
Math 338 Leap Homework 3 Due: Feb 29th, 2024

Math 338: Homework 3 –Leap Homework

Please complete the following exercises below and write up your solutions consistent with the directions in the
syllabus. Your solutions are due on Thursday, February 29th at 10:00AM in the appropriate box outside my office
door. If you get stuck on any part of the homework, please come and see me. More importantly, have fun!

Exercise 1. Let (X, d) be a metric space and E ⊆ X. The boundary of E is defined to be the set

∂E = E ∩ Ec.

1. Prove that E is open if and only if E ∩ ∂E = ∅.

2. Prove that E is closed if and only if ∂E ⊆ E.

Exercise 2 (Going back through the proof of Theorem 2.38). Let {In} be a sequence of intervals in R of the form
In = [an, bn] for an ≤ bn. Suppose that {In} are nested in the sense that In ⊆ Im whenever n ≥ m. Prove that
inf{bn} exists and belongs to the intersection

∞⋂
n=1

In.

Exercise 3. Let (X, d) be a metric space and let E ⊆ X. We say that E is bounded if there is some x ∈ X
and r > 0 for which E ⊆ Nr(x). In the case that E is non-empty, we can also define the diameter of E to be the
extended real number

diam(E) = sup {d(x, y) | x, y ∈ E} .

1. In the case that X = R with its usual metric and a < b are real numbers, show that E = (a, b) is bounded
and compute diam(E).

2. We return to the general setting in which E is some non-empty set of a metric space (X, d). Prove that
diam(E) < ∞ whenever E is bounded.

3. Also, prove the converse: E is bounded whenever diam(E) < ∞.

4. Prove the following theorem:

Theorem A (Cantor’s Intersection Theorem). Let (X, d) be a metric space and let {Kn} be an infinite
collection of non-empty compact sets which are nested in the sense that Km ⊆ Kn whenever m ≥ n. If, for
each ϵ > 0, there are only finitely many Kn for which diam(Kn) ≥ ϵ, then⋂

n

Kn

contains exactly one point.

Hint: If the intersection contained two distinct points, could this be an issue for the diameter hypothesis?

Exercise 4. Let (X, d) be a metric space and E and F be sets. The sets E and F are said to be disconnected
if there are disjoint open sets OE and OF with E ⊆ OE and F ⊆ OF . Prove the following statement: If E and F
are disconnected, then E and F are separated. Note: It turns out that the converse is true as well. We’ll get to it
later.

Exercise 5. Please do Baby Rudin’s Exercise 19 of Chapter 2. An extra hint for (d): Suppose that X contains
two distinct points p ̸= q and define f(x) = d(x, p) for x ∈ X. If X were countable, would it be possible to f to
map onto the interval [f(p), f(q)] = [0, f(q)]?

Exercise 6. Please do Baby Rudin’s Exercise 30 of Chapter 2. Hint: To do this problem, it’s necessary to really
think about/digest the ideas behind the proof of Theorem 2.43. Personally, I don’t find Rudin’s proof extremely
clear. Abbott’s proof (Theorem 3.4.3 in Abbott) is much more clear; however, it should be noted that Abbott only
works in the real line and there are a couple of small typographical errors in his proof.
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Some extra exercises

The exercises below have to do with “metric subspaces”. I’m not going to collection solutions to these, but they
are good practice.

Definition B. Let (X, d) be a metric space and Y be a subset of X. We define dY by

dY (p, q) = d(p, q)

whenever p, y ∈ Y . This means that dY is the restriction of the metric d to the subset Y .

Exercise 7. As you show below, given a metric space (X, d) and Y ⊆ X, (Y, dY ) is itself a metric space. We shall
refer to (Y, dY ) (or simply Y by an abuse of notation) as a metric subspace (or simply subspace) of (X, d). In this
context, (X, d) is called the ambient space. To distinguish between neighborhoods, we shall write

NY,r(p) = {q ∈ Y | dY (p, q) < r}

to denote the neighborhood in Y of radius r > 0 centered at p ∈ Y ; Nr(p) will still refer to a neighborhood in the
ambient space.

1. Prove that dY is a metric on Y and hence (Y, dY ) is a metric space.

2. In what follows, we take X = R to be equipped with the usual metric, d(p, q) = |p − q|, and consider
various subsets/spaces Y which we take equipped with the subspace metric dY and subsets E ⊆ Y . For each,
determine if E is open in the metric spaces (Y, dY ) and (X, d). Prove your assertions.

(a) Y = N and, for any fixed n ∈ N, the “singleton” E = {n}.
(b) Y = Q and, for any fixed q ∈ Q, the singleton E = {q}.
(c) Y = (a, b] and E = (c, b] where a ≤ c < b.

(d) Y = (a, b] and E = (a, d] where a < d ≤ b.

We take the following definition from Rudin:

Definition C. Let (X, d) be a metric space and Y be a subset of X. A set E ⊆ Y is said to be open relative to Y
if, for every p ∈ E, there is a positive real number r > 0 for which q ∈ E whenever d(p, q) < r and q ∈ Y .

Exercise 8. Let (X, d) be a metric space and Y be a subset of X.

1. Show that a set E ⊆ Y is open relative to Y if and only if it is open in the metric space (Y, dY ).

In view of Theorem 2.30 and the previous item, it follows that E is an open set in (Y, dY ) if and only if E = Y ∩G
for some open set G in X. In other words, we have

Theorem D. Let (X, d) be a metric space, Y ⊆ X, and let (Y, dY ) be the associated metric subspace. Then, for a
set E ⊆ Y , the following are equivalent:

a. E is open relative to Y .

b. E is open in the metric space (Y, dY )..

c. E = Y ∩G where G is an open set in (X, d).

Now that you are armed with the theorem above, do the following to complete the exercise.

2. For each set E in the previous exercise that you found to be open in (Y, dY ), find an open set G ⊆ R for
which E = Y ∩G.

3. Let’s return to the general assumption that (X, d) is a metric space and Y ⊆ X. Regarding the theorem
above, is the same assertion true for closed sets? In other words, is it true that F ⊆ Y is closed in (Y, dY ) if
and only if F = Y ∩H where H is closed in (X, d)? Prove your assertion or find a counterexample.

4. Onto compact sets: Is it true that J ⊆ Y is compact in (Y, dY ) if and only if J = Y ∩K for some compact
set in K in (X, d)? Prove your assertion or find a counterexample.
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