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These are the supplementary course notes for Fourier Analysis (Math 398). The preliminary aim of these notes is
to fill in some necessary background in mathematical analysis that is assumed by our textbook. As we go forward
in the course, I plan to build these notes out and tailor them to suit our needs. For this reason, please check these
frequently as I will often make corrections and changes without explicit warning. Also, if you find or suspect an
error typo – no matter how trivial – please email me to let me know!

1 Sups, Infs and all that

In this short section we discuss the essential properties of real numbers that will we need in our study of (Fourier)
analysis. Though most of our studies will involve complex-valued things (numbers, functions, etc.), it is essential that
we understand some basic objects of mathematical analysis on the real line – these objects provide the foundation
upon which the notions of distance and convergence is built.

Definition 1.1 (Bounded Sets). Let A be a subset of real numbers.

1. We say that the set A is bounded above if there exists a real number M for which

x ≤M for all x ∈ A.

In this case, M is said to be an upper bound for the set A. We also say that A is bounded above by M .

2. We say that the set A is bounded below if there exists a real number N for which

N ≤ x for all x ∈ A.

In this case N is said to be a lower bound for the set A. We also say that A is bounded below by N .

3. We say that the set A is bounded if it is bounded above and below.

In light of the following definition, we observe that a bounded set A can be contained inside a “closed” interval,
i.e., if A is bounded then there are constants N and M for which A ⊆ [N,M ]. This is an important topological
notion that extends well beyond the real line. The following exercise expands on this.

Exercise 1

Given a real number a and a positive real number r, we define the (open) ball centered at a with radius r as
the set

Br(a) = {x ∈ R : |x− a| < r} = (a− r, a+ r).

Let A be a set of real numbers. Prove that the following are equivalent.

1. A is bounded.

2. There exists r > 0 for which A ⊆ Br(0).

3. There exists a ∈ R and r > 0 for which A ⊆ Br(a).

Hint: Prove the implication (1)→ (2)→ (3)→ (1).

Perhaps the most important notion for (bounded) sets of real numbers is captured by the following definition.

Definition 1.2 (Supremum). Let A be a set of real numbers which is bounded above. Suppose that there exists a
number S with the following two properties:

i. S is an upper bound of A.

ii. For any upper bound M of A, s ≤M .
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Then S is called the supremum (or least upper bound) of the set A and we write S = supA.

The careful reader should note that I’ve used the definite article (“the”) in the above definition. This language
seems to imply that, given a set A which is bounded above, that there can be at most one number called the
supremum (of A). Let’s justify this.

Lemma 1.3. Let A be a set of real numbers which is bounded above and suppose that S1 and S1 are numbers which
both satisfy Conditions (i) and (ii) of the preceding definition. Then S1 = S2.

Proof. In view of our hypothesis, S1 and S2 are both upper bounds for A. Thus, given that condition (ii) is satisfied
for S1, we have S1 ≤ S2 (because S2 is an upper bound for A). Similarly, given that (ii) is satisfied for S2, S2 ≤ S1.
Thus, S1 ≤ S2 and S2 ≤ S1 whence S1 = S2.

In light of the above result, to each A ⊆ R which is bounded above, there is at most one supremum for A. The
natural thing to ask is the following. Must such a set A have a supremum at all? Though we will not worry about
it in this course, the answer to this question is deeply rooted in the construction of the real numbers. We will
therefore take the following for granted.

Theorem 1.4 (The completeness axiom, Theorem 1.11 of [5]). Suppose A is a non-empty subset of R which is
bounded above. Then

S = supA

exists.

In the case that a non-empty set A is not bounded above, we assume the common convention and write

supA =∞.

Here (and being consistent with Theorem 1.4), supA is only understood to exists in an extended sense (as an
extended real number). Here we will always assume a clear distinction between real numbers and ∞. It is still
however instructive to have supA be able to take the “value” of ∞ when A is unbounded.

It will be useful for us to have a characterization of the supremum of a bounded set A. This condition, which we
will make use of often, is the subject of the following proposition.

Proposition 1.5. Let A be a non-empty subset of real numbers which is bounded above and let S be an upper bound
of A. Then S is the supremum of A if and only if the following condition is satisfied.

For each ε > 0, there is an element x ∈ A for which x > S − ε.

This condition is illustrated in Figure 1.

Proof. Suppose that S = supA and let ε > 0. We observe that S − ε < S. Since S is the supremum (the least
upper bound) of A, any number strictly less than S cannot be an upper bound of A and so S − ε cannot be an
upper bound of A. Since A is non-empty, we must therefore have some x ∈ A for which S − ε < x. This proves our
desired property.

Conversely, assume that S is an upper bound of A satisfying the property that, for all ε > 0 there is an
element x ∈ A for which x > S − ε. Let M be another upper bound of A. In the case that M < S, we set
ε = S −M > 0 and observe that, by the supposition, there is an x ∈ A for which S − ε < x. We note however that
S− ε = S− (S−M) = M and thus there is an x ∈ A for which x > M showing that M cannot be an upper bound
for A, a contradiction. Hence S ≤M and so S = supA.

To see the utility of the proposition above, let us apply the proposition in the case where A is a subinterval of the
real line. As you expect, the least upper bound of the interval should be its larger end point. Though these seems
obvious, the claim requires some checking which we do in the following example.
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Figure 1: An illustration of the characterizing condition in Proposition 1.5

Example 1

Let a < b be real numbers and let I be an interval of the form [a, b], (a, b], [a, b) or (a, b). Then

sup I = b.

To prove the statement above, let ε > 0 and observe that b− ε < b. Let

x = max

{
b− b− a

2
, b− ε

2

}
and observe that, by definition,

a = b− (b− a) ≤ b− b− a
2
≤ x < b

and
b− ε ≤ b− ε

2
≤ x < b.

Thus x is a member of the interval I and is such that b − ε < x. Thus, to each ε > 0 we have produced an
x ∈ I for which b− ε < x. By virtue of Proposition 1.5, we conclude that b = sup I.

Of course, we have notion parallel to the supremum for sets which are bounded below.

Definition 1.6. Let A be a set of real numbers which is bounded below. Suppose that there exists a number I with
the following two properties:

i. I is a lower bound of A.

ii. For any lower bound N of A, N ≤ I.

Then I is called the infimum (or greatest lower bound) of the set A and we write I = inf A.

As with the definition of supremum, a set which is bounded below has at most one infimum and the justification
of this parallels (almost exactly) the proof of Lemma 1.3. The question of existence is dealt with by the following
corollary to Theorem 1.4 and whose proof I’ll leave as an exercise.
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Corollary 1.7. Suppose A is a non-empty subset of R which is bounded below. Then

I = inf A

exists.

Exercise 2

Prove Corollary 1.7 by completing the following steps.

1. Given a non-empty subset A which is bounded below, define the set

(−A) = {x ∈ R : x = −a for some a ∈ A}.

Prove that −A is bounded above.

2. By making an appeal to Theorem 1.4, let S = sup(−A). Prove that −S = inf A and so the infimum of
A exists as the corollary asserts.

As we did for sets which were unbounded from above, if a non-empty set A is not bounded below, we will assume
the standard convention and write

inf A = −∞.
Analogous to Proposition 1.5, we have the following proposition for infima.

Proposition 1.8. Let A be a non-empty set of real numbers which is bounded below and let I be a lower bound for
A. Then I = inf A if and only if the following condition is satisfied. For each ε > 0, there exists x ∈ A for which
x < I + ε.

Exercise 3

Prove the proposition above. You may prove it directly (as I did for Proposition 1.5) or you may prove it using
the idea used the prove Corollary 1.7, i.e., by considering the set −A.

We shall now discuss how suprema and infima are used to gain information about real-valued functions. To this
end, let I be a non-empty set (often I will be a subset of the real line) and let f : I → R, i.e., f is a function
mapping the set I into the set R. We will say that f is bounded above if the set of real numbers

f(I) := {f(x) : x ∈ I}

is bounded above. Any upper bound for f(I) will also be called an upper bound of the function f . In this case, we
will write

sup
x∈I

f(x) = sup f(I),

called the supremum of f on the interval I. We say that f is bounded below if the set f(I) is bounded below. Any
lower bound for f(I) will also be called a lower bound of the function f . Here we write

inf
x∈I

f(x) = inf f(I)

which is called the infimum of f on the interval I. Finally, we say that f is bounded if f(I) is a bounded set.

Remark 1.9. In the special case that I is the interval [a, b], we will write

sup
a≤x≤b

f(x) = sup
x∈I

f(x) and inf
a≤x≤b

f(x) = inf
x∈I

f(x).

We will assume a similar notion when I = (a, b], [a, b) or (a, b).
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Exercise 4

Let f : I → R. Prove that f is bounded if an only if the absolute value of f , x 7→ |f(x)| is bounded above and
further, in the case that either of these equivalent conditions are satisfied, prove that

sup
x∈I
|f(x)| = max{Ms,Mi}

where

Ms =

∣∣∣∣sup
x∈I

f(x)

∣∣∣∣ and Mi =

∣∣∣∣ inf
x∈I

f(x)

∣∣∣∣ .
In light of the above definition, a function f on I is bounded if and only if supx∈I |f(x)| exits as a real number. In
this case, we write

‖f‖∞ = sup
x∈I
|f(x)|

which is called the sup-norm of f . We will denote by B(I) the set of bounded real-valued functions on the interval
I. In the above notation, we can write

B(I) = {f : I → R : ‖f‖∞ <∞} .

2 The Riemann-Darboux integral

In this short section, we cover the basic properties of the Riemann integral1 needed for our study of Fourier analysis
(at a level suited for the course textbook). As stated in lecture, it turns out that even the Riemann integral –the
integral you’ve known and studied since your first brush with calculus – is insufficient for a comprehensive theory
of Fourier analysis. To treat the comprehensive theory, in earnest, one needs the Lebesgue theory of integration.
Though we will try to explore the necessity of Lebesgue integration later (while illustrating the shortcomings of the
Riemann integral), we first need to lay the groundwork for the Riemann integral. This is the subject to which we
now turn.
Consider an interval I = [a, b] of R. A partition P of I is a finite subset P = {x0, x1, x2, . . . , xN} of I such that

a = x0 < x1 < x2 < · · · < xN−1 < xN = b.

Though a partition P is simply a finite subset of I which is enumerated and includes the endpoints a and b, you
should picture P as dividing up the interval I into the subintervals [xn−1, xn] for n = 1, 2, . . . , N . Given a bounded
function f : I → R and a partition P of I, define

mn = inf
xn−1≤x≤xn

f(x) and Mn = sup
xn−1≤x≤xn

f(x)

for each n = 1, 2, . . . , N . With these, we define the upper and lower (Darboux) sums of f with respect to the
partition P respectively by

U(f, P ) =

N∑
n=1

Mn(xn − xn−1) and L(f, P ) =

N∑
n=1

mn(xn − xn−1).

Of course, both U(f, P ) and L(f, P ) exist because f is a bounded function by virtue of the preceding exercise. The
numbers U(f, P ) and L(f, P ) are respectively overestimates and underestimates for the area under the graph of f
on the interval I, when this area is a sensible notion. These estimates are produced by forming rectangles above

1Technically, the integral we study is called the Riemann-Darboux integral, a name which also gives credit to the French mathemati-
cian Jean Gaston Darboux.
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and below the graph of f where the width of the rectangles are determined by the subdivisions of I produced by
the partition P . By properties of the supremum and infimum, observe that

L(f, P ) ≤ U(f, P ) (1)

and this holds for every partition P and every bounded function f : I → R.

Given partitions P and Q of I, Q is said to be a refinement of P if P ⊆ Q. As the partition P divides the
interval I by subintervals, you should think of the refinement Q as producing finer subdivisions – hence the name
“refinement”. With the aim of comparing upper and lower sums, we need the following lemma. The lemma says
essentially that finer divisions of I yields “better” estimates for the area under the graph of f .

Lemma 2.1. Let P and Q be partitions of I and suppose that Q is a refinement of P . For any f ∈ B(I),

L(f, P ) ≤ L(f,Q) and U(f,Q) ≤ U(f, P ).

For brevity, I have omitted the proof of the preceding lemma. The idea for the proof is to start with a partition
P and first consider a refinement Q1 which contains exactly one more point than P . In this case, it is easy to
establish the estimates of the lemma for Q = Q1. Once this is shown, it’s just a matter of inductively adding points
to Q1 and “chaining” the resulting estimates together until the desired estimate is reached. The reader is referred
to Theorem 6.4 of [5] for the proof.

Thinking back to our picture of the area under the graph, which we will soon interpret as the integral, we expect
the lower sums to be underestimates for this area and the upper sums to be overestimates. Equivalently, we can
start to think of the integral as a number which sits below all of the upper sums and above all of the lower sums.
To think about how to approximate this number, we need to invoke the notion of supremum and infimum. To this
end, we’ll need another lemma which will help us to make sure the infimum and supremum exist.

Lemma 2.2. Let f ∈ B(I) and let P and Q be partitions of I. Then(
inf
x∈I

f(x)

)
(b− a) ≤ L(f, P ) ≤ U(f,Q) ≤

(
sup
x∈I

f(x)

)
(b− a)

Proof. We first note that the trivial partition T = {a, b} = {x0, x1} has

L(f, T ) =

1∑
n=1

mn(xn − xn−1) = m1(x1 − x0) =

(
inf

x0≤x≤x1

f(x)

)
(x1 − x0) =

(
inf
x∈I

f(x)

)
(b− a)

and

U(f, T ) =

1∑
n=1

mn(xn − xn−1) = m1(x1 − x0) =

(
sup

x0≤x≤x1

f(x)

)
(x1 − x0) =

(
sup
x∈I

f(x)

)
(b− a).

Thus, for any partitions P and Q, Lemma 2.1 guarantees that(
inf
x∈I

f(x)

)
(b− a) = L(f, T ) ≤ L(f, P )

and

U(f,Q) ≤
(

sup
x∈I

f(x)

)
(b− a)

because P and Q are necessarily refinements of T . It remains to establish the inner inequality.
To this end, observe that the union R = P ∪ Q is also a partition of I for it is necessarily a finite subset of I

which contains a and b. Further, R is a refinement of both partitions P and Q. Thus, by another appeal to Lemma
2.1 and in view of (1), we have

L(f, P ) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q)

which guarantees that L(f, P ) ≤ U(f,Q) as was asserted.
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Let’s isolate some conclusions of the preceding lemma. First, it says that, for any partition P of I,

L(f, P ) ≤
(

sup
x∈I

f(x)

)
(b− a).

Hence, the set
{L(f, P ) : P is a partition of I}

is bounded above and, in view of Theorem 1.4, its supremum exists. Thus, we define∫
I

f(x) dx = L(f) = sup
P
L(f, P )

where this supremum is taken over all partitions P of I. This is called the lower Darboux sum of f on I. Analogously,
Lemma 2.2 guarantees that the infimum of all upper sums exists and so we define the upper Darboux sum of f on
I as ∫

I

f(x) dx = U(f) = inf
P
U(f, P )

As we’ve established quite a few inequalities involving upper and lower sums pertaining to the same and different
partitions of I, it’s helpful to have some sense of how U(f) and L(f) compare for a given bounded function f : I → R.
To this end, lets fix a partition Q of I and note that, in view of Lemma 2.2,

L(f, P ) ≤ U(f,Q)

for all partitions P of I. Thus, U(f,Q) is an upper bound of the set of real numbers {L(f, P ) : P is a parition of I}.
By the defining property of the supremum, we have

L(f) = sup
P
L(f, P ) ≤ U(f,Q).

Noting however that Q was arbitrary, we see that L(f) is a lower bound for U(f,Q) for all partitions Q of I. By
the defining property of the infimum, we have

L(f) ≤ inf
Q
U(f,Q) = U(f).

Let’s summarize this information.

Proposition 2.3. Let f : I → R be a bounded function, i.e., f ∈ B(I). Then the upper and lower Darboux sums,∫
I

f(x) dx = U(f) = inf
P
U(f, P )

and ∫
I

f(x) dx = L(f) = sup
P
L(f, P ),

exist. Furthermore, ∫
I

f(x) dx ≤
∫
I

f(x) dx.

Exercise 5

This exercise will give you an idea of what’s going on in the above construction. In what follows, we will focus
on the interval I = [0, 1]. For each N = 1, 2, . . . ,, we shall consider the (regular) partition

PN = {x0 < x1 < · · · < xN = 1} =
{
xn =

n

N
: n = 0, 1, 2, . . . , N

}
of the interval I.

7
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1. For the function f(x) = 1 for 0 ≤ x ≤ 1, compute U(f, PN ) and L(f, PN ).

(a) Is it true that L(f, PN ) ≤ U(f, PN )?

(b) Show that limN→∞(U(f, PN )− L(f, PN )) = 0.

2. For the function f(x) = x for 0 ≤ x ≤ 1, compute U(f, PN ) and L(f, PN ).

(a) Is it true that L(f, PN ) ≤ U(f, PN )?

(b) Show that limN→∞(U(f, PN )− L(f, PN )) = 0.

3. For the Dirichlet function f defined by

f(x) =

{
1 x ∈ Q
0 x /∈ Q

for 0 ≤ x ≤ 1, compute U(f, PN ) and L(f, PN ).

(a) Is it true that L(f, PN ) ≤ U(f, PN )?

(b) Does limN→∞(U(f, PN )− L(f, PN )) = 0?

4. For the first two examples above, you’ve seen a sequence (an enumerated collection) of partitions {Pn}
for which

lim
N→∞

(U(f, PN )− L(f, PN )) = 0.

In view of Proposition 2.3 and the above fact, does it suffice to conclude that∫
I

f(x) dx =

∫
I

f(x) dx?

Prove your assertion (or find a counter example).

5. Is it true that if there is a sequence of partitions {PN} for which

lim
N→∞

(U(f, PN )− L(f, PN )) 6= 0.,

then ∫
I

f(x) dx 6=
∫
I

f(x) dx?

Prove your assertion (or find a counter example).

Finding motivation in the preceding example and returning again to our intuition of areas, we would hope that a
sensible notion of area under the graph could be gotten by approximating the area from above by upper sums and
from below by lower sums. Thus, if such an area does exist, we would hope that the supremum of all the lower sums
coincides with the supremum of all the lower sums and so the inequality of the preceding proposition is actually an
equality. This is exactly the right idea and we give this situation a name.

Definition 2.4. Let f ∈ B(I) and let

U(f) =

∫
I

f(x) dx and L(f) =

∫
I

f(x) dx

be its upper and lower Darboux sums. We say that f is Riemann integrable on I and write f ∈ R(I) if U(f) = L(f).
In this case, the Riemann integral of f is defined to be the number∫

I

f(x) dx = U(f) = L(f).

8
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By virtue of Proposition 1.5 and its analogue for infima, we have the following characterization for integrability.

Proposition 2.5. Let f ∈ B(I). Then f ∈ R(I) (that is, Riemann integrable) if and only if the following conditions
is satisfied:

For each ε > 0, there is a partition Pε of I for which U(f, Pε)− L(f, Pε) < ε.

Proof. We first suppose that f is Riemann integrable. By Proposition 1.5, let Q1 be a partition for which L(f)−
L(f,Q1) < ε/2. Similarly, by the characterization for infimum, let Q2 be a partition of I for which U(f,Q2)−U(f) <
ε/2. With these partitions in mind, we set Pepsilon = Q1 ∪Q2 and observe that Pε is a refinement of both Q1 and
Q2. By Lemma 2.1, we have L(f, Pε) ≥ L(f,Q1) and U(f, Pε) ≤ U(f,Q2) and thus

U(f, Pε)− L(f, Pε) ≤ U(f,Q2)− L(f,Q1) < U(f) + ε− (L(f)− ε/2) = U(f)− L(f) + ε.

Of course, because f ∈ R(I), U(f) = L(f) and so the above inequality shows that U(f, Pε)− L(f, Pε) < ε.
Conversely, let’s assume that the desired property holds. Let ε > 0, and using the property select a partition P

for which U(f, P )−L(f, P ) < ε. As U(f) and L(f) are constructed from infima and suprema respectively, we have

U(f)− L(f) ≤ U(f, P )− L(f, P ) < ε.

In view of Proposition 2.3, we also have U(f)− L(f) ≥ 0. Hence, to each ε > 0, we have

0 ≤ U(f)− L(f) < ε.

We may therefor conclude that U(f) = L(f) for the only number “lodged” between zero and every positive number
is the number zero itself.

Let’s now introduce the notions of integration and integrability for complex-valued functions.

Definition 2.6. Let I = [a, b] and consider a complex-valued function f : I → C. In this case f is necessarily of
the form

f(x) = u(x) + iv(x)

for x ∈ I where u, v : I → R. We saw that f is Riemann integrable on I if u and v are Riemann integrable on I
and we define the integral of f on I to be the complex number∫

I

f(x) dx =

(∫
I

u(x) dx

)
+ i

(∫
I

v(x) dx

)
.

With a slight abuse of notation, we write f ∈ R(I) and so R(I) is then taken to be the set of Riemann-integrable
complex-valued functions on I. We will also use the notations∫

I

f =

∫ b

a

f =

∫ b

a

f(x) dx

to denote the integral of f .

Let’s make a few notes concerning the above definition. First, the functions u and v are called the real and imaginary
parts of f respectively. We’ll often write f = Re(f) + i Im(f) where Re(f) = u and Im(f) = v. In the (special)
case in which f is a real-valued function from I to R, we can write f = Re(f) + i Im(f) = Re(f) + i0 = f + i0 and
so here ∫

I

f =

∫
Re(f) + i

∫
I

0 =

∫
I

Re(f)(x) dx+ i0 =

∫
I

Re(f)(x) dx

because the integral of the zero function is just 0. In this way we observe that the definition of the Riemann integral
for complex-valued functions is an extension of the Riemann integral for real-valued functions (as it recaptures the
real-valued version of the Riemann integral).

Now that we know what integrability means, it’s high time to give some properties of the integral.

9
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Proposition 2.7. Let I = [a, b] ⊆ R.

1. For any complex numbers α and β and any f, g ∈ R(I) , the linear combination αf + βg ∈ R(I) and∫
I

(αf + βg)) = α

∫
I

f + β

∫
I

g.

This says that R(I) is a vector space over C and the integral (viewed as a function f →
∫
I
f) is linear map

from R(I) to C.

2. If f, g ∈ R(I), then the product fg ∈ R(I).

3. Constant functions are Riemann-integrable and for any constant function x 7→ α where α ∈ C,∫
I

α = α(b− a).

4. The set of continuous functions C(I) are Riemann integrable. That is, C(I) ⊆ R(I).

Proof. As the first statement was partially covered in Homework 1 (see also the exercise below), I’ll omit the proof
and refer the reader to [5] for details. See [5] for the proof of Item 2, as well. I will prove Items 3 and 4 here.

3. Let’s first consider the constant function 1. This function is obviously bounded and, as it is real-valued, let’s
show that it is integrable by computing its upper and lower sums. For any partition P = {a = x0 < x1 <
x2 < · · · < xN = b}, we have

Mn = sup
xn−1≤x≤xn

1 = 1 = inf
xn−1≤x≤xn

1 = mn

for each n = 1, 2, . . . , n and therefore

U(1, P ) =

N∑
n=1

Mk(xn − xn−1) =

N∑
n=1

1(xn − xn−1) = b− a

and

L(1, P ) =

N∑
n=1

mn(xn − xn−1) =

N∑
n=1

1(xn − xn−1) = b− a.

Since the above is true for any partition P , we have

U(1) = inf
P
U(1, P ) = inf

P
(b− a) = b− a = sup

P
(b− a) = sup

P
L(1, P ) = L(f)

from which we conclude that the constant function 1 is Riemann-integrable and∫
I

1 = b− a.

Now, given any complex number α, α = α · 1 and so, by Item 1 and the fact that 1 ∈ R(I), α ∈ R(I) and∫
I

α =

∫
I

α · 1 = α

∫
I

1 = α(b− a)

as desired.

10
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4. We will begin by proving the result for continuous real-valued functions. To this end, let g : I → R be
continuous on the interval I = [a, b]. Our proof makes use of two essential results from analysis, both of
which rely on the interval I being closed and bounded (compact). First, in view of Theorem 4.15 of [5], g
is necessarily a bounded function. Second, by virtue of Theorem 4.19 of [5], g is uniformly continuous on I.
That is, to each positive number ε > 0, there is δ > 0 for which

|g(x)− g(y)| < ε whenever |x− y| < δ.

With these facts in mind, let’s show that g is Riemann-integrable by meeting the equivalent condition of
Proposition 2.5. To this end, we note that g is bounded and we fix ε > 0. In view of the uniform continuity
of g, let δ > 0 be such that

|g(x)− g(y)| < ε

2(b− a)
whenever |x− y| < δ.

With this δ, let’s consider the “regular” partition

P = {a = x0 < x1 < · · · < xN = b} =
{
a+

n

N
(b− a) : n = 0, 1, . . . , N

}
where N ∈ N is chosen so that N > (b−a)/δ and so (b−a)/N < δ. By this choice, let’s make some observations.
First, for any n = 1, 2, . . . , N , if

x, y ∈ [xn−1, xn] =

[
a+

n− 1

N
(b− a), a+

n

N
(b− a)

]
, then |x− y| < (b− a)

N
< δ.

and so |g(x) − g(y)| < ε/2(b − a) in view of the uniform continuity of g. So, for each n = 1, 2, . . . , N and
y ∈ [xn−1, xn],

g(y)− ε

2(b− a)
< g(x) <

ε

2(b− a)
+ g(y)

and so ε/2(b− a) + g(y) is an upper bound for {g(x) : x ∈ [xn−1, xn]}. Consequently,

Mn = sup
xn−1≤x≤xn

g(x) ≤ ε

2(b− a)
+ g(y)

in view of the definition of the supremum. Because y ∈ [xn−1, xn] was arbitrary, the above inequality shows
that Mn − ε/2(b− a) is a lower bound for the set {g(y) : y ∈ [xn−1, xn]} and so

Mn −
ε

b− a
≤ inf
xn−1≤y≤xn

g(y) = mn.

In this way we have established that

Mn −mn <
ε

2(b− a)

for each n = 1, 2, . . . , N . Correspondingly,

U(g, P )− L(g, P ) =

N∑
n=1

Mk(xn − xn−1)−
N∑
n=1

mn(xn − xn−1)

=

N∑
n=1

(Mn −mn)(xn − xn−1)

<

N∑
n=1

ε

(2(b− a)
(xn − xn−1) =

ε

2(b− a)

N∑
n=1

(xn − xn−1) =
ε

2
< ε.

In view of Proposition 2.5, we can therefore conclude that g ∈ R(I).

11
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Finally, let f ∈ C(I) be a arbitrary complex-valued continuous function on I. An appeal to your result
from Homework 1 shows that the real and imaginary parts of f , Re(f) and Im(f) are necessarily continuous
real-valued functions on I. Thus, by virtue of our result in the previous paragraph, Re(f) and Im(f) are both
Riemann-integrable. By definition (of integrability for complex-valued functions), we conclude that f ∈ R(I).

Exercise 6

In this exercise, you prove the real-valued analogue of the scalar multiplication portion of Item 1 of the
proposition above. Throughout this exercise, c is a real number.

1. First, given a non-empty bounded set A of R, we denote by cA the set of numbers of the form c ·a where
a ∈ A. That is, cA = {x ∈ R : x = ca for a ∈ A}. If c > 0, prove that

sup cA = c supA and inf cA = c inf A.

2. If c < 0, formulate and prove an analogous statement for sup cA and inf cA.

3. For the remainder of this exercise, g : I → R will be an arbitrary bounded function. We will assume now
that c > 0 and denote by cg the real-valued function on I defined by (cg)(x) = cg(x) for x ∈ I. Use your
result from Item 1 to prove that

U(cg, P ) = cU(g, P ) and L(cg, P ) = cL(g, P ).

for any partition P of I.

4. Continuing under the assumption that c > 0, prove that U(cg) = c · U(g) and L(cg) = c · L(g).

5. Use the item above to prove that, if c > 0, g ∈ R(I) if and only if cg ∈ R(I) and

c

∫
I

g =

∫
I

cg.

6. Comment on how the previous steps change if we allow c to be non-positive. In particular, is it still true
that cg ∈ R(I) if and only if g ∈ R(I)?

Another important property of the integral is captured by the following proposition.

Proposition 2.8. Let f ∈ R(I), then the function |f | : I → R defined by

|f |(x) = |f(x)| =
√

(Re(f(x))2 + Im(f(x))2 for x ∈ I

is Riemann integrable and ∣∣∣∣∫
I

f

∣∣∣∣ ≤ ∫
I

|f |.

As it is somewhat involved, we will not show that f ∈ R(I) guarantees that |f | ∈ R(I). For this, we refer the reader
to Theorem 6.13 of [5]. We will however prove the inequality. We first need a lemma.

Lemma 2.9. Let h1, h2 ∈ R(I) be real-valued functions such that h1(x) ≤ h2(x) for all x ∈ I. Then∫
I

h1 ≤
∫
I

h2.

12
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Exercise 7

Prove the lemma above. Hint: Start by showing that non-negative functions have non-negative integrals. Then
use Item 1 of Proposition 2.7.

Proof. Let f be an arbitrary complex-valued Riemann-integrable function on I and, in accordance with the remark
preceding Lemma 2.9 we will take for granted that |f | ∈ R(I). In view of Exercise 2 (below), there is θ ∈ (−π, π]
for which ∣∣∣∣∫

I

f

∣∣∣∣ = e−iθ
(∫

I

f

)
.

In view of Item 1 of Proposition 2.7, this guarantees that∣∣∣∣∫
I

f

∣∣∣∣ =

∫
I

e−iθf =

∫
I

(
e−iθf(x)

)
dx =

∫
I

Re(e−iθf(x)) dx+ i

∫
I

Im(e−iθf(x)) dx.

As the left hand side of the above equation is purely real, this ensures that the purely imaginary part of the right
hand side is zero and therefore ∣∣∣∣∫

I

f

∣∣∣∣ =

∫
I

Re(e−iθf(x)) dx.

Now, for each x ∈ I,

Re(e−iθf(x)) ≤
√

(Re(eiθf(x)))2 + (Im(e−iθf(x)))2 = |e−iθf(x)| = |f(x)|

where we have used the fact that |zw| = |z||w| for complex numbers z, w. Thus, by Lemma 2.9, we have∣∣∣∣∫
I

f

∣∣∣∣ ≤ ∫
I

Re(e−iθf(x)) dx ≤
∫
I

|f(x)| dx =

∫
I

|f |

as desired.

Exercise 8

Prove that, for each complex number z = a+ ib ∈ C, there exists θ ∈ (−π, π] for which

e−iθz = |z| =
√
a2 + b2.

In this way, every complex-number z can be written as

z = |z|eiθ

for some θ ∈ (−π, π] called the phasea of z.

aWhen z 6= 0, θ can be shown to be unique in this range.

Our next proposition is often called the “change of variables formula”. Because the proof is somewhat technical
(and is actually best done in the context of the Riemann-Steiltjes integral), I have decided to omit it.

Proposition 2.10 (Change of variables formula, Theorem 6.19 of [5]). Let A < B and a < b be real numbers
and suppose that h : [A,B] → [a, b] is a strictly increasing function mapping [A,B] onto [a, b] with derivative
h′ ∈ R([A,B]). Also, let f ∈ R([a, b]). Then the function x 7→ (f ◦h)(x)h′(x) = f(h(x))h′(x) is integrable on [A,B]
and ∫ b

a

f(x) dx =

∫
[a,b]

f =

∫
[A,B]

(f ◦ h) · h′ =

∫ B

A

f(h(x))h′(x) dx

13
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It should be noted that the proposition above has a very beautiful generalization to integration in Rd in which the
derivative h′ is replaced by the Jacobean determinant of h’s d-dimensional analogous. This generalization is an
essential tool used in the theory of integration on manifolds.

We end this section by treating a nice result which says that each Riemann-integrable function is “close” in a certain
sense to a continuous function.

Proposition 2.11. Suppose that f ∈ R(I) and f is bounded by B, i.e., |f(x)| ≤ B for all x ∈ I. Then there exists
a sequence of continuous functions {fk} ⊆ C(I) such that

sup
x∈I
|fk(x)| ≤ B

for all k ∈ I and

lim
k→∞

∫
I

|f(x)− fk(x)| dx = 0.

Proof. See Lemma 1.5 of Stein-Shakarchi appendix

3 The essence of convergence

In introductory calculus (Math 121/161 and 122/162), you learned about the notion of convergence for sequences of
real numbers. This notion was captured by saying, given a sequence of real numbers {an} and another real number
a, the sequence {an} converges to a if the terms of the sequence an can be made arbitrarily close to a by taking
n sufficiently large. This idea is essentially unchanged when we talk about convergence of sequences of complex
numbers. This is captured in the following definition.

Definition 3.1. Let {wn} be a sequence of complex numbers (written {wn} ⊆ C) and let w be another complex
number. We say that the sequence {wn} converges to w if the following condition is satisfied. For all ε > 0, there
exists a natural number N (written N ∈ N) for which

|wn − w| < ε whenever n ≥ N.

The essential difference between the definitions of convergence for real and complex numbers is the way that distance
(and closeness) is measured. In the above definition, the symbol | · | means the complex modulus and is defined by

|z| =
√
a2 + b2.

for a complex number z = a+ ib where this symbol is taken to mean the absolute value when applied to real num-
bers. As you have already explored this in Homework 1, I won’t expound upon convergence of real and complex
numbers further here. Let’s instead move into a discussion concerning convergence of functions, which is the main
notion of interest for the discussion of Fourier series.

Just as we think of a sequence of complex numbers converging to another complex number, in studying convergence
of functions, we are interested in the study of a sequence of complex-valued functions {fn} defined on some set
I getting “close” to another function f . A moment’s thought about this invokes many questions, primarily the
question of what it means to be “close”. To that end, we will examine several inequivalent notions of closeness and
convergence for functions. The first of which (and one of the weakest) is captured by the following definition.

Definition 3.2. Let I be an interval of the real line and let {fn} be a sequence of complex-valued functions on I,
i.e., fn : I → C for each n = 1, 2, . . . . Let f : I → C be another function. We say that the sequence {fn} converges
to f pointwise on I if, for each x ∈ I,

lim
n→∞

fn(x) = f(x).

14
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The important thing to note about the above definition is that the x is chosen before the limit is taken. Stated
with ε’s and N ’s, the above definition is as follows:

The sequence of functions fn converges to f pointwise on I if, for each ε > 0 and x ∈ I, there is an N ∈ N
(depending on both ε and x) for which

|fn(x)− f(x)| < ε whenever n ≥ N.

Example 1

In this example, we consider a sequence of real-valued functions converging pointwise on the interval I = [0, 1].
For each natural number n, define fn : I → R ⊆ C

fn(x) = xn

for x ∈ I and n ∈ N. We observe that, for 0 ≤ x < 1,

lim
n→∞

fn(x) = lim
n→∞

xn = 0

and, for x = 1,
lim
n→∞

fn(x) = lim
n→∞

1n = 1.

Thus, our sequence of functions converges uniformly to the function f : I → R defined by

f(x) =

{
0 0 ≤ x < 1

1 x = 1

for x ∈ I. The graphs of fn are illustrated for n = 1, 2, . . . , 20 in Figure 2.
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Figure 2: A famous picture: The graphs of fn(x) = xn for n = 1, 2, . . . , 20.
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It is important to note that each function fn is continuous on I, however, the limit function f is not continuous
on I. This illustrates that nice properties like continuity can be “broken” under taking pointwise limits.

A much stronger notion of convergence is captures by the following definition.

Definition 3.3. Let {fn} be a sequence of complex-valued functions on I. Let f : I → C be another complex-valued
function on I. We say that the sequence {fn} converges uniformly to f on I if, for all ε > 0 there exists N ∈ N for
which

|fn(x)− f(x)| < ε whenever x ∈ I and n ≥ N.

In contrast to the definition of pointwise convergence, the definition of convergence requires that the integer N
depend only on ε and be independent of x ∈ I. This notion is illustrated in Figure 3. In the figure, we see
the graph of a real-valued function f (in black) in the center of a “band” of radius ε (in red). For a sequence
of functions {fn} to converge uniformly to f (on an interval) means that, for sufficiently large n, the graph of fn
is completely contained in the band of radius ε surrounding f ; the blue line is an example of the graph of one such fn.

Figure 3: An illustration of uniform convergence

We further illustrate this definition with some examples.

Example 2

Consider the sequence {fn} of functions defined on the interval I = [−π, π] by

fn(x) = cos(x/n)− 1/2

for x ∈ I and n ∈ N. The graphs of fn are illustrated for n = 1, 2, . . . 10 in Figure 4.
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Figure 4: The graphs of fn(x) = cos(x/n)− 1/2 for n = 1, 2, . . . , 10.

The figure suggests that the sequence {fn} converges to the constant function f(x) = 1/2 as n → ∞. Let’s
prove that, not only does it converge to f(x) = 1/2, it does so uniformly.

Let ε > 0 and select N ∈ N such that N > π/
√
ε Recalling the inequality for cosine,

| cos(θ)− 1| ≤ |θ2| for allθ ∈ R

which can be gotten from the mean value theorem or the racetrack principle, we observe that, for any n ≥ N
and x ∈ I = [−π, π],

|fn(x)− f(x)| = | cos(x/n)− 1/2− 1/2| = | cos(x/n)− 1| ≤ x2

n2
≤ π2

n2
< ε

because n2 ≥ N2 > π2/ε. The careful reader should note that the above estimate holds for all x ∈ I and
for all n ≥ N (and not for a particular x). We have shown that the sequence {fn} converges uniformly to
f(x) = 1/2.

Exercise 9

Given an interval I, we recall the supremum norm defined, for f : I → C by

‖f‖∞ = sup
x∈I
|f(x)|.

I this exercise, you will prove that ‖ ·‖∞ is a bona fide norm on the space of bounded complex-valued functions
on I.

1. Prove that, for any pair of bounded functions function f and g,

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

2. Prove that, for each complex number α and bounded function f : I → C,

‖αf‖∞ = |α|‖f‖∞

where |α| is the complex modulus of α.
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3. Prove that, for a bounded function f , ‖f‖∞ = 0 if and only if f(x) = 0 for all x ∈ I.

4. Given a sequence {fn} of bounded complex-valued functions on I and f : I → C, prove that the sequence
{fn} converges uniformly to f if and only if

lim
n→∞

‖fn − f‖∞ = 0.

As the notion of “Cauchy sequence” is essential for the convergence for complex-numbers and, in fact, provides a
characterization for convergence as you proved in Homework 1, we have a similar Cauchy property for functions
which characterizes uniform convergence. This characterization is outlined in the following theorem.

Theorem 3.4. Let {fn} be a sequence of complex-valued functions on an interval I ⊆ R. The sequence {fn}
converges uniformly (to some function f) on I if and only if it satisfies the following property:

(UC) For all ε > 0, there exists a natural number N such that

|fn(x)− fm(x)| < ε whenever x ∈ I and n,m ≥ N.

The equivalent property (UC) is called the Uniform Cauchy condition. Any sequence of functions {fn} satisfying
the condition is said to be uniformly Cauchy on I.

Proof. Let us first assume that {fn} converges uniformly to a function f on I. Let ε > 0 and by our supposition
let N be a natural number for which

|fn(x)− f(x)| < ε/2

for all n ≥ N and x ∈ I. Then, for any n,m ≥ N , we have

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| ≤ ε

2
+
ε

2
= ε

for all x ∈ I. Thus the sequence {fn} is uniformly Cauchy on I.

Conversely, let’s assume that the sequence fn(x) is uniformly Cauchy on I. This implies, in particular, that
{fn(x)} is a Cauchy sequence of complex numbers for each x ∈ I. Because all Cauchy sequences of complex numbers
converge, for each x ∈ I, the limit limn→∞ fn(x) exists and we will denote its value by f(x), which is just a complex
number. In this way, we produce a function f : I → C simply by identifying each x with the value of the limit
limn→∞ fn(x), i.e., defining

f(x) = lim
n→∞

fn(x)

for each x ∈ I. So now we have a candidate (f) for the uniform limit. It remains to show that our sequence, in
fact, converges uniformly to this f . To see this, we let ε > 0 and choose a natural number N for which

|fn(x)− fm(x)| < ε

2

for all n,m ≥ N and x ∈ I. Now, let x ∈ I and n ≥ N be arbitrary (but fixed). The convergence of the numerical
sequence {fn(x)} guarantees that there is some natural number Nx ≥ N for which

|fm(x)− f(x)| < ε

2

whenever m ≥ Nx. In particular, this works when m = Nx ≥ N and so

|fn(x)− f(x)| = |fn(x)− fNx
(x) + fNx

(x)− f(x)| ≤ |fn(x)− fNx
(x)|+ |fNx

(x)− f(x)| < ε

2
+
ε

2
= ε.

Thus, to each ε > 0, we have found a natural number N for which

|fn(x)− f(x)| < ε

whenever x ∈ I and n ≥ N . Therefore, {fn} converges uniformly on I (to f).
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The above theorem is extremely useful when one has a sequence of nice functions (which is uniformly Cauchy) but
has no obvious candidate for the uniform limit. Here, of course, infinite series comes to mind.

Definition 3.5. Let {fn} be a sequence of complex-valued functions on I. The (formal) sum
∑
n fn is called a

series of functions. To investigate the convergence of
∑
n fn, we define, for each N = 1, 2, . . . ,

SN (x) =

N∑
n=1

fn(x) for x ∈ I.

The functions S1, S2, . . . , form a sequence of complex-valued functions on I, {SN}, called the sequence of partial
sums for the series

∑
n fn. If, for each x ∈ I, the limit

lim
N→∞

SN (x)

exists, we say that the series
∑
n fn converges on I. In this case, the limit is a function S : I → R defined by

S(x) = lim
N→∞

SN (x) = lim
N→∞

N∑
n=1

fn(x)

and we write
∞∑
n=1

fn(x) = S(x)

to denote this function, called the sum of the series. We say that the series
∑
n fn converges uniformly on I if its

sequence of partial sums {SN} converges uniformly on I to the sum of the series.

As with numerical series, one can often learn that a series converges without ever knowing its sum. For instance,
the integral test from calculus shows that the series of numbers

∞∑
n=1

1

n3

converges (this is p-series for p = 3). Though it can be approximated to any degree of accuracy, its sum it unknown.
With this in mind, it is important to have various test for series (uniform) convergence without knowing the limit.
The following corollary of Theorem 4.9 gives us exactly this.

Corollary 3.6 (Uniform Cauchy Criterion). Let {fn} be a sequence of complex-valued functions on I and consider
the series

∑
n fn. The series

∑
n fn converges uniformly on I if and only if the following property is satisfied.

For all ε > 0 there is a natural number N for which∣∣∣∣∣
k=m∑
k=n

fk(x)

∣∣∣∣∣ < ε

for all x ∈ I and m ≥ n ≥ N . This property is called the Uniform Cauchy Criterion for the series
∑
n fn.

Exercise 10

In this exercise, you will prove Corollary 3.6 and then use the corollary to establish sufficient conditions for
the absolute convergence of power series – things you will remember from calculus (M122).

1. Using Theorem 4.9, prove Corollary 3.6.

2. If a series
∑
n fn of functions {fm} converges uniformly on I, prove that {fn} converges uniformly to

the zero function on I.
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3. For the remainder of this exercise, we fix a positive constant M and define I = [−M,M ] ⊆ R. Given a
sequence of complex-numbers {cn}, consider the sequence of complex-valued functions {fn} on I defined
by

fn(x) =
cn
n!
xn

for x ∈ I. If the sequence {cn} is bounded, i.e., supn∈N |cn| < ∞, use Corollary 3.6 (and no other
convergence test) to prove that the series

∞∑
n=1

cn
n!
xn

converges uniformly on I.

4. Let f : I → C be infinitely differentiable and assume that supn=0,1,... |f (n)(0)| < ∞; here f (n)(0) is the

nth-derivative of f at 0. Use the previous item to prove that the series

∞∑
n=0

f (n)(0)

n!
xn

converges uniformly on I . This series is called the Maclaurin series for f . (Your proof here should be
approximately one sentence).

5. Looking back at Item 3, find a condition on the sequence {ck} which is less restrictive than boundedness
and which still guarantees that the series

∞∑
n=1

cn
n!
xn

converges uniformly on I. Hint: You should take a look at Stirling’s formula (which you can take for
granted as long as you interpret the formula/approximation correctly). If you’re interested, a nice proof
of Stirling’s formula can be found in Exercise 5 of Homework 2 for my Math 122 class.

3.1 Properties of Uniform Convergence

In this short subsection, we discuss some properties preserved under uniform convergence. Specifically, we focus on
continuity and integration. Let’s consider a couple of examples.

Example 3

Given 0 < δ < 1, let Iδ = [−1 + δ, 1− δ] and consider the series

∞∑
n=0

xn

for x ∈ Iδ. We claim that this series converges uniformly on Iδ to the function

f(x) =
1

1− x
. (2)

To see this, we first observe that the partial sums {SN} satisfy the formula

SN (x) =

N∑
n=0

xn =
1− xN+1

1− x

20



Fourier Analysis Supplementary notes for MA398 Evan Randles

for x ∈ Iδ. The validity of this formula can be seen by multiplying both sides by 1 − x and simplifying.
To see that this series converges uniformly, let ε > 0 and choose M to be a natural number for which
M > ln(εδ)/ ln(1− δ). For any x ∈ Iδ and N ≥M , observe that

|f(x)− SN (x)| =
∣∣∣∣ 1

1− x
− 1− xN+1

1− x

∣∣∣∣ =
|x|N+1

|1− x|
≤ (1− δ)N+1

δ
< ε

where we have used the fact that N + 1 > M ≥ ln(εδ)/ ln(1 − δ). Therefore, we have proved that this series
converges uniformly to f . I encourage you to show that this series converges uniformly using only Corollary
3.6 (and not making reference to f).

An important thing to note about the above example is that, each SN (x) is continuous and the limit function
f(x) = 1/(1 − x) is also continuous on the interval Iδ, a fact that was also true in the preceding example. This
stands in contrast to the Example 3 in which the limit function failed to be continuous. As it turns out, this is a
key difference between pointwise convergence and uniform convergence. This is detailed in the following theorem,
whose proof can be found in [5] (see Theorem 7.12 therein).

Theorem 3.7. Let {fn} be a sequence of complex-valued functions on I and suppose that {fn} converges uniformly
to a function f : I → C. If each function fn is continuous, i.e., {fn} ⊆ C(I), then f is necessarily a continuous
function.

Let’s explore some other important properties of uniform convergence. Our next result shows that uniform conver-
gence plays nicely with the Riemann-Darboux integral.

Theorem 3.8. Let {fn} be a sequence of complex-valued functions which converges uniformly to a function f : I →
C; here, I = [a, b]. If each function fn is Riemann-integrable, i.e., {fn} ⊆ R(I), then f is Riemann-integrable and

lim
n→∞

∫
I

|fn − f | = 0.

Further

lim
n→∞

∫
I

fn =

∫
f.

Proof. We first show that the limit f is Riemann-integrable by showing its real and imaginary parts, u and v are
Riemann-integrable. For each n, denote by un and vn the real and imaginary parts of fn respectively. We will show
that u and v are Riemann integrable by appealing to the ε− P characterization, Proposition 2.5. Let’s first focus
on the real parts {un} and u. Let ε > 0 and, by the uniformly convergence of {fn}, let N be a natural number for
which

|un(x)− u(x)| ≤
√

(un(x)− u(x))2 + (vn(x)− v(x))2 = |fn(x)− f(x)| < ε/4(b− a)

for all x ∈ I and n ≥ N . In particular, upon setting u0 = uN , this yields the inequality

u0(x)− ε

4(b− a)
< u(x) < u0(x) +

ε

4(b− a)
(3)

for all x ∈ I. This inequality implies that u is bounded on the interval I in view of our hypothesis that u0 = uN ∈
R(I). By virtue of Proposition 2.5, let P be a partition of I for which U(u0, P )−L(u0, P ) < ε/2. For this partition,
the inequality (3) guarantees that

U(u, P ) =
∑
n

(
sup

xn−1≤x≤xn

u(x)

)
)(xn − xn−1)

≤
∑
n

(
sup

xn−1≤x≤xn

u0(x) +
ε

4(b− a)

)
(xn − xn−1)

≤ U(u0, P ) +
∑
n

ε

4(b− a)
(xn − xn−1)

≤ U(u0, P ) +
ε

4
.
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Similarly, the inequality (3) guarantees the analogous lower estimate

L(u0, P )− ε

4
≤ L(u, P )

Together, these estimates guarantees that

U(u, P )− L(u, P ) ≤ U(u0, P )− L(u0, P ) +
ε

2
<
ε

2
+
ε

2
= ε

and from this we can conclude that u ∈ R(I). A completely analogous argument shows that v ∈ R(I) and so, by
the definition of Riemann-integrability for complex-valued functions, the limit function f ∈ R(I).

Let us now prove the statements concerning the limit limn→∞
∫
I
|fn − f |. In view of the definition of the

L∞-norm, we have
|fn(x)− f(x)| ≤ ‖fn − f‖∞

for all x ∈ I and n ∈ N. In view of Lemma 2.9, we have

0 ≤
∫
I

≤ |fn(x)− f(x)| dx ≤
∫
I

‖fn − f‖∞ dx = (b− a)‖fn − f‖∞.

Thus, by virtue of Exercise 9 and the squeeze theorem, the preceding inequality shows that

lim
n→∞

∫
I

|fn − f | = 0

because ‖fn − f‖∞ → 0 as n→∞.
Finally, by virtue of Propositions 2.7 and 2.8, we have∣∣∣∣∫

I

fn −
∫
I

f

∣∣∣∣ =

∣∣∣∣∫
I

(fn − f)

∣∣∣∣ ≤ ∫
I

|fn − f |

for all n. Another appeal to the squeeze theorem (and the preceding limit) guarantees that

lim
n→∞

∫
I

fn =

∫
I

f.

Corollary 3.9. Let {fn} be a sequence of complex-valued functions on I = [a, b] and suppose that the series
∑∞
n=0 fn

converges uniformly on I. If each fn is Riemann-integrable, then the sum of the series is Riemann-integrable and∫
I

∞∑
n=0

fn =

∞∑
n=0

∫
I

fn.

Proof. The hypothesis that
∑∞
n=0 fn converges uniformly means that the sequence of partial sums {SN} defined by

SN (x) =

N∑
n=0

fn(x)

for x ∈ I converges uniformly on I. Also, the supposition that each fn is Riemann-integrable guarantees that each
partial sum is Riemann-integrable in view of Proposition 2.7. By the (finite) linearity of the integral, we have∫

I

SN =

N∑
n=0

∫
I

fn
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for each natural number N . Thus, an appeal to the preceding theorem guarantees that the limit
∑∞
n=0 fn =

limN→∞ SN is Riemann-integrable and∫
I

∞∑
n=0

fn =

∫
I

lim
N→∞

SN = lim
N→∞

∫
I

SN = lim
N→∞

N∑
n=0

∫
I

fn;

in particular, the limit on the right exists. Of course, this is what it means for the series of the numbers
∫
I
fn to

converge and so we have ∫
I

∞∑
n=0

fn = lim
N→∞

N∑
n=0

∫
I

fn =

∞∑
n=0

∫
I

fn.

3.2 The Weierstrass M-test

We’ve been developing the theory of uniform convergence for sequences of functions. Along the way, we’ve proved
some results about the uniform convergence of series of functions, the most important of which is Corollary 3.6.
This corollary showed that a series is uniformly convergent if and only if it satisfies the Uniform Cauchy Criterion.
As you saw in Exercise 10, while this criterion/condition is very useful, it is not terribly easy to apply. Our main
result of this section, the M -test of Weierstrass, gives an relatively straightforward condition guaranteeing that a
given series converges uniformly. We will then amass some facts following from this result which will be used in our
study of Fourier series.

Theorem 3.10 (The Weierstrass M -test). Let I = [a, b] be an interval and consider a sequence of bounded complex-
valued functions {fn} on I. For each n ∈ N, set

Mn = ‖fn‖∞ = sup
x∈I
|fn(x)|.

If the series
∑∞
n=1Mn converges, then the series

∑∞
n=1 fn converges uniformly on I.

Before giving the proof, observe that the series
∑∞
n=1Mn is a series of non-negative numbers and determining the

convergence of this series is the subject matter of introductory calculus. This is usually an easier condition to verify
that the Cauchy criterion.

Proof. We will verify that the Cauchy criterion (Corollary 3.6) is satisfied for the series
∑
n fn. To this end, let

ε > 0. Given that
∑
nMn converges, its partial sums are necessarily a Cauchy sequence and so there must be some

natural number N for which

m∑
k=n

Mk ≤
m∑

k=n−1

Mk =

m∑
k=1

Mk −
n∑
k=1

Mk =

∣∣∣∣∣
m∑
k=1

Mk −
n∑
k=1

Mk

∣∣∣∣∣ < ε

whenever m ≥ n ≥ N . Here, we have used the fact that Mk ≥ 0 for all k. Observe now that, for any x ∈ I and
m ≥ n ≥ N , the triangle inequality guarantees that∣∣∣∣∣

m∑
k=n

fk(x)

∣∣∣∣∣ ≤
m∑
k=n

|fk(x)| ≤
m∑
k=n

‖fk‖∞ =

m∑
k=n

Mk < ε,

as desired.

Following directly from Theorems 3.10 and 3.7 and Corollary 3.9, we obtain the following corollary.
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Corollary 3.11. Let I be an interval and let {fk} be a sequence of complex-valued functions on I, i.e., {fk} ⊆ C(I).
For each n ∈ N, set

Mn = ‖fn‖∞ = sup
x∈I
|fn(x)|.

If the series
∑∞
n=1Mn converges, then

∑∞
n=1 fn converges uniformly on I and its sum

f(x) =

∞∑
n=1

fn(x)

is a continuous function on I, i.e., f ∈ C(I). Further,∫
I

f =

∫
I

∞∑
n=1

fn =

∞∑
n=1

∫
fn.

Proof. The statement regarding uniform convergence follows directly from Theorem 3.10. Because fn is continuous
for each n, the partial sums {Sn} are necessarily continuous functions on I. The uniform convergence of the series
is the statement that the partial sums converge uniformly to the sum of the series and so, by virtue of Theorem 3.7,
the sum f is necessarily continuous on I. Finally, upon noting that {fn} ⊆ C(I) ⊆ R(I), an appeal to Corollary
3.9 gives the final statement immediately.

Exercise 11

The Weierstrass M -test says that the “M condition”, i.e., the condition that
∑∞
n=1Mn converges, is a sufficient

condition for the uniform convergence of the series
∑
fn. This is in contrast to Corollary 3.6 which gives a

condition both necessary and sufficient for uniform convergence. Show that that “M condition” (of the
Weierstrass M -test) is not necessary for convergence. That is, find a sequence of functions {fn} on an interval
I for which

∑∞
n=1 fn converges uniformly yet

∑∞
n Mn = ∞ for Mn = ‖fn‖∞. Hint: A nice example can

be produced which is an alternating series. Feel free to use results from introductory calculus (such as the
alternating series test).

3.3 Defining Convergence with the Integral: A glimpse at Lebesgue norms

As the supremum norm ‖ · ‖∞ allows us to measure the “size” of a function bounded function (and with it you
were able to characterize uniform convergence), the integral also allows us to measure the “size” of a function by
integrating its absolute value. Measuring the size of functions with the integral turns out to be a very fruitful
activity. To formalize things, I will take this opportunity to introduce a class of “norms” on functions, called the
Lebesgue norms or the Lp norms, of which the supremum norm is an important example. To this end, we fix an
interval I and, for each 1 ≤ p <∞, we define the Lp(I) norm of a function f ∈ R(I) by

‖f‖p =

(∫
I

|f(x)|p dx
)1/p

.

For p =∞, we have as before
‖f‖p = ‖f‖∞ = sup

x∈I
|f(x)|

for f ∈ R(I). For each 1 ≤ p ≤ ∞, each Lp norm gives us a different way to measure the “size” of a function. Let’s
accumulate some facts about these norms.

Proposition 3.12. Given an interval I and 1 ≤ p ≤ ∞, let ‖ · ‖p denote the Lp(I) norm defined above. Then, for
any f, g ∈ R(I) and α ∈ C, we have
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1.
‖f‖p ≥ 0

2.
‖αf‖p = |α|‖f‖p

3.
‖f + g‖p ≤ ‖f‖p + ‖g‖p

Truthfully, the above proposition only guarantees that ‖ · ‖p is a so-called semi-norm on R(I) because there are
non-zero functions f ∈ R(I) for which ‖f‖p = 0.

Proof. As you have already shown that these properties hold when p = ∞ (Exercise 9), we shall assume that
1 ≤ p < ∞. Now, because the integral of a non-negative function is non-negative, the validity of Item 1 is clear.
Also, for f ∈ R(I) and α ∈ C,

‖αf‖pp = (‖αf‖p)p =

∫
I

|αf(x)|p dx =

∫
I

|α|p|f(x)|p dx = |α|p
∫
I

|f(x)|p dx

from which we immediately obtain Item 2. It remains to prove Item 3, also called Minkowski’s inequality. This
inequality is most easily obtained using the machinery of measure theory, though our proof here only relies on the
convexity of the function C 3 z 7→ |z|p, a fact which can be established using only elementary calculus.

To this end, we first assume show that, if h1, h2 ∈ R(I) are such that ‖h1‖p, ‖h2‖p ≤ 1, then, for any 0 ≤ t ≤ 1,
‖th1 + (1− t)h2‖p ≤ 1. This is equivalently the statement that the unit ball

Bp = {h ∈ R(I) : ‖h‖p ≤ 1}

is a convex set. Let us fix 0 ≤ t ≤ 1 and h1, h2 ∈ Bp and observe that the convexity of the map z 7→ |z|p guarantees
that

|th1(x) + (1− t)h2(x)|p ≤ t|h1(x)|p + (1− t)|h2(x)|p

for all x ∈ I. I’ll make note that the convexity used here for complex numbers is also called the supporting
hyperplane property and can be understood geometrically as the graph of the function |z|p always living below its
secant lines/planes. In view of this inequality, the monotonicity of the integral guarantees that∫

I

|th1(x) + (1− t)h2(x)|p dx ≤ t
∫
I

|h1(x)|p dx+ (1− t)|h2(x)|p dx

or equivalently
‖th1 + (1− t)h2‖pp ≤ t‖h1‖pp + (1− t)‖h2‖pp.

Recalling that ‖h1‖p ≤ 1 and ‖h2‖p ≤ 1, we conclude that

‖th1 + (1− t)h2‖pp ≤ t · 1 + (1− t) · 1 = 1

and so ‖th1 + (1− t)h2‖p ≤ 1, as was asserted.
We now get to the task at hand. Let f, g ∈ R(I) and we shall assume that ‖f‖p and ‖g‖p are non-zero (treating

these trivial cases is much more simple). We write

f + g

‖f‖p + ‖g‖p
=

‖f‖p
‖f‖p + ‖g‖p

f

‖f‖p
+

‖g‖p
‖f‖p + ‖g‖p

g

‖g‖p
= t

f

‖f‖p
+ (1− t) g

‖g‖p

where t = ‖f‖p/(‖f‖p+‖g‖p) is a number between 0 and 1. By virtue of Item 2, both h1 = f/‖f‖p and h2 = g/‖g‖p
have Lp norm 1. In view of the property proved in the preceding paragraph, we conclude that∥∥∥∥ f + g

‖f‖p + ‖g‖p

∥∥∥∥
p

= ‖th1 + (1− t)h2‖p ≤ 1.
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Therefore, a final appeal to Item 2 gives the inequality

1

‖f‖p + ‖g‖p
‖f + g‖p ≤ 1

from which the desired result follows without trouble.

With these norms and this way of measuring functions, we can define new notions of convergence. To this end,
given a sequence of functions {fn} ⊆ R(I) and f ∈ R(I), we say that {fn} converges to f in Lp(I) or with respect
to the Lp norm if

lim
n→∞

‖fn − f‖p = 0.

There are three Lp norms that will be of particular interest for us, p = 1, 2 and ∞. In the case that p = 2, there is
an additional structure with which you are already familiar from linear algebra, the inner product (a generalization
of the dot product). For integrable functions f and g, we define the L2 inner product of f and g to be the number

〈f, g〉 =

∫
I

f(x)g(x) dx.

As it is easy to verify using properties of the integral, the L2(I) inner product satisfies the following properties:

1.
〈f, g〉 = 〈g, f〉 for f, g ∈ R(I)

2.
〈αf + βh, g〉 = α〈f, g〉+ β〈h, g〉 for f, g, h ∈ R(I) and α, β ∈ C.

3.
〈g, αf + βh〉 = α〈g, f〉+ β〈g, h〉 for f, g, h ∈ R(I) and α, β ∈ C.

We also notice, that the L2 inner product recaptures the L2 norm:

‖f‖2 =

(∫
I

|f(x)|2 dx
)1/2

=

(∫
I

f(x)f(x) dx

)1/2

=
√
〈f, f〉

for f ∈ R(I). An extremely important property of the L2 inner product is captured by the following theorem.

Theorem 3.13 (The Cauchy-Schwarz Inequality). For any f, g ∈ R(I),

|〈f, g〉| ≤ ‖f‖2‖g‖2

Proof. Let’s first assume that h1, h2 ∈ R(I) have ‖h1‖2 = ‖h2‖2 = 1. We observe that, for any x ∈ I,

0 ≤ (|h1(x)| − |h2(x)|)2 =
(
|h1(x)|2 + |h2(x)|2 − 2|h1(x)||h2(x)|

)
.

Therefore

|h1(x)||h2(x)| ≤ |h1(x)|2

2
+
|h2(x)|2

2

for all x ∈ I. By virtue of Proposition 2.8, the preceding inequality shows that

|〈h1, h2〉| =

∣∣∣∣∫
I

h1(x)h2(x) dx

∣∣∣∣
≤

∫
I

|h1(x)||h2(x)| dx

≤ 1

2

∫
I

|h1(x)|2 dx+
1

2

∫
I

|h2(x)|2 dx

≤ 1

2
‖h1‖22 +

1

2
‖h2‖22 = 1.
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Thus |〈h1, h2〉| ≤ 1 whenever h1, h2 ∈ R(I) have unit L2-norm. Now, given any f, g ∈ R(I) with non-zero L2 norms,
we observe that h1 = f/‖f‖2 and h2 = g/‖g‖2 have ‖h1‖2 = ‖h2‖2 = 1 and so by the properties of the L2 inner
product outlined above

|〈f, g〉| = ‖f‖2‖g‖2
∣∣∣∣〈 f

‖f‖2
,
g

‖g‖2

〉∣∣∣∣ = ‖f‖2‖g‖2|〈h1, h2〉| ≤ ‖f‖2‖g‖2

as desired.
Finally, let us assume that ‖f‖2 = 0 or ‖g‖2 = 0. In this final case, our job is to show that 〈f, g〉 = 0 because

the right-hand side of the Cauchy-Schwarz inequality is zero. Without loss of generality we assume that ‖g‖2 = 0
and observe that, for all t ∈ R,

‖f + tg‖22 = 〈f + tg, f + tg〉 = 〈f, f〉+ 〈f, tg〉+ 〈tg, f〉+ 〈tg, tg〉
= ‖f‖22 + 〈f, tg〉+ 〈f, tg〉+ t2‖g‖22
= ‖f‖22 + 2 Re(〈f, tg〉) + 0

= ‖f‖22 + 2tRe(〈f, g〉)

where we have used the fact that t is real and z + z = 2 Re z for any complex number z (this is something you
should check). In view of the equation above, we have

0 ≤ ‖f‖22 + 2tRe(〈f, g〉)

for all t ∈ R. I claim that this inequality implies that Re(〈f, g〉) = 0. If Re(〈f, g〉) 6= 0, then setting t =
−(‖f‖22 + 1)/Re(〈f, g〉) in the above inequality yields

0 ≤ ‖f‖22 + 2

(
− ‖f‖

2
2 + 1

Re(〈f, g〉)

)
Re(〈f, g〉) = ‖f‖22 − 2‖f‖22 − 2 = −(‖f‖22 + 2)

which is impossible because ‖f‖22 + 2 ≥ 2 > 0. From this we conclude that Re(〈f, g〉) = 0. An analogous argument
(done by expanding ‖f + itg‖22) shows that Im(〈f, g〉) = 0. All together, we conclude that 〈f, g〉 = 0.

There are many generalizations of the Cauchy-Schwarz inequality that turn out to be useful for Fourier analysis.
The following one, which we give without proof, is called Hölder’s inequality [4] . The theorem essentially says that
the integral of a product of functions f and g is bounded above in absolute value by the Lp norm of f and the Lq

norm of g where 1 ≤ p, q ≤ ∞ are such that
1

p
+

1

q
= 1.

Such a pair p and q are said to be conjugate exponents and here we assume the convention that 1/∞ = 0. So, for
example p = 2 and q = 2 are conjugate exponents. Also p = 1 and q =∞ are conjugate exponents.

Theorem 3.14 (Hölder’s inequality). Let 1 ≤ p, q ≤ ∞ be conjugate exponents. Then, for any f, g ∈ R(I), the
product fg is integrable and ∣∣∣∣∫

I

f(x)g(x) dx

∣∣∣∣ ≤ ‖f‖p‖g‖q.
Exercise 12

Though we’ve already proven the triangle inequality for the Lp norm (also called the Minkowski inequality),
please show that the triangle inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p

is a consequence of Hölder’s inequality (and thus the latter is more “fundamental”). Hint: First observe that
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|f(x) + g(x)|p ≤ |f(x) + g(x)|p−1(|f(x)|+ |g(x)|) for all x. Then apply Hölder’s inequality to the terms on the
right-hand side.

As an application of Hölder’s inequality, we have the following theorem which gives a relationship to convergence
between Lp norms.

Theorem 3.15. Let I = [a, b] be a bounded interval and let {fn} be a sequence in R(I). Also, let f ∈ R(I). Given
any 1 ≤ r ≤ s ≤ ∞, if

lim
n→∞

‖fn − f‖s = 0 then lim
n→∞

‖fn − f‖r = 0.

If you take a course in measure theory, you will learn that this result depends critically on the fact that I = [a, b]
is a bounded interval . Before giving the proof (taking Hölder’s inequality for granted), we note that it implies the
following statement (as a special case).

If lim
n→∞

‖fn − f‖∞ = 0 then lim
n→∞

‖fn − f‖1 = lim
n→∞

∫
I

|fn(x)− f(x)| dx = 0.

This statement should be familiar as it recaptures Theorem 3.8 in view of the correspondence between uniform
convergence and convergence in the L∞ norm. Now let’s prove the theorem.

Proof. Fixing 1 ≤ r ≤ s, set p = s/r and observe that p ≥ 1. In the case that r = s =∞, the assertion is obvious.
We therefore assume that r <∞ and, in view of Hölder’s inequality, we obtain

‖fn − f‖rr =

∫
I

|fn(x)− f(x)|r dx =

∫
I

|fn(x)− f(x)|r · 1 dx ≤ ‖(fn − f)r‖p‖‖1‖q (4)

where q is the conjugate exponent to p and 1 is the constant function. If p =∞, necessarily s =∞, q = 1 and we
have

‖(fn − f)r‖p = sup
x∈I
|fn(x)− f(x)|r = ‖fn − f‖r∞. (5)

In this case, combining the two preceding inequalities guarantee that

‖fn − f‖rr ≤ ‖fn − f‖r∞‖1‖1 = ‖fn − f‖r∞|b− a|

or, equivalently,
‖fn − f‖r ≤ (b− a)1/r‖fn − f‖∞.

If p <∞, we note that

‖(fn − f)r‖p =

(∫
I

(|fn(x)− f(x)|r)p dx
)

=

(∫
I

|fn(x)− f(x)|pr dx
)1/p

= (‖fn − f‖ss)1/p = ‖fn − f‖s/ps = ‖fn − f‖rs

where we have used the fact that pr = s and s/p = r. Combining this with (4) yields

‖fn − f‖rr ≤ ‖fn − f‖rs‖1‖q = ‖fn − f‖rs‖1‖q

and therefore
‖fn − f‖r ≤ ‖fn − f‖s‖1‖1/rq .

Finally, noting that

‖1‖q =

{(∫
I

1q
)1/q

= (b− a)1/q q <∞
1 q =∞

= (b− a)1/q
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(as long as we interpret 1/∞ = 0, we have

‖fn − f‖r ≤ ‖fn − f‖s(b− a)1/rq = (b− a)(
1
r−

1
s )‖fn − f‖s (6)

where we have used the fact that 1
r = 1

rp+ 1
rq = 1

s + 1
rq . Combining both cases (4) and (6) (and using the conventions

that 1/0 =∞ and 1/∞ = 0, we obtain

‖fn − f‖r ≤ (b− a)(
1
r−

1
s )‖fn − f‖s

whenever 1 ≤ r ≤ s. Finally, if the sequence {fn} has limn→∞ ‖fn − f‖s = 0, the preceding inequality guarantees
that limn→∞ ‖fn − f‖r = 0.

Example 4

To illustrate the preceding theorem, let’s construct a sequence of functions which converge to the zero function
with respect to the Ls norm for “small” s but diverge in the Ls norm for “large” s. To this end, set I = [−1, 1]
and fix 0 < a ≤ ∞. For each n ∈ N, define

fn(x) = n1/ae−n|x| for − 1 ≤ x ≤ 1.

We are assuming the convention that n1/a = n0 = 1 when a = ∞. Figure 5 illustrates f2 and f10 in the case
that a = 1.

Figure 5: The graphs of f2 and f10 when a = 1.

A study of this particular sequence of functions provides a nice way to understand which factors contribute to
the Ls norm of a function. For this sequence fn, for a value of a <∞, we see that the peaks at fn(x) (which
happen at x = 0) grow unboundedly while the graphs become more and more narrow as n→∞. In terms of
area under the graph, which is the essential contributor to the Ls norms, this can be seen as a competition
between growing height and shrinking width. Let’s nail things down precisely.

As suggested by the figure, it is easily verified that, for each n, fn is continuous on the interval I, i.e.,
{fn} ⊆ C(I), and therefore {fn} is a sequence of Riemann integrable functions. Let’s compute the Ls(I)
norms of this sequence: For s =∞, we have

‖fn‖s = ‖fn‖∞ = sup
x∈I
|fn(x)| = n1/a.
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for each n ∈ N. For 1 ≤ s <∞, we have

‖fn‖s =

(∫
I

|fn(x)|s dx
)1/s

=

(∫ 1

−1
ns/ae−sn|x| dx

)1/s

= n1/a
(

2

∫ 1

0

e−snx dx

)1/s

= n1/a21/s
(
e−snx

−sn
∣∣x=1

x=0

)1/s

= n1/a
(

2

sn

)1/s (
1− e−sn

)1/s
= n(1/a−1/s)

(
2

s

)1/s(
1− 1

esn

)1/s

for each n ∈ N. We therefore have the following behavior: if s < a, then 1/a− 1/s < 0 (where we can’t have
s =∞) and so

lim
n→∞

‖fn − 0‖s = lim
n→∞

‖fn‖s = lim
n→∞

n1/a−1/s(2/s)1/s(1− 1/esn)1/s = 0 · (2/s)1/s · 1 = 0.

Consequently, if s < a, {fn} converges to the zero function with respect to the Ls(I) norm. If s ≥ a, then, for
s =∞,

lim
n→∞

‖fn − 0‖s = lim
n→∞

n1/a =∞

and, for s <∞ 1/a− 1/s ≥ 0,

lim
n→∞

‖fn − 0‖s = lim
n→∞

n(1/a−1/s)(2/s)1/s(1− 1/esn)1/s =

{
∞ a < s

(2/s)1/s a = s.
.

In other words, the sequence {fn} converges to 0 for all s < a (all small s) and does not converge to 0 for all
s ≥ a (all large s). In particular, upon fixing s < a, if r ≤ s, then {fn} converges to zero in both Ls and Lr

norms. If r > s, then it is possible to {fn} to not converge to zero in the Lr norm (namely, when r ≥ a) while
still converging to zero in the Ls norm. As it must be, this is consistent with the preceding theorem.

4 Life on the circle

Our analysis thus far has focused on complex-valued functions defined on intervals of the form I = [a, b]. In our
study of Fourier series, we will study complex-valued functions on the “circle” or on the torus. As we see below, this
is just a fancy way of talking about complex-valued and 2π-periodic functions – such objects have several equivalent
descriptions. As a first introduction, consider the unit circle

S1 =
{
z = a+ ib ∈ C : |z| =

√
a2 + b2 = 1

}
in the complex plane C. As a direct consequence of what you proved in Exercise 2, S1 is given by

S1 = {eiθ : θ ∈ R}.

In fact, the exercise states that
S1 = {eiθ : θ ∈ (−π, π]}

30



Fourier Analysis Supplementary notes for MA398 Evan Randles

and this description is one to one in the sense that the function θ 7→ eiθ bijectively maps (−π, π] onto the unit circle
S1. The following proposition gives an equivalence between 2π-periodic functions, functions on the interval (−π, π]
and functions on the circle.

Proposition 4.1. There is a one-to-one-to-one correspondence between the complex-valued functions on S1, the
complex-valued functions on (−π, π] and the complex-valued and 2π-periodic functions on R. This correspondence
is given by

f̃(θ) = F (eiθ) = F (z) = F (eix) = f(x)

where z = eiθ = eix for function F : S1 → C, f̃ : (−π, π]→ C and f : R→ C, the latter of which is 2π-periodic.

As the proof of the proposition is not terribly illuminating, I’ll omit it. Figure 6 illustrates this correspondence and
the main idea of the proposition. In view of proposition, we will focus our attention on complex-valued and 2π-
periodic functions which we will usually denote by f . These functions will often be said to be functions on the torus
T, however, this is a slight abuse of language and notation, both of which are justified by the proposition. Precisely,
the torus T = R/(2πZ) which can be recognized as the quotient of the additive groups R and 2πZ. In fact, one can
also recognize T by the interval (−π, π]. This association is given by the fact that there is a one-to-one correspon-
dence between the interval (−π, π] and R/(2πZ). You won’t however need to worry about this construction nor what
a quotient group is. You can think of this reference as merely cultural (where I mean the culture of harmonic anal-
ysis in the lens of topological group theory). The essential thing you’ll need to understand, and to work with, is the
notion of 2π-periodic functions. Just know that there is a lot of important group theory going on in the background.

4.1 Integration on T and some important spaces of functions on T
Okay, now let’s talk about integration on T, that is, the integration of 2π periodic functions.

Definition 4.2. Given a function f : R→ C, we say that f is Riemann-integrable on the torus T (or integrable on
the circle) if f is 2π periodic and Riemann-integrable on the interval [−π, π]. In this case we write f ∈ R(T) and
define ∫

T
f =

∫
[−π,π]

f(x) dx;

this is called the integral of f over T. We will also write∫
T
f(x) dx =

∫
T
f.

As the integral of f on T is defined in terms of the Riemann integral on the interval [−π, π], it’s easy to see that all
of our preceding results on the Riemann-Darboux integral (and all related tests, theorems, etc) apply to this integral
too, with only minor (and obvious) changes in notation. Instead of restating every result in this new notation, we
will simply refer to the original results and ask the reader to make appropriate changes to notation and context.

Remark 4.3 (A word of caution). It is common for authors to define the integral of a function f over T instead by
the number

1

2π

∫
[−π,π]

f(x) dx.

This convention (which we do not use) has some advantages in Fourier analysis as one doesn’t have to carry around
2π everywhere and so formulas/statements become simpler. Though I do like this convention, it is slightly less
transparent and so I’ve decided to avoid it. In any case, in your readings of other texts/notes, you should watch
out as it is often not clear which convention is being used.

One result that is special for the integral of a function f over T, is that it can be computed by integrating f over
any interval of length 2π, not just the interval [−π, π]. This fact, captured by the following proposition, relies
essentially on our requirement that f is 2π-periodic.

31



Fourier Analysis Supplementary notes for MA398 Evan Randles

Figure 6: An illustration of the correspondence between functions on the circle, functions on (−π, π] and 2π-periodic
functions

Proposition 4.4. Let f : R → C be 2π-periodic. Then f ∈ R(T) if and only if, f ∈ R(I) for some interval I of
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length 2π, i.e., I = [a, a+ 2π] for some a ∈ R. For any such f , we have∫
T
f(x) dx =

∫
I

f(x) dx.

In other words, integrating f over any interval of length 2π gives the same number.

Exercise 13

Suppose that f : R→ C is 2π-periodic. With Proposition 2.10 in mind, do the following.

1. Prove the following statement. If f ∈ R([a, b]) then, for any n ∈ Z, f ∈ R([a+ 2πn, b+ 2πn]) and∫ b

a

f =

∫ b+2πn

a+2πn

f.

2. Prove the following statement. If f ∈ R([−π, π]), then, for any x0 ∈ R, the function x 7→ f(x + x0) is
Riemann integrable on [−π, π] and ∫ π

−π
f(x) dx =

∫ π

−π
f(x+ x0) dx.

3. Prove Proposition 4.4.

In view of Definition 4.2, R(T) is the set of Riemann integrable functions on T. Structurally, this set can be
recognized a vector space (over C) of complex-valued functions under the usual notion of function addition. Also,
f 7→

∫
T f is an important linear map from this vector space into the complex plane. Let’s introduce some other

important spaces of functions, all of which turn out to be subspaces of R(T).

Definition 4.5. Let f : R→ C be 2π periodic.

1. We say that f is continuous on T if f is continuous on R. Here we write that f ∈ C(T) or f ∈ C0(T).

2. We say that f is once continuously differentiable on T if f is differentiable on R with continuous derivative
f ′ ∈ C0(T). In this case we write f ∈ C1(T).

3. More generally, we say that f is n-times continuously differentiable on T if f ∈ Cn−1(T) and the (n − 1)th
derivative of f , f (n−1), is differentiable and its derivative f (n) := (f (n−1))′ ∈ C(T). In this case, we write
f ∈ Cn(T).

4. We say that f is smooth on T if f ∈ Cn(T) for all n. In this case we write f ∈ C∞(T).

Exercise 14

To clarify the preceding definition, this exercise asks you to work out some details. First, let’s fix something
that the definition sweeps under the carpet, so to speak.

1. Given a 2π-periodic function f , it makes sense to ask its derivative f ′ exists and is continuous which
is what we usually mean by continuously differentiable. The definition above requires, however, that
f ′ ∈ C0(T) and so it requires the additional condition that f ′ is also a 2π periodic function. To clear
this up, prove the following statement:

If f : R→ C is 2π-periodic and differentiable with derivative f ′ : R→ C. Then f ′ is also 2π-periodic.
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Given a 2π-periodic function f : R → C, for f ∈ C1(T) the definition above requires that f is differentiable
on all of the real line R and, moreover, that f ′ is continuous. For the next item, you will prove that this
requirement is unnecessarily strong.

2. Prove that f ∈ C1(T) if an only if f is continuously differentiable (meaning it is differentiable and has
continuous derivative) on some interval I = (a, b) where b− a > 2π.

3. Show that the equivalent condition of the above statement cannot be relaxed. That is, find a function
f : R→ C which is 2π-periodic and for which f is continuous differntiable on some interval I = (a, b) for
which b− a = 2π, yet f /∈ C1(T).

As continuous functions are integrable and differentiable functions are continuous (and so on and so forth), we
obtain

C∞(T) ⊆ · · · ⊆ Cn(T) ⊆ · · · ⊆ C1(T) ⊆ C0(T) ⊆ R(T)

where each of these containments is proper. All of the above sets are, in fact, vector spaces over C under the usual
notion of function addition as we previously discussed and, further, all of above relations remain true when one
replaces “⊆” with “≤” where V ≤W means V is a subspace of W .

4.2 Pointwise and Uniform convergence of functions on T
Throughout the next several subsections, we explore several notions of convergence of Fourier series for functions
on T. To this end, this subsection is dedicated to stating (and restating) several notions and results pertaining to
the convergence of functions and series of functions on T. The functions (and sequences of functions) we study will
be taken to be, at worst, Riemann-integrable on T.

Consider a sequence of functions {fn}∞n=1 ⊆ R(T) and another function f ∈ R(T). Given a set E ⊆ R, we
say that {fn} converges to f on E if, for each x ∈ E, the sequence of complex numbers {fn(x)} converges to
f(x), i.e., limn→∞ fn(x) = f(x). As all functions in sight are 2π-periodic, limn→∞ fn(x) = f(x) if and only if
limn→∞ fn(x + 2πk) = f(x + 2πk) for each k ∈ Z. In other words, {fn} converges to f on E if and only if {fn}
converges on the set ⋃

k∈Z
(E + 2πk) = {x ∈ R : x = y + 2πk for some y ∈ E and k ∈ Z}.

In the special case that {fn} converges to f on R or, equivalently, on any interval of length at least 2π, we say that
{fn} converges pointwise to f on T. In other words, {fn} converges pointwise to f on T if, for each x ∈ R and
ε > 0, there exists a natural number N for which

|fn(x)− f(x)| < ε

whenever n ≥ N . Just as we did on an interval I,

Definition 4.6. Let {fn} be a sequence of functions in R(T) and let f ∈ R(T). We say that {fn} converges
uniformly to f on T if, for each ε > 0, there exists a natural number N for which

|fn(x)− f(x)| < ε

for all n ≥ N and x ∈ R.

Of course, the above notion of uniform convergence was the same as it was for uniform convergence of functions on
R. The difference here is that the functions of interest are 2π periodic. In fact, it’s easy to see that {fn} converges
uniformly to f on T if and only if {fn} converges uniformly to f on any interval I of length at least 2π. As we saw
before, uniform convergence on T is also captured by the sup norm. Let’s define it in this context.
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Definition 4.7. Given any f ∈ R(T) (which is necessarily bounded), define

‖f‖∞ = sup
T
|f(x)|

where supT |f(x)| := sup{|f(x)| : x ∈ I} given any interval I ⊆ R of length at least 2π.

In this language and by virtue of our previous results, we have the following proposition.

Proposition 4.8. Let {fn} ∈ R(T) and let f ∈ R(T). Then {fn} converges uniformly to f on T if and only if

lim
n→∞

‖fn − f‖∞ = 0.

If either of the equivalent conditions of the above proposition is met, {fn} is also said to converge to f with respect
to the L∞(T) norm – a notion we will discuss more fully in the next subsection. In the context of the torus T, we
restate Theorem 4.9:

Theorem 4.9. Let {fn} be a sequence of functions in R(T). Then {fn} converges uniformly on T if and only if
the following condition is satisfied:

(UC) For all ε > 0, there exists a natural number N such that

|fn(x)− fm(x)| < ε whenever x ∈ R and n,m ≥ N.

Let’s also recapture Theorems 3.7 and 3.8 in the context of the torus T.

Theorem 4.10. Let {fn} be a sequence of functions in R(T) and suppose that {fn} converges uniformly on R to
a function f : R→ C. Then the following properties hold:

1. The limit f is Riemann integrable on T, i.e., f ∈ R(T), and the sequence {fn} converges uniformly to f on
T.

2. If {fn} ⊆ C(T), then f ∈ C(T).

3. We have

lim
n→∞

∫
T
fn =

∫
T

lim
n→∞

fn =

∫
T
f.

Let’s now talk about series on T. Given a sequence {fn} ∈ R(T), we investigate the corresponding series
∑
n fn.

For each natural number N , we define the Nth partial sum SN of the series
∑
n fn by

SN (x) =

N∑
n=1

fn(x)

for x ∈ R. It is clear that {SN} is a sequence of Riemann-integrable functions on T and we can ask whether or not
it has a limit. If, for x ∈ R,

lim
N→∞

SN (x) = lim
N→∞

N∑
n=1

fn(x)

exists, we say that the series
∑
n fn converges at x and define the sum of the series to be the number

∞∑
n=1

fn(x) = lim
N→∞

SN (x) = lim
N→∞

N∑
n=1

fn(x).

If the sequence of partial sums SN converges at each x ∈ R, we say that the series
∑∞
n=1 fn converges pointwise on

T and write
∞∑
n=1

fn(x) = lim
N→∞

SN (x)

for each x ∈ R. Further, we say that the series
∑∞
n=1 fn converges uniformly on T if the sequence {SN} of partial

sums converges uniformly on T. Rephrasing our work from the previous section, we can state the Weierstrass M -test
in the context of T.
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Theorem 4.11. Let {fn} be a sequence of functions in R(T) and, for each n ∈ N, let Mn = ‖fn‖∞. If the
numerical series

∑∞
n=1Mn converges, then the following statements hold:

1. The series
∑∞
n=1 fn converges uniformly on T.

2. We have ∫
T

∞∑
n=1

fn(x) dx =

∞∑
n=1

∫
T
fn(x) dx.

3. If, additionally, {fn} ⊆ C(T), the sum of the series

∞∑
n=1

fn(x) = lim
N→∞

N∑
n=1

fn(x)

is also a member of C(T).

4.3 The Lebesgue norms on T and the L2(T) inner product

We begin this section by introducing the Lebesgue norms on the torus T. These norms, denoted by ‖ · ‖p for
1 ≤ p ≤ ∞, give a notion of “size” to each function in R(T) and, in fact, we’ve already seen some beautiful prop-
erties of the ‖ · ‖∞ norm studied in the preceding section. As we did on subintervals of the real line, we will pay
special attention to the p = 2 case as it is captured by the rich structure of the so-called L2 inner product.

Warning: The notation in this subsection will parallel that of Subsection 3.3; however, the definitions will all differ
by a factor of (2π)1/p. These changes are only to simplify notation and won’t affect anything essentially. In any
case, watch out for the 2π!

Definition 4.12. 1. For 1 ≤ p <∞, we define the Lp = Lp(T) norm of a function f ∈ R(T) by

‖f‖p =

(
1

2π

∫
T
|f(x)|p dx

)1/p

.

2. If p =∞, we define the Lp = L∞ = L∞(T) of f ∈ R(T) by

‖f‖∞ = sup
T
|f(x)|

where supT |f(x)| := sup{|f(x)| : x ∈ I} given any subinterval I ⊆ R of length at least 2π, a notion which
makes sense precisely because f is 2π-periodic.

3. Let 1 ≤ p ≤ ∞. Given a sequence of function {fn} ⊆ R(T) and another function f ∈ R(T), we say that {fn}
converges to f with respect to the Lp = Lp(T) norm if

lim
n→∞

‖fn − f‖p = 0.

Tracking carefully the appearance of 2π in the above definitions, an appeal to the results of Subsection 3.3 yields
the following results about the Lp norm on T.

Proposition 4.13. For any f, g ∈ R(T) and α ∈ C, we have

1.
‖f‖p ≥ 0
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2.
‖αf‖p = |α|‖f‖p

3.
‖f + g‖p ≤ ‖f‖p + ‖g‖p

Proposition 4.14 (Hölder’s inequality). Let 1 ≤ p ≤ q ≤ ∞ be conjugate exponents, i.e.,

1

p
+

1

q
= 1.

For any f, g ∈ R(T), ∣∣∣∣ 1

2π

∫
T
f(x)g(x) dx

∣∣∣∣ ≤ ‖f‖p‖g‖q.
Proposition 4.15. Given any 1 ≤ r ≤ s ≤ ∞, if a sequence {fn} ⊆ R(T) converges to f ∈ R(T) with respect to
the Ls(T) norm, then {fn} converges to f with respect to the Lr(T) norm. In particular, if {fn} converges to f
uniformly, i.e.,

lim
n→∞

‖fn − f‖∞ = 0

then, for every 1 ≤ p ≤ ∞, {fn} converges to f with respect to the Lp(T) norm, i.e.,

lim
n→∞

‖fn − f‖p = 0.

We now turn our focus to the case in which p = 2. Here, the norm ‖ · ‖2 is captured by the following inner product.

Definition 4.16. Given f, g ∈ R(T), we defined the L2 = L2(T) inner product of f and g to be the complex number

〈f, g〉 =
1

2π

∫
T
f(x)g(x) dx

Following directly from the defintion, we see that the L2(T) inner product characterizes the L2(T) norm. That is,
for each f ∈ R(T),

‖f‖2 =
√
〈f, f, 〉.

Let’s summarize some properties of the L2 inner product.

Proposition 4.17. Given any f, g, h ∈ R(T) and α ∈ C, we have:

1.
〈f, g〉 = 〈g, f〉

2.
〈αf, g〉 = α〈f, g〉

3.
〈f, αg〉 = α〈f, g〉

4.
〈f + g, h〉 = 〈f, h〉+ 〈g, h〉

5.
〈f, g + h〉 = 〈f, g〉+ 〈f, h〉
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Two functions f, g ∈ R(T) are said to be orthogonal (with respect to the L2 inner product) if 〈f, g〉 = 0. In this
case we write f ⊥ g. Using this language, we state three more crucial properties of the L2(T) inner product and
norm.

Proposition 4.18. Given f, g ∈ R(T), we have the following statements:

1. If f ⊥ g, then
‖f + g‖22 = ‖f‖22 + ‖g‖22.

2. ∣∣∣∣ 1

2π

∫
T
f(x)g(x) dx

∣∣∣∣ ≤ ‖f‖2‖g‖2
3.

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2

Proof. We prove only the first property as the others follow from our results of Subsection 3.3. Fix f, g ∈ R(T) and
suppose that f ⊥ g. Then, given the properties of the inner product summarized in the preceding proposition,

‖f + g‖22 = 〈f + g, f + g〉
= 〈f, f + g〉+ 〈g, f + g〉
= 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉
= ‖f‖22 + 〈f, g〉+ 〈f, g〉+ ‖g‖22
= ‖f‖22 + 0 + 0 + ‖g‖22
= ‖f‖22 + ‖g‖22.

Example 1

For any n ∈ Z, the function x → einx is C∞(T) and therefore Riemann integrable on T. We have, for each
n,m ∈ Z,

〈einx, eimx〉 =
1

2π

∫
T
einxe−imx dx =

{
1 n = m

0 m 6= n

as you showed in Homework 1. For this reason, einx ⊥ eimx whenever n 6= m. Such a collection {einx}n∈Z
is said to be an orthonormal system. The word normal comes from the fact that that L2(T) norm of each
function einx is one.

4.4 Fourier coefficients and the uniform theory

We now (and finally) begin our study of Fourier series. Our main goal is to approximate a given function f ∈ R(T)
by a sequence of trigonometric polynomials, called Fourier polynomials. A trigonometric polynomial of order N is,
by definition, a function of the form

PN (x) =

N∑
n=−N

cne
inx

for x ∈ R where {cn} are complex numbers. It is clear that each such polynomial PN is a member of C∞(T) and
hence a member of R(T). Our goal is then to find a sequence of polynomials PN which approximate f in some
sense (pointwise, uniform, with respect to L2, etc.). As we will see shortly, the following definition provides a good
start.
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Definition 4.19. Given f ∈ R(T), define

f̂(n) = 〈f, einx〉 =
1

2π

∫
T
f(x)e−inx dx

for each n ∈ Z. For each N ∈ N, we define the Fourier polynomial of order N by

SN (x) = SN (f)(x) =

N∑
n=−N

f̂(n)einx

for x ∈ R.

The following theorem states that the Fourier coefficients determine a function at each point of continuity. This
was proved earlier in the course; for a proof see Theorem 2.1 of the course textbook. We will recapture the result
shortly. I don’t like that this is here. Perhaps instead we should do some examples here to show that the Fourier
polynomials tell us something about f?

Proposition 4.20. Suppose that, for f, g ∈ R(T), f̂(n) = ĝ(n) for all n ∈ Z. If f and g are continuous at x ∈ R,
then f(x) = g(x). If, additionally, f, g ∈ C(T), then f = g.

With the above definition in mind, we are interested in whether or not the Fourier polynomials of f approximate
f in any sense. The natural thing to do is then to take N →∞ and this leads us to the notion of Fourier series.

Definition 4.21. given a function f ∈ R(T), its Fourier series is the formal expression

∑
n∈Z

f̂(n)einx =

∞∑
n=−∞

f̂(n)einx

is called the Fourier series of f . We write

f ∼
∑
n∈Z

f̂(n)einx

To investigate the convergence of this series, we must investigate the convergence of the Fourier polynomials SN
which are, by definition, partial sums of the Fourier series for f . That is, we say that the Fourier series for f
converges at x ∈ R if limN→∞ SN (x) exists. In this case,

∑
n∈Z

f̂(n)einx = lim
N→∞

N∑
n=−N

f̂(n)einx

is the sum of the series. To refine our discussion above, our main goal is to ask: When and in what sense is

f(x) =
∑
n∈Z

f̂(n)einx?

In view of the Weierstrass M -test, we can give a sufficient condition for the uniform convergence of Fourier series
in terms of the summability of the numerical series {f̂(n)}.

Theorem 4.22. Let f ∈ C(T) and let {f̂(n)}n∈Z be the Fourier coefficients of f . If the series
∑
n∈Z |f̂(n)|

converges, then the Fourier series of f ,
∑
n∈Z f̂(n)einx, converges uniformly to f .

Proof. We observe that
|f̂(n)einx| = |f̂(n)||einx| = |f̂(n)|

for all n ∈ Z and x ∈ R. In other words, the summands gn(x) = f̂(n)einx satisfy |gn(x)| ≤ Mn = |f̂(n)| for all

n ∈ Z and x ∈ R. In view of our supposition that the series
∑
|f̂(n)| =

∑
Mn converges, the Weierstrass M -test
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guarantees that the Fourier series converges uniformly to some complex-valued function g on R. Further, because
each summand f̂(n)einx is continuous, g is continuous. Also, observe that

g(x+ 2π) = lim
N→∞

N∑
n=−N

f̂(n)ein(x+2π) = lim
N→∞

N∑
n=−N

f̂(n)einx = g(x)

for all x ∈ R and so g is 2π-periodic. We therefore conclude that g ∈ C(T). It remains to show that g = f . To this
end, we compute the Fourier coefficients of g. Observe that, for any m ∈ Z,

g(x)e−imx = e−imx lim
N→∞

N∑
n=−N

f̂(n)einx = lim
N→∞

N∑
n=−N

f̂(n)einxe−imx

for all x ∈ R. In fact, the Weierstrass M -text applied to the summands n 7→ f̂(n)einxe−imx shows that the partial
sums on the right hand side converge uniformly to g(x)e−imx. Since each summand is Riemann integrable (it is
continuous) and the series converges uniformly, we may integrate term-by-term. For each m ∈ Z, we have

ĝ(m) = 〈g, eimx〉 =
1

2π

∫
T
g(x)e−imx dx =

∑
n∈Z

1

2π

∫
T
(f̂(n)einxe−imx) dx =

∑
n∈Z

f̂(n)〈einx, eimx〉 = f̂(m)

where we have used the fact that 〈einx, eimx〉 = 1 when n = m and 0 otherwise. Therefore f̂(n) = ĝ(n) for all n ∈ Z
and, in view of the preceding proposition f = g. In other words,

f(x) =
∑
n∈Z

f̂(n)einx

where the convergence is uniform for x ∈ R.

I’ve always found the result above somewhat unsatisfying, though it is powerful as we will shortly see. The reason
I find it unsatisfying is because its hypotheses are stated in terms of the Fourier coefficients of f and so, to apply
the theorem, one has to compute the Fourier coefficients of f and then ask if they are absolutely summable. One
would like to instead have hypotheses stated in terms of f itself. In any case, the theorem allows us to prove the
following result.

Corollary 4.23. If f ∈ C2(T), then the Fourier series for f ,
∑
n∈Z f̂(n)einx, converges uniformly to f on R.

Proof. Let f(x) = u(x) + iv(x) where u and v are real-valued 2π periodic functions which are, by hypothesis, twice
continuously differentiable on R. We have f ′(x) = u′(x) + iv′(x) and f ′′(x) = u′′(x) + iv′′(x) for x ∈ R. I claim
that, for all non-zero n ∈ Z,

f̂(n) =
−1

2πn2

∫
T
f ′′(x)e−inx dx.

To see this, we apply the complex-version of integration by parts (which works in view of the FTC you proved
in Homework 1). This is the statement: If u and v are complex-valued functions differentiable on the interval [a, b]
with derivatives u′ and v′, ∫

[a,b]

u(x)v′(x) dx = u(x)v(x)
∣∣∣b
a
−
∫
[a,b]

u′(x)v(x) dx

where u(x)v(x)
∣∣b
a

:= u(b)v(b)− u(a)v(a). So, upon taking u = f and v′(x) = e−inx, we have

f̂(n) =
1

2π

∫
T
f(x)e−inx dx =

1

2π

∫
[−π,π]

f(x)e−inx dx

=
1

2π

(
f(x)

e−inx

−in
∣∣π
−π −

∫
[−π,π]

f ′(x)
e−inx

−in
dx

)

We note, however, that because f and e−inx are 2π periodic,
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Exercise 15

This exercise concerns the absolute decay of Fourier coefficients. It allows you to investigate conditions under
which the Fourier series for a function f converges uniformly to f by Theorem 4.22. Do the following:

1. Use induction (on m) and integration by parts to prove the statement: If f ∈ Cm(T) for m ∈ N, then,
for any non-zero n ∈ Z,

f̂(n) = (in)−mf̂ (m)(n) =
(in)−m

2π

∫
T
f (m)(x)e−inx dx

where f (m) means the mth-derivative of f . Conclude directly that the Fourier series for f converges
uniformly to f whenever f ∈ Cm(T) for m ≥ 2.

Given a function f ∈ R(T), we say that f is Hölder continuous of order α > 0 if f ∈ Cm(T) for m = bαc and
there exists Cα > 0 for which

|f (m)(x)− f (m)(y)| ≤ C|x− y|m−α

for all x, y ∈ R.

2. Find a function f ∈ R(T) which is Hölder continuous of order α = 2.

3. Use the mean value theorem to prove that, for f ∈ C1(T), f is Hölder continuous of order α = 1.

4. Using your reasoning from the previous item, what can be said about the Hölder continuity of f for
f ∈ C2(T)?

5. Prove that, if f ∈ R(T) is Hölder continuous of order α > 0, then there is a constant Cα for which

|f̂(n)| ≤ Cα
|n|α

for nonzero n ∈ Z. Hint: For n 6= 0, the 2π-periodicity of f guarantees that

f̂(n) =
1

2π

∫ π

−π
f(x)e−inx dx =

1

2π

∫ π

−π
f
(
x+

π

n

)
e−in(x+π/n) dx.

Upon noting that e−in(x+π/n) = −e−inx, you can average the above integrals to obtain a nice way to
write f̂ as an integral over a difference f(x)− f(x+ π/n). Now use Hölder continuity.

6. Use your result from the item above and Theorem 4.22 to prove that the Fourier series for f converges
uniformly to f whenever f is Hölder continuous of order α for any α > 1. Hint: Appeal to the summability
of p series.

This concludes our investigation of the uniform convergence of Fourier series. We now move on to the theory of
pointwise convergence. In contrast to our study of uniform convergence, the main object in our study of pointwise
convergence of Fourier series revolves around a careful (analytical) study of the Dirichlet kernel, which we introduce
now.

Proposition 4.24. Let f ∈ R(T) and let (f̂(n))n∈Z be its Fourier coefficients. For each N , let SN denote the N th
Fourier polynomial of f , i.e.,

SN (x) =
N∑

n=−N
f̂(n)einx.
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Then, for each N ∈ N and x ∈ R,

SN (x) =
1

2π

∫
T
DN (x− y)f(y) dy

where

DN (y) :=

{
sin((N+1/2)y)

sin y/2 y 6= 2πk, k ∈ Z
2N + 1 y = 2πk, k ∈ Z

=

N∑
n=−N

einy;

this is called the Dirichlet kernel. For each N ,

1

2π

∫
T
DN (y) dy = 1

and
1

2π

∫
[−π,0]

DN (y) dy =
1

2π

∫
[0,π]

DN (y) dy =
1

2
.

Proof. By virtue of the linearity of the integral, it is evident that

SN (x) =

N∑
n=−N

(
1

2π

∫
T
f(y)e−iny dy

)
einx

=
1

2π

∫
T

N∑
n=−N

f(y)ein(x−y) dy

for N ∈ N and x ∈ R. We now show that

DN (y) =

N∑
n=−N

einy

for N ∈ N and x ∈ R. First, it is clear that, if y = 2πk for k ∈ Z, DN (y) = 2N + 1 =
∑N
n=−N 1 =

∑N
n=−N e

iny.
Thus, we assume without loss of generality that y 6= 2πk for k ∈ Z and hence sin y/2 6= 0. Now,

D1(y) =
sin((1 + 1/2)y)

sin(y/2)
=

sin y cos(y/2) + sin(y/2) cos y

sin(y/2)

=
sin((1/2 + 1/2)y) cos(y/2)

sin(y/2)
+ cos y =

2 sin(y/2) cos(y/2) cos(y/2)

sin(y/2)
+ cos y

= 2 cos2(y/2) + cos y = 1 + 2 cos y

= ei·0·y + eiy + eiy =

1∑
n=−1

einy

where we have used the half-angle identity 2 cos2(A/2) = 1 + cos(A). Thus, the desired result is true for N = 1.
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Let’s induct on N . Let’s assume that the formula holds for N ≥ 1, we will show it holds for N + 1. We have

DN+1(y) =
sin((N + 1 + 1/2)y)

sin y/2

=
sin y cos((N + 1/2)y) + cos y sin((N + 1/2)y

sin y/2

= 2 cos(y/2) cos((N + 1/2)) + cos yDN (y)

= 2 cos(y/2)(cosNy cos(y/2)− sinNy sin(y/2)) + cos yDN (y)

= (1 + cos y) cosNy − sinNy sin y + cos yDN (y)

= cosNy + (cos y cosNy − sinNy sin y) + cos yDN (y)

= cosNy + cos((N + 1)y) + cos yDN (y)

=
eiNy + e−iNy

2
+
ei(N+1)y + e−i(N+1)y

2
+
eiy + e−iy

2
DN (y)

=
eiNy + e−iNy

2
+
ei(N+1)y + e−i(N+1)y

2
+
eiy + e−iy

2

N∑
n=−N

einy

=
1

2

(
eiNy + e−iNy + ei(N+1)y + e−i(N+1)y +

N∑
n=−N

ei(n+1)y +

N∑
n=−N

ei(n−1)y

)

=
1

2

eiNy + e−iNy + ei(N+1)y + e−i(N+1)y +

N+1∑
n=−(N−1)

einy +

N−1∑
n=−(N+1)

einy


=

1

2

 N+1∑
n=−(N+1)

einy +

N+1∑
n=−(N+1)

einy


=

N+1∑
n=−(N+1)

einy

where we have made use of the induction hypothesis and a tour de force of trigonometric identities.
Now, for any N ∈ N, due to the periodicity of the functions x 7→ einx for n 6= 0 and their antiderivatives,

1

2π

∫
T
DN (y) dy =

1

2π

∫
T

N∑
n=−N

einy dy =
1

2π

∫
T
ei0·y dy =

1

2π

∫
[−π,π]

1 dy = 1.

Finally, by a quick examination, it is clear the DN (y) is an even function. Consequently

1 = 2

(
1

2π

∫
[0,π]

DN (y) dy

)
= 2

(
1

2π

∫
[−π,0]

DN (y) dy

)

from which the final result follows.

The Dirichlet kernels D5, D10 and D20 are illustrated in Figure 7.
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Figure 7: The graphs of D5, D10 and D20.

4.5 Convolutions

Given two functions f, g ∈ R(T), we define their convolution f ∗ g : R→ C by

(f ∗ g)(x) =
1

2π

∫
T
f(x− y)g(y) dy =

1

2π

∫ π

−π
f(x− y)g(y) dy

for x ∈ R. The convolution operation is a way to combine information about the functions f and g to produce a
new function (which will often be nicer) called f ∗ g. Let’s consider an example.

5 All things Fourier

5.1 The L2 theory

In the last subsection, we showed that continuous 2π-periodic functions can be approximated uniformly by trigono-
metric polynomials. In this subsection, we turn our focus to a larger class of functions, 2π-periodic and Riemann
integrable functions, and a completely different mode of approximation, the L2 approximation. It is my hope that
you will see that the L2 theory, outlined in this subsection, is the cleanest and best-adapted for approximation
by trigonometric polynomials. In fact, convergence of Fourier series in L2 will happen even when other forms of
convergence fail.
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Let f : R→ C. We say that f is Riemann integrable on an interval [a, b] if its real and imaginary parts are Riemann
integrable on [a, b]. In this case, we define the Riemann integral of f (a complex-valued function) on [a, b] by∫

[a,b]

f =

∫
[a,b]

f(x) dx =

∫
[a,b]

Re(f)(x) dx+ i

∫
[a,b]

Im(f)(x) dx.

Using the properties of the Riemann integral established for real-valued functions, it is easy to check that the
Riemann integral, defined here for complex-valued functions, is also linear.

Now, given a 2π-periodic function f : R→ C, we say that f is Riemann integrable on T if f is Riemann integrable
on [−π, π] and in this case we write ∫

T
f =

∫
T
f(x) dx =

∫
[−π,π]

f(x) dx.

When the context is clear, we will simply say that f is Riemann integrable. The set of all such functions will
henceforth be denoted by R(T). It is clear that C(T) ⊆ R(T).

Given f, g ∈ R(T), we define the L2 = L2(T) inner product by

〈f, g〉 =
1

2π

∫
T
f(x)g(x) dx.

You should verify that 〈·, ·〉 satisfies all of the properties of an inner product except positive definiteness. In
particular, 〈f, f〉 ≥ 0 for all f ∈ R(T) and so it makes sense to define the corresponding L2 norm by

‖f‖L2(T) =
√
〈f, f〉 =

(
1

2π

∫
T
|f(x)|2 dx

)1/2

;

this is also called the root-mean-square norm. We will often use the shorthand ‖f‖2 for ‖f‖L2(T).

As a quick remark, I should point out that ‖ · ‖2 isn’t a bona fide norm on the set R(T). It satisfies all of the
properties of a norm except positive definiteness. To see that positive definiteness fails, consider the function

f(x) =

{
1 if x ∈ 2πZ
0 otherwise.

It is clear that f ∈ R(T). Further,

‖f‖22 =
1

2π

∫
[−π,π]

f(x)2 dx = 0

however f is not the zero function. As it turns out ‖ · ‖2 does become a norm on the Lebesgue space L2(T) which
we do not discuss here. In fact, L2(T) is a complete (as a metric space) inner product space, such a space is called
a Hilbert space. This is standard material in a course on measure theory.

Let us now observe that, for each n,m ∈ Z,∫
T
einxeimx dx =

∫
T
einx−imx dx =

∫
T
ei(n−m)x dx =

∫
[−π,π]

cos((n−m)x) dx+ i

∫
[−π,π]

sin((n−m)x) dx.

Consequently,

〈einx, eimx〉 =
1

2π

∫
T
einxeimx dx =

{
1 if n = m

0 if n 6= m.
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In view of the preceding calculation, the collection of functions (einx)n∈Z is called an orthonormal system. Let’s
make a further observation, given P ∈ P(T) of the form

P (x) =

N∑
n=−N

cne
inx,

for each −N ≤ m ≤ N ,

〈P, eimx〉 =

N∑
n=−N

cn〈einx, eimx〉 = cm

and 〈P, eimx〉 = 0 whenever |m| > N . In this way, we find a way to find the coefficients of a trigonometric polynomial
by simply integrating against the elements of the system (einx). This is analogous to the way that the coefficients
of an analytic function can be computed by taking derivatives. Taking our cues from the above computation, we
make a definition.

Definition 5.1. Let f ∈ R(T). For each n ∈ Z, define

f̂(n) = 〈f, einx〉 =
1

2π

∫
T
f(x)e−inxdx.

The collection of complex numbers (f̂(n))n∈Z are called the Fourier coefficients of f . Considered as a formal series,
the series ∑

n∈Z
f̂(n)einx

is called the Fourier series for f and we write

f(x) ∼
∑
n∈Z

f̂(n)einx

to indicate that the right hand side is the Fourier series for f .

In view of the discussion preceding the definition, we see that computing the Fourier series corresponding to a
trigonometric polynomial P returns the polynomial P itself. Do you see an analogue with Taylor series here?
Throughout the rest of this section, we begin to analyze the ways in which the Fourier series for a function f
converges. As you will see, if the Fourier series is to converge, it will converge back to f . To this end, we will start
talking about partial sums.

Let f ∈ R(T) and (f̂(n))n∈Z be the Fourier coefficients of f . For each N ∈ N, the Nth order trigonometric
polynomial

SN (x) =

N∑
n=−N

f̂(n)einx

defined for x ∈ R is called the Nth partial sum of the Fourier series
∑
f̂(n)einx. Our first main result of the

subsection says that, of all Nth order trigonometric polynomials, SN is the best root-mean-square approximation
to f .

Theorem 5.2. Let f ∈ R(T) and let (f̂(n))n∈Z be its Fourier coefficients. Given N ∈ N let SN (x) be the N th order
partial sum of the Fourier series for f and let PN ∈ P(T) be another (possibly different) N th order trigonometric
polynomial of the form

PN (x) =

N∑
n=−N

cne
inx.

Then
‖f − SN‖2 ≤ ‖f − PN‖2

where equality holds if and only if cn = f̂(n) for all n.
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Proof. We first recall the basic linearity properties of the inner product: For u, v, w ∈ R(T), and a ∈ C,

〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉, 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

and
〈au, v〉 = a〈u, v〉, 〈u, av〉 = a〈u, v〉.

By virtue of these properties, we can write

‖f − PN‖22 = 〈f − PN , f − PN 〉 = 〈f, f〉 − 〈f, PN 〉 − 〈PN , f〉+ 〈PN , PN 〉

= ‖f‖22 −
N∑

n=−N
cn〈f, einx〉 −

N∑
n=−N

cn〈einx, f〉+

N∑
n=−N

N∑
m=−N

cncm〈einx, eimx〉

= ‖f‖22 −
N∑

n=−N
f̂(n)cn −

N∑
n=−N

cnf̂(n) +

N∑
n=−N

cncn

= ‖f‖22 −
N∑

n=−N
|f̂(n)|2 +

N∑
n=−N

|cn − f̂(n)|2

where we have used the fact that 〈einx, f〉 = 〈f, einx〉 = f̂(n). Obviously, making the above computation when

cn = f̂(n) yields

‖f − SN‖22 = ‖f‖22 −
N∑

n=−N
|f̂(n)|2 (7)

and therefore

‖f − PN‖22 = ‖f − SN‖22 +

N∑
n=−N

|cn − f̂(n)|2

from which we observe that
‖f − SN‖2 ≤ ‖f − PN‖2

with equality if and only if cn = f̂(n) for all n.

Theorem 5.3 (Bessel’s inequality). Let f ∈ R(T) and let (f̂(n))n∈Z be the Fourier coefficients of f . Then∑
n∈Z
|f̂(n)|2 ≤ ‖f‖22 =

1

2π

∫
T
|f(x)|2 dx.

In particular, the series ∑
n∈Z
|f̂(n)|2 = lim

N→∞

N∑
n=−N

|f̂(n)|2

converges.

Proof. In view of (7), we have
N∑

n=−N
|f̂(n)|2 ≤ ‖f‖22

for all N ∈ N. The desired result follows by taking the limit of the left hand side as N → ∞ and noting that the
partial sums, whose summands are all non-negative, form a non-decreasing sequence of non-negative numbers.
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Corollary 5.4 (The Riemann-Lebesgue lemma). Let f ∈ R(T) and let (f̂(n))n∈[Z be the Fourier coefficients of f .
Then

lim
n→∞

f̂(n) =
1

2π

∫
T
f(x)e−inx dx = 0

and

lim
n→∞

f̂(−n) =
1

2π

∫
T
f(x)einx dx = 0.

Proof. The convergence of the series
∑∞
n=−∞ |f̂(n)|2 implies that the summands for sufficiently large and largely

negative n converge to zero.

Corollary 5.5 (A sharper form of the Riemann-Lebesgue lemma). Let [a, b] ⊆ [−π, π] and suppose that f is
Riemann integrable on [a, b]. Then

lim
n→∞

1

2π

∫
[a,b]

f(x) cos(nx) dx = 0

and

lim
n→∞

1

2π

∫
[a,b]

f(x) sin(nx) dx = 0.

Proof. Given f as above, consider g ∈ R(T) defined by

g(x) =

{
f(x) x ∈ [a, b]

0 x ∈ [−π, π] \ [a, b]

and extended periodically to R. Then, by the Riemann-Lebesgue lemma applied to g, we have

lim
n→∞

1

2π

∫
[a,b]

f(x)e−inx dx = lim
n→∞

1

2π

∫
[−π,π]

g(x)e−inx dx = lim
n→∞

ĝ(n) = 0

and

lim
n→∞

1

2π

∫
[a,b]

f(x)einx dx = lim
n→∞

1

2π

∫
[−π,π]

g(x)einx dx = lim
n→∞

ĝ(−n) = 0.

Consequently,

lim
n→∞

1

2π

∫
[a,b]

f(x) cos(nx) dx = lim
n→∞

1

2π

∫
[a,b]

f(x)

(
einx + e−inx

2

)
dx

=
1

2

(
lim
n→∞

1

2π

∫
[a,b]

f(x)einx dx+ lim
n→∞

1

2π

∫
[a,b]

f(x)e−inx dx

)
= 0.

The proof that limn→∞(2π)−1
∫
[a,b]

f(x) sin(nx) dx = 0 is similar.

Our next result shows that the Fourier series for f converges to f with respect to the L2(T) norm. The result also
shows that Bessel’s inequality is, in fact, an equality. We first need the following simple lemma that you will prove
in your Homework 7.

Lemma 5.6. Let f ∈ R(T). For any ε > 0, there exists g ∈ C(T) such that

‖f − g‖2 < ε.
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Theorem 5.7 (Parseval’s Theorem). Let f ∈ R(T) and let (f̂(n))n∈Z the Fourier coefficients of f . For each natural
number N , denote by SN the N th partial sum of the Fourier series for f . Then

lim
N→∞

‖f − SN‖2 = 0;

this is the statement that the Fourier series
∑
n∈Z f̂(n)einx converges to f with respect to the L2 norm. Further

‖f‖22 =
∑
n∈Z
|f̂(n)|2.

Proof. Let ε > 0 and by an appeal to the lemma choose h ∈ C(T) for which ‖f − h‖2 < ε/2. Now, in view of
Theorem ??, Let P ∈ P(T) be a trigonometric polynomial of the form

P (x) =

N∑
n=−N

cne
inx

for which
|h(x)− P (x)| < ε/2

for all x ∈ R. From this it follows immediately that

‖f − P‖2 ≤ ‖f − h‖2 + ‖h− P‖2 < ε/2 +

(
1

2π

∫
[−π,π]

(ε/2)2 dx

)1/2

= ε.

Now, for any M ≥ N , the Mth partial sum of the Fourier series for f , SM can be compared with the trigonometric
polynomial P (which can trivially be though of as ofMth degree by taking its coefficients to be zero forM ≤ |n| > N .
Thus, in view of Theorem 5.2

‖f − SM‖2 ≤ ‖f − P‖2 < ε.

Hence, for every ε > 0, there exists and N ∈ N such that, for every M ≥ N , ‖f − SM‖2 < ε and therefore

lim
N→∞

‖f − SN‖2 = 0.

With this, (7) gives

lim
N→∞

N∑
n=−N

|f̂(n)|2 = ‖f‖22 − lim
N→∞

‖f − SN‖22 = ‖f‖22 − 0

form which the desired result follows immediately.

Example 1

Consider the so-called sawtooth function defined by

f(x) = x − π < x ≤ π

and extended 2π-periodically to R. The graph of f is illustrated in Figure 8 (the vertical lines are not part of
the graph; they are inserted automatically by Matlab).
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Figure 8: The graph of f for −3π < x ≤ 3π.

Let’s compute the Fourier coefficients of f . For n = 0, we have

f̂(0) =
1

2π

∫
T
f(x)e−i·0·x dx =

1

2π

∫
T
x dx =

1

2π

∫
[−π,π]

x dx = 0.

For n 6= 0,

2πf̂(n) =

∫
T
xe−inx dx

=

∫
[−π,π]

x cos(−nx) dx+ i

∫
[−π,π]

x sin(−nx) dx

=

∫
[−π,π]

x cosnx dx− i
∫
[−π,π]

x sinnx dx

= −i

(
−1

n
x cosnx

∣∣π
−π −

−1

n

∫
[−π,π]

cosnx dx

)

=
i

n
(π cosnπ − (−π cos(−nπ))− 0

=
2πi

n
cosnπ =

2πi

n
(−1)n

where we have integrated by parts and used (heavily) the periodicity and odd and even properties of sine/cosine.
Consequently,

f̂(n) =

{
i(−1)n
n n 6= 0

0 n = 0.

Observe that ∑
n∈Z
|f̂(n)|2 =

∑
n∈Z\{0}

1

n2
= 2

∞∑
n=1

1

n2
.

Also,

‖f‖22 =
1

2π

∫
T
|f(x)|2 dx =

1

2π

∫
[−π,π]

x2 dx =
1

2π

x3

3

∣∣π
−π =

2π3

6π
=
π2

3
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and so, by an application of Parseval’s theorem, we obtain

π2

3
= ‖f‖22 =

∑
x∈Z
|f̂(n)|2 = 2

∞∑
n=1

1

n2
.

It was long understood that the series
∑∞
n=1 1/n2 converged. The Basel problem, posed by Pietro Mengoli

around 1644, asks: What is the exact value of this series? In 1734, a mathematician named Leonhard Euler
showed that the value of the series is exactly π2/6. The solution made Euler instantly famous. By simply
dividing the previous equation by 2 we obtain Euler’s result (Theorem 5.8 below). We note that our approach
(via Parseval’s Theorem) is completely different than that of Euler. This should not be surprising as Fourier
series wasn’t discovered for nearly one hundred years after Euler presented his result.

Theorem 5.8 (Euler 1734).
∞∑
n=1

1

n2
=
π2

6
.

As our attention will soon turn to the investigation of pointwise convergence of Fourier series, let’s continue
our Fourier series analysis of the Sawtooth function. As we will see, this example contains a surprising number
of the strange phenomena/pathologies found commonplace in the study of Fourier series, including the Gibb’s
phenomenon. For each N , the Nth Fourier polynomial for f is given by

SN (x) =

N∑
n=−N

f̂(n)einx = f̂(0) +

N∑
n=1

f̂(n)einx +

N∑
n=1

f̂(−n)e−inx

=

N∑
n=1

i(−1)n

n
einx +

i(−1)−n

−n
e−inx =

N∑
n=1

(−1)n

n
i(einx − e−inx)

=

N∑
n=1

(−1)n

n
i(2i sinnx) =

N∑
n=1

2(−1)n+1

n
sinnx

for x ∈ R. The Fourier polynomials of degrees 1, 2, 3, 4, 5 and 40 are illustrated in Figure 9 for −3π < x ≤ 3π.
The reader should note that the partial sums appear to be converging nicely except for the overshoot near the
points of discontinuity at x = ±3π,±π; this is the Gibb’s phenomenon.
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Figure 9: The graphs of f and Pn for n = 1, 2, 3, 4, 5, 40.

5.2 The pointwise and uniform theory theory

As we saw in the last subsection, the Fourier series for a function f ∈ R(T) converges to f with respect to the
L2 norm. In this subsection, we investigate the same question from the perspective of pointwise (and uniform)
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convergence; as we have seen, both notions are stronger than L2 convergence. When originally investigating Fourier
series in its connection to the theory of heat, Jean-Baptiste Fourier claimed that, given f ∈ C(T), the Fourier series∑
n∈N f̂(n)einx converges to f(x) for all x ∈ R. As it turns out, this isn’t true.

Theorem 5.9 (Du Bois-Reymond, 1873). There exits f ∈ C(T) whose Fourier series
∑
n∈Z f̂(n)einx diverges at a

point x ∈ (−π, π]. This means specifically that, for some x ∈ (−π, π], the limit

lim
N→∞

N∑
n=−N

f̂(n)einx

does not exist.

Following the discovery of this result, a frantic search began in mathematics to find precise conditions on a function f
which would guarantee that its Fourier series converged. Throughout this search, it was discovered that the Riemann
integral was insufficient for the needed purposes of investigation and this helped lead to a complete revolution in
mathematics. Our of the revolution emerged the Lebesgue integral and Lebesgue’s theory of integration. Any
serious investigation of Fourier series (which ours is unfortunately not) requires one to understand the Lebesgue
integral. In 1926 a brilliant young mathematician named Andre Kolmogorov showed that things were much worse
than had been previously thought (and had been shown by Du Bois-Reymond).

Theorem 5.10 (Kolmogorov 1926). There exists a Lebesgue integrable function f (we say f ∈ L1(T)) whose
Fourier series diverges at every point.

We now begin our investigation of the uniform convergence of Fourier series.

Lemma 5.11. Let f, g ∈ C(T), if f̂(n) = ĝ(n) for all n, then f = g, i.e., f(x) = g(x) for all x ∈ R.

Proof. As you show in your homework, ̂(f − g)(n) = f̂(n)− ĝ(n) for all n ∈ Z, i.e., the map f 7→ f̂ is linear. Thus,
̂(f − g)(n) = 0 for all n ∈ Z and so, by an appeal to Parseval’s theorem,

‖f − g‖22 =
∑
n∈Z
| ̂(f − g)(n)|2 = 0.

Consequently, ∫
T
|f(x)− g(x)|2 dx = 2π‖f − g‖22 = 0.

It now follows, by the result I prove in class during Week 6, that f(x)− g(x) = 0 for all x ∈ [−π, π]. Because f and
g are 2π periodic, we conclude that f(x) = g(x) for all x ∈ R.

With the properties of the Dirichlet kernel established in the preceding proposition, we have our first (truely)
pointwise result.

Theorem 5.12. Let f ∈ R(T) and assume that the f = u+iv is piecewise differentiable, i.e., its real and imaginary
parts u and v are continuously differentiable on [−π, π] except possibly at a finite number of points where u, v, u′

and v′ have (at worse) removable or jump discontinuities. For any x0 ∈ R, define

f(x+0 ) = lim
x→x0;x>x0

f(x) and f(x−0 ) = lim
x→x0:x<x0

f(x).

Then, at each x0 ∈ R, the Fourier series for f converges and

f(x+0 ) + f(x−0 )

2
=
∑
n∈Z

f̂(n)einx0 = lim
N→∞

N∑
n=−N

f̂(n)einx0 .

In particular, if f is continuous at x0 (or has a removable discontinuity at x0),

f(x0) =
∑
n∈Z

f̂(n)einx0 ;

otherwise, the Fourier series for f converges to the average of the left and right limits of f at x0.

Before proving the theorem, let’s illustrate its conclusion by revisiting the sawtooth function and its Fourier series.
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Example 2

We recall the sawtooth function defined by f(x) = x for −π < x ≤ π and extended periodically to R. We
previously studied this function in Example 5.1 and computed its Fourier series. We found

f(x) ∼
∑

n∈Z\{0}

i(−1)n

n
einx =

∞∑
n=1

2(−1)n+1

n
sinnx

Now, by a straightforward computation, f is differentiable on the open set R \ {(2k + 1)π : k ∈ Z} (consisting
of the entire real line except for the breakpoints ±π,±3π,±5π, . . . ) and, on this set, f ′(x) = 1. Consequently,
f is piecewise differentiable and so we may apply the theorem.

For −π < x < π, f is continuous and by virtue of the theorem we conclude that the Fourier series for f
converges to f(x) = x on the open set (−π, π). At x = π, f has a discontinuity. Here we have

f(π−) = lim
x→π;x<π

f(x) = lim
x→π;x<π

x = π

and
f(π+) = lim

x→π;x>π
f(x) = lim

x→π;x>π
(x− 2π) = π − 2π = −π.

Consequently, ∑
n∈Z

f̂(n)einπ = lim
N→∞

SN (π) =
1

2
(π +−π) = 0;

in fact, this result holds at all the breakpoints ±π,±3π, . . . ,. Appealing to the full scope of the theorem (or
simply noting that the above conclusion extends by periodicity), we have

∑
n∈Z

f̂(n)einx = lim
N→∞

SN (x) =

{
(x− 2πk) (2k − 1)π < x < (2k + 1)π, k ∈ Z
0 x = (2k + 1)π, k ∈ Z

.

In other words, the Fourier series for f converges to f pointwise on the open set R \ {(2k + 1)π : k ∈ Z} and
it converges to 0 elsewhere. We note that the series does not converge uniformly for, if this were the case, f
would be continuous. This convergence is illustrated in the following Figure 10.
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Figure 10: f and S40

We now prove the theorem.

Proof of Theorem 5.12. Our aim is to show that

lim
N→∞

(
SN (x0)− f(x+0 ) + f(x−0 )

2

)
= 0.

In view of Proposition 4.24, we have(
Sn(x0)− f(x+0 ) + f(x−0 )

2

)
=

1

2π

∫
T
f(x0 − y)DN (y) dy −

(
f(x+0 )

1

2
+ f(x−0 )

1

2

)
=

1

2π

∫
[−π,0]

f(x0 − y)DN (y) dy +
1

2π

∫
[0,π]

f(x0 − y)DN (y) dy

−

(
f(x+0 )

1

2π

∫
[−π,0]

DN (y) dy + f(x−0 )
1

2π

∫
[0,π]

DN (y) dy

)

=
1

2π

∫
[−π,0]

(f(x0 − y)− f(x+0 ))DN (y) dy +
1

2π

∫
[0,π]

(f(x0 − y)− f(x−0 ))DN (y) dy

=: I+(N) + I−(N).
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We consider the integrals I+ and I−. By virtue of Proposition 4.24,

I+(N) =
1

2π

∫
[−π,0]

(f(x0 − y)− f(x+0 ))
sin((N + 1/2)y)

sin(y/2)
dy

=
1

2π

∫
[0,π]

(f(x0 + y)− f(x+0 ))
sin((N + 1/2)y)

sin(y/2)
dy

=
1

2π

∫
[0,π]

(f(x0 + y)− f(x+0 ))

(
cos(Ny) +

cos(y/2) sin(Ny)

sin(y/2)

)
dy

=
1

2π

∫
[0,π]

(f(x0 + y)− f(x+0 )) cos(Ny) dy +
1

2π

∫
[0,π]

(
f(x0 + y)− f(x+0 )

y

)(
2(y/2)

cos(y/2)

sin(y/2)

)
sin(Ny) dy

=
1

2π

∫
[0,π]

g(y) cos(Ny) dy +
1

2π

∫
[0,π]

h(y) sin(Ny) dy

where
g(y) = f(x0 + y)− f(x+0 )

and

h(y) =

(
f(x0 + y)− f(x+0 )

y

)(
2(y/2)

cos(y/2)

sin(y/2)

)
.

It is clear that g ∈ R(T) and thus, by Corollary 5.5,

lim
N→∞

1

2π

∫
[0,π]

g(y) cos(Ny) dy = 0.

Making the same conclusion concerning h isn’t so straightforward. First, given our hypotheses concerning f , it is
clear that h is piecewise continuous (continuous except at a finite number of points) on the interval (0, π] and so it
is Riemann-integrable on every compact subinterval of (0, π]. We must examine h near y = 0 for the only possible
impediment for Riemann integrability on [0, π] is the behavior of h as y → 0. First,

lim
y→0;y>0

2(y/2)
cos(y/2)

sin(y/2)
= lim
y→0;y>0

2 cos(y/2)
(y/2)

sin(y/2)
= 2.

Secondly, because f is piecewise differentiable on [−π, π],

lim
y→0:y>0

f(x0 + y)− f(x+0 )

y
= lim
y→0:y>0

f ′(x0 + y) = f ′(x+0 ).

We remark that this is really a statement about exchanging limits and derivatives and its validity is far from obvious.
A rigorous proof of this limit (which you should attempt), can be seen as an application of Theorem ??. Putting
these two result together shows that

lim
h→0;h>0

h(y) = 2f ′(x+0 ).

In particular, h is bounded (and well-behaved) at 0 and so it follows that h is Riemann integrable on [0, π]. By an
application of Corollary 5.5, we conclude that

lim
N→∞

1

2π

∫
[0,π]

h(y) sin(Ny) dy = 0.

Consequently,
lim
N→∞

I+(N) = 0.

By making completely analagous reasoning, it follows that

lim
N→∞

I−(N) = 0
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and therefore

lim
N→∞

(
SN (x0)− f(x+0 ) + f(x−0 )

2

)
= lim
N→∞

(I+(N) + I−(N)) = 0.

Exercise 16

We’ve seen three results so far about the convergence of Fourier series, Theorem 4.22 (and related Corollary
4.23), Theorem 5.7 and Theorem 5.12. Under certain hypotheses, each of these theorems gives an affirmative
(in a certain sense) to the question: Can a function be expended in terms of its Fourier series? In this exercise,
you are asked to analyze a handful of specific examples through the lens of these three theorems. Specifically,
for each of the functions f below, do the following:

a. Determine if the given function f is a member of R(T), Cm(T) for any m ≥ 0 and/or the set of piecewise
differentiable functions on T.

b. Compute the Fourier coefficients of f .

c. Compute and simplify the Fourier series for f .

d. In view of all of the results discussed above, make the strongest statement you can about the convergence of
the Fourier series of f . For instance, does it converge pointwise? If so, to what? Does it converge uniformly?
If so, to what? Does it converge with respect to the L2 norm? Please give precise statements.

e. If you concluded that f ∈ R(T) (the hypothesis of Theorem 5.7), you should expect that

‖f‖22 =
∑
n∈Z
|f̂(n)|2.

Compute both sides of this identity (Parseval’s identity). As our example of the sawtooth function gave us
the solution to Basel’s problem,

∑∞
n=1 1/n2 = π2/6, what does Parseval’s identity give you here?

The following is the list of functions to be analyzed. If the rule of the function f is only given on the interval
(−π, π], the function should be assumed to be 2π-periodic on R (and so the rule on (−π, π] determines the
function completely).

1.
f(x) = |x| for x ∈ (−π, π].

2. For α ∈ R,
f(x) = cos(αx) for x ∈ (−π, π].

You should expect a discrepancy between the cases α ∈ Z and α ∈ R \ Z.

3.

f(x) =

{
1 x ∈ (0, π]

0 x ∈ (−π, 0]
.

4.

f(x) =

{
x(π − x) x ∈ (0, π]

x(π + x) x ∈ (−π, 0]
.

Theorem 5.12 is the strongest result about the convergence of Fourier series we will prove in this course. I hope that
you find the result satisfying, it encompasses most of the functions that you know about and can write down. The

56



Fourier Analysis Supplementary notes for MA398 Evan Randles

Nobel prize-winning physicist, Richard Feynman, was quite happy with this results (and ones like it) when made
the following statement: “The mathematicians have shown, for a wide class of functions, in fact for all that are of
interest to physicists, that if we can do the integrals we will get back f(t).” He made this statement in the 1960’s
in his famous lecture series at Caltech, just before Lennart Carleson completely solved the problem and determined
the exact class of functions representable by their Fourier series [2, 3]. Carleson’s result, now known as Carleson’s
theorem, was a long standing conjecture known as Luzin’s conjecture. For your cultural benefit, I will state it here;
I’ll first need to make a definition.

Definition 5.13. For any interval I = [a, b] ⊆ R, we define

`(I) = b− a

to be the length of I. Now, for any subset E of R, we say that E is a set of measure zero (or a null set) if, for
every ε > 0, there is an infinite collection of intervals {In} such that

E ⊆
∞⋃
n=1

In

and
∞∑
n=1

`(In) < ε.

You should think of a set of measure zero as an extremely small set. For instance, any countable (and hence finite)
collection of points is of measure zero. There are, however, uncountable sets of measure zero, an important example
of which is the Cantor set.

Exercise 17

In this exercise, you verify the claim made in the penultimate sentence. Prove the following statement:

If E ⊆ R is countable, i.e., there exists a surjection (onto function) φ : N→ E, then E has measure
zero.

Hint: Surround each point xk ∈ E by an interval whose length is ε/2k+1.

Using this notion of small sets we can state Carleson’s theorem in the context of Riemann integrable functions; the
general result is formulated using the Lebesgue integral [1]. Here it is:

Theorem 5.14 (Carleson 1966). For any f ∈ R(T), there exists a set E of measure zero (which is possibly empty)
such that

f(x) =
∑
n∈Z

f̂(n)einx = lim
N→∞

SN (x)

for all x /∈ E.

5.3 The Gibb’s phenomenon

In this final subsection, we will study the Gibb’s phenomenon. The Gibb’s phenomenon, named after J. Willard
Gibb’s (yes, the free energy Gibbs), describes the pointwise convergence of Fourier series of a function with a jump
discontinuity. Instead of working in the general setting, we will study the Gibb’s phenomenon as it occurs when we
consider the Fourier series of the sawtooth function. Focusing on this specific case will allow us to very precisely
see what’s going on. If you are worried about the general case, I’ll refer you to a very nice discussion by T. W.
Körner in which he describes how to extend the results pertaining to this example to the general class of piecewise
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differentiable functions in R(T) [3].

So let’s return to our favorite example, the sawtooth function f , defined by

f(x) = x

for all −π < x ≤ π and extended periodically to R. We recall that

f(x) ∼
∑

n∈Z\{0}

(−1)n

n
einx =

∞∑
n=1

(−1)n+1

n
sin(nx) (8)

Let’s again consider the graph of the Fourier polynomial S40; this is illustrated in Figure 11.
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Figure 11: f and S40

As we discussed in the last subsection, Theorem 5.12 guarantees that

lim
N→∞

SN (x) = f(x)

for all x 6= mπ where m ∈ Z is odd. We also showed that, at any x = mπ where m ∈ Z is odd, SN (x) → 0 as
N → ∞. These two things should appear to be somewhat clear by looking at Figure 11. There is however one
thing that should bother you: near (but not at) the breakpoints, {. . . ,−3π,−π, π, 3π, . . . }, the graph of S40 seems
to “overshoot” (or “undershoot”) the graph of f . These are the spikes you see close to the discontinuity in f . This
behavior is called the Gibb’s phenomenon. Let’s study this behavior more closely at, say, x = π; Figure 12 shows
the graphs of SN (x) for N = 25, 26, . . . , 50.
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Figure 12: The graphs of Sn(x) for n = 25, 26, . . . 50 and f(x) for 9π/10 ≤ x ≤ π.

Upon studying Figure 12 closely, we see that the overshoot is moving right as N increases. You might say: Theorem
5.12 guarantees that SN (x)→ f(x) = x for all −π < x < π but, upon looking at the figure, SN (x) isn’t converging
to f(x) for x very close to π. So where did we go wrong? The answer is that we haven’t gone wrong at all, the
apparent discrepancy can be understood by recognizing that pointwise convergence is weaker than convergence
in the graph–this is the difference between pointwise convergence and uniform convergence. Remember, that for
pointwise convergence, we first select x and ε and find a natural number M = M(ε, x) for which

|SN (x)− f(x)| < ε

for all N ≥M . In the case at hand, we can understand this notion as follows: If I select an x < π, but as close to π
as I want, since the overshoot in the Fourier polynomials are moving to the right, I simply have to wait until they
have moved so far right that they’ve passed x–this will determine N . After this, the Fourier polynomials evaluated
at x will get much much closer to f(x). Okay, so now you understand how we still get pointwise convergence. Let’s
now try to understand the overshoot.

Using the same numbers I’ve used to make the graphs in Figure 12, I can quantify this overshoot. For each N ∈ N,
denote by

MN = max
9π/10≤x≤π

SN (x),

the maximum of the function SN (x) near π. We also denote by xN the unique x near π for which

f(xN ) = MN .

The following table shows MN , MN/π, xN and π − π/N to four decimal places for n = 25, 30, . . . , 50.

N MN MN/π xN π − π/N
25 3.5822 1.1403 3.0204 3.0159
30 3.6020 1.1465 3.0404 3.0369
35 3.6172 1.1514 3.0544 3.0518
40 3.6321 1.1561 3.0654 3.0631
45 3.6433 1.1597 3.0734 3.0718
50 3.6516 1.1624 3.0804 3.0788
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Upon looking at the table, we see that, as N increases the xN ’s are close to π − π/N and the ratio MN/π grows
toward 1.17. . . . So, by following the x at which SN (x) is maximized, the ratio MN/π approaches some number A
as N →∞ (note that π is half the gap of the discontinuity of f at π); this describes the overshoot. The following
theorem formalizes it:

Theorem 5.15. Let f, SN be as above. Then

lim
N→∞

SN (π − π/N) = πA

where
A = 1.178979744447216727 . . .

Thus, the SN (π−π/N)/π converges to A (called the Gibb’s constant) times half of the gap of the jump discontinuity.

Proof. Using our trigonometric identities, we find that

SN (π − π/N) =

N∑
n=1

2(−1)n+1

n
sin(nπ − nπ/N)

=

N∑
n=1

2(−1)n+1

n
(sin(nπ) cos(nπ/N)− sin(nπ/N) cos(nπ)

=

N∑
n=1

2(−1)n+1

n
(0− sin(nπ/N) cos(nπ)

=

N∑
n=1

2(−1)n+1

n
((−1)n+1 sin(nπ/N)

= 2

N∑
n=1

sinnπ/N

nπ/N

π

N
.

You should recognize that
N∑
n=1

sinnπ/N

nπ/N

π

N

is a (right) Riemann sum for the integral ∫ π

0

sin(x)

x
dx

and because sinx/x is Riemann integrable on [0, π], we immediately conclude that

lim
N→∞

SN (π − π/N) = lim
N→∞

2

N∑
n=1

sinnπ/N

nπ/N

π

N
= 2

∫ π

0

sinx

x
dx = πA

where

A =
2

π

∫ π

0

sinx

x
dx.

It remains to compute A. Using the power series representation for sinx about 0, we have

sinx

x
=

1

x

(
x− x3

3!
+
x5

5!
· · ·
)

= 1− x2

3!
+
x4

5!
+ · · ·

for x ∈ R where we take the left hand side to be 1 when x = 0. Using the results of Exercise 3, it is easily verified
that the above series converges absolutely and uniformly on [0, π]. By an application of Corollary 3.9, we conclude
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that

A =
2

π

∫ π

0

(1− x2

3!
+
x4

5!
+ · · · ) dx =

2

π

(∫ π

0

1 dx− 1

3!

∫ π

0

x2 dx+
1

5!

∫ π

0

x4 dx

)
=

2

π

(
π − π3

3 · 3!
+

π5

5 · 5!
+ · · ·

)
= 2− 2π2

3 · 3!
+

2π4

5 · 5!
· · ·

= 1.178979744447216727 . . . ]

as desired.

Exercise 18

There is (at least) one function f in Exercise 16 that has a jump discontinuity in the interval [−π, π]. For this
example, plot (in any computing program you want) some Fourier polynomials of f . Print out the results and
comment on the appearance (or lack thereof) of the Gibb’s phenomenon. If you’d like a source of the Matlab
file I used to analyze the sawtooth function, let me know and I’ll email it to you.

6 The Fourier Transform
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