the continuity and differentiability of functions mapping from Rn to Rm. To make
things as clear as possible, points/vectors in Rn (or Rm) will be expressed henceforth as column vectors and, when
not written out in components/coordinates, I will write them in boldface. For instance,

x =


x1

x2

...
xn

 ∈ Rn

and, further, the (Euclidean) norm of this vector is

∥x∥ =
√
x2
1 + x2

2 + · · ·+ x2
n.

We should remark that, in Rn, the Euclidean metric d = d2 = dRn is given by d(x,y) = ∥x− y∥ for x,y ∈ Rn. On
Friday, we investigated differentiability for functions mapping from Rn to Rm. Recall that, every linear function
L : Rn → Rm can be written (uniquely) in the form

L(x) = Dx =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1

x2

...
xn

 for x =


x1

x2

...
vn

 ∈ Rn
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where D is the m× n matrix having entries aij as indicated above. Here is the definition of differentiability:

Definition 4. Given an open set O ⊆ Rn, let f : O → Rm; here n and m are positive integers. Given a point
x0 ∈ O, we say that f is differentiable at x0 if there is a linear transformation L : Rn → Rm for which

f(x0 + h)− f(x0)− L(h) = E(h)∥h∥ (3)

where E (which depends on x0 and f) is an Rm-valued function having the property that

lim
h→0

E(h) = 0. (4)

In this case, the derivative of f at x0 (or Jacobian derivative or Total Derivative) is the m × n matrix
D = Df(x0) for which L(h) := Dh for h ∈ Rn.

Before moving on to more exercises, let’s make two remarks.

Remark 1. If we translate what the limit means in terms of Euclidean metrics on Rn and Rm, the limit (4) is
equivalently the statement: For every ϵ > 0, there is a δ > 0 for which

∥E(h)∥ < ϵ whenever ∥h∥ < δ;

here, you have to a little careful because the first appearance of ∥ · ∥ means the norm on Rm and the second is
the norm on Rn. If it’s helpful to you, we established an equivalence between the 1, 2, and ∞ metrics/norms on
Homework 2 that you can freely use.

Remark 2. In the definition above, I use the definite article in the phrase “.. .the m×n matrix...” As we discussed
in Homework 1, when we do this, we should make sure that such a matrix is indeed unique. This is the subject of
Exercise 5 in the present homework. Outside of that exercise, you can take it for granted.

Exercise 4. Let’s verify differentiability for some functions using the definition above. In what follows, I give three
functions. For each function, I will identify a point in the functions domain and a candidate for its derivative at
that point. Please use the definition to show that each function is differentiable at the indicated point.

1. f : R3 → R2 defined by

f(x) =

(
xyz
x+ z

)
for x =

x
y
z

 ∈ R3.

Here

x0 =

2
0
1

 and D =

(
0 2 0
1 0 1

)
.

2. g : R → R2 defined by

g(t) =

(
cos(t)
sin(t)

)
for t ∈ R. The point at which I’d like you to investigate is an arbitrary point t0 ∈ R and, for this point, the
candidate for the derivative is

D =

(
− sin(t0)
cos(t0)

)
.

Here, you may freely use any trigonometric identities and the following two facts: |cos(u)− 1| ≤ u2 and
|sin(u)− u| ≤ u3 whenever |u| ≤ 1. We will prove these at some point.

3. Let h : R2 → R be defined by

h

(
x
y

)
= xy for x =

(
x
y

)
∈ R2.

Here, for some x0, y0 ∈ R,

x0 =

(
x0

y0

)
and D =

(
y0 x0

)
.
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Exercise 5. In this exercise, we shall prove that our derivatives (and affine approximations) to differentiable
functions are unique. An affine function T from Rn to Rm is, by definition, a function of the form

T (x) = L(x) + b

where L(x) = Dx is a linear function (characterized by the m× n matrix D) and b ∈ Rm. Using this language of
affine functions, we can state differentiability of a function f : Rn → Rm as follows: f is differentiable at a point
x0 if there is an affine function T : Rn → Rm for which

f(x0 + h) = T (h) + E(h)∥h∥ (5)

for h ∈ Rn where limh→0 E(h) = 0. Prove that, if f is differentiable at x0, then there is one and only one affine
function T for which (5) holds. Hint: Differentiability should give you one affine function. After that, your job is
to assume that, if you have any two such functions, they must be equal. The following lemma might be helpful. If
you use it, give a proof.

Lemma 5. Let M : Rn → Rm be linear. Then M is not the zero transformation if and only if there is some vector
v ∈ Rn with unit length (i.e., ∥v∥ = 1) for which M(v) ̸= 0.

Exercise 6. Let O be open in Rn and let f : O → R. Given a point x0 ∈ O and an index j ∈ {1, 2, . . . , n}, the
partial derivative of f with respect to the variable xj at x0 is defined by

∂jf(x0) =
∂f

∂xj
(x0) = lim

h→0

f(x0 + hej)− f(x0)

h

provided this limit exists; here, ej ∈ Rn is the unit vector with 1 in the jth entry and zeros everywhere else, i.e.,

e1 =


1
0
0
· · ·
0

 , e2 =


0
1
0
...
0

 , · · · , en =


0
0
0
...
1

 .

1. Directly using the definition, compute all (first-order) partial derivatives of the functions (here, I’m using the
convention that x1 = x, x2 = y and x3 = z):x

y
z

 7→ xyz and

x
y
z

 7→ x+ z.

2. Let O ⊆ Rn and f : O → R. Given a point x0 ∈ O and an index j ∈ {1, 2, . . . , n}, define

gj(t) = f(x0 + tej).

Show that gj is differentiable at 0 if and only if the partial derivative of f with respect to xj at x0 exists and,
in this case,

g′j(0) =
∂f

∂xj
(x0).

3. It you look closely you’ll see that gj above is the composition of functions, the inner such function being
vector-valued and differentiable everywhere. Use the chain rule to prove the following theorem:

Theorem 6. Let f : O → R be as above. If f is differentiable at x0, then all of its (first-order) partial
derivatives ∂f/∂x1, ∂f/∂x2, ... ∂f/∂xn exists at x0 and, moreover,

Df(x0) =
(

∂f
∂x1

(x0)
∂f
∂x1

(x0) · · · ∂f
∂xn

(x0)
)

We’ll have a more general version of this in class on Monday.

4. Go back and confirm that the above formula (which determines the derivative matrix) is consistent with the
proposed derivative matrices in Exercise 4.
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