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Chapter 23 Problems: Foundations of Quantum Mechanics  
 
1.  A typical mid-infrared spectrophotometer for studying molecular vibrations has a 
wavenumber range from 4000. cm-1 to 400. cm-1. (NaCl cell windows have a 460 cm-1 long-
wavelength cutoff and KBr has a 345 cm-1 cutoff.) Calculate the frequency and energy range for 
the mid-IR. Express the energy units in J, eV, and kJ mol-1. 
 
 

Answer:  The conversions are given by  = c and ~ = 1/ with the energy as: 
 

 E = h = hc/ = hc~     in J 
 E = h/e = hc~/e     in eV       1 eV = 96.485 kJ mol-1 = 8065.5 cm-1 

 E = NA h (1 kJ/1000J)    in kJ mol-1    1 cm-1 = 11.962 J mol-1 
 

Wavenumbers can be converted into m-1 to match the units of c= 2.9979x108 m s-1: 

 ~ = 4000 cm-1 corresponds to  ~ = 4000 cm-1(100 cm/1 m) = 4.000x105 m-1: 
  = c/ = 2.998x108 m s-1 (4.000x105 m-1) = 1.199x1014 s-1 
 

Alternatively, the wavenumber may be kept in cm-1 and then c = 2.9979x1010 cm s-1: 
 

 E = hc~ = 6.6261x10-34 J s (2.9979x1010 cm s-1)(4000 cm-1) = 7.946x10-20 J 
 E = hc~/e = 7.946x10-20 J/1.6022x10-19 C = 0.4959 eV 
 E = NA h (1 kJ/1000J) = 6.0221x1023 mol-1(7.946x10-20 J )(1 kJ/1000J) = 47.85 kJ mol-1 
 

Alternatively, the conversion factors that are listed above may be used. 
   At 400. cm-1 the values are just a factor of ten different: 
 

  = c/ = 2.998x108 m s-1 (4.000x104 m-1) = 1.20x1013 s-1 
 E = 7.946x10-21 J = 0.0496 eV = 4.79 kJ mol-1 
 

These energies are not sufficient to break typical covalent bonds. However, if a sample absorbs 
the infrared light, the energies give the heat effect for the sample. 
 
 
2.  Complete the following table. For the region, choose from radiowave, microwave, infrared, 
visible, and ultraviolet. 
 

 
(cm) 

 
(m) 

 
(nm) 

 
(s-1) 

E 
(J) 

E 
(eV) 

E 
(kJ mol-1) 

~ 
(cm-1) region 

   100 MHz      
   10 GHz     microwave 
       1  
 10        
  1000       
     2    
      200   
  500       
  350       
  190       
       100,000  
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Answer:  The conversions are given by  = c and ~ = 1/ with: 

 E = h = hc/ = hc~       in J 
 E = h/e = hc~/e       in eV      1 eV = 96.485 kJ mol-1 = 8065.5 cm-1 

 E = NA h (1 kJ/1000J)      in kJ mol-1      1 cm-1 = 11.962 J mol-1 
 

The following spreadsheet was developed: 
 

 (cm) m) (nM) (s-1)  E (J) E (eV) E (kJ/mol)  (cm-1) region 

299.79 3.00E+06 3.00E+09 1.00E+08 6.63E-26 4.14E-07 3.99E-05 0.0033 radiowave 

2.9979 29979 3.00E+07 1.00E+10 6.63E-24 4.14E-05 3.99E-03 0.3336 microwave 

1 10000 10000000 3.00E+10 1.99E-23 1.24E-04 1.20E-02 1 far-IR 

1.00E-03 10 10000 3.00E+13 1.99E-20 0.124 11.96 1000 mid-IR 

1.00E-04 1 1000 3.00E+14 1.99E-19 1.240 119.63 10000 near-IR 

6.20E-05 0.620 619.92 4.84E+14 3.20E-19 2.000 192.97 16131 red 

5.98E-05 0.598 598.13 5.01E+14 3.32E-19 2.073 200.00 16719 red 

5.00E-05 0.5 500 6.00E+14 3.97E-19 2.480 239.25 20000 blue-green 

3.50E-05 0.35 350 8.57E+14 5.68E-19 3.542 341.79 28571 violet 

1.90E-05 0.19 190 1.58E+15 1.05E-18 6.525 629.61 52632 UV 

1.00E-05 0.1 100 3.00E+15 1.99E-18 12.398 1196.27 100000 vacuum-UV 

 
The choices have the following correspondences: 

100 MHz is a typical NMR frequency (13C) 
10 GHz is a typical frequency for microwave-rotational spectroscopy 
1000 cm-1 is a typical mid-infrared wavenumber (mid-IR range: 4000 cm-1 – 400 cm-1) 
2 eV and 200 kJ mol-1 are typical of enthalpies for chemical reactions 
500 nm is blue-green visible light 
350 nm is the cut-off for glass cuvettes; UV work requires quartz cuvettes 
190 nm is the wavelength cut-off for typical UV-Visible spectrophotometers and the 

approximate beginning of the vacuum UV range. 
 
 
3.  All else being equal, the wavelength of the light in a photoelectric effect experiment is halved. 
Describe the effect on the photoelectron current and the kinetic energy of the photoelectrons. 
 
 
Answer:  From  = c and E = h = hc/, halving the wavelength doubles the frequency and 
energy of the exciting light. The photoelectron current remains unchanged, because the number 
of photons per second remains unchanged. The kinetic energy of the photoelectrons increases, 
because the energy of the exciting light exceeds the work function by a greater amount: 
 

 E = h = ½ m2 +  
                          cst. 
 
 
4. Calculate the kinetic energy of a photoelectron emitted by sodium metal when light of 
wavelength 400.0 nm is incident on it. The work function of sodium is 2.28 eV. 
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Answer:  The energy of the exciting light is: 
 

 E = h = hc/ = 6.6261x10-34 J s(2.9979x108 m s-1)/400.0x10-9 m = 4.966x10-19 J 
 

The Einstein photoelectric effect relationship with the work function in eV is: 
 

 E = ½ m2 + e 
 4.966x10-19 J = ½ m2 + 1.6022x10-19 C(2.28 V) 
 ½ m2 = 1.31x10-19 J 
 

or 26% of the excitation energy is released as kinetic energy of the photoelectrons. Alternatively, 
the problem may be worked in electron-volts with 1 J = 1 C V: 
 

 E = h/e = 4.966x10-19 J/1.6022x10-19 C = 3.100 eV 
 

and the photoelectric effect formula becomes: 
 

 3.100 eV = ½ m2 + 2.28 eV  and ½ m2 = 3.100 eV – 2.28 eV = 0.820 eV 
 
 
5.  The work function for cesium metal is 2.10 eV. Cesium is used as a coating for photodetector 
tubes in some older spectrophotometers. Calculate the long wavelength limit for photoelectron 
production for a cesium coated phototube. 
 
 
Answer:  The plan is to note that the low wavelength cutoff corresponds to the minimum energy 
necessary to eject a photoelectron from cesium. 
   The Einstein photoelectric effect relationship with the work function in eV is: 
 

 E = ½ m2 + e 
 

With no kinetic energy, this last equation gives the minimum energy for photoelectron 
production: 
 

 Emin = e = 1.6022x10-19 C(2.10 V) = 3.365x10-19 J 
 

The corresponding wavelength using E = hc/ is: 
 

  = hc/E = 6.6261x10-34 J s(2.9979x108 m s-1)/ 3.365x10-19 J 
  = 5.904x10-7 m = 590. nm 
 
 
6.  Rephrase the four experimental observations for the photoelectric effect assuming light is 
only wave-like (not particle-like) and the electrons in atoms are harmonically bound. 
 
 
Answer:  Think of a harmonically bound electron as a pendulum. Energy is coupled to a pendulum from 
a periodic excitation only if the frequency of the excitation matches the frequency of the pendulum. The 
energy imparted to a pendulum is proportional to the (amplitude)2 of the excitation and builds 
gradually over time: 
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1. “Current flows only if light has greater than a minimum frequency” becomes: 
 

 1. Current flows only if light has a specific frequency. 
 

2. “Current is finite and instantaneous even if the light intensity is small” becomes: 
 

 2. Current increases with time up to a steady-state. 
 

3. “Kinetic energy of ejected electrons is not a function of the intensity” becomes: 
 

 3. Kinetic energy of ejected electrons increases with intensity. 
 

4. “Current is proportional to intensity = (amplitude)2,” remains valid in the steady-state. 
 
 
7.  Electron microscopes can be used to determine the electron diffraction pattern of crystalline 
materials, in a similar fashion to X-ray diffraction. (a). Calculate the de Broglie wavelength for 
electrons that are accelerated to 10.0 keV. (b). Calculate the wavelength for 8.046 keV X-rays 
from a Cu X-ray tube. The effective wavelength for the electrons or X-rays determines the 
limiting spatial resolution for the diffraction study. 
 
 
Answer:  (a). The momentum is given from Ek = p2/2m by rearrangement and 
1 J = 1 V C = 1 kg m2 s-2: 
 

 p = 2mE = [2(9.109x10-31 kg)(10,000 V)(1.602x10-19 C)]½ = 5.402x10-23 kg m s-1 
 

The de Broglie relationship, p = h/, gives the effective wavelength: 
 

  = h/p = 6.6261x10-34 J s/5.402x10-23 kg m s-1 = 1.227x10-11 m = 0.123 Å 
 

which is a small fraction, ~ 1/50, of the expected lattice spacing for simple crystalline 
substances. 
(b). The wavelength for the 8.046 keV X-rays from a Cu X-ray tube is given using the units 
identities: 
 1 J = 1 V C = 1 kg m2 s-2 and    1 eV = 1.6022x10-19 J = e (1 V) 
 

where e is the charge of the electron. 
 

 E = 8.046x103 eV(1.6022x10-19 J/1 eV) = 1.2891x10-15 J 
  = hc/E = 6.6261x10-34 J s(2.9979x108 m s-1)/1.2891x10-15 J = 1.541x10-10 m= 1.541 Å 
 
 
8.  Why don’t we normally notice the wave behavior of particles in the macroscopic world that 
we directly experience? (a). Calculate the de Broglie wavelength of a 58.0 g tennis ball traveling 
at 80.0 km hr-1 and a 70.0 kg human traveling at 2 km hr-1. (b). Calculate the de Broglie 
wavelength of an O2 molecule based on the overall translational energy at room temperature. The 
average speed (rms) of an O2 molecule at room temperature is 482. m s-1. 
 
 
Answer:  (a).  The momentum of the tennis ball is: 
 

  p = m = 58.0x10-3 kg(80.0x103 m hr-1)(1 hr/3600 s) = 1.289 kg m s-1 
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The de Broglie relationship, p = h/, gives the effective wavelength: 
 

  = h/p = 6.6261x10-34 J s/1.289 kg m s-1 = 5.14x10-34 m 
 

which is too small to give wave-like interactions. A 70.0 kg human gives an even smaller 
wavelength: 
 

 p = 70.0 kg(2.0x103 m hr-1)(1 hr/3600 s) = 38.89 kg m s-1 
  = h/p = 6.6261x10-34 J s/38.89 kg m s-1 = 1.70x10-35 m 
 

(b).  The momentum and de Broglie wavelength of the O2 molecule is: 
 

 p = m = 32.0 g mol-1(1 mole/6.022x1023 mol-1)(1 kg/1000 g)(482. m s-1) 
 p = 2.561x10-23 kg m s-1 
  = h/p = 6.6261x10-34 J s/2.561x10-23 kg m s-1 = 2.59x10-11 m = 0.259 Å 
 
 
9.  Calculate the photon energy, in electron volts and wavenumbers, and the wavelength for the 
hydrogen atomic emission lines for the transitions: (a) n = 3 to n = 2, (b). n = 3 to n = 1. 
However, before you do the numerical calculations predict the transition that is “bluer.” 
 
 
Answer:  The transitions are shown in the energy level diagram below. The n = 3  n = 1 has a 
larger energy difference, longer arrow, and is then “bluer.” The n= 3  n = 2 is part of the 
Balmer series, which is in the visible region of the spectrum. The energies are given as 
En = -13.606 eV(Z2/n2), where Z is the charge on the nucleus of a one-electron atom or ion. 
 
 
 
 
 
 
 
 
10.  (a).  Calculate the energy and wavelength for the lowest energy absorption transition for 
ground state atomic hydrogen. (b). Calculate the ionization potential and the corresponding 
wavelength of the transition that ionizes ground state hydrogen atoms. Report the energies in eV 
and wavenumbers. Report the wavelengths in nm. In what region of the electromagnetic 
spectrum are these two transitions? 
 
 
Answer:  The plan is to note that the lowest energy absorption transition is from n = 1 to n = 2. 
The ionization potential corresponds to the onset of the dissociation continuum, which is for the 
transition from n = 1 to n = . 
(a).  The Bohr formula for the energies of the different quantum levels of the hydrogen atom is 
En = -13.606 eV(Z2/n2). For the lowest energy absorption, n = 1 to n = 2: 
 

 E = E2 – E1 = -13.606 eV(1/22 – 1/12) = 10.20 eV 

En (eV) 

-13.6 

0 

n = 1 

n = 2 
n = 3 

En (eV) 

-13.6 

0 

n = 1 

n = 2 
n = 3 

n= 3  n = 2 n= 3  n = 1 
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           = 10.20 eV(8065.5 cm-1/1 eV) =  = 82,304. cm-1 
 

and the corresponding wavelength is: 
 

  = 1/~ = 1/[82,304. cm-1(100 cm/1 m)] = 1.215x10-7 m = 121.5 nm 
 

This transition is in the vacuum ultraviolet, and corresponds to the Lyman- emission line. 
(b).  The ionization potential and the wavelength of the transition that ionizes ground state 
hydrogen atoms is for the transition from n = 1 to n =  and corresponds to – E1: 
 

 E = E – E1 = 0 – E1 = 13.606 eV 
       = 13.606 eV(8065.5 cm-1/1 eV) =  = 109,740. cm-1 
 

which is in the vacuum ultraviolet.The corresponding wavelength is: 
 

  = 1/~ = 1/[109,740. cm-1(100 cm/1 m)] = 9.1125x10-8 m = 91.1 nm 
 

which corresponds to the convergence limit of the Lyman emission series. 
 
 
11.  Li2+ is a one-electron ion, which is well described using the Bohr formula. Compare the 
wavelength of the n = 3 to n = 2 emission lines for H-atoms and Li2+. Before you do the 
numerical calculation, determine qualitatively which transition is “bluer.” 
 
 
Answer:  The plan is to note the Bohr formula for the hydrogen atom or any one-electron atomic 
ion is En = -13.606 eV(Z2/n2), where Z is the nuclear charge. 
   The lowest energy Balmer transition is at 656.3 nm, in the red region of the spectrum. The 
factor of Z2 in the energy will increase the transition energy for Li2+, making the corresponding 
transition for Li2+ bluer. For Li2+, Z = 3 giving: 
 

 E = E3 – E2 = -13.606 eV(32)(1/22 – 1/32) = 17.01 eV 
       = 17.01 eV(1.6022x10-19 J/1 eV) = 2.725x10-18 J 
 

Then since E = hc/: 
 

  = 6.6261x10-34 J s(2.9979x108 m s-1)/2.725x10-18 J = 7.290x10-8 m = 72.90 nm 
 

in the vacuum UV. Of course, we could have just divided 656.3 nm by 9 to get the final result. 
 
 
12.  The spectrum of the sun incident on the earth is shown in the table below and Figure P23.1.2 
Gases in the atmosphere absorb infrared light through vibrational transitions and ultraviolet light 
through electronic transitions. Gas molecular absorption and scattering by atmospheric 
particulates reduce the solar intensity at sea level compared to outside the atmosphere. Using the 
data in the following table, show that the solar irradiance outside the earth’s atmosphere is well 
modeled by the Planck blackbody expression at 5800 K: 
 

 H() = 
2hc2

5  






1

ehc/kT – 1
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where k is Boltzmann’s constant, k = R/NA = 1.3807x10-23 J K-1. The irradiance is the energy 
flux per unit wavelength interval; that is, the energy emitted from a unit area per unit time per 
unit wavelength interval. A square meter cross section of the earth captures a tiny fraction of the 
total energy output of the sun, so a small scale factor must applied to match the overall intensity 
to the experimental data. 
 

 (nm) 250. 375. 460. 500. 625. 750. 1000. 1250. 1500. 1750. 

H (W m-2 nm-1) 0.034 1.193 2.032 1.929 1.667 1.279 0.742 0.445 0.263 0.166 

 

 
Figure P23.1: The solar irradiance incident on the earth at the top of the atmosphere and at 
sea level. The irradiance is given in watts for a one-meter surface placed perpendicular to the 
incident angle of the sun for a 1 nm range in wavelength,  to +d, given in nm. 

 
 
Answer:  The wavelengths must be converted to meters to match the units of h, k, and c. For 
example,  = 250 nm (1x10-9 m/1 nm) = 2.50x10-7 m. Using the Planck blackbody expression 
and multiplying by a scale factor to get the best fit gives the following spreadsheet: 
 

  T (K)= 5800 

 Experimental scale = 2.18E-14 

 (nm) H (W m-2 nm-1)  (s-1) H() (W m-2 nm-1) 

250 0.034 0.410 4.14E-01 

375 1.193 1.478 1.49E+00 

460 2.032 1.81 1.83E+00 

500 1.929 1.844 1.86E+00 

625 1.667 1.649 1.66E+00 

750 1.279 1.308 1.32E+00 

1000 0.742 0.746 7.52E-01 

1250 0.445 0.427 4.30E 01 

1500 0.263 0.255 2.57E-01 

1750 0.166 0.159 1.60E-01 
 
 

 

 
 

The scale factor of 2.18x10-14 can be treated as arbitrary and chosen to fit the long-wavelength 
portion of the experimental curve. However, the distance of the earth from the sun is 93.x106 
miles, giving the surface area of a sphere at that radius of 2.79x1023 m2. The surface area of the 

0

0.5

1
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2
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0 500 1000 1500 2000
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sun is 6.09x1018 m2. The energy falling on a unit area at the top of the earth’s atmosphere per 
unit time per nm wavelength interval is given as: 
 

    flux   (area of emitter)   (fraction absorbed)  (convert wavelength interval) 

 solar insolation() = H() (6.09x1018 m2)(1 m2/2.79x1023 m2)(1x10-9 m/1 nm) 
                                = 2.18x10-14 H() 
 

giving an exact value for the scale factor from first principles. 
 
 
13.  The Planck blackbody expression in terms of frequency is: 
 

 I() = 
2h3

c2  






1

eh/kT – 1
 

 

Show that the total flux radiated by a blackbody is J =  T4, where  = 5.6704x10-8 W m-2 K-4 

(see Section 11.2 and Eq. 11.2.16). [Hint:  o 
 (x3/(ex – 1)) dx = 4/15] 

 
 
Answer:  The plan is to integrate the Planck expression over all wavelengths of the emitted 
radiation. 
   The total energy per unit area per unit time is given by: 
 

 J = 
2h
c2  





0


 

3

eh/kT – 1
 d 

 

Using the substitution x = h/kT gives dx/d = h/kT, d = (kT/h) dx, and  = kTx/h. The 
integration limits remain 0 to : 
 

 J = 
2h
c2  



kT

h

4
 



0


 

x3

ex – 1
 dx = 



25 k

15h3c2  T4  giving  = 
25 k4

15h3c2 

 

  = 
25(1.380662x10-23 J K-1)4

15(6.6261x10-34 J s)3(2.9979x108 m s-1)2 = 5.6704x10-8 J s-1 m-2 K-4 
 

with 1 W = 1 J s-1. Radiative energy transfer is a very strong function of temperature. The 
fundamental constant, , is called the Stefan-Boltzmann constant. See Section 11.2 for 
applications of this result to solar energy production. 
 
 
14.  The Planck blackbody expression in terms of frequency is given in the last problem. This 
expression gives the intensity of radiation in an interval of frequency from  to +d: 
 

 I() d = 
2h3

c2  






1

eh/kT – 1
 d 

 

Apply a change in variables to show that the distribution in terms of wavelength is given by: 
 

 I() d = 
2hc2

5  






1

ehc/kT – 1
 d 
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Answer:  The plan is to do the normal procedure for the change in variable for an integration 
using  = c/. 
   Using the change in variable  = c/ gives d/d = – c/2, d = – c/2 d. The integral limits 

when this distribution is used change from  o 
 over  to  o = –  o 

 over , since  increases while 
 decreases. The negative signs cancel giving: 
 

 I() d = 
2hc3

c23  






1

ehc/kT – 1
 




– c

2  d = 
2hc2

5  






1

ehc/kT – 1
 d 

 
 
15.  The total flux radiated by a blackbody is J =  T4, where  = 5.6704x10-8 W m-2 K-4 (see 
Section 11.2 and Eq. 11.2.16). This flux is the energy emitted per unit area of the emitter per unit 
time. The solar constant is the energy from the sun falling on the top of earth’s atmosphere per 
unit area per unit time. The solar constant is 1.37 kW m-2. The surface area of the sun is 
6.09x1018 m2. A square meter cross section of the earth captures a tiny fraction of the total 
energy output of the sun. The average distance of the earth from the sun is 93.x106 miles, giving 
the surface area of a sphere at that radius of 2.79x1023 m2. Calculate the effective blackbody 
temperature of the surface of the sun. 
 
 
Answer:  The emitted power is the flux multiplied by the surface area of the sun, JA. The Stefan-
Boltzmann equation, J =  T4, gives the flux at the top of earth’s atmosphere as: 
 

 1370 W m-2 = (5.6704x10-8 W m-2 K-4) T4 (6.09x1018 m2)(1 m2/2.79x1023 m2) 
 

Solving for T gives 5768. K or 5800 K. 
 
 
16.  (This problem expands on material in Chapter 12, using the partition function for vibration.) 
Planck’s treatment of blackbody radiation and Einstein’s treatment of the heat capacity of a solid 
are based on the assumption of quantized energy levels. Assume the energy levels for the 
electrons in a metal or for the vibration of atoms in a solid are equally spaced with j = j h, 
where  is a fundamental vibration frequency for the motion and j is an integer. The probability 
of an electron or atom having energy j is given by the Boltzmann distribution, nj/N = e-j/q, 
where  = 1/kT. The average energy is given by Eq. 12.2.6: 
 

 <> = 


j = 0



 j e-j

q   where q is the partition function:  q = 
j = 0



 e-j 

 

  (a).  Show that the average energy can also be expressed as: 
 

 <> = – 
1
q 






q

 V
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(b).  Show that the partition function reduces to:  q = 
1

1 – e–h 

Note that the infinite power series can be summed as:  
ji = 0


 aj  =  1 + a + a2 + a3 + … = 

1
1 – a 

(c).  Using the partition function, show that the average energy is:  <> = 
h

(eh – 1)
 

 
 
Answer: (a).  Starting with the partition function in general form, q =  e-j , the derivative with 
respect to  at constant volume is: 
 

 






q

 V
 = – 

i = 0



 j e-j 

 

Dividing this result by –1/q gives the average energy 
 

 <> = – 
1
q 






q

 V
 = 


j = 0



 j e-j

q  
 

(b).  Equally spaced energy levels with energies j = j h gives the partition function as: 
 

 q = 
j = 0



 e– j h 

 

Let a = e–h  then q = 
i = 0


 aj  =  1 + a + a2 + a3 + … = 

1
1 – a 

Substituting back in for a gives the partition function for equally spaced levels as: 
 

 q = 
1

1 – e–h 

 

(c).  The derivative of the partition function with respect to  is: 
 

 






q

 V
 = 

– 1
(1 – e–h)2 (h e–h) 

 

Finally, the average energy is then: 
 

 <> = – 
1
q 






q

 V
 = – (1 – e–h) 

– 1
(1 – e–h)2 (h e–h) = 

h e–h

(1 – e–h)
 = 

h
(eh – 1)

 

 

This final result was central in understanding blackbody radiation and the heat capacity of solids. 
 
 
17.  The Wein relationship for the spectral distribution of blackbody radiation is: 
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 I() = 
22

c2  <> 
 

where  is the frequency of the light emitted, and <> is the average energy of an electron 
oscillator in the walls of the cavity of the solid. The radiation in the cavity is assumed to be in 
thermodynamic equilibrium with the electron oscillators in the cavity walls. Using the 
equipartition theorem for the average energy of an electron oscillator gives <> = RT. However, 
classical result is found to vastly overestimate the blackbody intensity in the ultraviolet. Show 
that the assumption of quantized oscillators and the corresponding average energy derived in the 
previous problem gives the Planck distribution function, which was given in Problems 13 and 14. 
 
 
Answer:  Note that  = 1/kT. Simply substituting the average energy of a quantized oscillator 
from the previous problem into I() = (22/c2) <> gives the Planck blackbody formula: 
 

 I() = 
2h3

c2  






1

eh/kT – 1
 

 
 
18.  The heat capacity of an oscillator can be determined from the derivative of the average 
energy versus temperature: Cv = (U/T)v = NA(<>/T)v. The average energy of a one-
dimensional quantized oscillator was derived in Problem 16: 
 

 <> = 
h

(eh – 1)
 

 

Einstein estimated that the heat capacity of a simple solid is Cv = 3NA(<>/T)v, where the 
factor of three results since the atoms in a solid can oscillate in the x, y, and z directions. Derive 
the Einstein relationship for the heat capacity of an atomic solid. Plot the relationship versus 
temperature for ~ = 100. cm-1. 
 
 

Answer:  Cv = 3 NA





<>

T V
 = 3 NA h 
















1

eh/kT – 1
T V

 = 3 NA h 






– eh/kT

(eh/kT – 1)2  



– h

   kT2  

        = 3NA k 



h

kT

2
 

eh/kT

(eh/kT – 1)2 

 

Remember that NAk = R, giving:  Cv = 3R 



h

kT

2
 

eh/kT

(eh/kT – 1)2 

 

The units are converted to kelvins from wavenumbers using: 
 

 hc~/k = 6.6261x10-34J s(2.9979x1010 cm s-1)(100. cm-1)/1.3807x10-23 J K-1 
           = 143.88 K 
 

The plot was done using a spreadsheet: 
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~
 100 cm-1 

hc
~
/k 143.88 K 

   
T (K) e(h/kT) Cv (J K-1 mol-1) 

2 1.748E+31 0.000 

5 3.141E+12 0.000 

10 1.772E+06 0.003 

15 1.464E+04 0.157 

20 1.331E+03 0.971 

30 1.210E+02 4.820 

50 1.777E+01 13.050 

75 6.810E+00 18.520 

100 4.216E+00 21.052 

125 3.161E+00 22.363 

150 2.610E+00 23.116 

200 2.053E+00 23.895 
 

 

 

 
 

 

The heat capacity has a limiting high temperature value of 3R, which is the equipartition 
prediction. 
 
 
19.  (a). Assume the uncertainty for the one-dimensional linear position of an electron is 1.00 Å. 
Calculate the uncertainty of the momentum using x px  h-/2.  (b). The average momentum for 
a confined particle, such as the particle in a box, is zero: <p> = 0. The uncertainty in the 
momentum, as measured by the standard deviation, then reduces to just the root-mean-squared 
momentum, px = (<p2> – <p>2)½ = (<p2>)½ = prms,x. The root-mean-squared momentum can be 
used to estimate the kinetic energy of the particle, Ek,x  (prms,x)2/2m. Estimate the kinetic energy 
of a confined electron with a positional uncertainty of 1 Å.  (c). The kinetic energy of a particle 
confined in a cubical box is determined by adding the kinetic energy in each direction, 
Ek = Ek,x + Ek,y + Ek,z = 3 Ek,x, for a cubical box. The diameter of an atom is about 1 Å (the Bohr 
radius of the H atom is 0.529 Å). Assume the hydrogen atom is approximated by a 1 Å cubical 
box. Use the kinetic energy from part (b) to estimate an approximate kinetic energy of the 
ground state of the H atom in eV and kJ mol-1. Is this resulting energy chemically significant? In 
other words, is the magnitude comparable to or greater than typical enthalpy changes for 
chemical reactions? 
 
 

Answer:  The plan is to use the Heisenberg uncertainty principle in the form x px  h-/2 and 
then Ek = 3 (prms,x)2/2m to estimate the ground state energy of the H atom. 
(a).  Using the Heisenberg uncertainty relationship and 1 Å = 1x10-10 m gives: 
 

 px  h-/(2x) = 1.0546x10-34 J s/2/1.00x10-10 m = 5.273x10-25 kg m s-1 
 

(b). The corresponding kinetic energy is: 
 

 Ek,x  (prms,x)2/2m = (5.273x10-25 kg m s-1)2/2/9.109x10-31 kg = 1.526x10-19 J 
 Ek,x  1.526x10-19 J (1 eV/1.6022x10-19 J) = 0.953 eV 
 Ek,x  1.526x10-19 J (6.022x1023 mol-1)(1 kJ/1000 J) = 91.9 kJ mol-1 
 

0
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(c). The result for a cubical, 1 Å box is then Ek = 3 Ek,x = 2.86 eV = 275. kJ mol-1 

 

The experimental kinetic energy for the ground-state of the H-atom is 13.6 eV; this problem is a 
rough estimate. An atom is spherical, instead of a cubical box, and has a strong attractive 
potential energy. However, the kinetic energy corresponding to px  5.273x10-25 kg m s-1 is 
definitely chemically significant. Typical enthalpy changes for chemical reactions are on the 
order of 200 kJ mol-1. Chemical phenomena are most certainly governed by the Heisenberg 
uncertainty relationship. 
 
 
20.  (a). The momentum of a 10.0 eV electron is known to 10%. Calculate the minimum 
uncertainty in the position of the electron. (b).  The speed of a 58.0 g tennis ball traveling at 80.0 
km hr-1 is known to 10%. Calculate the uncertainty in the position of the tennis ball. Does this 
uncertainty contribute to the difficulty in returning an 80.0 km hr-1 tennis serve? 
 
 
Answer:  The plan is to use Ek = p2/2m or p = m to find the momentum of each particle. The 
Heisenberg uncertainty relationship is then used to find the uncertainty in the position. 
(a).  The momentum of the electron is: 
 

 px = 2mEk = 2(9.109x10-31 kg)(10.0 eV)(1.6022x10-19 J/1eV) = 1.709x10-24 kg m s-1 
 px = 0.10 (1.709x10-24 kg m s-1) = 1.709x10-25 kg m s-1 
 

Rearranging the Heisenberg uncertainty relationship, x px  h-/2, gives: 
 

 x  h-/(2px) = 1.0546x10-34 J s/2/1.709x10-25 kg m s-1 = 3.08x10-10 m = 3.1 Å 
 

which is a significant uncertainty for the position, on the order of the size of a small molecule. 
(b).  The momentum of the tennis ball is (see Problem 8): 
 

 p = m = 58.0x10-3 kg(80.0x103 m hr-1)(1 hr/3600 s) = 1.289 kg m s-1 
 px = 0.10(1.289 kg m s-1) = 0.1289 kg m s-1 

 x  h-/(2px) = 1.0546x10-34 J s/2/0.1289 kg m s-1 = 4.09x10-34 m 
 

Unfortunately, you cannot blame the Heisenberg uncertainty when you fail to return a tennis 
serve (or strike out). 
 
 
21. (a). What are the quantum numbers for the energy levels that are involved in the lowest 
energy electronic transition for the molecule, H2C=CH–CH=CH–CH=CH–CH=CH2? Base your 
answer on the particle in a box model. (b). Calculate the wavelength of the light absorbed in nm. 
Calculate the energy change for the transition in wavenumbers, cm-1. The average bond length 
for a conjugated double bond is 1.39 Å. Lengthen the box by one-half of a bond beyond each 
terminal C atom to take into account that the  orbital doesn’t end exactly at the nucleus of the 
terminal C atoms. 
 
 



14 
 

Answer:  The plan is two note that in the conjugated- system, there are 2(4) electrons, since 
there are four double bonds and accordingly eight sp2 hybridized C atoms. 
(a).  Placing two electrons in each particle in a box orbital gives the highest occupied molecular 
orbital, the HOMO, as n = 4. The lowest unoccupied molecular orbital, or LUMO, is n = 5. The 
absorption transition is from n = 4 to n = 5: 
 
 
 
 
 
 
 
 

(b).  The energy of a particle in a box orbital with box length a is:  En = 
h2

8ma2 n2. 

The transition energy between initial state ni and final state nf is then: 
 

 E = Ef – Ei = 
h2

8ma2 (n
2
f  – n

2
i ) 

 

The mass of the electron is 9.109x10-31 kg. There are seven conjugated bonds and adding ½ of a 
bond at each terminus gives the box length as 8(1.39 Å) = 11.12 Å = 1.112x10-9 m: 
 

 E = 
h2

8ma2 (52 – 42) = 
(6.626x10-34 J s )2

8(9.109x10-31 kg )(1.112x10-9 m)2 (9) = 4.872x10-20 J ( 9) 

      = 4.385x10-19 J 

 

Giving the wavelength as :  = hc/E = 6.626x10-34 J s (2.998x108 m s-1)/4.385x10-19 J 
              = 4.530x10-7 m (1 nm/1x10-9 m) = 453. nm 
 

and energy in cm-1 as:  ~ = 1/ = 1/4.530x10-5 cm = 22,100 cm-1 
 

If we don’t add half a bond length on each end of the box, the transition is predicted to occur at 
28,900 cm-1. 
 
 
22.  Two restrictions are placed on the solutions to the Schrödinger equation that take the 
form of integrals. Name the two restrictions, the two integrals, and the values that define these 
restrictions. 
 
 
Answer:  The solutions to the Schrödinger equation should be orthogonal and normalized, or so 
called orthonormal solutions. For two quantum states, n and m, orthogonality and normalization 
are respectively: 
 

 Orthogonality:      *
n m d = 0  Normalization:     *

n n d = 1 
 
 

En

h2/8ma2 

n = 1 
n = 2 

n = 3 

n = 4    HOMO 

n = 5    LUMO 25 
 

20 
 

15 
 

10 
 

5 
 

0  
 

 

 

n = 4  n = 5 
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23.  Show that the n = 2 and n = 3 wave functions for the particle in the box are orthogonal. 
Show that the n = 2 wave function is normalized. 
 
 
Answer:  The plan is to show that  *

2 3 dx = 0 and  *
2 2 dx = 1. 

   The particle in the box wave functions for quantum number n and box length a are 
(x) = (2/a)½ sin(nx/a). For n = 2 and n = 3: 
 

  *
2 3 dx = (2/a) 0

a
 sin(2x/a) sin(3x/a) dx 

 

Changing variables to y = x/a, giving dy/dx = /a or dx = a/ dy, and the range y = 0 to : 
 

  *
2 3 dx = (2/a)(a/) 


0


 sin(2y) sin(3y) dy 

 

Integral tables give this integral equal to zero:1  


0


 sin(ax) sin(bx) dx = 0 for a  b: 

 

  *
2 3 dx = 0 

 

The solutions are orthogonal. The integral can also be done visually, Figure P23.2. The n = 2 
wave function is odd with reference to the center of the box, while the n = 3 wave function is 
even, so the result over the full interval is zero. Centering the integration range, x = x – a/2, 
gives: 
 

  *
2 3 dx = (2/a) -a/2

a/2
 sin[2(x+ a/2)/a] sin[3(x+ a/2)/a] dx = 0 

      odd       even 
 

 
 

Figure P23.2: Particle in the box wave functions for n = 2 (–) and n = 3 (- - -). 
 
 
   For the normalization, use the substitution y = 2x/a, giving dy/dx = 2/a or solving for dx, 
dx = a/(2) dy, and the range y = 0 to 2: 
 

  *
2 2 dx = (2/a) 0

a
 sin2(2x/a) dx = (2/a)(a/(2)) 


0

2
 sin2(y) dy 

 

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 5 10



x (Å)
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Integral tables give this integral as:1   sin2(x) dx = – ½ cos x sin x + ½ x: 
 

  *
2 2 dx = (1/) [– ½ (cos y sin y |20  + ½ y |20  ] 

       =  (1/) [– ½ (cos 2 sin 2  – cos 0 sin 0) + ½ 2] 
 

However, sin 0 = 0 and sin 2 = 0, giving that 2 is normalized: 
 

  *
2 2 dx =  (1/) [½ 2] = 1 

 
 
24.  The harmonic oscillator ground state has a Gaussian wave function of the form 
(x) = N e–x2/4x

2 . Normalize the wave function over -  x  . 
 
 

Answer:  The normalization integral for a real function is -
  2 dx = 1. Substituting in the wave 

function and using the fact that the integrand is even gives: 
 

 N2 -


 e–x2/2x
2 dx = 2 N2 0


 e–x2/2x

2 dx = 1 

Integral tables give: 0

 e–x2/2x

2 dx = 
1
2 (2)½x : 

 N2 -


 e–x2/2x
2 dx = 2 N2 1

2 (2)½x = N2 (2)½x = 1 

Solving for the normalization constant:  N = 
1

(2)¼ x
½ 

This result is used in Example 23.4.4. 
 
 
25.  What is the probability that a particle is in the left side of the particle in a box, for a box of 
length a and quantum number n? 
 
 
Answer:  The probability is given by the integral: 
 

 0

a/2
 2

n dx = 


2

a  0

a/2
 sin2(nx/a) dx 

 

Applying the change in variables y = nx/a gives dy/dx = n/a or solving for dx, 
dx = a/(n) dy, and the range y = 0 to n/2: 
 

 0

a/2
 2

n dx = 


2

a 



a

n  


0

n/2
 sin2(y) dy  

 

Integral tables give this integral as:1   sin2(x) dx = – ½ cos x sin x + ½ x: 
 

 0

a/2
 2

n dx = (2/n) [– ½ (cos y sin y |n/2
0  + ½ y |n/2

0  ] 

       =  (2/n) [– ½ (cos(n/2) sin(n/2) – cos 0 sin 0) + ½ n/2] 
 

However, cos(n/2) = 0 and sin 0 = 0, giving: 
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 0

a/2
 2

n dx = (2/n) [½ n/2] = ½ 
 

As expected, the probability of being found on the left half of the box is 50%. 
 
 
26.  Show that <x2> for a particle in a box of length a and quantum number n is: 
 

 <x2> = a2





1

3 – 
1

2n22  

 
 
Answer:  The plan is to note that we must find the expectation value of the displacement squared. 
Since the particle in a box wave functions are real, * = . We will use the normalized form of 
the wave function, giving ao 2

n dx = 1. The operator, x2, is a multiplicative function, so the order 
of operation is not important, giving: 
 

 <x2> = 
ao *

n x2 n dx
ao *

n n dx
 = ao x2 2

n dx      1 
 

   Substituting in the general form of the wave function gives: 
 

 <x2> = 


2

a  0

a
 x2 sin2(nx/a) dx      2 

 

Applying the change in variables y = nx/a gives dy/dx = n/a or solving for dx, 
dx = a/(n) dy, x = a/(n) y, and the range y = 0 to n: 
 

 <x2> = 


2

a  




a

n

3
 


0

n
  y2 sin2(y) dy      3 

 

Integral tables give this integral as:1 
 

  x2 sin2(x) dx = 
x3

6  – 



x2

4  – 
1
8  sin 2x – 

x cos 2x
4     4 

 

Note that sin 2x = sin(2n) = 0 at the upper limit and sin 0 = 0 at the lower limit. Similarly, 
cos 2x = cos(2n) = 1 at the upper limit: 
 

 


0

n
  x2 sin2(x) dx =  



x3

6  – 



x2

4  – 
1
8  sin 2x – 

x cos 2x
4

n

0
 = 

(n)3

6  – 
n
4   5 

 

Substituting Eq. 5 into Eq. 3 gives: 
 

 <x2> = 


2

a  




a

n

3





(n)3

6  – 
n
4  = a2





1

3 – 
1

2n22  

 
 
27.  Using the result from the last problem, find the uncertainty in the position of the particle in 
box, for box length a and quantum number n. Express the result as the standard deviation, 
x = (<x2> – <x>2)½. 
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Answer:  The expectation value of the position for a particle in a box is <x> = a/2, giving: 
 

 2
x = <x2> – <x>2 = a2





1

3 – 
1

2n22  – 
a2

4  = 
a2

12 – 
a2

2n22 = 
a2

4n22 



n22

3  – 2  

 x = 
a

2n 



n22

3  – 2
½

 

 
 
28.  Find the average momentum for a particle in a box, with box length a and quantum 
number n. 
 
 
Answer:  The plan is to note that we must find the expectation value of the momentum operator. 
Since the particle in a box wave functions are real, * = . We will use the normalized form of 

the wave function, giving ao 2
n dx = 1. The operator, p̂x = (h-/i)(d/dx), involves a derivative, so 

the order of operation is important, giving: 
 

 <px> = 
ao *

n p̂x n dx
ao *

n n dx
 = 0

a
 n 

ħ
i



d 

dx  n dx 
 

   The derivative is: 
 

 
d

 dx n = 


2

a

½ d
 dx sin(nx/a) = 



2

a

½





n

a  cos(nx/a) 
 

Substituting in the general form of the wave function gives: 
 

 <px> = 
ħ
i  


2

a  0

a
  sin(nx/a) 

d 
dx sin(nx/a) dx 

          = 
ħ
i  


2

a  



n

a  0

a
 sin(nx/a) cos(nx/a) dx 

 

Applying the change in variables y = nx/a gives dy/dx = n/a or solving for dx, 
dx = a/(n) dy, x = a/(n) y, and the range y = 0 to n: 
 

 <px> = 
ħ
i  


2

a  



n

a  




a

n 


0

n
 sin(y) cos(y) dy 

 

This integral is equal to zero, giving <p> = 0. This result is concordant with the classical idea 
that the particle in a box wave function is the superposition of a wave traveling forward and a 
wave traveling backward, the net result giving a standing wave confined in the box. The average 
momentum is then zero. 
 
 
29.  Show that <p2

x> for a particle in a box of length a and quantum number n is: 
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 <p2
x> = ħ2 



n

a

2
 

 
 
Answer:  The plan is to note that we must find the expectation value of the momentum operator 
squared. Since the particle in a box wave functions are real, * = . We will use the normalized 

form of the wave function, giving ao 2
n dx = 1. The operator, p̂2 = p̂ p̂ = –  h- 2 (d2/dx2), involves a 

derivative, so the order of operation is important, giving: 
 

 <p2
x> = 

ao *
n p̂2 n dx

ao *
n n dx

 = – ħ2 0

a
 n 

d2

 dx2 n dx 
 

   The second derivative is: 
 

 
d2

 dx2 n = 


2

a

½ d2

 dx2 sin(nx/a) = 


2

a

½





n

a  
d

 dx cos(nx/a) = – 


2

a

½





n

a

2
 sin(nx/a) 

 

Substituting in the general form of the wave function gives: 
 

 <p2
x> = – ħ2




2

a  0

a
  sin (nx/a) 

d2

 dx2 sin(nx/a) dx = ħ2




2

a  



n

a

2

0

a
 sin2(nx/a) dx 

 

However, 


2

a 0

a
 sin2(nx/a) dx = 1, since this integral is the normalization integral, giving: 

 <p2
x> = ħ2 



n

a

2
 

 
 
30.  Using the results of Problems 28 and 29, find the standard deviation of the momentum for a 
particle in a box: 
 

 px = (<p2
x> – <px>2)½ = ħ 



n

a  
 

Rationalize the results on the basis of the Heisenberg uncertainty principle. 
 
 
Answer:  (a).  The standard deviation of the momentum for a particle in a box is, using Problems 
28 and 29: 
 

 px = (<p2
x> – <px>2)½ = 








ħ2 





n

a

2
 – 0

½
 = ħ 



n

a  
 

As the box length increases, the uncertainty in position of the particle increases and the 
uncertainty in momentum decreases, which is expected on the basis of the Heisenberg 
uncertainty principle. 
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31. Using the results of Problems 27 and 30, show that x p  ħ/2 for a particle in a box, in 
concordance with the Heisenberg uncertainty principle. 
 
 
Answer:  Using Problem 27 for x and Problem 30 for px: 
 

 x px = 
a

2n 



n22

3  – 2
½

 ħ 



n

a  = 



n22

3  – 2
½

 
ħ
2 

The numeric factor multiplying ħ/2 is greater than 1. For example, for n = 1: 
 

 x p = 1.136 
ħ
2 

 

which is greater than ħ/2 as required by the Heisenberg uncertainty relationship. The numerical 
factor is greater for greater quantum numbers. 
 
 
32.  Determine the standard deviation of the position, (<x2> – <x>2)½, for the Gaussian wave 
function: 
 

 (x) = 
1

(2)¼ x
½ e–x2/4x

2 over -  x   

 
 

Answer:  The given Gaussian wave function is normalized, -


 2 dx = 1, and real, * = 2. 

The normalization constant is N = 1/[(2)¼x
½]. The average position is zero for a symmetrical 

distribution because x is odd and 2 is even and the integral is taken over all space: 
 

 <x> = -


 * x  dx = -


 x 2 dx = N2 -


 x e–x2/2x
2 dx = 0 

    normalized      real         odd  even 
 

The expectation value for the squared position is: 
 

 <x2> = -


 * x2  dx = -


 x2 2 dx = N2 -


 x2 e–x2/2x
2 dx 

 

The integrand is even so that -


 = 2 0

 giving:      <x2> = 2N2 0


 x2 e–x2/2x

2 dx 

Integral tables give 


0


x2 e–x2/2x

2 dx = 
2x

2

4  (2)½x: 

 

 <x2> = 2N2 
2x

2

4  (2)½x = 2 
1

(2)½ x
 
2x

2

4  (2)½x = x
2 

 

Finally (<x2> – <x>2)½ = x, as expected. This result is used in Example 23.4.4. 
 
 
33.  Consider a particle in a box of length a with a potential that goes to infinity at –a/2 and +a/2. 
The general form of the wave function is given by Eq. 23.4.5 also applies for –a/2  x  +a/2. 
Apply the boundary conditions to determine the wave function for the particle. 
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Answer:  The plan is to follow the procedure used in Eqs. 23.4.5-23.4.8, but at the new end 
points. We also need to consider  at the center of the box, x = 0. 
   At x = 0, in the center of the box: (0) =  A sin(0) + B cos(0) = B 
If B = 0 then each wave function will have a node in the center of the box and only half the 
possible wave functions will be represented. The conclusion is B  0. 

At x = –a/2 the wave function is: (–a/2) = A sin(–ka/2) + B cos(–ka/2) = 0  or 

          (–a/2) = –A sin(ka/2) + B cos(ka/2) = 0 

At x = + a/2 the wave function is:  (a/2) = A sin(ka/2) + B cos(ka/2) = 0 

Consulting Figure 23.4.2a, if B is non-zero then at the boundary, cos(ka/2) = 0 gives ka/2 = n/2 
or k = nπ/a. However, then sin kx = sin(n/2) = 1, which gives that A = 0. The combined result is 

then (x) = B cos(nx/a). To verify our conclusions note that: 

 (–a/2) = B cos(n/2) = 0    (0) = B cos(0) = B     (a/2) = B cos(n/2) = 0 

 
 
34.  Give the wave function and energy for a 3D-particle in a box with quantum numbers (1,1,2) 
and side lengths a, b, and c for a particle of mass m. 
 
 
Answer:  The wave function and energy using Eqs. 23.6.15 and 23.6.16 are: 
 

 (x,y,z) = 



8

abc

½
 sin 

x
a  sin 

y
b  sin 

2z
c   E = 

h2

8m 



1

a2 + 
1
b2 + 

4
c2  

 
 
35.  Why does a confined particle have quantized energy levels? 
 
 
Answer:  The particle in a box is an excellent example of a confined particle. The solution to the 
Schrödinger equation for a particle in a box is identical to a free particle until the boundary 
conditions are applied. Then sin kx is restricted to sin(nx/a). The boundary conditions force the 
wave function to approach zero for small and large x. The wave function must then have an 
integer number of half-cycles to fulfill the required asymptotic behavior. 
 
 
36.  Find the average penetration depth of a particle of mass m and energy E into an infinite 
barrier of constant potential V. Assume the total energy is less than the potential energy, Figure 
23.5.1a. Given the amplitude of the incident wave, a, show that the average penetration depth is: 
 

 <x> = 




4k2

k2+ 2  
a2

42 
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Answer:  The plan is to use Eqs. 23.5.3 with 23.5.6 to find the expectation value for the position 
of the particle inside the barrier with x̂ = x. 
   Inside the barrier 0  x   and the average or expectation value of the position for the 
tunneling particle is: 
 

 x = 


0


 * x  dx = c*c


0


 x e–2x dx   with k = 

2mE
ħ   and   = 

2m(V – E)
ħ  

 

using Eqs. 23.3.6 and 23.5.2 for the constants k and . 

Integral tables give the integral as:  0
 x e–ax dx = 1/a2: 

 

 x = c*c/42 

 

with c*c = 




–2ik

–ik –   




2ik

ik –   a2 = 




4k2

(–ik – )(ik – )
 a2 = 





4k2

k2+ 2  a2 
 

Substitution of c*c back into the integral gives: 
 

 x = 




4k2

k2+ 2  
a2

42 

 
 
37.  Find the tunneling probability for a 1.00 eV electron into a 2.00 eV potential energy barrier 
of thickness 10.0 Å. 
 
 
Answer:  The plan is to follow Example 23.5.1. 
   The ratio of the energy to the barrier height is  = 1.00/2.00 = 0.500. Using Eq. 23.5.2 gives ; 
for an electron me = 9.109x10-31 kg: 
 

  = 
2m(V – E)

ħ  =  
2(9.109x10-31 kg)(2.00 eV – 1.00 eV)(1.602x10-19 J/1 eV)

1.055x10-34 J s-1  

  = 5.121x109 m-1 
 

giving for L = 10.0 Å = 10.0x10-10 m: 
 

 e–L = e–5.121x109(10.0x10-10) = 0.005970   and   
(eL – e–L)2

4  = 7.014x103 

 

The tunneling probability is given by Eq. 23.5.7: 
 

 T = 






(eL – e–L)2

16(1 – )  + 1
-1

 = 



7.014x103

4(0.500)(1 – 0.500) + 1
-1

 = 1.43x10-4   or   0.0143% 

 
 
38.  Show that  = N e–x is an eigenfunction of the operator d2/dx2. What is the eigenvalue? 
Normalize the wave function for x  0. 
 
 
Answer:  The plan is to show that ô = o, with o a constant. 
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   Applying the operator to the wave function gives: 
 

 
d2

dx2  = 
d2

dx2 N e–x = N 2 e–x 
 

Substituting back in the wave function,  = N e–x, gives: 
d2

dx2  = 2  
 

The operator applied to the wave function gives back a constant multiplied by the same wave 
function.  is an eigenfunction of d2/dx2 with eigenvalue 2. The normalization is given by: 
 

 


0


 *  dx = N2 


0


 e–2x dx = 1 

          = N2 




–1

2  e–2x|0  = N2 




–1

2  (e– – e0) = 




N2

2  = 1 

giving N = (2)½ 
 
 
39.  (a).  Show that (x) = e–ikx is an eigenfunction of the momentum and kinetic energy 
operators, but not an eigenfunction of the position operator, for motion in one-dimension. (b).  
Will repeated measurements of the position, momentum, and kinetic energy give the same result 
or different results? 
 
 
Answer:  The plan is to note that by Postulates III and IV, if the wave function is an 
eigenfunction of the operator representing the given observable, then repeated measurements will 
give identical results. The operator for position is just “multiply by x”: x̂ = x. The operator for 
momentum is p̂x = ( h- /i)(d/dx). The operator for kinetic energy in the x-direction is 
E^ k = – ( h- 2/2m)(d2/dx2). 
   If ô = o, with o a constant, then  is an eigenfunction. For the momentum: 
 

 p̂x  = 
 h-

i  
d

dx e–ikx = –  h- k e–ikx =  –  h- k  
 

The wave function is an eigenfunction of the momentum operator, so every observation of the 

momentum will give the same result, – h- k. 
   For the kinetic energy: 
 

 E^ k = – 
 h- 2

2m 
d2

 dx2  = 
 h- 2k2

2m  e–ikx = 
 h- 2k2

2m   
 

The wave function is an eigenfunction of the kinetic operator, so every observation of the kinetic 
energy will give the same result, h- 2k2/2m. 
   The wave function is not an eigenfunction of the position operator: 
 

 x̂  = x e–ikx 
 

Repeated observations of the position of the particle will give different results, over the full 
range allowed for x: –  x  . 
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40.  What are the restrictions on the wave functions that may represent physical systems? Can 
the following be valid wave functions? (a). (x) = N ln x  for 0  x  , (b). (x) = N eax2 
for –  x  , and (c). (x) = N x e–ax  with a > 0 and the range 0  x  . 
 
 
Answer:  By the Born interpretation, *(x) (x) dx  is the probability of finding the particle in 
the interval x to x + dx. To be interpreted as a probability, *(x) (x) must be real, non-negative, 
single-valued, and normalizable. To be normalizable, the function must be square integrable; the 
product must remain finite across the allowed range. 
(a).  Considering (x) = N ln x  for 0  x  : note that ln x  –  as  x  0, so ln x is not 
finite over the given range and is therefore not a valid wave function. 
(b). Considering (x) = N eax2  for –  x  : if a is positive the exponential diverges to 
infinity for x   . Therefore, for a > 0 the function is not acceptable. However, for a < 0 the 
function is finite over the full range, approaches zero asymptotically for x, and defining b = –a 
(see standard integral tables or the back cover over-leaf):1 
 

 


- *(x) (x) dx = 2 N2 0  e–2bx2 dx = 2 N2 
1
2 





2b

½
   (b > 0) 

 

and so is normalizable. 
(c).  Considering (x) = N x e–ax   for 0  x  : as x  0 then e–ax  1 and x e–ax  0, which 
is acceptable. As x   then e–ax  0 but x  . However, as a test, evaluating x e–ax for a = 1 
and x = 100 gives x e–ax = 4x10-42. The function asymptotically approaches zero. 
   The official method to find the asymptotic behavior of x e–ax is to use L’Hospital’s rule. 
Consider the function as the ratio x/eax; both numerator and denominator diverge to infinity. The 
ratio of the derivatives is 1/(aeax) and lim(1/(aeax)) as x   gives 0. The function asymptotically 
approaches zero for large x. 
   The function is also square integrable; the integral is available in standard tables as: 
 

 0  *(x) (x) dx = N2 0  x2 e–2ax dx = N2 
2!
8a3 

 

   The function would not be acceptable for x < 0, because the function would diverge to –. 
 
 
41.  Show that a linear combination of two eigenfunctions of the momentum that have the same 
momentum is also an eigenfunction of the momentum. 
 
 
Answer:  Let two eigenfunctions, A and B, have the same momentum, p: 
 

 p^A = p A  and p^B = p B     1 
 

A linear combination of the two separate solutions is  = a A + b B, for a and b constants. 
The momentum is a linear operator. Applying the momentum operator to the linear combination:  

 

 p^ = p^(a A + b B) = a p^A + b p^B 
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However, using Eq. 1 for the individual terms gives: 
 

 p^ = a pA + b pB 
 

Distributing out the common factor of p gives: 
 

 p^ = p (a A + b B) = p  
 

which shows that the linear combination is also a valid eigenfunction of the momentum. This 
result shows that degenerate solutions are not unique; any linear combination of degenerate 
solutions is also a solution. 
 
 
42.  Determine the value for the commutation relationship between the observation time and total 
energy of a particle, [t̂,Ê]. [Hint: apply the commutator as an operator for an arbitrary function, 
f(t)] 
 
 
Answer:  The plan is to note that [t̂,Ê] = (t̂ Ê – Ê t̂). The operator for time is just “multiply by t”: 
t̂ = t. The operator for total energy is Ê = iħ (d/dt). 
   With f(t) as an arbitrary function of t: 
 

 [t̂,Ê] f = (t Ê – Ê t) f = t Ê f  – Ê t f = iħ 








t 
f
t

 – 
(tf)
x

 
 

Using the product rule for the last derivative: 
 

 [t̂,Ê] f = iħ 








t 
f
t

 – t 
f
t

 – f 
t
t

 = – iħ f 
 

Dividing both sides of this expression by f gives the final result: 
 

 [t̂,Ê] = – iħ 
 

This result holds for any wave function. Since the commutator for time and energy does not 
vanish, the two observables are governed by the Heisenberg uncertainty principle. Observation 
time and energy cannot both be defined to high precision, E t > ħ/2. 
 
 
43.  Consider a two-dimensional problem, such as the two-dimensional particle in a box. 
Determine the value for the commutation relationship between the position in the x-direction and 
the momentum in the y-direction, [x̂,p̂y]. [Hint: apply the commutator as an operator for an 
arbitrary function, f(x,y)] 
 
 
Answer:  The plan is to note that [x̂,p̂y] = (x̂ p̂y – p̂y x̂). The operator for the x-position is just 
“multiply by x”: x̂ = x. The operator for the momentum in the y-direction is p̂y = ( h- /i)( /y)x. 
   With f(x,y) as an arbitrary function of x and y: 
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 [x̂,p̂y] f = (x̂ p̂y – p̂y x̂) f = x̂ p̂y f – p̂yx̂ f = ( h- /i) 








x 






f

y x
 – 






(xf)

y x
 

 

For the last derivative, x is a constant and factors through the derivative with respect to y: 
 

 [x̂,p̂y] f = ( h- /i) 








x 






f

y x
 – x 







f

y x
 = 0 

 

In general, the commutator vanishes and both the x-position and the y-momentum can be 
simultaneously precisely defined. 
 
 
44.  Determine the value for the commutation relationship between the momentum and kinetic 
energy of a particle in one-dimension, [p̂x, E^ k]. [Hint: apply the commutator as an operator for an 
arbitrary function, f(x)] 
 
 
Answer:  The plan is to note that [p̂x,E^ k] = (p̂x E^ k – E^ k p̂x). The operator for momentum is 
p̂x = ( h- /i)(d/dx). The operator for kinetic energy in the x-direction is E^ k = – ( h- 2/2m)(d2/dx2). 
   With f(x) as an arbitrary function of x: 
 

 [p̂x,E^ k] f = (p̂x E^ k – E^ k p̂x) f = p̂x E^ k f – E^ k p̂x f = – ( h- 3/2mi) 



 

d
dx 

d2f
dx2 – 

d2

dx2 
df
dx  = 0 

 

Both terms result in the third derivative, and are then identical. In general, the commutator 
vanishes and both the momentum and kinetic energy for motion in the x-direction can be 
simultaneously precisely defined. 
 
 
45.  Find the absolute values for the following: 

 (a). 2 + i6,    (b). e–ix2,    (c). cos(nx/a) + i sin(nx/a), (d). e–i nx/a and    (e).  – h- /i. 
 
 
Answer:  Note that since ii = -1. For a complex number, |z| = (z*z)½, giving: 
 

(a). |2 + i6 | = [(2 – i6)( 2 + i6)]½ = [4 – i12 + i12 + 36]½ = [40]½ 
(b). |e–ix2 | = [eix2 e–ix2 ]½ = [e0]½ = 1 
(c). |cos(nx/a) + i sin(nx/a)| = [ (cos(nx/a) – i sin(nx/a)) (cos(nx/a) + i sin(nx/a)) ]½ 
 = [ cos2(nx/a) + i cos(nx/a) sin(nx/a) – i sin(nx/a) cos(nx/a) + sin2(nx/a)]½ 
 = [ cos2(nx/a) + sin2(nx/a)]½ = 1 
(d). |e–i nx/a| = [ei nx/a e–i nx/a]½ = [e0]½ = 1 

(e). |– h- /i | = [(+ h- /i )(– h- /i )]½ =  h-  
 

Note that parts (c) and (d) are equivalent, so they should give the same answer: 
 

 e–i nx/a = cos(nx/a) + i sin(nx/a)  
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46.  Using explicit summations, show that 2
x = <(x – <x>)2> is equivalent to 2

x = <x2> – <x>2. 
Use the trial data set x = {2,3,3,4,1,2,2}. 
 
 
Answer:  The following spreadsheet was developed to do the necessary averages. 
 

A1 B C D E 
2     
3  x (x-<x>)2 x2 
4  2 0.1836735 4 
5  3 0.3265306 9 
6  3 0.3265306 9 
7  4 2.4693878 16 
8  1 2.0408163 1 
9  2 0.1836735 4 

10  2 0.1836735 4 
11  <x> <(x-<x>)2> <x2> 
12 average= 2.428571 0.8163265 6.714286 
13     
14   <x2>-<x>2= 0.816327 

 
The formula in D4 is: “=(C4-$C$12)^2”. The average of each column is in row 12. The final 
result verifies that x = <(x – <x>)2> = <x2> – <x>2. 
 
 
47. Prove that x = <(x – x̄)2>½ = (<x2> – <x>2)½ (Eq. 23.4.36). 
 
 
Answer: The multiplication gives: 
 

 (x – x̄)2 = x2 – 2 xx̄ + x̄2 
 

The averages are: <(x – x̄)2> = <x2> – 2 <x>x̄ + x̄2 
 

However, since <x> = x̄, the second and third terms combine to give: 
 

 <(x – x̄)2> = <x2> – <x>2 
 

and taking the square root: x = <(x – x̄)2>½ = (<x2> – <x>2)½ 
 
 
48.  The moments of a probability distribution characterize the distribution. The first moment is 
the mean, <x> = x̄. The second central moment is the standard deviation, x = [<(x – x̄)2>]½. 
Central moments are evaluated using the deviations from the mean (x – x̄). The third central 
moment is defined as [<(x – x̄)3>]1/3. The third central moment is a measure of the asymmetry 
about the mean for the distribution. For example, for a Gaussian distribution the third central 
moment is zero. (a). Prove that the third central moment can be calculated using: 
 

 <(x – x̄)3> = <x3> – 3 x̄ <x2> + 2 x̄3 
 

(b). Verify the formula using explicit summations with the trial data set listed in the previous 
problem. 
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Answer:  The plan is to parallel the derivation for Problem 47 with <(x – x̄)3>. 
(a).  The multiplications are: 
 

 (x – x̄)3 = (x2 – 2 xx̄ + x̄2)(x – x̄) = x3 – 3 x2x̄ + 3 x x̄2 – x̄3 
 

The averages are: <(x – x̄)3> =  <x3> – 3 <x2>x̄ + 3 <x> x̄2 – x̄3 
However, since <x> = x̄, the third and fourth terms combine to give: 
 

 <(x – x̄)3> = <x3> – 3 x̄ <x2> + 2 x̄3 
 

(b). The following spreadsheet was developed to do the necessary averages to verify the equality. 
 

  x (x-<x>)3    x3    x2 

2 -0.07872 8 4 

3 0.186589 27 9 

3 0.186589 27 9 

4 3.880466 64 16 

1 -2.91545 1 1 

2 -0.07872 8 4 

2 -0.07872 8 4 

<x> <(x-<x>)3> <x3> <x2> 
2.428571 0.157434 20.42857 6.714286 

    

 <x3> –3x̄<x2> + 2x̄3 =  0.157434 

 
 
49.  Use Eq. 23.7.35 to determine the product of the uncertainty in the position and momentum 
for a one-dimensional particle in a box of length a for n = 2. 
 
 

Answer:  The plan is to note that [x,px] = – ( h- /i). 
   The particle in the box wave function is 2(x) = (2/a)½ sin 2x/a. The product of the 
uncertainty in the position and momentum, using Eq. 23.7.35, is: 
 

 x p  ½ | 0a *
2 [x,px] 2 dx | = (1/a) | 0a sin(2x/a) (– h- /i) sin(2x/a) dx | 

 x p   ½ |– h- /i | (2/a) 0a sin2(2x/a) dx 
 

For a complex number, |z| = (z*z)½, giving |– h- /i | = [(+ h- /i )(– h- /i )]½ =  h- . The particle in a box 
wave function is normalized so that: 
 

 0a *  dx = (2/a) 0a sin2(2x/a) dx = 1 
 

Using this normalization: 
 

 x p  h-/2 
 

which corresponds to the Heisenberg uncertainty relationship. 
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50.  Show that the commutator for the position and kinetic energy of a particle, in one-
dimension, is: 
 

 [x^ ,E^ k] = – (ih-/m) p^  
 

Can position and kinetic energy be simultaneously defined to high precision? [Hint: find the 
result of the commutator operating on an arbitrary function f(x).] 
 
 
Answer:  The plan is to find [x^ ,E^ k]f(x) = (x^E^ k – E^ kx^)f(x). The operator for position is just 
"multiply by x," x^  = x. The kinetic energy operator in one linear-dimension is 
E^ k = – (h-2/2m) d2/dx2. 
   Expanding the commutator and applying the operators to f(x) gives: 
 

 [x^ ,E^ k]f = (x^E^ k – E^ kx^)f = x^E^ kf – E^ kx^f = – (h-2/2m) 



x 

d2f
dx2 – 

d2(xf)
dx2  

 

Using the product rule, twice, for the last derivative gives: 
 

 
d

dx



d(xf)

dx  = 
d

dx



x 

df
dx + f 

dx
dx  = x 

d2f
dx2 + 

df
dx 

dx
dx + 

df
dx = x 

d2f
dx2 + 2 

df
dx 

 

Substituting this last result back into the commutation relationship gives: 
 

 [x^ ,E^ k]f = – (h-2/2m) 



x 

d2f
dx2 – x 

d2f
dx2 – 2 

df
dx  = 2 (h-2/2m) 

df
dx 

 

Note that the momentum operator is p^  = h-/i d/dx, which upon substitution into the commutation 
relationship gives: 
 

 [x^ ,E^ k]f = – (h-2/2m) 



x 

d2f
dx2 – x 

d2f
dx2 – 2 

df
dx  = – (ih-/m) p^  f 

 

The final result is: [x^ ,E^ k] = – (ih-/m) p^ . The position and kinetic energy of a particle cannot be 
simultaneously specified precisely. 
 
 
51.  Is the operator o^  = (d/dx) Hermitian? [Hint: use integration by parts:  u dv = uv –  v du ] 
 
 
Answer:  The plan is to follow Example 23.7.4. The goal is to show that: 
 

  *
j  



d 

dx  i dx =  i 



d 

dx
*
 *

j dx      1 

Starting with the left hand integral: 
 

 - *
j  



d 

dx  i dx =  - *
j di 

 

Integration by parts, with u = *
j and dv = di, gives: 
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 - *
j  di = *

ji|
x = 
x = -  – - i d*

j      2 
 

The product *
ji goes to zero at each endpoint. Substituting this last equation back into Eq. 1 

gives: 
 

 - *
j  



d 

dx  i dx = – - i d*
j = – - i 



d 

dx  *
j dx   3 

 

Finally, (d/dx)* = (d/dx) so that the last equation reduces to: 
 

 - *
j  



d 

dx  i dx = – - i 



d 

dx
*
 *

j dx     4 
 

which shows that (d/dx) is not Hermitian. The “i” in the definition, p^  = – ih- (d/dx), is necessary 
for the momentum operator to be Hermitian. 
 
 
52.  (Challenge Problem)  Show that the operator (d2/dx2) is Hermitian. Is the kinetic energy 
operator also Hermitian? Do the problem using the following intermediate steps.  (a). Show that: 
[Hint: use integration by parts,  u dv = uv –  v du.] 
 

 - *
j  



d2 

dx2  i dx = – - 



di

dx  d*
j = – - 



di

dx  



d*

j

dx  dx 
 

(b).  Show that: [Hint: use integration by parts again.] 
 

 - *
j  



d2 

dx2  i dx = - i 



d 

dx 



d*

j

dx  dx  
 

(c).  Finally show that (d2/dx2) is Hermitian by proving that: 
 

  *
j  



d2 

dx2 i dx =  i 



d2 

dx2

*
*

j  dx 
 

(d).  Is the kinetic energy operator also Hermitian? 
 
 
Answer:  The plan is to follow Example 23.7.4. The goal is to show that: 
 

  *
j  



d2 

dx2 i dx =  i 



d2 

dx2

*
*

j  dx      1 
 

(a).  Starting with the left hand integral: 
 

 - *
j  



d2 

dx2 i dx = - *
j  



d 

dx 



di

dx  dx = - *
j d



di

dx  
 

Integration by parts, with u = *
j and dv = d(di/dx), gives:  

 

 - *
j  d



di

dx  = *
j  



di

dx | x = 
x = -  – - 



di

dx  d*
j     2 
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The wave function *
j  and (di/dx) go to zero at each endpoint, because the wave functions 

approach zero asymptotically for large distances. Substituting this last equation back into Eq. 1: 
 

 - *
j  



d2 

dx2  i dx = – - 



di

dx  d*
j = – - 



di

dx  



d*

j

dx  dx   3 
 

(b).  However, the two derivatives in this last expression are functions and can switch places, 
since the derivatives are completed and the resulting functions commute: 
 

 - *
j  



d2 

dx2  i dx = – - 



d*

j

dx 



di

dx  dx = – - 



d*

j

dx  di   4 
 

This last integral can also be integrated by parts, with u = (d*
j /dx) and dv = di, giving: 

 

 - *
j  



d2 

dx2  i dx = – 



d*

j

dx i|x = 
x = - + - i d



d *j

dx    5 
 

The first term again goes to zero at the extremes in x. The last integral expands back giving: 
 

 - *
j  



d2 

dx2  i dx = - i 



d 

dx 



d*

j

dx  dx     6 
 

(c).  Finally, (d2/dx2)* = (d2/dx2) so that the last equation reduces to Eq. 1, which shows that 
 o^  = (d2/dx2) is Hermitian. 
(d).  Since the kinetic energy operator is the second derivative multiplied by a constant, 
Ek = – (h-2/2m)(d2/dx2), the kinetic energy operator is also Hermitian. 
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Chapter 24 Problems: The Quantum Mechanics of Rotation and Vibration  
 

1.  (a). How many nodes are in the  = 3 wave function for the harmonic oscillator? (b). How 
many angular nodes are in the l = 3, ml = 2 wave function for the rigid rotor? (c). How many of 
the angular nodes for the l = 3, ml = 2 rigid rotor include the z-axis? (d). Why are the nodes 
important? 
 
 
Answer:  (a). The lowest energy state for the harmonic oscillator is for  = 0, which has no 
nodes. The number of nodes is therefore given by . For  = 3 there are three nodes. Reference 
to Figure 24.2.3b verifies the assignment. 
(b). The total number of angular nodes for the rigid rotor is given by l and the number of nodes 
that include the z-axis is ml. For l = 3 there are 3 total nodes. 
(c). For ml = 2, there are 2 nodes that include the z-axis. The spherical harmonics for this wave 
function have the same angular distribution as an atomic f-orbital. 
(d). Nodes are important because they are a measure of the curvature of the wave function, which 
in turn determines the kinetic energy. The nodes that include the z-axis also determine the 
orientation of the angular momentum vector. For ml = l, all the nodes include the z-axis and the 
angular momentum vector has its maximum projection on the z-axis. For m l = 0, the angular 
momentum vector is perpendicular to the z-axis. The number of nodes that include the z-axis 
determines the spatial quantization. 
 
 
2.  Multiply the harmonic oscillator ground state wave function, Figure P24.1a, by the 
polynomial, Figure P24.1b, to give the excited state wave function. Sketch the excited state wave 
function. What is the quantum number for this wave function? 
 

     
 (a).       (b). 

 

Figure P24.1: (a) The ground state for the harmonic oscillator. (b). The polynomial used to 
generate an excited state of the harmonic oscillator. The polynomial is a Hermite polynomial. 

 
 
Answer:  The plan is to note that the excited state is the product of the ground state wave 
function and a polynomial. Also, note that v for the ground state is zero and there are no nodes 
for the ground state. 
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   The ground state wave function determines the asymptotic form for the wave function at large 
r. The number of zeros for the polynomial determines the number of nodes for the excited state 
wave function. The number of nodes is equal to the quantum number, nodes = v. For this 
example, there are four nodes giving v = 4. 
 

   
 
3.  (a).  The fundamental vibration frequency for 1H79Br is 2649.67 cm-1. Calculate the force 
constant. Calculate the energy for the transition in kJ mol-1. (b). The force constant for the 
vibration in 1H35Cl is 515.90 N m-1. Calculate the vibration frequency in cm-1. Calculate the 
energy for the transition in kJ mol-1. (c). Which has a stronger bond, and why? 
 
Answer:  The plan is to note that the fundamental vibration frequency is given by: 

 = (1/2) k/ with  = [M1M2/(M1 + M2)](1/NA)(1 kg/1000 g). The units for the force 
constant are N m-1 and the reduced mass kg molecule-1, or officially just kg. 

(a).  The wavenumber is converted to m-1 by ~ = 2649.67 cm-1(100 cm/1 m). The frequency-
wavenumber conversion is given by solving  = c: 
 

 ~ = 
1
 = 


c  and  = ~c = 264967. m-1(2.99792458x108m s-1) 

       = 7.943511x1013 s-1 
 

The reduced mass is given using isotope specific atomic masses: 
 

  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

 = 
1.0078250 g mol-1(78.918337 g mol-1)
1.0078250 g mol-1 + 78.918337 g mol-1 



1

6.0221367x1023 mol-1  (1 kg/1000 g) 

 = 1.652432x10-27kg 
 

The force constant and energy change for the transition are: 
 

 k = 422 = 42(7.943511x1013 s-1)2(1.652432x10-27kg) = 411.631 N m-1 

 

 E = h(NA)(1 kJ/1000 J) = hc~ NA (1 kJ/1000 J) 
        = 6.626076x10-34 J s(2.997925x108m s-1)(264967. m-1)(6.0221367x1023 mol-1)(1 kJ/1000 J) 
        = 31.6971 kJ mol-1 
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(b).  The calculations are summarized in the table, below. 
 

Molecule  (cm-1) M1 (g mol-1) M2 (g mol-1)  (kg) k (N m-1) E (J) E (kJ mol-1) 
1H79Br 2649.67 1.0078250 78.918337 1.6524x10-27 411.631 5.263x10-20 31.6971 
1H35Cl 2989.74 1.0078250 34.9688527 1.6267x10-27 515.90 5.939x10-20 35.765 

 
(c).  Because HCl has the larger force constant, HCl has the stronger bond. The reason is often 
ascribed to the larger atomic radius for Br atoms compared to Cl, which gives a longer bond for 
HBr. 
 
 

4.  Normalize the wave function for the ground state of the harmonic oscillator, o = N e–½ 2x2
 

(without using Eq. 24.2.22). 
 
 

Answer:  The plan is to use the normalization integral, - * dx = 1, to find the normalization 
constant N. 
   Remember that (ex)2 = e2x. Substitution of the wave function into the normalization integral 
gives: 
 

 N2 - e–2x2
 dx = 1   with   2 = mo/h- 

 

This integrand is even about x = 0. Using the table in the Appendix:  0  e–ax2
 dx = ½ (/a)½: 

 

 N2 2 0  e–2x2
 dx = N2 (/2)½ = 1 

 

Solving for the normalization constant gives:  N = 






2



¼
= 






mo

h-

¼
 

The complete wave function is then:  o = 






2



¼
 e–½ 2x2

  =  






mo

h-

¼
 e– 

mo

2h̄  x2

 

 
 
5.  Find the expectation values for the position and momentum of the ground state of the 
harmonic oscillator. 
 
 
Answer:  The plan is to note that the position operator is just “multiply by x”, x^  = x, and the 
momentum operator is p^  = h-/i (d/dx). The expectation values are then: 
 

 <x> = 
- *

o x o dx

- *
o o dx

  and <p> = 
- *

o 
h-

i  



d 

dx  o dx

- *
o o dx

 

 

   Since the harmonic oscillator wave functions are real, * = . We will use the normalized 

form of the wave function, N = (2/)¼, giving - 2
o dx = 1. 

   The expectation value of the position, using a normalized wave function, is: 
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 <x> = - *
o x o dx = N2 


-

 
 e–½ 2x2

 x e–½ 2x2
 dx 

 

The integrand is a product of functions, so the order is immaterial: 
 

 <x> = N2 


-

 
   x   e–2x2

 dx 

         
            odd  even 
 

The integrand is the product of an odd and an even function over all space, which gives an 
integral of zero: <x> = 0. 
   The expectation value of the momentum, using a normalized wave function, is: 
 

 <p> = - *
o 

h-

i  



d 

dx  o dx = 
h-

i  N2 


-

 
 e–½ 2x2

 



d 

dx  e–½ 2x2
 dx 

 

The derivative is: 

 



d 

dx  e–½ 2x2
 = – 2x e–½ 2x2

 

Substitution of the derivative into the integral gives: 
 

 <p> = – 
h-

i  N22 


-

 
 x e–2x2

 dx 

 

Once again, the integrand is the product of an odd and an even function over all space, which 
gives an integral of zero: <p> = 0. 
 
 
6.  Find the expectation value of the potential energy for the ground state of the harmonic 
oscillator. 
 
 
Answer:  The plan is to note that we must find the expectation value of the potential energy 
operator, V^  = ½ kx2. Since the harmonic oscillator wave functions are real, * = . We will use 
the normalized form of the wave function, N = (2/)¼, giving - 2

o dx = 1. 
   The expectation value of the potential energy is: 
 

 <V> = - *
o ½ kx2 o dx = ½ k N2 


-

 
 e–½ 2x2

 x2 e–½ 2x2
 dx 

 

The integrand is a product of functions, so the order is immaterial. Noting that the integrand is an 
even function of x gives: 
 

 <V> = ½ k N2 2 0

 x2 e–2x2
 dx 

 

Using the integral table in the Appendix:  0  x2e–ax2
 dx = (1/4a) (/a)½: 

 

 <V> = ½ k N2 2 




1

42 







2

½
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Substitution of the normalization constant, N = (2/)¼, into the last equation gives: 
 

 <V> = ½ k 






2



½
 2 




1

42 







2

½
 = k 





1

42   
 

The force constant and 2 are related through Eq. 24.2.11; with 2 = (mk)½/h̄: 
 

 <V> = 
k
4 

h̄
(mk)½ = 

h̄
4 



k

m

½
 = 

h̄o

4  
 

where o = (k/m)½. The total energy of the harmonic oscillator in the ground state is E = h̄o/2. 
The average potential energy is, then, one-half of the total energy: <Ek> = ½ E. Since 
E = <Ek> + <V>, the average potential and kinetic energies are equal, <Ek> = <V>. This result is 
a specific example of the Virial Theorem. If the potential is in the form of a power law, 
V(x) = k xn, then the average potential and kinetic energy are related by: 
 

 2 <Ek> = n <V> 
 

For the harmonic oscillator, n = 2, which gives <Ek> = <V> by the Virial Theorem, as shown by 
this problem. 
 
 
7.  Find the expectation value of the kinetic energy for the ground state of the harmonic 
oscillator. 
 
 
Answer:  The plan is to note that we must find the expectation value of the kinetic energy 
operator, E^ k = – (h-2/2m) d2/dx2. Since the harmonic oscillator wave functions are real, * = . 
We will use the normalized form of the wave function, N = (2/)¼, giving - 2

o dx = 1. 
   The expectation value of the kinetic energy is: 
 

 <Ek> = - *
o 







– 
h-2

2m 



d2 

dx2  o dx = – 
h-2

2m N2 


-

 
 e–½ 2x2

 



d2 

dx2  e–½ 2x2
 dx 

 

with:  



d 

dx  e–½ 2x2
 = – 2x e–½ 2x2

  and 



d2 

dx2  e–½ 2x2
 = (4x2 – 2) e–½ 2x2

 
 

Substituting in the second derivative gives: 
 

 <Ek> = – 
h-2

2m N2 


-

 
 (4x2 – 2) e–2x2

 dx 

 

Separating the integral into two terms and noting that the integrand for each integral is even 
gives: 
 

 <Ek> = – 
h-2

2m N2 2 




4

0

 x2 e–2x2
 dx – 2

0

 e–2x2
 dx  

 

Using the table in the Appendix:  0  e–ax2
 dx = ½ (/a)½  and 0  x2e–ax2

 dx = (1/4a) (/a)½: 
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 <Ek> = – 
h-2

2m N2 2 








4





1

42 







2

½
 – 2




1

2 







2

½
 = – 

h-2

2m N2 22









2

½
 








1

4  –


1

2  
 

Substitution of the normalization constant, N = (2/)¼, Eq. 24.2.13, into the last equation gives: 
 

 <Ek> = – 
h-2

2m 






2



½
 22









2

½
 



– 

1
4  = 

1
2 





h-22

2m  
 

The total energy of the harmonic oscillator in the ground state is E = h-22/2m. The average 
kinetic energy is, then, one-half of the total energy: <Ek> = ½ E. Since E = <Ek> + <V>, the 
potential and kinetic energies are equal, <Ek> = <V>. This result is a specific example of the 
Virial Theorem. If the potential is in the form of a power law, V(x) = k xn, then the average 
potential and kinetic energy are related by: 
 

 2 <Ek> = n <V> 
 

For the harmonic oscillator, n = 2, which gives <Ek> = <V>, as shown by this problem. 
 
 
8.  Show that the ground state of the harmonic oscillator is consistent with the Heisenberg 
uncertainty principle. [Hint: Calculate the standard deviations of the position and momentum. 
However, you don’t need to prove that <x> = 0 and <p> = 0, which are established by 
symmetry.] 
 
 
Answer:  The plan is to note that since <x> = 0 and <p> = 0, then x = (<x2> – <x>2)½ 
= (<x2>)½ and p = (<p2> – <p>2)½ = (<p2>)½. Note that the momentum operator is p^  = h-/i (d/dx). 
   Since the harmonic oscillator wave functions are real, * = . We will use the normalized 

form of the wave function, N = (2/)¼, giving - 2
o dx = 1.The expectation value of x2 is then 

(see also Problem 6): 
 

 <x2> = - *
o x2 o dx = N2 


-

 
 e–½ 2x2

 x2 e–½ 2x2
 dx 

 

The integrand is a product of functions, so the order is immaterial. Noting that the integrand is an 
even function of x gives: 
 

 <x2> = N2 2 0

 x2 e–2x2
 dx 

 

Using the integral table in the Appendix:  0  x2e–ax2
 dx = (1/4a) (/a)½: 

 

 <x2> = N2 2 




1

42 







2

½
 

 

Substitution of the normalization constant, N = (2/)¼, into the last equation gives: 
 

 <x2> = 






2



½
 2 




1

42 







2

½
 = 




1

22  
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   The operator, p̂2 = p̂ p̂ = –  h- 2 (d2/dx2), involves a derivative, so the order of operation is 
important, giving for the expectation value of p̂2 (see also Problem 7): 
 

 <p2> = - *
o 



– h- 2 d2 

dx2  o dx = –  h- 2 N2 


-

 
 e–½ 2x2

 



d2 

dx2  e–½ 2x2
 dx 

 

with:  



d 

dx  e–½ 2x2
 = – 2x e–½ 2x2

  and 



d2 

dx2  e–½ 2x2
 = (4x2 – 2) e–½ 2x2

 
 

Substituting in the second derivative gives: 
 

 < p2> =–  h- 2 N2 


-

 
 (4x2 – 2) e–2x2

 dx 
 

Separating the integral into two terms and noting that the integrand for each integral is even 
gives: 
 

 < p2> = –  h- 2 N2 2 




4

0

 x2 e–2x2
 dx – 2

0

 e–2x2
 dx  

 

Using the table in the Appendix:  0  e–ax2
 dx = ½ (/a)½  and 0  x2e–ax2

 dx = (1/4a) (/a)½: 
 

 < p2> = –  h- 2 N2 2 








4





1

42 







2

½
 – 2




1

2 







2

½
 = –  h- 2 N2 22









2

½
 








1

4  –


1

2  
 

Substitution of the normalization constant, N = (2/)¼, into the last equation gives: 
 

 < p2> = –  h- 2 






2



½
 22









2

½
 



– 

1
4  = 

1
2 h-22 

The product of the variances is then:  2
x 2

p = 




1

22 



1

2 h-22  = 
h-2

4  

which is consistent with the Heisenberg uncertainty principle, x p  h-/2. 
 
 
9.  Use the recursion relationship for Hermite polynomials to generate the first four excited state 
wave functions for the harmonic oscillator (H1 to H4). 
 
 
Answer:  The ground state and the general form for the wave functions of the harmonic oscillator 
are: 
 

 o = 






2



¼
e–½ 2x2

  v = Nv Hv e–½ 2x2

 
 

The recursion relationship is: Hv+1 = 2y Hv – 2v Hv-1, and the first Hermite polynomial, upon 
which all the others are based is Ho = 1. Building up from Ho gives: 
 

 H1 = 2y Ho = 2y 
 H2 = 2y H1 – 2(1) Ho = 2y (2y) – 2(1)(1) = 4y2 – 2 
 H3 = 2y H2 – 2(2) H1 = 2y(4y2 – 2) – 2(2)(2y) = 8y3 – 12y 
 H4 = 2y H3 – 2(3) H2 = 2y(8y3 – 12y) – 2(3)(4y2 – 2) = 16y4 – 48y2 + 12 
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The normalization integral, using the change in variables y = x, dy/dx = , and dx = dy/, 
gives: 
 

 N2
v (1/) -Hv e–½ y2

 Hv e–½ y2

 dy = 1 
 

The standard form of the integral, using Eq. 24.2.99% with v' = v, is: 
 

 -Hv e–½ y2

 Hv e–½ y2

 dy = ½ 2vv!  giving  N2
v (1/)(½ 2vv!) = 1 

 

The normalization constant is then Nv = (/½ 2vv!))½. Explicitly, the normalization for the first 
four excited state levels is: 
 

 N1 = 








½ 211!

½
 = 






2

4

¼
   N2 = 









½ 222!

½
 = 

1
2 






2

4

¼
 

 N3 = 








½ 233!

½
 = 

1
2 






2

144

¼
   N4 = 









½ 244!

½
 = 

1
8 






2

36

¼
 

 

The final wavefunctions are: 
 

 1 = 






2

4

¼
 (2αx) e–½ 2x2

 

 2 = 
1
2 






2

4

¼
 (4α2x2 – 2) e–½ 2x2

 

 3 = 
1
2 






2

144

¼
 (8α3x3 – 12αx) e–½ 2x2

 

 4 = 
1
8 






2

36

¼
 (16α4x4 – 48α2x2 + 12) e–½ 2x2

 

 
 
10.  Confirm that wavefunctions for a 2D-rigid rotor (particle-in-a-ring) are orthogonal. [Hint: 
the wave functions are () = a ei ml  with different ml.] 
 
 

Answer:  The plan is to show that 0  *
ml 'ml d = 0 with ml '  ml. 

   The integral to test for orthogonality is: 
 

 0  *
ml 'ml d = a2 0  e–i ml '  ei ml  d = a2 0  ei (ml – ml ') d 

 

with ml '  ml. Using the Euler identity for the complex exponential gives: 
 

 0  *
ml 'ml d = a2 0  cos[(ml – ml ')] d + i a2 0  sin[(ml – ml ')] d 

 

However, (ml – ml ') is an integer. Let n = (ml – ml ') with n  0, which gives: 
 

 0  cos n d = sin n|20  = 0   and     0  sin n d = – cos n|20  = – [1 – 1] = 0 
 

Substitution of these standard integrals into the orthogonality integral gives 0  *
ml 'ml d = 0. 
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11.  Show that the wave function () = a eiml is an eigenfunction of the Hamiltonian for the 

rigid-rotor in the x-y plane, where H^  = – h-2/2I (d2/d2). What is the energy for this wavefunction? 
 
 
Answer:  The plan is to note that the Hamiltonian for the 2D-rigid rotor is a function of the 
azimuthal angle  through H^  = – h-2/2I (d2/d2). 
   The derivatives are: 
 

 
d eiml

d  = i ml eiml and  
d2eiml

d2  = (i ml)2 eiml = – m2
 l eiml 

 

The Schrödinger equation is then: H^   = – 
h-2

2I 
d2 a eiml

d2  = 
h-2m2

 l

2I  a eiml = 
h-2m2

 l

2I   

This final result shows that the wave function is an eigenfunction of the Hamiltonian. The 
eigenvalue corresponding to the Hamiltonian is the energy: 
 

 E = 
h-2m2

 l

2I  

 
 
12.  Show that = cos  is an eigenfunction of the square of the total angular momentum 
operator, where: (total angular momentum operator)2 = L̂2 = – h-2 2. 
 
 

Answer:  The plan is to show that – h-2 2 c , with c a constant. For multi-step derivatives, 
order is important; remember to work from right to left. We can anticipate that since cos is the 

spherical harmonic Y1,0 without normalization, the constant will be |L|2 = h-2 l(l + 1), with l = 1. 

   The first step is to note that: 2 = 
1

sin2 






2 

2  + 




1

sin   






 

 sin  
 
  

The wave function is not a function of , so (2cos/2) = 0. The remaining derivatives are: 
 

 2 cos = 




1

sin   






 

 sin  
 
  cos 

  




1

sin   






 

 (– sin2  

  = – 




1

sin   ( )2 sin  cos   

  = – 2 cos  
 

The square of the total angular momentum operating on the wave function is then: 
 

 – h-2 2 cos = 2h-2 cos  
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This last result shows that cos  is an eigenfunction. The eigenvalue for the total angular 
momentum operator squared is then |L|2 = 2h-2. This result agrees with Eq. 24.5.34 since l = 1 for 
Y1,0 and then |L|2 = h-2 l(l + 1) = 2h-2. 
 
 
13.  Normalize Y1,0 = N cos . 
 
 
Answer:  The plan is to note that normalization requires  * d = 1, where the integral is over 
all space and the volume element is d = sin d d for the rigid-rotor. 
   Note that Y1,0 is real, so that Y*

1,0 = Y1,0. The normalization integral is given by: 
 

 020  Y2
1,0 sin  d d  = N2 20  d 0 cos2 sin  d = 1 

 

Integral tables give:  0 cos2(ax) sin(ax) dx = – (1/3a) cos3(ax). In this case a = 1: 
 

 0 cos2 sin  d = – (1/3) cos3()|0 = – (1/3) [cos3() – cos3(0)] = 2/3 
 

The integral over the azimuthal angle is 20  d = 2: 
 

 N2 20  d 0 cos2 sin  d = N2 (2)(2/3) = 1  and  N = 




3

4
½

 
 

The normalized spherical harmonic is then Y1,0 = (3/4)½ cos . 
 
 
14.  Show that the rigid-rotor wave functions Y0,0 and Y1,0 are orthogonal. 
 
 
Answer:  The plan is to note that Y0,0 = (1/4)½ and Y1,0 = (3/4)½ cos . Orthogonality requires 
 * d = 0, where the integral is over all space and the volume element is d = sin  d d for 
the rigid-rotor. 
   Note that these particular spherical harmonics are real, so that Y*

0,0 = Y0,0. The orthogonality 
integral is given by: 
 

 020  Y0,0 Y1,0 sin  d d  = (1/4)½ (3/4)½ 20  d 0 cos  sin  d = 0 
 

because integral tables give 0 cos(ax) sin(ax) dx = (1/2a) sin2(ax)|0 = 0. 
 
 
15.  Show that the rigid-rotor wave functions Y1,0 and Y1,1 are orthogonal. 
 
 
Answer:  The plan is to note that Y1,0 = (3/4)½ cos  and Y1,1 = (3/8)½ sin  ei. Orthogonality 
requires  * d = 0, where the integral is over all space and the volume element is 
d = sin  d d for the rigid-rotor. 
   Note that Y1,0 is real, so that Y*

1,0 = Y1,0. The orthogonality integral is given by: 
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 020  Y1,0 Y1,0 sin  d d  = (3/4)½ (3/8)½ 20  ei d 0 cos  sin2 d = 0 
 

because integral tables give 0 cos(ax) sin2(ax) dx = (1/3a) sin3(ax)|0 = 0. 
 
 
16.  Give the magnitude of the total angular momentum and the z-axis projection of the angular 
momentum for an l = 2, ml = 1 state of a rigid rotor. Give your answers in multiples of h-. 
 
 

Answer:  For l = 2 the magnitude of the angular momentum is: |L| = h- l(l + 1)¯¯¯¯¯ = 6̄ h- 
The z-axis projection of the angular momentum is: Lz = ml h- = h-. 
 
 
17.  Give the transition energy, in wave numbers, for the J = 0 to J = 1 transition in carbon 
monoxide. Find the transition frequency in GHz. Use the most abundant isotopes, 12C16O, with 
the bond length 1.1282 Å. 
 
 
Answer:  The plan is to use Eq. 24.5.43 converted to wave numbers, with J as the quantum 
number for the lower state: E/hc = ~ = 2 B

~
 (J + 1). 

The reduced mass is given using isotope specific atomic masses: 
 

  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

 = 
12.000000 g mol-1(15.994915 g mol-1)
12.000000 g mol-1 + 15.994915 g mol-1 



1

6.0221367x1023 mol-1  (1 kg/1000 g) 

 = 1.1385010x10-26 kg 
 

Note that 1 Å = 1x10-10 m. The moment of inertia and rotational constant are: 
 

 I = r2 = 1.138501x10-26 kg(1.1282x10-10 m)2 = 1.44912x10-46 kg m2 

 B
~

 = 
ħ

4Ic
 = 

1.054573x10-34 J s
4(1.44912x10-46 kg m2)(2.997925x108 m s-1)

 = 193.170 m-1 

 B
~

 = 193.170 m-1 (1 m/100 cm) =1.93170 cm-1 
 

The transition energy using Eq. 24.5.43 is: E/hc = ~ = 2 B
~

 (J + 1) = 2B
~

 = 3.86341 cm-1 

 

The transition frequency is given by: 
 

  = c/ = ~c = 3.86341 cm-1(2.997925x108 m s-1)(100 cm/1m) = 1.15822x1011 s-1 
  = 1.15822x1011 s-1 (1 GHz/1x109s-1) = 115.82 GHz 
 

This transition is one of the prominent lines observed in interstellar space using radio telescopes. 
 
 
18.  Show that [L^ x, L

^
y] = iħ L^ z. This problem is best done using the operators expressed in 

Cartesian coordinates. 
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Answer:  The plan is to note that [A^ ,B^ ] = A^ B^  – B^ A^ , Eq. 23. 7.10. The operators are given by Eqs. 
24.5.19. Note that the partial derivative with respect to x is taken with y and z constant. In 
addition using the Euler criterion, mixed partials are equal, Eq. 9.1.6. So for example: 
 

 

x

 z 

y

 = z 

x

 

y

  and 

y

 

x

 = 

x

 

y

 
 

Note also that multiplicative operators commute, yx = xy. The commutator is then: 
 

  [L^ x, L
^

y] = L^ xL
^

y – L
^

yL
^

x 

    = – h-2

















y 

z

 – z 

y 








z 

x

 – x 

z

 – 








z 

x

 – x 

z 








y 

z

 – z 

y

 

    = – h-2 

















y 

z

 z 

x

 – xy 
2

z2 – z2 

x

 

y

 + xz 

y

 

z

 – 








yz 

x

 

z

 – z2 

x

 

y

 – xy 
2

z2 + x 

z

 z 

y

 
 

Canceling the common factors, in xy and z2, and using the product rule for the z-derivative gives: 
 

    = – h-2 

















yz 

z

 

x

 + y 

x

 
z
z

 + xz 

y

 

z

 – 








yz 

x

 

z

 + xz 

z

 

y

 + x 

y

 
z
z

 
 

Then (z/z) = 1 and canceling common factors gives: 
 

 [L^ x, L
^

y] = h-2 








x 

y

 – y 

x

 = iħ L^ z 
 

The x and y components of the angular momentum cannot both be determined simultaneously 
with arbitrary precision. 
 
 
19.  Show that [L^ 2,L^ z] = 0. This problem is best done using the operators expressed in spherical 
polar coordinates. 
 
 
Answer:  The plan is to note that [A^ ,B^ ] = A^ B^  – B^ A^ , Eq. 23. 7.10. The operators are given by Eqs. 
24.5.20-24.5.21. Note that the partial derivative with respect to  is taken with  constant. 
   From [L^ 2,L^ z] = L^ 2 L^ z – L^ z L

^ 2, consider the first term and second term separately. Note that the 
 derivative is done with  held constant. The terms in  are constants for the  derivative and 
can factor in and out, for example: 
 

 

 







1

sin 
 
 









sin  
 
   = 

1
sin  

 
 









sin  
 
  


    1 

 

The first term in the commutator is: 
 

 L^ 2 L^ z = – 
h-3

i  






1

sin2 
2 
2 + 

1
sin  

 
 









sin  
 
  







 

     2 
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         = – 
h-3

i  






1

sin2 
3 
3 + 

1
sin  

 
 









sin  
 
  

 
     3 

 

The second term in the commutator has the opposite order for the operators: 
 

 L^ z L
^ 2 = – 

h-3

i  






 

  






1

sin2 
2 
2 + 

1
sin  

 
 









sin  
 
     4 

 

Using Eq. 1 gives: 
 

 L^ z L
^ 2 =– 

h-3

i  






1

sin2 
3 
3 +  

1
sin  

 
 









sin  
 
  

 
     5 

 

Note that Eqs. 3 and 5 are identical, so that [L^ 2,L^ z] = L^ 2 L^ z – L^ z L
^ 2 = 0. 

 
 
20. Why is [L^ 2,L^ z] = 0 significant? 
 
 
Answer:  The energy of the system is given by El = L2/2I. The eigenvalue of L^ 2 is L2 = h-2 l(l + 1) , 
which upon taking the square root gives the magnitude of the total angular momentum, |L|. The 
eigenvalue of L^ z is lz = h-ml, which determines the orientation of the angular momentum vector. 
The vanishing commutator means that both L2 and lz can be specified simultaneously to arbitrary 
precision. The total energy, the magnitude of the angular momentum, and the orientation with 
respect to the z-axis can all be specified exactly at the same time. The energy, angular 
momentum, and spatial orientation are all quantized. However, the spherical harmonics are not 
eigenfunctions of the two remaining projections, L^ x and L^ y. Instead, these components give zero 
expectation values and the uncertainties span the range of . 
 
 
21.  Draw the angular momentum vector diagrams for l = 2 angular momentum states. 
 
 

Answer:  The magnitude of the angular momentum for l = 2 is |L| = 6̄ h- = 2.45 h-, Problem 16. 
For l = 2 the magnetic quantum number can be ml = -2, -1, 0, 1, 2, giving five precession cones: 
 
 
 
 
 
 
 
 
 
 
 
22.  Draw the angular momentum vector diagram for a single electron or proton, s = ½. 

z 

x 

y 

ml = +2 

 

ml = 0 

 

ml = –2 

 

ml = –1 

 

ml = +1 

 

l = 2 z 

0 

+2 ħ 

–2 ħ 

2.45 ħ 

ml = +2 

ml =0 

ml = –2 

ml = +1 

ml = –1 

+1 ħ 

–1 ħ 
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Answer:  The magnitude of the angular momentum for s = ½ is |S| =  ¾̄̄  h- = 0.866 h-. For s = ½ 
the magnetic quantum number can be ml = -½, ½, giving two precession cones: 
 
 
 
 
 
 
 
 
 
 
23.  The spins of the protons and neutrons combine to give the overall spin of a nucleus. The 
details depend on the quantum structure of the nucleus and can result in half-integer or integer 
overall spin. The nucleus of 35Cl has a spin of I = 3/2. Give the possible values for the quantum 
number for the z-axis projection of the angular momentum. 
 
 
Answer:  The quantum number for the z-axis projection of the angular momentum is the 
magnetic quantum number, which for nuclei is called mI. Starting from mI = -3/2 in unit steps 
gives four mI states: mI = (-3/2, -1/2, +

1/2, +3/2). The angular momentum vector diagram has four 
precession cones. 
 
24.  The nucleus of 105Pd has a spin of I = 5/2. Give the possible values for the quantum number 
for the z-axis projection of the angular momentum. (The NMR resonance frequency for 105Pd is 
22.9 MHz on a 500 MHz NMR.) 
 
 
Answer:  The quantum number for the z-axis projection of the angular momentum is the 
magnetic quantum number, which for nuclei is called mI. Starting from mI = -5/2 in unit steps 
gives six mI states: mI = (-5/2, -3/2, -1/2, +

1/2, +3/2, +5/2). The angular momentum vector diagram has 
six precession cones. 
 
 

25.  Show that the operator H^  – = 



y + 

d 

dy  is a lowering operator for the z-axis projection angular 

momentum quantum states. 
 
 
Answer:  The plan is to follow Example 24.7.2. We need to show that [A^ ,A^ –] = k A^ –, Eq. 24.7.1. 
   The harmonic oscillator Hamiltonian is given by eq. 24.7.14:  H^  = H^  –H^  + – 1. The commutator 
is then: 
 

 [H^ ,H^  –] = (H^  –H^  + – 1) H^  – – H^  –(H^  –H^  + – 1) 

z 

x y 

ml = –½ 

 

ml = +½ 
s = ½ z 

0 

0.866 ħ 

ml = +½ 

ml = –½ 

+½ ħ 

–½ ħ 
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   = H^  –H^  + H^  –– H^  – – H^  –H^  –H^  + + H^  – 
 

Canceling the terms in just H^  – and factoring out the common term in –H^  – from the left gives: 
 

      = – H^  – (H^  –H^  + – H^  +H^  –)= – H^  – [H^  –,H^  +] 
 

Substituting for the commutator from Eq. 24.7.13 gives: 
 

 [H^ ,H^  –] = -2 H^  –         24.7.14 
 

The final result corresponds to k = -2, so H^  – is a lowering operator. 
 
 

26.  Use the raising operator for the harmonic oscillator to find 3 from 2 = (4y2 – 2) e–y2/2. 
 
 
Answer:  The plan is to operate on 2 with H^  +, which defined by Eq. 24.7.12. See Example 
24.7.3. 
   The next excited state is determined by: 

 H^  +2 = 



y – 

d 

dy  (4y2 – 2) e–y2/2 = 4y3 e–y2/2 – 2y e–y2/2 – 
d 

dy 4y2 e–y2/2 + 2
d 

dy e–y2/2 
 

Using the product rule: 

 H^  +2 = 4y3 e–y2/2 – 2y e–y2/2 – 4y2 d
 

dy e–y2/2 – e–y2/2 
d 

dy 4y2+ 2(–y) e–y2/2 

           = 4y3 e–y2/2 – 2y e–y2/2 – 4y2(–y) e–y2/2 – 8 y e–y2/2 + 2(–y) e–y2/2 

           = (8y3 – 12y) e–y2/2 
 

The result is as expected from Table 24.1.1. Even though ladder operators are more abstract than 
directly solving the Hermite equation, ladder operators are computationally much simpler to use. 
 
 
27.  The lowering operator acting on the lowest energy state gives zero. For the harmonic 
oscillator H^  – o = 0, since there is no state with lower energy. Integrate H^  – o = 0 to show that 
the un-normalized ground state wave function of the harmonic oscillator is o = e– y2/2. 
 
 
Answer:  The plan is to substitute in the lowering operator, Eq. 24.7.11, separate variables, and 
complete the integral, just as we did for chemical kinetics problems. This process is straight 
forward because the lowering operator involves only a first derivative. 
   Substituting in the definition of the lowering operator gives: 
 

 H^  – o = 



y – 

d 

dy o = 0 
 

Adding yo to both sides of the last equation and then multiplying by -1 gives: 
 

 
d 

dy o = – y o 
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Separating variables gives:  
1
o

 do = – y dy 

The integrals give:   1
o

 do = –  y dy or   ln o = – 
y2

2  

Exponentiation of both sides of the last equation gives:  o = e– y2/2 
The result agrees with un-normalized form of Eq. 24.2.18. 
 
 
28.  Show that the z-projection angular momentum raising operator acting on Y1,-1 gives Y1,0. 
Use the un-normalized form of the wave functions, Y1,-1 = sin  e-i and Y1,0 = cos . Do this 
problem in the following steps. 

(a). Show that:   L^ + Y1,-1 = (L^ x + i L^ y) sin  e-i 

(b). Using cot  = cos /sin , show that:      L^ x sin  e-i = h- cos  (cos  + i sin ) e-i 

(c). Using the Euler Identity, ei = ( )cos  + i sin  , show that:   L^ x sin  e-i = h- cos  

(d). Show that:   i L^ y sin  e-i = h- cos  (cos  + i sin ) e-i = h- cos  
(e). Finally show that:   L^ + Y1,-1 = (L^ x + i L^ y) sin  e-i = 2ħ cos  = 2ħ Y1,0 

 
 
Answer:  The plan is to note that L^ +, L^ x, and L^ y are given by Eqs. 24.5.20 and 24.7.18. 
(a).  Making the substitutions in spherical polar coordinates without normalization: 
 

 L^ + Y1,-1 = (L^ x + i L^ y) sin  e-i       1 
 

(b).  We consider the two terms separately to decrease confusion. Using Eqs. 24.5.20 for L^ x: 
 

 L^ x sin  e-i = 
h-

i  








– sin  
 
 – cot  cos  

 
  sin  e-i   2 

         = 
h-

i  ( )– sin  cos  – cot  sin  cos  (-i)  e-i   3 
 

However, cot  = cos /sin  giving: 
 

 L^ x sin  e-i = 
h-

i  (– sin  cos  + i cos  cos ) e-i    4 

         = h- cos  (cos  + i sin ) e-i     5 
 

(c).  The Euler Identity gives ei = ( )cos  + i sin   and ei e-i = 1: 
 

 L^ x sin  e-i = h- cos         6 
 

(d).  Now for the second term in Eq. 1 for the raising operator: 
 

 i L^ y sin  e-i = i 
h-

i  








cos  
 
 – cot  sin  

 
  sin  e-i   7 

 i L^ y sin  e-i = h- (cos  cos  – cot  sin  sin  (-i)) e-i   8 
 

Once again, cot  = cos /sin , ei = , and ei e-i = 1, giving: 



48 
 

 

 i L^ y sin  e-i = h- (cos  cos  – cos  sin  (-i)) e-i    9 

           = h- cos  (cos  + i sin ) e-i     10 

           = h- cos         11 
 

(e).  The sum of the two terms, Eqs. 6 and 11, gives the final result: 
 

 (L^ x + i L^ y) sin  e-i = 2h- cos       12 
 

where Y1,0 = cos , without the normalization: 
 

 (L^ x + i L^ y) sin  e-i = 2h- Y1,0       13 
 

The raising operator raises Y1,1 to Y1,0, multiplied by a constant. The constant is resolved by 
normalization to give the final form for Y1,0.  
 
 

29.  Show that L^ –L^ + = L^ 2
x + L^ 2

y + i[L^ x, L
^

y] = L^ 2 – L^ 2
z – h-L^ z. (This expression is used in the next 

problem to find the eigenvalue for the total angular momentum.) 
 
 
Answer:  From the defintitions of the lowering and raising operators: 
 

 L^ –L^ + = (L^ x – i L^ y)( L^ x + i L^ y) = L^ 2
x + iL^ x L^ y – i L^  y L^  x + L^ 2

y 
 

which, with the defintition of the commutator, rearranges to give: 
 

 L^ –L^ + = L^ 2
x + L^ 2

y + i[L^ x, L
^

y] 
 

Using Eqs. 24.6.1 for the commutator gives the final result:  L^ –L^ + = L^ 2 – L^ 2
z – h-L^ z 

 
 

30.  Given L^ zml = mlh- ml , prove that L^ 2 ml = h-2 l(l + 1) ml, using the following steps. 
(a).  Since the z-axis projection of the angular momentum can’t be larger than the total angular 
momentum, there must be a maximum value of m l for a given total angular momentum. Let that 
value be mmax. The result for the raising operator acting on mmax is zero, since there is no state 
with higher ml: 
 

 L^ + mmax = 0 
 

The subsequent application of the lowering operator must also give zero: 
 

 L^ –L^ + mmax = 0 
 

Given that L^ –L^ + = L^ 2 – L^ 2
z – h-L^ z, which was proved in the last problem, solve for L^ 2 mmax. 

(b).  Compare with the general eigenvalue equation L^ 2 mmax = L2 mmax  to find the eigenvalue L2 
and the magnitude of the angular momentum |L|, in terms of mmax. 
(c).  Notice that the total angular momentum is not a function of m l, but only the maximum value 
mmax. In other words, the total angular momentum is completely determined by mmax. Show that 
renaming mmax = l gives the final result: 
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 L^ 2 ml = h-2 l(l + 1) ml 
 
 

Answer:  (a).  Substituting L^ –L^ + = L^ 2 – L^ 2
z – h-L^ z  into L^ –L^ + mmax = 0 gives: 

 

 L^ –L^ + mmax = (L^ 2 – L^ 2
z – h-L^ z) mmax = 0 

 

Rearranging the last relationship gives the square of the angular momentum as: 
 

 L^ 2 mmax = L^ 2
z mmax + h-L^ z mmax 

 

Given that L^ z ml = mlh- ml : 
 

 L^ 2 mmax = (ml h-)2 mmax + h-( mlh-) mmax 

 L^ 2 mmax = h-2 (m2
max + mmax) mmax = h-2 mmax(mmax + 1) mmax 

 

(b).  Comparison with the general eigenvalue equation L^ 2 mmax = L2 mmax gives: 
 

 L2 = h-2 mmax(mmax + 1) and   |L| = h-  mmax(mmax + 1)¯¯¯¯¯¯¯¯¯¯¯¯¯ 
 

(c).  We showed in Eq. 24.7.27 that ml increases in unit steps until the z-axis projection is bigger 

than the magnitude of the angular momentum, so that m lh- < h-  mmax(mmax + 1)¯¯¯¯¯¯¯¯¯¯¯¯¯. The total 
angular momentum is completely determined by mmax, while ml = 0, ±1, …, ± mmax. Renaming 
mmax = l gives the final result: 
 

 L^ 2 mmax = h-2 l(l + 1) mmax    ml = 0, ±1, …, ± l 
 

Since the raising operator doesn’t change the magnitude of the angular momentum, Eq. 24.7.21, 
the preceding equation must then hold for all values of m l: 
 

 L^ 2 ml = h-2 l(l + 1) ml 
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Chapter 25 Problems: Atomic Structure  
 
1.  Use node counting rules to argue that l cannot be greater than n–1 and ml cannot be greater 
than l for the atomic orbitals of the hydrogen atom. 
 
 
Answer:  The plan is to note that the total number of nodes for an atomic orbital is n – 1. The 
number of angular nodes is l. The number of angular nodes that include the z-axis is |ml|. For 
positive values of ml the motion is clockwise around the z-axis and for negative values of m l the 
motion is counterclockwise around the z-axis. 
  The number of angular nodes cannot be greater than the total number of nodes, so l  n – 1. The 
corresponding range for the angular momentum quantum number is: l = 0,…, n – 1. The number 
of angular nodes that include the z-axis cannot be greater than the number of angular nodes, so 
|ml|  l. The corresponding range for the magnetic quantum number is: m l = -l,…., 0,…,+l. 
 
 

2.  Give the degeneracy, the total number of nodes, the number of radial nodes, the number of 
angular nodes, and the number of angular nodes that include the z-axis for the following sets of 
orbitals: (a). 2p, (b). 3p, (c). 3d, (d). 4d, (e). 4f, (f). 5s. 
 
 

Answer: The plan is to note that the total number of nodes for an atomic orbital is n – 1. The 
number of angular nodes is l: with allowed values l = 0,…, n – 1. The number of angular nodes 
that include the z-axis is |ml|: with allowed values ml = -l,…., 0,…,+l. For positive values of ml 
the motion is clockwise around the z-axis and for negative values of m l the motion is 
counterclockwise around the z-axis. 
   The number of radial nodes is equal to the difference of total number of nodes and the number 
of angular nodes: radial nodes = n – 1 – l. The degeneracy of the sub-level is gl = 2 l + 1 since 
ml = -l,…., 0,…,+l. 
 

   number of nodes 
sub-level l degeneracy 

gl = 2 l + 1 
total 

= n – 1 
radial 

= n – 1 – l 
angular 

= l 
angular||z-axis 

= |ml| 
2p 1 3 1 0 1 0, 1 
3p 1 3 2 1 1 0, 1 
3d 2 5 2 0 2 0, 1, 2 
4d 2 5 3 1 2 0, 1, 2 
4f 3 7 3 0 3 0, 1, 2, 3 
5s 0 1 4 4 0 0 

 
 

3. Show that R = A e–r is a solution to the ground state radial wave equation for the hydrogen 
atom, including solving for the value of : 
 

 – 
h-2

2m 



1

r 
d2

dr2  r R – 
Z e2

4πor
 R =E R 
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Answer:  Substituting in R = A e–r into the ground state radial wave equation gives: 
 

 – 
h-2

2m 



1

r 
d2

dr2  r A e–r – 
Z e2

4πor
 A e–r =E A e–r     1 

 

Note that r e–r is a product of two functions, first (r) and second (e–r). The derivatives using the 
product rule are: 
 

 
d (r e–r)

dr  = r(–)e–r + e–r        2 

 
d2 (r e–r)

dr2  = 
d (r(–)e–r)

dr  + 
d e–r

dr  = r2 e–r – e–r – e–r    3 

                 = 2r e–r – 2e–r        4 
 

Gathering terms and substituting back in the definition of the wave function, R = A e–r, into this 
last equation gives: 
 

 



1

r 
d2

dr2  r A e–r = 2 Ae–r – 
2
r  Ae–r = 2R – 

2
r R     5 

 

Substitution into Eq. 1 gives the ground state radial wave equation as: 
 

 – 
h-2

2m 



2 R – 

2
r  R  – 

Z e2

4or
 R = E R       6 

 

The derivatives having been completed, only functions remain in the equation. Common factors 
cancel giving: 
 

 – 
h-22

2m  + 
h-22
2mr  – 

Z e2

4or
 = E        7 

 

Since the total energy is a constant, the terms in 1/r must cancel giving: 
 

 E = – 
h-22

2m   and   
h-2
mr  – 

Z e2

4or
 =     

 

Solving for  gives: 
 

  = 
Z e2

4o
 
m
h2          9 

 

We can simplify this last equation using the definition of the Bohr radius, ao: 

 ao = 
4o h-2

me2   giving   = 
Z
ao

      10 

 
 

4. The ground state of the hydrogen atom is: (r) = R(r) = 
1


 



Z

ao

3/2

e–Zr/ao = 
1


 3/2 e–r. 
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(a). Calculate the expectation value of the kinetic energy for the ground state of the hydrogen 
atom. 
(b) From your answer in (a), show that <Ek> = – E1, where E1 is the total energy of the ground 
state of the hydrogen atom. 
 
 
Answer:  The wave function is real and normalized. The expectation value then reduces to: 
 

 <Ek> = 
oo2o  *

1 E
^

k 1 r2 sin dr dd
oo2o  *

1 1 r2 sin dr dd
 = oo2o  1 E

^
k 1 r2 sin dr dd 

 

Since the wave function only depends on r, (r) = R(r), the angular integrals give 4: 
 

 <Ek> = 4 o R(r) E
^

k R(r) r2 dr 

The kinetic energy operator is: E
^

k = – 
h-2

2m 



1

r 
d2

dr2  r 
 

The result of the operation of the kinetic energy operator is given using Eq. 5 from the last 
problem: 
 

 E
^

k R(r) = – 
h-2

2m 



1

r 
d2

dr2  r R(r) = – 
h-2

2m 



2 R – 

2
r  R  

 

with  = Z/ao. Substitution of this last result into the integral for the expectation value gives: 
 

 <Ek> = – 4 
h-2

2m 



1
 3 





0

 2 r2 e–2r dr – 0

 2r e–2r dr  
 

The integral table gives: 0


 xn e–ax dx = (n!/an+1): 

 

 <Ek> =  – 4 
h-2

2m 



1
 3 







22

83 – 
2
42  = – 4 

h-2

2m 



1
 3 





 – 

1
4  

    = 
h-2

2m 2 = 
h-2

2m 



Z

ao

2
 

 

The total energy for the ground state of the hydrogen atom is E1 = – 
Z2h-2

2mao
2 = – <Ek>. 

Since E = <Ek> + <V>, then <V> = – 2 <Ek> for the hydrogen atom. This result is a specific 
example of the Virial Theorem. If the potential is in the form of a power law, V(x) = k xn, then 
the average potential and kinetic energy are related by: 
 

 2 <Ek> = n <V> 
 

For the hydrogen atom, n = -1 with x = r, which gives <Ek> = – ½ <V> by the Virial Theorem, as 
shown by this problem. 
 
 

5. The ground state of the hydrogen atom is: (r) = R(r) = 
1


 



Z

ao

3/2

e–Zr/ao. 
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(a). Calculate the expectation value of the potential energy for the ground state of the hydrogen 
atom. 

(b) In your final answer in (a), use the fact that e2/4o = h-2/mao to show that <V> = 2E1, where 
E1 is the total energy of the ground state of the hydrogen atom. 
 
 
Answer:  The plan is to determine the expectation value of V^ (r) = – Ze2/(4o r). 
The wave function is real and normalized. The potential energy operator does not involve a 
derivative, so the integrand for the expectation value is a product of functions of r. The order of 
the functions is immaterial. The expectation value then reduces to: 
 

 <V> = 
oo2o  *

1 V
^

 1 r2 sin dr dd
oo2o  *

1 1 r2 sin dr dd
 = – 

Ze2

4o
 oo2o  

1
r 2

1 r2 sin dr dd  1 

 

Since the wave function only depends on r, (r) = R(r), the angular integrals give 4: 
 

 <V> = – 4 
Ze2

4o
 N2 o  e–2Zr/ao r dr       with normalization, N = 1/̄ (Z/ao)

3/2 2 
 

The integral table gives: 0


 xn e–ax dx = (n!/an+1) for n = 1: 

 

 <V> =  – 4 
Ze2

4o
 N2 



ao

2Z

2
        3 

 

Substituting in the normalization constant gives: 
 

 <V> = – 
Ze2

o
 



1
 



Z

ao

3





ao

2Z

2

 = – 



Z2

ao
 

e2

4o
      4 

 

(b). From the definition of ao: ao = 
4oh-2

me2   or 
e2

4o
 = 

h-2

mao
    5 

 

Substitution of Eq. 5 into Eq. 4 gives: 
 

 <V> = – 
Z2h-2

ma2
o
          6 

 

The total energy for the ground state of the hydrogen atom is E1 = – 
Z2h-2

2mao
2 = ½ <V>. 

Since E = <Ek> + <V>, then <Ek> = –½ <V> for the hydrogen atom. This result is a specific 
example of the Virial Theorem. If the potential is in the form of a power law, V(x) = k xn, then 
the average potential and kinetic energy are related by: 
 

 2 <Ek> = n <V> 
 

For the hydrogen atom, n = -1 with x = r, which gives <Ek> = – ½ <V> by the Virial Theorem, as 
shown by this problem. 
 
 
6.  Find the average radius of an electron in a hydrogen atom in a 2s orbital. 
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Answer:  The normalized 2s orbital is given by: 
 

 2s = 
1

4 2
 



Z

ao

3/2





2 – 

Zr
ao

 e–Zr/2ao 

 

The average radius is given by the expectation value of r: 
 

 <r> = 
oo2o  *

2s r 2s r2 sin dr dd
oo2o  *

2s 2s r2 sin dr dd
 = oo2o  r 2

2s r2 sin dr dd 

                average r             volume element 
 

The integral involves only functions, so the order is immaterial. Since the wave function only 
depends on r, (r) = R(r), the angular integrals give 4: 
 

 <r> = 4 o r3 2
2s dr = 4 

1
32 



Z

ao

3
 



0


 r3





2 – 

Zr
ao

2

 e–Zr/ao dr 

 

 <r> = 4 
1

32 



Z

ao

3
 



0


 r3





4 – 

4Zr
ao

 + 
Z2r2

a2
o

 e–Zr/ao dr 

 

Splitting the integral gives: 
 

 <r> = 4 
1

32 



Z

ao

3
 






4 


0


 r3 e–Zr/ao dr – 

4Z
ao

 


0


 r4 e–Zr/ao dr + 

Z2

a2
o
 


0


 r5 e–Zr/ao dr  

 

Integral tables give:  0


 xn e–ax dx = (n!/an+1) with n = 3, 4 and 5: 

 

 <r> = 
1
8 



Z

ao

3











24 a4

o

Z4  – 



96 a4

o

Z4  + 



120 a4

o

Z4  = 
48
8  

ao

Z = 6 
ao

Z 
 

The average radius for a 2pz orbital is 5ao/Z, which is smaller than the 2s, as shown in the next 
problem. 
 
 
7.  Find the average radius of an electron in a hydrogen atom in a 2pz orbital. 
   The normalized 2pz orbital is given by: 
 

 2pz = 
1

4 2
 



Z

ao

3/2Zr
ao

 e–Zr/2ao cos  

 
 
Answer:  The average radius is given by the expectation value of r: 
 

 <r> = 
oo2o  *

2pz r 2pz  r2 sin dr dd
oo2o  *

2pz 2pz r2 sin dr dd
 = oo2o  r 2

2pz r2 sin dr dd 

                 average r                       volume element 
 

The integral involves only functions, so the order is immaterial. Substituting the wave function 
into the integral gives: 
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 <r> =  
1

32 



Z

ao

3
 


0


 



Z

ao

2

 r5 e–Zr/ao dr 


0


 cos2 sin  d 


0

2
 d 

 

The integral over  is 2. Integral tables give:   


0


 cos2 sin  d = – 

cos3
3



0
 = 

1
3 – 



– 

1
3  = 

2
3 

The expectation value of r reduces to: 
 

 <r> = 
1

32 



Z

ao

3
 


2

3  (2) 


0


 



Z

ao

2

 r5 e–Zr/ao dr 
 

Integral tables give:  0


 xn e–ax dx = (n!/an+1) with n = 5: 

 

 <r> = 
1

24 



Z

ao

5





120 a6

o

Z6  = 5 
ao

Z 
 

The average radius for a 2s orbital is 6ao/Z, as shown in the previous problem, which is larger 
than the 2pz, 
 
 
8.  Find the radius of the 90% contour surface for a 1s orbital in the H-atom. Use the following 
steps. 

   (a). Integral tables give   xn e–ax dx = – 
xn e–ax

a  + 
n
a  xn–1 e–ax dx.   Prove that: 

 

  x2 e–ax dx = – 
x2 e–ax

a  – 
2x e–ax

a2  – 
2 e–ax

a3  
 

   (b). Show that for a given value of the contour radius, rc, that: 
 

 


0

rc
 r2 e–2Zr/ao dr = 



– 

ao r2
c

2Z  – 
a2

o rc

2Z2  – 
a3

o

4Z3  e–2Zrc/ao + 
a3

o

4Z3 

 

   (c). Show the radius that gives the 90% contour surface is given by: 
 

 0.90 = 



– 2 

Z2 r2
c

a2
o 

 – 2 
Z rc

ao 
 – 1  e–2Zrc/ao + 1 

 

   (d). Let  = Zrc/ao. Show that the last equation reduces to:   (–22 – 2 – 1) e–2 + 1 = 0.90. 
Solve this equation for  numerically, to three significant figures, to find the 90% contour radius. 
 
 
Answer:  The plan is to note that the normalized 1s orbital is given by: 
 

 1s = 
1


 



Z

ao

3/2

 e–Zr/ao         1 

 

The 90% contour radius, rc, corresponds to an integrated probability of 0.90: 
 

 0.90 = rc
o o2o  2

1s r2 sin dr dd       2 
 
         volume element 
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Since the wave function only depends on r, the angular integrals give 4: 
 

 0.90 = 4 rco  2
1s r2 dr = 4



Z

ao

3
 


0

rc
 r2 e–2Zr/ao dr     3 

 

(a).  Integral tables give   xn e–ax dx = – 
xn e–ax

a  + 
n
a  xn–1 e–ax dx.  The integral with n = 2 is then: 

 

  x2 e–ax dx = – 
x2 e–ax

a  + 
2
a  x e–ax dx 

        = – 
x2 e–ax

a  – 
2x e–ax

a2  – 
2
a2  e–ax dx 

        = – 
x2 e–ax

a  – 
2x e–ax

a2  – 
2 e–ax

a3  

(b). Noting that e–ax| 0
xo = e–axo – 1, the definite integral from 0 to xo is: 

 

 


0

xo x2 e–ax dx = – 
x2

o e–axo

a  – 
2xo e–axo

a2  – 
2 e–axo

a3  + 
2
a3 

 

With x = r, a = Zr/ao, and the integral limit xo = rc, the needed integral over r2 is: 
 

 


0

rc
 r2 e–2Zr/ao dr = 



– 

ao r2
c

2Z  – 
a2

o rc

2Z2  – 
a3

o

4Z3  e–2Zrc/ao + 
a3

o

4Z3 

 

(c). Substituting this last result for the integral into Eq. 3 gives: 
 

 0.90 = 4 



Z

ao

3





– 

ao r2
c

2Z  – 
a2

o rc

2Z2  – 
a3

o

4Z3  e–2Zrc/ao + 4 



Z

ao

3
 

a3
o

4Z3 
 

 0.90 = 



– 2 

Z2 r2
c

a2
o 

 – 2 
Z rc

ao 
 – 1  e–2Zrc/ao + 1 

 

(d). Letting  = Zrc/ao, the last equation reduces to:   (–22 – 2 – 1) e–2 + 1 = 0.90. 
Solving for  is easily accomplished using a spreadsheet. A quick and efficient search algorithm 
is to find two values of  that bracket the desired result and then “split the difference.” That is, 
divide each interval that brackets the desired value by 2. Using the initial guesses of  = 2 and  
= 3, the next value to try is  = 2.5. The second column calculates (–22 – 2 – 1) e–2 + 1 for 
the guessed value of  in the first column: 
 

= Zr/ao 42 r2 dr 
2 0.7619 
3 0.9380 

2.5 0.8753 
2.75 0.9116 

2.625 0.8949 
2.6875 0.9036 
2.656 0.8993 

 

The final result is   2.66 or rc = 2.66 ao/Z. In comparison, the average radius for a 1s orbital is 
<r> = 1.5 ao/Z. 
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9.  Show that the 1s and 2s orbitals of the hydrogen atom are orthogonal. 
 
 
Answer:  The plan is to show that the orthogonality integral is equal to zero:  *

n m d = 0. The 
volume element for a spherical atom is d = r2 sin dr d d. 
   The 1s and 2s orbitals are: 
 

 s(r) = 
1


 



Z

ao

3/2

e–Zr/ao and 2s(r) = 
1

4 2
 



Z

ao

3/2





2 – 

Zr
ao

 e–Zr/2ao 

 

For simplicity, let the normalization constants be N1s and N2s, respectively. The wave functions 
are spherical, so they are independent of  and . The angular integrations then give 4. The 
orthogonality integral is then: 

 o o2o  *
1s 2s r2 sin dr dd = 4 N1s N2s 


0


 e–Zr/ao 



2 – 

Zr
ao

 e–Zr/2ao r2dr 

         volume element 

 = 4 N1s N2s 





2


0


 r2 e–3Zr/2ao dr – 

Z
ao

 


0


 r3 e–3Zr/2ao dr  

 

Integral tables give:  0


 xn e–ax dx = (n!/an+1) with n = 2 and 3: 

 

   *
1s 2s d = 4 N1s N2s 



4 



2ao

3Z
3
 – 



Z

ao
 6 



2ao

3Z
4

 

          = 4 N1s N2s 



ao

Z
3
 



4 



8

27  – 6 



16

81  = 0 

 
 
10.  Determine n, l, and |ml| for the following orbitals. Give the orbital designations (e.g. 2px, 
3dxy, etc.). 
 
 
 
 
 
 
 
 
  (a).       (b). 
 
 
Answer:  The plan is to find the number of radial nodes, angular nodes, and angular nodes that 
include the z-axis. Angular nodes are planes that pass through the nucleus. A radial node is a 
spherical node that is centered on the nucleus. 
   The node counting is: 
 
 
 

x 

z 

+ 

+ 

– 

– 

x 

z 

+ 

+ 

+ 

+ 

– 

– 

– 

– 
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 (a).       (b). 
 total nodes = n – 1 = 2     total nodes = n – 1 = 3 
 angular nodes = l = 1     angular nodes = l = 2 
 radial nodes = n – 1 – l = 1    radial nodes = n – 1 – l = 1 
 z-axis angular nodes = |ml| = 0   z-axis angular nodes = |ml| = 1 
 

The nodes are shown in the diagrams below. The angular, planar nodes are perpendicular to the 
plane of the paper. 
 
 
 
 
 
 
 
 
 
 
(a). Since (n – 1) = 2, l = 1, and ml = 0, the principle quantum number is 3 giving a 3pz orbital. 
(b). One of the angular nodes is in the y-z plane, which includes the z-axis. One of the angular 
nodes is in the x-y plane, so that node does not include the z-axis. Overall then |m l| = 1. Since 
(n – 1) = 3 and l = 2, the principle quantum number is 4 giving a 4d- orbital. Since the lobes of 
the orbital point between the x- and z- axis, the orbital is a 4dxz orbital. 
 
 
11.  Sketch the 4dxy orbital. Include the phase for each region. 
 
 
Answer:  The plan is to find the number of radial nodes for the 4dxy orbital and to note that the 
orbital points between the x- and y- axes. Angular nodes are planes that pass through the nucleus. 
A radial node is a spherical node that is centered on the nucleus. 
   The node counting is: 
 total nodes = n – 1 = 3 
 angular nodes = l = 2  (a “d”-orbital) 
 radial nodes = n – 1 – l = 1 
 

The angular, planar nodes are perpendicular to the plane of the paper. Since the lobes of the 
orbital point between the x- and y- axis, both angular nodes include the z-axis, |m l| = 2. 
 
 
 
 
 
 
 
 
 4dxy     4dxy with nodes labeled 

x 

y 

+ 

+ 

+ 

+ 

– 

– 

– 

– 

x 

y 

+ 

+ 

+ 

+ 

– 

– 

– 

– 

planar 

planar 

radial 

x 

z 

+ 

+ 

+ 

+ 

– 

– 

– 

– 

planar 

planar 

radial 
radial 

planar 

x 

z 

+ 

+ 

– 

– 
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12. The normalized angular portions of the oriented d-orbitals are: 
 

 dxz = 




5

4

½
3̄ sin  cos  cos  

 dyz = 




5

4

½
3̄ sin  cos  sin  

 dxy =  




5

4

½
3̄ sin2 cos  sin  

 dx2–y2 = 




5

4

½
 
3̄
2  sin2  (cos2 – sin2) 

 d3z2–r2 = 




5

4

½
 
1
2 (3cos2 – 1) 

 

Show that d2
xz + d2

yz + d2
xy + d2

x2-y2 + d2
3z2–r2 = constant (Eq. 25.2.10). The following trigonometric 

identities are useful: 
 

 cos2x + sin2x = 1 and correspondingly (cos2x + sin2x)2 = 1 
 cos2x – sin2x = 2 cos2x – 1 
 
 
Answer:  The plan is to work on the  portions first, then the  portions. The final results must be 
independent of both  and . In addition, expanding (cos2x + sin2x)2 = 1 gives: 
 

 (cos2x + sin2x)2 = cos4x + 2 cos2x sin2x + sin4x = 1     1 
 

   Let N = (5/4)½ for convenience. First note that: 
 

 d2
xz + d2

yz = 3N2 sin2  cos2  (cos2 + sin2) = 3N2 sin2  cos2    2 
 

which is independent of . Next, note that: 
 

 d2
xy + d2

x2-y2 = ¾ N2 sin4 [4 cos2 sin2 + (cos2 – sin2)2] 
        = ¾ N2 sin4 [4 cos2 sin2 + cos4 – 2cos2 sin2 + sin4] 
        = ¾ N2 sin4 [cos4 + 2cos2 sin2 + sin4]    3 
 

Using identity Eq. 1 gives: d2
xy + d2

x2-y2 = ¾ N2 sin4     4 
 

We can split 3 cos2 – 1 into two terms: 
 

  (3cos2 – 1) = cos2 + 2 cos2 – 1      5 
 

Then using the identity, cos2x – sin2x = 2 cos2x – 1, gives: 
 

 (3cos2 – 1) = cos2 + cos2 – sin2 = 2 cos2 – sin2    6 
 

 d2
3z2–r2 = ¼ N2 (2 cos2 – sin2)2 = ¼ N2(4 cos4 – 4 cos2 sin2 + sin4) 

  = N2(cos4 –cos2 sin2 + ¼ sin4)      7 
 

Combining Eqs. 2, 4, and 6 gives: 
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 d2
xz + d2

yz + d2
xy + d2

x2-y2 + d2
3z2–r2 =  

 = 3N2 sin2  cos2  + ¾ N2 sin4 + N2(cos4 – cos2 sin2 + ¼ sin4) 
 = N2(cos4 + 2 cos2 sin2 + sin4)       8 
 

Using the identity Eq. 1 gives the result independent of both  and : 
 

 d2
xz + d2

yz + d2
xy + d2

x2-y2 + d2
3z2–r2 = N2       9 

 

This result is the d-orbital version of Unsöld’s Theorem, and explains why the d3z2–r2 has the 
unique functional form. The problem can also be done using the identities sin 2x = cos x sin x 
and cos 2x = cos2x – sin2x.  
 
 
13.  Normalize the angular portion of the orbital: dyz = N sin  cos  sin . Note that: 
 

 0

 sin3x cos2x dx = 4/15 

 
 
Answer:  The plan is to note that the normalization integral is over all  and  with 
d = sin  d d. 
   The normalization integral is: 
 

 0

 0

2 d2
yz sin  d d = N2 0

 0

2 sin3 cos2 sin2 d d = 1 
 

The result is the product of one-dimensional integrals: 
 

 N2 0

 sin3 cos2 d 0

2 sin2 d = 1 
 

As given in the problem statement: 0

 sin3x cos2x dx = 4/15. 

Integral tables list:   0

/2
 sin2x dx = /4. Since the integrand is always positive, the integral over 

the full interval is:   0

2
 sin2x dx = . The normalization integral is then: 

 

 N2 0

 sin3 cos2 d 0

2 sin2 d = N2 



4

15 () = 1 
 

Giving N = 




15

4

½
 

 

as listed in the last problem. You may wonder how to do the tricky integral.  sin3x cos2x dx is 
integrated by parts. Integral tables give the indefinite form as: 
 

  sin3x cos2x dx = 
cos x sin4x

5  + 
1
5  sin3x dx 

 

Integral tables give  sin3x dx = – 1/3 cos x (sin2x + 2): 
 

 0 sin3x dx = – 1/3[cos x (sin2x + 2)|0 = – 1/3 [(-1)(0 + 2) – (1)(0 + 2)] = 4/3 
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For the definite integral then:  0 sin3x cos2x dx = [cos x sin4x
5 |0 + 

4
15 

The first term is zero at both end points giving:  0 sin3x cos2x dx = 
4

15 

 
 
14.  The oriented forms of the d-orbitals are given as products of the Cartesian coordinates, e.g. 
dxz. Give the functional form of the 3dxz orbital using Cartesian coordinates for the angular 
portion (e.g. Eqs. 25.2.8) and using spherical polar coordinates (e.g. Eqs. 25.2.6). Just leave the 
normalization constant as N. Describe the orientation of the lobes of the orbital. 
 
 
Answer:  The plan is to compare to the form of the 2p-orbitals, Eqs. 25.2.6 and 25.2.8. The 
coordinate transformations are given by Eqs. 24.5.14 resulting in Eqs. 25.2.9. 
   The asymptotic form has the functional dependence e–Zr/nao, in this case n = 3, giving: 
 

 3dxz =  N e–Zr/3ao (Z/ao)2 xz 
 

The spherical polar form is given from the transformations in Eqs. 24.5.14: 
 

 3dxz =  N e–Zr/3ao (Z/ao)2 (r sin  cos ) (r cos ) 
           =  N e–Zr/3ao (Zr/ao)2 sin  cos  cos  
 

The factor of (Z/ao)3 appears because the wave function is overall unitless, so r always appears as 
Zr/ao to cancel the units and adjust for contraction caused by the charge on the nucleus. The 
“rulers” in the atomic world are marked in multiples of Zr/ao. The lobes of the orbital point 
between the x- and z-axes. No lobes lie along an axis. 
 
 
15.  The oriented forms of the f-orbitals are given as triple products of the Cartesian coordinates, 
e.g. fxyz. Give the functional form of the 4fxyz orbital using Cartesian coordinates for the angular 
portion (e.g. Eqs. 25.2.8) and using spherical polar coordinates (e.g. Eqs. 25.2.6). Just leave the 
normalization constant as N. Describe the orientation of the lobes of the orbital. 
 
 
Answer:  The plan is to compare to the form of the p-orbitals, Eqs. 25.2.6 and 25.2.8. The 
coordinate transformations are given by Eqs. 24.5.14. 
   The asymptotic form has the functional dependence e–Zr/nao, in this case n = 4, giving: 
 

 4fxyz =  N e–Zr/4ao (Z/ao)3 xyz 
 

The spherical polar form is given from the transformations in Eqs. 24.5.14: 
 

 4fxyz =  N e–Zr/4ao (Z/ao)3 (r sin  cos )(r sin  sin )(r cos ) 
           =  N e–Zr/4ao (Zr/ao)3 sin2  cos  cos  sin  
 

The factor of (Z/ao)3 appears because the wave function is overall unitless, so r always appears as 
Zr/ao to cancel the units and adjust for contraction caused by the charge on the nucleus. The 
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“rulers” in the atomic world are marked in multiples of Zr/ao. The lobes of the orbital point 
between the x-, y-, and z-axes. No lobes lie along an axis. 
 
 
16.  Hooke's Law is only an approximation of the true vibrational potential energy of a molecule. 
There are many other possible forms for the potential energy function of a chemical bond. Use 
perturbation theory to calculate the small change in energy for the harmonic oscillator ground 
state that is perturbed by the addition of a term = b x4 to the potential energy function: 
 

 V(x) = ½ k x2 + b x4 

[Hint: Remember that the wave function is (x) = 






2



¼
 e–½ 2x2

 where 2 = 






mo

h-
. Just leave 

2 as a parameter until the last step and then substitute in at the last for 2 to find that the change 

in energy is  
3b
4  





h-

mo

2
] 

 
 
Answer:  The plan is to note that the perturbation is V' = b x4. 
   The first order perturbation correction to the energy is the expectation value of the perturbation 
using the zeroth-order wave functions, which for the ground state are for v = 0: 
 

 E(1) = 


-


 0

* (b x4) 0 dx = b 






2



½
 


-


 x4 e–2x2

 dx 

 

Integral tables give:  0  x4e–ax2
 dx = (3/8a2) (/a)½, giving: 

 

 E(1) = 2b 






2



½
 




3

84  








2
½

 = 
6b
84 = 

3b
4  





h-

mo

2
 

 
 

17.  Using the Aufbau Principle predict the ground state electron configuration for: (a). Si, 
(b). Ti, (c). Ti2+, (d). Cr, (e). Cr2+, and (f). Ag. Show both the condensed configuration (e.g. 
[Ne] 3s2) and the orbital diagram (e.g. 3s:  ). For which species is the Aufbau prediction 
expected to differ from the experimental configuration? 
 
 

Answers: 
(a). Si:    [Ne] 3s2 3p2     3s:   3p:          

(b). Ti:    [Ar] 3d2 4s2           3d:                   4s:   

(c). Ti2+: [Ar] 3d2 4s0           3d:                   4s:      

(d). Cr:   [Ar] 3d4 4s2           3d:               4s:   (Aufbau) 
However, Cr needs only one-electron more to complete a half-filled d sub-orbital, so the 
experimental configuration is expected to deviate from the Aufbau prediction to give: 
       Cr:   [Ar] 3d5 4s1           3d:             4s:    (experimental) 

(e). Cr2+: [Ar] 3d4 4s0           3d:               4s:      
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(f). Ag:   [Kr] 4d9 5s2           4d:         5s:   (Aufbau) 
However, Ag needs only one-electron more to complete the d sub-orbital, so the experimental 
configuration is expected to deviate from the Aufbau prediction to give: 
      Ag:   [Kr] 4d10 5s1           4d:        5s:    (experimental) 
 

The completed d sub-shell for Ag is reflected in the lack of reactivity for Ag. Ag is one of the 
“coinage” metals along with Cu and Au. 
 
 
18.  The following problem explores the Pauli Exclusion Principle and wave function 
symmetry.1 Let 1 and 2 be the functions for a particle in a one-dimensional particle in a box 
with n = 1 and n = 2, respectively. If one electron were in each of these orbitals, the space part of 
the triplet and singlet wave functions would be: 
 

A = 
1
2

 [1(1) 2(2) – 2(1) 1(2)] and S = 
1
2

 [1(1) 2(2) + 2(1) 1(2)]


respectively. Suppose that electron 1 is in a small element of length dx at x = 0.250 a and 
electron 2 is in a small element of length dx at x = 0.255 a. The quantity a is the length of the 
box. Show that A has a very small value under these conditions while S is large. What 
happens to A if both electrons are at x = 0.250 a? This problem shows how an anti-symmetric 
spatial wave function keeps the electrons apart.1 

   A note on nomenclature: for example, (2) means wave function 1 (with n = 1) is used for 
electron 2. Since this wave function is for electron 2 it should be evaluated at x = 0.255 a. 
 
 
Answer:  The single particle wave functions are: 
 

 1(x) = 


2

a

½
 sin(x/a) 2(x) = 



2

a

½
 sin(2x/a) 

 

The values for the single particle wave functions are given in the following table. 
 

electron   x sin(nx/a) 
    n = 1   n = 2 
electron 1 0.25 a 0.707107 1 
electron 2 0.255 a 0.718126 0.999507 

 

Then the anti-symmetric and symmetric two- electron wave function are: 
 

 A = 
1
2

 [1(1) 2(2) – 2(1) 1(2)] 

      = 





2

a  [(0.707107)(0.999507) – (0.718126)(1.00000)] = -0.01608/a 

 S = 





2

a  [(0.707107)(0.999507) + (0.718126)(1.00000)] = 2.015091/a 
 

A has a very small value under these conditions while S is large, by comparison. The anti-
symmetric spatial wave function gives a much smaller probability, 2

A, of the particles being 
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close together than the symmetric combination. If both electrons are at x = 0.250 a then A = 0. 
There is no probability that both electrons are in the same spot. The anti-symmetric combination 
keeps the particles at larger distance from each other on average, minimizing electron-electron 
repulsion between the particles. 
 
 
19.  Two possible wave functions for the ground state of the helium atom are: 
 

 s = 1/2̄ 1s(1) 1s(2) [(1) (2) + (1) (2)]   (25.4.14) 

 a = 1/2̄ 1s(1) 1s(2) [(1) (2) – (1) (2)]   (25.4.15) 
 

Show that both transform to give back the original wave function upon exchange of spin labels: 
2

s  2
s and 2

a  2
a. 

 
 
Answer:  In this case, the transformation properties under exchange of spin labels depend only 
upon the spin parts. For convenience, we will just look at the spin parts to simplify the 
nomenclature. The wave functions are one electron functions; (1) and (1) are only functions of 
electron 1 while (2) and (2) are only functions of electron 2. For this reason wave functions 
with different spin labels commute, for example (1) (2) = (2) (1). Taking the square of s 
gives: 
 

 [(1) (2) + (1) (2)]2 = (1) 2(2) + 2 (1) (1) (2) (2) + (1) 2(2)   1 
 

Exchange of spin labels transforms the probability to: 
 

 [(2) (1) + (2) (1)]2 = (2) 2(1) + 2 (2) (2) (1) (1) + (2) 2(1)   2 
 

Eqs. 1 and 2 are identical, showing 2
s  2

s upon exchange of spin labels. 
   Taking the square of a gives: 
 

 [(1) (2) – (1) (2)]2 = (1) 2(2) – 2 (1) (1) (2) (2) + (1) 2(2)   3 
 

Exchange of spin labels transforms the probability to: 
 

 [(2) (1) – (2) (1)]2 = (2) 2(1) – 2 (2) (2) (1) (1) + (2) 2(1)   4 
 

Eqs. 3 and 4 are identical, showing 2
a  2

a upon exchange of spin labels. An underlying 
principle in quantum mechanics, in specific, and the theory of differential equations, in general, 
is that all possible solutions to a given problem must be considered. The Pauli principle shows 
that only the antisymmetric case is a valid solution for spin ½ particles. 
 
 
20.  Give the spatial and spin parts for the singlet excited state of helium atom that has the 
configuration, He: 1s1 2p1. 
 
 
Answer:  The plan is to note that the singlet wave function is similar to the first excited state, He: 
1s1 2s1, covered in the chapter. 
   A singlet spin part is antisymmetric, so the spatial part must be symmetric: 
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  = 1/ 2  (1s(1) 2px(2)  + 1s(2) 2px(1)) [] 

 
 
21.  Give the determinantal wavefunction for the ground state of the beryllium atom 
(configuration 1s22s2). 
 
 
Answer:   

Be:  1s   2s     a = 1/ 4! 







1s(1) 1s(1) 2s(1) 2s(1)
1s(2) 1s(2) 2s(2) 2s(2)
1s(3) 1s(3) 2s(3) 2s(3)
1s(4) 1s(4) 2s(4) 2s(4)

 

 
22. Determine the spin multiplicity of the vanadium ground state. 
 
 
Answer:  The vanadium ground state configuration is: V                    
         4s           3d 
Giving three unpaired electrons: 

 S = ( )mS max = 3/2  and    gS = (2S + 1) = 2 (3/2) + 1 = 4 
 
 
23. Determine the spin multiplicity of the manganese ground state. 
 
 

Answer: The manganese ground state configuration is: Mn              
          4s  3d 
Giving five unpaired electrons: 

 S = ( )mS max = 5/2  and    gS = (2S + 1) = 2 (5/2) + 1 = 6 
 
 
24. Determine the expectation value for the total spin angular momentum squared, that is <S2> 
for a triplet state. 
 
 
Answer:  For a triplet state, S = 1. The total spin angular momentum squared is then: 

 S(S+1) h- 2 = 1(1+1) h-2 = 2 h- 2 
 
 
25. Give the expectation value for the total spin angular momentum squared, that is <S2> for a 
quartet state. For example:                  
            4s        3d 
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Answer:  For a quartet, S = 3/2. The total spin angular momentum squared is then: 

 S(S+1) h- 2 = 3/2(3/2+1) h-2 = 3.75 h- 2 
 
 

26.  (a). Show that the spin-orbit coupling operator, l
̂
 s
̂

, for a single unpaired electron is: 
 

  l
̂
 s
̂

 = ½ ( j
^2 – l^2 – s^ 2 ) 

(b). Show that l
̂
 s
̂

 has the eigenvalue: 
 

 | l

 s


 | = ½ h–2 [ j(j+1) – l(l+1) – s(s+1)] 
 

Assume that the interaction is weak enough to be treated as a perturbation, which allows l and s 
to remain separately good quantum numbers. Accordingly, to a good level of approximation, the 
total angular momentum wave function is the product of orbital and spin angular momentum 
eigenfunctions: j,mj = l,ml s,ms. 
 
 

Answer:  (a). Note that j
̂

 = l
̂

+ s
̂

 and following Eq. 25.6.29: 
 

 j^2 = j
̂
 j
̂

 = ( l
̂

+ s
̂

)( l
̂

+ s
̂

) = l
̂
 l
̂

+ s
̂
 s
̂

 + 2 l
̂
 s
̂

 = l^2 + s^ 2 + 2 l
̂
 s
̂

 
 

Solving this last equation for l
̂
 s
̂

: 
 

 l
̂
 s
̂

 = ½ ( j
^2 –  l^2 – s^ 2 )        1 

 

(b).  The general problem for angular momentum has the form: – h-2 2 Yl,ml = h–2 l(l+1) Yl,ml . 
Assuming that the interaction is weak enough to be treated as a perturbation allows l and s to 
remain separately good quantum numbers. The problem is then separable in orbital and spin 
angular momentum and then the general form applies to j^2, l^2, and s^ 2 separately to give: 
 

 j
^2 j,mj = h-2 j(j+1) j,mj        2 

 l^2 l,ml  = h-2 l(l+1) l,ml         3 

 s^ 2 s,ms = h-2 s(s+1) s,ms        4 
 

where j,mj, l,ml, and s,ms are the angular momentum wave functions for the total angular 
momentum, orbital angular momentum, and spin angular momentum, respectively. The explicit 
functional forms for j,mj, l,ml, and s,ms are not needed. The total angular momentum wave 
function is then, to a good level of approximation, the product of the orbital and spin angular 
momentum eigenfunctions: 
 

 j,mj = l,ml s,ms         5 
 

The orbital angular momentum operator has no effect on the spin wave function and the spin 
angular momentum operator has no effect on the orbital angular momentum if the problem is 
separable: 
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 l^2 l,ml s,ms = s,ms l^2 l,ml   and     s^ 2l,ml s,ms = l,ml s
^ 2 s,ms    6 

 

Substituting Eqs. 2-6 into Eq. 1 gives: 
 

 ( l
̂
 s
̂

) j,mj = ½ (j
^2j,mj – l^2 l,ml s,ms – s^ 2l,ml s,ms)     7 

 ( l
̂
 s
̂

) j,mj = ½ h-2 [ j(j+1) j,mj – s,ms l(l+1) l,ml – l,ml s(s+1) s,ms]  8 

 ( l
̂
 s
̂

) j,mj = ½ h-2 [ j(j+1) j,mj –l(l+1) j,mj – s(s+1) j,mj]    9 

 ( l
̂
 s
̂

) j,mj = ½ h-2 [ j(j+1) –l(l+1) – s(s+1)] j,mj     10 
 

with the eigenvalue: 
 

 | l

 s


 | = ½ h-2 [ j(j+1) – l(l+1) – s(s+1)]      11 
 
 
27. Find the spin-orbit splitting of the 2D5/2 and 2D3/2 terms for the yttrium ground state. 
 
 
Answer:  The plan is to note that L = 1, S= ½, and J is 5/2 or 3/2. 
   For the d1 configuration of the group 3 transition metals, the energy of the terms is split by: 
 

 Eso (J = 5/2) = ½ Ahc [5/2(5/2 + 1) – 2(2+1) – ½(½+1)] = ½ Ahc [35/4 – 24/4 – 3/4] = Ahc 
 

 Eso (J = 3/2) = ½ Ahc [3/2(3/2 + 1) – 2(2+1) – ½(½+1)] = ½ Ahc [15/4 – 24/4 – 3/4] = –3/2 Ahc 
 

giving Eso = 5/2 Ahc. Yttrium is used in high power yttrium aluminum garnet, or YAG, lasers 
and in liquid nitrogen temperature super conductors. 
 
 
28.  Determine the atomic terms that correspond to a d2 configuration. Specify the total orbital 
angular momentum and the spin multiplicity. Use the following steps: 

(a). Draw all the possible explicit singlet states. For example, two of the explicit singlet states 
are: 

                    and                  

(b). Calculate ML for each of the states. 
(c). Find L = |ML|max. Remove the ML states from the list from part (b) corresponding to this 

L. 
(d). Find L = |ML|max for the remaining states. Remove the ML states from the list 

corresponding to this L. 
(e). Repeat part (d) until all the ML states are accounted for. Write the term symbols for each 

of the different L values that you have found (for example, 1D or 3P). 
(f). Repeat steps (a) through (e) for all possible explicit triplet states. For example one of the 

explicit triplet states is: 
                   

(g). Verify that the Clebsch-Gordon series applied to the total orbital angular momentum 
gives the same results. 
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Answer:  (a). All the possible singlet arrangements are, in no particular order: 
 

             ML   ML     ML       ML 
        2     1    0    -1   -2            2     1    0    -1   -2                2     1    0    -1   -2                 2     1    0    -1   -2  

                       4                         2                         0                        -4 

                      3                        1                       -1 

                      2                        0                       -2 

                      1                       -1                        -2 

                      0                              -3 
 

(b).  The full list is then: 
 

 ML = {4,3,2,2,1,1,0,0,0,-1,-1,-2,-2,-3,-4} 
 

(c).  With L = |ML|max = 4, the first term is a G term based on the definitions of the term symbols: 
 

L: 0 1 2 3 4 
Term: S P D F G 

 

Removing ML = {4,3,2,1,0, -1,-2,-3,-4} from the full list leaves: 
 

 ML = {2,1,0,0,-1,-2} 
 

(d).  Repeating the process, L = |ML|max = 2 and the second term is a D term. Removing 
ML = {2,1,0, -1,-2} leaves: ML = {0}. 
(e).  The last term is an S term. The final singlet terms are 1G, 1D, 1S. 
(f).  All the possible triplet arrangements are, in no particular order: 
 

   ML       ML           ML 
        2     1    0    -1   -2    2     1    0    -1   -2                  2     1    0    -1   -2 

                      3                     1                       -1 

                      2                     0                       -2 

                      1                    -1                       -3 

                      0 
 

The full list is then: ML = {3,2,1,1,0,0,-1,-1,-2,-3} 
 

With L = |ML|max = 3, the first term is an F term. Removing ML = {3,2,1,0,-1,-2,-3} leaves: 
 

 ML = {1,0,-1} 
 

Repeating the process, L = |ML|max = 1 and the second term is a P term, which corresponds to 
ML = {1,0,-1}. In summary, the resulting triplet terms are then 3F, 3P. 
 

(g).  Using the Clebsch-Gordon series for the total orbital angular momentum for a d2 
configuration corresponds to l1 = 2 and l2 = 2 so that: 
 

 L = l1 + l2, l1 + l2 – 1, ..., | l1 – l2| = 4, 3, 2, 1, 0 
 

giving G, F, D, P, and S terms as listed above. 
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29.  Use the Clebsch-Gordon series and the Russell-Saunders coupling scheme to find the 
possible total angular momentum J states for the terms that result from the d2 configuration. See 
the previous problem for the terms. 
 
 

Answer:  The plan is to use the Clebsch-Gordon series for J


 = L


 + S


 giving: 
J = L + S, L + S – 1,...., |L – S|. In the previous problem, the Clebsch-Gordon series was applied 
to the coupling of the orbital angular momenta of the different electrons for the given 
configuration. In this problem, the Clebsch-Gordon series is applied to the coupling of the total 
orbital angular momentum and the total spin angular momentum. 
   Since the total spin quantum number for the singlet states is 0, then J = L and the full singlet 
terms are 1G4, 1D2, 1S0. Next consider the triplet terms. Applying the Clebsch-Gordon series for 
the total angular momentum results in the J values: 
 

 3F:  L = 3, S = 1:    J = 3 + 1, ...., |3 – 1| = 4, 3, 2 giving 3F4, 3F3, 3F2 
 3P:  L = 1, S = 1:    J = 1 + 1, ...., |1 – 1| = 2, 1, 0 giving 3P2, 3P1, 3P0 
 
 
30.  Use the Clebsch-Gordon series and the Russell-Saunders coupling scheme to find the 
possible total angular momentum J states for a 3P term. 
 
 
Answer:  The plan is to note that a 3P term corresponds to L = 1 and S = 1. 
   The Clebsch-Gordon series for L = 1 and S = 1 gives: 
 

 J = L + S, L + S – 1, ..., | L – S| = {2, 1, 0}.  
 

The final terms are 3P2, 3P1, and 3P0. 
 
 
31.  The previous problem uses the Clebsch-Gordon series to find the possible values for the 
total angular momentum for a 3P term. This problem takes a graphical approach to reach the 
same conclusion. (a). Draw all the angular momentum diagrams to show the possible total 
angular momentum MJ states for a 3P term. (b). Find MJ for each explicit configuration. (c). 
Determine the possible values for J. Consider only the projections on the z-axis. One example, 
for ML = 1 and MS = 0 giving MJ = 1, is: 
 
    MJ = 1: 
 
 
 
 
 
 
 
Answer:  (a)-(b). The plan is to note that a 3P term corresponds to L = 1 with ML = {-1,0,1} and S 
= 1 with MS = {-1,0,1}. The Clebsch-Gordon series for L = 1 and S = 1 gives J = {2, 1, 0}. 

z-component of the orbital angular momentum, ML 
z-component of the spin angular momentum, Ms 
z-component of the total angular momentum, MJ 

Legend: 

z 

MS = 0 

ML = 1h- 
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   The complete set of explicit states are diagrammed below. 
 
 
 
 
 
 
 
 
   MJ = 2      MJ = 1      MJ = 0 
 
 
 
 
 
 
 
 
   MJ = 1      MJ = 0      MJ = -1 
 
 
 
 
 
 
 
 
 
   MJ = 0      MJ = -1       MJ = -2 
 
(c). The complete set of MJ values is: 
 

 MJ = {2,1,1,0,0,0,-1,-1,-2} 
 

Using J = |MJ|max to extract the first J value gives J = 2. The corresponding degenerate MJ states 
associated with J = 2 are MJ = {2,1,0,-1,-2}, which leaves: 
 

 MJ  = {1,0,0,-1} 
 

Using J = |MJ|max to extract the next J value gives J = 1. The corresponding degenerate MJ states 
associated with J = 1 are MJ = {1,0,-1}, which leaves {0}. The final J is J = 0. The final terms are 
3P2, 3P1, and 3P0, just as we determined in the last problem using the Clebsch-Gordon series. 
 
 
32.  (a). Use the Clebsch-Gordon series and the Russell-Saunders coupling scheme to find the 
possible total angular momentum J states for a 3D term. (b). Determine the complete set of 
explicit MJ states for a 3D term. Determine the possible total angular momentum J states from the 

z 

ML = 0 

MS = -1h- 

z 

ML = 0 

MS = 1h- 

z 

MS = 0 ML = 0 

z 

MS = 0 

ML = -1h- 

z 

ML = -1h- 

MS = 1h- 

MS = -1h- 
ML = -1h- 

z 

z 

MS = -1h- 

ML = 1h- 

z 

MS = 1h- 
ML = 1h- 

z 

MS = 0 

ML = 1h- 
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complete set of MJ values. Compare your results with part (a). For example, two explicit MJ 
states are tabulated below: 
 

ML MS MJ 

2 1 3 
2 0 2 

 
 
Answer:  The plan is to note that a 3D term corresponds to L = 2 with ML = {-2,-1,0,1,2} and 
S = 1 with MS = {-1,0,1}. 
(a).  The Clebsch-Gordon series for L = 2 and S = 1 gives: 
 

 J = L + S, L + S – 1, ..., | L – S| = {3,2,1}. 
 

The final terms are 3D3, 3D2, and 3D1. 
(b).  The complete set, in no particular order, is: 
 

ML MS MJ  ML MS MJ  ML MS MJ 

2  1 3    0  1  1  -2  1 -1 
2  0 2    0  0  0  -2  0 -2 
2 -1 1    0 -1 -1  -2 -1 -3 
1  1 2  -1  1  0     
1  0 1  -1  0 -1     
1 -1 0  -1 -1 -2     

 

The complete set of MJ values are: 
 

 MJ = {3,2,2,1,1,1,0,0,0,-1,-1,-1,-2,-2,-3} 
 

Using J = |MJ|max to extract the first J value gives J = 3. The corresponding degenerate MJ states 
associated with J = 3 are MJ = {3,2,1,0,-1,-2,-3}, which leaves: 
 

 MJ  = {2,1,1,0,0,-1,-1,-2} 
 

Using J = |MJ|max to extract the next J value gives J = 2. The corresponding degenerate MJ states 
associated with J = 2 are MJ = {2,1,0,-1,-2}, which leaves: 
 

 MJ  = {1,0,-1} 
 

The final J is J = 1. The final terms are 3D3, 3D2, and 3D1, just as we determined using the 
Clebsch-Gordon series. [The previous problem provides a graphical interpretation for 
determining all the possible MJ states, if you are interested.] 
 
 
33.  Using the complete enumeration of explicit configurations, show that the O atom 
configuration 2s2 2p4 gives rise to 1D, 3P, and 1S terms (just like C: 2s2 2p2). Also verify that the 
Clebsch-Gordon series based on the holes gives the same terms. The holes are the empty orbitals 
in the partially filled subshell. 
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Answer: The configuration is O:  2p4. The explicit configurations are: 
 

 ML =  ml   ML =  ml   ML =  ml 
             

+1      0    -1 

       2    +1     0    -1 

     1         1    +1     0    -1 

     0         0           0 

    -1        -1 

      -2 
 

      1D           3P             1S 
 
For the first set of singlet configurations, the maximum ML is 2, giving a 1D term. For the triplet 
configurations, the maximum ML is 1, for a 3P term. For the remaining singlet configuration, the 
maximum ML is 0, giving a 

1S term: 
 

       L 0 1 2 3 4 5 
  Term S P D F G H 
 

The Clebsch Gordon series can also be used to find the total orbital angular momentum with the 
holes in the p4 configuration. The holes are both in the p-subshell giving l1 = 1 and  l2 = 1: 
 

Clebsch-Gordan Series: L = l1 + l2, l1 + l2 – 1, …, |l1 – l2|   L = |ML| max 
 

2p4:  1 + 1, …, |1 – 1| = 2, 1, 0 
2p4:  D, P, S 
 
 
34.  A p2 configuration gives 1S, 1D, 3P terms. Give the terms for a p4 configuration. 
 
 
Answer:  The singlet terms have S = 0, so J = L. The J values for a 3P term are given by the 
Clebsch-Gordon series with S = 1 and L = 1: 
 

For 1D, S = 0 and L = 2 so 1D2. 
For 3P, S = 1 and L = 1 with  J = L + S, L + S – 1, …, |L – S| = 1 + 1,….,|1 – 1| = 2, 1, 0 
 or  3P2, 3P1, 3Po. 
For  1S, S = 0 and L = 0 so 1So. 
 
 
35.  A p2 configuration gives 1S, 1D, 3P terms. Give the terms for a p4 configuration. Give the 
lowest energy term for ground state p2 and p4 configurations. 
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Answer:  The plan is to note that the p-subshell can hold 6 electrons, so a p2 and a p4 
configuration are complementary, that is for the p2 case n = 6, m = 2, and n – m = 4. The energy 
order of the terms is given by Hund’s three rules, Sec. 25.5. 
   A p2 and p4 configuration give the same terms. In other words, the “holes” in the p4 
configuration have the same explicit configurations as the electrons in the p2 configuration. The 
triplet terms are lowest in energy by Hund’s first rule. The J values for a 3P term are given by the 
Clebsch-Gordon series with S = 1 and L = 1: J = L + S, …. |L – S| = 2, 1, 0. For a p2 
configuration, the p-subshell is less than half-full, so the term with lowest J is lowest, giving the 
lowest energy term as 3Po. For the p4 state, the p-subshell is over half-filled giving the lowest 
energy term as 3P2. Carbon and oxygen are examples, Figure 25.6.3. 
 
 
36.  A d3 configuration gives 2P, 2D, 2D, 2F, 2G,2H, 4P, 4F terms. Give the terms for a d7 
configuration. Give the lowest energy term for ground state d3 and d7 configurations. 
 
 
Answer:  The plan is to note that the d-subshell can hold 10 electrons, so a d3 and a d7 
configuration are complementary, that is for the d3 case n = 10, m = 3, and n – m = 7. The energy 
order of the terms is given by Hund’s three rules, Sec. 25.5. 
   A d3 and d7 configuration give the same terms. In other words, the “holes” in the d7 
configuration have the same explicit configurations as the electrons in the d3 configuration. The 
quartet terms are lowest in energy by Hund’s first rule. The F terms are the lowest quartet terms 
by Hund’s second rule. The J values for a 4F term are given by the Clebsch-Gordon series with S 
= 3/2 and L = 3: J = L + S, …. |L – S| = 9/2, 7/2, 5/2, 3/2. For a d3 configuration, the d-subshell is 
less than half-full, so the term with lowest J is lowest, giving the lowest energy term as 4F3/2. For 
the d7 state, the d-subshell is over half-filled giving the lowest energy term as 4F9/2. Vanadium 
and cobalt are examples, Figure 25.6.3. 
 
 
37.  Write a spreadsheet to plot the 3-21G Gaussian orbital for a 2px orbital on carbon, along the 
x-axis. 
 
 
Answer:  The plan is to note that restricting the plot to the x-axis gives x = r. The plot then is of 
the wave function amplitude versus x. In other words, along the x-axis  = 90, = 0, and the 
conversion from spherical polar coordinates to Cartesian coordinates is x = r sin cos = r 
   The wave function is given by the equations on the handout: 
 

 2px = 0.55646 2px(inner) + 0.58708 2px(outer) 
 

with: 2px(inner) = 0.2365 gx(3.665,r) + 0.8606 gx(0.771,r) 
         = 0.2365 gx(3.665,r) + 0.8606 gx(0.771,r) 

        = 0.2365 



128(3.665)5

π3

¼
 x e–3.665r2 + 0.8606 



128(0.771)5

π3

¼
 x e–0.771r2 

and: 2px(outer) = 1.000 gx(0.196,r) 

         = 1.000 



2(0.196)

π

¼
 x e–0.196r2 
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The first rows of the spreadsheet are given below. The basis set constants are reprinted at left. 
The normalization constants for each of the Gaussian primitives is listed at the top of each 
column for the three primitives. Primitives 1 and 2 are for the inner component of the split 
valence shell. Primitive 3 is for the outer component. The inner and outer portions are calculated 
separately so that the plot can show the importance of the two components of the split-valence 
shell. 
 

A1 2 3 4 5 6 7 8 9   11 12 13 14 15 

2     3-21G px orbital        

3      Primitives:     scaled:   

4 C  Normalization: 7.2282 1.0291 0.1857    0.5565 0.5871  

5 S 3 1  r gx1 gx2 gx3  
2px 
inner 

2px 
outer 

2px 
inner 

2px 
outer 

2px 
total 

6     0 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 

7 172.3 0.0618   0.1 0.6968 0.1021 0.0185  0.2526 0.0185 0.1406 0.0109 0.1515 

8 25.91 0.3588   0.2 1.2485 0.1996 0.0369  0.4670 0.0369 0.2599 0.0216 0.2815 

9 5.533 0.7007   0.3 1.5592 0.2880 0.0547  0.6166 0.0547 0.3431 0.0321 0.3752 

10 SP 2 1  0.4 1.6085 0.3639 0.0720  0.6935 0.0720 0.3859 0.0423 0.4282 

11 3.665 -0.396 0.2365  0.5 1.4457 0.4244 0.0884  0.7071 0.0884 0.3935 0.0519 0.4454 

12 0.771 1.2158 0.8606  0.6 1.1592 0.4679 0.1038  0.6768 0.1038 0.3766 0.0610 0.4376 

13 SP    0.7 0.8399 0.4938 0.1181  0.6236 0.1181 0.3470 0.0693 0.4163 

14 0.196 1 1  0.8 0.5539 0.5028 0.1311  0.5637 0.1311 0.3137 0.0770 0.3906 

15     0.9 0.3342 0.4962 0.1426  0.5060 0.1426 0.2816 0.0837 0.3653 

16     1 0.1851 0.4762 0.1527  0.4536 0.1527 0.2524 0.0896 0.3420 

 
The plot is shown below. 
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38.  In the integral for the expectation value of the electron-electron repulsion in the helium 
atom, we used the Law of Cosines, r12 = (r2

1 + r2
2 – 2 r1r2 cos )½. Prove this relationship using the 

following steps. 
(a).  The distance between the two electrons is the magnitude of the vector difference: 
r12 = | r1 – r2|, where r1 is the vector pointing to electron 1 and r2 is the vector pointing to 

electron 2. The length of r1 is r1 and of r2 is r2. The angle between the two vectors is . The 

distance between the two electrons does not dependent on how the coordinate system is oriented, 
only the difference is important. We orient the coordinate system with r1 pointing along the z-

axis and r2 parallel to the x-axis. The x, y, and z coordinates are then conveniently expressed in 

terms of r, , and . Show that the coordinates of the two electrons are given as: 
 
 r1 = (0, 0, r1) 

 r2 = (r2 sin , 0, r2 cos) 

 
 
 
 
(b).  From the position vectors in part (a), find r12 = | r1 – r2|. Remember that sin2 + cos2 = 1. 

 
 
Answer:  (a).  The transformation between Cartesian and spherical polar coordinates is given by 
Eqs. 24.5.14. With electron 1 lying on the z-axis,  = 0, giving x = 0, y = 0, and z = r1 cos  = r1. 
For electron 2, the electron lies in the x-z plane giving  = 0. Then x = r2 sin  cos  = r2 sin . 
The value of z is z = r2 cos . 
(b). The vector difference is: 
 

 r1 – r2 = (0 – r2 sin ) i


 + (0 – 0) j


 + (r1 – r2 cos ) k


 
 

were i


, j


, and k


 are the orthogonal unit vectors define the orientations of the x, y, and z-axes, 
respectively. The magnitude is the square root of the sum of squares: 
 

 r2
12 = (– r2 sin )2 + (r1 – r2 cos )2 = r2

2 sin2 + r2
1 – 2 r1r2 cos  + r2

2 cos2 
 

Substituting sin2 + cos2 = 1 into this last equation gives:   r2
12 = r2

1 + r2
2 – 2 r1r2 cos  

Taking the square root of both sides gives the Law of Cosines: 
 

 r12 = (r2
1 + r2

2 – 2 r1r2 cos )½ 
 

The next problem continues the determination of the expectation value of the electron-electron 
repulsion energy. 
 
 
39.  Using the substitution q = cos , show that (Eq. 25.7.5): 
 

++ 

– 

– 

r12 r1 

r2 

 

z 

x 
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0
 

1
(r2

1
 + r2

2
 – 2 r1r2 cos )½  sin  d = 

2
r1

 for r1 > r2  or   = 
2
r2

   for r1 < r2 

 
 
Answer:  The substitution q = cos  gives  dq/d = – sin   so that dq = – sin  d. The integral 
limits of 0 to  change to cos 0 to cos , or 1 to – 1. Substitution into the integral gives: 
 

 


0
 

1
(r2

1
 + r2

2
 – 2 r1r2 cos )½  sin  d = – 

-1

1
 

1
(r2

1
 + r2

2
 – 2 r1r2 q)½ dq = 

1

–1
 

1
(r2

1
 + r2

2
 – 2 r1r2 q)½ dq 

 

Switching the integral limits reverses the sign of the integral. The integral is in the form: 
 

  1
(a + bx)½ dx = 2 

 (a + bx)½

b  
 

which can be verified by taking the derivative of the right side. Substitution of the general form 
into the first equation gives: 
 

  = 2 
1

–2 r1r2
 [(r2

1
 + r2

2
 – 2 r1r2 q)½|

 1
-1 = – 

1
r1r2

 [(r2
1
 + r2

2
 – 2 r1r2)½ – (r2

1
 + r2

2
 + 2 r1r2)½] 

 

Note that (r2
1
 + r2

2
 – 2 r1r2) = (r1 – r2)2 and (r2

1
 + r2

2
 + 2 r1r2) = (r1 + r2)2. The square roots each have 

two roots, one positive and one negative: 
 

  = – 
1

r1r2
 {[(r1 – r2)] – [(r1 + r2)]} 

 

There are four possibilities for the signs: 
 

 [+,+]   = – 
1

r1r2
 [r1 – r2 – r1 – r2)] = 2/r1 

 [+,–]   = – 
1

r1r2
 [r1 – r2 + r1 + r2)] = – 2/r2 

 [–,+]   = – 
1

r1r2
 [– r1 + r2 – r1 – r2)] = 2/r2 

 [–,–]   = – 
1

r1r2
 [– r1 + r2 + r1 + r2)] = – 2/r1 

 

The electron-electron repulsion is overall positive, so only the [+,+] roots and the [–,+] roots are 
valid. However, the integral can only have one result for a given set of circumstances. Both 
individual contributions at the integral limits of  1-1 should give positive results for the electron-
electron repulsion energy. The (r1 – r2) term results from the evaluation at the upper limit. If 
r1 > r2 then (r1 – r2) is positive and the [+,+] roots gives an overall positive contribution for the 
upper limit for the integral and a final integral value that is also positive. If r1< r2 then (r1 – r2) is 
negative and then the [–,+] roots give an overall positive contribution for the upper limit. The 
two valid results are then: 
 

 


0
 

1
(r2

1
 + r2

2
 – 2 r1r2 cos )½  sin  d = 

2
r1

  for r1 > r2 
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         = 
2
r2

  for r1 < r2 
 

The next problem continues the determination of the expectation value of the electron-electron 
repulsion energy. 
 
 
40.  Evaluate the following integrals, verifying Eqs. 25.7.8 and 25.7.9: 

 


r1
 e–2Zr2/ao r2 dr2 and 

r1

0
e–2Zr2/ao r2

2 dr2 

 
 
Answer: The r2 integrals are derived from the tabulated indefinite integrals: 
 

  e–ax x dx = – 
e–ax

a2  (ax + 1) and  e–ax x2 dx = – 
e–ax

a3  (a2x2 + 2ax + 2) 
 

Note that limx e–ax(ax) = 0 using L'Hospital’s Rule. The definite integrals are then: 
 

 


xo
 e–ax x dx = 

e–axo

a2  (axo + 1) = 
xo

a  e–axo  + 
1
a2 e–axo 

 
xo

0  e–ax x2 dx = – 
e–axo

a3  (a2x2
o + 2axo + 2) + 

2
a3 = – 

x2
o

a  e–axo – 
2xo

a2  e–axo – 
2
a3 e–axo + 

2
a3 

 

Setting a = 2Z/ao, x = r2, and xo = r1 gives the definite integrals as: 
 

 


r1
 e–2Zr2/ao r2 dr2 = 

1
2 



ao

Z  r1 e–2Zr1/ao + 
1
22 



ao

Z
2
 e–2Zr1/ao    (25.7.8) 
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2
 r1 e–2Zr1/ao – 

1
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ao

Z
3
 e–2Zr1/ao + 

1
22 



ao

Z
3
 

           (25.7.9) 
 

The next problem continues the determination of the expectation value of the electron-electron 
repulsion energy. 
 
 
41.  (a). Verify Eq. 25.7.11 starting from Eq. 25.7.10. (b). Verify Eq. 25.7.12 starting from Eqs. 
25.7.7 and 25.7.8. 
 
 

Answer: Integral tabulations list 0  x e–ax dx = 1/a2, 0  x2 e–ax dx = 2/a3, and 0  x3 e–ax dx = 6/a4. 
(a).  Substituting a = 4Z/ao for the first three integrals or a = 2Z/ao into the fourth integral in 
Eq. 25.7.10 results in: 
 

 


0
e–2Zr1/ao r1 (

r1

0
e–2Zr2/ao r2

2 dr2) dr = 

  = – 
1
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6
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Z
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1
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ao

Z
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1
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ao
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1
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ao

Z
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(b).  Substitution of Eq. 25.7.8 into the second integral in Eq. 25.7.7 gives: 
 

 


0
 e–2Zr1/ao r2

1 (


r1
 e–2Zr2/ao r2 dr2) dr = 

  = 
1
2 



ao

Z  


0
 r3

1 e–4Zr1/ao dr + 
1
22 



ao

Z
2



0
 r2

1 e
–4Zr1/ao dr

 

Using the tabulated integrals and substituting a = 4Z/ao into the last equation gives: 
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The next problem continues the determination of the expectation value of the electron-electron 
repulsion energy. 
 
 
42.  Using Eqs. 25.7.7, 25.7.11, and 25.7.12, verify Eq. 25.7.14. 
 
 
Answer:  Adding Eqs. 25.7.11 and 25.7.12 gives: 
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Substituting this last result into Eq. 25.7.7 gives Eq. 25.7.13: 
 

 E(1)
gs = 16 



Z

ao

6

 
e2

4πo
 
5
27 



ao

Z

5

 = 24 



Z

ao

6

 
e2

4πo
 
5
27 



ao

Z

5

 = = 
5Z
8  




e2

4o ao
 

 

The term in parentheses in the last equation is equal to one Hartree, 1H = 27.2116 eV. The full 
nuclear charge for helium is Z = 2, giving E(1)

gs = 34.01 eV. 
 
 
Literature Cited: 
 
1. M. W. Hanna, Quantum Mechanics in Chemistry, 3rd. ed., Benjamin-Cummings, Menlo Park, 
CA, 1981. Exercise 6-45, p. 176. 
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Chapter 26 Problems: Molecular Structure  
 
1.  Draw the Lewis dot resonance structures for the carbonate ion, CO3

2-. Are the electrons 
delocalized? Give the average bond order for the bonds. The procedure for the determination of 
Lewis dot structures is: 
 (1). Place the nuclei to establish the expected connectivity. In polyatomics, the first listed non-
hydrogen atom is assumed to be the central atom, unless otherwise stated. Alternatively, the 
atom with the smallest electronegativity is often the central atom. (2). Determine the total 
number of valence electrons. (3). Draw single bonds between the bonded pairs of atoms. (4). Fill 
in the remaining electrons as lone pairs without exceeding an octet on each heavy atom, or a duet 
on H or He. (5). If any atoms do not have a completed octet, move lone pairs to complete the 
octets by forming multiple bonds. (6). If several non-equivalent structures are possible, the 
predicted lowest energy structure is the structure that minimizes the total formal charges. (7). 
The bonding pattern that places the largest negative formal charges on the most electronegative 
atoms is the most important. (8). Use expanded octets on 3rd and 4th period elements only if 
necessary to accommodate the required total number of electrons. (9). Show the overall ionic 
charge in the final structures. 
 
 
Answer:  The C-atom is the central atom. The carbonate ion has 4 + 3(6) + 2 = 24 valence 
electrons. The final two in the sum is added to account for the ionic charge. Following the 
procedure step 4, one of the atoms does not have a completed octet, which requires one double 
bond to resolve. Three equivalent structures result, differing only in the C-O pairs that are double 
bonded. The three resonance structures predict that the carbonate ion has a four-center 
delocalized -bond. 
 
 
 
 
 
 
Focusing on the same particular C-O pair in each resonance structure, the total bonds between 
that particular pair in all the resonance structures is 2+1+1 = 4. On average, over the three 
resonance structures, the qualitative bond order is 4/3 = 1 1/3 . 
 
 
2.  Draw the Lewis dot resonance structures for (a) ozone, (b) sulfur dioxide, and (c) nitrite ion, 
NO2

–. Are the electrons delocalized? Give the average bond order for the bonds. The procedure 
for the determination of Lewis dot structures is summarized in the previous problem. 
 
 
Answers:   The plan is to note that ozone, sulfur dioxide, and nitrite ion are isoelectronic; each 
has 18 valence electrons. The Lewis dot resonance structures are the same for each. 
(a).  Ozone has 3(6) = 18 valence electrons. With single bonds only one atom does not have an 
octet, which requires one double bond to resolve. Two equivalent resonance structures result, 
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differing only in the O-O pairs that are double bonded. The two resonance structures predict that 
ozone has a three-center delocalized -bond. 
 
 
 
 
 
Focusing on the same particular O-O pair in each resonance structure, the total bonds between 
that particular pair in all the resonance structures is 2+1 = 3. On average, over the two resonance 
structures, the qualitative bond order is 3/2 = 1½. 
(b) and (c). Sulfur dioxide and nitrite ion also have 18 valence electrons, giving delocalized 
three-center -bonds with an average qualitative bond order of 1½: 
 
 
 
 
 
 
3.  For the H2

+ ion, show that for the bonding orbital cA = cB using E+ and for the anti-bonding 
orbitals cA = – cB using E- in the secular equations, Eq. 21.1.12. 
 
 
Answer:  The first of the two secular equations, Eqs. 21.1.12 (either one would do), is: 
 

 cA(HAA – E) + cB(HAB – ES) = 0 
 

For a homonuclear molecule, HAA = HBB and normalized atomic orbitals give SAA= SBB = 1. 

(a).  Substituting E+ = 
HAA+HAB

1+S  into the secular equation gives: 
 

 cA(HAA – 
HAA+HAB

1+S ) + cB(HAB – 
HAA+HAB

1+S  S) = 0 
 

Multiplying the last equation by 1+S gives: 
 

 cAHAA(1+S) – cA HAA – cAHAB + cBHAB(1+S) – cB HAAS – cB HABS = 0 
 

After cancelling common terms the result is: 
 

 cAHAAS – cAHAB + cBHAB – cB HAAS = 0 
 

Collecting terms in cA and cB: 
 

 cA (HAAS – HAB) + cB (HAB – HAAS) = 0 
 

which rearranges to give: 
 

 cA (HAAS – HAB) = cB (HAAS – HAB) 
 

The common term cancels to give: cA = cB 

(b).  Substituting E– = 
HAA – HAB

1–S  into the secular equation gives: 
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 cA (HAA – 
HAA – HAB

1–S  ) + cB (HAB – 
HAA – HAB

1–S  S) = 0 
 

Multiplying the last equation by 1+S gives: 
 

 cAHAA(1–S) – cA HAA + cAHAB + cBHAB(1–S) – cB HAAS + cB HABS = 0 
 

After cancelling common terms the result is: 
 

 – cAHAAS + cAHAB + cBHAB – cB HAAS = 0 
 

Collecting terms in cA and cB: 
 

 cA (– HAAS + HAB) + cB (HAB – HAAS) = 0 
 

which rearranges to give: 
 

 cA (– HAAS + HAB) = cB (HAAS – HAB) 
 

The common term cancels to give cA= – cB. 
 
 
4.  Show that the atomic integral for the H2

+ molecule, HAA   A
*  H^  A d reduces to: 

 HAA   EA + 
e2

4oR
 

at large internuclear separation, Eq. 26.1.6. Then argue that at large R the atomic integral is 
approximately equal to the atomic energy of the H-atom. The bond dissociation at large R gives 
H2  H + H+. 
 
 
Answer:  The plan is to write the exact Hamiltonian for the H2

+ ion and then determine the limit 
of the Hamiltonian for bond dissociation at large R. 
   The Schrödinger equation for H2

+ is given by Eq. 26.1.1: 
 

 – 
ħ2

2m2
1 + 

e2

4o
 



– 

1
r1A

 – 
1

r1B
 + 

1
R  = E  

 
Assume that the molecule dissociates at large R to give a H-atom on nucleus A and a H+ ion on 
nucleus B: 
 
 
 
 
 
   H2

+             H         +          H+ 

 
In the limit of large R, the Coulomb attraction of the electron for nucleus B is negligible, 
e2/(4or1B)  0. The remaining terms in the Hamiltonian are then the one-electron Hamiltonian 
for the H-atom on nucleus A, HA, and the nuclear-nuclear repulsion. The Hamiltonian acting on 
the one-electron H-atom orbital on nucleus A then simplifies to: 

e– 

+ + 
R 

1 

A B 

r1B r1A 

 

e– 

+ + 
R 

1 

A B 

r1B r1A 
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 H A   




–

ħ2

2m2
1 – 

e2

4o r1A
 A+ 

e2

4oR
 A  = HA A + 

e2

4oR
 A  E A 

 

The first term gives the one-electron atomic energy of the H-atom, HA A = EA A: 
 

 EA A + 
e2

4oR
 A  E A dividing by  gives:   H A   EA + 

e2

4oR
   E 

 

Then HAA =  A
*  H A d A

*  E A dEA + 
e2

4oR
 

As R  , the nuclear-nuclear repulsion term becomes negligible and HAA  EA. 

 
 
5.  Determine the Pauling electronegativity of Br. The experimental bond dissociation energies 
are Do(H–H) = 432.0 kJ mol-1, Do(Br–Br) = 190. kJ mol-1, and Do(H–Br) = 363. kJ mol-1. The 
electronegativity of H is 2.2. 
 
 
Answer:  The plan is to use the deviation from equal sharing, Eq. 26.3.13, with the bond energies 
converted to electron volts. 
   Given 1 eV = 96.4853 kJ mol-1, the experimental bond dissociation energies are Do(H–H) = 
4.477 eV, Do(Br–Br) = 1.97 eV, and Do(H–Br) = 3.76 eV. The “Energy Units Converter” on the 
text Web page or companion CD is also useful for easy energy conversions. Using Eq. 26.3.13: 
 

 (Br – H)2 = (3.76 – [(4.477)(1.97)]½) eV = 0.790 eV 
 

Solving for the electronegativity of Br, taking the positive root: Br = 2.2 + 0.791 = 3.09 
The accepted value is 2.96, which is an average over several compounds. 
 
 
6.  Determine the Pauling electronegativity of Ge. The experimental bond dissociation energies 
are Do(Ge-Ge) = 272. kJ mol-1, Do(F-F) = 154.8 kJ mol-1, and Do(Ge-F) = 484. kJ mol-1.1,2 The 
electronegativity of F is 3.98, in current revised scales. 
 
 
Answer:  The plan is to use the deviation from equal sharing, Eq. 26.3.13, with the bond energies 
converted to electron volts. 
   Given 1 eV = 96.4853 kJ mol-1, the experimental bond dissociation energies are Do(Ge–Ge) = 
0.2.82 eV, Do(F–F) = 1.604 eV, and Do(Ge–F) = 5.02 eV. The “Energy Units Converter” on the 
course Web page or companion CD is useful for easy energy conversions. Using Eq. 26.3.13 
gives: 
 

 (Ge – F)2 = (5.02 – [(2.82)(1.604)]½) eV = 2.89 eV 

Solving for the electronegativity of Ge, taking the negative root: Ge = 3.98 – 2.89 = 2.28 
The negative root is used because the electronegativity of Ge is expected to be less than the 
electronegativity of F, based on the corresponding positions in the periodic table and the 
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direction of the dipole moment of GeF. The accepted value is 2.01, which is an average over 
several compounds. The experimental uncertainties for the Do values for Ge2 and GeF are ~8%. 
 
 
7.  Sketch the qualitative molecular orbital diagram for BeH+. Calculate the qualitative bond 
order. Is the bond completely covalent, partially ionic, or strongly ionic? 
 
 
Answer: The plan is to note the similarity of the molecular orbital diagram for BeH+ with LiH. 
The ionic character of the bond is given by the difference in the electronegativities of Be and H. 
   The difference in electronegativity of Be and H is less than that for LiH,  = (H) – (Be) = 
0.63. This decrease suggests that the bond between Be and H is less ionic than in LiH, which is 
~27% ionic, Eq. 26.3.7. So the BeH bond is partially ionic. The decrease in  also suggests that 
the Be(2s) and H(1s) are closer in energy than the Li(2s) and H(1s), giving greater covalent 
character. The valence atomic orbital ionization energies, Table 26.8.1, place the separated atom 
atomic orbital energies at Be(2s) -9.30 eV, Be(2p) -3.50 eV, and H(1s) -13.6 ev. The orbitals are 
otherwise similar in character to LiH in relative order and symmetry, Figure 26.3.4. The x-axis is 
chosen as the internuclear axis. Combining four atomic orbitals on Be with one atomic orbital on 
H gives five final molecular orbitals. The valence atomic orbitals are Be(2s), Be(2px), Be(2py), 
Be(2pz) and H(1s). The Be(2py) and Be(2pz) orbitals are non-interacting atomic non-bonding 
orbitals, because the overlap with H(1s) is zero. The lowest energy molecular orbital has more 
Be(2s) character than Be(2px) because of better energy matching with H(1s). The Be(2s), 
Be(2px), and H(1s) create a bonding, non-bonding, anti-bonding triple. These three orbitals 
added to the Be(2py) and Be(2pz) atomic non-bonding orbitals gives five total molecular orbitals: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BeH+ has 2 valence electrons, filling only the lowest energy 1 orbital. The qualitative bond 
order is 1. While this problem was meant to be qualitative, you might try the CNDO level 
calculation at the experimental bond length of 1.342 Å, to verify your diagram. 
 
8.  Sketch the qualitative molecular orbital diagram for linear H3

+. The H3
+ ion is symmetrical 

about the center H-atom. Show that the odd number of atomic orbitals results in a bonding, non-
bonding, anti-bonding trio of molecular orbitals. Calculate the qualitative bond order. Is the ion 
stable? 
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Answer:  The plan is to note that since we are combining three atomic orbitals, three molecular 
orbitals result that must be symmetrical about the center H-atom. 
   The atomic orbitals are three H(1s) orbitals. The ion has two electrons. The symmetric 
combination of the three 1s-orbitals gives the most bonding orbital as: OOO. The anti-bonding 
complement is generated by reversing the phase of the central orbital: OO. The trick to generate 
other possible molecular orbitals is to reverse the phase of an outer orbital: O  . However, this 
new orbital must be a non-bonding orbital, since neither O nor OO are symmetrical about 
the center H-atom. For example, O is anti-bonding on the left and bonding on the right. The 
molecular orbital diagram is shown below, with the two electrons in the bonding g1 orbital. The 
qualitative bond order is: 
 

 qualitative BO = (bonding electrons – anti-bonding electrons)/2 = 1 
 

Since we combined an odd number of atomic orbitals, an odd number of molecular orbitals 
necessarily result. Given the symmetry of the molecule, with one bonding and one-anti-bonding 
molecular orbital the intermediate molecular orbital must be intermediate in character. In this 
case the middle orbital is rigorously non-bonding. The ion is predicted to be stable, but not 
necessarily the lowest energy geometry. 
 
 
 
 
 
 
 
 
 
 
 
9.  Consider the bond between atoms A and B with bonding wave function: 
 1 = 0.800 A + 0.360 B. (a). Calculate the % ionic character. (b). Choose the corresponding 
molecular energy diagram from below. (c). Find the corresponding anti-bonding orbital. Assume 
the atomic orbitals are normalized and the overlap integral is S = 0.400. 
  

 
 
 
 
 
 
 (a).   (b).   (c). 
 
Answer:   The plan to find the anti-bonding complement to the given bonding orbital is to use 
orthogonality and normalization. 
 
(a).  The % ionic character is given by Eq. 26.3.4: 
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 fraction ionic = 
(0.800)2 – (0.360)2

(0.800)2 + (0.360)2 = 0.663   or 66.3% ionic 
 

(b).  Molecular orbital diagram (b) shows the atomic orbital for A as more electronegative than 
B, giving the bonding orbital with a larger coefficient for the A-atomic orbital than for the B-
atomic orbital. Diagram (a) shows little ionic character, since the atomic orbitals are so similar in 
energy, so is not applicable.  
(c).  Assume the anti-bonding complement has coefficients 2 = a A + b B. Orthogonality 
gives the ratio of the orbital coefficients. Assuming the atomic orbitals are real, and normalized 

gives  A
 2 d =  B

2
 d = 1: 

 

   12 d =  (0.800 A + 0.360 B) (aA + bB) d = 0 

      = 0.800 a  A
 2 d + 0.360 b  B

2
 d + 0.800 b  AB d + 0.360 a  BA d 

      = 0.800 a  + 0.360 b  + 0.800 b S d + 0.360 a S d = 0 
 

The order of the orbitals doesn’t matter, since they are just functions, giving   AB d  = 

 BA d = S  from the definition of the overlap integral. Orthogonality then gives: 
 

 a(0.80  + 0.360 S) +  b(0.360 + 0.80 S) = 0 
 a/b = –(0.360 + 0.80 S)/ (0.80  + 0.360 S)  with S = 0.400 given: 
 a/b = -0.7203 
giving:  a2 = 0.5189 b2   and     ab = -0.7203 b2 

 

The normalization gives the final coefficients: 
 

  2
2 d =  (aA + bB)2 d = 1 

 = a2  A
 2 d + b2  B

2
 d + 2ab  AB d = 1 

 = a2 + b2 + 2abS = 1 
 

Substituting in for a2 and ab using the ratio from orthogonality gives: 
 

 0.5189 b2  + b2 +2(-0.7203)b2(0.400) = 1 
 b2 = 1.0609  or  b = 1.0300  and a = -0.7420 
 

The final anti-bonding orbital is then 2 = -0.742 A + 1.030 B 

 
 
10.  Calculate the bond order and atom charges for BH at the CNDO level at the experimental 
bond length, 1.236 Å. Calculate the charges and bond order using the molecular orbital 
coefficients and the overlap integrals (in effect, verifying the listed bond order in the CNDO 
printout). [Use the online CNDO applet on the textbook Web site.] 
 
 
 
 
Answer:  The charge is zero with singlet spin multiplicity. The simplified listing is given below. 
 

___Atomic Coordinates (Å)__ 
Atom     x       y       z  
1  B    0.0     0.0     0.0 
2  H    1.236   0.0     0.0 
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   Coulombic repulsion integrals (bottom triangle)(a.u.) 
____and internuclear distances (top triangle)(a.u.)_________ 
Atoms:  1 B    2 H    
1 B   0.4723   2.3357 
2 H   0.3808   0.75   
 
____________ Overlap Matrix ____________________________________ 
          1 B2s    1 B2px   1 B2py   1 B2pz   2 H1s 
1  B2s    1.0      0.0      0.0      0.0      0.4984 
1  B2px   0.0      1.0      0.0      0.0      0.5241 
1  B2py   0.0      0.0      1.0      0.0      0.0 
1  B2pz   0.0      0.0      0.0      1.0      0.0 
2  H1s    0.4984   0.5241   0.0      0.0      1.0 
 
         SCF eigenvalues (a.u.) and eigenvectors 
______________(eigenvectors listed in columns)_____________ 
E(i)    -0.8084   -0.4892    0.0817    0.0817    0.3019 
vector     1         2         3         4         5   
1  B2s    0.6739   -0.6534    0.0       0.0      -0.3449  
1  B2px   0.3319    0.6848    0.0       0.0      -0.6487  
1  B2py   0.0       0.0       0.0       1.0       0.0     
1  B2pz   0.0       0.0       1.0       0.0       0.0     
2  H1s    0.6601    0.3227    0.0       0.0       0.6784 
 
_____Total Bond Order (Mulliken overlap population)_____ 
Atoms:  1 B 
2  H   1.389 
 
Electronic energy =  -5.2668 a.u. 
Total energy =    -3.9824 a.u. includes nuclear-nuclear repulsion 
Total bond dissociation energy, Do = 12.9941 eV = 1253.735 kJ/mol 
 
Total atom electron densities and atomic charges 
atom  density   charge 
1 B   2.9204    0.08 
2 H   1.0796   -0.08 

 

The atomic orbitals on B in MO 1 and 2 are the 2s and 2px. Using Eq. 26.3.9, the orbital 
coefficients, and noting that there are two occupied molecular orbitals give the atom density on 
the B-atom as: 
 

 dB =  (n1c1j
2 + n2c2j

2) = 2(0.6739)2 + 2(-0.6534)2 + 2(0.3319)2 + 2(0.6848)2 = 2.9204 
        j on B 
                                                           

        n1 (c1,B(2s))2
 +  n2 (c2,B(2s))2

    +   n1 (c1,B(2px))2
 + n2 (c2,B(2px))2 

 

The atomic charge, with three valence electrons for the B-atom: charge = 3 – 2.9204 = 0.0796. 
Alternately, the atom electron density on B is the sum of the diagonal population matrix elements 
for B. The charge on H is easier to calculate, and gives the same result. 
   The Mulliken overlap population is given by Eq. 26.3.10 for m molecular orbitals: 
  PBH =                ni 2 cij cik Sjk      (Mulliken) 
            j on B   k on H   i=1,m 
 

      = 4(0.674)(0.660)(0.498)+4(-0.653)(0.323)(0.498)+4(0.332)(0.660)(0.524)+ 4(0.685)(0.323)(0.524) 
                                                                                                                                                                   
        2n1c1,B(2s)c1,H1(1s)S2s,1s  +  2n2c2,B(2s)c2,H1(1s)S2s,1s  +  2n1c1,B(2px)c1,H(1s)S2px,1s  + 2n2 c2,B(2px) c2,H(1s)S2px,1s 
 

      = 0.8868 – 0.4204 + 0.4592 + 0.4632 = 1.389 
 

The results are within round-off error of the values given in the listing. The bond is 8% ionic. For 
comparison purposes, the Coulson bond order is given by the sum of the population matrix 
elements over the atomi orbitals on B and the atomic orbitals on H: 
 

 BOBH =          (   ni cij cik  ) =          pjk    (Coulson) 
             j on B   k on H   i=1,m       j on B   k on H 
 

          = 2(0.6739)(0.6601)  +  2(-0.6534)(0.3227)  +  2(0.3319)(0.6601)  +   2(0.6848)(0.3227) 
                                                                                                                                        
  n1c1,B(2s)c1,H1(1s)      +     n2c2,B(2s)c2,H1(1s)       +       n1c1,B(2px)c1,H(1s)       +     n2 c2,B(2px) c2,H(1s)  
 

         = 0.8897 – 0.4217 + 0.4382 + 0.4420 = 0.4680 + 0.8802 = 1.348 
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 or taken directly from the population matrix listing: BOBH = 0.4679 + 0.8802 = 1.348 
 

You should locate the corresponding matrix elements in the CNDO listing for practice. The 
Coulson and Mulliken bond orders are usually quite similar. For comparison with more advanced 
methods, the atomic charge on B at the HF/6-31G** level is 0.126 and the Mulliken bond order 
is 0.927. 
 
 

11.  Using molecular orbital theory, decide if OF is more likely to form an OF+ ion or an OF- ion. 
 
 

Answer:  The plan is to assume the molecular orbital diagram is similar to O2. Note that O2 and 
OF+ are isoelectronic. 
   The OF molecule has 6+7 = 13 valence electrons. The MOs fill with three electrons in the *

g 
orbitals. Removing an electron from OF to form OF+ removes an anti-bonding electron, 
strengthening the bond. Adding an electron to OF to form OF– adds an anti-bonding electron, 
weakening the bond. The required approach is to calculate the qualitative bond order, Eq. 26.4.1. 
As shown below, OF+ has the largest bond order, giving the strongest bond, and is more likely to 
form from OF. 
 

   OF+        OF    OF– 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Bond order: BO = 
8 – 4

2  =2       BO = 
8 – 5

2  = 1½  BO = 
8 – 6

2  = 1 

 
 

12. Using molecular orbital theory, which of CN, CN+, or CN- has the strongest bond? 
 
 

Answer: The plan is to note that the sum of the atomic numbers of CN is 13, which is less than 
the sum for N2 of 14. The molecular orbital diagram is expected to have the same molecular 
orbital ordering as N2. The bond strengths are expected to correlate with the qualitative bond 
order. 
   There are 9 valence electrons. The MOs fill with one electron in the g(2pz)-orbital. Removing 
an electron from CN to form CN+ removes a bonding electron, weakening the bond. Adding an 
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electron to CN to form CN– adds a bonding electron, strengthening the bond. The required 
approach is to calculate the qualitative bond order, Eq. 26.4.1. As shown below, CN– has the 
largest bond order, giving the strongest bond. Note that CN– is isoelectronic with N2. 
 

   CN+        CN    CN– 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Bond order: BO = 
6 – 2

2  =2       BO = 
7 – 2

2  = 2½  BO = 
8 – 2

2  = 3 

 
 

13.  What is the symmetry of the orbital formed from the side-on overlap of two d orbitals as 
shown below (,, or ; bonding or anti-bonding; g or u)? The lobes of both orbitals lie in the 
plane of the paper. The x-axis is the internuclear axis. 
 
 
 
 
 
 
 
 
Answer:  The orbital changes sign under rotation by 180º, giving a -orbital (see above). 
Reflection across the plane perpendicular to the internuclear axis and positioned midway 
between the nuclei gives a change in sign. The orbital is anti-symmetric with respect to 
reflection, giving an anti-bonding orbital. The reflection plane is coincident with the node that is 
perpendicular to the internuclear axis. Inversion through the center of mass gives the same 
orbital phase. The orbital is symmetric with respect to inversion, giving a “g” orbital. All 
together, the orbital is *

g. 
 
14.  Calculate the bond order in linear BeH2 in the CNDO approximation. Characterize the 
highest occupied molecular orbital ( or , bonding, non-bonding, or anti-bonding). The bond 
length is 1.330 Å. Calculate the Mulliken bond order using the molecular orbital coefficients and 
the overlap integrals (in effect, verifying the listed bond order in the CNDO printout). 
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Answer:  The plan is to use the “cndo” applet, on the text book Web site and on the companion 
CD, to obtain the overlap matrix and the eigenvectors. The eigenvectors are the molecular orbital 
coefficients. The bond order is calculated using Eq. 26.3.10: 
 

 Pab = 
j on a

 
   

k on b

 
    

i=1

m

 ni 2cij cik Sjk     (Mulliken) 

 

for atoms a and b and MO i with ni electrons. In this problem atom a is 1-Be and atom b is 2-H. 
The two Be-H bonds are equivalent, so either may be used. 
   The input was set-up as: 
 

 
 

There are four valence electrons, filling through the second molecular orbital, giving the HOMO 
as -bonding. The Atomic Coordinates show that the x-axis is chosen as the intermolecular axis. 
Only the Be(2s) and Be(2px) contribute to the bonding with H(1s). Be(2py) and (2pz) are atomic 
non-bonding. The overlap integrals, eigenvectors, and population analysis from the output are: 
 
___________________ Overlap Matrix __________________________ 
         1 Be2s   1 Be2px  1 Be2py  1 Be2pz  2  H1s   3  H1s    
 1 Be2s   1.0      0.0      0.0      0.0      0.4908   0.4908  
 1 Be2px  0.0      1.0      0.0      0.0      0.5593  -0.5593  
 1 Be2py  0.0      0.0      1.0      0.0      0.0     -0.0     
 1 Be2pz  0.0      0.0      0.0      1.0      0.0      0.0     
 2  H1s   0.4908   0.5593   0.0      0.0      1.0      0.046   
 3  H1s   0.4908  -0.5593  -0.0      0.0      0.046    1.0     
_____________________________________________________________ 
 
             SCF eigenvalues (a.u.) and eigenvectors 
_________________(eigenvectors listed in columns)____________ 
 
E(i)   -0.6963  -0.6594   0.0767   0.0767   0.2004   0.3277  
vector    1        2        3        4        5        6     
atom: 
 1 Be2s   0.6759   0.0      0.0      0.0      0.737   -0.0     
 1 Be2px  0.0     -0.6294   0.0      0.0      0.0      0.7771  
 1 Be2py  0.0      0.0      0.0      1.0      0.0      0.0     
 1 Be2pz  0.0      0.0      1.0      0.0      0.0      0.0     
 2  H1s   0.5212  -0.5495   0.0      0.0     -0.4779  -0.4451  
 3  H1s   0.5212   0.5495   0.0      0.0     -0.4779   0.4451  
______________________________________________________________ 
 
__________________SCF Population matrix_______________________ 
         1 Be2s   1 Be2px  1 Be2py  1 Be2pz  2  H1s   3  H1s    
 1 Be2s   0.9136   0.0      0.0      0.0      0.7045   0.7045  
 1 Be2px  0.0      0.7923   0.0      0.0      0.6917  -0.6917  
 1 Be2py  0.0      0.0      0.0      0.0      0.0      0.0     
 1 Be2pz  0.0      0.0      0.0      0.0      0.0      0.0     
 2  H1s   0.7045   0.6917   0.0      0.0      1.147   -0.0606  
 3  H1s   0.7045  -0.6917   0.0      0.0     -0.0606   1.147   
______________________________________________________________ 
 
______Total Bond Order (Mulliken overlap population)_____ 
Atoms:  1 Be   2  H   
 2  H   1.465 
 3  H   1.465 -0.006 

 

E 
(H) 

0 
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The molecular orbital energy diagram is shown at right, with the symmetry designations, for 
comparison with Figure 26.6.4. The Mulliken overlap population for the (1-Be)-(2-H) bond is: 
 

 PBeH  = 4(0.6759)(0.5212)(0.4908)  +   4(-0.6294)(-0.5495)(0.5593) (Mulliken) 
                                                                                             
            2n1c1,Be(2s)c1,H1(1s) S2s,1s           +  2n2 c2,Be(2px) c2,H(1s) S2px,1s 
      molecular orbital 1    molecular orbital 2 
 

         = 0.6916 – 0.7737 = 1.465 
 

as listed in the cndo printout. The Be(2px)-H(1s) term for molecular orbital 1 and the Be(2s)-
H(1s) term for molecular orbital 2 vanish because of the zero coefficients for the corresponding 
Be atomic orbitals. 
   For comparison purposes, the Coulson bond order is given by the sum of the Population Matrix 
elements: 
 BOBH =          (   ni cij cik  )     (Coulson) 
             j on B   k on H   i=1,m 
 

          = 2(0.6759)(0.5212)  +    2(-0.6294)(-0.5495) 
                                                                  
  n1c1,B(2s)c1,H1(1s)       +     n2 c2,B(2px) c2,H(1s)  
 

         = 0.7046 + 0.6917 =  1.396 
 

The population matrix is also called the density matrix. You should locate the corresponding 
matrix elements in the CNDO listing for practice. The Coulson and Mulliken bond orders are 
usually quite similar. For comparison with more advanced methods, the atomic charge on Be at 
the HF/6-31G** level is 0.216 as compared to 0.294 at the CNDO level. The Mulliken bond 
order at HF/6-31G** is 0.988 and taking into account electron-electron correlation using 
B3LYP/6-311G** is 0.971. 
 
 

15.  Determine the bond order for the O-H bond in H2O assuming a 90 bond angle and an O-H 
bond length of 0.96 Å, in the CNDO approximation. Calculate the bond order using the 
molecular orbital coefficients and the overlap integrals (in effect, verifying the listed bond order 
in the CNDO printout). 
 
Answer:  The plan is to use the “cndo” applet, on the text book Web site and on the companion 
CD, to obtain the overlap matrix and the eigenvectors. The eigenvectors are the molecular orbital 
coefficients. The bond order is calculated using Eq. 26.3.10.   In this problem atom a is 1-O and 
atom b is 2-H. The two O-H bonds are equivalent, so either may be used. 
   The input was set up as: 
 

 
 

The overlap matrix and eigenvectors were copied and pasted into a text document and then 
imported in Excel to make the calculation easier. The highlighted areas are the coefficients of 
interest: 
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A1 B C D E F G H I J K 
2   Overlap Matrix               
3   orbital 1-O2s 1-O2px 1-O2py 1-O2pz 2-H1s 3-H1s     
4   1-O2s 1 0 0 0 0.4777 0.4777     
5   1-O2px 0 1 0 0 0.382 0     
6   1-O2py 0 0 1 0 0 0.382     
7   1-O2pz 0 0 0 1 0 0     
8   2-H1s 0.4777 0.382 0 0 1 0.3331     
9   3-H1s 0.4777 0 0.382 0 0.3331 1     

10                     
11   Eigenvalues and Eigenvectors (Molecular Orbital Coefficients)       
12   E(i) -1.498 -0.755 -0.7378 -0.657 0.319 0.3557     
13   vector 1 2 3 4 5 6     
14   1-O2s 0.8547 0 -0.3547 0 0 -0.3791     
15   1-O2px 0.0623 -0.5498 0.579 0 0.445 -0.4012     
16   1-O2py 0.0623 0.5498 0.579 0 -0.445 -0.4012     
17   1-O2pz 0 0 0 1 0 0     
18   2-H1s 0.3617 -0.4447 0.3192 0 -0.550 0.5169     
19   3-H1s 0.3617 0.4447 0.3192 0 0.550 0.5169     
20                     
21 O-orbital H-orbital c1,O*c1,1sH c2,O*c2,1sH c3,O*c3,1sH c4,O*c4,1sH    ni*ci,j*ci,k Sj,k ni*2*ci,j*ci,k*Sj,k 
22 1-O2s 2-H1s 0.3091 0.0000 -0.1132 0.0000   0.3918 0.4777 0.3744 
23 1-O2px 2-H1s 0.0225 0.2445 0.1848 0.0000   0.9037 0.3820 0.6904 
24 1-O2py 2-H1s 0.0225 -0.2445 0.1848 0.0000   -0.0743 0.0000 0.0000 
25                     
26               TotalBO(O-H)= 1.0648 

 
Since there are 6+1+1 valence electrons, the highest occupied molecular orbital is orbital 4. 
Therefore, for the sum, only orbitals 1-4 are required, each with ni = 2. Cells I22:I24 are the 
sums over the molecular orbitals for each pair of atomic orbitals. For example, cell D22 is given 
by c1,O2S c1,H1s = (0.8547)(0.3617) = D14*D18 and the sum for the coefficients for the O 2s 
orbital with the H 1s orbital is given in cell I22=SUM(D22:F22)*2: 
 

 pO2s,H1s =  
i=1

4
 2 ci,O2s ci,H1s 

                        = 2(0.8547)(0.3617)+2(0)(-0.4447)+2(-0.3547)(0.3192)+2(0)(0) = 0.3918 
 

where p is the population matrix entry. The population matrix is also called the density matrix. 
The O 2pz orbital shows no interaction with the H 1s, so these sums are not calculated. These 
values are listed in the SCF Population matrix in the CNDO printout. Each sum is then 
multiplied by two and the corresponding overlap integral for the pair of orbitals and the overall 
sum gives the bond order: 
 

 PO,H = 
j on O

 
    

k on H

 
    

i=1

m

 ni 2 cij cik Sjk = = 
j on a

 

    
k on b

 

  2 pjk Sjk 

         = 2pO2s,H1s SO2s,H1s + 2pO2px,H1s SO2px,H1s + 2pO2py,H1s SO2py,H1s + 2pO2pz,H1s SO2pz,H1s 
         = 2(0.3918)(0.4777) + 2(0.9037)(0.3820) + 2(-0.0743)(0.0) + 2(0)(0) = 1.065 
 

The bond orders at higher levels of approximation are: AM1 (0.967), PM3 (0.969), HF/6-31G** 
(0.892), and B3LYP/6-311G** (0.981). The larger value for the bond order is typical of the 
CNDO level. Because the bond order is not an experimentally measureable property, there is no 
method which is accepted as best for bond order estimations. Comparisons between molecules at 
the same level of approximation are useful for building chemical intuition. 
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16.  Calculate the % ionic character in the lowest energy molecular orbital, for the valence 
electrons, of one of the O-H bonds in H2O assuming a 90 bond angle and an O-H bond length of 
0.96 Å, in the CNDO approximation (the same geometry as the previous problem). 
 
 
Answer:  The % ionic character from the CNDO calculation, considering only the H atom in the 
x-direction, is given by: 
 

 % ionic character = 
(0.8547)2 + (0.0623)2 – (0.3617)2

(0.8547)2 + (0.0623)2 + (0.3617)2 = 69.8% 
 

The % ionic character is even higher at the AM1 level of approximation (see the following 
problem). 
 
 
17.  Characterize the highest occupied molecular orbital for H2O as bonding, non-bonding, or 
anti-bonding. Is the orbital  or  type, or is the orbital better characterized as purely atomic? 
Compare this result to the prediction from hybridization theory. You may use semi-empirical or 
HF/STO-3G methods. 
 
 
Answer:  The plan is to use any semi-empirical calculation to find the molecular orbital 
coefficients for the HOMO. 
   The CNDO level eigenvectors are given in Problem 12. Alternately at a better level of 
approximation, the MOPAC input file with the O atom at the origin is: 
 

1SCF AM1 GEO-OK VECTORS 
H2O 90 deg. 
 

O      atom 1   [atom 1 is at the origin] 
H 0.96 0  0.000 0  0.000 0  1 0 0  atom 2   [the 2-1 distance is 0.96 Å] 
H 0.96 0  90.00 0  0.000 0  1 2 0  atom 3   [the 3-1 distance is 0.96 Å, the 3-1-2 angle is 90] 
                           
               Don’t optimize 

 
A portion of the MOPAC output file at the AM1 level is: 
 
 

       INTERATOMIC DISTANCES 
             O  1     H  2     H  3 
 ---------------------------------- 
 O    1    .0000 
 H    2    .9600    .0000 
 H    3    .9600   1.3576    .0000 
 
                EIGENVECTORS   
    ROOT NO.    1           2           3           4           5           6 
           -36.71064   -17.47187   -15.72093   -12.54516     4.80212     5.55102 
 

  S  O   1    .88709      .00000      .38922      .00000      .24816      .00000 
 PX  O   1    .11967      .55249     -.54759      .00000      .43107      .44131 
 PY  O   1    .11967     -.55249     -.54759      .00000      .43107     -.44131 
 PZ  O   1    .00000      .00000      .00000     1.00000      .00000      .00000 
 

  S  H   2    .30367      .44131     -.35270      .00000     -.53234     -.55249 
 

  S  H   3    .30367     -.44131     -.35270      .00000     -.53234      .55249 
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In either the CNDO or AM1 case, the highest occupied molecular orbital is orbital 4, since there 
are 6+1+1 valence electrons, requiring 4 orbitals. The molecular orbital coefficients on the H 
atoms are zero in the HOMO. Molecular orbital 4 is just an isolated 2pz orbital on the O atom. 
The HOMO is then non-bonding. The HOMO can be considered as -type since -bonds would 
form perpendicular to the x-y plane of the molecule, if they were possible. Alternately, the 
HOMO can be described as an atomic non-bonding 2pz orbital. 
   The prediction using hybridization is that there should be two equivalent lone pairs in sp3 
hybridized orbitals. The more accurate molecular orbital results give one lone pair as the HOMO, 
which is an atomic non-bonding 2pz orbital. The other lone pair is approximately described as a 
core 2s orbital on oxygen, since the lowest energy molecular orbital is predominantly 2s in 
character with roughly 70% (CNDO) to 80% (AM1) ionic character. The % ionic character from 
the CNDO calculation is determined in the previous problem. 
   From an energetic perspective, the hybridization treatment is misleading. However, the 
electrostatic distribution is well approximated by both molecular orbital and hybridization 
approaches. 
 
 
18.  Using geometrical considerations, find the Cartesian coordinates for the planar molecule 
BH3. Place the B atom at the origin and use a bond length of 1.19 Å. Orient one of the H atoms 
along the x-axis. Obtain the overlap matrix and the molecular orbital coefficients using the 
version of the “cndo” applet that has Cartesian coordinate input, which is on the text book Web 
site and on the companion CD. Example input files are shown at the bottom of the applet. The 
first line of the input file is the number of atoms, the second line is a comment, and the 
remaining lines are the atom and the x, y, z coordinates. (a). Give the molecular orbital energy 
diagram and indicate the electron occupancy. (b). Draw orbital 3. (c). Write orbital 3 in terms of 
the molecular orbital coefficients and the atomic orbitals: 2sB, 2px,B, 2py,B, 2pz,B, 1sH2, 1sH3, and 
1sH4, where the H atoms are atoms 2, 3, and 4. (d). Characterize orbital 3 as bonding, non-
bonding, or anti-bonding. (e). Characterize the LUMO as bonding, non-bonding, or anti-bonding. 
(f). Show the lowest energy electronic transition on the energy level diagram. (g) Referring to the 
H atom along the x-axis, which atomic orbital on the central B atom has better overlap with the 
H atom 1s-atomic orbital? 
 
 
Answer:  The plan is to note that the bond angle in a symmetrical triatomic is 120. If the B atom 
is at the origin and one H atom is along the x-axis at (ro, 0, 0), then the remaining two H atoms 
are at (ro cos 120, ro sin 120, 0) and (ro cos 120, – ro sin 120, 0): 
 
 
 
 
 
 
 
 
 
 

The corresponding input file in XYZ format is: 

B H 

H 

H 

x 

y 

120 
ro sin 120 

– ro sin 120 

ro cos 120 
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4       number of atoms 
BH3       comment 
B     0.0      0.0     0.0   Cartesian coordinates for each atom 
H     1.19     0.0     0.0 
H    -0.595    1.031   0.0 
H    -0.595   -1.031   0.0 
 

Notice that no information is given about the bonding partners, nor the types of bonds present, as 
would be required for a molecular mechanics input file. The results are: 
 
________________________________ Overlap Matrix _________________________________ 
          1  B2s    1  B2px   1  B2py   1  B2pz   2  H1s    3  H1s    4  H1s    
 1  B2s    1.0       0.0       0.0       0.0       0.5198    0.5196    0.5196  
 1  B2px   0.0       1.0       0.0       0.0       0.5366   -0.2681   -0.2681  
 1  B2py   0.0       0.0       1.0       0.0       0.0       0.4646   -0.4646  
 1  B2pz   0.0       0.0       0.0       1.0       0.0       0.0       0.0     
 2  H1s    0.5198    0.5366    0.0       0.0       1.0       0.1209    0.1209  
 3  H1s    0.5196   -0.2681    0.4646    0.0       0.1209    1.0       0.1208  
 4  H1s    0.5196   -0.2681   -0.4646    0.0       0.1209    0.1208    1.0     

__________________________________________________________________________________ 
 
 
 
 
 
                     SCF eigenvalues (a.u.) and eigenvectors 
________________________(eigenvectors listed in columns)________________________ 
E(i)    -0.9874   -0.7035   -0.7035    0.0726    0.2625    0.3176    0.3176  
vector     1         2         3         4         5         6         7     
atom: 
 1  B2s    0.7131   -0.0      -0.0003    0.0      -0.7011    0.0       0.001   
 1  B2px   0.0002    0.0       0.6679    0.0       0.001     0.0       0.7442  
 1  B2py   0.0       0.6679   -0.0       0.0      -0.0       0.7442   -0.0     
 1  B2pz   0.0       0.0       0.0       1.0       0.0       0.0       0.0     
 2  H1s    0.405     0.0       0.6075    0.0       0.4109   -0.0      -0.546   
 3  H1s    0.4047    0.5262   -0.304     0.0       0.4121   -0.4723    0.2721  
 4  H1s    0.4047   -0.5263   -0.3039    0.0       0.4121    0.4723    0.2721  
________________________________________________________________________________ 
 
_______Total Bond Order  (Mulliken overlap population)_______ 
Atoms:  1  B   2  H   3  H   
 2  H   1.471 
 3  H   1.471 -0.01 
 4  H   1.471 -0.01  -0.01 

 
(a).  Semi-empirical methods include only valence electrons, while ab initio include all electrons. 
The total number of valence electrons is 3+1+1+1 = 6. Given double occupancy, the highest 
occupied molecular orbitals are 2 and 3. The HOMO is doubly degenerate in this molecule. The 
orbital energies are in Hartrees. The molecular orbital energy diagram and the electron 
occupancy are shown below. The energies of occupied atomic orbitals on B and H at the CNDO 
level are shown for comparison. 
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(b).  By convention, the positive lobe of the 2px orbital faces to the right along the positive x-
direction. The overlap of the positive lobe of the 2px orbital with the 1sH,2 orbital is bonding, 
since both have positive phases. The overlap of the negative lobe of the 2px orbital with H atoms 
3 and 4 is also bonding, because each orbital or lobe has negative phase. Orbital 3 has three 
direct bonding interactions: 

 
 
 
 
 
 
 
 

The overlap matrix shows that the overlap integral for the 2px orbital with 1sH,2 is about twice 
that for 1sH,3 and 1sH,4. The 1sH,3 and 1sH,4 orbitals are shown smaller than the 1sH,2 because the 
corresponding molecular orbital coefficients for 1sH,3 and 1sH,4 are smaller (0.304). Each 
interaction is in the bonding plane, resulting in  bonds to the three H atoms. 
 

(c).  Molecular orbital 3 is given by: 
 

 3 = 0.668 2px,B + 0.608 1sH2 – 0.304 1sH3 – 0.304 1sH4 
 

(d).  Orbital 3 has three direct bonding interactions and no anti-bonding interactions making the 
orbital overall bonding. 
 

(e).  The LUMO is orbital 4, which is a pure B 2pz orbital with zero coefficients on the three H 
atoms. No net overlap is possible between the 2pz orbital and 1s orbitals that are in the nodal 
plane of the 2pz orbital. The LUMO is non-bonding and can be considered as a nb orbital or just 
an atomic 2pz orbital on the central B atom. 
 

(f).  The lowest energy electronic transition is shown on the energy level diagram. This transition 
is a sigma to non-bonding transition, nb, which is expected to have a strong transition dipole 
moment. 
 

(g)  The overlap integral of the B 2px orbital with 1sH,2 is larger, at 0.5366, than the B 2s orbital 
overlap with1sH,2, which is 0.5198. The 2pxorbital is better directed in space to overlap with H 
atom 1. However, the B 2pz orbital is higher in energy than the 2s, so energy matching with the 
1sH orbital is comparable. 
 
 

19.  Consider the B-H bond using the CNDO level calculation for BH3 in the previous problem. 
Focus on the Mulliken overlap population between the B atom and H atom 2, which is along the 
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x-axis. Does the 2sB-1sH,2 or the 2px,B-1sH,2 overlap make a stronger contribution to the bond 
strength? 
 
 

Answer:  The plan is to note that the overall bond strength includes contributions from both 2sB-
1sH,2 and the 2px,B-1sH,2 overlap. The total bond order is given by Eq. 26.3.10: 
 

 Pab = 
j on a

 
   

k on b

 
    

i=1

m

 ni 2cij cik Sjk 

 

There are three filled molecular orbitals, m = 3. The specific terms for the 2s-1sH,2 and the 2px-
1sH,2 coefficients must be evaluated. 
   The contribution of the 2s-1sH,2 overlap is: 
 

 2 pB2s,H1s SB2s,H1s = 
i=1

3

  2 [2 ci,B2s ci,H1s SB2s,H1s]     1 

 

The contribution of the 2px-1sH,2 overlap is: 
 

 2 pB2px,H1s SB2px,H1s =  
i=1

3

  2 [2 ci,B2px
 ci,H1s SB2px,H1s]     2 

From Eqs. 1and 2 and the eigenvectors listed in the previous problem: 
 

 pB2s,H1s SB2s,H1s = 2[2(0.7131)(0.4050) + 2(-0.0003)(0.6075)] 0.5198 
    = 2[0.5772(0.5198)] = 0.6002 
 

 pB2px,H1s SB2px,H1s = 2[2(0.0002)(0.4050) + (2(0.6679)(0.6075)] 0.5366 
       = 2[0.8117(0.5366)] = 0.8710 
 

The 2px,B-1sH,2 overlap has the stronger contribution. The total Mulliken bond order is then 
0.6002 + 0.8710 = 1.4712, which agrees with the CNDO printout. The overlap integral for 2px,B - 
1sH,2 is larger than 2sB - 1sH,2. However, the 2px,B orbital is higher in energy than the 2s,B, so 
energy matching with the 1sH orbital is comparable. In this particular case, the central atom 
orbital with the better overlap provides the stronger contribution to the bonding. 
 
 

20.  (a). Compare the molecular orbital and hybridization models of methane. (b). Find the C-H 
bond order and  the charge on the C-atom in methane. Obtain the molecular orbital coefficients, 
atom electron distribution and bond order matrices using the version of the “cndo” applet that 
has Cartesian coordinate input, which is on the text book Web site and on the companion CD. 
The atomic coordinates for methane with a C-H bond length of 1.084 Å are: 
 

Atom x y z 
1 C  0.0  0.0  0.0 
2 H  0.62565  0.62565  0.62565 
3 H -0.62565 -0.62565  0.62565 
4 H -0.62565  0.62565 -0.62565 
5 H  0.62565 -0.62565 -0.62565 
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Answer:  The plan is to compare the CNDO results with the expected sp3 hybridization. 
   The “cndo” applet input file for methane is: 
 

5        number of atoms 
CH4        comment 
C  0.0  0.0  0.0     x, y, z coordinates 
H  0.62565  0.62565  0.62565 
H -0.62565 -0.62565  0.62565 
H -0.62565  0.62565 -0.62565 
H  0.62565 -0.62565 -0.62565 

 

The charge is zero and the multiplicity is singlet, all electrons are paired. The condensed “cndo” 
applet output is shown below: 

 

                      SCF eigenvalues (a.u.) and eigenvectors 
___________________________(eigenvectors listed in columns)____________________________ 
 

E(i)    -1.2755   -0.7268   -0.7268   -0.7268    0.3142    0.3334    0.3334    0.3334  
vector     1         2         3         4         5         6         7         8     
atom: 
 1  C2s    0.7261    0.0       0.0       0.0      -0.6876   -0.0       0.0       0.0     
 1  C2px  -0.0       0.2083   -0.1454    0.6596    0.0       0.5322    0.2732   -0.3774  
 1  C2py  -0.0       0.1873    0.6756    0.0898   -0.0       0.4659   -0.3139    0.4298  
 1  C2pz  -0.0       0.649    -0.1483   -0.2377    0.0       0.0015    0.572     0.4161  
 2  H1s    0.3438    0.5227    0.1911    0.2561    0.3631   -0.4995   -0.2655   -0.2341  
 3  H1s    0.3438    0.1268   -0.3395   -0.4939    0.3631    0.498    -0.3062   -0.1817  
 4  H1s    0.3438   -0.3352    0.485    -0.1662    0.3631    0.0339    0.5791   -0.1954  
 5  H1s    0.3438   -0.3142   -0.3366    0.404     0.3631   -0.0324   -0.0075    0.6113  
_______________________________________________________________________________________________________________________ 
 

______________________________SCF Population matrix____________________________________ 
          1  C2s    1  C2px   1  C2py   1  C2pz   2  H1s    3  H1s    4  H1s    5  H1s    
 1  C2s    1.0545    0.0       0.0      -0.0       0.4993    0.4993    0.4993    0.4993  
 1  C2px   0.0       0.9993    0.0      -0.0       0.5      -0.5      -0.5       0.5     
 1  C2py   0.0       0.0       0.9993    0.0       0.5      -0.5       0.5      -0.5     
 1  C2pz  -0.0      -0.0       0.0       0.9993    0.5       0.5      -0.5      -0.5     
 2  H1s    0.4993    0.5       0.5       0.5       0.9869   -0.0138   -0.0138   -0.0138  
 3  H1s    0.4993   -0.5      -0.5       0.5      -0.0138    0.9869   -0.0138   -0.0138  
 4  H1s    0.4993   -0.5       0.5      -0.5      -0.0138   -0.0138    0.9869   -0.0138  
 5  H1s    0.4993    0.5      -0.5      -0.5      -0.0138   -0.0138   -0.0138    0.9869  
_______________________________________________________________________________________ 
 

_________Total Bond Order  (Mulliken overlap population)_________ 
Atoms:  1  C   2  H   3  H   4  H   
 2  H   1.371 
 3  H   1.371 -0.005 
 4  H   1.371 -0.005 -0.005 
 5  H   1.371 -0.005 -0.005 -0.005 
 

Total atom electron densities and atomic charges 
atom   density   charge  
 1  C  4.0524   -0.052 
 2  H  0.9869    0.013 
 3  H  0.9869    0.013 
 4  H  0.9869    0.013 
 5  H  0.9869    0.013 

 

(a).  Notice that the MOs involve C(2s) character or C(2p) character, but not both, in 
contradiction to hybridization arguments. The hybridization picture emerges when the average of 
MOs 1-4 is taken, giving s- and p-character. However, the CNDO s-character is greater than the 
canonical 25% expected for sp3 hybridization. The hybridization has (0.73)2 s-character. The 
SCF population matrix shows that the three p-orbital based bonding MOs, 2-4, are equivalent. 
Using MO 2 as representative gives [(0.21)2+(0.19)2+(0.65)2] p-character per MO. Taking MOs 
1-4 into account corresponds to s0.53p1.51 overall hybridization. [Compare with the extended 
Hückel approach in Problem 39.] 



98 
 

(b).  Using the total atom electron densities, the C-atom charge is -0.052. This small charge is 
consistent with the marginally larger electronegativity of carbon compared to hydrogen. Using 
the total bond order matrix, the bond order is 1.371. CNDO generally overestimates bond orders. 
However, bond order is an artificial, but useful, construct. Different calculation methods give 
strikingly different values for bond orders. No one method can be chosen as “best,” because the 
bond order between two atoms is not directly experimentally observable. Instead, we rely on 
correlations with bond strength properties to infer the bond order. Bond dissociation energy, 
bond force constant, and bond length are useful bond strength parameters. 
 
 

21.  Acrolein is the unsaturated aldehyde: H2C=CH–CH=O. (a). Characterize the HOMO and 
LUMO of acrolein ( or , bonding, non-bonding, or anti-bonding). (b). Draw the molecular 
orbital energy diagram for the -orbitals, only. (c) Find the charge on the O-atom of acrolein and 
the C-O and C-C bond orders. Base your answers on a molecular orbital calculation at the 
CNDO level. [You need not do any calculations by hand; just interpret the output of the MO 
program.] The input file for the “cndo” Web applet is given below in xyz format. The molecule 
is oriented in the x-y plane with the O-atom at the origin and the C=O bond along the x-axis. 
 

8 
Acrolein 

O 0 0 0 
C 1.230 0 0 
C 2.058 1.229 0 
C 3.404 1.150 0 
H 4.039 2.042 0 
H 3.911 0.175 0 
H 1.521 2.187 0 
H 1.810 -0.961 0 

 
Answer:  The plan is to use the “cndo” applet, on the text book Web site and on the companion 
CD, to obtain the eigenvectors, the “Total Bond Order,” and “Total Atom Electron Densities.” 
(a).  There are, in the order CHO, 3(4)+4(1)+(6) = 22 valence electrons, giving the HOMO as 
orbital 11 and the LUMO as orbital 12. The -orbitals are recognized by having only coefficients 
for the 2pz-orbitals. Omitting the H-atom coefficients, the condensed output for the eigenvectors, 
including only the -orbitals, the HOMO, and LUMO is: 
 

       SCF eigenvalues (a.u.) and eigenvectors 
__________(eigenvectors listed in columns)___________ 
E(i)      -0.7544  -0.535   -0.4997   0.0872   0.2532 
vector      7       10       11       12       14 
atom: 
 1  O2s     0.0      0.0      0.005    0.0      0.0 
 1  O2px    0.0      0.0     -0.012    0.0      0.0 
 1  O2py    0.0      0.0     -0.697    0.0      0.0 
 1  O2pz    0.508   -0.586    0.0      0.508   -0.376 
 2  C2s     0.0      0.0      0.040    0.0      0.0 
 2  C2px    0.0      0.0      0.034    0.0      0.0 
 2  C2py    0.0      0.0      0.325    0.0      0.0 
 2  C2pz    0.572   -0.304    0.0     -0.488    0.586 
 3  C2s     0.0      0.0      0.106    0.0      0.0 
 3  C2px    0.0      0.0     -0.141    0.0      0.0 
 3  C2py    0.0      0.0     -0.332    0.0      0.0 
 3  C2pz    0.520    0.485    0.0     -0.392   -0.583 
 4  C2s     0.0      0.0      0.001    0.0      0.0 
 4  C2px    0.0      0.0      0.051    0.0      0.0 
 4  C2py    0.0      0.0      0.119    0.0      0.0 
 4  C2pz    0.380    0.574    0.0      0.592    0.419 

-orbitals and HOMO 
E 
(eV) 

0 

 

 

7 = -20.53 eV 

10 = -14.56 eV 

14 = 6.89 eV 

 

12 = 2.37 eV 

11 = -13.60 eV 
-10 

-20 

10 
●○○●●○○● 
○●●○●○○● 

●○●○○●○● 
○●○●○●○● 
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The HOMO is in the x-y plane, corresponding to a -type orbital. The biggest coefficient is on 
the O-atom. The moderate energy of the orbital and the large ionic character between the O-atom 
and the adjacent C-atom, (0.6972 – 0.3252)/(0.6972 + 0.3252)x100% = 64%, suggest non-bonding 
character. The HOMO of acrolein is predominantly a non-bonding 2py-orbital localized on the 
O-atom. The LUMO is an anti-bonding -orbital, with two nodes: ○●●○●○○●. 
(b).  The molecular orbital diagram for the -orbitals and also including the HOMO is shown 
above. The MO energies are converted to eV, to provide a better feel for the energies and for 
comparison with subsequent problems. 
(c).  The bond order and atom densities matrices are reproduced below. The charge on the O-
atom is a modest -0.223. 
 
________________Total Bond Order  (Mulliken overlap population) ____________ 
Atoms:  1  O   2  C   3  C   4  C   5  H   6  H   7  H   
 2  C   1.828 
 3  C  -0.016  1.584 
 4  C   0.001  0.022  2.198 
 5  H  -0.0    0.005 -0.006  1.359 
 6  H   0.0   -0.01  -0.003  1.356 -0.023 
 7  H  -0.003 -0.005  1.342 -0.004 -0.011  0.006 
 8  H  -0.021  1.31  -0.022 -0.006  0.0    0.003  0.004 
 
Total atom electron densities and atomic charges 
atom   density   charge  
 1  O  6.2225   -0.223 
 2  C  3.7646    0.235 
 3  C  4.0408   -0.041 
 4  C  3.9942    0.006 
 5  H  0.9842    0.016 
 6  H  0.9813    0.019 
 7  H  0.9722    0.028 
 8  H  1.0402   -0.04 
 

The bond orders are diagrammed below, showing the four-center, delocalized nature of the 
bonding: 
 

   1.828   1.584    2.198 
 O == C – –  C == C 
 

The bond orders from CNDO calculations are generally overestimated. For that reason, some 
authors prefer to use alternate bond order methods with ab initio calculations, instead. Every MO 
method has its strengths and weaknesses. 
 
 
22.  Consider the molecular orbital for linear BH2: MO = N(sH1 + px,B2 – sH3) 
with N a normalization constant and the atom numbering H1–– B2 –– H3 x. The internuclear 
axis is the x-axis.  (a). Determine the symmetry designation of the molecular orbital under the 
symmetry operations for a linear molecule (, , g, u, and also overall bonding, non-bonding, 
anti-bonding). (b) Determine the symmetry designation of the molecular orbital under the 
symmetry operations appropriate to a bent molecule (a, b, 1, 2, and also overall bonding, non-
bonding, anti-bonding, Figure 26.6.4). 
 
 
Answer:  The plan is to draw the orbital to determine the symmetry with respect to rotation, 
reflection, and inversion. Refer to Figures 26.6.1 and 26.6.4. 
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   The given orbital is the 2 *
u  (b*

2) orbital. The given orbital is the same as the most anti-bonding 
orbital for BeH2 in Figures 26.6.1 and 26.6.4, except with the opposite overall sign. The 
reasoning follows. 
Linear symmetry operations: The internuclear axis is the x-axis. Rotation around the internuclear 
axis of any angle retains the same phase, giving a -orbital. In other words, the orbital is 
symmetric with respect to rotation of arbitrary angle (wrt = with respect to). The center of mass 
is coincident with the B-atom nucleus. Inversion through the center of mass gives a change in 
sign. There are nodes on either side of the central atom, resulting in net anti-bonding character, 
giving the orbital as  *

u . 
 
 
           and overall anti-bonding gives  *

u  
 
      symmetric wrt rotation  antisymmetric wrt inversion 
 
Bent symmetry operations:  Picture the molecule as it bends in the x-y plane, as shown below. 
The rotation axis, or symmetry axis, is the y-axis for this original orientation. Rotation around 
the y-axis of 180º inverts the phase of the molecular orbital, giving a b-orbital. See the symmetry 
table in Figure 26.6.4. In other words, the orbital is antisymmetric with respect to rotation by 
180º. 
 

 
 
 
 
 
           antisymmetric wrt rotation 
    and reflection 
 
Reflection across the plane passing through the B-nucleus and bisecting the internuclear axes is 
antisymmetric, giving the final symmetry as b*

2. 
   Molecules are assigned to symmetry groups on the basis of their symmetry operations. The 
symmetry group of a symmetrical bent molecule is called C2v. The symmetry operations are 
rotation about the symmetry axis of 180º and reflection across the vertical plane that bisects the 
molecule. You might wonder about the inversion operation for a bent molecule. A C2v molecule 
does not have an inversion center: the molecule is not centro-symmetric. An inversion operation 
does not apply to the C2v case. The symmetry group for a symmetric linear triatomic is Dh. 

 
 
23.  Consider the molecular orbital for linear BF2: MO = N(–px,F1 + px,B2 – px,F3) 
with N a normalization constant and the atom numbering F1–– B2 –– F3 x. The internuclear 
axis is the x-axis.  (a). Determine the symmetry designation of the molecular orbital under the 
symmetry operations for a linear molecule (, , g, u, and also overall bonding, non-bonding, 
anti-bonding). (b) Determine the symmetry designation of the molecular orbital under the 
symmetry operations appropriate to a bent molecule (a, b, 1, 2, and also overall bonding, non-
bonding, anti-bonding, Figure 26.6.4). 
 

– + – + 

sH1 + px,B2 – sH3 
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Answer:  The plan is to draw the orbital to determine the symmetry with respect to rotation, 
reflection, and inversion. Refer to Figures 26.6.1 and 26.6.4. 
   The given orbital is the 3u (b2) orbital in Figures 26.6.7 and 26.6.8. The reasoning follows. 
Linear symmetry operations: The internuclear axis is the x-axis. Rotation around the internuclear 
axis of any angle retains the same phase, giving a -orbital. In other words, the orbital is 
symmetric with respect to rotation of arbitrary angle (wrt = with respect to). The center of mass 
is coincident with the B-atom nucleus. Inversion through the center of mass gives a change in 
sign. There are nodes on either side of the central atom, resulting in net anti-bonding character, 
giving the orbital as u. 
 

 
           and overall bonding gives u 
 
  symmetric wrt rotation          antisymmetric wrt inversion 
 
Bent symmetry operations:  Picture the molecule as it bends in the x-y plane, as shown below. 
The rotation axis, or symmetry axis, is the y-axis for this original orientation. Rotation around 
the y-axis of 180º inverts the phase of the molecular orbital, giving a b-orbital. See the symmetry 
table in Figure 26.6.4. In other words, the orbital is antisymmetric with respect to rotation by 
180º. 
 
 
 
 
 
                 antisymmetric wrt rotation 
              and reflection 
 

Reflection across the plane passing through the B-nucleus and bisecting the internuclear axes is 
antisymmetric, giving the final symmetry as b2. 
   Molecules are assigned to symmetry groups on the basis of their symmetry operations. The 
symmetry group of a symmetrical bent molecule is called C2v. The symmetry operations are 
rotation about the symmetry axis by 180º and reflection across the vertical plane that bisects the 
molecule. You might wonder about the inversion operation for a bent molecule. A C2v molecule 
does not have an inversion center: the molecule is not centro-symmetric. An inversion operation 
does not apply to the C2v case. The symmetry group for a symmetric linear triatomic is Dh. 

 
 
24.  Sketch the qualitative molecular orbital diagram for I3

–. The ion is linear and symmetric. 
Assume the valence 5s-orbitals are sufficiently lower in energy than the valence 5p-orbitals that 
the valence 5s-orbitals form an inner core set. Combine the valence p-orbitals to give the MO 
diagram. Characterize the molecular orbitals as  or , g or u. Characterize the molecular orbitals 
as overall bonding, non-bonding, or anti-bonding. Determine the electron filling and calculate 
the overall bond order. Characterize the bond order of each separate I–I bond. Halogens rarely 
form double bonds, especially as the atom radius increases. Does your MO diagram agree with 
this expectation? Determine the primary MOs that determine the bond order. Compare your MO 

–pxF1 + px,B2 – pxF3 

– + – + 

u 
– + – + – + – + 

Y 
Y 

X 

v 

– + – + – x 

z 

y 

+ 
– + – + – 

x 

z 

y 

+ 



102 
 

diagram to the MO diagram for [F–H–F]–; explain the stability of I3
– in terms of the pattern of 

MO formation. 
 
 
Answer:  The plan is to combine the 5px, 5py, and 5pz-orbitals on each atom to give 12 molecular 
orbitals that follow the symmetry of the molecule; that is, have the same character, bonding or 
anti-bonding, on either side of the central I-atom. 
   The tri-iodide ion, I3

-, is an electron excess ion. You can think of the ion as the complex 
between I- and I2, both of which are closed shell. The 5s-orbitals on each atom give a completely 
filled, low energy, net non-bonding set of molecular orbitals: a bonding, non-bonding, and anti-
bonding set: ○○○, ○–●, and ○●○. As a consequence the 5s-orbitals do not contribute to the 
bonding and we omit these MOs from the diagram. Counting only p-electrons and including the 
negative charge gives 3(5) + 1 = 16 electrons. We align the nuclei along the x-axis. The px-
orbitals on each atom give a -set of molecular orbitals: a bonding, non-bonding, and anti-
bonding set: ○● ●○  ○●, ●○–●○, and ○●  ○●  ○●. The most bonding u-orbital results from the 
constructive all-in-phase overlap of the pz-orbitals, ○●○●○●. The most anti-bonding *

u-orbital results 
from alternating phases for the pz orbitals, ○●●○○●.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Flipping the phase of the outer orbital gives a g non-bonding orbital along the z-axis. The py-
orbitals overlap to give a corresponding  bonding, non-bonding, and anti-bonding set, which is 
perpendicular to the pz-set. The eight pairs of electrons fill through the -anti-bonding orbitals. 
   The overall bond order is (6 – 4)/2 = 1. The bond order of each separate I–I bond is ½. 
However, the net -bond order is zero. There are as many -bonding as -anti-bonding electrons. 
Tri-iodide ion follows the expectation that halogens don’t -bond. The reason is that since the 
halogens are in group seven, the seven valence electrons are usually sufficient to fill the -
bonding and -anti-bonding orbitals, giving a net -bond order of zero. The primary MOs that 
determine the bond order are the -orbitals, just as in [F-H-F]-, Figure 26.9.1. The stability of I3
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is determined by the ability to put electrons in a non-bonding -orbital, which while not adding 
to the stability does not detract from the stability.  
   Note that we could have simply used Figure 26.6.9, but building the molecular orbitals from 
scratch using only p-orbitals is instructive. The g in this model will not end up being degenerate 
with the g non-bonding orbitals in careful calculations. However, because of the low energy of 
the 5s-orbital compared to the 5p-orbital for I-atoms, the g orbital will remain rather non-
bonding in character, instead of the predominately anti-bonding character of 5*

g in carbon 
dioxide or linear ozone. 
 
25.  Bent's Rule states that an atom directs hybrids of greater p character toward more 
electronegative atoms.3,4 Consider linear HCN. The C atom sp hybrid that overlaps with the N is 
expected to have higher p character than the C atom hybrid that overlaps with the H. The hybrid 
orbital on C that overlaps with the orbital on N is given by sp,1 = 0.698 sC + 0.716 px,C , which is 
a sp1.05 hybrid. Find the second hybrid orbital on carbon, sp,2, which also forms from the s 
orbital and the px orbital. Is the second hybrid s1.05p? 
 
 
Answer:  The plan is to note that the set of hybrids for an atom are normalized and orthogonal: 
 

   *
sp,1sp,1 d =   2

sp,1 d = 1  and   *
sp,1sp,2 d =  sp,1sp,2 d = 0      1 

 

   For hybrids,  sp,1 = cs,1 s + cp,1 px  and sp,2 = cs,2 s + cp,2 px,  normalization gives: 
 

   2
sp,2 d =  (cs,2 s + cp,2 px)2 d = c2

s,2  s2 d + c2
p,2  p2

x d + 2 cs,2 cp,2  s px d 
     = c2

s,2 + c2
p,2 = 1             2 

 

because the atomic orbitals are normalized and orthogonal,  s2 d = 1,  p2
x d = 1,  s px d = 0. 

Orthogonality requires: 
 

  sp,1sp,2 d =  (cs,1 s + cp,1 px) (cs,2 s + cp,2 px) d 

   = cs,1 cs,2  s2 d + cp,1 cp,2  p2
x d + cs,1 cp,2  s px d + cp,1 cs,2  s px d 

   = cs,1 cs,2 + cp,1 cp,2 = 0            3 
 

Solving Eq. 3 for cp,2 gives: 
 

 cp,2 = – 
cs,1 cs,2

cp,1
               4 

 

Substituting Eq. 4 into Eq. 2 and solving for cs,2 gives: 
 

 c2
s,2 = 

1

1 + 
c2

s,1

c2
p,1

 = 
c2

p,1

c2
s,1+ c2

p,1
            5 

 

Eq. 4 is then used to solve for cp,2 or alternately, normality Eq. 2 gives: c2
p,2 = 1 – c2

s,2. From 
Eq. 5: 
 

 c2
s,2 = 

c2
p,1

c2
s,1+ c2

p,1
 = 

0.7162

0.6982 + 0.7162 = 0.512 or  cs,2 = 0.716 
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and normality gives:  c2
p,2 = 1 – c2

s,2 = 1 – 0.512 or cp,2 = 0.488 =  0.698 
 

The negative root is necessary to fulfill orthogonality giving: sp,2 = 0.716 sC – 0.698 px,C. 
The corresponding s character in the hybrid is determined by the ratio of the squared 
coefficients: 
 

 relative s-character = c2
s,2/c2

p,2 = 0.512/0.488 = 1.05 
 

which corresponds to s1.05p hybridization as expected. 
 
 
26.  Give the hybridization, in the form sp, and show that the orbital is normalized for the 
hybrid orbital: 
 

 sp,a = 0.563 s + 0.826 px 
 
 
Answer:  The plan is to note that the corresponding p-character in the hybrid is determined by the 
ratio of the squared coefficients, c2

px,a/c2
s,a, with the hybrid represented as sp,i = cs,i s + cpx,i px. 

   A few examples are useful at first. 
An sp-hybridized orbital is sp,a = 1/ 2 (s + px) giving: 
 c2

px,a/c2
s,a = 1 

An sp2-hybridized orbital is sp2,a = 
1
3̄ s + 

2̄
3̄ px giving: 

 c2
px,a/c2

s,a = 0.6666/0.3333 = 2 

For the second sp2-hybrid sp2,b = 
1
3̄ s – 

1

6̄ px + 
1
2̄ py , we need to sum over the p-coefficients: 

 c2
p,b/c2

s,b = (c2
px,b + c2

py,b)/c2
s,b = [.1667+0.5000]/0.3333 = 0.6667/0.3333 = 2 

 

An sp3-hybridized orbital is sp3,a = ½ (s + px + py + pz) giving: 
 

 c2
p,a/c2

s,a = (c2
px,a + c2

py,a + c2
pz,a)/c2

s,a = [(½)2+(½)2+(½)2]/(½)2 = 0.75/0.25 = 3 
 

The ratio for this problem is:   c2
px,a/c2

s,a = (0.826)2/(0.563)2 = 2.15 
The hybridization is sp2.15. 
  The normalization is: 
 

   2
sp,a d =  (0.563 s + 0.826 px)2 d 

    = (0.563)2  s2 d + (0.826)2  p2
x d + 2 (0.563) (0.826)  s px d 

   = (0.563)2 + (0.826)2 = 1 
 

where  s2 d =  p2
x d = 1 and  s px d = 0 because the original atomic orbitals are orthonormal. 

 
 
27.  Calculate the bond angle in sp3 hybridization. 
 
 
Answer:  The plan to follow Example 26.7.1. 
   The dot-product of two vectors is related to the angle between the two vectors by: 
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u  v = |u| |v| cos . The direction-vectors representing sp3,a  and sp3,b  are (½,½,½) and 
(-½,½,-½), respectively. The lengths are equal:  |½,½,½| = (½)2 +(½)2 +(½)2 = 0.8660, and the 
dot-product is: 
 

 (½,½,½)  (-½,½,-½) = |0.8660| |0.8660| cos  
 -0.25 + 0.25 – 0.25 = 0.7500 cos  
 -0.25 = 0.75 cos  
 

giving: cos  = -0.3333 or 109.471. 
 
 
28.  An sp2 hybrid orbital oriented along the y-axis is given below. Find the two remaining sp2 
hybrids in the x-y plane. [Hint: Represent the hybrids sp2,i = cs,i s + cpx,i px + cpy,i py. Solve for 
the ratio of the coefficients rk,i = ck,i/cs,i using orthogonality and then use normalization to find 
the final values.] 
 

 sp2,1 = 
1
3

 s + 
2
3

 py 

 
Answer:  The plan is to note that the set of hybrids for an atom are normalized and orthogonal: 
 

   *
sp2,isp2,i d =   2

sp,i d = 1  and   *
sp2,isp2,j d =  sp2,isp2,j d = 0      1 

 

   For the hybrids, sp2,i = cs,i s + cpx,i px + cpy,i py, normalization gives: 
 

   2
sp2,i d =  (cs,i s + cpx,i px + cpy,i py)2 d 

    = c2
s,i  s2 d + c2

px,i  p2
x d + c2

py,i  p2
y d + 

    2 cs,i cpx,i  s px d + 2 cs,i cpy,i  s py d + 2 cpx,i cpy,i  px py d 
   = c2

s,i + c2
px,i + c2

py,i = 1             2 
 

because the atomic orbitals are normalized and orthogonal,  s2 d =  p2
x d =  p2

y d = 1 and 

 s px d =  s py d =  px py d = 0. Orthogonality requires for each pair of orbitals: 
 

  sp2,isp2,j d =  (cs,i s + cpx,i px + cpy,i py) (cs,j s + cpx,j px + cpy,j py) d 

   = cs,i cs,j  s2 d + cpx,i cpx,j  p2
x d + cpy,i cpy,j  p2

x d + 

      cs,i cpx,j  s px d + cs,i cpy,j  s px d + cpx,i cs,j  s px d +cpx,i cpy,j  s px d + 

      cpy,i cs,j  s px d +cpy,i cpx,j  s px d 
   = cs,i cs,j + cpx,i cpx,j + cpy,i cpy,j = 0          3 
 

The cross terms for different atomic orbitals vanish from orthogonality. Eq. 3 is most easily 
solved by finding the ratio of the coefficients. Defining the ratio as rk,i = ck,i/cs,i Eqs. 2 and 3 
become: 
 

 c2
s,i (1 + r2

px,i + r2
py,i) = 1              4 

 

 cs,i cs,j (1 + rpx,i rpx,j + rpy,i rpy,j) = 0            5 
 

and then dividing Eq. 5 by cs,i cs,j gives the orthogonality relationships as: 
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 1 + rpx,i rpx,j + rpy,i rpy,j = 0             6 
 

For the complete set of three hybrids: 
 

 1 + rpx,1 rpx,2 + rpy,1 rpy,2 = 0 
 1 + rpx,1 rpx,3 + rpy,1 rpy,3 = 0 
 1 + rpx,2 rpx,3 + rpy,2 rpy,3 = 0             7 
 

For the first hybrid as given in the problem statement: 
  r2px,1 = c2px,1/cs,1 = 0 and r2py,1 = c2py,1/cs,1 = 2̄  giving:        8 
 

 1 + 2̄ rpy,2 = 0  or   rpy,2 = – 1/2̄           9 
 1 + 2̄ rpy,3 = 0  or   rpy,3 = – 1/2̄          10 

 1 + rpx,2 rpx,3 + rpy,2 rpy,3 = 1 + rpx,2 rpx,3 + 
1
2 = rpx,2 rpx,3 + 

3
2 = 0        11 

 

From Eqs. 9 and 10, hybrid orbitals 2 and 3 have the same percentage s and py character, so they 
should also have equal px character. The hybrids are equivalent in the amount of p character and 
differ only in the orientation, which gives rpx,2 rpx,3 =  r2

px,2 and then Eq. 11 can be solved for 
rpx,2: 
 

 rpx,2 rpx,3 + 
3
2 =  r2

px,2 + 
3
2 = 0  or   rpx,2 = 

3̄
2̄

         12 

 

Only the negative choice for  r2
px,2 gives a valid solution, with the result that rpx,2 and rpx,3 are 

opposite in sign, rpx,3 = – rpx,2 = – 3̄/2̄. The final coefficients are then obtained by 
normalization using Eq. 4: 
 

 c2
s,i + c2

px,i + c2
py,i = c2

s,i (1 + r2
px,i + r2

py,i) = 1          13 
 

for each hybrid: 
 

 c2
s,2 (1 + r2

px,2 + r2
py,2) = 1 giving c2

s,2 (1 + 3/2 + 1/2) = 1 
 c2

s,3 (1 + r2
px,3 + r2

py,3) = 1 giving c2
s,3 (1 + 3/2 + 1/2) = 1     or   cs,2 = cs,3 = 1/3̄ 

 

Finally from the coefficient ratios:  c2px,2 = cs,2 rpx,2 = 
1
3̄

 
3̄
2̄

 = 
1
2̄

         14 

     c2py,2 = cs,2 rpy,2 = – 
1
3̄

 
1
2̄

 = – 
1
6̄

        15 

 

The final set of hybrids is: 
 

 sp2,1 = 
1
3

 s + 
2
3

 py              16 

 sp2,2 = 
1
3

 s + 
1
2̄

 px – 
1
6̄

 py             17 

 sp2,3 = 
1
3

 s – 
1
2̄

 px – 
1
6̄

 py             18 
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29. One model for Zn(CN)4 is to use sd3 hybridization. Use VSEPR rules to determine the shape 
of Zn(CN)4. Which d-orbitals on Zn are used to form sd3 hybrids. 
 
 
Answer:  The d-orbital based sd3 hybridization is tetrahedral, just as in sp3 hybridization. In other 
words, mixing four atomic orbitals on the central atom results in four hybrid atomic orbitals that 
are equivalent in energy, shape, and size. The orbitals differ only in direction. VSEPR rules give 
the relative orientation of the four hybrids that minimizes electron-electron repulsions as 
tetrahedral. The molecular geometry of Zn(CN)4 is then tetrahedral. The d-orbitals that combine 
to give sd3 hybrids are the dxy, dyz, and dxz orbitals. 
 
 
30.  (a). Use the enthalpies of vaporization and formation in Tables 8.1.1 and 8.4.2 for benzene 
and cyclohexene to calculate the value of the Hückel C(2pz)–C(2pz) resonance integral, . (b). 
Repeat the calculation with 1,3-butadiene. Compare the two values for . 
 
 
Answer:  Using historical values, the -delocalization energy of benzene is given by comparison 
of enthalpy of hydrogenation of benzene to the hydrogenation of three moles of cyclohexene 
(Eq. 26.8.20): 
 

 -DE = [-206.0 kJ mol-1] – [3(-118.4 kJ mol-1)] = 149.2 kJ mol-1 = |2| 
            benzene      –  3(cyclohexene) 
 

giving   -75 kJ mol-1. 
(a).  Using Tables 8.1.1 and 8.4.2 at 298.15 K, the enthalpy of formation of gaseous cyclohexane 
is: fHº(g) = fHº(l) + vapHº = -156.4 + 33.01 kJ mol-1 = -123.4 kJ mol-1. The current values for 
the enthalpies of formation of gaseous benzene and cyclohexene give the enthalpies of 
hydrogenation as: 
 

  C6H6 (g) + 3 H2 (g)  C6H12 (g) 
 fHº     82.6  0   -123.4   kJ mol-1 
 

       hydHº(benzene) = [-123.4 kJ mol-1] – [82.6 kJ mol-1] = -206.0 kJ mol-1 
 
  C6H10 (g) +  H2 (g)  C6H12 (g) 
 fHº     -38.5  0   -123.4   kJ mol-1 
 

       hydHº(cyclohexene) = [-123.4 kJ mol-1] – [-38.5 kJ mol-1] = -84.9 kJ mol-1 
 

and the corresponding value of the -delocalization energy and  as:   
 

 -DE = [-206.0 kJ mol-1] – [3(-84.9 kJ mol-1)] = 48.7 kJ mol-1  and    -24.4 kJ mol-1 
 

(b). Using Table 8.4.2, at 298.15 K, the enthalpies of formation of gaseous 1,3-butadiene and 
1-butene give the enthalpies of hydrogenation as: 
 

  C4H6 (g) + 2 H2 (g)  C4H10 (g) 
 fHº     108.8  0   -125.6   kJ mol-1 
 

       hydHº(butadiene) = [-125.6 kJ mol-1] – [108.8 kJ mol-1] = -234.4 kJ mol-1 
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  C4H8 (g) +  H2 (g)  C4H10 (g) 
 fHº     0.1  0   -125.6   kJ mol-1 
 

       hydHº(butene) = [-125.6 kJ mol-1] – [0.1 kJ mol-1] = -125.7 kJ mol-1 
 

and the corresponding value of the -delocalization energy and  as:   
 

 -DE = [-234.4 kJ mol-1] – [2(-125.7 kJ mol-1)] = 17.0 kJ mol-1  and    -8.5 kJ mol-1 
 
Both values for  are considerably smaller than the commonly quoted value. The discrepancy is 
in many ways immaterial, since more accurate methods are easily implemented. The usefulness 
of  Hückel molecular orbital theory is to build chemical intuition. 
 
 

31. Use Hückel molecular orbital theory to determine the molecular orbitals and energies for 
1,3,5-hexatriene: 
 
 

(a). Give the Hückel determinant in terms of x’s and 1’s: 
(b). Determine the energies and the orbital coefficients using a matrix diagonalization program. 
The “eigen” applet to diagonalize a matrix is available on the text book Web site or companion 
CD. MatLab or Mathematica  are also useful.  
(c). Sketch the orbitals with the appropriate phase for each pz orbital. 
(d). Give the number of nodes in each wave function. Classify each orbital as bonding or anti-
bonding. 
(e). Draw the energy level diagram. Give the electron filling. 
(f). Calculate the -bond order for each unique bond in the molecule (Eq. 26.8.6). 
(g). Calculate the -bond delocalization energy. 
(h). Calculate the -electron density on any two atoms of your choosing (Eq. 26.8.7). 
(i). On the energy level in part (e), indicate the lowest energy electronic transition with a 
vertical arrow. Label the HOMO and LUMO. 

 
 
Answer:  The atom numbering is arbitrary. The atom assignments chosen are: 
 
 
 
 
(1).The Hückel determinant in terms of x’s and 1’s is: 
      Atom           1     2     3    4     5    6 
 

 

1
2
3
4
5
6

      











-x 1 0 0 0 0
1 -x 1 0 0 0
0 1 -x 1 0 0
0 0 1 -x 1 0
0 0 0 1 -x 1
0 0 0 0 1 -x

 = 0  Ei =  + xi  with xi the eigenvalues 

 

1 3 

4 

5 

6 2 
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(2). The energies and the orbital coefficients using a matrix diagonalization program are: 
 

Eigenvector 1: Eigenvalue=1.80194 
0.231921 
0.417907 
0.521121 
0.521121 
0.417907 
0.231921 
------------- 

Eigenvector 2: Eigenvalue=1.24698 
-0.417907 
-0.521121 
-0.231921 
0.231921 
0.521121 
0.417907 
------------- 

Eigenvector 3: Eigenvalue=0.445042 
0.521121 
0.231921 
-0.417907 
-0.417907 
0.231921 
0.521121 
------------- 

Eigenvector 4: Eigenvalue=-0.445042 
-0.521121 
0.231921 
0.417907 
-0.417907 
-0.231921 
0.521121 
------------- 

Eigenvector 5: Eigenvalue=-1.24698 
-0.417907 
0.521121 
-0.231921 
-0.231921 
0.521121 
-0.417907 
------------- 

Eigenvector 6: Eigenvalue=-1.80194 
0.231921 
-0.417907 
0.521121 
-0.521121 
0.417907 
-0.231921 

 

(3). Sketches of the orbitals with the appropriate phase for each p orbital are: 
 
 
 
 

 MO1.    MO2.    MO3. 
 
 
 
 
 MO4.    MO5.    MO6.  
 

(4). The nodes in the wavefunctions are shown by dotted lines in the sketches, above. The 
number of nodes in each wave function and the overall bonding or anti-bonding character are: 
 

MO1: 0 nodes-bonding;   MO2: 1 node-bonding;   MO3: 2 nodes-three bonding interactions 
and two anti-bonding interactions, so net bonding;   MO4: 3 nodes-two bonding interactions 

1 3 

4 

5 

6 2 

1 3 

4 

5 

6 2 

1 3 

4 

5 

6 2 

1 3 

4 

5 

6 2 

1 3 

4 

5 

6 2 

1 3 

4 

5 

6 2 
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and three anti-bonding interactions, so net anti-bonding;   MO5:  4-anti-bonding;   MO6: 5 
nodes-completely anti-bonding 

 

(5). The energy level diagram, electron filling, HOMO, LUMO, and lowest energy electronic 
transition are: 
 
    –1.80194 
 

    –1.24698 
 
   –LUMO

 
   +


    + 1.24698 
 

    + 1.80194 
 

(6). The -bond order for each unique bond in the molecule is:     Pij = 
k

 nk  cki ckj  

 P12 = 2(0.231921)(0.417907) + 2(-0.417907)(-0.521121) + 2(0.521121)(0.231921) = 0.871 
 

 P23 = 2(0. 417907)(0.521121) + 2(-0.521121)(-0.231921) + 2(0.231921)(-0.417907) = 0.483 
 

 P34 = 2(0.521121)(0.521121) + 2(-0.231921)(0.231921) + 2(-0.417907)(-0.417907) = 0.785 
 

The total -bond order is 2(0.871) + 2(0.483) + 0.785 = 3.493 showing the effect of conjugation. 
 

(7). The total -bond energy is: 
 

Etot = 2( + 1.80194) + 2( + 1.24698) + 2( + 0.445042) = 6 + 6.9879 
 

As the localized reference, each isolated double bond with two electrons has an energy of 
E = 2  2. There are three isolated double bond equivalents, so the localized reference energy 
is 3(2 + 2) giving the pi bond delocalization energy as: 
 

    DE = (6 + 6.9879) – (6+ 6) = 0.9879 
The part always cancels out. 
 

(8). The -electron density on each unique atom is:  di = 
k

 nk  cki
2  

d1 = 2(0.231921)2 + 2(-0.417907)2 + 2(0.521121)2  = 1 
d2 = 2(0.417907)2 + 2(-0.521121)2 + 2(0.231921)2 = 1 
d3 = 2(0.521121)2 + 2(-0.231921)2 + 2(-0.417907)2 = 1 

 

(9). The HOMO, LUMO, and lowest energy electronic transition are shown in the energy level 
diagram in part (5). 
 
 
32. Answer the questions listed in Problem 31 for 3-vinyl-1,3-butadiene: 
 
 
 
 

E 
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Answer:  The atom numbering is arbitrary. The atom assignments chosen are: 
 
 
 
 
 

(1). The Hückel determinant in terms of x’s and 1’s is: 
 

    Atom           1     2     3    4     5    6 
 

 

1
2
3
4
5
6

     











-x 1 0 0 0 0
1 -x 1 0 0 0
0 1 -x 1 0 1
0 0 1 -x 1 0
0 0 0 1 -x 0
0 0 1 0 0 -x

 = 0  Ei =  + xi  with xi the eigenvalues 

 
(2). The energies and the orbital coefficients using a matrix diagonalization program are: 
 

Eigenvector 1: Eigenvalue=1.93185 
0.22985 
0.444037 
0.627963 
0.444037 
0.22985 
0.325058 
------------- 

Eigenvector 2: Eigenvalue=1 
-0.5 
-0.5 
0 
0.5 
0.5 
0 
------------- 

Eigenvector 3: Eigenvalue=0.517638 
0.444037 
0.22985 
-0.325058 
0.22985 
0.444037 
-0.627963 
------------- 

Eigenvector 4: Eigenvalue=-0.517638 
0.444037 
-0.22985 
-0.325058 
-0.22985 
0.444037 
0.627963 
------------- 

Eigenvector 5: Eigenvalue=-1 
-0.5 
0.5 
0 
-0.5 
0.5 
0 
------------- 

Eigenvector 6: Eigenvalue=-1.93185 
0.22985 
-0.444037 
0.627963 
-0.444037 
0.22985 
-0.325058 

 

1 

3 

4 5 

6 

2 
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(3). Sketches of the orbitals with the appropriate phase for each p orbital are: 
 
 
 
 
 MO1.    MO2.    MO3. 
 
 
 
 
 
 MO4.    MO5.    MO6.  
 
(4). The nodes in the wavefunctions are shown by dotted lines in the sketches, above. The 
number of nodes in each wave function and the overall bonding or anti-bonding character are: 
 

See diagrams above for the nodes: MO1: 0 nodes-bonding;   MO2: 1 node-two bonding 
interactions and no anti-bonding interactions, so net bonding;   MO3: 1 node-three bonding 
interactions and two anti-bonding interactions, so net bonding;   MO4: 2 nodes-two bonding 
interactions and three anti-bonding interactions, so net anti-bonding;   MO5: 2 nodes-anti-
bonding;   MO6: 3 nodes-completely anti-bonding 

 

 (5). The energy level diagram, electron filling, HOMO, LUMO, and lowest energy electronic 
transition are: 
 
    – 1. 93185 
 
    –  
 

    – 0.517638LUMO

 
    + 0.517638

    +  
 
    + 1.93185 
 
 

(6). The -bond order for each unique bond in the molecule is:      Pij = 
k

 nk  cki ckj  

P12 = 2(0.22985)(0.444037) + 2(-0.50000)(-0.50000) + 2(0.444037)(0.22985) = 0.908 
 

P23 = 2(0.444037)(0.627962) + 2(-0.50000)(0) + 2(0.22985)(-0.325058) = 0.408 
 

P36 = 2(0.627962)(0.325058) + 2(0)(0) + 2(-0.325058)(-0.627963) = 0.816 
 

The total -bond order is 2(0.907) + 2(0.354) + 0.816 = 3.338 showing the effect of conjugation. 
 

(7). The total -bond energy is: 
 

Etot = 2( + 1.93185) + 2( + 1.00000) + 2( + 0.517638) = 6 + 6.8990 
 

E 
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As the localized reference, each isolated double bond with two electrons has an energy of 
E = 2  2. There are three isolated double bond equivalents, so the localized reference energy 
is 3(2 + 2) giving the pi bond delocalization energy as: 
 

    DE = (6 + 6.8990) – (6+ 6) = 0.8990 
The part always cancels out. 
 

(8). The -electron density on each unique atom is:    di = 
k

 nk  cki
2  

d1 = 2(0.22985)2 + 2(-0.50000)2 + 2(0.444037)2  = 1 
d2 = 2(0.444037)2 + 2(-0.50000)2 + 2(0.22985)2 = 1 
d3 = 2(0.627963)2 + 2(0)2 + 2(-0.325058)2 = 1 
d6 =  2(0.325058)2 + 2(0)2 + 2(-0.627963)2 = 1 

 

(9). The HOMO, LUMO, and lowest energy electronic transition are shown in the energy level 
diagram in part (5). 
 
 
33.  Heteroatoms are introduced into the HMO matrix using two parameters, h and k. The 
diagonal element is the Coulomb integral, which for carbon is . The off-diagonal elements are 
the resonance integrals, which for directly bonded carbon atoms are . The diagonal element for 
a heteroatom is changed to  + h  and the off-diagonal element for directly bonded atoms is 
changed to k. A table of h and k is given below. 
 

Table P26.1: Hückel Parameters for Heteroatoms. 
 

Atom Bond Type  electrons for atom h k 
C -C=C- 1 0 1 
N -C=N-   (pyridine) 1 0.5 1.0 
N =C-N<  (pyrrole) 2 1.5 0.8 
N -N=N-  (azo) 1 1.0 1.0 
O -C=O   (carbonyl) 1 1.0 1.0 
O =C-O-  (furan) 2 2.0 0.8 
F =C-F 2 3.0 0.7 
Cl =C-Cl 2 2.0 0.4 
Br =C-Br 2 1.5 0.3 
S =C-S-  (thiophene) 2 1.5 0.8 

 
For example, acrolein, CA=CB-CC=OD, has four total -electrons and the lower diagonal elements 
of the Hückel matrix in the form of Eq. 26.8.16 is: 

0      

1   0     

0   1   0    

0   0   1   1   

    
For acrolein: 
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(a). Give the Hückel determinant in terms of x’s and 1’s: 
(b). Determine the energies and the orbital coefficients using a matrix diagonalization program. 
The “eigen” applet to diagonalize a matrix is available on the text book Web site or companion 
CD. MatLab or Mathematica  are also useful. 
 (c). Sketch the orbitals with the appropriate phase for each pz orbital. 
(d). Give the number of nodes in each wave function. Classify each orbital as bonding or anti-
bonding. 
(e). Draw the energy level diagram. Give the electron filling. 
(f). Calculate the -bond order for each unique bond in the molecule (Eq. 26.8.6). 
(g). Calculate the -bond delocalization energy. 
(h). Calculate the -electron density on any two atoms of your choosing (Eq. 26.8.7). 
(i). On the energy level in part (e), indicate the lowest energy electronic transition with a 
vertical arrow. Label the HOMO and LUMO. 

 
 
34. Use Hückel molecular orbital theory and the parameters in Table P26.1 to determine the 
HOMO for vinyl fluoride, CH2=CH-F. Draw the molecular orbital diagram and show the electron 
filling. Characterize the HOMO as  or , bonding, non-bonding, or anti-bonding. Does the 
HOMO have predominant character on any one particular atom? 
 
 
35. Characterize the highest occupied molecular orbital in liner BeH2. Use extended Hückel 
theory. Draw the molecular orbital energy diagram and sketch the molecular orbitals. Orient the 
molecule along the x-axis. Number the Be as atom 1 and the two hydrogens as 2 and 3.The bond 
length in BeH2 is 1.330 Å giving the Be(2s)-H(1s) overlap integrals of 0.491 and the Be(2px)-
H(1s)2 overlap as 0.559. Notice the change in sign for the H(1s)3-Be(2px) overlap: 
 
 
 
 
 
 
 
 
 
 
Answer:  The plan is to use the “Secular” equation applet on the text Web site or companion CD. 
The VOIEs are Be(2s) -32.3 eV, O(2px, 2py, 2pz) -15.9 eV, and H(1s) -13.6. Once the overlap 
integrals are specified, the resonance integrals are completely determined using Eq. 26.8.22. 
    For example, the resonance integral for H(1s)-Be(2px) is given using K = 1.75 as: 
 

     H(1s)2- Be(2px)1:     H1s,2px = KSij 
(Hii + Hjj)

2  = 1.75(0.559) 
(-6.00 + (-13.60))

2  eV = -9.59 eV 
 

However, for this problem, we’ll cheat and click on the “Generate H” button to have the applet 
fill in the Hamiltonian matrix automatically, based on the orbital labels. The Be(2py) and Be(2pz) 
orbitals are non-bonding, because the overlap integral with the H-atoms is zero by symmetry. At 

H2 H3 
Be1 

x 

y 

+ + – + 

2px 

S2px,1s = 0.559 S2px,1s = –0.559 

H2 H3 

x 

y 

+ + 

2s 

S2s,1s = 0.491 S2s,1s = 0.491 

+ 

– 
Be1 
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this low level of approximation, the energies of the 2py and 2pz are unaffected by the electrons in 
the -molecular orbitals. Because the Be(2py) and Be(2pz)–orbitals are non-interacting, we don’t 
need to include them in the secular equations. The input is set-up as follows, using the overlap 
integrals given in the problem: 
 

  
 

The output and corresponding molecular orbital energy diagram are: 
 

       Eigenvalues and eigenvectors 
_____(eigenvectors listed in columns)_______ 
E(i)   -15.350  -14.242    8.416   19.208 
vector     1        2        3        4 
atom: 
   Be2s    0.474    0.0      0.744    0.0 
   Be2px   0.0     -0.269   -0.0     -0.752 
    H1s    0.623   -0.681   -0.472    0.466 
    H1s    0.623    0.681   -0.472   -0.466 

 
 
 
 
 
 
With four valence electrons, the HOMO is orbital 2, which is a -bonding orbital (1u) 
constructed from the overlap of the H(1s) and Be(2px) orbitals. We added in the non-bonding 2py 
and 2pz orbitals on Be to complete the energy level diagram; their energies are given by the 
unperturbed VOIEs, -6.00 eV. The symmetry designations correspond to Figure 26.6.1. The 
overall signs of orbitals 2 and 3 are opposite to Figure 26.6.1. However, the change in overall 
sign of a molecular orbital is immaterial; 2 and (–)2 give the same electron distribution. 
Compare this calculation with Problem 11, which is at the CNDO level. 
 
 
36.  Calculate the Be-H bond order in BeH2 using the results in the previous problem, at the 
extended Hückel level of approximation. 
 
 
Answer:  The plan is to note that since BeH2 is symmetrical, both Be-H bonds are equivalent. 
Use the Be1-H2 bond. The bond order is given by Eq. 26.3.10. The answer is compared to 
Problem 11%%%. 
  Using Eq. 26.3.10, there are only two occupied molecular orbitals and each orbital only 
involves one orbital on the central Be-atom: 

 

1 = 2g 
2 = 1u 

4 = 2*
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1u 
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+ + + 
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+ + – – 

– – + 

E 
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10 
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      P12 = 
j on a

 

   
k on b

 

   
i=1

m

 ni 2cij cik Sjk 

 = 4 c1,2sBe c1,1sH S2sBe,1sH  +  4 c2,2pxBe c2,1sH S2pxBe,1sH 
           MO 1   MO2 
 

 = 4(0.4737)(0.6228)(0.4908) + 4(-0.2688)(-0.68811)(0.5593) 
 = 0.5792 + 0.4138 = 0.9930 
 

The extended Hückel Mulliken bond order of 0.9930 is significantly smaller than the CNDO 
bond order of 1.465 from Problem 11. However, the bond order at HF/6-31G** is 0.988 and at 
B3LYP/6-311G** is 0.971, giving reasonable agreement between the extended Hückel method 
and the more advanced methods. However, little should be inferred about the accuracy of the 
extended Hückel method from this rather fortuitous agreement. For extended Hückel calculations 
the bond order is often approximated, instead, by the Coulson bond order, which is given by: 
 

      BO12 = 
j on a

 

   
k on b

 

   
i=1

m

 ni cij cik 

 = 2 c1,2sBe c1,1sH      +  2 c2,2pxBe c2,1sH 
           MO 1   MO2 
 

 = 2(0.4737)(0.6228) + 2(-0.2688)(-0.68811) 
 = 0.5900 + 0.3699 = 0.9599 
 

The Mulliken overlap population of 0.993 and the Coulson estimate of the bond order both agree 
with the semi-empirical MNDO bond order of 0.911. While very approximate, the extended 
Hückel method is easy to apply and tenable for very large systems. Every approximation method 
has its strengths and weaknesses. 
 
 
37.  Use extended Hückel theory to find the molecular orbital energy diagram for water. Number 
the oxygen as atom 1 and the two hydrogens as 2 and 3. Orient the molecule in the x-y plane. 
The overlap integrals for a bond angle and 105 and bond lengths of 0.962 Å are shown below 
(the overlap between the two hydrogens is S1s,1s = 0.2242): 
 
 
 
 
 
 
 
 
Answer:  The plan is to use the “Secular” equation applet on the text Web site or companion CD. 
The VOIEs are O(2s) -32.3 eV, O(2px, 2py, 2pz) -15.9 eV, and H(1s) -13.6. Once the overlap 
integrals are specified, the resonance integrals are completely determined using Eq. 26.8.22. 
    For example, the resonance integral for H(1s)-O(2px) is given using K = 1.75 as: 
 

     H(1s)2- O(2px)1:     H1s,2px = KSij 
(Hii + Hjj)

2  = 1.75(0.3092)  
(-15.9 + (-13.6))

2  eV = -7.98 eV 
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However, for this problem, we’ll cheat and click on the “Generate H” button to have the applet 
fill in the Hamiltonian matrix automatically, based on the orbital labels. The O(2pz) orbital is 
non-bonding, because the overlap integral with the H-atoms is zero by symmetry. At this low 
level of approximation, the energy of the 2pz is unaffected by the presence of the electrons in the 
-molecular orbitals. Because the O(2pz) –orbital is non-interacting, we don’t need to include the 
2pz in the secular equations. The input is set-up as follows, using the overlap integrals given in 
the problem: 
 

  
 

In terms of looking up the VOIEs, the distinction between 2px , 2py, and 2pz is immaterial. The x, 
y, and z subscripts are just used to label the output, to make the results easier to read. The results 
are listed below with the molecular orbital diagram: 
 

              Eigenvalues and eigenvectors 
____________(eigenvectors listed in columns)______________ 
E(i)   -33.0869  -17.9708  -16.6346   -0.3806    3.0583  
vector     1         2         3         4         5     
atom: 
1  O2s    0.9816   -0.0       0.1952    0.0       0.5312 
1  O2px  -0.0       0.856    -0.0       0.5825    0.0 
1  O2py  -0.0272   -0.0      -0.9546   -0.0       0.389 
2  H1s    0.1337    0.3656   -0.1592   -0.5748   -0.5322 
3  H1s    0.1337   -0.3656   -0.1592    0.5748   -0.5322 

 

 
 
 
In the MO diagram, we added in the 2pz non-bonding orbital at -15.9 eV, between 3and 4. 
With eight valence electrons, the HOMO is the O(2pz) non-bonding orbital. The correspondence 
of the MOs with the symmetry designations are given in the plot for comparison with Figure 
26.6.4. The switch in order of the anti-bonding orbitals is seen in other semi-empirical and HF 
calculations, depending on bond length and angle. CNDO calculations are more realistic than 
extended Hückel calculations, but the extended Hückel result is easy to calculate and determines 
the proper molecular orbital ordering and nodal patterns for this case. Several improvements in 
the extended Hückel approach are also in common use. We hope that you find the extended 
Hückel method informative about the inner workings of molecular orbital calculations. 
 
 
38.  Calculate the O-H bond order in water from the extended Hückel calculation in the previous 
problem. 
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Answer:  Use the O1-H2 bond. The bond order is given by Eq. 26.3.10: 
 

      P12 = 
j on a

 

   
k on b

 

   
i=1

m

 ni 2cij cik Sjk 

 = 4 c1,2sO c1,1sH S2sO,1sH  + 4 c1,2pyO c1,1sH S2py,1sH  + 4 c2,2pxO c2,1sH S2pxO,1sH 
           MO 1   MO 1   MO2 
 

  + 4 c3,2sO c3,1sH S2sO,1sH  +  4 c3,2spy c3,1sH S2py,1sH 
       MO3            MO 3 
 

 = 4(0.982)(0.134)(0.408) + 4(-0.027)(0.134)(0.240) + 4(0.856)(0.366)(0.309) 
  + 4(0.195)(-0.159)(0.408) + 4(-0.955)(-0.159)(0.240) 
 

 =  0.2148 – 0.0035 + 0.3872 – 0.0506 + 0.1458 = 0.6937 
 

The extended Hückel bond order of 0.694 is significantly smaller than the CNDO bond order 
of 1.085. For extended Hückel calculations the bond order is often approximated, instead, by 
the Coulson bond order: 

      BO12 = 
j on a

 

   
k on b

 

   
i=1

m

 ni cij cik 

 = 2 c1,2sO c1,1sH   + 2 c1,2pyO c1,1sH   + 2 c2,2pxO c2,1sH  + 2 c3,2sO c3,1sH   +  2 c3,2spy c3,1sH 
  MO 1  MO 1       MO2           MO3  MO 3 
 

 = 2(0.982)(0.134) + 2(-0.027)(0.134) + 2(0.856)(0.366) 
  + 2(0.195)(-0.159) + 2(-0.955)(-0.159) 
 =  0.2632 – 0.0072 + 0.6266 – 0.0620 + 0.3037 = 1.1243 

 

This case is unusual; Mulliken and Coulson bond orders are usually similar. For comparison, 
the HF/6-31G** Mulliken bond order is 0.881 and the B3LYP/6-311G** bond order is 0.967. 
 
 

39.  Calculate the charge on the C-atom in methane. Use the extended Hückel method. The 
atomic coordinates for methane with a C-H bond length of 1.084 Å are: 
 

Atom x y z 
1 C  0.0  0.0  0.0 
2 H  0.62565  0.62565  0.62565 
3 H -0.62565 -0.62565  0.62565 
4 H -0.62565  0.62565 -0.62565 
5 H  0.62565 -0.62565 -0.62565 

 

 
For this orientation, the overlap matrix is: 
 

 1  C2s 1  C2px 1  C2py 1  C2pz 2  H1s 3  H1s 4  H1s 5  H1s 
 1  C2s 1.0 0.0 0.0 0.0 0.5224  0.5224  0.5224  0.5224 
 1  C2px 0.0 1.0 0.0 0.0 0.2832 -0.2832 -0.2832  0.2832 
 1  C2py 0.0 0.0 1.0 0.0 0.2832 -0.2832  0.2832 -0.2832 
 1  C2pz 0.0 0.0 0.0 1.0 0.2832  0.2832 -0.2832 -0.2832 
 2  H1s 0.5224  0.2832  0.2832  0.2832 1.0  0.1877  0.1877  0.1877 
 3  H1s 0.5224 -0.2832 -0.2832  0.2832 0.1877 1.0  0.1877  0.1877 
 4  H1s 0.5224 -0.2832  0.2832 -0.2832 0.1877  0.1877 1.0  0.1877 
 5  H1s 0.5224  0.2832 -0.2832 -0.2832 0.1877  0.1877  0.1877 1.0 

x 

z 

y 

 

H3 

H4 

H5 

C1 

H2 
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Answer:  The plan is to use the “Secular” applet and Eqs. 26.3.9. 
   The hydrogen atoms are placed at the opposing corners of a cube that has faces oriented 
perpendicular to the axes. To quickly determine the overlap integrals as listed, we used the 
atomic coordinates as input for the “cndo” applet. The “cndo” applet lists overlap integrals. Yes, 
we know that using a more advanced level of approximation to get the overlap integrals for a 
lower-level extended Hückel calculation is cheating, but the instructional value of the extended 
Hückel calculation is undiminished. Notice that the C(2s)-H(1s) overlaps are all identical, as 
expected, while the C(2p)-H(1s) differ only in sign. Adjacent pairs of H-atoms have a significant 
overlap, 0.1877, as expected from VSEPR theory. Entering these overlap integrals into the 
“Secular” applet gives: 
 

 
 

Using the Generate H option, the Hamiltonian matrix is: 
 

 
 

The final output is: 
 

                      Eigenvalues and eigenvectors 
___________________________(eigenvectors listed in columns)____________________________ 
E(i)   -23.2715  -14.9487  -14.9487  -14.9487    6.44      6.44      6.44     35.4649  
vector     1         2         3         4         5         6         7         8     
atom: 
    C2s    0.8444    0.0       0.0      -0.0       0.0      -0.0       0.0       0.7746  
    C2px  -0.0      -0.0623    0.6373    0.0684   -0.5167    0.0307    0.4336    0.0     
    C2py  -0.0      -0.6387   -0.0561   -0.0595    0.2014   -0.58      0.2811   -0.0     
    C2pz  -0.0       0.053     0.0736   -0.6375    0.3852    0.3444    0.4347    0.0     
    H1s    0.2678   -0.385     0.389    -0.3734   -0.0381    0.1119   -0.6277   -0.3162  
    H1s    0.2678    0.4479   -0.3015   -0.384    -0.3826   -0.4881    0.1529   -0.3162  
    H1s    0.2678   -0.3739   -0.4556    0.3027   -0.1819    0.5216    0.3207   -0.3162  
    H1s    0.2678    0.3109    0.3681    0.4547    0.6026   -0.1454    0.1541   -0.3162  
_______________________________________________________________________________________ 

 
Notice that the MOs involve C(2s) character or C(2p) character, but not both, in contradiction to 
hybridization arguments. The hybridization picture emerges when the average of MOs 1-4 is 
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taken, giving s- and p-character. However, the s-character is greater than the canonical 25% 
expected for sp3 hybridization. The hybridization has (0.84)2 s-character and approximately 
3(0.64)2 p-character for s0.71p1.23 overall. 
    The atom electron density for atom-a is calculated as the sum over all atomic orbitals j on 
atom-a and the sum over all molecular orbitals i: 
 

 da = 
j on a

   
i=1

m

 nicij
2    j = all atomic orbitals on atom-a  (9) 

 

With 8 valence electrons, the HOMO is orbital 4. The atom electron density on the C-atom is: 
 

 dC = 2(0.8444)2      contribution from C(2s) 
                 + 2(-0.0623)2 + 2( 0.6373)2 + 2( 0.0684)2   contribution from C(2px) 
                 + 2(-0.6387)2 + 2(-0.0561)2 + 2(-0.0595)2   contribution from C(2py) 
                 + 2 (0.0530)2 + 2( 0.0736)2 + 2(-0.6375)2   contribution from C(2pz) 
     = 3.9137 
 

The contributions from the C(2px), C(2py), and C(2pz) are identical, as expected by symmetry. 
Since carbon has four valence electrons, the charge on the C-atom is 4 – 3.9137 = +0.0862. For 
comparison, the charge at the CNDO level is -0.052. The charge on an atom is an artificial, but 
useful, construct. Different calculation methods give strikingly different values for the charges 
on atoms. No one method can be chosen as “best,” because the charge on an atom is not 
experimentally observable. 
   The bond length chosen for this example is the HF/6-31G(d) minimized structure. 
 
 

40. Place the following electronic structure methods in order of typical energy accuracy: HF, 
CNDO, MNDO, AM1, PM3, CISD or CCSD, CISDT or CCSDT, CCSD(T), LSDA, B3LYP. 
 

Answer: The general order is: advanced correlated better than density functional better than 
Hartree Fock better than semi empirical better than Extended Hückel better than Hückel. 
However, for some circumstances this ordering is arguable (open shell transition states). For the 
specific methods, in the following list when there is a tie, the more general method is ranked 
higher than the more specific method: 
 

CNDO, MNDO, AM1~PM3, HF, LSDA, B3LYP~CISD/CCSD, CCSD(T), CISDT/CCSDT 
 

The assumption is that correlation consistent basis sets are used (i.e. 6-311G** or cc-pVTZ). 
Many might question the indicated rough tie between B3LYP and CISD/CCSD, but in support, 
B3LYP methods are run with more complete basis sets than CCSD in comparable time. Note that 
CCSD(T) isn’t listed in Figure 26.2.2 because with two electrons triple excitations aren’t 
possible. 
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Chapter 27 Problems: Rotational and Vibrational Spectroscopy 
 

1.  Calculate the ratio, N1/No, of molecules in the  = 1 and  = 0 vibrational states for carbon 
monoxide, CO, at 25.0 C. Assume a harmonic oscillator with ~e = 2169.8 cm-1 [Hint: at 25.0 C, 
kT = 207.2 cm-1] 
 
 
Answer: The plan is to use the Boltzmann population ratio, Eq. 8.10.8, for a harmonic oscillator 

with energy G
~
 = 

~
e( + ½), Eq. 27.5.2. 

   The energy difference in wave numbers is,  = G
~

1 – G
~

o = ~e(1 + ½) – ~e(0 + ½) = ~e. The 
Boltzmann population ratio, Eq. 8.10.8, gives: 
 

 
N1

No
 = e–/kT = e–2169.8 cm-1

/207.2 cm-1 = 2.83x10-5 

 

A negligible number of CO molecules are in upper vibrational states, giving a large population 
difference. As a result, IR absorbance is a sensitive method compared to NMR and microwave 
spectroscopy. 
 
2.  Calculate the ratio, N1/No, of molecules in the J = 1 and J = 0 rotational levels for carbon 
monoxide, CO, at 25.0 C. Assume a rigid rotor with B

~
e = 1.932 cm-1 [Hint: at 25.0 C, 

kT = 207.2 cm-1] 
 
 
Answer: The plan is to use the Boltzmann distribution, taking into account the 2J + 1 degeneracy 
of the rotational states. 
   The energy in wave numbers of a rigid rotor is F

~
J = B

~
e[J(J + 1)]. Since the J = 0 state of a rigid 

rotor is at zero in energy,  = F
~

1 – F
~

o = B
~

e[J(J + 1)], in wave numbers. The Boltzmann 
population ratio, Eq. 8.10.8, gives for any single rotational state with J = 1: 
 

 
N1

No
 = e–/kT = e–2(1.932 cm-1)/207.2 cm-1 = 0.9815  for mJ = -1, 0, or +1 

 

The degeneracy of the J = 1 level is gJ = 2J + 1 = 3, giving the final ratio as: 
 

 
N1

No
 = gJ e

–/kT = 3 e–2(1.932 cm-1)/207.2 cm-1 = 2.945 
 

In other words, there are more CO molecules in the J = 1 level than the J = 0 level, because of 
the degeneracy. However, the probability of a radiative transition is proportional to the state to 
state population difference. 
 
 
3.  How does the Doppler width of a transition depend on temperature and the mass of the 
molecule? 
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Answer:  As the temperature increases the root-mean-squared speed of gas molecules increases, 
thus increasing Doppler broadening. As the mass of the molecule increases the root mean 
squared speed decreases, thus decreasing the Doppler broadening. 
 
 
4.  Calculate the Doppler line width of the 83305. cm-1 electronic transition of HF at 500.0 K. 
This temperature is on the order of the temperature in the ionosphere. 
 
 
Answer:  The plan is to refer to Example 27.2.1. 
   The mass of HF is m = (20.00 g mol-1/NA)(1 kg/1000 g) = 3.321x10-26 kg: 
 

 ~D = 2 





~o

c  
2kT ln(2)

m  = 2 



83305. cm-1

2.998x108 m s-1  
2(1.381x10-23 J K-1)(500.0 K) ln(2)

3.321x10-26 kg  

         = 0.298 cm-1 = 8.94x109 s-1 = 8.94 GHz 
 

See example 27.2.1 for a note about the proper units of the speed of light. The broadening is 
much greater than some interesting interactions involving the nuclei and is also significant 
relative to rotational fine-structure spacing. Collisional broadening in the ionosphere is 
negligible, since the pressure is so low. 
 
 
5.  (a). Draw the Fourier transformed spectrum of the function f(t) in Figure 27.3.2 as a 
histogram, in the same style as the Fourier transforms shown in Figure 27.3.1b for the three 
Fourier coefficients. (b). The period of the function, L, is 1.00x10-3 s. Calculate the lowest 
frequency Fourier component. 
 
 
Answer:  (a). From Figure 27.3.2, the Fourier coefficients are large for 1 kHz and 2 KHz and 
zero for 3 kHz: 
 

 
 

(b). The fundamental Fourier frequency is o = 1/L = 1/1.00x10-3 s = 1000 s-1 = 1.00 kHz. The 
Fourier components then occur at frequencies no = 1 KHz, 2 kHz, 3 KHz, 4 kHz, …. 
 
 
6.  Many experiments give a time response that decays exponentially in time: f(t) = e–t/, where  
is the time constant for the decay. (a). Show that the Fourier transform, using Eq. 27.3.8, is: 

 g() = 
2

1 + i2 

(b). The square of the magnitude of a complex function is given using Eq. 23.9.7. Show that: 

0               1.0              2.0             3.0 

Bn 

 (kHz) 
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L 2L 

FT 
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 g()*g() = 
42

1 + 4222 
 

(c). The result of experiments is often given as a magnitude spectrum, A2() = g()*g(). Do a 
quick plot of the magnitude spectrum assuming  = 1 s. 
 
 
Answer:  (a). The Fourier transform using Eq. 27.3.8 is: 
 

 g() = 2 0  e–t/ e–i2t dt = 2 0  e–(1/ + i2)t dt = – 2 
e–(1/ + i2)t

1/ + i2 |


0
 

          = – 2 






e–

1/ + i2 – 
e0

1/ + i2  = 
2

1/ + i2 = 
2

1 + i2 

 
(b). The squared magnitude is given by the complex conjugate multiplied by the original 
function: 

 A2() = g()*g() = 






2

1 – i2  






2

1 + i2 = 
42

(1 – i2)(1 + i2)
 = 

42

1 + 4222 
 

(c). The spreadsheet and plot are given below. The value of A2() is given in cell D5 as: 
 “=4*$D$2/(4*PI()^2*C5^2*$D$2^2 +1)” 
 

 

A1 B C D E 
2  tau =  1 s 
3     
4   (s-1) A2()  
5  0 4.0000  
6  0.025 3.9037  
7  0.05 3.6407  
8  0.075 3.2731  
9  0.15 2.1183  

10  0.225 1.3340  
11  0.3 0.8785  
12  0.375 0.6105  
13  0.45 0.4447  
14  0.525 0.3367  
15  0.6 0.2629  
16  0.675 0.2107  
17  0.75 0.1724  
18  0.825 0.1435  
19  0.9 0.1213  
20  0.975 0.1038  
21  1.05 0.0898  

 

 

 
 
 

 
 
7.  Which of the following molecules give pure-rotational absorption spectra? N2, O2, NO, CH, 
CO, CO2, N2O, SO2, C2H4, CH4, and H2C=O (formaldehyde). 
 
 

Answer:  The gross selection rule for rotational absorption is that the molecule must possess a 
permanent dipole moment. As a result only NO, CH, CO, N2O, SO2, and H2C=O are microwave 
active. 
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8.  Which of the following molecules give vibrational absorption spectra? N2, O2, NO, CH, CO, 
CO2, N2O, and SO2. 
 
 
Answer: The gross selection rule for vibrational absorption is that the molecule must give a 
changing dipole moment during the vibration. For the diatomics, only NO, CH, and CO are 
infrared active. The symmetric stretch of linear triatomics is IR forbidden, but the asymmetric 
stretch and bending modes are IR active, see Table 27.7.1. As a result, the asymmetric stretch 
and the two degenerate bending modes of CO2 are IR active. All normal modes of bent 
triatomics are IR active; so SO2 is IR active. All normal modes for asymmetric linear triatomics 
are IR active, so N2O is IR active; the symmetric stretch, the asymmetric stretch, and bending 
modes all present an oscillating dipole moment. 
 
 
9.  Which of the following molecules give vibrational Raman spectra? N2, O2, NO, CH, CO, 
CO2, N2O, and SO2. 
 
 
Answer:  The plan is to note the molecules that have a center of symmetry, that is have an 
inversion center. Molecules with a center of symmetry are centrosymmetric. The exclusion rule 
is then applied. 
   The short answer is only the asymmetric stretch and the bending vibrations of CO2 are Raman 
forbidden. All the other molecules and the symmetric stretch of CO2 are Raman active. 
   The molecules with a center of symmetry are N2, O2, and CO2. No normal mode of a 
centrosymmetric molecule is both Raman and IR active. Since the homonuclear diatomics and 
the symmetric stretch of CO2 are IR forbidden, the stretches must be Raman active. 
   For the heteronuclear diatomics, the stretch is both Raman and IR active. Remember that the 
polarizability is a function of the volume of the molecule. As a result for the heteronuclear 
diatomics, the polarizability and dipole moment both change during the vibration. Therefore, 
NO, CH, and CO are Raman active. 
   All normal modes for asymmetric linear triatomics and bent triatomics are Raman active, so 
N2O and SO2 are Raman active, see Table 27.7.1. 
 
 
10.  Which of the following normal modes are infrared active and which are Raman active? The 
arrows indicate the movement of the exterior atoms. In the asymmetric stretches, the central 
atoms also move to maintain a fixed center of mass, but that movement is not shown. [Formal 
group theory is not required for this problem.] 
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Answer:  The plan is to use the volume change during the vibration to judge the change in 
polarizability and the asymmetry of the vibration to judge the change in dipole moment. No 
normal mode of a centrosymmetric molecule is both Raman and IR active. 
   None of the molecules has a permanent dipole moment. We need to look for a changing dipole 
moment during the vibration. Each molecule is centrosymmetric, so if the mode is IR active, then 
it must be Raman forbidden. For the totally symmetric stretches, all the exterior atom movements 
are outward, away from the center of mass. The symmetric stretches are all IR forbidden and 
Raman active, which includes the symmetric modes for acetylene, ethylene, and silane. The 
asymmetric stretches, where some exterior atoms move inward and some move outward, are all 
IR allowed and Raman forbidden, which include the asymmetric stretches for acetylene, 
ethylene, and the second mode for XeF4. The symmetric stretches all change the volume of the 
molecule without a net shift of the electron density, relative to the center of mass. 
    The difficult case is the first mode for XeF4. The motion of the F-atoms is symmetrical with 
respect to the center of mass for the opposite pairs. The mode does not change the dipole 
moment, so the mode must be IR forbidden and correspondingly Raman active. The mode is 
symmetric, but not totally symmetric. The question remains as to whether the mode changes the 
volume of the molecule. Luckily the lack of a dipole moment and the center of symmetry give 
the Raman activity using the Exclusion Rule. In the table below, IR is for IR active and R is for 
Raman active. 
 

 
 
 
11.  The lowest energy transitions in the rotational spectrum of HF are 41.105 and 82.211 cm-1. 
Calculate the equilibrium bond length of HF, Ro. 
 
 
Answer: The plan is to note that the spacing between adjacent lines in the rotational absorption 
spectrum of a diatomic molecule is 2B

~
, following Example 27.4.1. 

   The spacing between rotational transitions for HF is 41.106 cm-1. The rotational constant is B
~

 = 
41.106 cm-1/2 = 20.553 cm-1. The reduced mass for HF is: 
 

 HF = 
(1.007825)(18.998403)
1.007825+18.998403  (g mol-1) 

1
NA

 (1kg/1000 g) = 1.589229x10-27 kg 
 

For units, the B
~

 value can be converted to m-1 and then c = 2.99792x108 m s-1: 

 B
~

 = 20.553 cm-1 (100 cm/1 m) = 2055.3 m-1 
 

with Eq. 27.4.2:  I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(2055.3 m-1)(2.997925x108 m s-1)] 
        = 1.36198x10-47 kg m2 

Alternatively, keeping B
~

 in cm-1 and the speed of light in cm s-1 for the B
~

c product: 
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with Eq. 27.4.2:    I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(20.553 cm-1)(2.997925x1010 cm s-1)] 
           = 1.36198x10-47 kg m2 
 

with Eq. 27.4.2:    Ro = (I/)½ = 9.2574x10-11 m = 0.9257 Å 
 
 
12.  Two adjacent lines in the rotational absorption spectrum of 14N1H are at 98.036 and 130.714 
cm-1. Calculate the equilibrium bond length of HF, Ro, and the rotational quantum numbers of 
the lower states of the two transitions. 
 
 
Answer:  The plan is to note that the spacing between adjacent lines in the rotational absorption 
spectrum of a diatomic molecule is 2B

~
, with the transitions at F

~
 = F

~
J"+1 – F

~
J" = 2B

~
(J"+ 1). 

   The spacing between rotational transitions for 14N1H is 32.678 cm-1. The rotational constant is 
B
~

 = 32.678 cm-1/2 = 16.339 cm-1. The reduced mass for 14N1H is: 
 

 NH = 
(1.007825)(14.003074)
1.007825+14.003074  (g mol-1) 

1
NA

 (1kg/1000 g) = 1.561174x10-27 kg 
 

For units, the B
~

 value can be converted to m-1 and then c = 2.99792x108 m s-1: 

 B
~

 = 16.339 cm-1 (100 cm/1 m) = 1633.9 m-1 
 

with Eq. 27.4.2:  I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(1633.9 m-1)(2.997925x108 m s-1)] 
        = 1.71325x10-47 kg m2 

Alternatively, keeping B
~

 in cm-1 and the speed of light in cm s-1 for the B
~

c product: 
 

with Eq. 27.4.2:    I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(16.339 cm-1)(2.997925x1010 cm s-1)] 
          = 1.71325x10-47 kg m2 
with Eq. 27.4.2:    Ro = (I/)½ = 1.04757x10-10 m = 1.0476 Å 
 

Given Eq. 27.4.3 and the transitions at 98.036 and 130.714 cm-1, the quantum numbers for the 
lower state, J", are: 
 

   F
~
 = 98.036 cm-1 = 2B

~
(J"+ 1) = 2(16.339 cm-1)(J"+ 1) giving J" = 2  i.e.  32 

 and     130.714 cm-1 = 2B
~

(J"+ 1)     giving J" = 3  i.e.  43 
 
 
13.  Calculate the moment of inertia of water about the z-axis, which is the figure axis. The 
rotational constant about the z-axis is A

~
 = 14.512 cm-1. Assume the bond angle is 104.48.1 

Calculate the O–H bond length. 
 
 
Answer:  The plan is to follow Figure 27.4.2 and Example 27.4.2. 
   The geometry is illustrated below with the water molecule in the x-z plane. 
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Reference to figure, above, shows that x2 = –x3 = ROH sin(/2), where  is the H-O-H bond angle 
and ROH is the O–H bond length. The O-atom does not contribute to the moment of inertia about 
the z-axis, because it lies on the z-axis. Since all the yi coordinates are zero, the moment of 
inertia of water about the z-axis is, as in Equation 27.4.25: 
 

 Izz =  mi(x2
i + y2

i) =  mi x2
i = 2 mH [ROH sin(/2)]2 

 

The mass of the H-atom is 1.67353x10-27 kg. The moment of inertia is given by Eq. 27.4.2: 

 Izz = ħ/(4A
~

c) = 1.05457266x10-34 J s/[4(9.285 cm-1)(2.997925x1010 cm s-1)] 
 Izz = 1.9289x10-47 kg m2 = 2 mH [ROH sin(104.48/2)]2 

        = 2(1.67353x10–27 kg)[ROH (0.79058)]2 

 

Solving for the bond angle gives ROH = 9.6024x10-11 m or 0.96024 Å. 
 
 
14.  Use Eqs. 27.4.11 to calculate the three moments of inertia of H2O. Use units of g mol-1 for 
the masses and Å for the distances. The coordinates of water, aligned with the O-atom at the 
origin and one O–H bond extending along the x-axis, are: 
 

Atom x y z 
O 0 0 0 
H 0.9728 0 0 
H -0.2623 -0.9369 0 

 

The coordinates of the center of mass are: 
 

 xcm = 1/m  mixi  ycm = 1/m  miyi  zcm = 1/m  mizi 
 

where mi is the isotope specific mass of atom-i, with coordinates xi, yi, zi, and total molecular 
mass m =  mi. First, build a spreadsheet to calculate the moment of inertia matrix with the input 
orientation.2 Second, the eigenvalues of this matrix are the three moments of inertia. To calculate 
the eigenvalues use MatLab, Maple, Mathematica, or the “Eigen” matrix diagonalization applet 
that is on the textbook Web site or on the companion CD. [Hint: The example spreadsheet shown 
below uses the same geometry for water as given above, but the orientation is chosen as already 
aligned with the principal axes. For this aligned example, the off-diagonal elements of the 
moment of inertia matrix should be zero, within round-off error. You should use these values to 
test your spreadsheet. Your final eigenvalues, starting from the orientation listed above, should 
give the same results; the final moments of inertia should not depend on the input orientation. 
The spreadsheet was designed to make the addition of atoms easy for larger molecules.] 
 
 
 
 

z Izz 
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x 

m3 

m1 

/2 /2 ROH ROH 
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A1 B C D E F G H I 
2         
3  original data:      
4 atom mass x y z mx my mz 
5 O 15.9949 0 -0.0657 0 0 -1.050865 0 
6 H 1.0078 0 0.5222 0.775 0 0.5262732 0.781045 
7 H 1.0078 0 0.5222 -0.7752 0 0.5262732 -0.78125 
8 sums 18.0105    0 0.0016814 -0.0002 
9 com  0 9.33561E-05 -1.11912E-05    

10         
11     m(x-xcm)(y-ycm) m(x-xcm)(z-zcm) m(y-ycm)(z-zcm) m(x-xcm)2 m(y-ycm)2 m(z-zcm)2 
12 O 15.9949 0 0 -1.17772E-05 0 0.0692382 2E-09 
13 H 1.0078 0 0 0.407794672 0 0.2747216 0.605327 
14 H 1.0078 0 0 -0.407888131 0 0.2747216 0.605605 
15 sums  0 0 -0.000105236 0 0.6186814 1.210932 
16  Results:      
17 I =  x y z     
18 x 1.82961         
19 y 0 1.210932206       
20 z 0 0.000105236 0.618681357     

 

The input atomic coordinates are placed in cells D5:F7. The calculated center of mass 
coordinates, “com”, are listed in cells D9:F9, which are then used to form the sums for Eqs. 
27.4.11. The resulting moment of inertia matrix is listed in cells C18:E20. The moment of inertia 
matrix is symmetric, so that only the lower triangular matrix need be listed. In the general case, 
the moment of inertia matrix will not be a diagonal matrix. The final moment of inertia elements 
are then input into the “eigen” applet to determine the eigenvalues. 
 
 
Answer:  The spreadsheet with the new orientation is shown below.  
 

A1 B C D E F G H I 
2         
3  original data:      
4 atom mass x y z mx my mz 
5 O 15.9949 0 0 0 0 0 0 
6 H 1.0078 0.9728 0 0 0.9803878 0 0 
7 H 1.0078 -0.2623 -0.9369 0 -0.2643459 -0.944208 0 
8 sums 18.0105    0.7160419 -0.944208 0 
9 com  0.039756914 -0.052425409 0    

10         
11     m(x-xcm)(y-ycm) m(x-xcm)(z-zcm) m(y-ycm)(z-zcm) m(x-xcm)2 m(y-ycm)2 m(z-zcm)2 
12 O 15.9949 -0.03333773 0 0 0.0252817 0.0439608 0 
13 H 1.0078 0.049296703 0 0 0.8773598 0.0027699 0 
14 H 1.0078 0.269245527 0 0 0.09195 0.7883972 0 
15 sums  0.2852045 0 0 0.9945916 0.8351278 0 
16  Results       
17 I =  x y z     
18 x 0.83513         
19 y -0.2852 0.994591615       
20 z 0 0 1.82971944     

 

   The input to the “eigen” matrix diagonalization applet appears as below: 
 

 0.83513    

 -0.2852       0.994592  

 0                 0                1.829719  
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The output agrees with the moments of inertia given in the pre-aligned example and appears as: 
 

Eigenvector 1: Eigenvalue=1.829719 
0 
0 
1 
------------- 
Eigenvector 2: Eigenvalue=1.21095 
-0.604517 
0.796593 
0 
------------- 
Eigenvector 3: Eigenvalue=0.618698 
0.796593 
0.604517 
0 
------------- 

 

An on-line applet is available that automatically determines the moments of inertia, 
spectroscopic rotational constants, symmetry point group, and the contributions of rotation to the 
entropy and Gibbs energy of a molecule. The “ABC Rotational Constant Calculator” applet is 
available on the textbook Web site or on the companion CD. The pre-aligned orientation of H2O 
is available through the applet as an example, in addition to other examples of larger molecules. 
 
 

15.  Calculate the bond force constant, k, for H35Cl. The fundamental vibration frequency is 
~e = 2990.9 cm-1. 
 
 
Answer:  The plan is to use Eq. 27.5.4 to calculate the bond force constant. Remember to use 
isotope specific masses to calculate the reduced mass. 

   The reduced mass for H35Cl is:  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

  = 



(1.007825)(34.968853)

(1.007825 + 34.968853) (g mol-1)
1

6.022137x1023 (1 kg/1000 g) 

               = 1.6266526x10–27 kg 
 

The bond force constant is given by rearranging Eq. 24.2.1: 
 

     k = 42~2
ec2 = 42(2990.9 cm-1)2(2.997925x1010 cm s-1)2(1.62665x10-27 kg) = 516.30 N m-1 

 
 

16.  Does CH or CO have the greater bond strength? Base your answer on the fundamental 

vibration frequency for 12CH, which is ~e = 2860.75 cm-1, and for 12C16O, which is 2169.76 cm-1, 
Table 27.6.1. 
 
 
Answer: The plan is to calculate the bonds force constants and then compare. Fundamental 
vibration frequencies cannot be compared directly, especially when the reduced masses are so 
different. 

   For 12CH, the reduced mass is:  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 
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  = 



(1.007825)(12.00000)

(1.007825 + 12.00000)  (g mol-1) 
1

6.022137x1023 (1 kg/1000 g) 

     = 1.5438711x10–27 kg 
 

The bond force constant for CH is given by rearranging Eq. 24.2.1: 
 

     k = 42~2
ec2 = 42(2860.75 cm-1)2(2.997925x1010 cm s-1)2(1.5438711-27 kg) = 448.30 N m-1 

 

For 12C16O, the reduced mass is: 
 

  = 



(12.000000)(15.994915)

(12.000000 + 15.994915)  (g mol-1) 
1

6.022137x1023(1 kg/1000 g) 

    = 1.138500x10–27 kg 
 

The bond force constant for CO is: 
 

     k = 42~2
ec2 = 42(2169.76 cm-1)2(2.997925x1010 cm s-1)2(1.138500x10-27 kg) = 1901.8 N m-1 

 

The larger force constant corresponds to the stronger bond. Even though CH has a higher 
vibration frequency, CO has a stronger bond. The reversal in order results because the reduced 
mass of the CH bond is small, which in g mol-1 is: 
 

 for C–H     = 0.9297 g mol-1  versus  for CO     = 6.856 g mol-1 

 

This result is expected since the qualitative bond order in C–H is one and the qualitative bond 
order in CO is three. The molecular orbital filling for CH is given by Figure 26.3.4 with three 
valence electrons. The correlation of bond strength with force constant is displayed in Figure 
26.4.12. 
 
17.  The force constant is defined as the second derivative of the vibrational potential function, 
Eq. 8.11.2. For a non-harmonic potential, such as the Morse potential in Eq. 27.5.8, we must add 
the stipulation that the second derivative is evaluated at the equilibrium internuclear distance: 
 

 



d2V

dR2
R = Re

  k 
 

Derive the relationship that determines the Morse a-parameter, Eq. 27.5.8, using the following 
steps: (a). Show that the second derivative of the Morse potential function, Eq. 27.5.7, is: 
 

 
d2V
dR2 = –2a2Dee–a(R – Re) + 4a2De e–2a(R – Re) 

 

(b). Evaluate the second derivative at the equilibrium internuclear distance, R = Re, and use the 
definition of the force constant to give: 
 

 a = 



k

2 De

½
 

 

(c). Use the relationship between the fundamental vibration frequency and the force constant, 

e = 2e = k/ , to give Eq. 27.5.8. 
 
 

Answer:  The Morse potential is given by Eq. 27.5.7: V(R) = De (1 – e–a(R – Re))2 with first 
derivative using the chain rule twice: 
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dV
dR = De 2(1 – e–a(R – Re)) (– e–a(R – Re))(–a) = –2aDe(– e–a(R – Re) + e–2a(R – Re)) 

The second derivative is:  
d2V
dR2 = –2aDe[– e–a(R – Re)(–a) + e–2a(R – Re)(–2a)] 

Gathering terms:       
d2V
dR2 = –2a2Dee–a(R – Re) + 4a2De e–2a(R – Re) 

Evaluating the second derivative at the equilibrium internuclear separation, R = Re, gives: 
 

 
d2V
dR2 = –2a2De e0 + 4a2De e0 = 2a2De 

Setting this result equal to the force constant gives 2a2De = k and solving for a: 
 

 a = 



k

2 De

½
 

 

(b). Using e = k/ gives the force constant as k = 2
e , which upon substitution into the 

previous result gives Eq. Eq. 27.5.8. 
 
 
18. The bond strength parameters for NF are important in validating bond order-bond strength 
correlations as displayed in Figure 26.4.12. However, the literature bond dissociation energy for 
NF varies widely depending on the experimental method used. The bond energy from 
thermochemical measurements is 29742 kJ mol-1 or 3.080.44 eV.3 Determine ~e, the force 
constant, zero point energy, and bond dissociation energies D

~
e and D

~
o, for 14NF based on the 

fundamental vibration frequency ~o = 1123.4 cm-1 and anharmonicity e~e = 9.0 cm-1. Report the 
bond dissociation energies in cm-1, eV, and kJ mol-1. Compare the spectroscopic bond 
dissociation energy, as Do, with the thermochemical value. What effect does using the 
spectroscopic value have on the bond order-bond strength correlation in Figure 26.4.12? 
 
 
Answer: The plan is to use Eqs. 27.5.4, 27.5.8, 27.5.11, 27.5.18, and 27.5.12 to “correct for 
anharmonicity.” 

   For 14NF, the reduced mass is:  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

  = 



(14.003074)(18.998403)

(1.007825 + 12.00000)  (g mol-1) 
1

6.022137x1023 (1 kg/1000 g) 

     = 1.338617x10–26 kg 

   Based on ~o = 1123.4 cm-1 and e~e = 9.0 cm-1 

with Eq. 27.5.11:   ~e = o+ 2ee = 1123.4 cm-1 + 2(9.0) cm-1 = 1141.4 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(1141.4 cm-1)2(1.62668x10-27 kg) 

         k = 618.7 N m-1 

with Eq. 27.5.8:     ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(1141.4 cm-1) – ¼(9.0 cm-1) = 568.44 cm-1 

with Eq. 27.5.18:   D
~

e = ~2
ee~e = (1141.4 cm-1)2/(4(9.0 cm-1)) 

         D
~

e = 36,187 cm-1 = 4.49 eV = 433 kJ mol-1 
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with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 36,187 cm-1 – 568.44 cm-1 = 35618. cm-1 

         D
~

o = 4.42 eV = 426 kJ mol-1    (spectroscopic) 
 

The spectroscopic and thermochemical dissociation energies differ by 43%. The spectroscopic 
dissociation energy for NF is in better agreement than the thermochemical value with the 
dissociation energy for O2 and falls closer to the extrapolated curve on the plot in Figure 26.4.12. 
 
 
19. Bond order-bond strength correlations as displayed in Figure 26.4.12 play an important role 
in understanding the chemical bond. Figure 26.4.12 is based on second period elements. Do the 
same quantitative correlations hold for third period elements? Consider NCl as an example. 
Determine ~e, the force constant, zero point energy, and bond dissociation energies D

~
e and D

~
o, 

for 14N35Cl based on the fundamental vibration frequency ~o = 817.358 cm-1 and anharmonicity 
e~e = 5.300 cm-1. Report the bond dissociation energies in cm-1, eV, and kJ mol-1. How well do 
the force constant and bond dissociation energy of NCl agree with the bond order-bond strength 
correlation in Figure 26.4.12? 
 
 
Answer: The plan is to use Eqs. 27.5.4, 27.5.8, 27.5.11, 27.5.18, and 27.5.12 to “correct for 
anharmonicity.” 

   For 14N35Cl, the reduced mass is:  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

  = 



(14.003074)(34.968853)

(1.007825 + 12.00000)  (g mol-1) 
1

6.022137x1023 (1 kg/1000 g) 

     = 1.660378x10–26 kg 

   Based on ~o = 817.358 cm-1 and e~e = 5.300 cm-1 

with Eq. 27.5.11:   ~e = o+ 2ee = 817.358 cm-1 + 2(5.300) cm-1 = 827.958 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(827.958 cm-1)2(1.62668x10-27 kg) 

         k = 403.85 N m-1 

with Eq. 27.5.8:    ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(827.958 cm-1) – ¼(5.300 cm-1) = 412.654 cm-1 

with Eq. 27.5.18:   D
~

e = ~2
ee~e = (827.958 cm-1)2/(4(5.300 cm-1)) 

         D
~

e = 32340 cm-1 = 4.009 eV = 386.8 kJ mol-1 

with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 32340 cm-1 – 412.654 cm-1 = 31923. cm-1 

         D
~

o = 3.958 eV = 381.9 kJ mol-1    (spectroscopic) 
 

The often listed literature Do value is the spectroscopic value. The dissociation energy of NCl is 
in good agreement with the extrapolated curve on the plot in Figure 26.4.12, assuming a doubly-
bonded species. However, the NCl force constant, at 404 N m-1, is closer to the force constant for 
singly-bonded F2 at 450 N m-1 and B2 at 350 N m-1. Quantitatively, the correlation is poor based 
on the force constants. However, third period diatomics do show an excellent correlation with 
qualitative MO bond order, but with weaker bonds overall for a given bond order, compared to 
the second period diatomics. 
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20.  Determine ~e, the force constant, anharmonicity, zero point energy, and the bond 
dissociation energies D

~
e and D

~
o, for H2. The fundamental and overtones for H2 are listed below. 

 

 1 2 3 4 5 6 7 8 

~0 (cm-1) 4161.14 8087.11 11782.35 15250.36 18491.92 21505.65 24287.83 26830.97 

 
 
Answer:  The plan is to follow Example 27.5.1 by doing a Birge-Sponer plot, Eq.27.5.20, and 
using the relationship between the anharmonicity and the bond dissociation energy based on the 
Morse potential, Eq. 27.5.18. 
   A Birge-Sponer plot based on Eq. 27.5.20 is implemented in the following spreadsheet. 
 

 

 ~0 (cm-1) ~ (cm-1) 
1 4161.14 3925.97 
2 8087.11 3695.24 
3 11782.35 3468.01 
4 15250.36 3241.56 
5 18491.92 3013.73 
6 21505.65 2782.18 
7 24287.83 2543.14 
8 26830.97  

 
slope -229.603 4156.96 intercept 
± 0.809909 3.622021 ± 

r2 0.999938 4.285633 s(y) 
F 80368.15 5 df 

ssreg 1476094 91.83325 ssresid 
 

 

 
 
 

 

The curve fit gives the anharmonicity as e~e = 229.603/2 = 114.80  0.40 cm-1. The difference 
between the intercept and the experimental fundamental of 4161.14 cm-1 is caused by deviations 
from the Morse potential form and experimental error. The final spectroscopic constants are: 
 

with Eq. 27.5.11:   ~e = o+ 2ee = 4161.14 cm-1 + 2(114.80) cm-1 = 4390.74 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(4390.74 cm-1)2(1.62668x10-27 kg) 

         k = 1113. N m-1 

with Eq. 27.5.8:     ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(4390.74 cm-1) – ¼(114.80 cm-1) = 2166.7 cm-1 

with Eq. 27.5.18:   D
~

e = ~2
ee~e = (4390.74 cm-1)2/(4(114.80 cm-1)) 

         D
~

e = 41,982 cm-1 = 5.205 eV = 502.2 kJ mol-1 

with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 41,982 cm-1 – 2166.7 cm-1 = 39816. cm-1 

         D
~

o = 4.937 eV = 476.3 kJ mol-1 

 

  The literature values are ~e = 4401.2 cm-1, e~e = 121.34 cm-1 and D
~

o = 4.4774  0.0004 eV = 
432.00  0.04 kJ mol-1, Table 27.6.1. The literature values include the second anharmonicity 

y = -229.6x + 4157
R² = 0.9999
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correction giving greater accuracy. The need for accuracy in the bond dissociation energy of H2 
is nicely exemplified by Figure 26.2.2. 
 
 
21. The fundamental and first two overtones in the vibrational spectrum of the OH radical are 
3569.8, 6974.6, and 10217.8 cm-1, respectively. Determine ~e, the force constant, anharmonicity, 
zero point energy, and the bond dissociation energies, D

~
e and D

~
o. 

 
 
Answer: The plan is to follow Example 27.5.1 by doing a Birge-Sponer plot, Eq.27.5.20, and 
using the relationship between the anharmonicity and the bond dissociation energy based on the 
Morse potential, Eq. 27.5.18. 
   The successive differences between the transitions is plotted as a function of the overtone. The 
fundamental transition is included as the value for  = 0 in the following spreadsheet. 
 

 

 ~0 (cm-1) ~  (cm-1) 
0 3569.8 3569.8 
1 6974.6 3404.8 
2 10217.8 3243.2 

 
slope -163.30 3569.233 intercept 
 0.981495 1.267105  
r2 0.999964 1.388044 s(y) 
F 27681.89 1 df 
ssreg 53333.78 1.926667 ssresid 

 

 

 
 
 

 

 

 
The curve fit gives the anharmonicity as e~e = 81.65  0.5 cm-1. The final spectroscopic 
constants are: 
 

with Eq. 27.5.11:   ~e = o+ 2e~e = 3569.8 cm-1 + 2(81.65) cm-1 = 3733.1 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(3733.1 cm-1)2(1.62668x10-27 kg) 

         k = 804.3 N m-1 

with Eq. 27.5.8:     ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(3733.1 cm-1) – ¼(81.65 cm-1) = 1846.14 cm-1 

with Eq. 27.5.18:   D
~

e = ~2
ee~e = (3733.1 cm-1)2/(4(81.65 cm-1)) 

         D
~

e = 42,670 cm-1 = 5.29 eV = 510.4 kJ mol-1 

with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 42,670 cm-1 – 1846.14 cm-1 = 40824. cm-1 

         D
~

o = 5.06 eV = 488.4 kJ mol-1 

 

The literature values are ~e = 3737.76 cm-1, e~e = 84.88 cm-1 and D
~

o = 4.40 eV = 424. kJ mol-1, 
Table 27.6.1. The literature values include the second anharmonicity correction giving greater 
accuracy and averaging with thermochemically derived values. 
 

y = -163.30 x + 3569.23 
   R2 = 1.000 
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22.  Calculate the Morse a-parameter for the diatomic molecule Na2. The fundamental vibration 
frequency is ~e = 159.13 cm-1 and the dissociation energy from the bottom of the potential 
energy well is D

~
e = 5886.54 cm-1. The most useful final units for a are Å-1. [Hint: the units of 

(/(2De))½ are (s m-1), so you will need to convert to Å-1 using 1 Å = 1x10–10 m. Typical values 
of a are in the range of ~ 0.5-3 Å-1.] 
 
 
Answer:  The plan is to convert ~e to the corresponding radial frequency and D

~
e into joules. 

   In s-1:  e = 2~ec = 2(159.13 cm-1)(2.99792x1010 cm s-1) = 2.99736x1013 s-1 

The reduced mass is:   = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

   = (22.98977 g mol-1/2)/6.022137x1023(1 kg/1000 g) = 1.908772x10–26 kg 
 

The dissociation energy in joules is: 

 De = D
~

e hc = 5886.54 cm-1(6.626076x10–34 J s)(2.997925x1010 cm s-1) = 1.169330x10–19 J 
 

Using Eq. 27.5.8, the Morse a-parameter is: 

 a = e





2De

½
 = 2.99736x1013 s-1





1.908772x10–26 kg

2(1.169329x10–19 J)
½

 = 8.56313x109 m-1 

   = 8.56313x109 m-1(1x10-10 m/1 Å) = 0.856313 Å-1 
 

A note about units: In the ratio /(2De), you can use the reduced mass in kg mol-1 and the 
dissociation in J mol-1, since the per mol units cancel. Then the conversion factor 
1 cm-1 = 11.962658 J mol-1 is handy. Once again: 
 

 a = 2~ec 





2De

½
 

   = 2(159.13 cm-1)(2.99792x1010 cm s-1) 



11.49489 g mol-1(1 kg/1000 g)

2(5886.54 cm-1)(11.962658 J mol-1)

½
 

   = 8.56313x109 m-1(1x10-10 m/1 Å) = 0.856313 Å-1 
 
 
23.  Calculate the Morse a-parameter for H35Cl in Å-1. The fundamental vibration frequency is ~e 
= 2990.925 cm-1 and the dissociation energy from the bottom of the potential energy well is D

~
e = 

37270. cm-1. [Hint: The conversion 1 cm-1 = 11.96266 J mol-1 is handy. The units of (/(2De))½ 
are (s m-1), so you will need to convert to Å-1 using 1 Å = 1x10–10 m. Typical values of a are in 
the range of ~ 0.5-3 Å-1.] 
 
 
Answer: The plan is to convert ~e to the corresponding radial frequency and D

~
e into J mol-1. See 

the previous problem for comments on the units. 
   The reduced mass is: 
 

  = 
M1M2

M1 + M2
 = 

(1.007825)(34.968853)
1.007825 + 34.968853  = 0.979593 g mol-1 
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Using Eq. 27.5.8 and e = 2~ec, the Morse a-parameter is: 

 a = 2~ec 





2De

½
 

   = 2(2990.925 cm-1)(2.99792x1010 cm s-1) 



0.979593 g mol-1(1 kg/1000 g)

2(37270 cm-1)(11.962658 J mol-1)

½
 

   = 1.867x1010 m-1(1x10-10 m/1 Å) = 1.867 Å-1 
 
 
24.  Plot the vibrational potential energy function for Na2. Assume a Morse potential function. 
The dissociation energy from the bottom of the potential energy well is D

~
e = 5886.54 cm-1, the 

Morse a-parameter is a = 0.8563 Å-1, and the equilibrium bond length is Re = 3.079 Å. [See 
Problem 22 for the calculation of a.] 
 
 
Answer:  The plan is to write a spreadsheet based on Eqs. 27.5.7-27.5.8. 
 

The Morse function in cell D11 is given as: “=D$7*(1-EXP(-D$8*($C11-D$6)))^2”. 
 

 

A1 B C D E 

5 vibration freq.  ne 159.1245 cm-1 
6 bond length Re 3.07887 Å 
7 dissociation energy De 5886.54 cm-1 
8 Morse a a 0.8563  
      

10  R (Å) V(R) cm-1  
11  2 13581.22  
12  2.15 8694.26  
13  2.4 3658.84  
14  2.65 1159.12  
15  2.9 161.27  
16  3.15 20.55  
17  3.4 340.24  
18  3.65 880.69  
19  3.9 1501.03  
20  4.15 2121.75  
21  4.4 2701.01  
22  4.65 3219.58  
23  4.9 3671.42  
24  5.15 4057.81  
25  5.4 4383.85  
26  5.65 4656.24  
27  5.9 4882.13  

 
 

 

 
 
 

 
25.  Plot the Morse and harmonic vibrational potential energy functions for H35Cl. Assume the 
fundamental vibration frequency ~e = 2990.9 cm-1, dissociation energy from the bottom of the 
potential energy well is D

~
e = 37270 cm-1, the Morse a-parameter is a = 1.867 Å-1, and the 

equilibrium bond length is Re = 1.275 Å. [See Problem 23 for the calculation of a.] 
 
 

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

1.5 3.5 5.5

E 
(c

m
-1

)

R (Å)



Chapter 27: Rotational and Virbational Spectroscopy 137 

Answer:  The plan is to use Eq. 27.5.4 to calculate the bond force constant and then write a 
spreadsheet based on Eqs. 24.2.1 and 27.5.7-27.5.8. 

   The reduced mas for H35Cl is:  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

  = 



(1.007825)(34.968853)

(1.007825 + 34.968853)
1

6.022137x1023(1 kg/1000 g) = 1.6266526x10–27 kg 
 

The bond force constant is given by rearranging Eq. 24.2.1: 
 

     k = 42~2
ec2 = 42(2990.9 cm-1)2(2.997925x1010 cm s-1)2(1.62665x10-27 kg) = 516.30 N m-1 

 

The cell D4 gives this calculation: “=4*PI()^2*D3^2*(2.99792E+10)^2*D2” 
 

 

A1 B C D E 
2 reduced mass  1.627E-27 kg 
3 vibration freq. e 2990.9 cm-1 
4 force constant k 516.29563 N m-1 
5 bond length Re 1.275 Å 
6 dissociation energy De 37270 cm-1 
7 Morse a a 1.867 Å-1 
8     
9  R (Å) V(R) cm-1 V(Harm) 

10  0.8 75937.6 31031.7 
11  0.95 25954.8 14527.3 
12  1.1 5565.2 4212.1 
13  1.25 85.1 86.0 
14  1.4 1614.7 2149.0 
15  1.55 6009.7 10401.2 
16  1.7 11181.3 24842.6 
17  1.85 16146.3 45473.1 
18  2 20502.1 72292.7 
19  2.15 24138.7 105301.5 
20  2.3 27083.8 144499.5 
21  2.45 29422.1 189886.6 
22  2.6 31253.4 241462.9 
23  2.75 32674.2 299228.3 
24  2.9 33768.8 363182.8 
25  3.05 34608.1 433326.5 
26  3.2 35249.1 509659.4 
27  3.35 35737.5 592181.4 

 

 

 
 
 

 

The Morse function in cell D10 is: 
 “=D$6*(1-EXP(-D$7*($C10-D$5)))^2”. 
 

The harmonic potential is  V(R) = ½ k (R – Re)2, however to convert from joules to wave 

numbers is given by V
~

(R) = V(R)/(hc) where R is in meters, as given in cell E10: 
 

 “=$D$4*((C10-$D$5)/1E10)^2/2/6.2608E-34/2.99792E10” 
 
 
26.  Plot the Morse potential energy function for 7LiH. See Table 27.6.1 for the spectroscopic 
constants. Superimpose on the potential energy surface the 15 lowest vibrational energy levels, 
including the effects of anharmonicity. [Hints: See Problem 22 for hints on calculating the Morse 
a-parameter. A few rows of an example spreadsheet for Na2 are given below. The calculation of 
the Morse potential, rows B and C, is independent of the calculation of the vibrational energy 
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levels, rows D and E. However, you can use the R values as a dummy variable to superimpose 
the vibrational energy levels on top of the potential energy curve. In other words, use columns B, 
C, and E to construct your scatter plot. Join the potential energy data points with a curve, but 
leave the vibrational levels as dots. The horizontal position of the vibrational level data points 
will be meaningless, but the vertical position gives the vibrational energies. You can draw in the 
horizontal lines representing the vibrational levels by hand.] 
 

 For Na2:      Na2 
 

A1 B C D E 
2 reduced mass  11.495 g mol-1 
3 vibration freq. e 159.125 cm-1 
4 anharmonicity ee 0.725 cm-1 
5 bond length Re 3.079 Å 
6 dissociation E Do 0.720 eV 
7 dissociation E De 5887 cm-1 
8 Morse a a 0.856 Å-1 
9     

10 R (Å) V(R) cm-1   G() cm-1 
11 2.3 5293.9 0 79.4 
12 2.5 2423.6 1 237.1 
13 2.75 622.8 2 393.3 
14 3 28.7 3 548.0 
15 3.25 109.4 4 701.4 
16 3.5 539.6 5 853.2 
17 3.75 1124.8 6 1003.7 
18 4 1752.3 7 1152.6 
19 4.25 2360.0 8 1300.1 
20 4.5 2916.4 9 1446.2 

 

 

 
 

 
 
Answer:  The plan is to use Eq. 27.5.8 to calculate the Morse a-parameter and then write a 
spreadsheet based on Eqs. 27.5.7 and 27.5.9. The units work out if the reduced mass is given in 
kg mol-1 and the dissociation energy is converted to J mol-1 using 1 cm-1 = 11.9627 J mol-1. 

   The reduced mas for 7LiH is:  = 






M1M2

M1 + M2
 = 



(1.007825)(6.015122)

(1.007825 + 6.015122)  = 0.8632 g mol-1 

Using constants from Table 27.6.1 the dissociation energy from the bottom of the potential 
energy well using Eq. 27.5.12 is: 
 

 D
~

e = D
~

o + ½ ~e – ¼ ~e e  
                 = 2.429 ev(8065.5 cm-1/1 eV) + ½(1405.498 cm-1) – ¼(23.168 cm-1) = 20288. cm-1 

 

Using the discussion in Problem 22, the Morse a-parameter is: 

 a = 2~ec 





2De

½
 

   = 2(1405.498 cm-1)(2.99792x1010 cm s-1) 



0.8632 g mol-1(1 kg/1000 g)

2(20288. cm-1)(11.9627 J mol-1)

½
 

   = 8.56313x109 m-1(1x10-10 m/1 Å) = 1.116 Å-1 
 

Spreadsheet cell D8 does this calculation for the a-parameter: 
 

 =2*PI()*D3*2.998E10*SQRT(D2/1000/2/(D7*11.9627))*1E-10 
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The spreadsheet to generate the potential energy surface and the vibrational energies and the 
corresponding plot are listed below. Cell C11 for the Morse function is: 
 

 =D$7*(1-EXP(-D$8*($B11-D$5)))^2 
 

Cell E11 for the anharmonicity correscted vibrational energy levels is: 
 

 =$D$3*(D11+0.5)-$D$4*(D11+0.5)^2 
 

 

A1 B C D E 
2 reduced mass  0.863 g mol-1 
3 vibration freq. e 1405.498 cm-1 
4 anharmonicity ee 23.168 cm-1 
5 bond length Re 1.596 Å 
6 dissociation E Do 2.429 eV 
7 dissociation E De 20288 cm-1 
8 Morse a a 1.116 Å-1 
9     

10 R (Å) V(R) cm-1   G() cm-1 
11 0.98 19826.5 0 697.0 
12 1.25 4501.3 1 2056.1 
13 1.5 258.0 2 3368.9 
14 1.75 508.1 3 4635.4 
15 2 2677.1 4 5855.6 
16 2.25 5450.8 5 7029.4 
17 2.5 8197.3 6 8156.9 
18 2.75 10645.8 7 9238.0 
19 3 12710.2 8 10272.8 
20 3.25 14393.3 9 11261.3 
21 3.5 15736.0 10 12203.5 
22 3.75 16791.4 11 13099.3 
23 4 17612.6 12 13948.7 
24 4.25 18246.8 13 14751.9 
25 4.5 18734.0 14 15508.6 
26 4.75 19106.8 15 16219.1 
27 5 19391.2 16 16883.2 

 

 

 
 
 

 

The conclusion is that the illustrations in text books usually overemphasize the effects of 
anharmonicity. There are typically many more vibrational levels before the dissociation limit 
than are often depicted, for example Figure 27.5.2. 
 
 
27.  The overtone wave numbers are given directly by Eq. 27.5.8 for the transition '0: 

 ~'0 = G
~
' – G

~
 = ~e('+½) – e~e('+½)2 – ~e(+½) + e~e(+½)2 

         = ~e ' – e~e('2 + ' + ¼) + ¼ e~e 

         = – e~e '2 + (~e – e~e)'         (Morse, ':upper) 
 

Rather than plotting adjacent differences in a Birge-Sponer plot, this last equation can be used in 
least squares curve fitting. The result is essentially equivalent, but the process and the associated 
uncertainties are more direct. Use the data in Example 27.5.1 and a quadratic fit to determine ~e 

and e~e for H35Cl. Compare to the results in the example. 
 
 
Answer:  The overtone data can be directly input into the “Nonlinear Least Squares Curve 
Fitting” applet on the textbook Web site or companion CD. The result using the fit function 
“ax^2 + bx + c” with c fixed at c = 0 is shown below: 
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======================   Results   ========================= 
 a= -51.568 +- 0.0528 
 b= 2937.055 +- 0.22 
______________________ Output Data _________________________ 
     x                           y         y(fit)                    residual 
   1.0     2885.98 2885.48658  0.49342 
   2.0     5667.98 5667.83714  0.14286 
   3.0     8346.78   8347.05168 -0.27168 
   4.0     10922.83 10923.13019 -0.30019 
   5.0     13396.32 13396.07267  0.24733 
------------------------------------------------------------ 
 sum of squared residuals= 0.489 
 stand. dev. y values= 0.4037 
 correlation between a & b= -0.9696 

 

The fit anharmonicity, e~e = 51.568  0.053 cm-1, differs by 0.3% from the Birge-Sponer value 
in Example 27.5.1, which is certainly not significant. The fundamental vibration frequency is 
given by: 
 

 b = (~e – e~e) 

or ~e = b + e~e = (2937.055  0.22) + (51.568  0.053) cm-1 = 2988.62  0.23 cm-1 
 

which also differs from the result in Example 27.5.1 by an insignificant amount. One advantage 
of this direct method is that we can see that the between-parameter correlation coefficient is 
unacceptably large at -0.9696. This warning suggests that the second anharmonicity correction 
needs to be taken into account for an accurate representation of the data. The same conclusion 
can be drawn by noticing that there is some systematic curvature in the final curve fit results, 
rather than a random scatter of points about the curve fit polynomial. The choice of using the 
Birge-Sponer method or the quadratic curve fit is a matter of preference. 
 
 
28.  Often only the fundamental and first overtone vibration frequencies are observable in 
infrared spectra. The experimental values for the fundamental and the first overtone are sufficient 
to obtain a rough estimate of the anharmonicity and the bond dissociation energy. We can use 
H35Cl as a good test case. Determine ~e, the force constant, anharmonicity, zero point energy, 
and the bond dissociation energies D

~
e and D

~
o, for H35Cl. The fundamental and first overtone for 

H35Cl are 2885.98 and 5667.98 cm-1. 
 
 
Answer:  The first-overtone adjacent difference is ~1 = 2782.10 cm-1. Using just the 
fundamental and first overtone with Eq. 27.5.21 gives: 
 

 e~e = (~o – ~1)/2 = (2885.98 – 2782.10)/2 cm-1 = 51.90 cm-1 
 

The final spectroscopic constants are: 
 

with Eq. 27.5.11:   ~e = o+ 2ee = 2885.98 cm-1 + 2(51.90) cm-1 = 2989.78 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(2989.78 cm-1)2(1.62668x10-27 kg) 

         k = 515.9 N m-1 

with Eq. 27.5.8:   ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(2989.78 cm-1) – ¼(51.90 cm-1) = 1481.92 cm-1 
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with Eq. 27.5.18:   D
~

e = ~2
ee~e = (2989.78 cm-1)2/(4(51.90 cm-1)) 

         D
~

e = 43,058 cm-1 = 5.339 eV = 515.1 kJ mol-1 

with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 43,058 cm-1 – 1481.92 cm-1 = 41576. cm-1 

         D
~

o = 5.155 eV = 497.3 kJ mol-1 

 

In this case the results are remarkably close to the Birge-Sponer extrapolated value in Example 
27.5.1. In all honesty, the agreement with only a single observed overtone and more carefully 
obtained values is rarely so close. Factor of two errors can occur between values obtained using 
different extrapolation methods and between methods based on other experimental techniques 
(e.g. thermochemical values or values from mass spectrometry appearance potentials). 
 
 
29.  A schematic rotational-vibrational absorption spectrum of a diatomic molecule is shown 
below. The bond length is assumed to be the same in the two vibrational states. Sketch the 
resulting spectrum if, in the absence of any other changes, (a) the bond length of both vibrational 
states is increased, (b) the bond force constant is increased, (c) the temperature is increased, and 
(d) the bond length of just the upper vibrational state is increased. 
 

 
 
Answer:  The plan is to note that the missing, forbidden transition is at ~o = 1/2 k/ and the 
peak-to-peak spacing, assuming equal bond lengths in the two vibrational states, is 2B

~
. 

(a).  Increasing the bond length decreases the rotational constant B
~

, moving the peaks closer 
together. 
(b).  Increasing the bond force constant increases the fundamental vibration frequency, ~o, which 
shifts all the transitions to higher frequency. Higher wave number, higher energy, higher 
frequency, and bluer are all towards the left. 
(c).  Increasing temperature has no effect on the spectroscopic constants. However, increasing 
temperature does increase the population of higher rotational states, Figure 27.6.7. As a 
consequence the rotational transition of maximum intensity is a higher J state. 
(d).  Increasing the bond length of just the upper vibrational state decreases the B

~
' value. With 

B
~

' < B
~

", each line moves to lower wave number in proportion to the J"2 value, Eqs. 27.6.8-
27.6.9. In other words, lines further away from ~o move more than lines closer to ~o. The R-
branch lines get closer together and the P-branch lines get further apart. 
The effects are diagrammed below. 
 

~  (cm-1) 

A 
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30.  Write a spreadsheet to simulate the rotational-vibrational infrared spectrum of 12CH for the 
1  0 fundamental vibrational transition at 25C. Use the spectroscopic constants in Table 
27.6.1. Include six R-branch and six P-branch transitions. The relative intensity of the transitions 
is proportional to the Boltzmann weighting factors of the initial rotational levels for the  = 0 
vibrational state: p(J")  (2J" + 1) e–B~ " J"(J"+1)/kT. To emphasize the differences caused by 
B
~

' < B
~

", compare the appearance for e equal to zero, the literature value, and three times the 
literature value. [Hints: Display your results as an unconnected scatter plot of relative intensity, 
p(J"), versus the transition wave number. You won’t get a “stick” spectrum as in the previous 
problem, but you can draw lines by hand from each data point to the horizontal axis to sketch the 
spectrum. Remember that kT = 207.2 cm-1 at 25C.] 
 
 
Answer:  The plan is to use Eqs. 27.5.12, 27.6.5, and 27.6.6 to calculate the wave number of each 
transition. The intensity is proportional to the Boltzmann probability of occupation of each of the 
ground vibrational state energy levels. The ground state of CH is a doublet, so spectra of CH 
include Q-branches, which we neglect in this problem. 
   Using Eq. 27.5.12, the center of the rotational-vibrational band, which is the observed 
fundamental vibration frequency, is at: 
 

 ~o = ~e – 2e~e = 2731.87 cm-1 
 

The rotational constants for the " = 0 and ' = 1 states are calculated from e using Eq. 27.6.5. 
The spreadsheet is reproduced below.  
 

A 

 ~ (cm
-1

) ~o 

2B
~

 
R  J = +1 P  J = –1 

original 

A 

~o 

2B
~
 

(a). 

A 

~o 

(b). 

A 

~o 

(c). 

A 

~o 

(d). 

re  B
~

  

B
~ ' = B

~
" 

k   ~o 

T  

re'  B
~ '  

B
~ ' < B

~
" 



Chapter 27: Rotational and Virbational Spectroscopy 143 

 

A1 B C D E F 
2      
3 o 2731.87 cm-1   
4 Be 14.46 cm-1   
5 e 0.536 cm-1   
6 B" 14.192 cm-1 =0  
7 B' 13.656 cm-1 =1  
8      
9 J" J' F(J") cm-1   cm-1 p(J") 

10 6 7 168.672 2900.542 0.732 
11 5 6 147.792 2879.662 1.409 
12 4 5 125.84 2857.71 2.287 
13 3 4 102.816 2834.686 3.077 
14 2 3 78.72 2810.59 3.315 
15 1 2 53.552 2785.422 2.616 
16 0 1 27.312 2759.182 1.000 
17 1 0 -28.384 2703.486 2.616 
18 2 1 -57.84 2674.03 3.315 
19 3 2 -88.368 2643.502 3.077 
20 4 3 -119.968 2611.902 2.287 
21 5 4 -152.64 2579.23 1.409 
22 6 5 -186.384 2545.486 0.732 

 

 

 

     With e = 0.536 cm-1: 

0

1

2

3

4

25002600270028002900

A

wave number (cm-1)
 

 

     With e = 3(0.536 cm-1): 

0

1

2

3

4

25002600270028002900

A

wave number (cm-1)
 

 

Cell C3 to calculate the observed fundamental frequency is: “=2860.75-2*64.44” 
Cell C6 to calculate the rotational constant in the " = 0 vibrational state is: “=C4-C5/2” 
Cell C7 to calculate the rotational constant in the ' = 1 vibrational state is: “=C4-3*C5/2” 
Cell D10 for the first rotational term value is: “=$C$7*(C10)*(C10+1)-$C$6*B10*(B10+1)” 
Cell F10 to find the Boltzmann weighting factor for the J" state is: 
 

 =(2*B10+1)*EXP(-$C$6*B10*(B10+1)/207.2) 
 

The first transition wave number in cell E10 just adds the observed fundamental vibration wave 
number to the rotational term value: “=$C$3+D10” 
   Note that B

~
'  < B

~
" as expected, since the vibration-averaged bond length increases with 

vibrational quantum number thus decreasing the corresponding rotational constant. The effect of 
B
~

'  < B
~

" is that all transitions move to smaller wave number, but the transitions for high J" shift 
more than low J" transitions. As a result the R-branch transitions are closer together and the P-
branch transitions are further apart. Only when B

~
' = B

~
" is the adjacent peak spacing 2B

~
o. 

 
 

31.  The experimental fundamental vibration frequencies in infrared absorption for N2O are 
2224 cm-1, 1285 cm-1, and 588 cm-1. Assuming N2O is linear, determine if the bonding 
configuration is NNO or NON. 
 
 

Answer:  The plan is to use the three observed fundamentals and the expected number of IR 
active normal modes for a linear diatomic, symmetric or asymmetric, to determine the symmetry. 
   A linear triatomic has 3N – 5 = 3(3) – 5 = 4 normal modes. In order of expected decreasing 
wave number, the normal modes are an asymmetric stretch, a symmetric stretch, and a 
degenerate bend. For a symmetric linear triatomic, such as CO2, the symmetric stretch is IR 
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forbidden, giving two distinct fundamental frequencies. For an asymmetric linear triatomic, such 
as H–CN, the symmetric stretch gives a changing dipole moment, resulting in three distinct 
fundamental frequencies. Since N2O has three observed frequencies, the molecule must be 
asymmetric, arranged as NNO. 
 
 

32.  The experimental fundamental vibration frequencies in infrared absorption for BCl3 are 
985 cm-1, 462 cm-1, and 243 cm-1. The experimental Raman frequencies are 985 cm-1, 471 cm-1, 
and 243 cm-1. With reference to Table 27.7.1, determine if BCl3 is planar or trigonal pyramidal. 
Assign the observed frequencies to the distinct frequencies, 1 - 4.4,5 

 
 

Answer:  The plan is to count the number of distinct vibration frequencies that are expected for 
the two different geometries, based on Table 27.7.1. 
   The asymmetric stretches and asymmetric bends are doubly degenerate in both planar and 
trigonal pyramidal XY3 molecules. Doubly degenerate normal modes have the same vibration 
frequency. For a planar XY3 molecule, there are three distinct IR vibration frequencies and three 
distinct Raman frequencies. For a trigonal pyramidal XY3 molecule, all modes are IR and Raman 
active giving four distinct IR and four distinct Raman frequencies. Given the three observed IR 
and three observed Raman frequencies in BCl3, the molecule must be planar. 
   We can take the analysis a step further to confirm our conclusion. Assuming the asymmetric 
stretches occur at higher wave number than the symmetric stretches and the asymmetric bends 
occur at higher wave number than the symmetric bends, using the IR and Raman activities listed 
in Table 27.7.1 gives the following schematic appearance in the spectra. The sticks are the 
predictions using symmetry arguments and the experimental wave numbers are then assigned to 
the expected pattern based on IR or Raman activity: 
 

   |    |  | 
 IR  |    |  |     ~  
 mode  3  1  4  2 
 mode        asymm str           symm str        asymm bend          symm bend 
 exp.  985    462  243  cm-1 

 

   |  |  |   
 Raman  |  |  |       ~  
 mode  3  1  4  2 
 mode        asymm str         symm str       asymm bend        symm bend 
 exp.  985  471  243   

The two repeated transitions didn’t match up as expected. However, the pattern of three present 
and one missing is apparent. Consider the following assignments, which give consistent results 
for the two repeated frequencies: 
 

   |    |  | 
 IR  |    |  |     ~  
 mode  3  1  2  4 
 mode        asymm str           symm str           symm bend          asymm bend 
 exp.  985    462  243  cm-1 

 

   |  |    | 
 Raman  |  |    |     ~  
 mode  3  1  2  4 
 mode        asymm str         symm str          symm bend        asymm bend 
 exp.  985  471    243 
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The similar wave number of the symmetric stretch and symmetric bend is surprising. Molecular 
orbital calculations at the Hartree-Fock and B3LYP levels with a 6-311+G(2d,p) basis set give 
~11.5 cm-1 difference between these two modes. The difference at HF/6-31G* and HF/6-311G* 
is ~14 cm-1. The agreement between theory and experiment helps to validate the assignment. 
 
 
33.  The carbonyl stretch for ketones is active in both IR and Raman spectroscopy. Assume a 
carbonyl stretch occurs at 1800. cm-1. Calculate the wave lengths of the Stokes and anti-Stokes 
transitions in the Raman spectrum assuming laser excitation using a helium-neon laser at 
632.8 nm. 
 
 
Answer:  The plan is to convert to wave numbers to find the transitions and then finally to 
convert back to wave lengths. 

   The laser excitation is at:   ~ = 1/ = 
1

632.8 nm (1x10-9 m/1nm)(100 cm/1 m) = 15803. cm-1 
 

The Stokes transition is at 15803. cm-1 – 1800. cm-1 = 14003 cm-1 
Converting to meters and then inverting gives the wave length of the transition: 
 

  = 1/~ = 
1

14003 cm-1(100 cm/1 m) = 7.141x10 -9 m = 714.1 nm  (Stokes) 
 

The anti-Stokes transition is at 15803. cm-1 + 1800. cm-1 = 17603 cm-1 
Converting to meters and then inverting gives the wave length of the transition: 
 

  = 1/~ = 
1

17603 cm-1(100 cm/1 m) = 5.6808x10-9 m = 568.1 nm  (anti-Stokes) 

 
 
34.  Name three advantages of Raman spectroscopy over infrared absorption. Name a 
disadvantage. 
 
 
Answer: (1). Raman spectra occur in the near-infrared or visible region, depending on the laser 
used for excitation, which allows the use of glass or plastic cell windows. Raman spectra can be 
acquired through the containers of personal care products. Mid-infrared cell windows are usually 
hygroscopic and fragile. Expensive NaCl and KBr salt crystals are typically used for infrared cell 
windows. (2). Water is a poor Raman scatterer, so Raman spectra in aqueous solvents is 
common. Special techniques are required for aqueous infrared spectra, such as attenuated total 
reflection, ATR. (3). Raman is complementary to IR, which allows the determination of normal 
modes that are forbidden in the infrared. (4). Raman spectrometers can be easily configured as 
battery powered hand held devices. (5). Raman microscopes are more easily designed with 
higher spatial resolution than infrared microscopes, since the wave length for Raman scattering is 
bluer making the optics easier and giving a smaller diffraction limit. 
   The main disadvantage of Raman is poor sensitivity compared to infrared absorption. 
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35.  Identifying the point group of a molecule is done using Table 27.8.1 or using a flow chart 
such as Figure P27.1. 

 
 

Figure P27. 1: Flow chart to identify the point group of a molecule. * If there are three mutually 
perpendicular axes, choose the principal axis perpendicular to the axis that passes through the 
most atoms or the heaviest atoms. ** There are n perpendicular C2 axes, but they may not be 
obvious.6 

 

Determine the point group for the following species: (a) SO2; (b) CO2
3

–; (c) C2H4, ethylene; (d) 
trans-1,2-C2H2Cl2, trans-1,2-dichloroethylene; (e) cis-1,2-C2H2Cl2, cis-1,2-dichloroethylene; (f) 
ClF3 (T-shaped); (g) NH3; and (h) C2H6, staggered ethane. 
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Answers: The plan is to note that for nonlinear molecules the first step is to find the highest-fold 
rotational axis. If the highest-fold rotational axis is unique, then that axis is the principal axis, 
which gives the value of n, for example in Cnv or Dnh. 
   In displaying the symmetry elements of molecules, several standard symbols are used. 
Reflection planes are depicted as dotted lines or shaded planes and rotational axes are depicted as 
listed below. Solid symbols depict Cn axes and hollow symbols are for Sn axes. For molecules 
with higher symmetry, finding all the symmetry elements is usually not necessary. Instead, the 
characteristic symmetry operations as listed in Table 27.8.1 are sufficient.  
 

 
 

(a). SO2 is bent: The highest-fold axis is the C2 axis, with no perpendicular C2 axes, no collinear 
S2n [see Part (h) for an example], no h (which would be perpendicular to the principal axis), but 
with two v planes: giving C2v. 

(b). CO2
3

– is trigonal planar: The highest-fold axis is the C3 axis perpendicular to the plane of the 
atoms, with three perpendicular C2 axes, and a h: giving D3h. Note that atoms are not required to 
lie above and below the h plane; all atoms can lie in the h plane. 

(c) C2H4, ethylene is planar: The highest-fold axis is a C2 axis, with two perpendicular C2 axes, 
and a h: giving D2h. Since there are three mutually perpendicular C2 axes, the principal axis is 
chosen as the C2 that is perpendicular to the C2 axis that includes the C-atoms. However, there 
are two such C2-axes; the C2 that is perpendicular to the plane that contains the most atoms is 
chosen as the principal axis. 

(d) trans-1,2-C2H2Cl2 is planar: The highest-fold axis is the C2 axis, with no perpendicular C2 
axes, no collinear S2n, but with a h: giving C2h. 

(e) cis-1,2-C2H2Cl2 is planar: The highest-fold axis is the C2 axis, with no perpendicular C2 axes, 
no collinear S2n, no h, but with two v planes: giving C2v. 

(f) ClF3 is T-shaped: The highest-fold axis is the C2 axis, with no perpendicular C2 axes, no 
collinear S2n, no h, but with two v planes: giving C2v. 

(g). NH3 is trigonal pyramidal: The highest-fold axis is the C3 axis, with no perpendicular C2 
axes, no S2n , no h, but with three v planes: giving C3v. 

(h). Staggered C2H6 has two tetrahedral centers:  The drawing, above, is a Newman projection 
looking down the C-C axis. A hand-held model is really useful for this discussion. The S6 
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improper axis requires some explanation. Rotation about the C–C bond by 360/6 = 60 brings a 
H-atom on the front face of the molecule above a H-atom on the back face. These front-face and 
back-face atoms are related by a reflection across a plane perpendicular to the S6 axis. Next 
considering the vertical planes, the vertical reflection planes bisect the C2 axes, so they are 
officially d-dihedral planes. Following the chart then, the highest-fold pure rotational axis is the 
C3 axis, with three perpendicular C2 axes, an S6 improper axis, and three vertical d-planes: 
giving D3d. The perspective drawing, below, shows another view of the C2-axes. 
 

 
 
 
36. Determine the point group for the following species: (a) PtCl2

4
– (square planar); (b) PF5 

(trigonal bipyramidal). 
 
 
Answer: The plan is to follow Table 27.8.1 or the flow chart, Figure P27.1. 
 

 
 

(a). PtCl2
4

–: The highest-fold axis is the C4 axis perpendicular to the plane of the atoms, with four 

perpendicular C2 axes, and a h-plane: giving D4h. 

(b) PF5: The highest-fold axis is the C3 axis perpendicular to the trigonal-plane of atoms, with 
three perpendicular C2 axes, and a h-plane: giving D4h. 
 
 
37.  Determine the irreducible representations for the x, y, and z-components of the transition 
electric dipole moment in the point group whose character table is given below. The symmetry 
operations are three mutually perpendicular C2-axes, which are aligned along the x, y, and z-
axes. 
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 E C2(z) C2(y) C2(z) 
A 1  1  1  1 
B1 1  1 -1 -1 
B2 1 -1  1 -1 
B3 1 -1 -1  1 

 
Answer:  The plan is to use atomic px, py, and pz orbitals as a visual expedient for determining the 
symmetry relationships for the three C2-rotations. The components of the transition dipole 
transform in the same ways as the corresponding atomic orbitals. 
   The pz, py, and px atomic orbitals are shown below aligned along the z, y, and x-axes, which 
correspond to the rotational axes in this point group. The identity operation, E, is included for 
completeness. If the orbital changes phase the “character under rotation” is listed as “–“. For no 
change in phase the listing is “+”. 
 

 
 

 pz py px 

E + + + 
C2(z) + – – 
C2(y) – + – 
C2(x) – – + 
 B1 B2 B3 

 
Reading down the columns of the table reproduces the characters (read across) for the 
corresponding irreducible representation. The pz-orbital and the z-component of the transition 
electric dipole moment transform as B1. The py-orbital and the y-component of the transition 
electric dipole moment transform as B2. The px-orbital and the x-component of the transition 
electric dipole moment transform as B3. Any normal mode that transforms according to B1, B2, 
or B3 is allowed in infrared absorption. As a check, notice that the given character table is for the 
D2 point group, data section Table 27.8.2. 
 
 

38.  (a). Determine the symmetry species, which is the irreducible representation, of the 
following normal modes of ethylene, C2H4. (b). Determine the IR and Raman activity of each 
mode. 
 

y H          H  H           H   H          H  H          H–  
                                 \      /         \      / 
 x     C=C    C=C       C=C         C=C 
                                 /      \         /      \ 
 H          H  H          H   H          H  – H          H 
    stretch      stretch        bend            twist 
 

 (a).   (b).   (c).   (d). 
 

The transformation properties of out-of-plane motions might require some clarification. The 
progress of the C2(x) rotation, viewed from the top and along the C=C bond is shown below. 
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Answer:  The plan is to determine the symmetric or anti-symmetric behavior of the normal 
modes under the symmetry operations of the point group for ethylene, D2h. 
   The D2h character table is given below. 
 

D2h E C2(z) C2(y) C2(x)  i v(xy) v(xz) v(yz)  
Ag 1  1  1   1  1  1  1  1 x2, y2, z2 

B1g 1  1 -1 -1  1  1 -1 -1 xy 
B2g 1 -1  1 -1  1 -1  1 -1 xz 
B3g 1 -1 -1  1  1 -1 -1  1 yz 
Au 1  1  1  1 -1 -1 -1 -1  
B1u 1  1 -1 -1 -1 -1  1  1 z 
B2u 1 -1  1 -1 -1  1 -1  1 y 
B3u 1 -1 -1  1 -1  1  1 -1 x 

 

The symmetry under the operations of the point group and the corresponding irreducible 
representations are: 
 

D2h E C2(z) C2(y) C2(x) i v(xy) v(xz) v(yz)  activity 

(a) 1  1  1   1  1  1  1  1 ag R 
(b) 1 -1 -1  1 -1  1  1 -1 b3u IR  
(c) 1  1  1  1  1  1  1  1 ag R 
(d) 1  1  1  1 -1 -1 -1 -1 au  

 

   The character table lists the IR active modes as transforming according to the B1u, B2u, and B3u 
point groups. As a result only mode-b is IR allowed. The character table lists the Raman active 
modes as transforming according to the Ag, B1g, B2g, and B3g point groups. As a result mode-a 
and mode-c are Raman allowed. The Exclusion Rule applies because the group includes the 
inversion operation; as a result no mode is active in both in IR absorption and Raman scattering. 
Note that mode-d is not active in either form of vibrational spectroscopy. However, this mode is 
observable in electronic absorption and emission, since there are no symmetry restrictions on 
vibrational modes in electronic spectroscopy. 
 
 

39.  (a). Use group theory to determine the symmetry species of the normal modes of H2O, using 
the corresponding approach to the all-mode vibrational analysis in Figure 27.8.10. The symmetry 
species are the irreducible representations of the normal modes. (b). Determine which irreducible 
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representations correspond to stretches and which to bending vibrations. (c). Determine the 
modes that are IR and Raman active. 
 
 

Answer:  The plan is to use the C2v character table to decompose the reducible representation of 
the normal modes. We will find 3N – 6 = 3 normal modes and expect two stretching vibrations, 
since there are two bonds. 
   The geometry and character table for C2v are shown below. The v-plane is perpendicular to 
the plane of the paper; see also Figure 27.8.7. The characters of the representations of the 
translations, trans = x+y+z = A1+B1+B2, and the rotations, rot = A2+B1+B2, are appended to 
the end of the character table. 
 

 
 

C2v E C2 v v' h = 4  
A1 1  1  1  1 z, z2, x2,y2  

A2 1  1 -1 -1 xy Rz 

B1 1 -1  1 -1 y, yz Rx 
B2 1 -1 -1  1 x, xz Ry 
trans 3 -1  1  1 trans = A1+B1+B2  
rot 3 -1 -1 -1 rot = A2+B1+B2  

 
(a). The number of stationary atoms is multiplied by the corresponding character of the 
translations and then the characters of the translations and rotations are subtracted to give the 
total reducible representation of the vibrations. The complete decomposition is shown below. 
 

C2v   E C2 v v'            ai 

station. atoms 3  1 1  3   
trans 3 -1 1  1 product  
tot 9 -1  1  3   
trans 3 -1  1  1 subtract  
rot 3 -1 -1 -1 subtract  
vib 3  1 1  3 tot-trans-rot  
A1 1  1  1  1  1/h(vibA1) = 8/4  2A1 
A2 1  1 -1 -1  1/h(vibA2) = 0 
B1 1 -1  1 -1  1/h(vibB1) = 0 

B2 1 -1 -1  1  1/h(vibB2) = 4/4  B2 
 

For example, the decomposition for the A1 irreducible representation is based on Eq. 27.8.2: 

 a1 = 1/h 
4


j = 1

 v
j
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i
r
,
r
j Ci

i
r
,
r
j = ¼ [3(1)(1) + 1(1)(1) + 1(1)(1) + 3(1)(1)] 

     = 8/4  giving that A1 appears twice in vib 
 

The decomposition for the A2 irreducible representation is: 
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 a2 = ¼ [3(1)(1) + 1(1)(1) + 1(-1)(1) + 3(1)(-1)] 
     = 0  giving that A2 does not appear in vib 
 

The normal modes decompose as vib = 2A1 + B2, giving three modes with three distinct 
vibration frequencies (no degeneracies). All the normal modes are both IR and Raman active, 
which confirms Table 27.1.1. The next step is to determine the stretching modes. The bending 
modes are then obtained by difference with the overall total. 
(b).  The molecule is redrawn with double-headed arrows replacing each bond. The number of 
arrows that are stationary under the transformation operations of the classes of the point group 
are determined. The stretching analysis for H2O is listed below. 

 

 
 

D3h   E C2 v v'      ai 

stationary arrows: str 2  0  0  2  
A1 1  1  1  1 1/h(strA1) = 4/4  A1 
A2 1  1 -1 -1 1/h(strA2) = 0 
B1 1 -1  1 -1 1/h(strB1) = 0 
B2 1 -1 -1  1 1/h(strB2) = 4/4  B2 

 

The decomposition for the A1 irreducible representation is: 

   a1 = 1/h 
4


j = 1

 s
j
tri

i
r
,
r
j Ci

i
r
,
r
j = ¼ [2(1)(1) + 0(1)(1) + 0(1)(1) + 2(1)(1)] 

        = 4/4  giving that A1 appears once in str 
 

The stretching normal modes are str = A1 + B2, giving two stretching modes with two distinct 
vibration frequencies. Since all the modes include vib = 2A1 + B2, the remaining is a bending 
mode of A1 symmetry. These results agree with Figure 27.8.7. 
(c). Referring to the C2v character table, the x, y, and z-components of the transition dipole 
moment transform as B2, B1, and A1, respectively. The quadratic products, such as z2 and xy, 
cover all four irreducible representations, giving all the normal modes as possibly Raman active. 
As consequence, all the normal modes are both IR and Raman active, which confirms Table 
27.1.1. 
 
 
40.  Use group theory to determine the symmetry species of the normal modes of BF3, using the 
corresponding approach to the all-mode vibrational analysis in Figure 27.8.10. The symmetry 
species are the irreducible representations of the normal modes. Determine which irreducible 
representations correspond to stretches and which to bending vibrations. [Hint: for determining 
the symmetry of a trigonal planar molecule, the S3 improper rotations act just like C3 proper 
rotations, since all atoms lie in the h-plane.] 
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Answer:  The plan is to use the D3h character table to decompose the reducible representation of 
the normal modes. We will find 3N – 6 = 6 normal and expect three stretching vibrations, since 
there are three bonds. 
   The geometry and character table for D3h are shown below. The characters of the 
representations of the translations, trans = x+y+z = A2"+E', and the rotations, rot = A2'+E", 
are appended to the end of the character table. 
 

 
 

D3h E 2C3 3C2 h 2S3 3v h = 12  
A1' 1 1  1  1 1  1 x2+y2, z2  

A2' 1 1 -1  1 1 -1  Rz 

E' 2 -1  0  2 -1  0 (x, y),(xy, x2–y2)  
A1" 1 1  1 -1 -1 -1   
A2" 1 1 -1 -1 -1  1 z  
E" 2 -1  0 -2  1  0 (xz, yz) (Rx,Ry) 
trans 3 0 -1  1 -2  1 trans = A2"+E'  
rot 3 0 -1 -1  2 -1 rot = A2'+E"  

 

The number of stationary atoms is multiplied by the corresponding character of the translations 
and then the characters of the translations and rotations are subtracted to give the total reducible 
representation of the vibrations. The complete decomposition is shown below. Note that once 
you reach six total modes, you can stop. So the decomposition for E" is not necessary, but we 
included it for practice. 
 

D3h   E 2C3 3C2 h 2S3 3v            ai 

station. atoms 4  1  2 4  1  2   
trans 3  0 -1 1 -2  1 product  
tot 12  0 -2  4 -2  2   
trans 3  0 -1  1 -2  1 subtract  
rot 3  0 -1 -1  2 -1 subtract  
vib 6  0 -4 4 -2  2 tot-trans-rot  
A1' 1  1  1  1  1  1  1/h(vibA'1) = 12/12  A'1 
A2' 1  1 -1  1  1 -1  1/h(vibA'2) = 0 
E' 2 -1  0  2 -1  0  1/h(vibE')  = 24/12  2E' 
A1" 1  1  1 -1 -1 -1  1/h(vibA"1) = 0 
A2" 1  1 -1 -1 -1  1  1/h(vibA"2) = 12/12  A"2 
E" 2 -1  0 -2  1  0  1/h(vibE") = 0 

 
For example, the decomposition for the A1' irreducible representation is based on Eq. 27.8.2: 
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   a1 = 1/h 
6


j = 1

 v
j
ibi

i
r
,
r
j Ci

i
r
,
r
j = 1/12 [6(1)(1) + 0(1)(2) + (-4)(1)(3) + 4(1)(1) + (-2)(1)(2) + 2(1)(3)] 

        = 12/12  giving that A1' appears once in vib 
 

The decomposition for the A2' irreducible representation is: 
 

   a2 =  1/12 [6(1)(1) + 0(1)(2) + (-4)(-1)(3) + 4(1)(1) + (-2)(1)(2) + 2(-1)(3)] 

        = 0  giving that A2' does not appear in vib 
 

The normal modes decompose as vib = A1' + 2E' + A2", giving six modes with four vibration 
frequencies, as listed in Table 27.7.1. Because E normal modes are doubly degenerate, the two 
different A1-modes and the two different sets of E'-modes give six total normal modes as 
expected from the 3N-6 rule. The A1' mode is Raman active, the E' modes are both IR and 
Raman active, and the A2" mode is IR active. The next step is to determine the stretching modes. 
The bending modes are then obtained by difference with the overall total. 
   The molecule is redrawn with double-headed arrows replacing each bond. The number of 
arrows that are stationary under the transformation operations of the classes of the point group 
are determined. The stretching analysis for BF3 is listed below. 

 

 
 

D3h   E 2C3 3C2 h 2S3 3v      ai 

stationary arrows: str 3  0  1 3  0  1  
A1' 1  1  1  1  1  1 1/h(strA'1) = 12/12  A'1 
A2' 1  1 -1  1  1 -1 1/h(strA'2) = 0 
E' 2 -1  0  2 -1  0 1/h(strE')  = 12/12  E' 
A1" 1  1  1 -1 -1 -1 1/h(strA"1) = 0 
A2" 1  1 -1 -1 -1  1 1/h(strA"2) = 0 
E" 2 -1  0 -2  1  0 1/h(strE") = 0 

 
The decomposition for the A1' irreducible representation is: 

   a1 = 1/h 
6
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j = 1/12 [3(1)(1) + 0(1)(2) + (1)(1)(3) + 3(1)(1) + (0)(1)(2) + 1(1)(3)] 

        = 12/12  giving that A1' appears once in str 
 

The stretching normal modes are str = A1' + E', giving three stretching modes with two vibration 
frequencies. Since all the modes include vib = A1' + 2E' + A2", the remaining bending modes are  
E' + A2". This result verifies the listing in Table 27.7.1. 
 
 

v F F 
v 

v 
F 

h 

B 



Chapter 27: Rotational and Virbational Spectroscopy 155 

41.  (a). Use group theory to determine the symmetry species of the normal modes of T-shaped 
ClF3, using the corresponding approach to the all-mode vibrational analysis in Figure 27.8.10. 
The symmetry species are the irreducible representations of the normal modes. (b). Determine 
which irreducible representations correspond to stretches and which to bending vibrations. (c). 
Can the number of IR and Raman active bands distinguish between trigonal-planar and T-shaped 
geometries for ClF3? [Hint: Use Table 27.7.1 for the symmetry species of a trigonal planar XY3 
moleucle.] 
 
 
Answer:  The plan is to use the C2v character table to decompose the reducible representation of 
the normal modes. We will find 3N – 6 = 6 normal and expect three stretching vibrations, since 
there are three bonds. 
   The geometry and character table for C2v are shown below. The characters of the 
representations of the translations, trans = x+y+z = A1+B1+B2, and the rotations rot = 
A2+B1+B2, are appended to the end of the character table. 
 

 
 

C2v E C2 v v' h = 4  
A1 1  1  1  1 z, z2, x2,y2  

A2 1  1 -1 -1 xy Rz 

B1 1 -1  1 -1 y, yz Rx 
B2 1 -1 -1  1 x, xz Ry 
trans 3 -1  1  1 trans = A1+B1+B2  
rot 3 -1 -1 -1 rot = A2+B1+B2  

 
(a). The number of stationary atoms is multiplied by the corresponding character of the 
translations and then the characters of the translations and rotations are subtracted to give the 
total reducible representation of the vibrations. The complete decomposition is shown below. 
 

C2v   E C2 v v'            ai 

stationary atoms 4  2 2  4   
trans 3 -1 1  1 product  
tot 12 -2  2  4   
trans 3 -1  1  1 subtract  
rot 3 -1 -1 -1 subtract  
vib 6 0 4  2 tot-trans-rot  
A1 1  1  1  1  1/h(vibA1) = 12/4  3A1 
A2 1  1 -1 -1  1/h(vibA2) = 0 
B1 1 -1  1 -1  1/h(vibB1) = 8/4  2B1 

B2 1 -1 -1  1  1/h(vibB2) = 4/4  B2 
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For example, the decomposition for the A1 irreducible representation is based on Eq. 27.8.2: 

 a1 = 1/h 
4


j = 1

 v
j
ibi

i
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,
r
j Ci

i
r
,
r
j = 1/4[6(1)(1) + 0(1)(1) + 4(1)(1) + 2(1)(1)] 

     = 12/4  giving that A1 appears three times in vib 
 

The decomposition for the A2 irreducible representation is: 
 

 a2 = 1/4[6(1)(1) + 0(1)(1) + 4(-1)(1) + 2(1)(-1)] 

     = 0  giving that A2 does not appear in vib 
 

The normal modes decompose as vib = 3A1 + 2B1 + B2, giving six modes with six vibration 
frequencies. All the normal modes are both IR and Raman active. The next step is to determine 
the stretching modes. The bending modes are then obtained by difference with the overall total. 
(b).  The molecule is redrawn with double-headed arrows replacing each bond. The number of 
arrows that are stationary under the transformation operations of the classes of the point group 
are determined. The stretching analysis for ClF3 is listed below. 

 

 
 

C2v   E C2 v v'      ai 

stationary arrows: str 3  1 1  3  
A1 1  1  1  1 1/h(strA1) = 8/4  2A1 
A2 1  1 -1 -1 1/h(strA2) = 0 
B1 1 -1  1 -1 1/h(strB1) = 0 
B2 1 -1 -1  1 1/h(strB2) = 4/4  B2 

 

The decomposition for the A1 irreducible representation is: 

   a1 = 1/h 
4


j = 1

 s
j
tri
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,
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i
r
,
r
j = 1/4[3(1)(1) + 1(1)(1) + 1(1)(1) + 3(1)(1)] 

        = 8/4  giving that A1 appears twice in str 
 

The stretching normal modes are str = 2A1 + B2, giving three stretching modes with three 
vibration frequencies. Since all the modes include vib = 3A1 + 2B1 + B2, the remaining bending 
modes are A1 + B1 + B2. Note that formaldehyde, CH2=O, is also planar tetra-atomic C2v and 
therefore gives the same normal mode results. 
(c). Referring to the C2v character table, the x, y, and z-components of the transition dipole 
moment transform as B2, B1, and A1, respectively. The quadratic products, such as z2 and xy, 
cover all four irreducible representations, giving all normal modes as possibly Raman active. As 
a consequence, all the normal modes are both IR and Raman active. 
   Yes, the number of IR and Raman active bands does distinguish between trigonal-planar and 
T-shaped geometries for ClF3. From Table 27.7.1, for trigonal-planar D3h XY3 molecules there 
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are three IR and three Raman transitions. From the analysis above, all normal modes of C2v XY3 
molecules are both IR and Raman active. 
 
 
42.  (a). Use group theory to determine the symmetry species of the normal modes of square-
planar XeF4, using the corresponding approach to the all-mode vibrational analysis in Figure 
27.8.10. The symmetry species are the irreducible representations of the normal modes. (b). 
Determine which irreducible representations correspond to stretches and which to bending 
vibrations. (c). Determine the IR and Raman activity of the modes. The projection of the 
symmetry operations of the D4h point group upon XeF4 is shown below. [Hints: There are two C4 
axes, one for clockwise and one for counterclockwise rotation. The C2 axis is coincident with the 
C4 axis, while the C2' and C2" are perpendicular to the C4 axes. The C2 axis is required for 
mathematical completeness and is equivalent to two successive C4 rotations in the same 
direction. For determining the symmetry of a square-planar molecule, the S4 improper rotations 
act just like C4 proper rotations, since all atoms lie in the h-plane.] 
 

 
 
 
Answer:  The plan is to use the D4h character table to decompose the reducible representation of 
the normal modes. We will find 3N – 6 = 9 normal modes and expect four stretching vibrations, 
since there are four bonds. 
(a).  The character table for D4h is shown below. The characters of the representations of the 
translations, trans = x+y+z = A2u+Eu, and the rotations, rot = A2g+Eg, are appended to the end 
of the character table. 
 

D4h E 2C4 C2 2C2' 2C2" i 2S4 h 2v 2d h = 16  
A1g 1  1  1  1  1  1  1  1  1  1 x2+y2, z2  

A2g 1  1  1 -1 -1  1  1  1 -1 -1  Rz 

B1g 1 -1  1  1 -1  1 -1  1  1 -1 (x2–y2)  
B2g 1 -1  1 -1  1  1 -1  1 -1  1 xy  
Eg 2  0 -2  0  0  2  0 -2  0  0 (xz, yz) (Rx,Ry) 
A1u 1  1  1  1  1 -1 -1 -1 -1 -1   
A2u 1  1  1 -1 -1 -1 -1 -1  1  1 z  
B1u 1 -1  1  1 -1 -1  1 -1 -1  1   
B2u 1 -1  1 -1  1 -1  1 -1  1 -1   
Eu 2  0 -2  0  0 -2  0  2  0  0 (x,y)  
trans 3  1 -1 -1 -1 -3 -1  1  1  1 trans = A2u+Eu  
rot 3  1 -1 -1 -1  3  1 -1 -1 -1 rot = A2g+Eg  
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The number of stationary atoms is multiplied by the corresponding character of the translations 
and then the characters of the translations and rotations are subtracted to give the total reducible 
representation of the vibrations. The complete decomposition is shown below. 
 

D4h E 2C4 C2 2C2' 2C2" i 2S4 h 2v 2d      ai 

stat. atms 5  1  1  3  1  1  1  5  3  1  
trans 3  1 -1 -1 -1 -3 -1  1  1  1 product 
tot 15  1 -1 -3 -1 -3 -1  5  3  1  
trans  3  1 -1 -1 -1 -3 -1  1  1  1 subtract 
rot  3  1 -1 -1 -1  3  1 -1 -1 -1 subtract 
vib  9 -1  1 -1  1 -3 -1  5  3  1  
A1g  1  1  1  1  1  1  1  1  1  1 1/h(vibA1g) = 16/16  A1g 
A2g  1  1  1 -1 -1  1  1  1 -1 -1 1/h(vibA2g) = 0 
B1g  1 -1  1  1 -1  1 -1  1  1 -1 1/h(vibB1g) = 16/16  B1g 
B2g  1 -1  1 -1  1  1 -1  1 -1  1 1/h(vibB2g) = 16/16  B2g 
Eg  2  0 -2  0  0  2  0 -2  0  0 1/h(vibEg) = 0 
A1u  1  1  1  1  1 -1 -1 -1 -1 -1 1/h(vibA1u) = 0 
A2u  1  1  1 -1 -1 -1 -1 -1  1  1 1/h(vibA2u) = 16/16  A2u 
B1u  1 -1  1  1 -1 -1  1 -1 -1  1 1/h(vibB1u) = 0 
B2u  1 -1  1 -1  1 -1  1 -1  1 -1 1/h(vibB2u) = 16/16  B2u 
Eu  2  0 -2  0  0 -2  0  2  0  0 1/h(vibEu) = 32/16  2Eu 

 
For example, the decomposition for the A1g irreducible representation is based on Eq. 27.8.2: 
 

 a1 = 1/h 
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     = 1/16 [9(1)(1) + (-1)(1)(2) + 1(1)(1) + (-1)(1)(2) + 1(1)(2) + (-3)(1)(1) + (-1)(1)(2) +  
               5(1)(1) + 3(1)(2) +1(1)(2)] 
    = 16/16  giving that A1g appears once in vib 
 

The decomposition for the A2g irreducible representation is: 
 

 a2 = 1/16 [9(1)(1) + (-1)(1)(2) + 1(1)(1) + (-1)(-1)(2) + 1(-1)(2) + (-3)(1)(1) + (-1)(1)(2) + 
     5(1)(1) + 3(-1)(2) +1(-1)(2)] 
    = 0   giving that A2g does not appear in vib 
 

The normal modes decompose as vib = A1g + B1g + B2g + A2u + B2u + 2Eu, giving nine vibration 
frequencies. Because the Eu normal modes are doubly degenerate, the two different sets of Eu-
modes give nine total normal modes as expected from the 3N-6 rule. The next step is to 
determine the stretching modes. The bending modes are then obtained by difference with the 
overall total. 
(b).  The molecule is redrawn with double-headed arrows replacing each bond. The number of 
arrows that are stationary under the transformation operations of the classes of the point group 
are determined. The stretching analysis for XeF4 is listed below. 
 



Chapter 27: Rotational and Virbational Spectroscopy 159 

 
 

D4h E 2C4 C2 2C2' 2C2" i 2S4 h 2v 2d      ai 

stationary 
arrows 

4  0  0  2  0  0  0  4  2  0  str 

A1g  1  1  1  1  1  1  1  1  1  1 1/h(vibA1g) = 16/16  A1g 
A2g  1  1  1 -1 -1  1  1  1 -1 -1 1/h(vibA2g) = 0 
B1g  1 -1  1  1 -1  1 -1  1  1 -1 1/h(vibB1g) = 16/16  B1g 
B2g  1 -1  1 -1  1  1 -1  1 -1  1 1/h(vibB2g) = 0 
Eg  2  0 -2  0  0  2  0 -2  0  0 1/h(vibEg) = 0 
A1u  1  1  1  1  1 -1 -1 -1 -1 -1 1/h(vibA1u) = 0 
A2u  1  1  1 -1 -1 -1 -1 -1  1  1 1/h(vibA2u) = 0 
B1u  1 -1  1  1 -1 -1  1 -1 -1  1 1/h(vibB1u) = 0 
B2u  1 -1  1 -1  1 -1  1 -1  1 -1 1/h(vibB2u) = 0 
Eu  2  0 -2  0  0 -2  0  2  0  0 1/h(vibEu) = 16/16  Eu 

 

The decomposition for the A1g irreducible representation is: 
 

 a1 = 1/h 
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j = 1/16 [4(1)(1) + 0(1)(2) + 0(1)(1) + 2(1)(2) + 0(1)(2) + 0(1)(1) +  

       0(1)(2) + 4(1)(1) + 2(1)(2) + 0(1)(2)] 
     = 16/16  giving that A1u appears once in str 
 

The stretching normal modes are str = A1g + B1g + Eu, giving four stretching modes with three 
vibration frequencies. Since all the modes include vib = A1g + B1g + B2g + A2u + B2u + 2Eu, the 
remaining bending modes are B2g + A2u + B2u + Eu. 
 
(c).  The x, y, and z-components of the transition dipole moment transform as Eu, Eu, and A2u 
respectively. The quadratic products, such as z2 and (x2 – y2), transform as A1g, B1g, B2g, and Eg. 
Note that for a molecule with a center of symmetry, the x, y, z-components of the transition 
dipole all transform as “u” irreducible representations while the polarizability components 
transform as “g” irreducible representations, verifying the Exclusion rule. As a consequence, the 
A2u and both Eu normal modes are possibly infrared active, while the A1g, B1g, and B2g are 
possibly Raman active. The B2u is forbidden in both infrared absorption and Raman scattering. 
 
 
43.  The normal mode vibrations of a square-planar XY4 molecule transform as vib = A1g + B1g 
+ B2g + A2u + B2u + 2Eu. The normal mode vibrations of a tetrahedral XY4 transform as vib = A1 
+ E + 2T2. For molecules such as CH4 or XeF4, are square-planar XY4 and tetrahedral XY4 
geometries distinguishable on the basis of the number of IR and Raman active modes? 
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Answer:  The plan is to use the D4h and Td character tables, Table 27.8.2 in the data section, to 
determine if each normal mode is IR or Raman active. This decision is based on the 
transformation properties of alternatively: the x, y, z-components of the electric transition dipole 
moment for IR and the quadratic components of the polarizability for the Raman transitions. 
   Note that E-modes are doubly degenerate, while T-modes are triply degenerate. Each mode 
within the degenerate set have the same transition frequency. 
   For square-planar D4h molecules, the x, y, and z-components of the transition dipole moment 
transform as Eu, Eu, and A2u respectively. The quadratic products, such as z2 and (x2 – y2), 
transform as A1g, B1g, B2g, and Eg. With overall vib = A1g + B1g + B2g + A2u + B2u + 2Eu, the A2u 
and both doubly-degenerate Eu normal modes are possibly infrared active, while the A1g, B1g, 
and B2g are possibly Raman active. The B2u is forbidden in both infrared absorption and Raman 
scattering. 
   For tetrahedral Td molecules, the x, y, and z-components of the transition dipole moment 
transform as T2. The quadratic products, such as xy and (x2 – y2), transform as A1, E, and T2. 
With overall vib = A1 + E + 2T2, both triply-degenerate T2 normal modes are possibly infrared 
active, while all nine modes are possibly Raman active. The B2u is forbidden in both infrared 
absorption and Raman scattering. 
   The results for a square-planar XY4 and a tetrahedral XY4 are distinguishable on the basis of 
the number of IR and Raman active modes and the corresponding distinct frequencies: 
 

Geometry 
XY4 

IR active 
(possibly) 

Raman active 
(possibly) 

IR & Raman 
forbidden 

square-planar 5 modes / 3 ~s 3 modes / 3 ~s 1 

tetrahedral 6 modes / 2 ~s 9 modes / 4 ~s 0 
 

Since square-planar molecules have a center of symmetry, no normal mode is both IR and 
Raman active, the transition frequencies are mutually exclusive. However, for tetrahedral 
molecules the T2-modes are both IR and Raman active. For tetrahedral molecules two different 
frequencies can possibly occur in both the IR and Raman. 
 
 
44.  Challenge Problem:  Determine the equilibrium bond length Re, dissociation energy D

~
e, 

Morse a-parameter, fundamental vibration frequency ~e, and anharmonicity for HF using 
molecular structure calculations at the CCSD(T)/cc-pVTZ level. Assume the potential energy 
surface is in the Morse form with Eq. 27.5.7 giving the fundamental vibration frequency and Eq. 
27.5.19 giving the anharmonicity. Calculate the dissociation energy, D

~
e, using separate 

calculations of the atomic energies of H- and F-atoms. Compare the theoretical spectroscopic 
constants with experimental literature values. [Hint: you will need to do calculations for HF at 
the geometry optimized bond length and two other values of the internuclear separation, use Re – 
0.10 Å and Re + 0.15 Å. Then fit your three data points to a Morse potential in a spreadsheet.] 
 
 
Answer: The plan to note that the bond dissociation energy is for the process 
HF  H (2S) + F(2P) with the D

~
e calculated as the difference in energy of the products and 

reactants. 
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   The minimized bond length for HF was 0.917 Å with the energy -100.3383563 H. The values 
for the two additional bond lengths and the H- and F-atoms are listed in the spreadsheet, below. 
The spreadsheet was developed to compare the electronic structure energy values to Morse 
potential values based on the calculated D

~
e, Re, and a guessed value for the Morse a-parameter. 

The Morse a-parameter, cell G3, is varied to minimize the sum of squared residuals, cell H11, 
between the electronic structure calculation data points, cells F7:F9, and the fit Morse curve, 
cells G7:G9. Goal search can be used, but because of convergence problems, we had to finish by 
hand to achieve four significant figures in a. The final fit curve is shown in the plot below. The 
electronic structure values are the solid black triangles and the Morse curve values are in hollow 
squares. The derived fit is not perfect because the potential energy curve is not exactly a Morse 
potential. 
 

A1 B C D E F G H I J 
2  Atoms E (H)  De 9.51E-19 J 5.937132 eV 
3  H -0.499809811  a 2.2804 Å -1 2.280E+10 m-1 
4  F -99.62036076  Re 0.917 Å   
5  Molecule        
6  HF R (Å) E (H) E-Emin (H) E-Emin (J) Morse (J) residual2   
7  0.817 -100.323722 0.01463 6.38E-20 6.24E-20 1.95E-42   
8  0.917 -100.3383563 0 0.00E+00 0 0   
9  1.067 -100.3203793 0.01798 7.84E-20 7.98E-20 2.12E-42   

10          
11      ssr*1E40 = 0.040649   

 
 

12     
13  M1 1.007825 g mol-1 
14  M2 18.998403 g mol-1 
15   1.59E-27 kg 
16  e 1.26E+14 s-1 
17  e 4187.455392 cm-1 
18  k 989.3258205 N m-1 
19  ee 91.57056 cm-1 
20     
21  1H = 2625.4974 kJ mol-1 
22  NA= 6.02E+23  
23  c= 3.00E+10 cm s-1 
24  h= 6.63E-34 J s 

 
 
 

 

 
 

Cell G2 for the dissociation energy is: “=(D3+D4-D8)*D21/D22*1000” 
Cell G7 for the Morse curve is: “=$G$2*(1-EXP(-$G$3*(C7-$G$4)))^2” 
Cell H7 for the first squared residual is: “=(F7-G7)^2” 
Cell H11 sums the squared residuals and multiplies by a fixed factor of 1040 to provide a 
convenient scale for the fit evaluation: “=SUM(H7:H10)*1E40” 
Cell G3 is adjusted to minimize cell H11, which at the same time provides a better fit in the plot. 
   Once the Morse a-parameter is obtained by manual curve fitting the remaining spectroscopic 
parameters are calculated. The reduced mass for HF is: 
 

 HF = 
(1.007825)(18.998403)
1.007825+18.998403  (g mol-1) 

1
NA

 (1kg/1000 g) = 1.589229x10-27 kg 

With Eq. 27.5.7, a must be converted to m-1 from Å-1 to match joule units for De: 
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 rearranging a = e





2De

½
  gives: 

 e = 
a

2 




2De



½
= 

2.2804x1010 m-1

2  



2(9.51234x10-19J)

 1.589229x10-27 kg

½
 = 1.25573x1014 s-1 

 ~e = e/c = 4187.5 cm-1 
With Eq. 27.5.18, rearranging gives: 
 

 e~e = 
a2h

82c
 = 

(2.2804x1010 m-1)2 6.6260755x10-34 J s
82(1.589229x10-27 kg)(2.99879246x1010 cm s-1)

 = 91.571 cm-1 

 

Comparison with the experimental literature values shows gratifying agreement. Using Eq. 
27.5.12, in the form D

~
o = D

~
e – ½ ~e + ¼ e~e, to put the calculated and experimental dissociation 

energies on the same basis: 
 

Parameter CCSD(T)/cc-pVTZ Experimental 
Re 0.917 Å 0.91681 Å 
Do 5.680 eV 5.86 eV 

~e 4187.5 cm-1 4138.385 cm-1 

e~e 91.571 cm-1 89.943 cm-1 

 
 
45.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a). Doppler line broadening for UV transitions is greater than for microwave transitions. 
(b). As molecules increase in size, rotational constants decrease. 
(c). The wave number for vibrational transitions increases with temperature. 
(d). In Raman scattering, the anti-Stokes lines are more intense than the Stokes lines. 
(e). Two states with the same energy always mix and transitions to the two states can share 

intensity even if otherwise forbidden. 
 
 
Answers: 
(a). True: The Doppler broadening in wave numbers or frequency is given as a fraction of the 
transition frequency, Eq. 27.2.2. 
(b). True: For example, for a diatomic molecule the B

~
 value is inversely proportional to the bond 

length. In general the moment of inertia increases with increasing size, which decreases the 
rotational constant. 
(c). False: Vibrational frequencies depend only on the quantum spacing of the energy levels, 
which does not depend on temperature. The Boltzmann population of excited states increases 
with temperature giving a change in transition intensity. As a result hot bands are more intense 
with increasing temperature. Doppler and collisional broadening increase with temperature. 
(d). False: Anti-Stokes lines originate in an excited vibrational state, which by the Boltzmann 
distribution have a much smaller population than the ground state. 
(e). Not quite true: To interact the two states must have the same symmetry. For example, anti-
symmetric stretches can only interact with overtones or combinations that are also anti-
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symmetric. As a consequence Fermi resonances aren’t as common as they would be without the 
symmetry restriction. However, the remainder of the statement is correct; with an interaction, 
transitions to the two states can share intensity even if otherwise forbidden. 
 
 
46.  The selection rule  =  1 for harmonic vibrations can also be motivated by using the odd 
or even symmetry of the integrand in the transition dipole moment integrals, Eqs. 27.9.13. Note 
that the harmonic oscillator wave functions alternate between even or odd for increasing , Table 
24.1.1 and Figure 24.2.3b. (a). Assume " for the lower level is even, use the overall even/odd 
symmetry of the integrand to note if the transition dipole vanishes for  = –2, –1, 0, +1, +2. (b). 
Assume " for the lower level is odd, use the overall even/odd symmetry of the integrand to note 
if the transition dipole vanishes for  = –2, –1, 0, +1, +2. 
 
 
Answer:  The plan is to note that the harmonic oscillator wave functions are purely odd or even, 
while the x, y, or z-component of the extension operator is odd. 
   The harmonic oscillator wave functions alternate between even and odd for increasing . The 
transition electric dipole moment is proportional to the integral given by Eqs. 27.9.13: 
 

  ' (R – Re) "  dR  
 

The integrand factors into three functions: the final harmonic oscillator wave function, the 
extension operator (R – Re), and the initial harmonic oscillator wave function. The extension 
operator is purely odd around the equilibrium position. 
 
(a). With " even, the final state is ' as given by the following table: 
 

' parity integrand overall parity transition dipole 
"– 2 even even odd even odd forbidden 
"– 1 odd odd odd even even allowed 
" even even odd even odd forbidden 
" +1 odd odd odd even even  allowed 
" +2 even even odd even odd forbidden 

 

(b). With " odd, the final state is ' as given by the following table: 
 

' parity integrand overall parity transition dipole 
"– 2 odd odd odd odd odd forbidden 
"– 1 even even odd odd even allowed 
" odd odd odd odd odd forbidden 
" +1 even even odd odd even  allowed 
" +2 odd odd odd odd odd forbidden 

 

This method doesn’t work for odd  greater than +3 or less than –3. The general integral result 
in Eq. 27.9.15 resolves those cases. 
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47.  The “ABC Rotational Constant Calculator” applet determines the moments of inertia, 
spectroscopic rotational constants, symmetry point group, and the contributions of rotation to the 
entropy and Gibbs energy of a molecule. The applet is available on the textbook Web site or on 
the companion CD. Extensive collections of molecular coordinates are available on-line and 
from molecular mechanics or electronic structure calculations. While many electronic structure 
packages determine the point group of an input molecule, the “ABC” applet has an adjustable 
tolerance that allows the point group to be determined in cases where other programs fail. Use 
the following coordinates to determine the point group and rotational constants for ethane: 
 

8 
ethane 
C -0.7704  0.0003 -0.0010 
C  0.7707 -0.0002 -0.0001 
H -1.1734  1.0280 -0.0004 
H -1.1725 -0.5129 -0.8919 
H -1.1740 -0.5148  0.8883 
H  1.1736 -1.0279 -0.0013 
H  1.1742  0.5154 -0.8891 
H  1.1728  0.5124 0.8911 

 

The list is in xyz-format. The first line is the atom count. The second line is a comment. The 
subsequent lines list the atom and the coordinates. 
 
 
Answer: The given coordinates are from a density functional minimized structure with the cc-
pTZP basis set. The above data was entered into the “ABC” applet (you need to know your 
ABC’s, afterall). The output appears as shown below. 
 

Moments of Inertia 
Ix =   25.7705 g mol-1 Ang2  or 0.42793e-45 kg m2 
Iy =   25.7693 g mol-1 Ang2  or 0.42791e-45 kg m2 
Iz =    6.3882 g mol-1 Ang2  or 0.10608e-45 kg m2 
___________________________________________ 
 Rotational constants 
Ae = 0.65414 cm-1 or 19.611 GHz or 0.94117 K 
Be = 0.65418 cm-1 or 19.612 GHz or 0.94121 K 
Ce = 2.6389 cm-1 or 79.111 GHz or 3.7968 K 
Point group D3d 
___________________________________________ 
 Thermodynamics 
qr=829.26 with sigma=6 
Rotational Entropy=68.35 J mol-1 K-1 
Translational Entropy=151.2944 J mol-1 K-1 
Trans+Rotation Gibbs Free Energy=-55.571 kJ mol-1 
============================================= 
 
 Coordinates in Principal Coordinates Frame 
___________________________________________ 
8 
ethane (pBP/TZVP in pcf 
C     0.0000    0.0000   -0.7705 
C     0.0000   -0.0000    0.7705 
H     0.5134    0.8902   -1.1738 
H    -1.0279   -0.0004   -1.1730 
H     0.5139   -0.8902   -1.1734 
H    -0.5138   -0.8898    1.1737 
H    -0.5133    0.8905    1.1734 
H     1.0279   -0.0001    1.1730 
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The point group is correctly recognized as D3d with the default tolerance; see Problem 35h. The 
moment of inertia calculations are presented in Problem 14. We will have much more to say 
about the thermodynamic values, which are for an ideal gas, in the statistical mechanics chapter. 
Translation and rotation make a significant contribution to the Gibbs energy of formation of a 
molecule. 
 
 
48.  Bending vibrations are characterized as one of four basic types of movements, Figure P27.2.  
 

 
 

Figure P27.2: Bending vibrations of methylene. Typical frequencies for small hydrocarbons 
of normal modes dominated by the given type of bend are given. 
 
 

Determine the normal modes of formaldehyde using an electronic structure calculation at the 
HF/6-31G* level (or equivalently HF/6-31G(d)). Display the “raw” numerical output files to find 
the symmetry designations. The experimental frequencies are given in Table P27.1.7 
Formaldehyde has C2v symmetry, the symmetry properties for which are given in Figure 26.6.4. 
The totally symmetric group, a1, contains the most symmetrical vibrations. The b1 and b2-groups 
are less symmetrical in the atom movements, b1 is symmetrical with respect to reflection across 
the vertical plane that runs through the C=O bond. The b1 and b2 designations may be switched 
in the calculation listing; some authors switch the symmetry labels. Compare the calculated and 
experimental frequencies, Table P27.1. Animate the normal modes to help compare the modes. 
Frequencies from ab initio calculations are normally multiplied by 0.9 to compare with 
experimental frequencies. This factor adjusts for anharmonicity. Multiply your frequencies by 
0.9; does the scaling improve the agreement with the experimental values? 
 

Table P27.1. Experimental Frequencies of the Normal Modes of Formaldehyde.7 
 

Symmetry of mode Type of mode Frequency (cm-1) 
a1 CH2 symmetric stretch 2783 strong 
 CO stretch 1746 very strong 
 CH2 scissor 1500 strong 
b1 CH2 wag 1167 strong 
b2 CH2 asymmetric stretch 2843 very strong 
 CH2 rock 1249 strong 

 
 
Answer:  The Spartan results are given below. The b1 and b2 symmetry labels are switched from 
the given data. The output also lists the thermodynamic parameters from the calculation. We will 
discuss these thermodynamic calculations in the statistical mechanics chapter. 

C 

H 

H 

Scissor 
~1450 cm-1 

C 

H  

H  
Wag 
~1250 cm-1 

C 

H  

H  

Twist 
~1250 cm

-1 

C 

H 

H 

Rock 
~720 cm

-1 
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Standard Thermodynamic quantities at 298.15 K and 1.00 atm 
 
             Term      ZPE     Enthalpy   Entropy     Cv      % in  
               cm-1    kJ/mol    kJ/mol   J/mol.K   J/mol.K  Ground IR Int. 
    --   ----------   -------   -------   -------      ---- 
  1  B2    1335.821    7.9900    0.0254    0.0984    0.5498   99.84   0.37 
  2  B1    1383.128    8.2729    0.0209    0.0807    0.4689   99.87  23.15 
  3  A1    1679.553   10.0460    0.0061    0.0229    0.1651   99.97   8.67 
  4  A1    2027.134   12.1250    0.0014    0.0051    0.0449   99.99 150.10 
  5  A1    3159.409   18.8975    0.0000    0.0000    0.0005  100.00  49.69 
  6  B1    3230.997   19.3257    0.0000    0.0000    0.0003  100.00 135.93 
    --   ----------   -------   -------   -------      ---- 
   Total Vibrations   76.6569    0.0538    0.2070    1.2295 
 
          Ideal Gas              2.4789                     
        Translation              3.7184  151.1751   12.4716 
           Rotation              3.7184   66.6145   12.4716 
         ----------             -------   -------   ------- 
             Totals             86.6265  217.9967   26.1727 
 
 Vibrational(v) Corrections: 
    Temp. Correction    Hv      86.6265   
  Entropy Correction (Hv-TSv)   21.6308   

    

The results from the full Gaussian output are shown below. The normal mode displacements are 
listed below each normal mode. These displacements are the basis of the normal mode 
animation, see Sec. . The IR and Raman relative intensities and the extent of Raman polarization 
are also listed. Notice that the non-totally symmetric normal modes are depolarized. 
 

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering 
 activities (A**4/AMU), depolarization ratios for plane and unpolarized 
 incident light, reduced masses (AMU), force constants (mDyne/A), 
 and normal coordinates: 
                     1                      2                      3 
                    B1                     B2                     A1 
 Frequencies --  1335.9812              1383.2798              1679.6943 
 Red. masses --     1.3690                 1.3442                 1.1042 
 Frc consts  --     1.4396                 1.5154                 1.8355 
 IR Inten    --     0.3667                23.1572                 8.6538 
 Raman Activ --     0.7661                 4.5093                12.8713 
 Depolar (P) --     0.7500                 0.7500                 0.5902 
 Depolar (U) --     0.8571                 0.8571                 0.7423 
 Atom AN      X      Y      Z        X      Y      Z        X      Y      Z 
   1   6     0.17   0.00   0.00     0.00   0.15   0.00     0.00   0.00   0.00 
   2   8    -0.04   0.00   0.00     0.00  -0.08   0.00     0.00   0.00   0.08 
   3   1    -0.70   0.00   0.00     0.00  -0.25  -0.65     0.00  -0.35  -0.61 
   4   1    -0.70   0.00   0.00     0.00  -0.25   0.65     0.00   0.35  -0.61 
                     4                      5                      6 
                    A1                     A1                     B2 
 Frequencies --  2027.9363              3160.0193              3231.6842 
 Red. masses --     7.2382                 1.0491                 1.1206 
 Frc consts  --    17.5385                 6.1721                 6.8951 
 IR Inten    --   150.1652                49.7347               135.9693 
 Raman Activ --     8.0997               137.6328                58.3200 
 Depolar (P) --     0.3279                 0.1828                 0.7500 
 Depolar (U) --     0.4938                 0.3090                 0.8571 
 Atom AN      X      Y      Z        X      Y      Z        X      Y      Z 
   1   6     0.00   0.00   0.58     0.00   0.00   0.06     0.00   0.10   0.00 
   2   8     0.00   0.00  -0.41     0.00   0.00   0.00     0.00   0.00   0.00 
   3   1     0.00  -0.46  -0.19     0.00   0.61  -0.35     0.00  -0.60   0.37 
   4   1     0.00   0.46  -0.19     0.00  -0.61  -0.35     0.00  -0.60  -0.37 

 
The frequencies as wave numbers are compared with and without scaling by 0.9 below: 
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Symm. Type Experiment (cm-1) HF/6-31G* 0.9*HF/6-31G* % difference 

a1 CH2 symm. Str. 2783 3160.0 2844.0 2.2 

 CO stretch 1746 2027.9 1825.1 4.5 

 CH2 scissor 1500 1679.7 1511.7 0.8 

b1 CH2 wag 1167 1336.0 1202.4 3.0 

b2 CH2 asymm. Str. 2843 3231.7 2908.5 2.3 

 CH2 rock 1249 1383.3 1245.0 -0.3 
 

The factor of 0.9 scaling, which takes into account anharmonicity, improves the agreement. 
More precise scaling factors are available for specific ab initio levels. If you have covered the 
group theory section, notice that all the modes are both IR and Raman active as expected from 
the C2v symmetry. However, the predicted intensity of the 1167 cm-1 wag is smaller than 
expected compared to the experimental spectrum. 
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Chapter 28 Problems: Electronic Spectroscopy  
 
1.  Why all the interest in diatomic molecules? 
 
 

Answer:  For diatomics and polyatomics, spectroscopic parameters are used to calculate 
thermodynamic equilibrium constants and kinetic rate constants. Reasons for all the fuss about 
diatomics include: 
(a). Diatomics play a direct role in many chemical reactions, O2 being a primary example. 
Atmospheric chemistry requires detailed knowledge of many diatomics including OH, O2, N2, 
NO, CO, Cl2, Br2, I2, ClO, BrO, HCl, and the corresponding ions. Diatomics act as ligands in 
metal complexes, including CO and NO. H2 is a commonly used reducing agent in the synthetic 
laboratory. CO blocks O2 transport in hemoglobin and is a major industrial reducing agent in 
metallurgical applications. The halogens are used as gas phase disinfection agents. Chemical 
vapor deposition of thin films involves diatomics, including H2 and F2. Hydride epitaxial growth 
of thin films using HCl and H2 is used in the semiconductor industry. Industrial high power 
ultraviolet excimer lasers are based on stimulated emission from excited state diatomics, 
including ArF, XeBr, XeCl, XeF, and KrF. Combustion engineering is based on chemical 
kinetics of gas phase free radical species, many of which are diatomics or derived from reactions 
with neutral diatomics, such as CO, N2, C2, and O2. 
(b). Our basic understanding of bonding, through bond strength measures, is based on diatomics. 
The correlations displayed in Figure 26.4.12 are central in this regard. For example, bond 
strength increases with increasing bond order and as bond strength increases equilibrium bond 
length decreases. These fundamental relationships are based on dissociation energies, force 
constants, and bond lengths that result from spectroscopic studies of diatomics. 
(c). To a first level of approximation, chemical bonding is a pairwise interaction. Knowing the 
coarseness of the approximation, we often think of chemical bond strength as being a function of 
just the two atoms involved in each bond. For example, bond enthalpy tables are based on atom 
pairs, Table 8.8.1. Pauling electronegativities are based on diatomic bond dissociation energies. 
Eq. 26.3.13. Of course bonding is extensively delocalized, but pair-wise interactions are still an 
important viewpoint. In this regard, diatomics are the fundamental reference point for pair-wise 
bonding interactions.1 

(d). Diatomics are a good point of reference. When we determine the bonding in a complicated 
molecule, diatomics provide a useful comparison that allows us to identify unusual bonding 
interactions. These comparisons are often based on bond strength correlations and changes in 
effective electronegativity as previewed in part (c). 
(e). Diatomics are useful for validating electronic structure methods. If an electronic structure 
method can’t reproduce bond dissociation energies for diatomics, then there is little hope of 
accurately predicting the properties of polyatomics. Excited electronic states are a particular 
challenge for electronic structure calculations. “Ground-truthing” with data from diatomics is 
necessary to help develop new excited state methods. 
(f). Diatomics often have resolved rotational and vibrational fine-structure, while polyatomics 
often do not. Rotational fine-structure is necessary for the determination of bond lengths in 
excited state species. Vibrational fine-structure is necessary for determination of the shape of 
potential energy surfaces. 
(g). Non-adiabatic kinetic processes are difficult to model, so keeping things simple by studying 
reactions of diatomics is often necessary. 
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2.  Calculate the transition wave number for the ground electronic state to first excited singlet 
state transition in carbon monoxide. Assume the ground state vibrational-rotational and quantum 
numbers are " = 0, J" = 3  and the excited state quantum numbers are ' = 3, J' = 4. The 
spectroscopic constants are given below.2,3 

 

State T
~

e   (cm-1) ~e  (cm-1) e
~

e  (cm-1) B
~

e  (cm-1) ~e  (cm-1) D
~

e  (cm-1) 
A 1 65075.7 1518.2 19.4 1.6115 0.02325 7.33x10-6 
X 1+ 0 2169.814 13.288 1.93128 0.017504 6.12x10-6 

 
 

Answer:  The plan is to use Eqs. 27.6.5 and 28.1.3. 
   With Eq. 27.6.5, the rotational constant for the ground electronic state with  = 0 is: 
 

 B
~ g


s = B
~ g

e
s – ~ g

e
s ( + ½) = 1.93128 cm-1 – 0.017504 cm-1(0 + ½) = 1.92253 cm-1 

 

For the excited electronic state with  = 3 the rotational constant is: 
 

 B
~ e


x = B
~ e

e
x – ~ e

e
x( + ½) = 1.6115 cm-1 – 0.02325 cm-1(3 + ½) = 1.53013 cm-1 

 

With Eq. 28.1.3, the energy of the ground state for " = 0, J" = 3 is: 
 

 E
~

i,,J = T
~

e,i + ~e.i (+ ½) – e,i 
~

 e,i (+ ½)2 + B
~
,i J(J + 1) – D

~
e,i[J(J + 1)]2 

 

 E
~

gs,0,3 = T
~ g

e
s + ~g

e
s (+ ½) – g

e
s
 
~g

e
s (+ ½)2 + B

~ g
o

s
 3(3 + 1) – D

~
e[3(3 + 1)]2 

           = 0 + 2169.814(+ ½) – 13.288(+ ½)2 + 1.92253[3(3 + 1)] – 6.12x10-6[3(3 + 1)]2 
           = 1104.65 cm-1 
 

The excited state energy for ' = 3, J' = 4 is: 
 

 E
~

gs,0,3 = T
~ e

e
x + ~e

e
x (+ ½) – e

e
x
 
~e

e
x (+ ½)2 + B

~ e
o
x

 3(3 + 1) – D
~e

e
x[3(3 + 1)]2 

   = 65075.7 + 1518.2 (+ ½) – 19.4 (+ ½)2 + 1.5301[3(3 + 1)] – 7.33x10-6[3(3 + 1)]2 
   = 70182.35 cm-1 

 

The transition wave number is given by the difference:  ~ = 69077.70 cm-1. 
 
 

3.  In rotation-vibration absorption, with B
~

' < B
~

", each line moves to lower wave number in 
proportion to the J"2 value, Eqs. 27.6.8-27.6.9. The R-branch lines get closer together and the P-
branch lines get further apart. Please review Problem 27.30. In electronic absorption, the 
rotational constant in the upper electronic states often differs markedly from the ground 
electronic state. Write a spreadsheet to simulate the electronic absorption spectrum of carbon 
monoxide for the " = 0 to ' = 1 vibrational transition. The spectroscopic constants are listed in 
the previous problem. Neglect centrifugal distortion. [Hints: Refer to the hint for Problem 27.30, 
however this time your plot will be clearer if you choose a scatter plot with marker symbols and 
a connecting line. Include transitions for J" = 0 to 10 for the R- and P-branches. To start with, to 
make the plot clearer you may want to use B

~
e = 1.93128 cm-1 for both electronic states. Then 

switch to B
~

e = 1.6115 cm-1 for the excited state.] 
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Answer:  The plan is to modify the spreadsheet for Problem 27.30 to calculate the B~ value for 
the ground and excited electronic state and specific vibrational quantum numbers " = 0 to 
' = 1. The previous problem discusses the necessary calculations. 
   Using the data and calculations from the previous problem, the spreadsheet appears as follows. 
The number of rows were increased to plot a wider range of transitions, from J" = 0 to 10 for the 
R- and P-branches. The “stick” spectrum is also shown for this problem. The R-branch lines 
move far enough to lower wave number that the transitions for high J" decrease in wave number 
even though J" is increasing. The rotational fine-structure lines “fall back” on each other. This 
effect is common in electronic spectroscopy. 
 

 

A
1 B C D E F 
2 Te 0 65075.7 cm-1  
3 e 2169.81 1518.2 cm-1  
4 ee 13.288 19.4 cm-1  
5  0 1   
6  1081.58 2233.65 cm-1  
7 Be 1.93128 1.6115 cm-1  
8 e 0.01750 0.02325 cm-1  
9 B 1.92253 1.576625 cm-1  

10      
11 J" J' F(J") (cm-1)  (cm-1) p(J") 
12 10 11 -3.36358 66224.401 7.568 
13 9 10 0.40123 66228.166 8.243 
14 8 9 3.474234 66231.239 8.716 
15 7 8 5.855432 66233.620 8.921 
16 6 7 7.544824 66235.310 8.804 
17 5 6 8.54241 66236.307 8.327 
18 4 5 8.84819 66236.613 7.476 
19 3 4 8.462164 66236.227 6.262 
20 2 3 7.384332 66235.149 4.729 
21 1 2 5.614694 66233.380 2.945 
22 0 1 3.15325 66230.918 1.000 
23 1 0 -3.84506 66223.920 2.945 
24 2 1 -8.38192 66219.383 4.729 
25 3 2 -13.6106 66214.154 6.262 
26 4 3 -19.5311 66208.234 7.476 
27 5 4 -26.1433 66201.622 8.327 
28 6 5 -33.4474 66194.318 8.804 
29 7 6 -41.4433 66186.322 8.921 
30 8 7 -50.131 66177.634 8.716 
31 9 8 -59.5105 66168.255 8.243 
32 10 9 -69.5818 66158.183 7.568 
33 11 10 -80.3449 66147.420 6.758 

 

 

 
 

 
 

The maximum wave number is called the band head. The 0  0 transition is called the band 
origin. In this problem the band origin is obscured, because of the extensive overlap of the R- 
and P-branches. 
 
 
4.  Predict the intensities of the different vibrational transitions in the electronic absorption 
spectrum of the following system. Show at least four peaks. Label each transition in the energy 
level diagram with the vibrational quantum numbers for the transition and each corresponding 
peak in the spectrum (e.g. 40). 
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Answer:  The plan is to draw in the vertical transition to predict the vibrational fine-structure 
transition with the largest Franck-Condon factor. 
   The vertical transition intersects the excited state potential energy curve above the dissociation 
limit. The highest intensity transitions are to vibrational levels near the convergence limit and to 
the translational continuum. The peak spacing goes to zero at the convergence limit 

 
 
 

5.  Show the relationship between the ground state and excited state potential energy curves for 
an electronic transition that has a maximum probability for the 20 vibrational fine-structure 
transition. Draw the corresponding absorption spectrum. Label each transition in the energy level 
diagram with the vibrational quantum numbers for the transition and each corresponding peak in 
the spectrum (e.g. 40). (Use the potential energy curves shown in the previous question for the 
style of your sketch). 
 
 

Answer:  The plan is to position the equilibrium internuclear separations of the ground and 
excited state potential energy curves to give the vertical transition with 20 as the largest 
Franck-Condon factor. 
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   Intense excitations into low lying vibrational levels of the excited state correspond to small 
changes in equilibrium internuclear separation, as shown in the figure above. Transitions of other 
adjacent vibrational levels typically have comparable intensities. The vertical transition just 
predicts the most intense. The absorption spectrum resembles that for benzene, Figure 28.1.12. 
 
 

6.  (a). In Figure 28.1.9b we needed to take the linear combination of four specific assignments 
to generate a state that satisfies both the Pauli Exclusion Principle and reflection symmetry. Why 
four states instead of two? Show that the following state does not properly account for electron 
indistinguishability and reflection symmetry: 
 

 
 
Answer:  Consider transformation of the state with respect to exchange of spin labels and 
reflection: 
 

 
 

The given linear combination is anti-symmetric with respect to exchange of spin labels, as 
required for the spatial part of a triplet state, but reflection symmetry results in a different set of 
singly occupied orbitals than the initial state. This linear combination is neither symmetric nor 
anti-symmetric with respect to reflection, it transforms to give a different state. The linear 
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combinations that transform as symmetric or anti-symmetric with respect to exchange of spin 
labels and reflection are given in Figure 28.1.9. 
 
 

7.  In Figure 28.1.10 we needed to take the linear combination of four specific assignments to 
generate a state that satisfies both the Pauli Exclusion Principle and reflection symmetry. 
However, there are eight possible combinations of the coefficients that give equal weight to each 
assignment: (++++), (++ – –), (+ – + –), (+ – – +), (+++ –), (+ – – –), (+ – ++), (++ – +). Show 
that only the two linear combinations listed in Figure 28.1.10 properly account for electron 
indistinguishability and reflection symmetry for the u triplet terms and two more for the singlet 
terms. 
 
 

Answer:  To make the states easier to compare, show only the singly occupied states. Then 
determine the symmetry with respect to exchange of spin labels and reflection: 
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Similarly (+ – ++) and  (++ – +) don't transform to give either the original state or its negative. 
Summarizing, the eight possible states give two states that are anti-symmetric with respect to 
exchange of spin labels and are either symmetric or anti-symmetric with respect to reflection. 
These states have the spatial symmetry appropriate to match the symmetric spin parts of the 
triplet terms. In addition there are two states that are symmetric with respect to exchange of spin 
labels and are either symmetric or anti-symmetric with respect to reflection. This second pair has 
the spatial symmetry appropriate to match the anti-symmetric spin part of the singlet terms: 
 

Linear combination Label exchange Reflection Term 
(++++) + + 1+

u 
(++ – –) + – 1–

u 
(+ – + –) – + 3+

u 
(+ – – +) – – 3–

u 
(+++ –) X   
(+ – – –) X   
(+ – ++) X   
(++ – +) X   

 
 
8.  In Chapter 25, we determined the complete set of atomic terms for a given electronic 
configuration by exhaustively enumerating all the possible explicit orbital assignments. In this 
chapter we took a bit of a short-cut. However, it is still informative to determine all possible 
molecular terms by exhaustive enumeration. Luckily, diatomic electronic states are simpler, 
because the  levels are only doubly degenerate. For example, the p1 atomic configuration gives 
a 2P term with ML = {1,0,-1}. However, the (g,2pz)

2 (u,2p)1 molecular configuration corresponds 
to only M= {1,-1}, because there are only two degenerate -molecular orbitals: 
 

      +1     -1  M 
 +1      0    -1 ML 
          1      1 

          0 

         -1 

            2P       -1 
 
         2 
 

 (a). atomic   (b). diatomic molecular 
 

Figure P28.8.1: (a). The p1 atomic configuration is triply degenerate with ML = {1,0,-1}. (b). 
The (g,2pz)

2 (u,2p)1 molecular configuration corresponds to only M= {1,-1}, since the  
orbitals are doubly degenerate. 

 
 
Similarly, a  term is also doubly degenerate, M= {2,-2}. Show that the molecular terms for the 
configuration KK (g,2s)2(*u ,2s)2(g,2pz)2(u,2p)4(π*g ,2p)2 are 3g + 1∆g + 1g , by exhaustive 
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enumeration of explicit molecular orbital assignments. Include the parity, g or u (you don’t need 
to find the reflection symmetry). 
 
 
Answer:  The explicit orbital assignments are: 
 

 KK (g,2s)2(*u ,2s)2(g,2pz)2(u,2p)4(π*g ,2p)2 
 

 
 

Using the same procedure that we used for atomic term symbols, we first list all the M values 
for the singlet states: 
 

 M = {2,0,-2} 
 

With  = 2, the first term is a 1 term. Removing M = {2,-2} leaves: 
 

 M = {0} 
 

The final singlet term is 1. The only triplet gives  = 0 for a 3 term. The parity of all the states 
is gguuuugg = g. The final terms are 1g + 1g + 3g, in agreement with Figure 28.1.5a. 
  You may wonder why we don’t consider assignments like the two below as distinct: 
 

 
 

The assignment on the right is the same triplet assignment as on the left with all the spins 
flipped. Therefore, right-hand assignment doesn’t represent a unique explicit orbital assignment. 
Instead, the two assignments are components of the same triplet state, with spin states {,  + 
, }. For another example, the two states below are the same explicit assignment with all the 
spins flipped. So they aren’t unique: 
 

 
 

These two assignments are degenerate and combine in symmetry adapted linear combination to 
form the final 1+

g state, as shown in Figure 28.1.9b. In general, two states that are related by 
flipping all the spins are not unique for the purposes of determining the possible values of ML for 
atoms or M for molecules. 
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9.  Find the molecular terms for the configuration KK (g,2s)2(*u ,2s)2(g,2pz)2(u,2p)3(π*g ,2p)3 
by exhaustive enumeration of explicit molecular orbital assignments. Include the parity, g or u 
(you don’t need to find the reflection symmetry). 
 
 
Answer:  There are two degenerate u,2p orbitals for placement of one unpaired electron and two 
degenerate π*g ,2p orbitals for placement of the second unpaired electron, so we expect 22 = 4 
explicit orbital assignments for triplet states and another 4 for singlet states. The explicit orbital 
assignments for the triplet states are: 
 

 KK (g,2s)2(*u ,2s)2(g,2pz)2(πu,2p)3(π*g ,2p)3  triplets: 
 

 
 
 
 
   M =          0           2        -2        0 
 
Using the same procedure that we used for atomic term symbols, we first list all the M values 
for the triplet states: 
 

 M = {2,0,0,-2} 
 

With  = 2, the first term is a 3 term. Removing M = {2,-2} leaves: 
 

 M = {0,0} 
 

The remaining terms are two 3 terms. The parity of all the states is gguuuggg = u. The singlet 
states are obtained by flipping one of the unpaired spins in the previous set: 
 

 KK (g,2s)2(*u ,2s)2(g,2pz)2(πu,2p)3(π*g ,2p)3 singlets: 
 

 
 
 
 
   M =          0           2        -2        0 
 
The resulting M set is the same as for the triplet states and the parity also remains the same. The 
final terms are 3u + 3u + 3u and 1u + 1u + 1u in agreement with Figure 28.1.5b. The repeat 
3 and 1 terms show the necessity of considering the reflection symmetry. 
 
 
10.  For a homonuclear diatomic molecule, determine which of the following transitions is 
allowed or forbidden, assuming weakly coupled spin and orbital angular momenta.4 [Note: 
identical term symbols can result from two different configurations; term symbols are unique 
within a given configuration.] 
 

2–
g  2u 1–
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g 1g  1u 1u  1+
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Answer:  The plan is to note the selection rules, Eq. 28.1.12, for weakly coupled spin and orbital 
angular momenta. 
   The allowed transitions are 2–

g  2u, 1g  1u, and 3–
u  3–

g (the Schumann-Runge band 
is 3–

u  3–
g). The forbidden terms and the offended selection rule are: 

 

 Transition Rule broken       
 1–

g   /  1–
g g  u or u  g 

 1u   /  1+
g  = 0, 1 

 1–
g  /  3–

u S = 0 
 
 
11.  (a). Determine the possible values of the projection of the total angular momentum, 
 = | + s|, for a 3 term. (b). Determine if the transition to each of these 3 terms from a 3o 
state is allowed or forbidden. 
 
 
Answer:  The plan is to note that the projection of the spin angular momentum along the 
internuclear axis is from –S to +S in integer steps.4 

   For a -state,  = 2. For a triplet state, S = 1 and then the projections are s = -1 , 0, +1. The 
possible projection of the total angular momentum are then: 
 

   = | + s| = 2 – 1, 2 + 0, 2 + 1 = 1, 2, 3   giving 31, 32, and 33 terms 
 

The selection rules,  = 0, 1; S = 0; and  = 0, 1 give: 
 

 Allowed: 31  3o 

 Forbidden: 32   /  3o, 33   /  3o     ( too large) 
 

The  = 0, 1 selection rule holds even in cases with strong spin-orbital coupling, when the  
= 0, 1 and S = 0 selections rules no longer apply. 
   Note: Most authors use the symbol  and not s for the projection of the spin angular 
momentum. Unfortunately then, the two uses of the symbol , which are the term symbol and 
the projection of the spin, must be distinguished by context. 

 
 
12.  In Problem 25.31 we illustrated an angular momentum component diagram to help explain 
the occurrence of multiple total angular momentum states, given the projections of the orbital 
and spin angular momenta. Give the corresponding molecular diagram showing that the 
projections of the total angular momentum resolve 3 terms into three states: 31, 32, and 33. 
[Hint: simply replace ML, MS , and MJ with , s , and . Note that  is always positive.4 Use 
the S and  values corresponding to a 3 term.] 
 
 
Answer: The plan is to follow the diagram given in Problem 25.31, noting that  = 2 and S = 1. 
   See the previous problem for the derivation of the three total angular momentum states. The 
diagrams are: 
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13.  Describe in words the purpose of the Birge-Sponer extrapolation in the analysis of electronic 
absorption spectra. 
 
 
Answer: The dissociation energy of the ground state is given by the wave number at the 
convergence limit as: 

 D
~

o = ~o – E
~

atomic        (28.2.6) 
 

This equation is not necessarily dependent on the Birge-Sponer extrapolation. If the convergence 
limit is obvious from the spectrum, the Birge-Sponer extrapolation is not necessary. Such cases 
include ClF, IBr, and ICl.5 The purpose of the Birge-Sponer extrapolation is to determine the 
dissociation limit if the limit is obscured by noise or if vibrational fine-structure transitions near 
the dissociation limit are not observed. 
   Hertha Sponer (1895-1968) was a German physicist and physical chemist. The Birge-Sponer 
extrapolation was developed when she was on a Rockefeller Foundation fellowship with R. T. 
Birge at the University of California at Berkeley in 1925. In 1934, she was forced from her 
faculty position at the University of Göttingen by the Nazis, because she was a woman. In 1936 
she was appointed as the first woman on the physics faculty at Duke University, where she 
remained active until 1966. 
 
 
14.  Describe in words the meaning and purpose of the Franck-Condon factors in the 
interpretation of electronic absorption spectra. 
 
 
Answer:  Franck-Condon factors determine the intensity of vibrational fine-structure transitions 
in absorption and emission spectroscopy as well as the rate of non-radiative energy transfer in 
internal conversion, intersystem crossing, and intermolecular energy transfer. Franck-Condon 
factors are given by the square of the overlap integral of the vibrational wave functions of the 
two coupled states. Franck-Condon integrals have a significant value only if the two vibrational 
wave functions have high probability at a common internuclear separation. 
   For absorption and emission spectra, we often use the approximation of determining the 
intersection of a vertical transition with the final state potential energy surface to estimate the 
largest Franck-Condon factor. This short-cut is good for transitions to highly excited vibrational 
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states, but is poor for low lying vibrational states. Of course it is always best to calculate the 
Franck-Condon integrals directly, using the vibrational wave functions (if the potential energy 
surfaces are known) 
 
 
15.  The Schumann-Runge band for molecular oxygen is in the UV-region of the spectrum. The 
wave numbers for the 3–

u  3–
g transitions are given in the table below. The corresponding 

vibrational quantum numbers are not known. The ground state dissociates into two ground state 
3P oxygen atoms, and the 3–

u excited state dissociates into a 3P and a 1D oxygen atom. Calculate 
(a) the dissociation energy of the ground state (the bond strength). (b). Estimate the dissociation 
energy of the excited state by assuming the first observed transition is for   0. The atomic 
excitation energy, 3P  1D is 1.9674 eV, 15867.9 cm-1, or 189.82 kJ/mol. 
 


~

 (cm-1) 50062.6 50725.4 51369.0 51988.6 52579.0 53143.4 53679.6 54177.0 
continued 54641.8 55078.2 55460.0 55803.1 56107.3 56360.3 56570.6  

 
 
Answer:  The plan is to use a Birge-Sponer extrapolation following Example 28.2.2 and then Eq. 
28.2.6 to determine the dissociation energies. 
   The adjacent differences are calculated in the following spreadsheet with the corresponding 
Birge-Sponer extrapolation. An arbitrary quantum number of zero is assigned to the first 
transition, since the vibrational quantum numbers are not known. 
 

 

 ~   cm-1 ~ (cm-1) 
0 50062.6 662.8 
1 50725.4 643.6 
2 51369.0 619.6 
3 51988.6 590.4 
4 52579.0 564.4 
5 53143.4 536.2 
6 53679.6 497.4 
7 54177.0 464.8 
8 54641.8 436.4 
9 55078.2 381.8 

10 55460.0 343.1 
11 55803.1 304.2 
12 56107.3 253.0 
13 56360.3 210.3 

 56570.6  
 
 

slope -35.15121 693.34 b 
± 1.1829486 9.0478167 ± 
r2 0.9865918 17.842535 s(y) 
F 882.97582 12 df 
ssreg 281100.7 3820.2727 ssresidual 

 

 

 
 
 

 

(a). Using Eq. , the slope gives the anharmonicity: e
e
x
 
~e

e
x = – ½ slope = 17.58  0.59 cm-1 

Using Eq. 28.2.18: cl = 
~o

2e
e
x ~e

e
x
 = 

693.34
35.1512 = 19.73  0.71 

Using Eq. 28.2.19: area = ½ ~o cl = ½ (693.34)(19.73) = 6839.8  262 cm-1 

y = -35.151x + 693.34
R² = 0.9866

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

0 10 20 30


E 

(c
m

-1
)

arbitarary origin)



180 
 

Using Eq. 28.2.20, the transition wave number at the convergence limit is: 

 ~ o = ~oo + area = 50062.6 cm-1 + 6839.8 cm-1 
        = 56902.4  262 cm-1 = 7.055  0.032 eV 
 

Using Eq. 28.2.6, the bond energy of the ground state is: 

in cm-1:    D
~

o = ~ o – E
~

atomic = (56902.4  262 cm-1) – 15867.9 cm-1 = 41035 ± 262 cm-1 

in eV:      Do = E(j,i,0) – Eatomic = (7.055  0.032 eV) – 1.9674 eV = 5.0876  0.032 eV 
in kJ mol-1:   = 490.9  3.1 kJ mol-1 
 
   Notice that the Birge-Sponer plot has significant systematic curvature, and the convergence 
limit by visual extrapolation appears to be less than  = 19, which decreases the calculated 
ground and excited state dissociation energies. The literature ground state dissociation energy is 
5.126 eV.  
(b). If   0 for the first transition, then the excited state dissociation energy is the area under the 
Birge-Sponer curve, Eq. 28.2.19: 
 

 D
~ e

o
x  area = 6840 cm-1 = 0.85 eV 

 

which suffices as a lower limit of the true excited state dissociation energy. The error is within a 
few multiples of ~e

o
x, which is 0.082 eV. If ~e

o
x is 662.8 cm-1 as we have assumed, then using Eq. 

27.5.11, ~e
e
x  ~e

o
x + 2e

e
x
 
~e

e
x = 662.8 cm-1 + 35.15 cm-1 = 698.0 cm-1. The literature value of ~e

e
x is 

799.1 cm-1, which suggests that the first observed transition is actually for  = 3. 
 
 
16.  For SiS the wave numbers for the E1+  X1+ transitions are given in the table below.6 The 
ground state is labeled as the X-state and this excited state, which has the same symmetry, is the 
E-state. Assume that the corresponding vibrational quantum numbers are not known. The ground 
and excited states dissociate into two ground-state 3P atoms. Calculate the dissociation energy of 
the ground state (the bond strength). 
 


~

 (cm-1) 44482.8 44857.6 45227.0 45592.2 45952.8 46308.3 46657.7 47001.0 47337.9 47664.0 

 
 
Answer:  The plan is to use a Birge-Sponer extrapolation following Example 28.2.2 and then 
Eq. 28.2.6 to determine the dissociation energies. The first transition is assigned an arbitrary 
vibrational quantum number of zero for the purposes of the extrapolation. 
   The adjacent differences are calculated in the following spreadsheet with the corresponding 
Birge-Sponer extrapolation. An arbitrary quantum number of zero is assigned to the first 
transition, since the vibrational quantum numbers are not known. Because we are assigning an 
arbitrary vibrational quantum number, the intercept is not the fundamental vibration frequency. 
The extrapolation to the convergence limit works out just fine, however. 
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  (cm-1)  (cm-1)
0 44482.8 374.8 
1 44857.6 369.4 
2 45227 365.2 
3 45592.2 360.6 
4 45952.8 355.5 
5 46308.3 349.4 
6 46657.7 343.3 
7 47001 336.9 
8 47337.9 326.1 
9 47664  

 

slope -5.7883 376.62 b 
± 0.2873 1.3679 ± 
r2 0.9830 2.2256 s(y) 
F 405.8631 7 df 
ssreg 2010.2882 34.6718 ssresidual 

 

 
 

 

(a). Using Eq. , the slope gives the anharmonicity: e
e
x
 
~e

e
x = – ½ slope = 2.894  0.14 cm-1 

Using Eq. 28.2.18: cl = 
~o

2e
e
x ~e

e
x
 = 

376.62
5.7883 = 65.07  3.24 

Using Eq. 28.2.19: area = ½ ~o cl = ½ (376.62)(65.07) = 12250  612 cm-1 
Using Eq. 28.2.20, the transition wave number at the convergence limit is: 

 ~ o = ~oo + area = 44482.8 cm-1 + 12250 cm-1 
        = 56732.8  612 cm-1 = 7.034  0.076 eV 
 

Since the excited state gives ground state atoms, E
~

atomic is zero for this transition. Using Eq. 
28.2.6, the bond energy of the ground state is: 

in cm-1:    D
~

o = ~ o – E
~

atomic = 56732.8  612 cm-1 

in eV:      Do = E(j,i,0) – Eatomic = 7.034  0.076 eV 
in kJ mol-1:   = 678.7  7.3 kJ mol-1 
 

Notice that the convergence limit is a long extrapolation on the Birge-Sponer plot, giving large 
uncertainties. The last data point also shows some downward curvature, which would decrease 
the convergence limit and corresponding dissociation energies. The literature ground state 
dissociation energy, which is based on the same data is 6.72 eV, which takes into account some 
of the observed curvature through a second anharmonicity correction. 
 
 

17.  Vibrational potential functions commonly deviate from Morse behavior. One possibility is 
the appearance of a maximum, Figure P28.17.1a. One cause of a maximum is a strong Van der 
Waals repulsion at large distances, but strong bonding interactions at short distances.5 Referring 
to Figure 26.2.4, strong electron-electron repulsion increases the potential energy at large R, 
possibly giving a maximum. A second cause, especially for excited states, is an avoided crossing 
between a bound-state potential energy curve and a repulsive state, Figure P28.17.1b. An 
example is a state of an alkali halide that tends to dissociate to ions, but because of the curve 
crossing dissociates to atoms instead.5 Discuss the effect of a potential maximum on the 
spectroscopic determination of the dissociation energy of the bound state. 
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R² = 0.983
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Figure P28.17.1: (a). Some vibrational potential energy curves have a maximum. (b). One 
cause is an avoided crossing.  

 
Answer:  The plan is to consider what the results of a Birge-Sponer extrapolation would yield for 
the dissociation energy. 
   Birge Sponer extrapolation yields the dissociation energy D', which is greater than the true 
dissociation energy Do. The relationship is diagrammed below. Such circumstances are not 
uncommon, especially upon comparisons of spectroscopic and thermodynamically obtained 
values.1 

 

 
 
18.  The electronic absorption spectrum of water has a Rydberg series that start with the 
configuration …(3a1)2(1b1)1(3p)1 for a 3p-orbital on the O-atom. See Figure 26.6.4 for the 
molecular orbital diagram. Is the Rydberg series consistent with the ultraviolet photoelectron 
spectrum, UPS, of water shown in Figure 28.5.4b? The series has transitions: 
 

 ~n = 101786 cm-1 – 
H

(n – 0.7)2   n = 3, 4, 5, …… 

 
 

Answer:  The plan is to note that the Rydberg ionization limit corresponds to the formation of the 
molecular ion. 

   The ionization limit converted to eV is: ~n = 101786 cm-1(1 eV/8065.5 cm-1) = 12.62 eV 
which agrees exactly with the first ionization potential from the UPS spectrum in Figure 28.5.4b. 
Rydberg series don’t necessarily give the ground state of the molecular ion, but such is the case 
in this example. 
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19.  The diatomic molecule Na2 has a Rydberg series in the electronic absorption spectrum. The 
ionization limit gives the ground state of the molecular ion, Na2

+. The ionization limit from the 
Rydberg series and the ionization potential measured using UPS should be identical for the 
specific excited state of the molecular ion. The quantum numbers of the Rydberg transitions and 
the wave numbers are given in the table below. Determine the ionization potential to form Na2

+. 
Compare the value to the ionization potential determined using UPS, which is 4.90 eV (see 
Problem 37 for the reference to the literature value). 
 

n 4 5 6 7 

~n 20320.02 29382 33486.8 35557 
 
 
Answer:  The plan is to fit the data to the Rydberg series expression, Eq. 28.2.22. We first write a 
spreadsheet to approximate the fit coefficients and then use non-linear least squares curve fitting. 
   A spreadsheet to do an approximate curve fit is shown below. As usual the goal is to minimize 
the sum of squared residuals, which is calculated in cell E11. The fit parameters, which are the 
wave number of the ionization limit ~I in cell C3 and the quantum defect c in cell C4, are varied 
to achieve an approximate fit. With patience, or using Goal Seek, this guessing procedure is 
sufficient to complete the fit, but we only need to derive approximate fit values at this point. 
 

 

A1 B C D E F 

2 H 109737.32    

3 I 40000 cm-1 4.959 eV 

4 c -1.6    

5 n n (cm-1) fit r2  
6 4 20320.02 20948.4 394839.7  
7 5 29382 30507.2 1265968.5  
8 6 33486.8 34331.8 713940.9  
9 7 35557 36236.7 462016.0  

10      
11   sum r2 2836765.1  

 

 

 
 

 

Using approximate values close to those from the spreadsheet, a curve fit using the “Nonlinear 
Least Squares Curve Fitting” applet on the textbook Web site or companion CD is done using the 
functional form “a+c/(x+b)^2” as set up below with a constant c value for the Rydberg constant. 
 

 

 
 

 

============   Results   ============ 
 a= 39107 +- 194 
 b= -1.5887 +- 0.023 
____________ Output Data ____________ 
  x    y     y(fit)   residual 
 4.0   20320.02  20233.351   86.6684 
 5.0   29382.0   29676.904  -294.904 
 6.0   33486.8   33467.758   19.0413 
 7.0   35557.0   35359.440   197.559 
------------------------------------- 
 sum of squared residuals= 133900 
 stand. dev. y values= 258.7 
 correlation between a & b= -0.7453 
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Notice that the guesses don’t need to be very close to the final values; we just used the 
spreadsheet to get a reasonable estimate for c (small negative). The curve fit results give the 
ionization limit, ~I = 39107  194 cm-1 = 4.849  0.024 eV, which is in excellent agreement with 
the UPS derived ionization potential. 
 
 
20.  Using the potential energy curves shown below, predict the most intense vibrational fine-
structure transitions in the absorption and fluorescence spectra. Draw the corresponding 
absorption and fluorescence spectra. Show four of the intense transitions in each of the spectra. 
Label each transition in the energy level diagram with the vibrational quantum numbers for the 
transition and each corresponding peak in the spectrum (e.g. 40). 

 
 
 

Answer:  The plan is to draw in the vertical transitions to predict the vibrational fine-structure 
transition with the largest Franck-Condon factors. 

 
   The most probable internuclear separation in the " = 0 vibrational state of the electronic 
ground state is the middle of the potential energy well, giving the starting point for the vertical 
transition in absorption as Re. The most intense transition in absorption is to ' = 3, as shown in 
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the figure above. Transitions to other adjacent vibrational levels typically have comparable 
intensities. The vertical transition just predicts the most intense. The most probable internuclear 
separation in the ' = 0 vibrational state of the first excited electronic state is also in the middle 
of the potential energy well, giving the starting point for the vertical transition in absorption as 
Re

e
x. The most intense transition in fluorescence is to " = 2, as shown in the figure above. 

 
 
21. We took a short cut in the derivation of Eq. 28.2.13 by working in analogy with Eq. 27.5.12. 
In this problem we derive Eq. 28.2.13 directly from the term values of the adjacent transitions. 
The energy of the " = 0 level of the ground electronic state is E

~
o. The energy difference from 

the minimum energy of the ground state potential energy curve to the minimum energy of the 
excited state potential energy curve, that is the energy without vibration, is T

~ e
e
x. The energy of the 

' vibrational level of the excited state is E
~ ex
' , neglecting rotation: 

 

 E
~ ex
' = T

~ e
e
x + ~e

e
x ('+ ½) – e

e
x
 
~e

e
x ('+ ½)2           P28.14.1 

 

The energy of an electronic transition from the " = 0 level of the ground electronic state to the 
' vibrational level of the excited state is: 
 

   E
~
(j,'i,0) = E

~ ex
' – E

~
o= T

~ e
e
x + ~e

e
x ('+ ½) – e

e
x
 
~e

e
x ('+ ½)2 – E

~
o        P28.14.2 

 

where the fundamental vibration frequency ~e
e
x and anharmonicity e

e
x~e

e
x are for the excited state. 

Consider two adjacent transitions: j, +1i,0 and j, i,0. The adjacent energy difference is: 
 

 ~ = E
~
(j,+1i,0) – E

~
(j,i,0)            P28.14.3 

 

(a). Prove that: ~ = = ~e
e
x – e

e
x
 
~e

e
x [(  ½) +)]2 + e

e
x
 
~e

e
x ( + ½)2        P28.14.4 

 

(b). Using ((+½)+1)2 = (+½)2 + 2(+½) + 1, starting with Eq. P28.14.4 prove that: 
 

 ~ = (h~e
e
x – 2e

e
x
 
~e

e
x) – 2e

e
x
 
~e

e
x      

 

(c). Label E
~

o, E
~ ex
 , T

~ e
e
x, E

~
(j,+1i,0), E

~
(j,i,0), and ~ on a plot of the ground and excited 

state potential energy curves. Pick a convenient arbitrary  for your plot. 
 
 

Answer:  (a). The adjacent energy difference is: 
 

 ~ = E
~
(j,+1i,0) – E

~
(j,i,0) = [E

~ ex
+1 – E

~
o] – [E

~ ex
  – E

~
o] = E

~ ex
+1 – E

~ ex
          P28.14.5 

 

Substitution of Eq. P28.14.1 evaluated at +1 and  into Eq. P28.14.5 and cancelling the 
common T

~ e
e
x terms gives the adjacent energy difference as: 

 

 ~ = ~e
e
x( +  + ½) – e

e
x~e

e
x(   + ½)2 – ~e

e
x( + ½) + e

e
x~e

e
x( + ½)2 

 

Cancelling common terms and rearranging (+1+½) to give ((+½)+1) gives Eq. P28.14.4: 
 

 ~ = ~e
e
x – e

e
x
 
~e

e
x [(  ½) +)]2 + e

e
x
 
~e

e
x ( + ½)2          (P28.14.4) 

 

(b). As in Eq. 27.5.9, using ((+½)+1)2 = (+½)2 + 2(+½) + 1 and cancelling the resulting 
common terms gives: 
 

 ~ = e
e
x – e

e
x~e

e
x [(  ½)2 + 2(  ½) +)] + e

e
x
 
~e

e
x ( + ½)2 = ~e

e
x – e

e
x
 
~e

e
x (2 + ) 
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Rearranging the last equation into the form of a straight line gives Eq. 28.2.13: 
 

 ~ = (h~e
e
x – 2e

e
x
 
~e

e
x) – 2e

e
x
 
~e

e
x       

 

(c).  

 
 

22.  The next three problems discuss errors in the Birge-Sponer extrapolation procedure and why 
different authors chose different variables to plot along the horizontal axis, ,  + ½, or  + 1. 
The vibrational fine-structure in an electronic absorption spectrum converges to a limit that is the 
sum of the dissociation energy of the ground state of the molecule and the atomic excitation 
energy. The convergence limit is equivalent to the sum of ~oo and the excited state dissociation 
energy, Eq. 28.2.8. Reference to Figure 28.2.5 shows that the excited state dissociation energy is 
the sum of all the adjacent wave number differences up to the convergence limit: 

E
~
(j,i,0) = D

~
o + E

~
atomic = ~oo + D

~ ex
o  = ~oo + 

=0



~        P28.22.1 

Based on the sum of adjacent differences, the Birge-Sponer extrapolation may be viewed from a 
different perspective. A graphical interpretation of Figure 28.1.20 allows a convenient 
calculation of the sum in Eq. P28.22.1. Consider a rectangle of unit width drawn at each data 
point, Figure P28.22.1.  
 

 
Figure P28.22.1: The excited state dissociation energy D

~ ex
o  is given by the sum of adjacent 

energy differences, which is conveniently calculated as the triangular area under the plot of 
~ versus . 
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The area of each rectangle is the height multiplied by the width. The sum of all the successive 
differences is then equal to the total area of all the rectangles. The total area is approximated as 
the triangle with the area given by ½ baseheight: 
 

 
=0



~ = area = ½ ~o cl        (28.2.19) 

 

Compare this approximate result, which we also gave as Eq. 28.2.19, to the exact result using 
Eq. 28.2.15. Express your answer in terms of the anharmonicity, e

e
x
 
~e

e
x. 

 
 

Answer:  The plan is to compare ~o to ~e
e
x using Eq. 28.2.16. 

   The exact result is given by Eq. 28.2.15:  D
~ e

o
x = ½ ~e

e
x cl. Substituting Eq. 28.2.16: 

 

 ~o = ~e
e
x – e

e
x ~e

e
x 

 

into Eq. 28.2.16 gives: 

 D
~ e

o
x = ½ ~e

e
x cl = ½ (~o + e

e
x ~e

e
x) cl = ½ ~o cl + e

e
x ~e

e
x cl 

 

The error in using Eq. 28.2.19 is then e
e
x ~e

e
x cl, which is typically small since the anharmonicity 

is usually a small fraction of the fundamental vibration frequency. 
 
 

23.  Birge-Sponer extrapolations are plotted as a function of the vibrational quantum number  
based on the following the linear forms: 
 

 ~ = (~e
e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
x      (28.2.13) 

 or equivalently    ~ = ~o – 2e
e
x
 
~e

e
x      

 

In the previous problem we discuss a graphical interpretation that leads to the use of the 
triangular area under the Birge-Sponer curve to estimate the dissociation energy of the excited 
state. This graphical interpretation in Figure P28.22.1 shows a problem in associating the area of 
each rectangle with the overall area; each rectangle has a small portion above the curve-fit line. 
Some authors suggest doing the curve fit versus +½ to limit the error in this area calculation, 
Figure P28.23.1. 
 

 
Figure P28.23.1: The excited state dissociation energy D

~ ex
o  is given by the sum of adjacent 

energy differences, which is conveniently calculated as the triangular area under the plot of 
~ versus +½. 
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The dissociation energy of the excited state is given approximately by area D
~ ex

o  = ½ ~o cl, 
where ~o is taken as the first data point and cl = (x-intercept) – ½. This result is identical to the 
result taken from the plot versus  discussed in the Example 28.2.2. However, some authors 
instead use: 
 

 D
~ ex

o   area = ½(y-intercept)(x-intercept) 
 

Evaluate the error in the corresponding calculation of D
~ ex

o  by showing that: 
 

 D
~ e

o
x = ½ (y-intercept)(x-intercept) – ¼ ~e

e
x + ½ e

e
x ~e

e
x cl + ¼ e

e
x ~e

e
x 

 
 

Answer:  The plan is to compare the y-intercept to ~e
e
x using Eq. 28.2.13. Make the substitution 

x =  + ½, where x is the variable plotted along the horizontal axis. 

   The basis of the Birge-Sponer plot is Eq. 28.2.13: ~ = (~e
e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
x



To switch variables, rearrange to give  = x – ½ and substitute into the previous equation: 
 

 ~ = (~e
e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
xx – ½) = (~e

e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
xx 

 

with the y-intercept = (~e
e
x – e

e
x ~e

e
x) and the x-intercept = cl + ½. 

   The exact result for the dissociation energy of the excited state is given by Eq. 28.2.15: 

D
~ e

o
x = ½ ~e

e
x cl. Solving the y- and x-intercepts for ~e

e
x and cl gives: 

 D
~ e

o
x = ½ ~e

e
x cl = ½ (y-intercept + e

e
x ~e

e
x)(x-intercept – ½)  

  = ½ (y-intercept)(x-intercept) – ¼ (y-intercept) + ½ e
e
x ~e

e
x(x-intercept) – ¼ e

e
x ~e

e
x 

  = ½ (y-intercept)(x-intercept) – ¼ (~e
e
x – e

e
x ~e

e
x) + ½ e

e
x ~e

e
x(cl + ½) – ¼ e

e
x ~e

e
x 

        = ½ (y-intercept)(x-intercept) – ¼ ~e
e
x + ½ e

e
x ~e

e
x cl + ¼ e

e
x ~e

e
x 

 

The last term is negligible. The error in the term ½ e
e
x ~e

e
x cl is typically small since the 

anharmonicity is usually a small fraction of the fundamental vibration frequency. The error in 

using the y- and x-intercepts directly is dominated by the term – ¼ ~e
e
x. Assuming ~e

e
x is typically 

on the order of ~2000 cm-1: 
 

 error = – ¼ ~e
e
x = – ¼ (2000 cm-1)(1 eV/8065.5 cm-1) = -0.06 eV 

 

which is often smaller than other sources of error. In summary, using D
~ e

o
x = ½ ~e

e
x cl is best, but 

using ½ ~o cl introduces small amounts of error. Using ½ (y-intercept)(x-intercept) from the 
plot versus +½ introduces small but significant error. 
 
 
24.  As an alternate to the Birge-Sponer plot where ~ is plotted versus , show that a plot of 
~ versus  + 1 gives ~e

e
x directly from the intercept. 

 
 

Answer:  The plan is to compare the y-intercept to ~e
e
x using Eq. 28.2.13. Make the substitution 

x =  + 1, where x is the variable plotted along the horizontal axis. 
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      The basis of the Birge-Sponer plot is Eq. 28.2.13: ~ = (~e
e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
x



To switch variables, rearrange to give  = x – 1 and substitute into the previous equation: 
 

 ~ = (~e
e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
xx – 1) = ~e

e
x – 2e

e
x
 
~e

e
xx 

 

with the y-intercept = ~e
e
x and the x-intercept = cl + 1. 

   The exact result for the dissociation energy of the excited state is given by Eq. 28.2.15: 
D
~ e

o
x = ½ ~e

e
x cl. The dissociation energy is easily calculated exactly from the y-intercept and then 

cl = x-intercept – 1. This plot type is not commonly used, so we didn’t cover it in the body of 
the chapter. 
 
 
25.  The ultra-violet photoelectron spectrum of HCl taken with He discharge excitation at 
21.21 eV is shown below.7,8 The doublet peaks at 12.74-12.82 and at 13.04-13.12 occur for the 
23/2 and 2½ states. The doublet spacing is determined by spin-orbit coupling. The peak 
spacings listed on the spectrum are vibrational spacings. The ground state spectroscopic 
constants for HCl are listed in Table 27.6.1. (a). For each band, is the molecular ion stretching 
frequency greater, roughly equal, or less than that of the ground state HCl? Predict the type of 
orbital, bonding, non-bonding, or anti-bonding, of the corresponding ionized electron. Include 
observations on the length of the vibrational progression of each band. (b). The molecular orbital 
diagram for HI is given in Figure 28.2.7. Is the molecular orbital ordering for HCl consistent 
with the molecular orbital ordering for HI? 
 

 
 

Figure 28.25.1: UPS spectrum of HCl using He discharge excitation at 21.21 eV. 
 
 
Answer:  The plan is to note that, for comparison, the observed fundamental vibration frequency 

for HCl is ~o = ~e – 2e~e = 2990.925 – 2(52.800) cm-1 = 2885.325 cm-1, using Eq. 27.5.11. 
(a). The fundamental vibration frequency for the ground state of the molecular ion given for the 
a-band is only slightly smaller than the ground state, suggesting the removal of a non-bonding 
orbital. The removal of a high energy non-bonding electron is not surprising for halogens. The 
fundamental vibration frequency for the excited state of the molecular ion given for the b-band is 
significantly less than the ground state, suggesting the removal of a bonding electron. 
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   The length of each vibrational progression is consistent with these observations. The 
vibrational fine-structure includes only two transitions for the a-band, suggesting a small change 
in bond length between the neutral molecule and the molecular ion. The removal of the 
corresponding electron makes a small difference in the bond strength. The removal of a non-
bonding electron produces no change in the qualitative bond order. The vibrational fine-structure 
includes seven or eight transitions for the b-band, suggesting a large change in bond length 
between the neutral molecule and the molecular ion. The removal of the corresponding electron 
makes a large difference in the bond strength. This result suggests that the electron is removed 
from a bonding orbital resulting in a smaller qualitative bond order. 
(b). The lowest ionization energy for the molecular orbital ordering in Figure 28.2.7 for HI 
corresponds to the removal of a non-bonding atomic p-electron. The next ionization energy 
corresponds to the removal of a -bonding electron. This order is identical to the character of the 
transitions in the UPS spectrum. So even though the valence shell for Cl-atoms is 3s-3p the 
character of the molecular orbital diagram is similar. 
 
 
26. The molecular orbital diagram for HI is given in Figure 28.2.7. (a). Sketch the four molecular 
orbitals. (b). Compare the molecular orbitals to the molecular orbitals for LiH, Figure 26.3.4. 
Suggest the reason why the 5s-orbital on the I-atom doesn’t participate in the molecular orbitals 
to a significant extent (at least at a qualitative level). (c). The molecular orbital ordering in Figure 
28.2.7 is verified using UPS. Describe the vibrational fine-structure in the UPS spectrum that is 
expected for HI. That is for each of the three bands, is the molecular ion stretching frequency 
greater, roughly equal, or less than that of the ground state HI? Also, is each vibrational 
progression short or long? (d). Show the “box diagrams” for the 2P½ and 2P3/2 states of I-atoms. 
(e). Find the term symbols for the excited states of HI with configuration 2(o)3(*)1. (f). 
Determine the possible projections of the total angular momentum for each term:  = | + s|. 
 
 
Answer: (a). The four molecular orbitals are diagrammed below, based on the listed molecular 
orbitals: bonding  = 1sH+5pz,I, non-bonding pure atomic = 5px,I and = 5px,I, and anti-
bonding * = 1sH–5pz,I. 
 

 
 
(b). For HI, the difference is the absence of the predominately non-bonding -orbital just below 
the purely non-bonding atomic p-orbitals. This non-bonding -orbital does not exist because the 

– 

+ 

= 5px,I  = 5py,I 

+ 

+ 
               
H        I 

+ – 

– 
* 

+ – 

E 

    = 1sH+5pz,I 

* = 1sH–5pz,I 

 = 5px,I   = 5py,I 
    

 = 1sH+5pz,I 

* = 1sH–5pz,I 
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5s orbital on the I-atom is so low in energy, relative to the 1s(H), that the 5s is core non-bonding. 
The unavailablility of the 5s(I) leaves only two valence orbitals, the 1s(H) and the 2p(I) that 
points along the internuclear axis, to form the bonding and anti-bonding molecular orbitals. 
(c). The UPS spectrum for HI has an appearance very similar to the spectrum of HCl, which is 
illustrated in the previous problem. Ionization from the HOMO, which is a non-bonding 5px or 
5py, has little effect on the bond strength. The small change in bond strength predicts the lowest 
energy band to have a short vibrational progression and a molecular ion vibration frequency little 
changed from the neutral molecule. The next transition, transition-b in the previous problem, 
removes an electron from the strongly bonding -orbital, giving a large decrease in bond 
strength. As a result, the fundamental vibration frequency in the molecular ion is predicted to 
have a large decrease and a long vibrational progression. 
(d). Schematically, representing each state with a single box diagram for the configuration 
[Kr]4d105s25p7: 
 

            +1   0    +1               +1    0    -1 

 2P½           and  2P3/2              
  5s     5p       5s     5p 
 

which represent the total angular momentum states given by the Clebsch-Gordon series: 
 

 with S = ½ , L = 1   then     J: L–S, …., |L+S| = 1–½, 1+½ 
 

The atomic states have the overall degeneracies:  gJ = 2 for 2P½   and   gJ = 2J+1 = 4 for 2P3/2 
 

(e). The term symbols for the molecular configuration 2(o)3(*)1 are given by adding the 
orbital angular momenta. The explicit configuration with maximum S and  is shown below, 
giving the total orbital angular momentum as  = 1 for a 3 term. The spin multiplicity can also 
be a singlet with paired spins giving a 1 terms. 
 

 
 
(f). For a  state,  = 1. For the singlet S = ½ and for the triplet S = 1. The projection of the total 
angular momentum is given by the series. 
 

For the singlet, S = ½ , s = –½, +½,  = 1   with   = |+s| = ½, 3/2 
giving 1½ and 13/2 molecular terms. 

 

For the triplet, S = 1 , s = –1, 0, +1,  = 1   with   = |+s| = 0, 1, 2 
giving 3o, 31, and 32 molecular terms. 

 

Substates of the 1 and the 3 terms give the repulsive states diagramed in Figure 28.2.7b. The 
total angular momentum states for the transitions in HI are given in parentheses. The 3(0+) state 
has  = 0 with the projection of the orbital angular momentum +, rather than – ( states are 

E 

              

               * 

         

 =         0 

 =    +1       –1 

 =         0 
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degenerate).4  Note: Most authors use the symbol  and not s for the projection of the spin 
angular momentum. Unfortunately then, the two uses of the symbol , which are the term 
symbol and the projection of the spin, must be distinguished by context. 
 
 
27.  Determine the density of states of a one-dimensional particle in a box. Determine the density 
of states near the state with quantum number n = 100, for CO2 molecules in a 10.0 cm “box”. 
Express the units as states per wave number. 
 
 
Answer:  The plan is to determine the derivative corresponding to Eq. 28.3.3, which is the 
derivative of the translational quantum number n with respect to the energy. The energy of the 
particle in a box states is given by given by Eq. 23.4.9. 

   The energy of a state with quantum number n is:   En = 
h2n2

8ma2   with a the box length. 
 

 () =  
dn
d = 



d

dn

-1
       with       

d
dn = 



h2

8ma2  
d n2

dn  = 



h2n

4ma2  
 

Substituting the derivative into the density of states gives: 
 

 () = 
4ma2

h2n           states per joule 
 

For CO2 in a 10.0 cm box, for which m = 44.0 g mol-1/NA/(1000 g/1 kg) = 7.31x10-26 kg: 
 

 () = 
4ma2

h2n  = 
4(7.31x10-26 kg)(0.100 m)2

(6.626xc10-34 J s)2(100)  = 6.66x1037 J-1 
 

Remember that E
~
 = E/hc to convert to cm-1. The density of states is per unit energy giving the 

conversion to wave numbers as: 
 

 () = 6.66x1037 J-1(hc) = 6.66x1037 J-1(6.626x10-34 J s)(2.99792x1010 cm s-1) 

        = 1.32x1015 cm = 1.32x1015 
1

cm-1         that is 1.32x1015 states per wave number 
 

The density of states decreases with increasing energy because the spacing between particle in a 
box energy levels increases with increasing n. However, even at n = 100, the density of states is 
amazingly high. We will find that for a 3-dimensional particle in a box, the density of states 
increases with increasing energy, because of degeneracy.  
 
 
28. Determine the density of states of a linear rigid rotor. Rotational energy levels have a 
degeneracy of (2J + 1), which we must take into account. The degeneracy is the number of states 
at a given energy level. The density of states is the product of the number of states at the given 
energy level with the number of levels per unit energy. The rotational constant for H–CN is 
1.4782 cm-1.9 Calculate the density of states for H–CN. 
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Answer:  The plan is to determine the derivative corresponding to Eq. 28.3.3, which is the 
derivative of the rotational quantum numbers J with respect to the energy, which is then 
multiplied by the degeneracy. The energy of the rotational states is given by given by Eq. 27.4.1. 

   The energy of a state with quantum number J is J = B
~

hc J(J + 1) : 
 

 () = (2J + 1) 
dJ
d = (2J + 1) 



d

dJ

-1
       with       

d
dJ = 

d [B
~

hc J(J + 1)]
dJ  = B

~
hc (2J + 1) 

 

Substituting the derivative into the density of states gives: 
 

 () = (2J + 1)[B
~

hc (2J + 1)]-1 = 
1

B
~

hc
    per joule   or    () =  

1

B
~      per cm-1 

 

The energy spacing between rotational levels increases with J, so we might expect the density of 
states decrease to increase with energy. However, the degeneracy increases with J. As a result the 
rotational density of states is constant with increasing energy. The rotational constant for H–CN 
is 1.4782 cm-1.9 The density of rotational states is () = 1/1.4782 cm-1 = 0.676 states per wave 
number. 
 
 
29.  The UV-visible absorption spectrum of SO2 is given in Figure 28.1.1. The band origin of the 
visible transition is roughly 340 nm. The band origin corresponds to the '" vibrational fine-
structure transition of 00. Consider non-radiative energy transfer by internal conversion from 
this excited electronic state into the ground electronic state. The three normal modes of SO2 in 
the ground electronic state are at wave numbers 1151 cm-1, 518 cm-1, and 1362 cm-1, Figure 
28.3.2. (a) Assuming all the vibrational energy is in the asymmetric stretch-3, that is 1 = 2 = 0, 
calculate the vibrational quantum number of the ground state that is isoenergetic with the lowest 
energy vibrational level of the excited state. (b). Assuming the vibrational quantum numbers are 
all equal, that is 1 = 2 = 3, calculate the approximate vibrational quantum numbers of the 
ground state that is isoenergetic with the lowest energy vibrational level of the excited state. 
 
 
Answer:  The plan is to convert the band origin to wave numbers and then compare with the 
harmonic oscillator energy levels. 
   In wave numbers, ~oo = [1/(340x10-9 m)] (1 m/100 cm) = 29400 cm-1. This energy is referenced 
to the zero-point energy of the ground state at G

~
(0) = ½~o. 

(a).  Using the energy of a harmonic oscillator as G
~

() = ~o( + ½) gives:   = ~oo/~o = 
29400 cm-1/1362 cm-1 = 21.6  22. This is a highly excited vibrational level, which may be near 
the dissociation limit. 
(b). What happens if we don’t put all our eggs in one basket and consider vibrational excitation 
into each of the normal modes? 
 

  = 
~oo

(~1,o + ~2,o + ~3,o)
 = 

29400 cm-1

1151 cm-1 + 518 cm-1 + 1362 cm-1 = 9.70  10 

 

This vibrational level is very difficult to access using absorption directly from the ground 
electronic state (by infrared absorption spectroscopy for example). However, internal conversion 
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is seen to be mediated through such highly excited vibrational states. We assumed that all the 
vibrational quantum numbers were equal. However, a given molecular system may prefer to 
have more quanta in the modes with higher fundamental vibration frequency. For example, very 
high frequency C–H stretching vibrations play an important role in internal conversion processes 
in aromatic systems. 
 
 
30.  Avoided-crossings of degenerate states follow a common pattern. Consider two states 
represented by the wave functions A and B. The strength of the interaction between the two 
states is determined by the integral c =  A o^  B d. Possibilities for the o^  operator include spin-
orbit coupling for electronic interactions in intersystem crossing or (2/R2) for vibronically 
coupled states. Vibronic coupling is important in internal conversion and pre-dissociation. We 
consider the interaction as a perturbation on the unperturbed wave functions A and B. We 
assume that there is no net interaction without the perturbation, giving an overlap-type integral: 
 

  A B d = SAB = 0 
 

A zero overlap integral is often the result of orthogonality. Any two different electronic states of 
the same molecule are orthogonal. The unperturbed energies of the two states are: 
 

 a =  A H^  ' A d and b =  B H^  ' B d 
 

with H^  ' given by the unperturbed Hamiltonian (o^  is not present). The energies of the two states 
with the interaction present are the eigenvalues of the secular equations, i, as in Eq. 26.1.13: 
 

 



a –  c

c b –   = 0 
 

with the eigenvalues given by Eq. 6.3.23. Recasting Eq. 6.3.23 into the terms used in this 
problem gives: 
 

 i = 
(a + b)  (a – b)2 + 4 c2

2        P28.32.1 
 

(a). In pre-dissociation, a and b scale with the distance, with a = b at the avoided-crossing. 
Assume the two states are nearly degenerate and have energies:  a = 5.00 eV +  and 
b = 5.00 ev – . The energy gap, , has units of eV. Plot the energies of the two states with the 
interaction present for c = 0.2 eV for  in the range of -0.5 <  < 0.5. Determine the energy gap at 
 = 0. 
(b). Compare the previous plot to Figure 28.2.8. How can you tell that the crossing is avoided? 
(c). Decrease the interaction parameter to c = 0.01 eV. Is the interaction still avoided? RT at 
room temperature is 0.0257 eV. Predict the behavior of the system at room temperature at the 
avoided-crossing. 
 
 
Answer:  The plan is to solve for the eigenvalues as a function of the energy gap, . For large 
positive energy gaps, +  a and -  b. 
   A spreadsheet was developed that solves P28.32.1 as a function of the energy gap parameter.  
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A1 B C D E F G 
2  Eav = 5 eV    c= 0.2 eV 
3   a b + - 
4  -0.5 4.5 5.5 5.5385 4.4615 
5  -0.4 4.6 5.4 5.4472 4.5528 
6  -0.3 4.7 5.3 5.3606 4.6394 
7  -0.2 4.8 5.2 5.2828 4.7172 
8  -0.1 4.9 5.1 5.2236 4.7764 
9  0 5 5 5.2000 4.8000 

10  0.1 5.1 4.9 5.2236 4.7764 
11  0.2 5.2 4.8 5.2828 4.7172 
12  0.3 5.3 4.7 5.3606 4.6394 
13  0.4 5.4 4.6 5.4472 4.5528 
14  0.5 5.5 4.5 5.5385 4.4615 

 

 

 
 

(a).  The energy gap at the curve-crossing is 0.4 eV = 2c. 
(b).  The curve is analogous to pre-dissociation assuming a linear change in unperturbed energy 
with distance, near the curve-crossing. You can tell that the crossing is avoided because the + 
curve approaches curve-b for negative energy gaps, but approaches curve-a for positive energy 
gaps. If the system starts in the a-state, for increasing  the system progresses to the b-state for 
large . 
(c).  Decreasing the interaction parameter decreases the gap at the curve-crossing. If c = 0.01 eV, 
the gap is only 0.02 eV at the avoided-crossing. This gap is smaller than the available thermal 
kinetic energy, which easily allows the system to jump across the gap. As a consequence if the 
system starts in the a-state, for increasing  at the curve crossing the system can jump to the 
upper curve. Then instead of progressing to the b-state for large , the system stays in the a-state. 
The result is a mixture of products, some in the a-state and some in the b-state.  
 
 
31.  Determine the symmetry species of the following molecular orbitals of ethylene. The 
symmetry species are the irreducible representations. In addition, classify the molecular orbitals 
as  or , non-bonding or bonding. 
 

 
 
Answer:  The plan is to note that the point group is D2h for ethylene. The sufficient characteristic 
symmetries are the transformation properties under (xy), (xz), and (yz). 
    We don’t need to consider every symmetry operation of the point group. Such a complete 
enumeration could drive you crazy with some of the more symmetrical point groups. We can use 
just (xy), (xz), and (yz) since the results are unique and easy to see. The (xy)-plane 
contains all the atoms. For example, the first molecular orbital is symmetric with respect to the 
(xy)-plane, antisymmetric with respect to (xz), and antisymmetric with respect to (yz). 
Symbolizing symmetric with +1 and antisymmetric with -1, the results in the order 
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[(xy),(xz),(yz)] are [1,-1,-1]. Comparison with the D2h character table shows these characters 
correspond to B1g. The orbital overlaps are all in-plane and correspond to C–H bonds, giving a -
type orbital. The molecular orbital has four bonding C–H interactions and one anti-bonding C–C 
interaction, which is net bonding. The other results are given below. 
 

 
 

We can check our results by noting the transformation properties under inversion. The symmetric 
orbitals under inversion are g and the anti-symmetric orbitals are u, which agrees with our 
assignments. The choice of the (xy), (xz), and (yz) planes is in some ways arbitrary; other 
combinations of transformations also work. However, usually reflection planes are often the 
most convenient as long as the results give a unique one-to-one relationship with the irreducible 
representations of the point group. 
 
 
32.  Use electronic selection rules to determine if the LUMO+1  HOMO and LUMO+2  
HOMO transition are allowed in absorption spectra. The corresponding molecular orbital 
diagram for the 1b1g, 1b1u, 1b2g, ag, and b2g levels is given below. 

 
 
Answer:  The plan is to determine the direct products A1gB1u and B2uB1u. 
   The ground electronic state for ethylene is A1g, since all occupied orbitals are doubly filled. As 
a result we need only consider the symmetry of the excited state and the electric dipole operator. 
In D2h the x, y, and z components of the electric dipole transform as B3, B2, and B1, respectively. 
The LUMO+1  HOMO transition gives an excited state with configuration 
…(1b1g)2(1b1u)1(1b2g)0(ag)1 with direct product: A1gB1u. The A1g irreducible representation is 
the totally symmetric representation. Multiplication by the totally symmetric representation is the 

b1g () b2g (*) b1u () ag (*) b2u (*) 

a
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unity operation for direct products, since all the characters are +1. As a result A1gB1u = B1u. 
The z-component of the dipole moment transforms as B1u, which gives the transition as allowed 
for the singlet states: 1B1u  1A1g. 
   The LUMO+2  HOMO transition gives an excited state with configuration 
…(1b1g)2(1b1u)1(1b2g)0(ag)1(2b2u)1 with direct product: B2uB1u. We can save ourselves some 
time by noting that the direct product will have g-parity. The x, y, and z-components of the 
dipole moment transform as u-parity, which gives the transition as forbidden. However, for 
practice, the direct product B2uB1u is: 
 

D2h E C2(z) C2(y) C2(x) i (xy) (xz) (yz) 
B1u 1  1 -1 -1 -1 -1  1  1 
B2u 1 -1  1 -1 -1  1 -1  1 
B2u  B1u 1 -1 -1  1  1 -1 -1  1 = B3g 

 

The result has g-parity as predicted giving a forbidden transition. The next problem gives the 
result from an electronic structure calculation using CIS/6-311G*, which agrees with the results 
in this problem. However, it is found that the LUMO+1HOMO transition, which is 1B1u  
1A1g, while allowed is significantly less intense than the LUMOHOMO transition. 
 
 

33. In Example 28.8.1 we used group theory based electronic selection rules to determine if the 
low energy * and * transitions of ethylene are allowed or forbidden. Configuration 
interaction calculations are used to find excited states, electronic transition energies, and 
intensities within the Hartree-Fock formalism. Single excitations don’t contribute to ground state 
stability, however single excitations generate many possible excited states. As a consequence 
configuration interaction with single excitations, CIS, is used to simulate UV-visible spectra. 
First, do a geometry optimization for ethylene at HF/6-311G* (equivalent to HF/6-311G(d)). 
Then do a CIS/6-311G* single point calculation to compare to the intensity predictions in 
Example 28.8.1. [Hints: To do a CIS calculation: Using the Spartan visualization environment 
select an Energy calculation and check “UV/Vis” and “Orbitals & Energies”. Using the WebMo 
visualization environment for Gaussian choose the Calculation type as “Excited States and UV-
Vis”. Use the Basis Set “Other” option to specify 6-311G(d). Using the GaussView visualization 
environment for Gaussian set the Method as CIS and check “Solve for More States, N = 6”.] 
 
 

Answer:  We give the Spartan version first and then the Gaussian version. The Spartan/Q-Chem 
results are shown below with transition wavelengths in nm: 
 

UV/Vis Allowed Transitions: 
nm    strength MO Component  
115.69 0.0000 HOMO-2 -> LUMO 92%  
125.52 0.0000 HOMO -> LUMO+3 95%  
128.17 0.0000 HOMO-1 -> LUMO 92%  
135.48 0.0000 HOMO -> LUMO+2 89%  
142.34 0.0443 HOMO -> LUMO+1 99%  
146.10 0.6127 HOMO -> LUMO 94% 

 

In Example 28.8.1, we predicted the LUMOHOMO transition to be fully allowed with B3u 
symmetry and the LUMOHOMO-1 transition to be forbidden with B3g symmetry. The CIS 
results agree with the group theory predictions. The calculation places the LUMO+1HOMO 
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transition that is weakly allowed and the LUMO+2HOMO forbidden transition in between the 
transitions in Example 28.8.1. 
The Gaussian results at CIS(NStates=10)/6-311G(d), as displayed by the WebMo “front-end” 
visualization environment, are shown below with transition wavelengths in nm. 
 

   State    Symmetry    Energy (nm) 
1 B1U 146.05 
2 B3U 142.28 
3 B1G 135.45 
4 B1G 128.18 
5 B2G 125.49 
6 B2G 115.61 
7 AU 106.02 
8 B3G 104.97 
9 B2U 96.32 
10 AU 95.40 

 

A plot of the electronic spectrum shows only the first transition, B1U at 146.05 nm, has 
significant intensity. We need to view the “raw” numerical data file to determine the molecular 
orbitals involved in the transition. Ethylene has 16 electrons, so that the HOMO is orbital 8. The 
orbitals are listed with the molecular orbital symmetry designations as: 
 
       Occupied  (AG) (B1U) (AG) (B1U) (B2U) (AG) (B3G) (B3U) 
       Virtual   (B2G) (AG) (B2U) (B1U) (B3G) (B1U) (AG) (B2U) 
                 (AG) (B3U) (B1U) (B2G) (B2U) (B3G) (AG) (B1U) 
                 (B3G) (B1U) (B1G) (B3U) (B2U) (AG) (AU) (B1U) 
                 (AG) (B3G) (B2G) (AG) (B1U) (B2U) (B1U) (B3U) 
                 (B3G) (B2G) (B2U) (AG) (B3G) (B1U) (AG) (B1U) 
 

Comparison of the assigned molecular orbital symmetries to Figure 28.8.2 shows the 
designations of the B1 and B3 molecular orbital labels to be switched. Unfortunately there is no 
definitive choice of symmetry labels for B1, B2, and B3; different authors use different labels. We 
just need to remember the switch when comparing to our original molecular orbital diagram. 
   The spectroscopic transitions are listed below. 
 

Excitation energies and oscillator strengths: 
  
 Excited State   1:   Singlet-B1U    8.4892 eV  146.05 nm  f=0.6131 
       8 ->  9         0.68385 
 This state for optimization and/or second-order correction. 
 Copying the excited state density for this state as the 1-particle RhoCI density. 
  
 Excited State   2:   Singlet-B3U    8.7144 eV  142.28 nm  f=0.0444 
       8 -> 10         0.70271 
  
 Excited State   3:   Singlet-B1G    9.1537 eV  135.45 nm  f=0.0000 
       7 ->  9         0.18364 
       8 -> 11         0.66646 
       8 -> 16         0.11486 
 
 Excited State   4:   Singlet-B1G    9.6728 eV  128.18 nm  f=0.0000 
       7 ->  9         0.67617 
       8 -> 11        -0.18519 

 

The LUMOHOMO transition corresponds to orbitals 8 -> 9 in the listings, below. The 
LUMO+2HOMO transition corresponds to 8 -> 11, which is the largest contributor to 
transition 3. In Example 28.8.1, we predicted the LUMOHOMO transition to be fully allowed 
with B2gB1u = B3u symmetry and the LUMOHOMO-1 transition to be forbidden with 
B2gB1g = B3g symmetry. Given the switch in labels, the CIS results agree as listed below for 
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transitions 1 and 4. The calculation interposes transition 2, the LUMO+1HOMO transition as 
weakly allowed, and transition 3, the LUMO+2HOMO transition as forbidden. 
 
 

34.  Determine the symmetry species of the following molecular orbitals of formaldehyde. The 
geometry is shown at bottom. The x-direction is the -bonding direction for these plots. The 
HOMO has a small contribution from the 2py orbital on the C-atom. As a result the HOMO is 
primarily a non-bonding 2py atomic orbital on the O-atom. [Hint: Use the symmetry operations 
given in Figure 26.6.4. Formal group theory is not required for this problem.] 
 

 
 
 

Answer:  The plan is to orient the C2 axis along z and the v-plane along the z- and x-axes. The 
atoms then lie on the z-y plane, which is called the v'-plane. 

   The symmetry operations are given in Figure 26.6.4 and reproduced below: 
 

symmetry rotate 180   (C2) reflect across v 

symmetric a 1 
antisymmetric b 2 

 

 

 

 
 
 

   The HOMO–1 is antisymmetric with respect to 180 rotation and symmetric with respect to 
reflection across v. The HOMO–1 has b1 symmetry. 
   The HOMO is antisymmetric with respect to 180 rotation and antisymmetric with respect to 
reflection across v. The HOMO–1 has b2 symmetry. 
   The LUMO is antisymmetric with respect to 180 rotation and symmetric with respect to 
reflection across v. The LUMO has b1 symmetry. 
   The LUMO+1 is symmetric with respect to 180 rotation and symmetric with respect to 
reflection across v. The LUMO has a1 symmetry. 
 

   These symmetry designations are applied in the next problem. 
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35.  Use electronic selection rules to determine if the LUMOHOMO, LUMOHOMO-1, and 
LUMO+1HOMO electronic transitions of formaldehyde are allowed or forbidden. The 
symmetries of the molecular orbitals are: 
 

Orbital 7 8 9 10 
MO HOMO-1 HOMO LUMO LUMO+1 
Symmetry b1 b2 b1 a1 
Type  n * * 

 
 
Answer:  The plan is to follow Example 28.8.1 under the C2v point group. 
   The ground electronic state for formaldehyde is A1, since all occupied orbitals are doubly 
filled. As a result we need only consider the symmetry of the excited state and the electric dipole 
operator. In C2v the x, y, and z components of the electric dipole transform as B2, B1 and A1. The 
required direct products of the upper and lower singly occupied molecular orbitals in the excited 
state are: 
 
LUMOHOMO with orbital types *n gives excited electronic state configuration 
…(b1)2(b2)1(b1)1 with symmetry B1B2 : 
 

MO Symmetry E C2 v v' Result 
B1 1 -1  1 -1  
B2 1 -1 -1  1  
B1B2 1  1 -1 -1 = A2  forbidden 

 

The A2 symmetry of the excited state does not match a component of the electric dipole moment, 
giving a forbidden transition. 
 

LUMOHOMO-1 with orbital types * gives excited electronic state configuration 
…(b1)1(b2)2(b1)1 symmetry B1B1 : 
 

MO Symmetry E C2 v v' Result 
B1 1 -1  1 -1  
B2 1 -1  1 -1  
B1B2 1  1  1  1 = A1  allowed 

 

The A1 symmetry of the excited state matches the z-component of the electric dipole moment, 
giving an allowed transition. We could have saved ourselves some work since the product of any 
non-degenerate irreducible representation with itself is always the totally symmetric group. 
 

LUMO+1HOMO with orbital types * gives excited electronic state configuration 
…(b1)2(b2)2(b1)0(a1)1 symmetry A1B2 = B2. The A1 irreducible representation is the totally 
symmetric representation. Multiplication by the totally symmetric representation is the unity 
operation for direct products, since all the characters are +1. As a result A1B2 = B2. The B2 
symmetry of the excited state matches the y-component of the electric dipole moment, giving an 
allowed transition. The next problem gives the result from an electronic structure calculation 
using CIS/6-311G*, which agrees with the results in this problem. 
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36.  Use a configuration interaction-singles calculation to determine the predicted intensity of the 
LUMOHOMO, LUMOHOMO-1, and LUMO+1HOMO electronic transitions of 
formaldehyde. First, do a geometry optimization for formaldehyde at HF/6-311G** (equivalent 
to HF/6-311G(d,p)). Then do a CIS/6-311G** single point calculation to compare to the 
intensity predictions in Problem 35. See Problem 33 for a discussion of the use of CIS 
calculations for predicting electronic spectra and for hints on doing the calculations. 
 
 
Answer:  All spin allowed transitions are for the singlet states, since the ground state of 
formaldehyde is a singlet, 1A1. We give the Spartan version first and then the Gaussian version. 
The Spartan/Q-Chem results are: 
 

UV/Vis Allowed Transitions: 
nm strength MO Component  
103.83 0.0000 HOMO-3 -> LUMO 95%  
104.28 0.3556 HOMO -> LUMO+2 90%  
117.65 0.1685 HOMO-1 -> LUMO 83%  
120.16 0.0006 HOMO-2 -> LUMO 96%  
125.60 0.1762 HOMO -> LUMO+1 97%  
261.24 0.0000 HOMO -> LUMO 96% 

 

The Gaussian results at CIS/6-311G(d), as displayed by the WebMo “front-end” visualization 
environment, are shown below with transition wavelengths in nm. 
 

    State    Symmetry    Energy (nm) 
1 A2 261.26  
2 B2 125.58  
3 B1 120.17  
4 A1 117.65  
5 A1 104.28 
6 A2 103.82 
7 B2 99.65  
8 B1 95.52  
9 A2 86.78  
10 B1 80.14 

 

We need to view the “raw” Gaussian numerical data file to determine the molecular orbitals 
involved in the transition. Formaldehyde has 16 electrons, so that the HOMO is orbital 8. The 
orbitals are listed with the molecular orbital symmetry designations as: 
 

   Orbital symmetries: 
       Occupied  (A1) (A1) (A1) (A1) (B2) (A1) (B1) (B2) 
       Virtual   (B1) (A1) (B2) (A1) (A1) (B2) (B1) (B2) (A1) (A1) 
                 (A1) (B1) (B2) (A2) (B1) (A1) (A1) (B2) (B2) (A1) 
                 (B1) (A2) (A1) (B2) (B2) (A1) (A1) (B1) (A2) (A1) 
                 (B1) (A1) (B2) (B2) (A1) (B1) (B2) (A1) (A1) (A1) 
 

The orbital symmetry labels, that is B1 versus B2, match those given in Problem 35. The B1 and 
B2 designations are arbitrary and don’t necessarily match. 
      The spectroscopic transitions are listed below. 
 

Excitation energies and oscillator strengths: 
  
 Excited State   1:   Singlet-A2     4.7456 eV  261.26 nm  f=0.0000 
       8 ->  9         0.69294 
 This state for optimization and/or second-order correction. 
 Copying the excited state density for this state as the 1-particle RhoCI density. 



202 
 

  
 Excited State   2:   Singlet-B2     9.8726 eV  125.58 nm  f=0.1760 
       8 -> 10         0.69548 
  
 
 Excited State   3:   Singlet-B1    10.3177 eV  120.17 nm  f=0.0006 
       6 ->  9         0.69272 
  
 Excited State   4:   Singlet-A1    10.5388 eV  117.65 nm  f=0.1688 
       7 ->  9         0.64570 
       8 -> 11         0.19390 
       8 -> 14        -0.13077 
  
 Excited State   5:   Singlet-A1    11.8893 eV  104.28 nm  f=0.3552 
       7 ->  9        -0.17516 
       8 -> 11         0.67138 

  

The LUMOHOMO transition is for orbitals 8 -> 9, which has zero oscillator strength 
corresponding to a forbidden transition. The LUMOHOMO–1 transition is for orbitals 
7 -> 9, which is the largest contributor to transition 4. Transition 4 is allowed. The 
LUMO+1HOMO transition corresponds to 8 -> 10, which is transition 2. Transition 2 is 
allowed. The CIS results agree as listed below for transitions 1 and 4. The calculation interposes 
transition 3, 6 -> 9 LUMOHOMO–2 transition, as very weakly allowed. 
   Comparison with experimental spectra don’t work out well for formaldehyde. The 
LUMO+1HOMO, LUMOHOMO–1, and LUMOHOMO–2 transitions are not observed. 
A series of O-atom centered Rydberg transitions is prominent in the spectrum. One reason for the 
disagreement is that the 1A2 and 3A2 excited states are not planar, which these calculations do not 
take into account. The point group of these excited states is Cs.10 Careful geometry optimized 
calculations on the excited states at higher levels than CIS are required to completely understand 
the spectra of many molecules, formaldehyde included. However, CIS calculations are a 
reasonable starting point, at least as a point of comparison. 
 
 
37. K. P. Huber and G. Herzberg have produced a comprehensive reference on the spectroscopic 
data of diatomic molecules.3 This reference has been transcribed by the National Institute of 
Standards and Technology, NIST, as an on-line database.2 The entry for Na2 is listed as an 
example below. The spectroscopic constants are presented in wave numbers and the equilibrium 
bond length in Å. The book tables start with a listing of the reduced mass, , in g mol-1. Next the 
dissociation energy at absolute zero, Do

o, which we have been referencing as just Do, and the 
ionization energy to form the ground state of the molecular ion, I.P. The on-line version excludes 
, Do

o, and I.P. By convention, the ground state is labeled as X, which for Na2 is explicitly X 1g
+. 

Excited electronic states are labeled as states A, B, C, D … in order of increasing energy if the 
states have the same spin multiplicity, or a, b, c, d … if the excited states have a different 
multiplicity. Many literature references and many notes are included in the tables, which we have 
omitted in this example for brevity. For this homework problem (a) find the Na2 reference in the 
book or on-line, http://webbook.nist.gov/chemistry, and (b) write a spreadsheet to plot the potential 
energy surfaces as a function of R for the X ground state, and A and B excited states. Use the 
Morse function for the potential energy surfaces. The A and B excited states dissociate to a 
ground and excited state Na atom: Na2  Na (2S) + Na (2P). The atomic excitation energy, 
Eatomic is 16961 cm-1 to the 2P½ state. From Figure 28.2.5, note that T

~
e + D

~ e
e
x = D

~
e + Eatomic. 
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State (1) Te e ee eye Be  (2) e De (3) re Trans. νoo

23Na2  = 11.4948852 Do
o = 0.720 eVa I.P. = 4.90 eVb     

 Diffuse bands of Na2 Van der Waals molecules close to the lines of principal series of Na.   

 Several fragments of other UV emission and absorption band systems.c    
E (1u) 35557 106.2 H 0.65 

     
E←X R 35530.6 H 

D 1u 33486.8 111.3 H 0.48 
 

d 
   

D↔X R 33462.9 H 
1g

+ (33000) Fragment observed in two-photon excited Na2 fluorescence 
   

C 1u 29382 119.33 H 0.53 
 

d 
   

C↔X R 29362 H 

B 1u 20320.02 124.090 Z 0.6999 
 

0.125277 7.237E-4 3.248E-7 3.4228 B↔X R 20302.49 Z 

A 1u
+ 14680.58 117.323 Z 0.3576 

 
0.110784 5.488E-4 3.882E-7 3.6384 A↔X R 14659.80 Z 

a 3 <14680 (145) 
  

(0.140) 
     

X 1g
+ 0 159.1245 Z 0.72547 

 
0.154707 8.736E-4 5.811E-7 3.07887 

  

a. From Do
e = 5890  70 cm-1 based on RKR potential curve for the ground state. The thermochemical value obtained by a 

molecular beam technique is 0.732 eV. 
b. From photoionization. A similar value is obtained by extrapolation of the Rydberg series B, C, D, E. 
c. Molecular absorption cross sections 27000 – 625000 cm-1. 
d. Barrow, Travis, et al., 1960 report the following rotational constants for D: Be = 0.1185, e = 0.001, C: Be = 0.12815, e = 

0.00084. Considerably different constants, however, are quoted by Richards in Rosen, 1970.  D: Be = 0.1152, e = 0.00110, 
C: Be = 0.1185, e = 0.00096. 

Footnotes:  
1. Units: Te, e ee eye Be, e, De, and νoo in cm-1, with e = ~e and re = Re in Å as given in this text. 
2. On-line NIST tables list the vibration-rotation interaction constant, e, for the expansion: B = Be – e ( + ½) + e ( + ½)2

 

3. On-line NIST tables list e for the centrifugal distortion expansion: D = De + e ( + ½). 

 
Table Legend          
H   Data obtained from band head measurements (see Problem 3) 
Z   Data obtained from, or referring to, band origins (see Problem 3) 
R   Shaded towards longer wavelengths (appearance of the rotational fine-structure, B'e < B"e) 
V   Shaded towards shorter wavelengths (appearance of the rotational fine-structure, B'e > B"e) 
( )   Uncertain data 
[ ]   Data refer to  = 0 or lowest observed level. Te values in square brackets give the energy of this level 

relative to the minimum of the ground-state potential energy curve. Vibrational frequencies in square 
brackets correspond to G(½) or the lowest observed interval. 

 
 
Answer:  The spectroscopic constants for the electronic term values, T

~
e, fundamental vibration 

frequencies, e = ~e, anharmonicities, ee = e~e, and equilibrium bond lengths, re = Re, are 
transcribed into cells D8:F11. The dissociation energy, D

~
e, and Morse a-parameter are calculated 

from the spectroscopic constants, Eqs. 27.5.6, 27.5.7, 27.5.12, and 27.5.17, allowing the potential 
energy curves to be calculated as columns in the spreadsheet. 
 

Cell D13 for the dissociation energy of the ground state is: “=D12*C4+D9/2-D10/4” 
Cell E13 for the dissociation energy of the first excited state is: “=$D$13+$C$3-E8” 
Cell D14 for the Morse a-parameter for the ground state is: 
 

 =2*PI()*D9*2.998E10*SQRT($C$2/1000/2/(D13*11.962))*1E-10 
 

Cell D17 for the first cell of the Morse potential energy curve for the ground state is: 
 

 =D$8+D$13*(1-EXP(-D$14*($C17-D$11)))^2 
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A1 B C D E F G 

2 reduced mass 11.4949 g/mol    
3 DEatomic = 16961 cm-1    
4 1 eV = 8065.5 cm-1    
5 1 cm-1 = 11.962 J/mol    
6       
7 State  X A B  
8 electronic  Te 0 14680.6 20320.0 cm-1 
9 vib. freq.  e 159.125 117.323 124.09 cm-1 

10 anharmonic. ee 0.7254 0.3576 0.6999 cm-1 
11 bond length Re 3.07887 3.6384 3.4228 Å 
12 dissoc. energy Do 0.720   eV 
13 dissoc. energy De 5886.54 8166.96 2527.52 cm-1 
14 Morse a a 0.85636 0.53604 1.01915  
15 R step  0.25 Å    

16  R (Å) 
V(X)  
cm-1 

V(A) 
cm-1 

V(B) 
cm-1  

17  1.9 17910.6    
18  2.15 8695.89 26851.3   
19  2.4 3659.46 21931.2 28839.7  
20  2.65 1159.30 18666.8 23948.2  
21  2.9 161.29 16606.4 21571.7  
22  3.15 20.56 15412.0 20579.7  
23  3.4 340.28 14832.3 20321.4  
24  3.65 880.78 14680.9 20428.0  
25  3.9 1501.16 14820.4 20694.9  
26  4.15 2121.91 15150.4 21012.5  
27  4.4 2701.20 15598.1 21325.1  
28  4.65 3219.78 16111.4 21607.4  
29  4.9 3671.61 16653.4 21850.2  
30  5.15 4058.00 17198.6 22052.8  
31  5.4 4384.03 17729.9 22218.6  
32  5.65 4656.40 18236.3 22352.2  
33  5.9 4882.28 18710.9 22458.9  
34  6.15 5068.52 19150.5 22543.5  
35  6.4 5221.41 19553.5 22610.2  
36  6.65 5346.50 19920.2 22662.6  
37  6.9 5448.56 20251.9 22703.5  
38  7.15 5531.65 20550.3 22735.6  
39  7.4 5599.19 20817.7 22760.5  
40  7.65 5654.01 21056.4 22780.0  
41  7.9 5698.46 21268.9 22795.1  

 

 

 

 

Potential energy surfaces are the necessary starting point for molecular dynamics calculations of 
chemical kinetics rate constants.  
 
 
38.  The Huber-Herzberg tables of diatomic spectroscopic constants are introduced in the 
previous problem. Refer to the previous problem for interpretation and footnotes. (a) Find the 
12C2 reference in the book or on-line, http://webbook.nist.gov/chemistry, and (b) write a spreadsheet 
to plot the potential energy surfaces as a function of R for the X 1g

+ ground state, and a 3u, 
b 3g

-, and A 1u excited states. Use the Morse function for the potential energy surfaces. The 
ground state dissociation energy is 6.21 eV. The a and b excited states dissociate to ground state 
atoms: C2  C (3P) + C (3P). The A excited state dissociates to a ground state and an excited 
state atom: C2  C (3P) + C (1D). The atomic excitation energy, Eatomic, is 10192 cm-1 to the 1D 
state. From Figure 28.2.5, note that T

~
e + D

~ e
e
x = D

~
e + Eatomic. 
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Answer:  The data table for C2 is reproduced below. The low lying a3u excited state is 
remarkable. Molecules don’t typically have such low lying excited states. C2 is generated at high 
temperature is carbon arc sources and lighting strikes. At 2000 K, the occupancy of all excited 
3 states is roughly 82%. 
 

State Te ωe ω e ωey Be αe De re Trans. ν00

12C2     = 6.000000            Do
o = 6.21 eV              I.P. = 12.15 eV     

F 1u [75456.9] [1557.5] Z   1.645 0.019 6.E-6 1.307 F←X R 74532.9 Z 
g 3g [73183.6] [1458.06]Z   1.5238 0.17 6.60E-6 1.3579 g←a R 71649.6 Z 
f 3g 71045.8 1360.5 Z 14.8  1.448 0.04 1.0E-5 1.393 f←a R 70188.4 Z 
E 1g

+ 55034.7 1671.50 Z 40.02 0.248 1.7897 0.0387 8.3E-6 1.2529 E→A V 46668.3 Z 
d 1u

+ 43239.44 1829.57 Z 13.94  1.8332 0.0196 7.32E-6 1.238 D↔X 43226.74 Z 
e 3g 40796.65 1106.56 Z 39.26 2.805 1.1922 0.0242 6.3E-6 1.5351 e→a R 39806.46 Z 
C 1g 34261.3 1809.1 Z 15.81  1.7834 0.018 6.8E-6 1.2552 C→A VR 25969.19 Z 
d 3g 20022.5 1788.22 Z 16.44 -0.5067 1.7527 0.01608 6.74E-6 1.2661 d↔a VR 19378.44 Z 
c 3u

+ 13312.1 1961.6 13.7  1.87   1.23   
A 1u 8391 1608.35 Z 12.078 -0.01 1.6134 0.01686 6.44E-6 1.31843 A↔X R 8268.16 Z 
b 3g

- 6434.27 1470.45 Z 11.19 0.028 1.49852 0.01634 6.22E-6 1.36928 b→a R 5632.7 Z 
a 3u 716.24 1641.35 Z 11.67  1.63246 0.01661 6.44E-6 1.31190   
X 1g

+ 0 1854.71 Z 13.340 -0.172 1.81984 0.01765 6.92E-6 1.24253   
 

   The spreadsheet from the previous problem was used after adding an additional column. For 
the triplet a- and b-states, Eatomic = 0 since the states dissociate to ground state C-atoms. The 
cells through the first half of the plot are reproduced below. 
 

A1 B C D E F G H 
2 reduced mass 11.49489 g/mol     
3 DEatomic = 10192 cm-1     
4 1 eV = 8065.5 cm-1     
5 1 cm-1 = 11.962 J/mol     
6        
7 State  X a b A  
8 electronic term Te 0 716.24 6434.27 8391 cm-1 
9 vibration freq. e 1854.71 1641.35 1470.45 1608.35 cm-1 

10 anharmonicity ee 13.34 11.67 11.19 12.078 cm-1 
11 bond length Re 1.24253 1.3119 1.36928 1.31843 Å 
12 dissoc. energy Do 6.210 6.21 6.21  eV 
13 dissoc. energy De 51010.775 50294.54 44576.51 52811.78 cm-1 
14 Morse a a 3.3907203 3.021953 2.875704 2.889762  
15 R step  0.05 Å     
16  R (Å) V(X) cm-1 V(a) cm-1 V(b) cm-1 V(A) cm-1  
17  1 83034.34     
18  1.05 43263.93 73938.33    
19  1.1 19696.11 41197.06 67374.14 49277.78  
20  1.15 6928.31 20747.87 40853.03 29151.20  
21  1.2 1227.49 8858.60 23964.17 17186.16  
22  1.25 31.91 2844.29 13897.95 10915.89  
23  1.3 1599.09 783.67 8600.83 8549.03  
24  1.35 4757.33 1311.11 6579.15 8792.50  
25  1.4 8730.70 3464.06 6752.95 10719.92  
26  1.45 13016.04 6571.32 8347.18 13673.90  
27  1.5 17296.81 10171.44 10810.80 17193.63  
28  1.55 21382.86 13953.10 13756.75 20961.25  
29  1.6 25168.59 17711.84 16917.42 24762.37  
30  1.65 28603.94 21318.53 20111.80 28456.87  
31  1.7 31674.56 24696.67 23221.15 31957.50  
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Figure P28.38.1: Potential energy surfaces for the four lowest electronic states of C2. The 
singlet states are shown as solid lines and the triplet states are shown as dotted. 

 
 
C2 is the source of blue light from flames and the glow from some comets.1 Synthesis with 
reactive carbon species is an established area in organic chemistry. The reactive carbon species 
are typically generated in high current carbon arc discharges.11 C2 undoubtedly plays a role in 
some of these systems. The relevance of this work extends to the formation of organic 
compounds in interstellar space and in pre-biotic environments in lightning strikes. 
 
 
39.  In Chapter 27, we did not justify the vibrational selection rule that in absorption, the 
transition dipole moment vanishes unless the normal mode transforms according to the same 
representation as the x, y, or z-component of the electric dipole moment. The transition electric 
dipole moment is proportional to the integral given by Eqs. 27.9.13. For a diatomic molecule 
aligned along the x-axis, the harmonic oscillator wave functions are functions of the 
displacement along the x-axis, x = R – Ro. The electric dipole operator along the internuclear 
axis is also a function of the x-axis position of the nuclei and the partial charge on the atoms. The 
transition dipole moment is then proportional to: 
 

 tr,x  
 

–
 ' x "  dx 

 

The integrand contains three functions, the final harmonic oscillator wave function with quantum 
number ', the x-operator, and the initial harmonic oscillator wave function with quantum 
number ". The x-operator is purely odd. The integral is over all space, so that the integral 
vanishes for an odd integrand. As a consequence the product of the three functions must be 
overall even for the transition moment integral to be non-zero. 
   For polyatomics, we must consider the x, y, and z-components of the transition dipole. The 
symmetry of each vibrational wave function is represented by an irreducible representation of the 
point group of the molecule. Consider the case for the fundamental transition 10. The ground 
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state vibrational wave function,  = 0, always transforms according to the totally symmetric 
irreducible representation. As a result, to give a non-vanishing integral the product of the excited 
state vibrational wave function and the x-operator must contain the totally symmetric irreducible 
representation. The normal mode must transform according to the same representation as the x, 
y, or z-component of the electric dipole moment. 
   How can we illustrate that the ground vibrational state is totally symmetric under the 
operations of the point group? Consider a simple polyatomic such as CO2 as compared to a 
diatomic molecule. The diatomic harmonic oscillator wave functions for  = 0 and 1 are shown 
at left and the corresponding wave functions are illustrated for CO2 at right, Figure P28.39.1. The 
ground state,  = 0, wave function of any normal mode necessarily retains the same sign upon 
any symmetry operation of the point group, since the wave function is always positive. Now, 
consider the action of the reflection operator on the excited state wave function. For the  = 1 
state, the inversion operation is symmetric for the symmetric stretch and anti-symmetric for the 
asymmetric stretch. As a result, the symmetric stretch is IR-inactive and the asymmetric stretch 
is IR-active. 
 

 
(a). Diatomic vibrational wave functions (b). Polyatomic normal modes 
 

Figure 28.39.1: Symmetry of harmonic oscillator wave functions for (a) diatomics and (b) the 
symmetric and asymmetric stretch of CO2. The CO2 symmetric stretch is symmetric with 
respect to a plane perpendicular to the internuclear axis, passing through the center of mass (a 
v-plane). The asymmetric stretch is anti-symmetric with respect to reflection. 

 
 
   The symmetry of bending vibrations is possibly confusing, based on displacement arrows. 
Please review Problem 27.38. For this problem, using depictions of the quantum mechanical 
wave function of the type shown in Figure 28.39.1b, determine the symmetry of the wag-bending 
vibration with respect to C2-rotation and reflection across v, Figure 28.39.2: 
 

 
     (a).    (b). 
 

Figure 28.39.2: (a). Top down view of the wag-mode of a CH2 group. (b). End-on view, 
down the C=C internuclear axis, showing the C2-rotation and v-reflection operations. 
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Answer:  The plan is to note that the wag-bending vibration will have in-phase “blobs” of 
probability above and below the plane of the equilibrium atom positions. 
   A schematic depiction of the harmonic oscillator wave function that roughly applies to a 
bending vibration is shown below. The phase of the lobes is that the positive lobe is in the 
positive direction for motion of both H-atoms. C2-rotation inverts the sign of the wave function 
while reflection maintains the phase of the wave function. The wag transforms as the B1 
irreducible representation of the C2v-point group, for example. The rock, which is the other 
bending vibration depicted in Problem 27.38, transforms as B2 under C2v. 
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Chapter 29 Problems: Magnetic Resonance 
 

1.  Deuterium NMR, 2H, is quite common. High field instruments have a channel for protons, 
one or two channels for 13C or other nucleus, and an additional channel for deuterium. The 
deuterium channel is used for acquiring the resonance frequency of a peak from the deuterated 
solvent and using that frequency in maintaining a constant magnetic field. This process is called 
field-locking. The deuterium channel is also used for magnetic field shimming, which adjusts the 
uniformity of the magnetic field to achieve the narrowest, and hence most intense, transitions. 
Shimming enhances the resolution of the spectrum. Draw the energy level diagram for deuterium 
in an applied magnetic field and calculate the resonance frequency of protons and deuterium at a 
magnetic field of 7.046 T. 
 
 
Answer:  Table 29.1.1 gives the spin quantum number of deuterium as I = 1 and the 
magnetogyric ratio as 41.066x106 s-1 T-1 or equivalently 41.066 MHz T-1. As a result in an 
applied magnetic field the nuclear energy levels are split into three levels, mI = -1, 0, +1, with 
equal spacing. The magnetic dipole allowed transitions are for mI = 1 with the same transition 
frequency for both –1  0 and 0  1 transitions: 
 

  = E/h = N (2)–1 Bo = 41.006 MHz T-1 (2)–1 7.046 T = 45.98 MHz 
 

 
 

Protons at the same field strength resonate at:  
 

  = E/h = N (2)–1 Bo = 267.522 MHz T-1 (2)–1 7.046 T = 300.0 MHz 
 
 
2.  The spin quantum number of 35Cl is I = 3/2. For a single 35Cl, assuming no spin-spin coupling, 
how many transitions are observed for 35Cl? 
 
 
Answer:   One transition is observed because the three transitions all have the same frequency. 
The magnetic dipole allowed transitions are for mI = 1 giving the three transitions –3/2  –½, 
-½  +½, and  +½  +3/2. 
 
 
3.  A spectral width of at least 10 ppm is required to cover the 1H-NMR spectra of many 
compounds. (a). Calculate the spectral width in Hz if the resonance frequency of protons is 
60 MHz and if the resonance frequency is 500 MHz. (b). The resonance frequency of 13C is ¼ 
the resonance frequency of protons at the same field strength. A spectral width of 160 ppm is 
required to cover the 13C-spectra of many compounds. Calculate the spectral width in Hz if the 

z 
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resonance frequency of 13C is 75 MHz (300 MHz for protons) and if the resonance frequency is 
125 MHz (500 MHz for protons). 
 
 
Answer:  The shift in ppm is defined by Eq. 29.1.8:  = [( – ref)/ref] (1x106 ppm). The spectral 
width corresponds to the maximum plotted value of  – ref. 
(a). At 60 MHz, a 10 ppm spectral width corresponds to 10 ppm(60x106 Hz)/1x106 ppm =600 Hz 
and at 500 MHz the spectral width is 5000 Hz. 
(b). At 75 MHz, 160 ppm corresponds to 160 ppm(75x106 Hz)/1x106 ppm = 11,520 Hz and at 
125 MHz the spectral width is 20,000 Hz. 
   Note that aldehyde protons resonate at 9-10 ppm and carboxylic acid protons resonate in the 
10-13 ppm range, so a 10 ppm spectral width is not necessarily sufficient to cover a complete 
spectrum. We chose a 10 ppm spectral width for this problem to keep the numbers easy to 
calculate in your head. For 13C spectra carbonyl carbons (C=O) resonate roughly from 150-220 
ppm so once again, 160 ppm is not necessarily sufficient to cover a complete spectrum, even 
though ~160 ppm is a common option for the spectral width in NMR software. 
 
 
4. In a given instrument, the NMR resonance frequency of a proton in a methyl group is centered 
at 399,095,832 Hz. The resonance frequency of TMS at the same field strength is 399,095,432 
Hz. (a).  Calculate the chemical shift of the methyl group. (b). The methyl group is split into a 
triplet by an adjacent methylene with a spin-spin coupling constant of 7.0 Hz. Calculate the spin-
spin splitting in ppm assuming the same resonance frequency as part (a). 
 
 
Answer:  The shift in ppm is defined by Eq. 29.1.8:  = [( – ref)/ref] (1x106 ppm). (a). The 
chemical shift of the methyl group is: 
 

  = (399,095,842 – 399,095,432)/399,095,432 (1x106 ppm) = 1.03 ppm 
 

(b).  At a resonance frequency of 400 MHz, a J of 7.0 Hz corresponds to 7.0/400 = 0.0175 ppm 
 

The precise 1H resonance frequency of a given instrument is essentially never exactly the “name-
plate” frequency. 
 
 
5. The NMR chemical shift of a methyl group is centered at 1.240 ppm at a 60 MHz resonance 
frequency and the spin-spin splitting constant with an adjacent methylene is 7.0 Hz. (a). 
Calculate the multiplet peak positions in ppm assuming TMS at 60 MHz. (b). Calculate the 
multiplet peak positions in ppm with TMS at 500 MHz. (c). Describe the difference in 
appearance between the spectrum at 60 MHz and 500 MHz. 
 
 
Answer:  An adjacent methylene has two equivalent spins giving the methyl resonance as a 
triplet. The triplet peak positions are at A + J, A, and A – J giving the multiplet spacing 
between the transitions as J. 
(a).  At 60 MHz, the spin-spin coupling constant of 7.0 Hz corresponds to: 
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 J = 7.0 Hz/60x106 Hz (1x106 ppm) = 0.117 ppm 
 

Giving the triplet transitions as: 1.240 + 0.117 ppm = 1.357 ppm, 1.240 ppm, and 
1.240 – 0.117 ppm = 1.123 ppm. 
(b).  At 500 MHz, the spin-spin coupling constant of 7.0 Hz corresponds to: 
 

 J = 7.0 Hz/500x106 Hz (1x106 ppm) = 0.014 ppm 
 

Giving the triplet transitions as: 1.240 + 0.014 ppm = 1.254 ppm, 1.240 ppm, and 
1.240 – 0.014 ppm = 1.226 ppm. 
(c). Using the same ppm spectral width, the component transitions of the triplet are closer 
together at 500 MHz than at 60 MHz, even though the J in Hz is the same, as shown below: 
 
                                     |   J = 7 Hz at 60 MHz 
                                     | 
          |                          |                          | 
          |                          |                          | 
 –|––––––––––|––––––––––|––––––––––|––––––––––|– 
 1.4                 1.3               1.2                1.1                1.0 ppm 
 
                                     |   J = 7 Hz at 500 MHz 
                                     | 
                                  |  |  | 
                                  |  |  | 
 –|––––––––––|––––––––––|––––––––––|––––––––––|– 
 1.4                 1.3               1.2                1.1                1.0 ppm 
 
 
6. (a). Derive Eq. 29.1.7 for the population difference of the spins states of a spin-½ nucleus. (b). 
Determine the number of spins in the upper and the lower spin states for protons at 400 MHz at 
298.2 K. Assume 106 total spins. (c). Table-top, permanent magnet NMR spectrometers 
commonly operate at 60 MHz. Determine the number of spins in the upper and the lower spin 
states for protons at 60.0 MHz at 298.2 K. Assume 106 total spins. 
 
 
Answer:  (a). Given the Boltzmann population ratio, Eq. 29.1.7 and Eq. 29.1.6: 

  
n–

n+
 = e– 

E/kT = e–ħBo/kT = e–/(kT/h)      1 
 

The population difference and sum using Eq. 1 to solve for n– gives: 
 

 n+ – n– = n+ – n+ (e–/(kT/h)) = n+ (1 – e–/(kT/h)) 

 n+ + n– = n+ + n+ (e–/(kT/h)) = n+ (1 + e–/(kT/h)) 
 

with ntot = n+ + n– as the total number of spins. The ratio is: 
 

 
n+ – n–

n+ + n–
 = 

1 – e–/(kT/h)

1 + e–/(kT/h)
 giving  n = n+ – n– = ntot 









1 – e–/(kT/h)

1 + e–/(kT/h)
 

           (29.1.7) 
 

The resulting populations are determined using n– = ntot – n+ : 
 

 n = n+ – n– = n+ – (ntot – n+)  or     n+ = ½ (ntot + n) 
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(b). At 400 MHz and 298.2 K with Eq. 1, the population ratio is n–/n+ = 0.999936. 
Eq. 29.1.7 with ntot = 106 spins gives the population difference: 
 

 n = n+ – n– = ntot 



1 – 0.999936

1 + 0.999936  = 32 

The populations are: n+ = ½(106 + 32) = 500016 and  n– = 1000000 – 500016 = 499984. 
As a check the population ratio is: n–/n+ = 499984/500016 = 0.999936 as required. 
(c). At the commonly used frequency of 60 MHz, the population ratio is much smaller, 
Eq. 29.1.7: 
 

 
n–

n+
 = e–/(kT/h) = e– (60x106 s-1

/6.2124x1012 s-1) = 0.9999903 

 or n+ – n– = (n+ + n–) 



1 – 0.9999903

1 + 0.9999903  = 4.83 
 

Out of one million spins there ~5 more spin-ups than spin-downs. No wonder NMR has such 
poor sensitivity. At 60 MHz, samples are often run as pure liquids to gain sensitivity. Typical 
concentrations in UV/Visible absorption studies are in the 10–5 M range. The populations are: n+ 
= ½(106 + 4.83)  500002 and  n– = 106 – 500002 = 499998. 
 
 
7.  (a). Give the peak intensities in a sextet that result from coupling to equivalent spins. (b). 
Give the peak intensities in a doublet of triplets. (Don’t worry about the transition frequencies.) 
(c). How many spins are coupled to the observed resonance if the multiplet is a doublet of 
quartets? Assume each quartet has intensity ratios: 1:3:3:1. 
 
 
Answer:  (a). Using Pascal’s triangle, Table 29.1.5, the intensity ratios of a sextet resulting from 
coupling to five equivalent spins are: 
 

   1   :   5  :  10  :  10  :    5  :  1 
 
(b). A doublet of triplets has the intensity ratio of 1:2:1—1:2:1, although the transitions may not 
arise in that order, see Figure 29.1.10b. 
(c). A 1:3:3:1 quartet results from coupling to three equivalent neighbors. A doublet results from 
coupling to one near neighbor. In total four spins are coupled to the observed spin. An example 
is trans-2-butenoic acid (trans-crotonic acid). The trans-olefinic coupling constant is typically 
large: 12-18 Hz: 
 
 CH3    H 
   \       / 
    C=C 
   /       \ 
            H       COOH 
 
 
8.  Show the spin-spin splitting pattern for nucleus A in the following molecular fragment. 
Assume JAB = 10 Hz and JAC = 15 Hz. Indicate the relative intensities. Assume first-order 
behavior. 
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R C C C R

H

H

R

H

R

HAB

B

C  
 
 
Answer:  Construct the coupling tree starting with the largest spin-spin splitting constant. With 
JAC = 15 Hz the resonance is initially split into a doublet with the transitions at +7.5 and 
–7.5 Hz. With JAB = 10 Hz, the previous transitions are split into 1:2:1 triplets: +17.5, 7.5, -2.5, 
and +2.5, –7.5, –17.5 Hz. 
 
                               | 
                    |        15Hz         | 
            |     10Hz     |       |     10Hz     | 
     │    10Hz      ║      │       │      ║     10Hz     │ 
                        10Hz     
                                10Hz    
                    |                     |               
                    |                     |               
     |              |      |       |      |              | 
     |              |      |       |      |              | 
            ___ 

 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
  20    18     16     14     12    10      8       6      4       2      0      -2      -4     -6     -8    -10    -12   -14   -16   -18    -20 
           (Hz) 
:      +17.5,                               7.5,                                 -2.5 
 and                                                            +2.5,                                –7.5,                              –17.5 Hz 
 

intensities 
       1                                      2               1                 1                 2                                 1 
 
The pattern is a doublet of triplets, or just abbreviated “dt”. 
 
 
9.  Show the spin-spin splitting pattern for nucleus A in the following molecular fragment with 
JAB = 5 Hz and JAC = 10 Hz.  Indicate the relative intensities. Assume first-order behavior. 
 

          HB   R   HC 
           |      |      | 
  Br––C––C––C––CH3 
           |      |      | 
         HB   HA  HC 

 
 
Answer:  Construct the coupling tree starting with the largest spin-spin splitting constant. With 
JAC = 10 Hz the resonance is initially split into a 1:2:1 triplet with the transitions at +10, 0, and 
–10 Hz. With JAB = 5 Hz, the previous transitions are split into a 1:2:1 triplets: +15, 10, 5; 5, 0, -
5; and -5, –10, –15 Hz. Because of the coincidences, two pairs of transitions overlap giving a 
septet with unusual intensities 1:2:3:4:3:2:1. (Note that a septet from six equivalent neighbors 
gives an intensity ratio of 1:6:15:20:15:6:1, Table 29.1.5.) 
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                                          │ 

                                │        10Hz       │ 

                      │        10Hz       ║        10Hz       │ 

                 │   5Hz   │         ║   5Hz   ║         │   5Hz   │ 

            │   5Hz   ║   5Hz   │║   5Hz   ║║   5Hz  │║   5Hz   ║   5Hz   │ 
            ___ 

  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 
  20    18    16    14   12    10     8      6     4      2     0     -2     -4    -6    -8   -10   -12  -14  -16   -18   -20 
           (Hz) 
:                15              10               5                                 -5            -10            -15 
 and                                                 5                0               -5 Hz 
 

Intensities 
                   1              2               3               4                3              2             1 
 
 
The “JMM: First-Order Multiplet Maker” on the course Web site or companion CD 
(jmmset.html) calculates the first-order multiplet for a given set of neighbors and spin-spin 
coupling constants. The applet can be used to make suggestions for the values of coupling 
constants for different bonding environments. The following input, with the specific values of 
the J-constants entered for this problem, produces the same multiplet as predicted above. 
 

 
 
 
10.  In an isolated ethyl group, -CH2CH3, there is no spin-spin coupling through the attachment 
point. Examples include ethyl alcohol, ethylbromide, diethylether, and ethylacetate. An isolated 
ethyl gives characteristic spin-spin splitting patterns of a quartet and triplet, in the order 
-CH2CH3. Give the characteristic splitting patterns of isolated n-propyl, iso-propyl, n-butyl, 
sec-butyl, iso-butyl, tert-butyl, and iso-amyl. Assume the vicinal spin-spin coupling constants are 
approximately equal, with no longer range coupling, and free rotation about the bonds. (Note:  
iso-propyl = 1-methylethyl, sec-butyl = 1-methylpropyl, iso-butyl = 2-methylpropyl, tert-butyl = 
1,1-dimethylethane, iso-amyl = 3-methylbutyl ) 
 
 
Answer:  Assuming all the vicinal, 3J coupling constants are the same, we use the n+1 rule, 
counting all the neighbors three bonds away from the given proton. Consider n-propyl: the 
terminal methyl has two near-neighbors giving a triplet, the central methylene has five near-
neighbors giving a sextet, and the terminal methylene has two near-neighbors giving a triplet. 
The following table gives the remaining results. 
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Isolated Group Structure Multiplets 
ethyl -CH2CH3 quartet,triplet 
n-propyl -CH2CH2CH3 triplet,sextet,triplet 
iso-propyl -CH(CH3)CH3 septet,doublet                       (equiv. methyls) 
n-butyl -CH2CH2CH2CH3 triplet,quintet,sextet,triplet 
sec-butyl -CH(CH3)CH2CH3 sextet,quintet,doublet,triplet 
iso-butyl -CH2CH(CH3)CH3 doublet,nonet,doublet           (equiv. methyls) 
tert-butyl -C(CH3)(CH3)CH3 singlet                                   (equiv. methyls) 
iso-amyl -CH2CH2CH(CH3)CH3 triplet,quartet,nonet,doublet  (equiv. methyls) 

 
 
11.  The geminal coupling constant between inequivalent methylene protons on sp3-hybridized 
carbons is often large, ~12 Hz. (a). Use the Karplus relationship to estimate the JAC and JAD spin-
spin coupling constants of the labeled protons in camphor, below. (b). Sketch the expected 
multiplet pattern of proton-A based on your estimated geminal and vicinal coupling constants. 
Note that proton-B will also give a similar multiplet that will likely overlap with the multiplet of 
proton-A. We don’t consider the proton-B multiplet in this problem for simplicity. (In practice 
the appearance of the spectrum is sensitive to the exact values of all the parameters. The purpose 
of this exercise is to give just one reasonable prediction of the appearance of the spectrum.) 
 

 
      Dihedral angles:  AC = 0  and AC = 120 
 
 
Answer:  (a). The Karplus relationship is given by Eqs. 29.1.16: 
 

 JHH = 8.5 cos2 – 0.28   0    90 
 JHH = 9.5 cos2 – 0.28   90    180 
 

For AC = 0:  JAC = 8.22 Hz and AD = 120: JAD = 2.095 Hz. 
 
(b).  Given that JAB , JAC, and JAD  are all different, the spectrum is predicted to have 23 = 8 
transitions all of equal intensity (no overlapping of transitions). Start the coupling tree with the 
largest coupling constant. With JAB = 12 Hz the resonance is initially split into a doublet with the 
transitions at +6 and –6 Hz. With JAC = 8.22 Hz, the previous transitions are split into doublets: 
10.11, 1.89; and -1.80, -10.11 Hz. With JAD =2.095 Hz, the final doublets are: 11,16, 9.06; 2.94, 
0.84; -0.84, -2.94; and -9.06, -11.16 Hz. 
 
 

A

B

C

D

D

C

B

A
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                                          │ 

                              │        12Hz           │ 

                      │     8.22Hz    │       │    8.22Hz     │ 

                    │2.1│           │2.1│   │2.1│           │2.1│ 
            ___ 

  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 
  20    18    16    14   12    10     8      6     4      2     0     -2     -4    -6    -8   -10   -12  -14  -16   -18   -20 
           (Hz) 
 
 
   Another commonly quoted form of the Karplus relationship is: 
 

 3J = 7.8 – 1.0 cos  + 5.6 cos 2 
 

This form is implemented in the “Vicinal Spin-Spin Coupling Constant Prediction” applet 
(altona.html) on the textbook Web site or companion CD. The predicted values based on this 
version of the Karplus equation are AC = 0:  JHH = 8.06 Hz and AD = 120: 3.89 Hz. This 
applet also implements several more accurate prediction equations that allow for the electron 
withdrawing effects of neighboring substituents. You should use molecular mechanics to verify 
the dihedral angles that were given in this problem. 
   The “JMM: First-Order Multiplet Maker” on the course Web site or companion CD 
(jmmset.html) calculates the first-order multiplet for a given set of neighbors and spin-spin 
coupling constants. The applet can additionally be used to make suggestions for the values of 
coupling constants of different bonding environments including dihedral angles. The following 
input, with the specific values of the J-constants entered for this problem, produces the same 
multiplet as predicted above. 
 

 
 
 
 
12.  Determine the structure of the following compound. The spectrum was acquired at 
270 MHz. The degree of unsaturation is a useful starting point if the formula of the compound is 
known. The degree of unsaturation is equal to the sum of the number of double bonds and rings: 
dbr = (2c – h + 2 + n – x)/2, where c is the number of carbons, h the number of hydrogens, n the 
number of nitrogens, and x the number of monovalent atoms, which includes F, Cl, and I. 
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Answer:  The number of double bonds and rings is: dbr =  (26 – 12 + 2 + 0 – 0)/2 = 1. An 
alkene, aldehyde, carboxylic acid, or ester are possible functional groups or a single saturated 
ring. The typical approach is to begin with the largest chemical shifts. The triplet at 4.1 ppm 
requires interaction with a nearby heteroatom or that the proton is on a C=C, Table 29.1.3. The 
chemical shift agrees with the 4.1 ppm entry on Table 29.1.2 for a methylene that is the –O– 
linked portion of an ester: “R-CH2-O-C(=O)-R”. The appearance of a quartet and a triplet in a 
spectrum is often a strong indication of an ethyl group. The triplet at 1.23 ppm agrees with the 
1.3 ppm entry on Table 29.1.2 for a methyl that is beta to an –O–: “CH3–C-O-”. As a result we 
suspect that the compound is an ethyl ester. The triplet near 2.2 ppm agrees with the 2.2 ppm 
entry on Table 29.1.2 for a methylene that is the –C(=O)–OR linked portion of an ester: “R–CH2-
CO–OR”. The sextet at 1.63 ppm requires coupling to five similar neighbors, which in this case 
results from CH3CH2CH2–. The terminal position of this three-carbon substituent produces the 
remaining triplet. The spectrum is then consistent with ethyl butyrate: 
CH3CH2CH2C(=O)OCH2CH3. 
   Note that an aldehyde or carboxylic acid would have a resonance at 9 ppm or below. Protons 
attached to a double bond are typically down field of 4.1 ppm, Table 29.1.3, although 
“–HC=C–O–” is a possibility to consider in this example. 
 
 
13.  Determine the structure of the following compound. The spectrum was acquired at 
300 MHz. The down field resonance at 8.01 ppm is a singlet. Expanded spectra of the multiplets 
are shown below the full spectrum. The 13C spectrum has five peaks with the most downfield 
peak at 161.2 ppm. [Hint: see the comments about the degree of unsaturation in the previous 
problem.] 
 

       4.0                                               3.0                                                2.0                                                1.0 
     (ppm) 

C6H12O2 
 
1H at 270 MHz 
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Answer:  The 13C spectrum has five peaks, which shows that the compound has two magnetically 
equivalent carbons. The proton spectrum also has five resonances, which again shows that there 
are two magnetically equivalent groups. As in the previous problem, the number of double bonds 

8.0                 7.0                   6.0                 5.0                 4.0                  3.0                 2.0                  1.0                  0.0 
      (ppm) 

C6H12O2 
 
1H  at 300 MHz 

8.
01

 

4.
20

 

1.
71

 
1.

56
 

0.
94

 

1.9         1.8           1.7        1.6         1.5 

    (ppm) 
1.0         0.9 
    (ppm) 

4.3        4.2         4.1 
    (ppm) 
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and rings, is dbr =  (26 – 12 + 2 + 0 – 0)/2 = 1. An alkene, aldehyde, carboxylic acid, or ester are 
possible functional groups or a single saturated ring. The typical approach is to begin with the 
largest chemical shifts. The proton singlet at 8.01 ppm is consistent with a formate proton, which 
are expected in the range of 8.0-8.2, Table 29.1.3. Similarly, the down field 13C shift of 
161.2 ppm matches the shift of ethyl formate at 161.4 ppm, Table 29.1.4. We now must account 
for five carbons, two of which are equivalent, with 11 attached protons. Of the possible five-
carbon fragments: 
 

         C            C   C C        C 
          |             |     |   |         | 
 –C-C-C-C-C  -C-C-C-C  –C-C-C-C –C-C-C –C-C-C 
           *         | 
                C 
   13C:       5 resonances  5 resonances 4 resonances 5 resonances 3 resonances 
 
only the third possibility, the iso-pentyl group, has two and only two equivalent carbons. The 
2,3-dimethylpropyl fragment has a chiral center, *, so the terminal –CH3 groups are inequivalent. 
The proton spin-spin multiplicities expected for the iso-pentyl group are indicated below and are 
also consistent with the spectrum: 
 

      CH3 
       | 
        –CH2-CH2-CH-CH3 
multiplicity: (3)  (4)   (9)   (2) 
 

The outer peaks of a nonet are often difficult to see, as they are often obscured by noise. The 
intensity ratio is unfavorable for detecting the outer transitions: 1:8:28:56:70:56:28:8:1. In this 
case the ninth transition overlaps with an outer peak of the quartet. However, given that a 
multiplet from n-equivalent neighbors is always symmetrical, you can determine the multiplicity 
just from the left side of the multiplet. From Table 29.1.2 the expected chemical shift of the 
methylene protons adjacent to the HC(=O)-O– of the formate group is 4.1 ppm, as listed for 
“R–CH2–O–C(=O)–R”. The tabulated value is sufficiently close to the observed 4.2 ppm to have 
confidence in the assignment. The compound is iso-pentyl formate: 
 

      O       CH3 
      ||        | 
 H-C-O-CH2-CH2-CH-CH3 
 
 
14.  Determine the number of proton and carbon resonances that are observed for the following 
compounds. Determine the corresponding multiplicities of the spin-spin coupling multiplets. 
 

           
 
Answer:  For methyl-tert-butylether the three tert-butyl groups are magnetically equivalent 
giving two proton chemical shifts and three 13C chemical shifts. The two proton environments 
result in singlets. 
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   For ethyl iso-butyrate the two methyls in the iso-butyrate side of the molecule are magnetically 
equivalent giving four proton chemical shifts and five 13C chemical shifts (don’t forget the 
carbonyl carbon). The ethyl group gives a quartet and triplet. An isolated iso-butyrate group 
gives a doublet and septet. 
   Dimethyl succinate has a mirror plane giving two proton chemical shifts and three 13C 
chemical shifts. Both proton resonances are singlets (magnetically equivalent protons don’t 
split). 
 
 
15.  Equivalent Spins Don’t Split:  Derive the energy levels and transition frequencies of a 
system with two equivalent protons. This problem fills in the details of the energy level diagram 
in Figure 29.1.13. Because the chemical shift differences are not greater than the spin-spin 
coupling constant, the full spin-spin coupling Hamiltonian must be used for this problem: 

 Ĥ = – A I^zA – B I^zB + JAB I


A IB      (29.1.13) 
 

where I


A IB = I^xA  I^xB + I^yA  I^yB + I^zA  I^zB 
 

The allowable spin states for two equivalent spins are the symmetric combinations: , 
1/ 2 ( + ), and , while the fourth spin state is antisymmetric: 1/ 2 ( – ). In Ch. 24.7 
we found the relationship between the angular momentum raising and lowering operators and the 
x and y-components of the angular momentum, Eq. 24.7.18. Expressed explicitly in terms of 
nuclear angular momentum operators, Eqs. 24.7.18 are recast as: 
 

 I^– = I^x – i I^y (lowering) and  I^+ = I^x + i I^y  (raising)  (24.7.18) 
 

which have the following effects on the spin wave functions: 
 

 I^+  = 0  I^+  =    
 I^–  =   I^+  = 0 
 

Solving for I^x and I^y gives for both A and B spins: 
 

 I^x  = ½( I^+ +  I^–)  and I^y = ½ i( I^+ –  I^–) 
 

In a subsequent problem we will prove that the spin-spin interaction can be written as: 
 

 JAB I


A IB = JAB [ I^zA I^zB  + ½( I^+
A I^–

B + I^–
A I^+

B)] 
 

(a). For simplicity of notation set J = JAB. Show that: 

 J I


A IB  =   J/4  

 J I


A IB  = – J/4  + J/2  

 J I


A IB  = – J/4  + J/2  

 J I


A IB  =     J/4  
 

 
Answer:  The eigenfunctions are the spin-A spin-B products: , 1/ 2(+), 1/ 2(–), 
. I^+

A and I^–
A only operate on the coordinates of spin-A and I^+

B and I^–
B only operate on the 
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coordinates of spin-B. For example, using for a moment explicit A and B designations, the action 
of the raising and lowering operators on  = AB are: 
 

 I^+
A I^–

B AB = (I^+
A A)(I^–

B B) = 0  0  I^–
A I^+

B AB = (I^ –
A A)(I^+

B B) = AB 
 

The results of the raising and lowering operators on the products are: 
 

 I^+
A I^–

B I^–
A I^+

B 

 0 0 
 0  
  0 
 0 0 
1/ 2(+) 1/ 2  1/ 2  
1/ 2(–) 1/ 2  – 1/ 2  

 

Expanding the terms in the spin-spin interaction, JAB [ I^zA I^zB  + ½( I^+
A I^–

B + I^–
A I^+

B)], gives: 
 

 J I


A IB  = J I^zA I^zB  + ½ J I^+
A I^–

B  + ½ J I^ –
A I^+

B  =   J/4  

 J I


A IB  = J I^zA I^zB  + ½ J I^+
A I^–

B  + ½ J I^–
A I^+

B   = – J/4  + J/2  

 J I


A IB  = J I^zA I^zB  + ½ J I^+
A I^–

B  + ½ J I^–
A I^+

B   = – J/4  + J/2  

 J I


A IB  = J I^zA I^zB  + ½ J I^+
A I^–

B  + ½ J I^–
A I^+

B    =    J/4  
 
(b). Combine these results to show that: 

 J I


A IB [1/ 2(+)] =  J/4 [1/ 2 ( + )] 

 J I


A IB [1/ 2(–)] =  –3J/4 [1/ 2 ( – )] 
 
 
Answer:  Combining the previous results gives: 
 

     J I


A IB [1/ 2(+)] = 1/ 2 (– J/4  + J/2   – J/4  + J/2 ) = J/4 [1/ 2 ( + )] 

     J I


A IB [1/ 2(–)] = 1/ 2 (– J/4  + J/2   + J/4  – J/2 ) = –3J/4 [1/ 2 ( – )] 
 
(c). Use these results to verify the energies of the levels shown in Figure 29.1.13. 
 
 
Answer:  Using the results of part (b), the symmetric and antisymmetric combinations are seen to 
be eigenfunctions of the spin-spin coupling operator. In other words, the same wave function 
appears on both sides of each expression. The eigenvalues are + J/4 for the symmetric 
combination and –3J/4 for the antisymmetric combination, verifying Figure 29.1.13. 
 
 
16.  Using the relationships given in the introduction to the last problem to prove that the spin-
spin interaction can be written as: 
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 JAB I


A IB = JAB [ I^zA I^zB  + ½( I^+
A I^–

B + I^–
A I^+

B)] 
 
 
Answer: Expanding the dot product into separate components: 
 

 JAB I


A IB = JAB ( I^xA  I^xB + I^yA  I^yB + I^zA  I^zB)      1 
 

The z-component remains unchanged. However we note from the previous problem that 
I^x  = ½( I^+ +  I^–) and I^y = ½ i( I^+ –  I^–) and: 
 

 I^xA  I^xB + I^yA  I^yB = ½(I^+
A  + I^–

A)½(I^+
B + I^–

B) + ½ i(I^+
A  – I^–

A)½ i(I^+
B – I^–

B) 

      = ¼(I^+
A  + I^–

A) (I^+
B + I^–

B) – ¼ (I^+
A  – I^–

A) (I^+
B – I^–

B) 

      = ¼(I^+
AI^+

B + I^+
AI^–

B + I^–
AI^+

B+ I^–
AI^–

B) – ¼ (I^+
AI^+

B – I^+
AI^–

B – I^–
AI^+

B + I^ –
AI^–

B) 2 
 

Cancelling terms gives: 
 I^xA  I^xB + I^yA  I^yB = ¼( I^+

AI^–
B + I^ –

AI^+
B) – ¼ (– I^+

AI^–
B – I^ –

AI^+
B) = ½( I^+

A I^–
B +  I^ –

A I^+
B)  3 

 

Substituting Eq. 3 into Eq. 1 gives the final result:  JAB I


A IB = JAB [ I^zA I^zB  + ½( I^+
A I^–

B +  I^–
A I^+

B)] 
 
 
17.  Consider the spin-spin coupling of two inequivalent spins. If the difference in chemical shift 
is much larger than the spin-spin coupling constant then Eq. 29.1.14 is a good approximation. As 
seen in Figure 29.1.11, the wave functions , , , and  are then good eigenfunctions of 
the approximate Hamiltonian, Eq. 29.1.14. If the chemical shift difference is comparable to the 
spin-spin coupling constant, then the exact Hamiltonian must be used, Eq. 29.1.13. Use the 
results of Problem 15(b) to determine if , , , and  are eigenfunctions of the exact 
Hamiltonian. If , , , and  are eigenfunctions of the exact Hamiltonian, then they may 
be used to determine the energies of the final spin levels directly from the eigenvalues, as we did 
in Figure 29.1.11. If , , , and  are not eigenfunctions of the exact Hamiltonian, then 
the exact wave functions will be linear combinations of , , , and . The wave functions 
must be determined from the secular equation that is based on the exact Hamiltonian. 
 
 
Answer:  The wave functions , , , and  are eigenfunctions of the portion of the 
Hamiltonian that describes the interaction of the spins with the external magnetic field, which is 
called the Zeeman interaction: 
 

 Ĥ(Zeeman) = – A I^zA – B I^zB 
 

However, the results of Problem 15(b) show that  and  are not eigenfunctions of the exact 
spin-spin Hamiltonian: 
 

 J I


A IB  = – J/4  + J/2  

 J I


A IB  = – J/4  + J/2  
 

In other words just  alone does not appear on each side of the first expression and just  
alone does not appear on each side of the second expression. As a result,  and  mix in linear 
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combination to form the eigenfunctions of the exact Hamiltonian in the final results. Computer 
applications are available to do these exact calculations. The “JD: Spin-Spin Splitting 
Simulation” applet on the course Web site or companion CD is available to do these calculations. 
 
 
18.  Use the “JD: Spin-Spin Splitting Simulation” applet (jdplot.html) on the course Web site or 
companion CD to determine the spectrum of an 1H AB-system. An AB-system is comprised of 
two inequivalent spin-spin coupled protons, with the difference in chemical shifts between the 
two protons comparable to the spin-spin coupling constant. Assume the two chemical shifts are 
1.00 ppm and 1.20 ppm, with the resonance frequency at 60.000 MHz. Use a spin-spin coupling 
constant of J = 9.0 Hz. Compare the results to the first-order predictions based on the energy 
levels derived in Figure 29.1.11 and 29.1.12. 
 
 
Answer:  The input and output from the jdplot.html applet are shown below. The results are 
summarized in the table, below. 
 

 
 

Transitions (ppm) and Intensities: 
1.05 : 1.6 
1.3 : 0.4 
1.15 : 1.6 
0.9 : 0.4 

 

   The first-order prediction corresponds to two doublets, the first centered at 1.00 ppm and the 
second centered at 1.2 ppm. The spin-spin coupling constant of 9.00 Hz at a resonance frequency 
of 60.000 MHz corresponds to 9.00/60.000x106 (1x106 ppm) = 0.15 ppm. The first-order 
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transitions are at A  JAB/2 and B  JAB/2, as given in the table, below. The first-order transition 
intensities are all the same, 1:1:1:1. 
 
Proton First Order 1st order (ppm) Exact (ppm) Exact – 1storder Intensity 
A A + JAB/2 1.275 1.3 0.025 0.4 
 A – JAB/2 1.125 1.15 0.025 1.6 

B A + JAB/2 1.075 1.05 -0.025 1.6 

 A – JAB/2 0.925 0.9 -0.25 0.4 

 
The differences between the exact spin-spin splitting pattern and the first-order prediction are 
called second-order effects. One second-order effect for an AB-spectrum is that the doublets are 
no longer centered on the chemical shift values. This effect is shown by the differences shown in 
the table with the heading: Exact – 1storder. The A-doublet transitions move down-field relative 
to the chemical shift, which is 1.20 ppm. The B-doublet transitions move up-field relative to the 
chemical shift, which is 1.00 ppm. The other second-order effect is that the “inner” transitions 
are higher in intensity than the “outer” transitions. The stronger the second-order effect the larger 
the difference in intensity of the inner and outer transitions in each doublet. This shift in intensity 
is commonly observed with multiplets of all kinds, not just doublets. 
 
19.   A surprising result of strong second-order effects in spin-spin splitting is that more 
transitions appear than expected based on first-order analysis. Consider a 1H AB2 pattern as an 
example. An AB2 pattern corresponds to two chemical environments, A with one proton and B 
with two protons, with the difference in chemical shifts between the two environments 
comparable to the spin-spin coupling constant. In comparison, an AX2 pattern corresponds to the 
same proton distribution but with the difference in chemical shifts between the two environments 
much larger than the spin-spin coupling constant. (a). Use the “JD: Spin-Spin Splitting 
Simulation” applet (jdplot.html) on the course Web site or companion CD to determine the 
spectrum of an 1H AX2-system. Assume the two chemical shifts are 
3.20 ppm and 1.00 ppm, with the resonance frequency at 60.000 MHz. Use a spin-spin coupling 
constant of J = 9.0 Hz. Does the resulting spectrum agree with the first-order prediction? (b). 
Determine the spectrum of an 1H AB2-system. Assume the two chemical shifts are 1.20 ppm and 
1.00 ppm, with the resonance frequency at 60.000 MHz. Once again, use a spin-spin coupling 
constant of J = 9.0 Hz. Decrease the line width to 0.75 Hz to better observe the number of 
transitions. How many transitions are evident? 
 
 
Answer: (a). The input and output from the jdplot.html applet for the AX2 case are shown below. 
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The first-order prediction is an A-triplet and  B-doublet, based on the n + 1 near-neighbor rule. 
This expectation is observed giving a total of five observed transitions. [Replotting the spectrum 
at 0.25 Hz line width shows that the middle two peaks in the triplet don’t quite overlap, giving 
six transitions at very high resolution. However, a resolution of 0.25 Hz is hard to achieve 
because 0.25 Hz resolution requires very good magnet homogeneity.] 
 
(b). The input and output from the jdplot.html applet for the AB2 case are shown below.  
 

 
 
For the AB2 case eight transitions are apparent. The numerical listing has nine transitions, 
however. The transition at 0.703 ppm has low intensity. This weak transition is likely to be lost 
in the baseline noise in practical spectra. 
   The spectra of aromatic compounds is often complicated by second-order effects, because the 
chemical shift differences among aromatic chemical environments is often small and the spin-
spin coupling constants can be large. Second-order effects are lessened by high-field instruments. 



Chapter 29: Magnetic Resonance Spectroscopy  227 

 
 
20.  In pulsed NMR, the free induction decay of all the chemical shifts in the spectrum are 
excited by a short pulse at a single frequency. For example, the proton chemical shift range is 
~5000 Hz at a resonance frequency of 400.00 MHz, while the pulse is at a single frequency of 
400.000 MHz. Explain how all the chemical shifts in the spectrum can be excited by a short 
pulse at a single frequency. Assume the pulse length is 15.0 s. 
 
 
Answer:  The Fourier transform of a short pulse has a wide range of component frequencies, 
even though the pulse itself is constructed by chopping a sine or cosine wave of a single central 
frequency. In other words, to reconstruct the rectangular pulse, the superposition of a wide range 
of frequencies is necessary to reproduce the time dependence of the pulse. The range of 
frequencies is approximately characterized by the width of the pulse in Hz to the first nulls of the 
Fourier transform, Figure 27.3.3,  = 1/tp where tp is the duration of the rectangular pulse. If the 
pulse length is 15.0 s, the frequency range to the first nulls is 1/15.0x10-6 s = 6.67x104 Hz, 
which is roughly a factor of ten larger than the expected 1H-chemical shift range. 
   Note that the chemical shift range of 13C is roughly 20-fold larger than the range of 1H shifts. 
As a result, care must be taken in 13C experiments to maintain short pulse widths. To minimize 
the effects of the bandwidth of the excitation pulse, the frequency of the NMR transmitter is 
usually set to the middle of the chemical shift range, rather than near the TMS resonance 
frequency. 
 
 
21.  Qualitatively sketch the relative changes in the spectra obtained by Fourier transformation of 
the second FID as compared to the first: 
 

 
 
 
Answer:  The frequency of the second FID is higher than the first (by about a factor of two). The 
spectrum then has the transition at higher frequency, or to the left since the frequency increases 
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to the left. The decay envelope of the second peak is shorter than the first; the second FID decays 
to zero faster than the first. As a result the FFT requires a broader range of frequencies to 
reproduce the time dependence. Assuming the envelopes of the FIDs are approximately 
exponential, e– t/T2, then the transition full width at half height in the spectrum is 1/T2. The 
inverse relationship shows that quicker decays in the time domain correspond to broader 
transitions in the frequency spectrum. Both FIDs are initially equally intense, so to compensate 
for the broader transition, the second FID gives a peak with lower maximum intensity. The 
integral remains the same. In fact, the initial intensity of the FID gives the integrated intensity of 
the frequency spectrum (including multiple peaks if present). 
 

 
 
 
 
22.  The inversion recovery sequence was used to determine the 1H spin-lattice relaxation time of 
the geminal-dimethyl groups of -ionone. The data is reproduced below. Determine the T1. 
(Don’t bother to get the uncertainty using linest(), just use a linear trendline.) 
 

 
 

 (s) 0.0625 0.2500 0.5000 1.000 2.000 8.000 
intensity -64.8 -32.2 4.43 47.4 76.9 84.1 

 
 
Answer:  The linearized form, Eq. 29.5.13, gives the slope as –1/T1 of the plot of ln(Io – I) vs. , 
where the measured transition intensity is directly proportional to the magnetization. A 
spreadsheet was set up to do the linear curve fit. 
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Io = 84.1  
 (s) I ln(Io-I) 

0.0625 -64.8 5.003275 
0.2500 -32.2 4.756173 
0.5000 4.43 4.377893 
1.0000 47.4 3.602777 
2.0000 76.9 1.974081 

 
 

 
The T1 is then 1/1.573 s-1 = 0.636 s 

 

 
 

 
 
 
 
23. Derive Eq. 29.5.3 by integrating Eq. 29.5.2. 
 
Answer:  Spin-lattice relaxation is a first order kinetic process, Eq. 29.5.2: 
 

 
dMz

dt  = – 
1
T1

 (Mz – Mo) 
 

Separating variables (General Pattern 1: Simple Exponential Processes): 
 

 M
0

z

 
dMz

(Mz – Mo)
 = – 

t

0
 
1
T1

 dt 
 

The integrals give:   ln(Mz – Mo) |
M

0

z

 = – 
t

T1
 

 ln(Mz – Mo) – ln(–Mo) = – t/T1  
 

Combining the logarithmic terms gives:  ln



Mz – Mo

–Mo
 = – t/T1 

 

Exponentiation of both sides of the relationships gives:  



Mz – Mo

–Mo
 = e– t/T1 

Cross multiplication results in:  Mz – Mo = –Mo e– t/T1 

while solving for the magnetization gives:   Mz = Mo – Mo e– t/T1 = Mo (1 – e– t/T1) 
 

y = -1.5732x + 5.1424
R² = 0.9994
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24.  Consider the following molecule with tert-butyl groups as the R-groups: 
 

 
 

Steric interactions of the tert-butyl groups prevent the amide bonds from being planar with each 
respective ring. The N-methyl groups are not equivalent, because the amide groups are twisted 
out of plane.2,3 Rotation about the amide C-N bonds exchanges the chemical environment of the 
N-methyl resonances. Outline the experimental and data analysis steps necessary to find the 
activation energy of the chemical exchange process for twisting about the amide bonds. 
 
 
Answer:  (1). The 1H-spectra of the compound are acquired as a function of temperature. 
(2). Two transitions that correspond to the same proton in the two different chemical 
environments are determined by assigning the peaks in the spectrum. As an aid to assigning the 
peaks, the assumption is that at low temperature these two peaks will be equally broadened, that 
the peak positions approach each other with an increase in temperature, and that two peaks 
coalesce at high temperature. 
(3). A low temperature that causes no additional peak separation and narrow transitions is used to 
determine the chemical shift difference between the two environments giving o = A – B. The 
width of the peaks is used to find the effective spin-spin relaxation time, T2A' , using Eq. 29.6.4. 
(4). Eqs. 29.6.4, 29.6.6, 29.6.7, 29.6.8, and 29.6.10 are used to estimate the exchange rate 
constant. See Example 29.6.1 
(5). Based on Eq. 3.5.3, a plot of ln k vs. 1/T is constructed giving the activation energy from the 
slope as: slope = – EA/R. 
 
Curve fitting to the exact line shape is a preferable approach to using the approximate formulas 
for k. Many computer programs are available for this purpose including the “Chemical Exchange 
Lineshapes” applet (exchpl.html) on the course Web site or companion CD. 
 
 
25.  The 1H-NMR spectra of the N-methyl compound shown below are plotted at -94C and 
-30C at 300 MHz. The R-groups are tert-butyl groups, which force the amide groups to be 
twisted out of plane, which makes the two N-methyl groups inequivalent. The spectra are taken 
in deuterated methylene chloride solution. The resonances near 3.2 ppm are the N-methyl 
groups. The difference in chemical shift at low temperature for the N-methyl groups is 35.0 Hz. 
Assume that the effective T2' is 1.5 s. At -94C, the full-width at half-height of one of the two N-
methyl transitions in the exchanging doublet is 13.5 Hz. The coalescence temperature is -70.5C 
(spectrum not shown). The width of the coalesced N-methyl peak at -30C is 10.4 Hz. Calculate 
the activation energy for the twisting motion of the amide groups.2,3 
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Answer:  The effective T2' of 1.5 s gives the line-width in the absence of exchange, Eq. 29.6.4: 
 

 (A)½ = 
1

T2A'
 = 

1
 1.5 s

 = 0.21 Hz 

 

In intermediate exchange, at -94C, the line width is 13.5 s-1, so that Eq. 29.6.6 gives: 
 

 k  

2
 [ ](A) e

½ – (A)½  = 

2
 [13.5 s-1 – 0.21 s-1] = 29.5 s-1 

 

At coalescence, -70.5C, using Eq. 29.6.8: k  
o

2
 = 
 35.0 s-1

2
 = 77.8 s-1 

 

In fast exchange, at -30C, the line width is 10.0 Hz, so that Eq. 29.6.10 gives: 
 

      k  
o

2

2   
1

[ ](½)e – (A)½
 = 
(35.0 s-1)2

2   
1

(10.0 s-1 – 0.21 s-1) = 197 s-1  

 

Assuming Arrhenius temperature dependence, Eq. 3.5.3, a plot of ln k vs. 1/T is constructed 
giving the activation energy from the slope as: slope = – EA/R as shown in the following spread 
sheet: 
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T (°C) T (K) k (s-1) 1/T (K-1) lnk 

-94 179.15 29.5 0.00558 3.3844 
-70.5 202.65 77.8 0.00493 4.3541 

-30 243.15 197 0.00411 5.2832 
          

slope -1285.2 10.61 intercept  
± 104.19 0.512 ±  
R2 0.9935 0.108 s(y)  
F 152.18 1 dof  
ssreg 1.7913 0.012 ssres  

 
 
 

 

 
The activation energy is  EA = – R slope = 10.7 kJ mol-1. 
 
 
26.  Create an Excel spreadsheet to do the time averages to determine the correlation function for 
a random signal. Generate the random signal at equal time increments, of length t, with varying 
persistence, p: 
 

 f(t + t) = f(t) + (1 – p)[(2*RND() – 1) – f(t)] 
 

where RND() is the built-in random number generator in Excel and (2*RND() – 1) generates a 
random number between -1 and +1. Plot f(t) and the corresponding correlation function. Hints for 
setting up the spreadsheet are given below. Use four different values of the persistence: p = 0, 
0.2, 0.5, and 0.8. With p = 0, the signal is purely random with no correlation, 
f(t + t) = (2*RND() – 1). Increasing p gives a signal that is increasingly slowly varying. For 
each value of p, generate several different plots. The results will be different in each plot; you 
can estimate the equivalent of the ensemble average by “averaging” the successive plots by eye. 
To generate each new set of random numbers, change the value in any arbitrary unused cell in 
the spreadsheet. Any unused cell will do, the cell chosen for generating updates shouldn’t be 
used in the main part of the spreadsheet. From your comparison of the results for the different 
values of p, discuss the relationship among the persistence, the appearance of f(t), and the 
observed approximate correlation time. You don’t need to find a numerical value of the 
correlation time, discuss the results qualitatively. 
   An example spreadsheet is shown below. Only the first few rows and the final three rows are 
shown, to save space. Rows 2-5 and column B are input directly, that is with no formulas. The 
main time variable t in column B runs in 5 ns increments up to 200 ns in row 46. Seven values of 
the time delay, , are specified in row 3. The number of rows that correspond to the chosen  
value are entered in row 4. For example, 3 rows are required to give a  delay of 15 ns. 
 
 
 
 
 
 
 

y = -1285.2x + 10.608
R² = 0.9935
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A1 B C D E F G H I J 

2 persistence= 0.5               

3    =  (ns) 0 5 10 15 20 25 30 

4   offset 0 1 2 3 4 5 6 

5 t (ns) f(t) f(t+)f(t) f(t+)f(t) f(t+)f(t) f(t+)f(t) f(t+)f(t) f(t+)f(t) f(t+)f(t) 

6 0 -0.8037 0.6459 -0.0719 -0.3803 -0.0622 -0.1562 0.2355 0.3560 

7 5 0.0895 0.0080 0.0423 0.0069 0.0174 -0.0262 -0.0396 -0.0567 

8 10 0.4731 0.2238 0.0366 0.0919 -0.1386 -0.2096 -0.2997 -0.3480 
            ⁞ 

46 200 0.0258 0.0007             

47                   

48   average= 0.1326 0.0539 0.0126 0.0180 -0.0133 -0.0164 0.0163 
 
The starting random value of the signal, f(t), at time zero is in cell C6: =(2*RND()-1) 
 

The subsequent value of f(t) in cell C7 is:  = C6 + (1-$C$2)*((2*RND()–1)–C6) 
 

This formula is “filled down” to fill in the values for the remaining rows in column C. The 
product f(t+) f(t) is created using the Excel OFFSET function. The formula in cell D6 is: 
 

 =OFFSET($C6:$C$46,D$4,0,1,1)*$C6 
 

The offset is specified in row 4. Make sure to set up the absolute references exactly as shown. 
This formula is “filled right” for columns E-J and then “filled down” for all the rows up to 46. 
Some cells near the bottom of the table will read “0” after filling, because there is insufficient 
data to complete the required calculation for long -values. Delete the contents of these zero 
cells. The averages of each column are calculated in row 48 giving ¯¯¯¯¯¯¯¯¯f(t + ) f(t) . The formula in 
cell D48 is: =AVERAGE(D6:D46) 
 

This cell is “filled right” for the remaining columns E-J. Construct a plot of column C versus 
column B to see the time-varying random signal. Construct a plot of the averages from row 48 on 
the vertical axis against the -values on the horizontal axis. 
 
 
Answer:  The spreadsheet gives a different result each time. Changing the number in any cell 
starts the random number generator anew. You need to do several plots and then average the 
results by eye. In the correlation plot shown below, the solid line is added to guide the eye from 
point to point. With a persistence of 0.0, no correlation exists beyond the initial C(0) = ¯¯¯f(t)2 
value. In other words successive plots give results that cancel for C() with  > 0. One result for 
a persistence of 0.5 is shown below. The f(t) signal varies more slowly than with p = 0. 
Successive correlation function plots show an approximately exponential decay. With the 
persistence of 0.8, f(t) varies slowly and the exponential decay of the correlation function is slow 
and obvious from plot to plot. Bigger persistence gives a slower decay of the correlation function 
and a correspondingly longer correlation time for the exponential decay. 
   The method that we have chosen to generate the random signal is a poor approximation to 
generate a truly stationary, zero mean, random time-varying signal. However, the simple formula 
that we have used is sufficient for short correlation times for this simple demonstration. 
 

  



234 
 

 
 

 

 
 

 

 
 
27.  The benzene radical anion, C6H6

–, is produced at low temperature by reduction of benzene 
with an alkali metal. Predict the multiplicity of the ESR transition of the benzene radical anion 
and the corresponding transition intensities of the components of the multiplet. 
 

 
 
Answer:  The -system of the benzene radical anion is completely delocalized. As a result the six 
protons are magnetically equivalent giving a hyperfine structure multiplicity of n+1 = 7. The 
hyperfine coupling constant is 0.375 mT or 3.75 Gauss.1 Using Pascal’s triangle, the line 
intensities are 1:6:15:20:15:6:1: 

 

n n+1 Multiplet Intensity ratios 
0 1 Singlet   1 
1 2 Doublet            1      1 
2 3 Triplet        1      2      1 
3 4 Quartet                  1     3      3     1 
4 5 Quintet              1      4      6      4     1 
5 6 Sextet          1      5    10    10      5    1 
6 7 Septet      1      6    15     20    15     6     1 

 

The derivative ESR spectrum is shown below.1 
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28.  Sketch by hand the ESR derivative spectrum of a doublet of doublets. (Note the positions of 
the maxima in the absorption spectrum as a basis for the zero-derivative points on the plot.) 
 

 
 
 

Answer:  The derivative crosses zero at the maximum of each transition. Between each transition 
the spectrum also has a region of zero slope. Note these zero-slope points on your initial sketch. 
The derivative spectrum must pass through these points: 
 

 
 

Consider starting at low field, on the left side of the spectrum. Scanning to higher field, the 
absorbance first increases giving a positive slope. After the maximum, the slope is negative and 
then zero until the next transition begins. 
 

 
 
29.  The -systems of the aromatic radicals are extensively delocalized. If the nuclei of the 
aromatic radical lie in the x-y plane, then the -orbitals are constructed from the overlap of 2pz-
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orbitals. The hyperfine interaction, aH, is then approximately proportional to the unpaired 
electron density in the 2pz-orbital at each C-H, which is denoted : 
 

 aH = Q       (aromatic hydrocarbons) 
 

where Q is a proportionality constant derived from model compounds. The hyperfine interaction 
in the benzene radical anion is 0.375 mT, or 3.75 G; assuming a -electron density of 1/6 gives 
Q = 2.25 mT = 22.5 Gauss. The hyperfine coupling constants for the naphthalene radical anion 
are given below. Calculate the -electron density on the two types of ring positions. 
 

 
 
 

Answer:  Assuming the value of Q derived from the benzene radical anion, the -electron 
densities are given by  = aH/Q: 
 

 
 

As a result the reactivity of the two types of ring positions is expected to differ. This expression 
is called the McConnell relationship. 
 
 

30.  The hyperfine coupling constants from the ESR spectra of the radical anion of toluene are 
shown below. The AM1 level -molecular orbitals for toluene as a neutral molecule are also 
diagrammed below. Are the hyperfine constants consistent with the -molecular orbitals? Orbital 
18 is the HOMO and orbital 19 is the LUMO. (In benzene, MO 17 and 18 are degenerate and 
MO 19 and 20 are degenerate.) 
 

 
 

–        

            0.490     0.490 
 

0.183                                0.183 
 

0.183                                0.183 
 

            0.490     0.490 

–        

             0.22        0.22 
 

0.081                                0.081 
 

0.081                                0.081 
 

              0.22        0.22 

CH3 

                 0.512 mT 
 
 

                 0. 545 mT 
 

    0.059 mT 

– 
 

CH3 

CH
3
 

CH
3
 

E (eV) 

0.0223  – 
0.0191  – 
         0  – 
 
 
 
 
–0.343  – 
 

–0.354  – 
 
 
 
–0.431  – 

 

 

  
 

  
 

 
 

 

 

   

  

 
 

 

 
 

  
 

 

14 

17 18 

19 
20 

CH3 
CH3 



Chapter 29: Magnetic Resonance Spectroscopy  237 

Answer:  The extra electron in the anion goes into the LUMO, MO-19. MO-19 has large 
coefficients of the same sign on the ortho- and meta- positions. With regard to the orbital signs 
and coefficients, the ortho- and meta- positions are equivalent and distinct from the para- 
position, in agreement with the hyperfine coupling constants. You should do the AM1 
calculations (we used MOPAC) for yourself to verify the molecular orbitals listed here. 
 
 
31.  The ESR hyperfine coupling constants and low-lying -molecular orbitals of the toluene 
anion radical are given in the previous problem. Using Spartan or Gaussian, build and geometry 
minimize the toluene radical anion (doublet state) at the HF 3-21G level or higher. Request the 
molecular orbital coefficients and then generate the “radical density” or “spin density” surface 
for the toluene radical anion. Does this unpaired electron density surface agree with the 
hyperfine coupling constants and molecular orbitals listed in the previous problem? (Note that 
the -molecular orbital energies depicted in the previous problem are for neutral toluene.) 
 
 
Answer:  The “radical density” plot generated at the HF 3-21G level using the WebMo 
visualization environment is shown below. Enhanced unpaired spin density resides between the 
ortho- and meta- positions. In other words, the largest unpaired electron spin density agrees with 
MO-19 shown above and the experimental hyperfine constants. 
 

 
The spin density map using Spartan is even clearer, essentially reproducing the LUMO shown in 
the previous problem. These predictions are validated at higher theory levels including B3LYP. 
 
 
32.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a).  The spacing in ppm between the component transitions of a spin-spin splitting multiplet is 
constant with increasing field strength. 
 
Answer:  False. The spacing in Hz between the component transitions of spin-spin splitting 
multiplets is constant with increasing field strength. However, as the field strength increases, the 
resonance frequency increases, and the spacing between transitions in a multiplet decrease when 
expressed in ppm. A J of 9 Hz corresponds to 0.15 ppm at a 60 MHz resonance frequency and 
only 0.018 ppm at 500 MHz. In other words, the multiplet looks narrower at higher field when 
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compared to the chemical shift differences. Another way of rationalizing this effect is to note that 
a 10 ppm sweep width at 60 MHz is 600 Hz and the same sweep width at 500 MHz is 5000 Hz. 
If the spectra at 60 MHz and 500 MHz are plotted on the same size paper, then a J of 9 Hz gives 
transitions that appear closer together at the higher sweep width. See Problems 2 and 3 for 
numerical examples. 
 
(b).  In 1H NMR spectroscopy, for a given spin with n-coupled neighboring protons the 
minimum number of transitions in the multiplet is n+1 and the maximum number of transitions 
in the multiplet is 2n. Assume the given spin has a unique chemical shift. 
 
Answer:  True. If the n-neighbors are equivalent then an n+1 multiplet arises. If the n-neighbors 
are all inequivalent then the given resonance is split into a doublet by each of the n-neighbors 
giving 2n transitions in the multiplet. For the n-equivalent case the multiplet transition intensities 
are given by Pascal’s triangle. For the inequivalent case, all transitions are equally intense. 
 
(c).  The differences between the exact spin-spin splitting pattern and the first-order prediction  
are called second-order effects. The exact spin-spin splitting pattern is based on JAB I


A IB while 

the first-order prediction is based on JAB I^zA  I^zB. Second-order effects are more important at high 
field (e.g. 500 MHz) than at low field (e.g. 60 MHz). 
 
Answer:  False. Even though chemical shifts in ppm are identical with increasing resonance 
frequency, the chemical shifts in Hz are directly proportional to field strength. As a result the 
difference in resonance frequency, A – B in Hz, increases with resonance frequency (field 
strength). The important comparison for the extent of second-order effects is A – B as 
compared to J. First-order predictions are sufficient if |A – B| >> J. As a result, second-order 
effects are less important at high field than at low field. In fact, the simplification of spin-spin 
splitting patterns at high field is one of the most important advantages of high field instruments. 
 
 
(d).  The spin-lattice relaxation time of a given chemical environment in a 1H-spectrum increases 
with an increase in temperature. Assume that the motion of the molecule that is most important 
for relaxation is faster than the resonance frequency at the starting temperature. 
 
Answer:  True. An increase in temperature increases the motions of the molecule, shortening the 
correlation time. However, a decrease in correlation time can either increase or decrease the 
relaxation rate, Figure 29.5.6. If the motion at the original temperature is faster than the 
resonance frequency, the correlation time is shorter than 1/2o. The initial state is to the left of 
the minimum in the figure. Further shortening of the correlation time moves the system further to 
the left, increasing the relaxation time. In other words, if motions are too fast to begin with, 
further increases won’t improve the efficiency of the relaxation, thus increasing T1. 
 
 
(e).  Consider chemical exchange between two inequivalent chemical environments. The line 
widths decrease with an increase in temperature if the system is initially at a temperature that is 
below the coalescence temperature. 
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Answer:   False. As temperature increases, the exchange rate constant increases. The line widths 
increase with an increase in temperature if the system is starting at a temperature that is below 
the coalescence temperature. The two lines broaden until they strongly overlap with increasing 
exchange rate constant. At temperatures higher than the coalescence temperature, increases in 
temperature again increase the exchange rate. As the exchange rate increases the lines collapse to 
the average chemical shift and the line width decreases to the extreme narrowing limit. 
 
 
 
Literature Cited: 
1. A. Carrington, A. D. McLachlan, Introduction to Magnetic Resonance, Harper & Row, New York, 

NY, 1967. pp. 182-194. 
2.  A. D. Bain, “Chemical Exchange NMR,” Prog. in N.M.R., 2003, 43, 67-71. 

3.  P. A. Duspara, C. F. Matta, S. I. Jenkins, P. H. M. Harrison, “Twisted Amides:  Synthesis and 
Structure of 1,6-Dipivaloyl-3,4,7,8- tetramethyl-2,5-dithioglycoluril,” Org. Lett., 2001, 3(4), 
495–498. 
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Chapter 30 Problems: Statistical Mechanics  
 
1. For a diatomic molecule, the rotational energy is J = B

~
hc J(J+1). (a.) Evaluate the rotational 

partition function of a heteronuclear diatomic molecule at 298.15 K by numerically summing the 
Boltzmann weighting factors over many energy levels in a spreadsheet. Take B

~
hc/kT = 0.00200. 

The degeneracy of each level is gJ = 2J + 1. (b.) Compare your numerical answer to the partition 
function using the high temperature approximation: qr = kT/(B

~
hc). (c). Which rotational level 

has the maximum population of molecules? Why? 
 
 
Answer:  The plan is to note that summing over energy levels, the Boltzmann weighting factors 
are in the form (2J + 1)e–J/kT, with J = B

~
hc J(J+1). 

(a).  The Excel spreadsheet to accomplish the sums is given below. The sum from J = 0 to J =90 
is required to find a five-significant figure value for the partition function. Not all rows are 
shown. 
 

A1 B C D E F 
2 Bhc/kT= 0.002    
3      
4 J 2J+1 BhcJ(J+1)/kT e-eJ/kT (2J+1) e-eJ/kT 
5 0 1 0 1 1 
6 1 3 0.004 0.99601 2.98802 
7 2 5 0.012 0.98807 4.94036 
8 3 7 0.024 0.97629 6.83400 
9 4 9 0.04 0.96079 8.64710 

10 5 11 0.06 0.94176 10.35941 
11 6 13 0.084 0.91943 11.95261 
12 7 15 0.112 0.89404 13.41066 
13 8 17 0.144 0.86589 14.72009 
14 9 19 0.18 0.83527 15.87013 
15 10 21 0.22 0.80252 16.85289 
16 11 23 0.264 0.76797 17.66339 
17 12 25 0.312 0.73198 18.29954 
18 13 27 0.364 0.69489 18.76206 
19 14 29 0.42 0.65705 19.05436 
20 15 31 0.48 0.61878 19.18229 
21 16 33 0.544 0.58042 19.15392 
22 17 35 0.612 0.54227 18.97928 
23 18 37 0.684 0.50459 18.67000 
24 19 39 0.76 0.46767 18.23899 
25 20 41 0.84 0.43171 17.70013 
26  ⁞  ⁞  ⁞  ⁞  ⁞ 
27 90 181 16.38 7.696E-08 1.393E-05 
28      
29    qr = 500.33343 

 

Cell D5 is “=$C$2*B5*(B5+1)”. Cell E5 is “=EXP(-D5)”. Cell F5 is “=C5*E5”. 
 

(b). For a heteronuclear diatomic, the symmetry number is one,  = 1, since rotation by 180 
gives a distinguishable state. The high temperature approximation then gives the rotational 
partition function as qr = kT/(B

~
hc) = 1/0.00200 = 500.0. The exact result is slightly higher at 

500.333. 
(c). The level with the maximum population is J = 15. While the Boltzmann distribution gives an 
exponentially decreasing probability of occupation of a given state with increasing J, the 
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degeneracy increases with increasing J. The product of a decreasing function and an increasing 
function has a maximum at intermediate value. 
 
 
2.  The fundamental vibration frequency for H35Cl is 2885.3 cm-1. Calculate the ratio of the 
number of molecules in the first excited vibrational state to the number in the ground vibrational 
state at 298.2 K. 
 
 
Answer:  The plan is to note that the ratio is given by Eq. 8.10.8 and that at 298.2 K 
kT/hc = 207.224 cm-1. 
   The Boltzmann probability of being in state i is: pi = ni/N = e–i/kT/q. The ratio of the number of 
molecules in states j and i is given by the ratio of the Boltzmann probabilities: 
 

 
nj

ni
 = 

e–j/kT/q
e–i/kT/q

 = e–(j – i)/kT = e–/kT  with  = j – i 
 

For the first two vibrational states,  = ho, giving: 
 

 
n1

no
 = e–hc~o/kT = e–2885.3 cm-1/207.224 cm-1

 = 8.976x10-7 

 

In other words, about one in a million are in the first excited vibrational state at room 
temperature. 
 
 
3.  The rotational constant for the linear molecule H–CN is 1.4782 cm-1.2 Calculate the ratio of 
the number of molecules in excited rotational level J = 3 to the number in the ground rotational 
level J = 0 at 298.2 K. [Hint: take the rotational degeneracy 2J + 1 into account.] 
 
 
Answer:  The plan is to note that the degeneracy is 2J + 1 and that at 298.2 K the effective 
temperature is kT/hc = 207.224 cm-1. The ratio without taking degeneracy into account is given 
by Eq. 8.10.8 
   The Boltzmann probability of being in level i is: pi = ni/N = gi e–i/kT/q, with gi the degeneracy 
of level i. The ratio of the number of molecules in levels j and i is given by the ratio of the 
Boltzmann probabilities: 
 

 
nj

ni
 = 

gj e–j/kT/q
gi e–i/kT/q

 = 


gj

gi
 e–(j – i)/kT = 



gj

gi
 e–/kT   with  = j – i 

 

The rotational energy is J = B
~

hc J(J + 1). For rotational levels J = 3 and 0: 
 

  = B
~

hc [3(3 + 1) – 0(0 + 1)] = 12 B
~

hc 
 

For H–CN the rotational constant is B
~

 = 1.4782 cm-1, giving: 
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n3

no
 = 






23 + 1

20 + 1
 e–12 B~hc/kT = 



7

1  e–12(1.4782 cm-1)/207.224 cm-1
 = 


7

1  0.9180 = 6.425 
 

Even though the probability of being in a single rotational state with J = 3 is less than J = 0, the 
degeneracy gives roughly 6.5 times more molecules in J = 3 than J = 0 at room temperature. 
 
 
4.  Verify the units conversion factor,  = 0.0259467, for the translational partition function in 
Eqs. 30.3.1-30.3.2 for a P = 1 bar standard state.  
 
 
Answer:  The units conversion factor  is defined with R = 8.3145 J K-1 mol and 
P = 1 bar = 1x105 N m-2. Moving the factor of h3 into the first term and using R/NA = k gives: 
 

  = 



2k

NA 1000 g kg-1

3/2 R
NAP h3 = 



2k

NA h2 1000 g kg-1

3/2
 




k

P  

    = 



2(1.3806488x10-23 J K-1)

6.0221367x1023 mol-1(6.6260755x10-34 J s)2(1000 g/kg)

3/2





1.3806488x10-23 J K-1

1x105 N m-2  

    = 0.02594674  8x10-8 = 0.02594674(8) 
 

We estimated the uncertainty using the “Uncertainty Calculator” applet that is available on the 
text book Web site and companion CD. The input formula was: 
 “(2*pi*k/Na/h^2/1000)^1.5*k/1e5”. 
   For the units note that for energy 1 J = 1 kg m2 s-2 and for pressure 1 N m-2 = 1 J m-3. The units 
of k/h2 are 1/(J s2 K). The units of k/P are m3 K-1: 
 

  ~ 



1

J kg-1s2

3/2
 



1

g mol-1 K

3/2
 (m3 K-1) 

 

The units of J kg-1 s2 are (kg m2 s-2)(kg-1 s2) = m2. 
 

  ~ (m–3) 



1

g mol-1 K

3/2
 (m3 K-1) ~ 



1

g mol-1

3/2





1

K

5/2
 

 

These final units are grouped with the factors of (M/g mol-1)3/2 and (T/K)5/2 to give an overall 
unitless result. Note that the factor of NA in qt /NA is the molecule count and in this context is 
unitless, giving qt /NA as overall unitless. 
 
 
5.  (a). Calculate the translational partition function in the form qt ,m/NA for hydrocyanic acid, 
H–CN, at 298.2 K. (b). Calculate the rotational partition function of H–CN at 298.2 K. 
Hydrocyanic acid is linear with rotational constant 1.4782 cm-1.2  
 
 
Answer: (a). Using isotope averaged atomic masses from the periodic table, the molar mass of 
H–CN is 27.03 g mol-1. The standard state translational partition function is: 
 

 
qt ,m

NA
 =  (M/g mol-1)3/2 (T/K)5/2 = 0.0259467 (27.03)3/2(298.15)5/2 = 5.597x106 
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or lots and lots of accessible translational states per molecule: qt ,m = NA(5.597x106). 
 

(b).  The rotational symmetry number is  = 1, since H–CN is unsymmetrical. The rotational 
partition function at 298.2 K is given using Eqs. 30.1.39 and 30.1.40: 
 

 qr = 
kT

B
~

hc
 = 

207.224 cm-1

1.4782 cm-1  = 140.187 

 

Once again, there are a large number of accessible rotational states. 
 
 
6.  Does anharmonicity have a significant effect on the vibrational partition function? The 
vibrational constants for diatomic Mg2 are ~e = 51.12 cm-1, e~e = 1.64 cm-1, and 
Ye~e = 0.0162 cm-1. Using the zero-point energy as the zero in energy, determine the vibrational 
partition function at 298.2 K by explicit summation for three cases. (a). Assume a harmonic 
oscillator with the observed vibrational frequency ~o. Calculate ~o using the first and second 
anharmonicity corrections, extending Eq. 27.5.11 as: ~o = ~e – 2e~e + 13/4 Ye~e. (b). Assume an 
anharmonic oscillator including only the first anharmonicity correction, Eq. 27.5.8. (c). Assume 
an anharmonic oscillator including the first and second anharmonicity corrections, Eq. 27.5.5. 
[Hint: for the anharmonic oscillator cases, extend the sums until the vibrational energy reaches a 
maximum, which corresponds to the dissociation limit.] 
 
 
Answer:  The plan is to determine the vibrational energies in reference to the energy of the  = 0 
level at the required levels of approximation. 
   The observed harmonic oscillator fundamental is at: 
 

 ~o = ~e – 2e~e + 13/4 Ye~e = 51.12 cm-1 – 2(1.64 cm-1) + 13/4 (0.0162 cm-1) = 47.893 cm-1 
 

The energy levels are:              harmonic G
~
 = ~o( + ½) 

   first-anharmonicity G
~
 = ~e( + ½) – e~e( + ½)2 

       first and second-anharmonicity G
~
 = ~e( + ½) – e~e( + ½)2 + Ye~e( + ½)3 

The zero point energies are:  harmonic  ZPE = G
~

o = ~o/2 

    first-anharmonicity ZPE = G
~

o = ~e/2 – e~e/4 

       first and second-anharmonicity ZPE = G
~

o = ~e/2 – e~e/4 + Ye~e/8 
 

The spreadsheet implementing these calculations and the corresponding Boltzmann weighting 
factors is given below. The vibrational partition function is the sum of the Boltzmann weighting 
factors. For the harmonic case, states up to  = 40 are necessary to obtain a good estimate of the 
sum. For the harmonic calculation not all rows are shown to save space. Summing through  = 
40 gives qv = 4.846. Using the first-anharmonicity correction, the vibrational energy is maximum 
at  = 15, which corresponds to the dissociation energy. Summing through  = 15 gives qv = 
5.898. The first-anharmonicity correction increases the number of accessible states by 22% over 
the harmonic approximation. For the full expression, using the first and second-anharmonicity 
corrections, the vibrational energy is maximum at  = 24. Summing through  = 24 gives the 
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best estimate of the partition function as qv = 6.613. Using only the first-anharmonicity 
correction underestimates the partition function by 11%. 
 
 

e 51.12 cm-1     
ee 1.64 cm-1     
yee 0.0162 cm-1     
o 47.89265 cm-1     
 harmonic:  e(+½ -ee(+½)2 full  
ZPE 23.946325  25.15  25.152025 cm-1 
      

0 0 1 0 1 0 1 
1 47.89265 0.793647903 47.84 0.793849573 47.89265 0.793647903 
2 95.7853 0.629876994 92.4 0.640251444 92.6511 0.639476101 
3 143.67795 0.499900556 133.68 0.524610591 134.37255 0.52286025 
4 191.5706 0.396745028 171.68 0.436714565 173.1542 0.433618785 
5 239.46325 0.314875859 206.4 0.369345179 209.09325 0.364575932 
6 287.3559 0.249900565 237.84 0.317352066 242.2869 0.310614436 
7 335.24855 0.19833306 266 0.277028442 272.83235 0.268043515 
8 383.1412 0.157406617 290.88 0.245686631 300.8268 0.234172175 
9 431.03385 0.124925431 312.48 0.221366973 326.36745 0.207017892 

10 478.9265 0.099146807 330.8 0.202636774 349.5515 0.185105522 
11 526.81915 0.078687655 345.84 0.188450735 370.47615 0.167327012 
12 574.7118 0.062450293 357.6 0.178053922 389.2386 0.15284253 
13 622.60445 0.049563544 366.08 0.170914689 405.93605 0.141010078 
14 670.4971 0.039336003 371.28 0.166679185 420.6657 0.1313349 
15 718.38975 0.031218936 373.2 0.165141979 433.52475 0.123432776 
16 766.2824 0.024776843 371.84 0.166229361 444.6104 0.117003133 
17 814.17505 0.01966409   454.01985 0.111809169 
18 862.0677 0.015606363   461.8503 0.107663023 
19 909.96035 0.012385958   468.19895 0.104414603 
20 957.853 0.009830089   473.163 0.101943073 
21 1005.74565 0.00780163   476.83965 0.100150309 
22 1053.6383 0.006191747   479.3261 0.098955801 
23 1101.53095 0.004914067   480.71955 0.098292619 
24 1149.4236 0.003900039   481.1172 0.098104182 
25 1197.31625 0.003095258   480.61625 0.098341629 
26 1245.2089 0.002456545     

⁞   ⁞ ⁞     
40 1915.706 9.66307E-05     

qv =  sum = 4.845714312  5.898082748  6.613415718 
 

The vibrational partition function in the harmonic approximation using Eq. 30.1.31 is slightly 
larger than we obtained stopping the sum at  = 40: 
 

 qv = 
1

1 – e
~/207.224 cm-1

 = 
1

1 – e47.893/207.224 = 4.8465 

Mg2 is atypical. The bond strength in Mg2 is small and the vibration is unusually anharmonic. 
For most stable common diatomics, such as O2, N2, CO, and HF, anharmonicity makes a 
negligible contribution to the vibrational partition functions, because there are so few accessible 
states. 
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7.  Calculate the electronic partition function of atomic carbon at 298.2 K. The spectroscopic 
constants for the low-lying electronic states are given in Table 30.1.2. 
 
 
Answer: The plan is to follow Example 30.1.3 to determine the electronic partition function. 
   Consider a general three level system with energies o, 1, and 2 with corresponding 
degeneracies go, g1, and g2, respectively. The general form of the partition function of a three-
level system is given by the sum of the Boltzmann weighting factors over the three-levels: 
 

 qe =  gi e–i/kT = go + g1 e–1/kT + g2 e–2/kT 
 

Using the spectroscopic constants for C-atoms gives the partition function at room temperature: 
 

 qe = 1 + 3 e–16.40/207.22 + 5 e–43.40/207.22 = 7.827 = 1 + 3(0.9239) + 5(0.8110) = 7.827 
 

The low-energy electronic terms of the C-atom are closely spaced in energy compared to kT. C-
atoms are an excellent example of a case that gives a significant error by assuming the electronic 
partition function is the ground state degeneracy. 
 
 
8.  Calculate the contribution of translation to the molar standard state entropy of H–CN at 
298.2 K. Compare this translation-only result to the literature value of the thermodynamic 
standard state absolute entropy. 
 
 
Answer:  The plan is to use the Sackur-Tetrode equation. 
   Using isotope averaged atomic masses from the periodic table, the molar mass of H–CN is 
27.026 g mol-1. For standard state at 298.2 K, using Eq. 30.2.35: 
 

 Sm,298.15 K = 26.6929 + 71.0587 + 3/2 R ln(M/g mol-1) + 11.1037 J K-1 mol-1 
      = 26.6929 + 71.0587 + 3/2 R ln(27.026) + 11.1037 J K-1 mol-1 
      = 149.972 J K-1 mol-1 
 

Using Table 8.4.1 in the Data Section, S298 K = 201.78 J K-1 mol-1. The difference is primarily the 
contribution of rotation. 
 
 
9.  Calculate the contribution of rotation to the molar entropy of H–CN at 298.2 K. Combine 
the translational contribution from the previous problem with the rotational contribution. 
Compare this translation-rotation only result to the literature value of the thermodynamic 
standard state absolute entropy. Hydrocyanic acid is linear with rotational constant 1.4782 cm-1.9 
 
 
Answer:  The plan is to use the Sackur-Tetrode equation for the translational contribution, kT/hc 
= 207.224 cm-1, the high temperature approximation or Equipartition rotational contribution of a 
diatomic molecule of U – U(0) = RT, and Eq. 30.2.27. 
   The translational contribution is determined in the previous problem using the Sackur-Tetrode 
equation, Sm,298.15 K = 149.972 J K-1 mol-1. The rotational symmetry number is  = 1, since 
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H–CN is unsymmetrical. The rotational partition function at 298.2 K is given using Eqs. 
30.1.39 and 30.1.40: (see also Problem 5b.) 
 

 qr = 
kT

B
~

hc
 = 

207.224 cm-1

1.4782 cm-1  = 140.186 

 

The contribution of rotation of a linear molecule to the internal energy is U – U(0) = RT, as 
based on the high temperature approximation, Table 30.3.3, or correspondingly from 
Equipartition. Using Eq. 30.2.27 the molar rotational entropy is: 
 

 Sr = R ln qr + R = 8.31446 J K-1 mol-1(ln 140.186 + 1) = 49.413 J K-1 mol-1 

 

Neglecting vibration, the predicted molar standard state entropy is: 
 

 Sm,298.15 K = 149.972 J K-1 + 49.413 J K-1 mol-1 = 199.38 J K-1 mol-1 
 

Using Table 8.4.1 in the Data Section, S298 K = 201.78 J K-1 mol-1 giving a 1.2% difference. The 
difference is primarily a small contribution from the doubly degenerate bending vibration. 
 
 
10.  Determine the contribution of a vibration to the internal energy of a substance. Use the zero-
point vibrational level,  = 0, as the zero in energy. Repeat the derivation giving Eq. 30.3.13. 
However, this result was derived using Eq. 30.2.15; use Eq. 30.2.6 as the basis of your 
derivation, instead. 
 
 
Answer:  The plan is to use Eq. 30.1.31, written in terms of  instead of kT with Eq. 30.2.6. 
   The partition function for the vibration of a diatomic molecule or a single vibrational mode of a 
polyatomic in the harmonic approximation is given by Eq. 30.1.31. The version of this equation 
written in terms of  is the most convenient form: 
 

 qv = 
1

(1 – e–ho)
 

 

The internal energy is given by Eq. 30.2.6. Using the chain rule, the required derivative is: 
 

 




∂q

∂ v
 = 

–1
(1 – e–ho)2  (ho e–ho) 

 

Substitution of the derivative and the vibrational partition function into Eq. 30.2.6 gives: 
 

 U – U(0) = – 
N
q 



∂q

∂ V
 = – 

N







 

1
1 – e–ho

  
–ho e–ho

(1 – e–ho)2 

 

Cancelling the common factors gives the final result: 
 

 U – U(0) = 
Nho e–ho

1 – e–ho
      (30.3.13) 
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11.  Find the contribution of a vibration to the enthalpy, Hv – Hv(0). Assume the energy zero is at 
the bottom of the vibrational potential, giving the zero-point  = 0 vibrational level at o = ½ ho. 
For vibrations Hv – Hv(0) = Uv – Uv(0). The reason vibrational enthalpy and internal energy are 
equal is that even though H  U + PV, the PV correction term is included in calculating the 
translational enthalpy. [Hint: Eq. 30.2.15 is most convenient for this problem. Note that 
Eq. 30.3.13 was derived with the  = 0, zero-point vibrational level as the reference energy.] 
 
 
Answer:  The plan is to take the derivative with respect to  based on Eq. 30.1.29 instead of Eq. 
30.1.31 using Eq. 30.2.15 for the internal energy. 
   Based on Eq. 30.1.29, the logarithm of the partition function is: 
 

 qv = 
e–ho/2

1 – e–ho
  ln qv = –½ho – ln(1 – e–ho) 

The derivative with respect to  is:  




∂ln qv

∂ V
 = –½ho – 

ho e–ho

1 – e–ho
 

 Hv – Hv (0) = Uv – Uv(0) = –N 




∂ln qv

∂ V
 = ½Nho + 

Nho e–ho

1 – e–ho
 

 

The first term in the sum is the zero-point vibrational energy, ZPE. The second term is identical 
to Eq. 30.3.13. In other words, the difference caused by shifting the energy zero to the zero-point 
vibrational level is just an additive term in the ZPE. This result is used in correcting SCF total 
electronic energies from ab initio electronic structure calculations to the spectroscopic reference 
energy. 
 
 
12.  For one mole of an ideal gas at 25C and constant volume, the number of accessible states 
increases by 10% with a temperature increase of 20C. Estimate to a single significant figure 
(don’t use a calculator) the internal energy of the substance. Based on Equipartition neglecting 
vibration, the value of Um – Um(0) for a monatomic ideal gas is 3/2 RT, for a diatomic ideal gas is 
5/2 RT, for a linear triatomic is 5/2 RT, and for a bent triatomic is 6/2 RT. To which case does this 
result most closely correspond? 
 
 
Answer:  The plan is to use the estimate given by Eq. 30.2.13. 
   For a 10% increase in the partition function, q/q = 0.10. For the change in temperature of 
10C: 
 

 Um – Um(0)  1000 kJ K mol-1





0.10

20 K   5 kJ mol-1 
 

As a factor of R:  [Um – Um(0)]/RT  5 kJ mol-1/RT  2 
 

This factor of 2RT is in rough neighborhood of the values for diatomics and linear triatomics. 
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13.  We can find an approximate formula for the internal energy based on the order of magnitude 
of the change in accessible states by converting Eq. 30.2.16 to base-ten log: ln x = 2.303 log x: 
 

 U – U(0) = 2.303 nRT2 




∂log q

∂T V
 

and at 298.2 K:  Um – Um(0) = 1702 kJ K mol-1





∂log q

∂T V
  2000 kJ K mol-1





∂log q

∂T V
 

For one mole of an ideal gas at 298 K and constant volume, the number of accessible states 
increases by a factor of ten for a temperature increase of 20 K. Estimate to a single significant 
figure (don’t use a calculator) the internal energy of the substance. 
 
 
Answer:  The plan is to let the initial partition function, before the temperature increase be qo. 
For a factor of ten increase log q = log 10qo – log qo = log 10 = 1. 
   For the change in temperature of 10 K: 
 

 Um – Um(0)  2000 kJ K mol-1 



1

20 K   100 kJ mol-1 

 
 
14.  A quick estimate of the rotational contribution to the Gibbs energy of a linear molecule at 
room temperature is available by converting ln x to log x and using 2.303RT = 5.71 kJ mol-1: 
 

 Gm – Gm(0) = –2.303 RT log






207.2 cm-1

B
~   -6 kJ mol-1 log







207.2 cm-1

B
~  

 

Without using a calculator estimate the contribution of rotation to the molar Gibbs energy of 
CO2. The rotational constant for CO2 is 0.379 cm-1. [Hint: use log 10n = n] 
 
 
Answer:  The plan is to note that the symmetry number for CO2 is  =2 since rotation by 180 
gives an indistinguishable state. 
   The ratio of the available thermal kinetic energy to the molecular constants is roughly: 
 

 






207.2 cm-1

B
~  = 

207.2 cm-1

(0.379 cm-1)
  

100
   250 

 

By course estimation: log 250  log 100 = 2. The estimate of the molar Gibbs energy of rotation 
is then: 
 

 Gm – Gm(0)  -6 kJ mol-1 log 250  -6 kJ mol-1 (2) = -12 kJ mol-1 

 

We will spend a lot of time on very careful calculations in this chapter. However, rough, 
approximate calculations are very helpful in building insight. The precise result for this problem 
is given in Example 30.3.1 as -13.9 kJ mol-1. 
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15.  The atomic energy levels for low-lying states of atomic oxygen are given in Figure 30.1.7. 
These low-lying states are an example of a three-level system. Consider a three level system with 
energies o, 1, and 2 with corresponding degeneracies go, g1, and g2, respectively. The lowest 
energy level is defined as the energy zero, o = 0. (a). Show that the contribution of the electronic 
degree of freedom of a three-level system to the molar internal energy is given by: 
 

 Um – Um(0) = NA 
g1 1 e–1/kT + g2 2 e–2/kT

go + g1 e–1/kT + g2 e–2/kT
 

 

(b). Plot the electronic contribution to the molar internal energy of O-atoms as a function of 
temperature, in the range 10 K to 800 K. 
 
 
Answer: The plan is to note that the electronic partition function for O-atoms, as a specific case, 
is given in Example 30.1.2; however, the necessary derivative is easier in terms of  rather than 
T. 
(a). The partition function is the sum over the three levels, taking degeneracy into account: 
 

 qe = go + g1 e–1 + g2 e–2 
 

with  = 1/kT. The required derivative is: 




∂qe

∂ V
 = –g1 1 e–1 – g2 2 e–2 

Using this derivative, the partition function, and  = 1/kT, the contribution to the molar internal 
energy is given by Eq. 30.2.6: 
 

 Um – Um(0) = – 
NA

q 



∂q

∂ V
 = NA 

g1 1 e–1/kT + g2 2 e–2/kT

go + g1 e–1/kT + g2 e–2/kT
 

 

This result is identical to the result using Eqs 30.1.1 and 30.1.2 for molecular partition functions: 

U – U(0) = N  i e–i/kT/q. Using the spectroscopic constants for O-atoms, from Example 30.1.2, 
at room temperature: 
 

 qe = 5 + 3 e-158.265/207.22 + 1 e-226.977/207.22 = 6.7322 
 

and Um – Um(0) = 
NA

6.7322 [3(158.265 cm-1) e-158.265/207.22 + 1(226.977 cm-1) e-226.977/207.22] 

         = 
NA

6.7322 [3(158.265 cm-1)(0.4659) + 1(226.977 cm-1)(0.3344)] 

         = NA(44.14 cm-1) = (44.14 cm-1)(11.96266 J mol-1)(1 kJ/1000 J)  
         = 0.528 kJ mol-1 

 

where we used the conversion  1cm-1 = 11.96266 J mol-1 (from the inside front cover). 
 

(b).  The spreadsheet based on the preceding calculation at the given range of temperatures and 
the corresponding plot are shown below. 
 

 

go = 5 o = 0     
g1 = 3 1 = 158.265 cm-1   
g2 = 1 2 = 226.977 cm-1                 
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T 
(K) 

kT/hc 
(cm-1) e-1/kT e-2/kT qe 

U-U(0) 
(cm-1) 

U-U(0) 
(kJ mol-1) 

10 6.95 0.0000 0.0000 5 0.00 0.0000 
50 34.8 0.0105 0.0015 5.033 1.06 0.0127 
75 52.1 0.0480 0.0129 5.157 4.99 0.0597 

100 69.5 0.1026 0.0382 5.346 10.73 0.1284 
200 139 0.3203 0.1954 6.156 31.91 0.3817 
298 207 0.4659 0.3344 6.732 44.14 0.5280 
400 278 0.5659 0.4420 7.140 51.69 0.6183 
500 348 0.6342 0.5204 7.423 56.48 0.6756 
600 417 0.6842 0.5803 7.633 59.81 0.7155 
800 556 0.7523 0.6648 7.922 64.14 0.7673 

       
hc/k = 1.4388 cm K    
1  cm-1= 11.963 J mol-1    

 

0.0

0.2

0.4

0.6

0.8

0 200 400 600 800

U
-U

(0
) (

kJ
 m

ol
-1

)

T (K)

 
 

 
 
 
16.  Calculate the contribution of the electronic degree of freedom to the molar internal energy of 
atomic carbon at 298.2 K. The spectroscopic constants for the low-lying electronic states are 
given in Table 30.1.2. 
 
 
Answer: The plan is to use Eq. 30.2.6 after following Example 30.1.2 to determine the 
electronic partition function. 
   Consider a general three level system with energies o, 1, and 2 with corresponding 
degeneracies go, g1, and g2, respectively. The derivation of the contribution of a three-level 
system to the molar internal energy is given in the previous problem. Using the spectroscopic 
constants for C-atoms gives the partition function at room temperature: 
 

 qe = go + g1 e–1 + g2 e–2 = 1 + 3 e–16.40/207.22 + 5 e–43.40/207.22 = 7.827 
 

The electronic contribution to the molar internal energy is: 
 

 Um – Um(0) = NA 
g1 1 e–1/kT + g2 2 e–2/kT

go + g1 e–1/kT + g2 e–2/kT
 

         = 
NA

7.827 [3(16.40 cm-1) e–16.40/207.22 + 5(43.40 cm-1) e–43.40/207.22] 

         = 
NA

7.827 [3(16.40 cm-1)(0.9239) + 5(43.40 cm-1)(0.8110)] 

         = NA(28.29 cm-1) = (28.29 cm-1)(11.96266 J mol-1)(1 kJ/1000 J) 
         = 0.3385 kJ mol-1 

 

where we used the conversion  1cm-1 = 11.96266 J mol-1 (from the inside front cover). The low-
energy electronic terms of the C-atom are closely spaced in energy. C-atoms are an excellent 
example of a case that gives a significant error by assuming the electronic partition function is 
the ground state degeneracy. 
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17.  Calculate the contribution of the electronic degree of freedom to the molar Gibbs energy of 
atomic oxygen at 298.2 K. The spectroscopic constants for the low-lying electronic states are 
given in Table 30.1.2. 
 
 
Answer: The plan is to note that the electronic partition function for O-atoms is given in Example 
30.3.1; the contribution to the Gibbs energy is given by Eq. 30.2.53. 
   The explicit sum over the Boltzmann weighting factors gives, using Figure 30.1.7 as shown in 
Example 30.1.2: 
 

 qe = 5 + 3 e-158.265/207.22 + 1 e-226.977/207.22  = 5 + 1.39776 + 0.33443 = 6.7322 
 

The electronic contribution to the molar Gibbs energy is: 
 

 Ge – Ge(0) = –RT ln qe  
       = –8.3145 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 6.7322 = -4.727 kJ mol-1 

 
 
18.  The nucleus of a deuterium atom has a spin of one, I = 1. In a magnetic field of strength Bo, 
a deuterium nucleus has energy levels  = ħBo mI, with mI = +1, 0, -1. The magnetogyric ratio, 
, is a constant that is different for each isotope of each element. For deuterium, 
 = 41.065 radians s-1 T-1, with the magnetic field strength given in tesla, T. For thermodynamic 
calculations, setting the lowest energy level at  = 0 is most convenient. With the shifted zero in 
energy, the deuterium nuclear energies are at  = 0 for mI = +1,  = ħBo for mI = 0, and  = 
2ħBo for mI = -1. Find the partition function and the contribution of the nuclear energy to the 
internal energy. [This three-level system is the basis of deuterium NMR spectroscopy. Deuterium 
NMR is common, especially for locking and shimming operations while doing conventional 
proton and 13C NMR.] 
 
 
Answer:  The plan is to find the partition function as the sum of the three Boltzmann weighting 
factors. The derivative to determine the internal energy is easier with the Boltzmann weighting 
factors expressed in terms of  instead of kT. 
   The partition function is the sum of the Boltzmann weighting factors: 
 

 qn =  e–i = e0 + e–ħBo + e–2ħBo = 1 + e–ħBo + e–2ħBo 
 

The derivative with respect to  is:  






q

 v
 = –ħBo e–ħBo – 2ħBo e–2ħBo 

The contribution of the nuclear degree of freedom to the internal energy is given by Eq. 30.2.6: 
 

 U – U(0) = – 
N
q  






q

 v
 = N 

ħBo e–ħBo + 2ħBo e–2ħBo

1 + e–ħBo + e–2ħBo   

     = N 
ħBo e–ħBo/kT + 2ħBo e–2ħBo/kT

1 + e–ħBo/kT + e–2ħBo/kT  = NħBo 
e–ħBo/kT + 2 e–2ħBo/kT

1 + e–ħBo/kT + e–2ħBo/kT 
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A magnetic field strength of 11.74 T gives a deuterium NMR transition frequency of 76.73 MHz 
and a proton NMR frequency of 500 MHz. At 76.73 MHz or  = 76.73 s-1, for one mole of 
deuterium nuclei: 
 

 NA ħBo = NA h = 6.022x1023 mol-1(6.6261x10-34 J s)(76.73x106 s-1) = 0.03062 J mol-1 
 

The small size of this energy explains why we don’t normally bother considering nuclear degrees 
of freedom in thermodynamic problems. At 76.73 MHz the corresponding transition in wave 
numbers is: 
 

 ~ = /c = 76.73x106 s-1/2.9979x1010 cm s-1 = 0.002559 cm-1 
 

NMR transitions are very low energy transitions. The ratio to the thermal kinetic energy at room 
temperature is: 
 

 ħBo/kT = 0.002559 cm-1/207.224 cm-1 = 1.235x10-5   giving    e–ħBo/kT = 0.9999877 
 

The average molar internal energy at 298.2 K is: 
 

 U – U(0) = 0.03062 J mol-1 
0.999988 + 2 (0.999988)2

1 + 0.999988 + (0.999988)2 = 0.03062 cm-1 

In other words, the populations of the three levels are almost identical, so that the internal energy 
is near the maximum. 
 
 
19.  The translational partition function of a mobile species on a surface is: 
 

 qt = 
2mkT

h2   
 

where  is the surface area (not to be confused with the rotational symmetry number). Find the 
contribution of translation to the molar internal energy of the species, Ut – Ut(0). 
 
 
Answer:  The plan is to use Eq. 30.2.16 and ln qt = ln(2mk/h2) + ln T. 
   Substitution of the partition function into Eq. 30.2.16 with n = 1 mol gives: 
 

 Ut – Ut(0) = RT2







 ln q

T v
 = RT2







(ln(2mk/h2) + ln T)

T v
 = RT2







 ln T

T v
 

 

The derivative of the first term in the sum is zero, since the values are all constants. Then 
completing the derivative gives: 
 

 Ut – Ut(0) = RT2




1

T  = RT 
 

This value is predicted by Equipartition, since there are two translational degrees of freedom on 
the surface with each degree of freedom contributing ½ RT to the internal energy. 
   Alternately, the derivation can also be based on Eq. 30.2.12: 
 

 Ut – Ut(0) = 
RT2

q 





q

T v
 = 

RT2

q 





(2mkT/h2)

T v
 = 

RT2

q (2mk/h2) 
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       = 
RT2 (2mk/h2)

(2mkT/h2)
 = 

RT2

T  = RT 

 
 
20.  Find the relationship between the Helmholtz energy and the molecular partition function. 
Start with A – A(0) = –kT ln Q, Eq. 30.2.40. Find the relationship between the Helmholtz energy 
and the molecular partition functions of rotation, vibration, and electronic degrees of freedom 
(just in the form qr qv qe). 
 
 
Answer:  The plan is to parallel the derivation of Eq. 30.2.25 for the entropy. 
   The Helmholtz energy in terms of the ensemble partition function is A – A(0) = –kT ln Q. For 
independent molecules the ensemble partition function is given by Eq. 30.1.13. For very large 
numbers of systems, the factor of N! can be expressed using Sterling’s approximation, Eq. 
30.2.24: 
 

 Q  



qe

N

N

 

Substitution into Eq. 30.2.40 gives: A – A(0) =  –NkT ln



qe

N  = –nRT ln



qe

N  

To find the relationships to the molecular degrees of freedom, we parallel the process we used 
for the entropy and Gibbs energy, Eqs. 30.2.26 and 30.2.52. The molecular partition function 
factors as q = qt qint with qint = qr qv qe, Eq. 30.1.16. The factors that arise from the correction for 
indistinguishability are grouped with the translational partition function: 
 

 A – A(0) = –nRT ln



qte

N  – nRT ln qint = –nRT ln



qte

N  – nRT ln qr qv qe 
 

In other words, the contribution of internal degrees of freedom to the Helmholtz and Gibbs 
energies are identical. The Helmholtz energy is particularly useful in molecular dynamics 
simulations at constant volume. See the next problem to explore the relationship between 
Helmholtz and Gibbs energy. 
 
 
21.  Find the relationship between the Helmholtz energy and the molecular partition function. 
Start with A – A(0) = –kT ln Q, Eq. 30.2.40. (See also Problem 30.20). From the resulting 
equation, derive Eq. 30.2.51. 
 
 
Answer:  The plan is to parallel the derivation of Eq. 30.2.25 for the entropy. 
   The derivation of the relationship between the Helmholtz energy and the molecular partition 
function is given in the previous problem: 
 

 A – A(0) = –nRT ln



qe

N  
 

This result can be expanded to separate the factor of “e”: 
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 A – A(0) =  –nRT ln



qe

N  = –nRT ln



q

N  – nRT ln e = –nRT ln



q

N  – nRT 
 

Using the definition of Gibbs energy with PV = nRT for an ideal gas, this last result gives: 
 

 G  A + PV or   G – G(0) = A – A(0) + PV = –nRT ln



q

N  – nRT + nRT = –nRT ln



q

N  
 

Remember that e is just a number e = 2.7183. 
 
 

22.  Calculate the rotational partition function for HF at 298.15 K. Calculate the contribution of 
rotation to the molar entropy and molar Gibbs energy of HF. 
 
 

Answer:  The plan is to use the spectroscopic constants from Table 27.6.1, kT/hc = 207.224 cm-1, 
and the high temperature approximation or Equipartition rotational contribution of a diatomic 
molecule of U – U(0) = RT. 

   Table 27.6.1 lists B
~

e = 20.9537 cm-1. Using Eq. 30.1.39 with  = 1, the rotational partition 
function is: 
 

 qr = 
kT

B
~

hc
 = 

207.224 cm-1

B
~  = 

207.224 cm-1

20.9537 cm-1 = 9.88961 

 

The contribution of rotation of a linear molecule to the internal energy is U – U(0) = RT, from 
the high temperature approximation, Table 30.3.3, or correspondingly from Equipartition. 
Using Eq. 30.2.26 the molar rotational entropy is: 
 

 Sr = R ln qr + R = 8.31446 J K-1 mol-1(ln 9.88961 + 1) = 27.3669 J K-1 mol-1 

 

Using Eq. 30.2.52, the contribution to the molar Gibbs energy is: 
 

 Gr – Gr(0) = –RT ln qr = – 8.31446 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 9.88964 
       = -5.6805 kJ mol-1 

 

As a check, note that for the rotational contribution, Hr – Hr(0) = Ur – Ur(0); the factor of nRT in 
the conversion of the overall internal energy to enthalpy, H = U + nRT, is combined with the 
translational contribution. Then using the definition of Gibbs energy, G  H – TS, and the 
entropy result, above: 
 

 Gr – Gr(0) = Hr – Hr(0) – T Sr = Ur – Ur(0) – T Sr 
       = 2.47896 kJ mol-1 – 298.15 K(27.3669 J K-1 mol-1)(1 kJ/1000 J) 
       = 2.47896 kJ mol-1 – 8.15944 kJ mol-1 = -5.6805 kJ mol-1 

Even though you might expect six significant figures given B
~

e, our treatment neglects centrifugal 
distortion and vibration-rotation interaction, which limits the accuracy of the statistical 
mechanical result. In addition, the statistical mechanical and thermodynamic values have limited 
precision and accuracy caused by experimental error. See Problem 30.24 for a spreadsheet that 
implements these calculations. 
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23.  Calculate the rotational spectroscopic temperature and partition function for HF at 298.15 K. 
Calculate the contribution of rotation to the molar entropy and molar Gibbs energy of HF. 
 
 

Answer:  The plan is to use the spectroscopic constants from Table 27.6.1 and the conversion 
factor hc/k = 1.438778 cm K. 

   Table 27.6.1 lists B
~

e = 20.9537 cm-1, giving the spectroscopic temperature: 

 r = 
B
~

hc
k

 = 20.9537 cm-1(1.438778 cm K) = 30.1477 K 

Using Eq. 30.3.3 with  = 1, the rotational partition function is: 
 

 qr = 
T
r

 = 
298.15 K

30.1477 K = 9.88964 
 

The preceding problem gives the corresponding contribution of rotation to the molar entropy and 
Gibbs energy. 
 
 
24.  Calculate the rotational partition function for 24Mg2 at 298.15 K. The bond length is Re = 
3.07859 Å. Calculate the contribution of rotation to the molar entropy and molar Gibbs energy of 
Mg2. 
 
 

Answer:  The plan is to use kT/hc = 207.224 cm-1, and the high temperature approximation or 
Equipartition rotational contribution of a diatomic molecule of U – U(0) = RT. 
   The molar mass of 24Mg is 23.98504 g mol-1. The reduced mass of 24Mg2 is: 
 

  = 
m1 m2

m1 + m2
 = 

MMg/2
NA

 (1 kg/1000 g) = 1.991406x10-26 kg. 

With Eqs. 24.4.10 and 24.5.41, the rotational constant is:  B
~

e = 
ħ

4 R2
e c

 
 

 B
~

e = 
1.05457266x10-34 J s

4(1.991406x10-26 kg)(3.8905x10-10 m)2(2.99792458x1010 cm s-1)
 = 0.09287 cm-1 

 

Using Eq. 30.1.39 with  = 2, the rotational partition function is: 
 

 qr = 
kT

B
~

hc
 = 

207.224 cm-1

B
~  = 

207.224 cm-1

2(0.09287 cm-1) = 1115.7 

 

The contribution of rotation of a linear molecule to the internal energy is U – U(0) = RT, from 
the high temperature approximation, Table 30.3.3, or correspondingly from Equipartition. 
Using Eq. 30.2.26 the molar rotational entropy is: 
 

 Sr = R ln qr + R = 8.31446 J K-1 mol-1(ln 1115.7 + 1) = 66.659 J K-1 mol-1 

 

Using Eq. 30.2.52, the contribution to the molar Gibbs energy is: 
 

 Gr – Gr(0) = –RT ln qr = – 8.31446 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 1115.7 
       = -17.395 kJ mol-1 
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As a check, note that for the rotational contribution, Hr – Hr(0) = Ur – Ur(0); the factor of nRT in 
the conversion of the overall internal energy to enthalpy, H = U + nRT, is combined with the 
translational contribution. Then using the definition of Gibbs energy, G  H – TS, and the 
entropy result, above: 
 

 Gr – Gr(0) = Hr – Hr(0) – T Sr = Ur – Ur(0) – T Sr 
       = 2.47896 kJ mol-1 – 298.15 K(66.659 J K-1 mol-1)(1 kJ/1000 J) 
       = 2.47896 kJ mol-1 – 8.15944 kJ mol-1 = -17.395 kJ mol-1 
 

The spreadsheet format is particularly convenient for statistical mechanical calculations. A 
spreadsheet that implements these calculations for translation, rotation, and vibration in 
diatomics is shown below. We are so lazy that we even included a section that calculates the 
molar mass from the molecular formula. The most abundant isotope specific masses are used. 
This spreadsheet applies to several problems: 
 

A1 B C D E F G H I J 

2  T 298.15 K kT/hc = 207.224 cm-1 
  

3  M 47.97008 g mol-1      
4  B 0.09287 cm-1      
5   2       
6   44.367 cm-1      
7  ge 1       
8          

9 Contribution   
ZPE 
(kJ mol-1) 

U-U(0) 
(kJ mol-1) 

H-H(0) 
(kJ mol-1) 

S 
(J K-1mol-1) 

G-G(0) 
(kJ mol-1)  

10 translation qt/NA = 13232012   3.71844 6.19739 157.12797 -40.65031  
11 rotation qr = 1115.669   2.47896 2.47896 66.65879 -17.39536  
12 vibration qv = 5.188517 0.26537 2.22304 2.22304 21.14545 -4.08147  
13 electronic qe = 1   0 0 0 0  
14 Total    8.42044 10.89939 244.93222 -62.12714 kJ mol-1 
15 Formula mass # mass (g mol-1)     
16 C 12  0   Constants     
17 H 1.007825  0   hc/k 1.4387782 cm K 
18 N 14.00307  0   NAhc 11.96266 J cm mol-1 
19 O 15.99492  0    0.025946759  
20 P 30.97376  0   k 1.380649E-23 J K-1 
21 S 31.97207  0   h 6.626076E-34  
22 F 18.9984  0   NA 6.022137E+23  
23 Cl 34.96885  0   R 8.3144621 J K-1mol-1 
24 Br 78.91834  0   V 24.78956875 L 

25 Li 6.015122  0      
26 Na 22.98977  0      
27 Mg 23.98504 2 47.9701       
28 M=   47.9701 g mol-1     

 

Cell G2 is: “=D2/I17” 
Cells D10:E12 are: 
 

A1 B C D E 

9 Contribution    ZPE  (kJ mol-1) 
10 translation qt/NA = =I19*D3^1.5*D2^2.5   
11 rotation qr = =$G$2/D5/D4   
12 vibration qv = =1/(1-EXP(-D6/$G$2)) =D6*$I$18/2/1000 
13 electronic qe = 1   
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Cell F10 is:  “=3*$I$23*$D$2/2/1000” 
Cell G10 is: “=F10+I23*$D$2/1000” 
Cell H10 is: “=$I$23*(LN($I$24)+3*LN($D$2)/2+3*LN(D3)/2)+11.1037” 
Cell I10 is:   “=-I23*D2*LN(D10)/1000” 
 
 
25.  Calculate the contribution of vibration to the molar entropy at 298.15 K for HCN, given the 
literature value of the observed bending vibration frequency at ~o = 711.98 cm-1 and the two 
stretching vibrations at 2096.85 cm-1 and 3311.47 cm-1.3 The bending vibration is doubly 
degenerate. (See also Problems 8 and 9 for the contributions of translation and rotation.) 
 
 
Answer:  The plan is to use Eqs. 30.3.15 and 30.2.26 for the degenerate bending vibrations; the 
overall vibrational entropy is the sum of the entropy of each normal mode. 
   The Boltzmann weighting factor for the bending vibration is: 
 

 e–711.98 cm-1/207.224 cm-1 = 0.032200 
 

Using Eq. 30.1.31, the vibrational partition function for each bending vibration is: 
 

 qv = 
1

1 – e–~o/207.224 cm
-1
 = 

1
1 – e–711.98/207.224 = 1.033270 

 

The vibrational partition functions for the two stretches are 1.000035 and 1.000000115, 
respectively, which are too close to one to contribute significantly to the final entropy. The 
constant NAhc is given as (see inside front cover of the text): 
 

 NAhc = 6.0221367x1023 mol-1(6.6260755x10-34 J s)(2.99792458x1010 cm s-1) 
          = 11.962658 ± 1.0x10-5 J cm mol-1 = 11.962658(10) J cm mol-1 
 

giving:    NAhc~o = 11.96266 J cm mol-1(1 kJ/1000 J)(711.98 cm-1) = 8.51729 kJ mol-1 

The zero-point energy is:    ½NAhc~o = ½(8.51717 kJ mol-1) = 4.259 kJ mol-1 
Using Eq. 30.3.15, the contribution of each bending vibration to the molar internal energy is: 
 

 Um,v – Um,v(0) = 
NAho e–ho/kT

1 – e–ho/kT
 = 8.51729 kJ mol-1 

0.032200
1 – 0.032200 = 0.283377 kJ mol-1 

 

Using Eq. 30.2.26 the molar vibrational entropy of each bending vibration is: 
 

 Sv = R ln qv + 
Uv – Uv(0)

T   

     = 8.31446 J K-1 mol-1(ln 1.03327) + 
0.283377x103 J mol-1

298.15 K   

     = 0.27212 J K-1 mol-1 + 0.95045 J K-1 mol-1 = 1.22253 J K-1 mol-1 
 

For both bending vibrations the total is: Sv = 2.4451 J K-1 mol-1 
 

In Problem 9, we worked out the translational and rotational contributions to the molar standard 
state entropy: Sm,298.15 K = 199.38 J K-1 mol-1. Adding in the vibrational contribution gives: 
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 Sm,298.15 K = 199.38 J K-1 mol-1 + 2.4451 J K-1 mol-1 = 201.83 J K-1 mol-1 
 

Using Table 8.4.1 in the Data Section, S298 K = 201.78 J K-1 mol-1 giving only a 0.02% 
difference. 
 
 
26.  Calculate the vibrational partition function at 298.15 K for Mg2, given the literature value of 
the fundamental vibration frequency, ~o = 47.89 cm-1. Calculate the contribution of vibration to 
the zero point energy, and molar internal energy, entropy, and Gibbs energy of Mg2. 
 
 
Answer:  The plan is to use Table 30.3.3 and Eq. 30.3.15. (See Problem 6 for the calculation of 
~o = 47.89 cm-1 for Mg2). 
   Using Eq. 30.1.31, the vibrational partition function is: 
 

 qv = 
1

1 – e–~o/207.224 cm
-1
 = 

1
1 – e–47.89/207.224 = 4.8463 

 

The zero-point energy is ½NAhc~o. The constant NAhc is given as (see inside front cover of the 
text): 
 

 NAhc = 6.0221367x1023 mol-1(6.6260755x10-34 J s)(2.99792458x1010 cm s-1) 
          = 11.962658 ± 1.0x10-5 J cm mol-1 = 11.962658(10) J cm mol-1 
 

giving:    NAhc~o = 11.96266 J cm mol-1(1 kJ/1000 J)(47.89 cm-1) = 0.57289 kJ mol-1 

The zero-point energy is:    ½NAhc~o = ½(0.57289 kJ mol-1) = 0.28645 kJ mol-1 
 

The Boltzmann weighting factor is:  e–47.89 cm-1/207.224 cm-1 = 0.79366 
Using Eq. 30.3.15, the contribution of a vibration to the molar internal energy is: 
 

 Um,v – Um,v(0) = 
NAho e–ho/kT

1 – e–ho/kT
 = 0.57289 kJ mol-1 

0.79366

1 – 0.79366
 = 2.2035 kJ mol-1 

 

Using Eq. 30.2.26 the molar vibrational entropy is: 
 

 Sv = R ln qv + 
Uv – Uv(0)

T   

     = 8.31446 J K-1 mol-1(ln 4.8463) + 
2.2035x103 J mol-1

298.15 K  = 20.511 J K-1 mol-1 

 

Using Eq. 30.2.52, the contribution to the molar Gibbs energy is: 
 

 Gv – Gv(0) = –RT ln qv = – 8.31446 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 4.8463 
     = -3.912 kJ mol-1 

 

As a check, note that for the rotational contribution, Hr – Hr(0) = Ur – Ur(0); the factor of nRT in 
the conversion of the overall internal energy to enthalpy, H = U + nRT, is combined with the 
translational contribution. Then using the definition of Gibbs energy, G  H – TS, and the 
entropy result, above: 
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 Gv – Gv(0) = Hv – Hv(0) – T Sv = Uv – Uv(0) – T Sv 
       = 2.2035 kJ mol-1 – 298.15 K(20.511 J K-1 mol-1)(1 kJ/1000 J) 
       = 2.2035 kJ mol-1 – 6.1154 kJ mol-1 = -3.912 kJ mol-1 
 

See Problem 30.24 for a spreadsheet that implements these calculations. 
 
 
27.  The symmetry number,, in the rotational partition function may seem arbitrary at first. 
This problem is designed to explore the effects of the symmetry number on the properties of 
molecules. A good test case is to consider N2 and CO. We will look at the contribution of 
rotation to the entropy of these two very similar diatomic molecules. The mass of N2 is 28.02 g 
mol-1 and the mass of CO is 28.01 g mol-1, so the contribution of translation to the entropy is 
essentially identical. The fundamental vibration frequencies of the two are very similar, ~o for N2 
is 2359.6 cm-1 and for CO is 2170.2 cm-1. The vibrational contribution to the entropy is 
essentially identical. Both molecules have singlet ground states. The rotational constants are also 
very similar, B

~
e for N2 is 2.010 cm-1 and for CO is 1.9314 cm-1. So, the only major difference is 

the symmetry. 
(a). Using the result of part a, prove that the contribution of rotation to the molar entropy of a 
diatomic gas is: 

 Sm = R ln






kT

B
~

e hc
 + R – R ln  

(b). Using the result from part a, and assuming that the differences in B
~

e of N2 and CO are 
negligible, calculate the theoretical difference in entropy of N2 and CO. The experimental 
entropies are 191.61 J K-1 mol-1 for N2 and 197.67 J K-1 mol-1 for CO. Compare theory and 
experiment. 
(c). Evaluate the contribution of just the symmetry part of the rotational partition function to the 
equilibrium constant for the reaction:   N2 + CO2  CO + N2O 
 
 
Answer:  The plan is to use Eq. 30.3.7 as the basis for this problem. 
(a). Splitting out the symmetry number term from Eq. 30.3.7 for one mole gives: 
 

 Sr,m = R ln






kT

B
~
hc

 + R = R ln






kT

B
~
hc

 + R – R ln  

 

(b). The difference assuming equal rotational constants with N2 = 2 and CO = 1 is then: 
 

 Sr(N2) – Sr(CO) = –R ln N2 – (–R ln CO)  
     = 8.3145 J K-1 mol-1(ln CO – ln N2) 
     = 8.3145 J K-1 mol-1(ln 1 – ln 2) = -5.763 J K-1 mol-1 

 

with the experimental difference: Sr(N2) – Sr(CO) = 191.61 J K-1 mol-1 – 197.67 J K-1 mol-1 = 
-6.06 J K-1 mol-1. The difference in entropy is primarily given by symmetry. 
 

(c). The contribution of the symmetry part of the rotational partition function to the equilibrium 
constant for the reaction using N2 = 2, CO2 = 2, CO = 1, and N2O = 1 is 
Kp =(1)(1)/(2)(2) = 0.25 
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28.  Write your own spreadsheet that reproduces Example 30.4.1. 
 
 
Answer:  The cells C11:C18 are: 
 

A B C 
11 qt/NA =$C$24*$C$20^2.5*C6^1.5 
12 qr =$C$21/C8/C5 
13 qv =1/(1-EXP(-C4/$C$21)) 
14 qe =C7 
15 G-G(0) internal =-$C$22*$C$20*LN(C12*C13*C14)/1000 
16 G-G(0) (kJ mol-1) =-$C$22*$C$20*LN(C11*C12*C13*C14)/1000 
17 G(0)    (kJ mol-1) =-C9*$C$27 
18 G        (kJ mol-1) =C17+C16 

 

Cell G20 is “=(2*G18-C18-E18)” and Cell G21 is “=G20/2”. 
 
 
29. The equilibrium constant expression in Eq 30.4.24 can be related directly to the bond length 
of the diatomic molecules: RAB for the product and RBC for the reactant. (a). Express Eq. 
30.4.24 directly in terms of the bond lengths of the diatomic species. The result clearly shows 
the relationship between molecular structure and the position of equilibrium. (b). For atom-
diatom exchange on the basis of rotation alone, if RAB > RBC are products or reactants favored? 
 
 
Answer:  The plan is to use the definition of the rotational constant in terms of the moment of 
inertia of a diatomic molecule, Eqs. 24.4.10 and 24.5.41, to find the relationship to the bond 
lengths. 
(a).  Given the moment of inertia of a diatomic molecule is I = R2 with the rotational constant: 

 B
~

 = 
ħ

4 I c
 = 

ħ
4 R2 c

       (24.4.10, 24.5.41) 
 

The ratio for the rotational partition functions simplifies to:  
 

 








1/B

~
AB

1/B
~

BC

 = 
ABR2

AB

BCR2
BC

 

 

From Eq. 30.4.24, the equilibrium expression is: 
 

 Kp = 



mAB mC

mA mBC

3/2
 
ABR2

AB

BCR2
BC

 







   

1

1–e–h~o(AB) c/kT
   

   
1

1–e–h~o(BC) c/kT
   

 



gAB gC

gA gBC
 e–∆Eo/RT 

         translation       rotation           vibration              electronic   zero-point energy shift 
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(b).  From this final expression, if RAB > RBC the numerator is larger than the denominator, which 
favors products. Alternatively, thinking of the string of relationships, if RAB increases compared 
to RBC: 
 

If RAB then: 
     IAB, B

~
AB, rotational level spacing, accessible rotational states of products, Kp 

 

The flow of the logic provides a concise summary of the relationships of fundamental quantum 
mechanics, spectroscopy, and thermodynamics. The progression is from the structural properties 
of individual molecules to the many-body phenomena of macroscopic equilibrium. 
 
 
30.  Use typical values of the partition functions, Eq. 30.3.5, to estimate the equilibrium 
constant of the ideal gas reaction: O2 + F  OF + O at 298 K. This reaction is a possible reaction 
in ozone depletion in the stratosphere. Use qt/NA = 1x107, qr = 100, and qv = 1. Since OF has an 
odd number of electrons, assume the ground state of OF is a doublet, 2. The bond dissociation 
energies are: Do(O2) = 5.126 eV = 494.6 kJ mol-1 and Do(OF) = 1.61 eV = 155 kJ mol-1. 
 
 
Answer:  The zero point energy shift term is simplified by using the equivalent temperature in eV 
from Table 30.3.1, kT/e = 0.02569 eV at 298.15 K. 
   The equilibrium constant for O2 + F  OF + O is: 
 

 Kp = 






qOF/NA

 qO/NA

qO2/NA
 qF/NA

 e–Eo/RT 

 

with Eo = [–Do(OF)] – [–Do(O2)] = [-1.61 eV] – [-5.126 eV] = 3.52 eV = 340. kJ mol-1 
 

The zero point shift term in eV is:      e–Eo/RT = e–3.53 eV/0.02569 eV = e–137 = 3.2x10-60 
 

Alternatively, the zero point shift term in kJ mol-1 is: 

 e–Eo/RT = e–340x103 J mol-1
/(8.314 J K-1mol-1 298.2 K) = e–137 = 3.2x10-60 

The rotational symmetry numbers are O2 = 2 and OF = 1. The vibrations are too high in 
frequency to make a contribution (> 500 cm-1). At a low level of approximation we can take the 
electronic partition functions as the ground state degeneracies, which for atoms are given in 
Table 30.1.2. The ground state degeneracies are gO2 = 3, gF = 4, gOF = 2, and gO = 5. The 
equilibrium constant is roughly approximated: 
 

 Kp  



107 107

107 107     






100

100/2
     



1

1       






2  5

3  4      e–137              5x10-60 

 

          translation       rotation     vibration    electronic     zero point shift 
 

Products are favored by rotation and reactants are favored by electronic degeneracy. However, 
the order of magnitude of the equilibrium constant is dominated by the bond dissociation 
energies. Diatomic O2 has the stronger bond, strongly favoring reactants. 
   One of the possible large errors in using “garden variety” estimates is in the rotational 
contribution. The rotational constants are B

~
e(OF) = 1.0587 cm-1 and B

~
e(O2) = 1.446 cm-1 , giving 

more precise values of the rotational partition functions: 
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    qr(OF) = 
207.224 cm-1

1.0587 cm-1  = 196.7   and   qr(O2) = 
207.224 cm-1

2(1.446 cm-1) = 71.65 
 

 with qr(OF)/qr(O2) = 196.7/71.65 = 2.75 rather than the “garden variety” estimate of 2. 
 
 
31.   Use the “Equilibrium Constants from Molecular Structure” applet, “efs.html,” on the 
textbook Web site and companion CD to calculate the equilibrium constant for the reaction in the 
previous problem: O2 + F  OF + O at 298 K. The spectroscopic parameters are available as 
examples, or the values given in the previous problem can be input by hand. Compare with the 
approximate results from the previous problem. 
 
 
Answer: The parameters were input using the “Examples” buttons to give the following results: 
 

 
 

These accurate calculations agree favorably with the “garden variety” estimates used in the 
previous problem. See also Problem 30.24 for a similar spreadsheet for a single species. 
 
 
32.  Consider the reaction AB  A + B, where A and B are atoms. Predict the effect on the 
equilibrium constant if the following changes are made. (a). The AB molecule is a ground state 
triplet (like O2) instead of a singlet. (b). The AB bond length is increased. (c). The AB force 
constant is increased. (d). The AB bond dissociation energy is increased. [In reality changing just 
one molecular parameter is impossible, bond strength changes have multiple effects. However, 
for the purposes of this exercise assume that the given change is done without changes in other 
parameters.] 
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Answer:  The plan is to note if the change increases or decreases the number of accessible states 
and if the change is for a reactant or product. 
   The equilibrium constant is given in terms of the partition functions as: 
 

 Kp = 






qA/NA

 qB/NA

qAB/NA

 e–Eo/RT = 






qA/NA

 qB/NA

qAB/NA

 



1

qr(AB)  



1

qv(AB)  



qe(A) qe(B)

qe(AB)  e–Eo/RT 

 

with Eo = –o(AB) = – [–Do(AB)] 
 

(a). If the AB molecule is a ground state triplet (like O2) instead of a singlet, the ground state 
degeneracy increases from one to three, and the number of accessible electronic states increases. 
Since AB is a reactant, increasing the number of accessible states shifts the equilibrium towards 
reactants. 
(b). The rotational constant of a diatomic molecule is given by Eq.30.1.34 with moment of 

inertia I = R2 for a diatomic molecule : B
~

 = 
ħ

4 R2 c
 

If the bond length of AB is increased, the moment of inertia is increased, the rotational constant 
is decreased, the rotational energy level spacing is decreased, and the number of accessible states 
is increased for AB. Since AB is a reactant, increasing the number of accessible states shifts the 
equilibrium towards reactants. In summary: 
 

If RAB then: 
     IAB, B

~
AB, rotational level spacing, accessible rotational states of reactants, Kp 

 

(c). If the bond force constant of AB is increased, the fundamental vibration frequency of AB is 
increased, the vibrational energy level spacing is increased, and the number of accessible states is 
decreased. Since AB is a reactant, decreasing the number of accessible states shifts the 
equilibrium towards products. In summary: 
 

If kAB then: 
     ~o(AB), vibrational level spacing, accessible vibrational states of reactants, Kp 

 

(d). If the bond dissociation energy of AB is increased, the zero-point energy shift is increased, 
the overall energy states of AB are lowered, and the number of accessible AB states are 
increased. Since AB is a reactant, increasing the number of accessible states shifts the 
equilibrium towards reactants. AB becomes more stable and so is favored in the equilibrium 
state. 
 
 
33.  Calculate the equilibrium constant of the ideal gas dissociation Mg2  Mg + Mg at 
298.15 K. Assume the isotope is 24Mg. The spectroscopic constants for Mg2 are Re = 3.8905 Å, 
~o = 47.89 cm-1, and De = 0.04979(4) eV.1 The ground state of Mg2 is 1+

u and the ground state of 
Mg-atoms is 1So. 
 
 
Answer:  The molar mass of 24Mg is 23.98504 g mol-1. The mass of Mg2 is 47.97954 g mol-1 and 
with Eqs. 30.3.1 and 30.3.2: 
 

 
qt ,Mg2

NA
 =  (M/g mol-1)3/2(T/K)5/2 = 0.0259472 (47.97954)3/2 (298.15)5/2 = 1.32320x107 
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For Mg-atoms:  
qt ,Mg

NA
 = 0.0259472 (23.98504)3/2 (298.15)5/2 = 4.678223x106 

 

The reduced mass of Mg2 is:    = 
m1 m2

m1 + m2
 = 

MMg/2
NA

 (1 kg/1000 g) = 1.991406x10-26 kg. 

With Eqs. 24.4.10 and 24.5.41:  B
~

e = 
ħ

4 R2
e c

 
 

 B
~

e = 
1.05457266x10-34 J s

4(1.991406x10-26 kg)(3.8905x10-10 m)2(2.99792458x1010 cm s-1)
 = 0.09287 cm-1 

 

Using Eq. 30.1.39 with  = 2, the rotational partition function is: 
 

 qr = 
kT

B
~

hc
 = 

207.224 cm-1

B
~  = 

207.224 cm-1

2(0.09287 cm-1) = 1115.7 

 

Using Eq. 30.1.31, the vibrational partition function is: 
 

 qv = 
1

1 – e–~o/207.224 cm
-1
 = 

1
1 – e–47.89/207.224 = 4.8463 

See Problem 30.24 for a spreadsheet that implements these calculations. The reaction products 
are atoms, while the reference point is for totally dissociated atoms. The zero-point energy shift 
is then just Eo = –o(Mg2) = – [–Do(Mg2)] = 0.04979(4) eV. In terms of bond energy, the 
reactions runs uphill from Mg2. Using Table 30.3.1, kT/e = 0.025693 eV at 298.15 K, the zero-
point energy sift term is: 
 

 e–Eo/RT = e–0.04979 eV/0.025693 eV = e–1.938 = 0.1440 0.0023 

 

Even though the bond dissociation energy is unusually small, the zero-point energy shift term is 
still unfavorable. Considering each degree of freedom separately, the overall equilibrium 
constant is: 
 

 Kp = 
qMg qMg

qMg2
 e–Eo/RT 

      = 



(4.678223x106)2

1.32320x107  



1

1115.7  



1

4.8463
   



11

1      0.1440 

      =     1.65400x106   0.0008963  0.20634      1        0.1440        = 44.05  0.70 
 

        translation         rotation    vibration  electronic  zero-point energy shift 
 

Mg2 is 99% dissociated at 298.2 K and 1 bar, Eq. 20.2.8. Our expectation based on Lewis 
structures is that Mg2 is not stable, since Mg atoms are closed shell. 
 
 
34.  Heat capacities are the fundamental building blocks of all thermodynamic properties. For 
example, Third Law absolute entropies are based entirely on the temperature dependence of the 
heat capacity of the pure substance and enthalpies of the phase transitions, which in turn require 
heat capacities for their measurement. (a). Prove that the constant volume heat capacity of a pure 
substance is given by: 
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 Cv = 






U

T v
 = 2nRT







ln q

T v
 + nRT2







2ln q

T2
v
 

 

(b).  Show that the constant volume heat capacity of rotation of a linear molecule is nR. 
 
 
Answer:  The plan is to note that the constant volume heat capacity is the temperature derivative 
of the internal energy, Cv = (U/T)v. 
(a).  Using Eq. 30.2.16 and the product rule: 
 

 U – U(0) = nRT2 






ln q

T v
        1 

 

 Cv = 






U

T v
 = 2nRT







ln q

T v
 + nRT2







2ln q

T2
v
      2 

 

(b).  For rotations using Eq. 30.1.39: qr = 
kT

B
~
hc

  or  ln qr = ln






k

B
~
hc

 + ln T   3 

The derivatives are: 






ln q

T v
 = 






ln T

T v
 = 

1
T 






T

T v
 = 1/T   and     







2ln q

T2
v
 = –1/T2  4 

Substituting the derivatives into Eq. 2 gives: 
 

 Cv = 






U

T v
 = 2nRT(1/T) + nRT2(–1/T2) = nR 

 

as expected from Equipartition. 
 
 
35.  The Equipartition prediction of the contribution of a vibration to the molar heat capacity of a 
diatomic molecule is Cv = R, which is the maximum contribution at high temperatures. More 
accurately, the contribution of vibration to the internal energy of a diatomic molecule, in the 
harmonic approximation, is given by Eq. 30.3.13. (a).  Determine the heat capacity of a diatomic 
molecule, in the harmonic oscillator approximation, usng the following steps. (a). To make the 
derivation easier, start by showing that the vibrational contribution is given by: 
 

 U – U(0) = 
Nho e–ho

1 – e–ho  = 
Nho

eho – 1
 

(b).  Then, convert the heat capacity derivative to one written in terms of : 
 

 Cv = 






U

T v
 = 






U

 v







T v
 = – 

1
kT2 






U

 v
 

 

(c).  Show that:   Cv = 
N(ho)2

kT2  






eho

(eho – 1)2  
 

(d).  Finally show that:   Cv = 
N(ho)2

kT2  






e–ho/kT

(1 – e–ho/kT)2  
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(e).  Plot the molar heat capacity from T = 10 to 1000 K for a vibration frequency of 200.0 cm-1. 

At what temperature, compared to ~o, does the vibration begin to make a significant contribution 
to the heat capacity? 
 
 
Answer:  The plan is to note that the constant volume heat capacity is the temperature derivative 
of the internal energy, Cv = (U/T)v.  
(a).  Eq. 30.3.13 gives the contribution of a vibration to the internal energy as: 
 

 U – U(0) = 
Nho e–ho

1 – e–ho         1 

This relationship is simplified by multiplying numerator and denominator by eho: 
 

 
Nho e–ho

1 – e–ho  






eho

eho  = 
Nho

eho – 1
        2 

 

(b).  To make the derivative easier, using the product rule and Eq. 30.2.8: 
 

 Cv = 






U

T v
 = 






U

 v







T v
 = – 

1
kT2 






U

 v
      3 

 

(c).  Using the chain rule, the derivative is: 
 

  






U

 v
 = – 

Nho

(eho – 1)2 





(eho – 1)

 v
 = – 

Nho

(eho – 1)2 e
ho (ho) = – 

N(ho)2 eho

(eho – 1)2  4 
 

Substituting Eq. 4 into Eq. 3, the constant volume heat capacity is: 
 

 Cv = – 
1

kT2 





U

 v
 = 

N(ho)2

kT2  






eho

(eho – 1)2        5 
 

Now, we do the reverse of step 2: 
 

 Cv = 
N(ho)2

kT2  






eho

(eho – 1)2  






e–ho

e–ho

2

       6 
 

 Cv = 
N(ho)2

kT2  






e–ho

(1 – e–ho)2  = 
N(ho)2

kT2  






e–ho/kT

(1 – e–ho/kT)2      7 
 

(d).  The spreadsheet and plot are shown below. 
 
 
 
 
 

 

A1 B C D E 

2 o = 400 cm-1  
3     
4 T (K) kT/hc (cm-1) e-hoc/kT Cv (J K-1mol-1) 
5 10 6.9503 0.0000 0.0000 
6 50 34.7517 0.0000 0.0110 
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7 75 52.1276 0.0005 0.2279 
8 100 69.5034 0.0032 0.8776 
9 150 104.2551 0.0216 2.7569 

10 175 121.6310 0.0373 3.6195 
11 200 139.0068 0.0563 4.3499 
12 250 173.7585 0.1001 5.4433 
13 298.15 207.2244 0.1451 6.1510 
14 400 278.0137 0.2372 7.0172 
15 500 347.5171 0.3163 7.4543 
16 600 417.0205 0.3832 7.7053 
17 800 556.0273 0.4870 7.9650 
18     
19 hc/k 1.4387782 cm K  
20 NA 6.0221E+23 mol-1  
21 h 6.6261E-34 J s  
22 k 1.3806E-23 J K-1  
23 c 2.9979E+10 cm s-1  
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Cell C5 is “=B5/$C$19”. Cell D5 is “=EXP(-$C$2/C5)”. Cell E5 is: 
 

 =$C$20*($C$21*$C$23*$C$2)^2/$C$22/$B5^2*$D5/(1-$D5)^2 
 

The heat capacity “begins to thaw” near a wave number equivalent temperature of ~o/10. The 

heat capacity approaches 10% of the full value at ~o/4 or equivalently at a temperature of v/4, 
where v is the spectroscopic temperature of the transition. The high temperature limiting value 
is R, or 8.314 J K-1 mol-1, as expected from Equipartition. 
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Chapter 31 Problems: Kinetic Molecular Theory  
 
1.  Calculate the average translational kinetic energy in J, cm-1, and kJ mol-1 and the rms-speed of 
CO2 at 298.2 K, assuming ideal gas behavior. 
 
 
Answer:  The plan is to use Eqs. 31.1.16 and 31.1.18 and note that the rms-speed depends on the 
molar mass but the average translational kinetic energy does not. 
    The average translational kinetic energy of any ideal gas at 298.2 K is: 
 

 t
– = 3/2 kT = 3/2 1.38065x10-23 J K-1(298.2 K) = 6.175x10-21 J 

 t
– = 3/2 RT = 3.718 kJ mol-1   and with: 1 cm-1/11.9627 J mol-1 

 t
– = 3.718 kJ mol-1 (1000 J/1 kJ)(1 cm-1/11.9627 J mol-1) = 310.8 cm-1 

 

The values in kJ mol-1 and cm-1 are useful for comparisons, since we have often noted that the 
available thermal kinetic energy at room temperature is: RT = 2.48 kJ mol-1 or 207.2 cm-1. 
   The molar mass for CO2 is 44.01 g mol-1 or 0.04401 kg mol-1. The rms-speed, using 
Eq. 31.1.18 is: 
 

 u = 
3 RT

M  = 
3 (8.3145 J K-1 mol-1)(298.2 K)

0.04401 kg mol-1  = 411.1 m s-1 
 

To verify the units note that 1 J = 1 kg m2 s-2, which is the reason that the molar mass must be in 
kg mol-1. 
 
 
2.  Calculate the rate of molecular collisions in a balloon filled with N2 at 298.2 K given the 
balloon has a 1.00 L volume at 1.00 bar. The hard-core collision diameter is dN2 = (2rN2) = 
3.75 Å. 
 
 
Answer:  The plan is to use Eq. 31.3.8 to calculate the collision cross section. 
   The collision cross-section, using Eq. 31.3.8: 
 

 HC =  (2rN2)2 =  [3.75x10-10 m]2 = 4.418x10-19 m2 = 0.4418 nm2 = 44.18 Å2 

 

The mass of N2 is:  m = 28.02 g mol-1 (1 kg/1000 g)/6.0221x1023 mol-1 = 4.653x10-26 kg 
 

With Eq. 31.2.31 the average speed of N2 molecules at 298.2 K is: 
 

 c– = 




8(1.381x10-23 J K-1)(298.2 K)

 4.653x10-26 kg

½
= 474.6 m s-1 

 

The number density is given by the ideal gas law with 1 bar = 1x105 Pa = 1x105 N m-2 as: 
 

 N/V = NAP/RT = 
6.0221x1023 mol-1(1.00x105 N m-2)

8.3145 J K-1 mol-1(298.2 K)  = 2.429x1025 m-3 
 

Concerning the units, remember that 1 J = 1 N m. Using Eq.31.3.18 gives the collision rate per 
cubic meters as: 
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 ZAA = ½ HC 2 c– (N/V)2 = ½ 4.418x10-19 m2 2 (474.6 m s-1)(2.429x1025 m-3)2 
        = 8.75x1034 s-1 m-3 

 

For the 1.00 L volume: 
 

 collision rate = ZAA V = 8.75x1034 s-1 m-3(1 m3/1000 L)(1.00 L) = 8.75x1031 s-1. 
 

As mentioned in Example 31.3.1, the total collision rate for a 1 L balloon filled with ambient air 
is the almost the same. 
 
 
3.  Derive a relationship for the rate of a unimolecular surface-catalyzed reaction of an ideal gas. 
Assume every collision with the surface gives products and that the rate law is expressed in 
terms of the gas phase concentration of the reactant in mol L-1. 
 
 
Answer:  The plan is to follow the derivation of the bimolecular rate law, Eqs. 31.3.20-31.3.24 
for this specific case.  
   The rate of collisions per unit area of an ideal gas with a wall is, Eq. 31.3.4: 
 

 Zwall = 
1
4 

N
V 






8RT

M

½
 = 

1
4 

N
V c–       (31.2.4) 

 

for N molecules in total volume V. Given that every collision is successful, for a surface with 
area A, the rate of the reaction in molecules per second per unit total volume of reactant A is: 
 

 – 
d(NA/V)

dt  = Zwall 
A
V = 






c–A

4V  
NA

V  
 

The rate is given in molecules per unit volume per unit time. To convert to the rate in mol m-3 s-1, 
we divide the last equation by Avogadro’s number: 
 

  – 
d(NA/NAV)

dt  = Zwall 
A

NAV = 





c–A

4V  



NA

NAV  
 

Using Eq. 31.3.21 for the concentration A: 
 

 – 
d[A]

dt  = Zwall 
A

NAV = 





c–A

4V  [A] 
 

Expressing the classical rate law as – d[A]/dt = k1[A] gives the unimolecular rate constant as: 
 

 k1 = 





c–A

4V  = ¼ 






8RT

M

½





A

V  

 

The V in this last equation is in m3 to match the units of c–A. The catalyst surface does not need 
to be wall-like. This expression, assuming 100% successful collisions, pertains to suspended 
aerosol particles and liquid droplets as long as the products do not accumulate on the surface and 
decrease the surface activity. 
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4.  Find the most probable molecular speed using the Maxwell distribution of molecular speeds. 
 
 
Answer:  The plan is to set the derivative of the Maxwell distribution function equal to zero to 
find the maximum. 

   The Maxwell distribution of molecular speeds is: p(c) dc = 4 




m

2kT

3/2
 e–mc2

/2kT c2 dc 

Let the normalization constant be A = 4 (m/2kT)
3/2. Taking the derivative with respect to c 

using the product rule with the product as [e–mc2
/2kT][c2] gives: 

 

 
d p(c)

dc  = –A 



m

kT  c e–mc2
/2kT c2 + 2A c e–mc2

/2kT = 0 
 

Canceling common terms gives:  – 



m

kT  c2 + 2 = 0  or 



m

kT  c2 = 2      with c = cmp 

Solving for cmp gives Eq. 31.2.27: cmp = 



2kT

m
½

 = 
2kT
m  

 
 
5.  (a). Find the standard deviation of the molecular speed of an ideal gas at temperature T in 
terms of the molar mass. (b). Find the most probable, average, and rms-speeds and standard 
deviation of the speed of CO2 at 298.2 K. 
 
 

Answer:  The plan is to note that 2 = (c – c–)2–––––––
 = c2––

 – (c–)2, Eq. 23.4.36. See also Problem 1. 

(a).  First, in case you haven’t done it before, we derive 2 = (c – c–)2–––––––
 = c2––

 – (c–)2. Starting with 
the squared deviation from the mean: 
 

 (c – c–)2 = c2 – 2c c– + (c–)2 
 

Next we need to take the average. Because the average speed is a constant, the average of a 
constant is just that constant: 
 

 (c–)
–––

 = c– and  (c–)2–––
 = (c–)2 

Taking the averages of each term: 2 = (c – c–)2–––––––
 = c2––

 – 2 c– c– + (c–)2 = c2––
 – (c–)2 

Now from Eqs. 31.1.18 and 31.2.31 and 8/ = 2.546: 

 2 = c2––
 – (c–)2 = 

3RT
M  – 

8RT
M  = 0.4535 

RT
M      or    = 

0.4535 RT
M  = 0.673 

RT
M  

(b).   The molar mass for CO2 is 44.01 g mol-1 or 0.04401 kg mol-1. 
The most probable speed, using Eq. 31.2.27 is: 
 

 cmp = 
2 RT

M  = 
2 (8.3145 J K-1 mol-1)(298.2 K)

0.04401 kg mol-1  = 335.6 m s-1 
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The average speed, using Eq. 32.2.31 is: 
 

 c– = 
8 RT
M  = 

8 (8.3145 J K-1 mol-1)(298.2 K)
 0.04401 kg mol-1  = 378.7 m s-1 

 

The rms-speed, using Eq. 32.1.18 is: 
 

 u = 
3 RT

M  = 
3 (8.3145 J K-1 mol-1)(298.2 K)

0.04401 kg mol-1  = 411.1 m s-1 
 

The standard deviation is :  = 
0.4535 RT

M  = 0.673 
RT
M  = 159.7 m s-1 

In conventional notation we can state:  c– = 378.7 ± 159.7 m s-1, which is a considerable spread in 
velocities. 
   Note that for a symmetrical, purely-Gaussian distribution, the rms-speed is equal to the 
standard deviation. For the Maxwell distribution of molecular speeds the final distribution is 
unsymmetrical with a long tail at high velocity. 
 
 

6.  (a). Show that the rms-speed is given by the pressure P and mass density d by : u = 3P/d. 
(b). At 1.01325 bar and 373.2 K the density of water vapor is 598 g m-3. Calculate the rms-speed 
of water molecules in water vapor. 
 
 
Answer: The plan is to note that the mass and number density are related by d = NM/(NAV). 
   First we need to verify that d = NM/(NAV), which we can do by checking the units: 
 

 d = NM/(NAV) ~ (molecules)(g mol-1)/[(molecules mol-1)(m3)] = g m–3 
 

Then solving for the number density gives: N/V = NAd/M. The pressure is given by Eq. 31.1.14: 
 

 P = 
Nmu2

3V          (31.1.14) 

Substituting in N/V = NAd/M for the number density gives:  P = 
mu2

3  
NAd
M  = 

u2 d
3  

noting that NA m = M. Then solving for the rms-speed gives: u = 3P/d 
 

(b). For unit agreement the pressure is P = 1.01325x105 Pa = 1.01235x105 N m-2 and the density 
is d = 0.598 kg m-3, giving: 
 

 u = 3P/d = 3(1.01325x105 N m-2)/(0.598 kg m-3) = 713 m s-1 
 

With M = 18.02 g mol-1 = 0.01802 kg mol-1 and using Eq. 31.1.18, the value is: 
 

 u = 
3 RT

M  = 
3 (8.3145 J K-1 mol-1)(373.2 K)

0.01802 kg mol-1  = 718.7 m s-1 
 

The difference is caused by experimental error in the gas phase density and non-ideality. 
 



272 
 

 
7.  A compound with molar mass of 255.2 g mol-1 is placed in a small container that has a hole of 
radius 0.0500 mm. In 30.0 min at 50.0C, 0.872 g of the substance effuses from the container. 
Calculate the vapor pressure of the substance. 
 
 
Answer:  The plan is to use the effusion rate from Eq. 31.3.6. 

   The effusion rate is:  
dn
dt  = 

0.872 g
(255.2 g mol-1)(30.0 min)(60 s/1 min) = 1.898x10-6 mol s-1 

 

The hole area is A = (0.050x10-3 m)2 = 7.854x10-9 m2. The molar mass is 0.2552 kg mol-1. 

The effusion rate, Eq. 31.3.6, is:   
dn
dt  = PA 







1

2MRT

½
 

 

Solving for the pressure gives:   P = 
(2MRT)½

A  
dn
dt  

     = 
[2 0.2552 kg mol-1(8.3145 J K-1 mol-1)(323.2 K)]½

7.854x10-9 m2  (1.898x10-6 mol s-1) 

     = 1.586x104 N m-2 = 0.1586 bar = 15.86 kPa 
 

In alternate units: P = 0.1586 bar (1 atm/1.01325 bar) = 0.1566 atm = 119. torr 
 
 
8.  A compound with a vapor pressure of 1.680 kPa is placed in a small container closed by a 
metal membrane with a 0.0500 mm radius hole. The initial mass is 123.5 mg. After 30.0 min at 
35.0C the mass decreases to 39.9 mg. Calculate the molar mass of the substance. 
 
 
Answer:  The plan is to convert the effusion rate in Eq. 31.3.6 to the rate in kg s-1 by multiplying 
by the molar mass. 
   The effusion rate in kg s-1 is obtained by multiplying Eq. 31.3.6 by the molar mass in kg mol-1: 
 

 r = 
d(nM)

dt  = PAM 






1

2MRT

½
 = PAM½ 





1

2RT

½
     1 

Solving this expression for the molar mass in kg mol-1 gives: M = 
2RT
P2A2  r2   2 

 

The effusion rate is: r = 
d(nM)

dt  = 
0.0836 g(1 kg/1000 g)
(30.0 min)(60 s/1 min) = 4.644x10-8 kg s-1  3 

 

The area of the hole is A = (0.050x10-3 m)2 = 7.854x10-9 m2. 
With Eq. 2 the molar mass is: 
 

 M = 
2RT
P2A2  r2 = 

2 8.3145 J K-1 mol-1(308.2 K)
(1.680x103 N m-2)2(7.854x10-9 m2)2 (4.644x10-8 kg s-1) = 0.1994 kg mol-1 

 

or M = 199.4 kg mol-1. Concerning the units, 1 N = 1 J m-1 = 1 kg m s-2 and 1 N m-2 = 1 J m-3. 
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2RT
P2A2  r2 ~ 

J K-1 mol-1(K)
(J m-3)2(m2)2  (kg s-1)2 ~ 

mol-1

J m-2  (kg2 s-2) ~ 
mol-1

(kg m2 s-2) m-2 (kg2 s-2) ~ kg mol-1 

 
 
9.  Integrals of the form xc

o  e–ax2
 dx are common in determining the probability of occurrence of 

speeds or energies within a given range. The integral has no closed form solution and must be 
integrated numerically. The numerical integrals in dimensionless form are tabulated as the error 
function, erf( ), where the error function is defined by: 
 

 
2


  to e

–y2
 dy = erf(t) 

 

The error function is used extensively in statistics and probability. The inside back cover lists a 
short table. Extensive tables are available in standard reference sources and Excel has an erf( ) 
function. In this regard erf( ) is similar to the more familiar functions sin( ), cos( ), exp( ) and 
ln( ), which are all evaluated as power series expansions. 

(a). Show that: xc

o  e–ax2
 dx = ½ 





a

½
 erf( a xc) 

(b). Verify the result in part (a) by showing that  o  e–ax2
 dx gives the result listed in standard 

integral tables. 
(c). Show the probability of a molecule having a velocity in the x-direction in the range ±v* is: 
 

  v*
–v* p(vx) dvx = 2 vo

*
 




m

2kT

½
 e–mvx

2/2kT dvx = erf( )mv*2/2kT  
 

(d). Show that the probability of a molecule having a kinetic energy in the x-direction less than 
or equal to kT is 84.3%. [Hint: note that erf(1) = 0.8427] 
 
 
Answer:  For part (a) the plan is to do a change of variables. For part (c) the plan is to use the 
integral in part (a) with a = m/2kT. The plan for part (d) is to note that t = ½ mv2 

(a). Comparing the definition of the error function to xc

o  e–ax2
 dx requires the change of variables 

y2 = ax2 or equivalently y = a x with derivative and corresponding differential: 
 

 
dy
dx = a with  dx = 

1
a
 dy  and upper limit t = a xc 

 

then substituting for ax2 and dx gives: 
 

 xc

o  e–ax2
 dx = 

1
a
  to e

–y2
 dy = 

1
a
  


2  erf(t) = ½ 





a

½
erf( a xc) 

 

(b).  Tables of erf(t) show that the function approaches one for large values of t. In other words, 
(2/ )  to e–y2

 dy is normalized. Setting xc =  gives o e–ax2
 dx = ½ (/a)½ as listed in standard 

definite integral tables. 
(c).  The distribution function is even so that  v*

–v* = 2vo
*. For the one-dimensional velocity 

distribution with a = m/2kT and xc = v* using the integral in part (a) gives: 
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  v*
–v* p(vx) dvx = 2 





m

2kT

½
 vo

*
 e–mvx

2/2kT dvx = 




m

2kT

½
 



2kT

m

½
erf( )mv*2/2kT  

         = erf( )mv*2/2kT  

(d). Note that t = kT gives  ½ mv*2 = kT  and  mv*2/2kT = 1 with erf(1) = 0.8427. 
Note that erf(1) = 0.8427 is the area under a Gaussian distribution within x = ± 2 . 
 
 
10.  Derive the integration by parts formula using the following steps: (a). Let u and v be two 
functions. Using the product rule for the differential d(uv), show that  d(uv) =  v du +  u dv. 
(b). Finally show that for the integral limits u1v1 to u2v2 : 

  u dv = uv|u2v2

u1v1
 –  v du 

 
 
Answer:  (a). Using the product rule d(uv) = vdu + udv. Integrating both sides of the equation 
gives:  d(uv) =  v du +  u dv . 
(b). Solving for   u dv gives:   u dv =  d(uv) –  v du 

The integral of  d(uv) is just uv evaluated at the limits of the integral: 
u2v2

u1v1
 d(uv) = uv|u2v2

u1v1
. 

Substituting this result for the integral gives the final result:   u dv = uv|u2v2

u1v1
 –  v du. 

 
 
11.  Integrals over the Maxwell distribution of molecular speeds are in the general form 

 to y
2 e–y2

 dy. Use integration by parts,  u dv = uv|u2v2

u1v1
 –  v du, with u = y and dv = (y e–y2

 dy) 

to show that: [See the next problem for an application of this relationship.] 
 

 
4


  to y

2 e–y2
 dy = erf(t) – 

2


 t e–t2

 

 

Answer:  The plan is to start by integrating dv to give v in terms of y. 
   With u = y and dv = (y e–y2

 dy) then:   du = dy   and   v =  dv =  y e–y2
 dy = –½ e–y2

 

Integration by parts gives:  u dv = uv|u2v2

u1v1
 –  v du 

  to y
2 e–y2

 dy = –½ y e–y2| t
o – (–½)  to e

–y2
 dy 

 

The integral is given by the error function: (2/ )  to e
–y2

 dy = erf(t). The first term is evaluated at 

the limits and substituting in the error function gives: 
 

  to y
2 e–y2

 dy = –½ t e–t2
 + 


4  erf(t) 

 

The required integral is then: 
4


  to y

2 e–y2
 dy = erf(t) – 

2


 t e–t2

 
 

See the next problem for an application of this relationship. 
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12.  The probability of occurrence of molecular speeds over a range of values is determined by 
an integral over the distribution function. (a).Show that the integral of the Maxwell distribution 
of molecular speeds over the range from c = 0 to c* is: 
 

 
c

o

*
 p(c) dc = 4 





m

2kT

3/2
 

c

o

*
 e–mc2

/2kT c2 dc = erf( )mc*2/2kT  – 
1


 

mc*2

2kT  e–mc*2
/2kT 

(b). The kinetic energy at the upper limit is *
t = ½mc*2. Show that the total probability is: 

 
c

o

*
 p(c) dc = 4 





m

2kT

3/2
 

c

o

*
 e–mc2

/2kT c2 dc = erf( )*
t/kT  – 

2


 



*

t

kT
½

 e–*
t/kT 

 

[Hint: use the relationship in the previous problem with the change in variables y2 = mc2/2kT] 
 
 
Answer:  (a). With the substitution y2 = mc2/2kT  then y = (m/2kT)½ c and the derivative is: 
 

 
dy
dc = (m/2kT)½  giving   dc = 



2kT

m
½

dy with     c2 = 



2kT

m   y2 
 

and upper limit t = (m/2kT)½ c*. The integral over the Maxwell distribution is: 
 

 
c

o

*
 p(c) dc = 4 





m

2kT

3/2
 

c

o

*
 e–mc2

/2kT c2 dc = 4 




m

2kT

3/2
 



2kT

m  



2kT

m
½

  to y
2 e–y2

 dy 

       = 
4


  to y

2 e–y2
 dy 

 

Using the relationship derived in the previous problem gives:  
 

 
c

o

*
 p(c) dc = erf(t) – 

2


 t e–t2

 

 

The substitution variable is conveniently regrouped as y = (m/2kT)½ c = (mc2/2kT)½ 
Reversing the original substitution then gives:  
 

 
c

o

*
 p(c) dc = erf( )mc*2/2kT  – 

2


 

mc*2

2kT  e–mc*2
/2kT 

 

Or given that the kinetic energy at the upper limit of the speed is *
t = ½mc*2: 

 

 
c

o

*
 p(c) dc = erf( )*

t/kT  – 
2


 



*

t

kT
½

 e–*
t/kT 

 
 
13.  Determine the probability that a molecule has a speed equal to or less than the most probable 
speed. [Hint: Use the relationship in the previous problem, note that erf(1) = 0.8427] 
 
 
Answer: The plan is to note that the most probable speed is given by Eq. 31.2.27. 
The upper limit on the integral is c* = cmp. With Eq. 31.2.27 the most probable speed is: 
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 cmp = 



2kT

m
½

 = 
2kT
m  

The corresponding translational kinetic energy is: *
t  = ½ mc2

mp = kT. 

As a result the factor appearing in the result is: *
t/kT = 1 

The probability that a molecule has a speed equal to or less than the most probable speed is 
then:1 

 

 
c

o

*
 p(c) dc = 4 





m

2kT

3/2
 

c

o

*
 e–mc2

/2kT c2 dc = erf(1) – 
2


  1½ e-1 

       = 0.8427 – 
2


  0.3679 = 0.8427 – 0.4151 = 0.4276    or    42.8% 

 

The fraction above the most probable speed is 1 – 0.4276 = 0.572   or 57.2% 
 
 
14.  The fraction of molecules with translational kinetic energy exceeding * is:1,2 

 p(t > *) = * p(t) dt = 2 




1

kT

3/2
 


* t
½ e–t/kT dt  

(a).  Use the change of variable x2 = t/kT to show: [Hint: see Eq. 31.4.5 for a similar change in 
variables.] 

 p(t > *) = 
4


 x* x

2 e–x2
 dx 

 

(b). Use integration by parts to show: [Hint: let u = x  and  dv = x e–x2 dx] 
 

 


x* x
2 e–x2 dx = –½ x e–x2|



x*  – (–½) 


x* e–x2 dx 
 

(c). Show that:  


x* e–x2 dx = 


o e–x2 dx – 
x

o

*
 e–x2 dx 

(d). Use integral tables and the definition of the error function: 
2
½ 

t

o e
–x2 dx = erf(t) to show that: 

 


x* e–x2 dx = 


2  – 


2  erf(x*) 

(e). Using the previous expressions, derive the final result: 
 

 p(t > *) = 
4


 



x* x2 e–x2 = 
2


 






*

kT

½
 e–*/kT + 1 – erf









*

kT

½
 

 (f). Show that for large threshold energies, * >> kT:      p(t > *)  
2


 



*

kT

½
e–*/kT 

 
 

Answer:  (a). We can simplify the integral with the change in variables x2 = t/kT or t = kTx2: 
 

 
dt

dx = kT 
dx2

dx  = 2kTx  giving  dt = 2kTx dx   and   t
½ = (kT)½ x  1 
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 with the limits from x* = (
*
/kT)½  to : 

 p(t > *) = 2 




1

kT

3/2
(2kT)(kT)½ 



x* x2 e–x2 dx 

 p(t > *) = 
4


 x* x

2 e–x2
 dx        2 

(b). There is no closed-form solution to the integral, so we need to relate the integrals to the error 
function. To integrate by parts, let u = x  and  dv = x e–x2 dx giving: 
 

 du = dx    and     v =  dv =  x e–x2 dx = –½ e–x2     3 
 

so that:     u dv  =  uv|u2v2

u1v1
  –   v du     is: 

 


x* x
2 e–x2 dx = –½ x e–x2|



x*  – (–½) 


x* e–x2 dx     4 
 

(c).  The first term evaluated at the limits is ½ x* e–x*2. For the second integral note that: 

   


o e–x2 dx = 
x

o

*
 e–x2 dx + 



x* e–x2 dx       5 
 

which gives the integral we want by difference: 
 

 


x* e–x2 dx = 


o e–x2 dx – 
x

o

*
 e–x2 dx       6 

(d).  Standard integral tables give 


o  e–ax2 dx = 
1
2 




a

½
, giving: 



o e–x2 dx = 


2   7 

The 
x

o

*
 e–x2 dx integral is given by the error function: 

2
½ 

t

o e
–x2 dx = erf(t)   with t = x* or: 

As a result:  
x

o

*
 e–x2 dx = 


2  erf(x*)        8 

 

Substituting Eqs. 7 and 8 into Eq. 6 gives: 
 

 


x* e–x2 dx = 


2  – 


2  erf(x*)        9 
 

(e). Substituting the last equation into Eq. 4 gives: 
 

 


x* x
2 e–x2 dx = ½ x* e–x2 + 


4  – 


4  erf(x*)      10 

 

Substituting this last result into Eq. 2 with x2 = t/kT gives: 
 

 p(t > *) = 
4


 



x* x2 e–x2 = 
2


 






*

kT

½
 e–*/kT + 1 – erf









*

kT

½
   11 

 

(f). As * increases, the error function approaches 1, so that for large threshold energies. 
 

 p(t > *)  
2


 



*

kT

½
e–*/kT           (32.4.9) 
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The (*/kT)½ temperature dependence is weaker than the exponential term so that the fraction of 

translational-energy rich molecules increases roughly as e–*/kT with increases in temperature. 
 
 
15.  Find the most probable translational kinetic energy of an ideal gas using the Maxwell 
distribution of translational kinetic energy. 
 
 
Answer:  The plan is to set the derivative of the Maxwell distribution of translational kinetic 
energy equal to zero to find the maximum. 
   The Maxwell distribution of translational kinetic energy, Eq. 31.4.3, is: 
 

 p(t) dt = 2 




1

kT

3/2
 e–t/kT t

½ dt 

Let the normalization constant be A = 2 (1/kT)
3/2. Taking the derivative with respect to t 

using the product rule with the product as [e–t/kT][t
½] gives: 

 

 
d p(t)

dt
 = –A 



1

kT  e–t/kT t
½ + ½A t

–½ e–t/kT = 0 
 

Canceling common terms gives:  – 



1

kT  t
½ + ½ t

–½ = 0  or 



1

kT  t = ½      with t = mp 

Solving for mp gives:  mp = ½ kT 
 
 
16.  The rate constant for the recombination of methyl radicals is 4.5x1010 L mol-1 s-1 at 398.2 K.  
 

 H3C + CH3  H3C–CH3 
 

The reaction has no activation energy. Assuming the hard-core collision radii of the methyl 
radicals are one-half the normal C–C bond length, rCH3 = 0.77 Å, calculate the bimolecular rate 
constant assuming hard-core collision theory at 398.2 K.3 
 
 
Answer:  The plan is to follow Example 31.3.2. 
   The collision cross-section, using Eq. 31.3.8, is: 
 

 HC =  (2rCH3)2 =  [2(0.77x10-10 m)]2 = 7.45x10-20 m2 = 0.0745 nm2 = 7.45 Å2 

 

The molar mass of CH3 is 15.03 g mol-1. The reduced mass of the collision is: 
 

  = 






MA MB

MA + MB
 

1
NA

 (1 kg/1000 g) = 
15.03 g mol-1

2  
1

NA
 (1 kg/1000 g) = 1.248x10-26 kg 

 

With Eq. 31.3.14 the relative speed is: 
 

 c–rel = 




8(1.3806x10-23 J K-1)(398.2 K)

 1.248x10-26 kg

½
= 1059.1 m s-1 

 

Assuming each collision is successful, the rate constant is predicted to be, Eq. 31.3.25: 
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 k2 = HC c–rel (1000 L/m3) NA = 7.45x10-20 m2 (1059.1 m s-1)(1000 L/m3) 6.022x1023 mol-1 
     = 4.75x1010 L mol-1 s-1 
 

This result suggests that roughly each collision is successful (or that the estimate of the collision 
cross section is too small). The rough agreement of the experimental rate constant and the hard-
core prediction indicates that the steric requirements of the reaction are minimal; the orientation 
of the methyl radicals upon collision is largely immaterial. 
 
 
17.  (a). Show that the density of states of a one-dimensional particle in a box is: 
 

 (x) dx = (8m)½ 
a
h (x)–½ dx 

 

[Hint: you don’t need to use the graphical approach that we used for three-dimensions.] 
(b). Compare the behavior of the one-dimensional and three-dimensional particle in a box as a 
function of energy. Why the difference with the change in dimensionality? 
 
 
Answer:  The plan is to determine the derivative of the energy with respect to the quantum 
number nx; the final relationship should be written in terms of the energy (and not the quantum 
number). 

(a). The one-dimensional particle in a box energy, Eq. 23.4.9, is: x = 
h2

8ma2 n2
x  1 

The density of states is given by the derivative, Eq. 31.6.5:       (x) dx = 
dnx

dx
 dx  2 

The derivative is much easier as the inverse: 
dnx

dx
 = 



dx

dnx

–1
  with  

dx

dnx
 = 

h2

8ma2 (2 nx)  3 

However, we need to eliminate the dependence on the quantum number. Solving Eq. 1 for the 

quantum number gives:  nx = (8mx)½ 
a
h       4 

Substituting Eq. 4 into Eq. 3 gives: 
dx

dnx
 = 

h2

8ma2 (8mx)½ 
a
h = 

x
½

(8m)½ 
h
a   5 

Inverting this last equation gives the density of states as:  (x) dx = (8m)½ 
a
h (x)–½ dx 

(b). The density of states decreases as (x)–½ with increasing energy, as shown in Figures 23.4.2 
and 23.4.4.. The density of states of the three-dimensional particle in a box increases with energy 
as ½

t . The difference is the result of degeneracy. The one-dimensional problem is not degenerate 
but Figure 31.6.1 shows the 3D-problem to be highly degenerate, which increases the density of 
states. 
 
 
18.  Calculate the number of translational energy states at 298.2 K for O2 in a box of volume 
1.00 m3 with energies from kT to 1.001 kT (i.e. a 0.1% change in energy). 
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Answer: The plan is to use the density of states in three-dimensions, Eq. 31.6.8. 
   The mass of O2 is m = M/NA (1 kg/1000 g) = 5.314x10-26 kg. Using Eq. 31.6.8 with t = kT: 
 

 t = kT = 4.116x10-21 J 

 (kT) = 

4 (8m)3/2 

V
h3 (kT)½  

           = 

4 [8(5.314x10-26 kg)]3/2 

1 m3

(6.6261x10-34 J s)3 [(1.3806x10-23 J K-1)(298.15 K)]½ 

           = 4.801x1052 J-1 

 

With the energy range as t = 0.001 kT = 4.116x10-24 J giving the number of states as: 
 

 (t) t = 4.801x1052 (4.116x10-24 J) = 1.98x1029 

 

In other words, lots of available states. Concerning the units: 1 J s = kg m2 s-1 and then: 
 

 (t) = 

4 (8m)3/2 

V
h3 t

½ ~ kg3/2 
m3

(kg m2 s-1)3 (kg m2 s-2)½ ~ 
1

kg m2 s-2 ~ J-1 

 
 
19. (a). For a square box with side length a and area A = a2, show that the density of states of a 
two-dimensional particle in a box is: 
 

 (t) dt =  2m 
A
h2 dt 

 

The two-dimensional case has some applicability to free translational motion on a surface and 
electrical conduction in restricted geometries. (b). The density of states of a one-dimensional 
particle in a box is given in the previous problem. Compare the one, two, and three-dimensional 
cases in terms of the behavior with respect to increasing energy. (c). Find the two-dimensional 
Maxwell distribution of translational kinetic energy. 
 
 
Answer:  The plan is to note that this derivation is similar to Eqs. 31.6.4-31.6.8, with graphical 
areas instead of volumes. 
(a). The quantum numbers of the two-dimensional particle in a box are combined as n2 = n2

x + n2
y. 

The energy is:  t = 
h2

8ma2 (n2
x + n2

y) = 
h2

8ma2 n2      1 
 

The density of states is required, Eq. 31.6.5: 
 

 (t) = 
dN(t)

dt
           2 

 

The number of quantum states up to energy t can be determined using a graphical analogy. Each 
choice of quantum numbers, nx , ny is represented as a point in an x-y coordinate plot. Each unit 
change of nx, and ny corresponds to a unit area square. Each unit of area corresponds to one 
specific value of nx, and ny. The maximum value of n for states with energy less than or equal to 
t is calculated by solving Eq. 1 for n: 
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 nmax = (8m)½ 


a

h  ½
t        (31.6.6) 3 

 

The total number of states with energies between zero and t is given by 1/4 of the area of the 
circle with radius nmax. The factor of 1/4 is necessary because a circle centered on the origin is 
divided into quarters, but only one-quarter has both positive x and y values. The area of a circle 
is r2, which gives the number of states with energy from zero to t as: 
 

 N(t) = 
1
4  n 2

max  = 




4  (8m) 


a

h
2
 t = 2m 

A
h2 t     4 

 

The density of states is the derivative with respect to t, Eq. 31.6.5: 
 

 (t) = 
dN(t)

dt
 = 2m 

A
h2 or finally   (t) dt = 2m 

A
h2 dt   5 

 

(b). The density of states is constant with increasing kinetic energy. For one-dimension the 
density decreases as (x)–½, for two-dimensions the density is constant as (t)0, and for three-
dimensions the density increases as t

½. The density of states of a one-dimensional system 
decreases because the non-degenerate energy states of a one-dimensional box diverge with 
increasing quantum number. The density of states of a three-dimensional system increases 
because of the large degeneracy of high energy translational levels. 
 

(c).  Given the area A, the two dimensional distribution function, in analogy with Eq. 32.6.3, is: 
 

 p(t) dn = 
ni

N = 
e–t/kT

(2mkT) A/h2 dn   n2 = n2
x + n2

y   6 
 

Substituting the density of states into Eq. 6 to complete the change in variables from dn to dt 
gives: 
 

 p(t) dt = 
e–t/kT

(2mkT) A/h2 (t) dt = 
e–t/kT

(2mkT) A/h2 2m 
A
h2 dt   7 

 

Canceling common terms gives the two-dimensional Maxwell distribution of translational kinetic 
energy: 
 

 p(t) dt = 



1

kT  e–t/kT dt        8 
 

As a check, if we did things correctly, the final result should automatically be normalized: 
 

 o  p(t) dt = 



1

kT  o e–t/kT dt       9 
 

Integral tables list  o e–ax dx = 1/a  and since a = 1/kT, the integral is equal to one. 
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Chapter 32: Reaction Dynamics Problems 
 
1. One possible geometry of the activated complex for the 2 ClO  Cl2 + O2 reaction is shown 
in Table 32.1.1. Is this square geometry consistent with the expectation that the reaction 
coordinate is an unstable asymmetric stretch? 
 
 
Answer: The plan is to follow the motion of the atoms during the collision. 
   The reaction coordinate is: 
 

           
 Cl        Cl   Cl  Cl   Cl  ––  Cl 
  |          |                
 O         O    O  O    O  ––  O 
            
 

This motion is exactly what you would expect for the asymmetric stretch of a square planar 
molecule. 
 
 
2. The lifetime of the transition state is typically on the order of a single vibration period. 
Calculate the period of a vibration of wave number 500 cm-1. 
 
 
Answer:  The period is the inverse of the frequency: 
 

 L = 1/~c = (500 cm-1 2.997x1010 cm s-1)–1 = 6.7x10-14 s = 67 fs 
 
 
3. Use Activated Complex Theory to discuss the reaction: 
 

 H +  F–F    [ H--F--F ]††    H–F  +  F 
 

(a). Do the translational partition functions favor or hinder the rate of the reaction? Why? 
(b). Do the rotational partition functions favor or hinder the rate of the reaction? Why? 
 
Answer: The plan is to focus on the formation of the activated complex. The products are 
irrelevant in this analysis. As a result, the plan is to use statistical mechanical arguments to 
determine factors that favor the formation of the activated complex through the reaction 
H +  F–F    [ H--F--F ]††. The larger the concentration of the activated complex, the faster the 
formation of products. 
(a). The translational degree of freedom hinders the overall reaction rate. The translational part 
has only one translational partition function in the numerator and two translational partition 
functions in the denominator: specifically from Eq. 32.1.14: 
 

   
qt /NA

qt (H)/NA qt (F2)/NA

       (translation only) 
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Each partition function is on the order of  qt/NA  106–107 , see Eq. 30.4.5. The translational 
partition functions dominate the unfavorable entropy of formation of the activated complex: two 
collision partners combine to form one activated complex. 
 

(b). The rotational partition functions favor the rate of the reaction. The rotational part has one 
rotational partition function in the numerator and one rotational partition function in the 
denominator, since one of the reactants is atomic: specifically from Eq. 32.1.14: 
 

   
qr

qr(F2)
 = 

1/B
~

1/(F2)B
~

(F2)
  with    B

~
 = 

ħ
4Ic

  (24.5.41) 

 
where  and B

~  are the rotational symmetry number and rotational constant of the activated 
complex and (F2) and B

~
(F2) are the rotational symmetry number and rotational constant of the 

diatomic reactant. The symmetry number of F2 is  = 2, which decreases the number of 
accessible states of the reactants, which increases the ratio of rotational partition functions, 
favoring the formation of the activated complex. More importantly, even for more complex 
reactions, the activated complex is larger than either of the reactants individually and larger 
because of the loose association in the activated complex. In other words, the reactive 
asymmetric stretch is “loose and floppy” in the activated complex, [ H--F--F ]††. Both effects 
make the moment of inertia of the activated complex larger than the reactants, giving smaller 
rotational constants for the activated complex, and therefore larger number of accessible states 
for the activated complex, compared to the reactants. 
 
4. Use Activated Complex Theory to discuss the reaction: 
 

 H +  F–F    [ H--F--F ]††    H–F  +  F 
 

Consider the shift in reaction rate, faster or slower, after making the following changes. (a). The 
bond length of F2 is increased. (b). F2 is changed from a homonuclear to a heteronuclear 
diatomic. (c). The symmetric stretch force constant of the activated complex is increased. (d). 
The bond dissociation energy of F2 is increased. (e). The 1H-atom is changed to deuterium, 2H, 
considering translation only. [In reality changing just one molecular parameter is impossible, 
bond strength changes have multiple effects. However, for the purposes of this exercise assume 
that the given change is done without changes in other parameters.] 
 
 
Answer:  The plan is to focus on the formation of the activated complex. The products are 
irrelevant in this analysis. As a result, the plan is to consider the change in number of accessible 
states as we did for the calculation of the equilibrium constant in Example 30.5.5, but this time in 
the context of activated complex theory, as based on Eq. 32.1.14: 
 

 k2 = 
kT
h  






q'/NA

q°(H)/NA q°(F2)/NA
 



RT

P°  e–∆E
o/kT     (32.1.14) 

 

Each change makes the reaction slower: 
(a). The rotational partition function of a diatomic is qr = kT/B

~
hc, Eq. 30.2.33. If the bond 

length of F2 is increased, the rotational constant of F2 is decreased: B
~

 = ħ/4R2
oc. If the 
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rotational constant is decreased, the number of accessible rotational states of the reactants is 
increased, and the rate of formation of the activated complex is decreased. 
(b). The rotational symmetry number of a homonuclear diatomic is  = 2, but for a heteronuclear 
diatomic is  = 1. If F2 is changed from a homonuclear to a heteronuclear diatomic, the 
symmetry number decreases, increasing the number of accessible rotational states of the 
reactants, and decreasing the rate of formation of the activated complex. 
(c). If the symmetric stretch force constant of the activated complex is increased, the number of 
accessible vibrational states of the activated complex decreases, and the rate of formation of the 
activated complex decreases. See Eq. 30.2.27. 
(d). If the bond dissociation energy, Do, of F2 is increased, the zero point energy shift term 
increases: 
 

 E
o = [–Do(HFF)] – [–Do(F2)] increases, so that e–∆E

o/kT decreases 
 

In other words, if the bond dissociation energy of F2 increases, the reactant becomes more stable, 
giving more accessible states to the reactants, and decreasing the rate of formation of the 
activated complex.  
(e). The translational partition function is qt = (2mkT)3/2V/h3, Eq. 30.2.19. The effect of the 
change in isotope is an increase in the mass, m. With increasing mass, the energy spacing of the 
particle in a box translational energy levels decreases. If the 1H-atom is changed to deuterium, 
considering translation only, the number of accessible translational states of both the reactants 
and activated complex increases. The translational partition function factor in activated complex 
theory for 1H is: 
 

 
qt /NA

qt (H)/NA qt (F2)/NA

 = 



M(HFF)

M(H)M(F2)

3/2

 
NA

(2kT/1000 g kg-1NA)3/2 RT/Ph3
 

 

Changing the 1H atom to 2H effects only the mass ratio; the second factor remains unchanged. 
Changing the 1H atom to 2H doubles the denominator in the mass ratio, but has a smaller 
fractional change in the numerator, which decreases the rate of formation of the activated 
complex for 2H. Numerically these factors are: 
 

   



M(HFF)

M(H)M(F2)

3/2

= 



39

(1) (38)

3/2

= 1.039   



M(DFF)

M(D)M(F2)

3/2

= 



40

(2) (38)

3/2

= 0.5263/2 = 0.381 
 

The change from 1H to 2H increases the number of accessible states of the reactants more than 
the activated complex, decreasing the reaction rate. This translation-only approximation neglects 
any changes to the vibrational zero point energies of the activated complex. This problem’s 
approach to the isotope effect is specific to this particular reaction, with atomic hydrogen as a 
reactant. The primary isotope effect for H-atom transfer is more commonly referenced and is 
developed in a subsequent problem. 
 
 
5. In the derivation of the Eyring equation, Eq. 32.1.24, what is the source of the kT/h term? 
 
 
Answer:  The kT/h term relates back to the vibrational partition function of the reactive 
asymmetric stretch, which gives the reaction coordinate. An increase in temperature partitions 
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more energy into the reactive asymmetric stretch thereby increasing the rate of formation of the 
activated complex. The explicit form as kT/h results from the use of the high temperature 
approximation to give the vibrational partition function as kT/h, Eq. 30.4.20. 

 
 
6.  (a). Find the activation enthalpy, entropy, and Gibbs energy of the reaction: 
 

 2 NO2 (g)  2 NO (g) + O2 (g) 
 

at 600.0 K. The Arrhenius pre-exponential factor is 3.06x1012 s-1. The activation energy is 
110.9 kJ mol-1. (b). The reaction does not necessarily proceed by a single step mechanism. Is the 
activation entropy consistent with a bimolecular transition state for the rate limiting step? 
 
 
Answer:  The plan is to follow Example 32.1.2 and then compare the activation entropy to the 
value of -80 J K-1 mol-1 that is typical for a bimolecular process. 
   At 600.0 K, the transmission factor and standard state molar volume are: 
 

    
kT
h  = 1.2502x1013 s-1   and    





RT

P  = 
0.0831446 L bar K-1 mol-1(600.0 K)

1.000 bar  = 49.887 L mol-1 

 

Using Eq. 32.1.30 for the bimolecular pre-exponential factor with the given experimental value, 
A = 3.06x1012 M-1 s-1, results in: 
 

 A = 
kT
h  




RT

P  e2 e∆rS≠
/R 

     = 1.2502x1013 s-1 (49.887 L mol-1)(2.7183)2 e∆rS≠
/R = 3.06x1012 L mol-1 s-1 

 

  or   e∆rS≠
/R = 6.640x10-4 

Solving for the activation entropy: 
 ∆rS≠ = 8.3145 J K-1 mol-1 ln(4.043x10-3) = -60.84 J K-1 mol-1 
 

With Eq. 32.1.28:  ∆rH≠ = Ea – 2RT 
 ∆rH≠ = 110.9 kJ mol-1 – 2(8.3145 J K-1 mol-1)(600.0 K)(1 kJ/1000 J) 
          = 110.9 kJ mol-1 – 9.9774 kJ mol-1 = 100.92 kJ mol-1 
 

With Eq. 32.1.23: ∆rG≠ ∆rH≠ – T∆rS≠ 
 ∆rG≠ = 100.92 kJ mol-1 – (600.0 K)(-60.84 J K-1 mol-1)(1 kJ/1000 J) = 137.4 kJ mol-1 
 

For pre-exponential factors in the range A ~ 1010 – 1011 the entropy of activation is in the range: 

 e∆rS≠
/R = 8.79x10-6 to 8.79x10-5   giving   ∆rS≠ = -96.8 to -77.7 J K-1 mol-1 

or in round numbers ~ -80 J K-1 mol-1. The value for this reaction is likewise strongly negative, 
but not as negative as expected. The value is much more negative than expected for a 
unimolecular process. The activation entropy of -60.8 J K-1 mol-1 provides support for a 
bimolecular transition state, but one that has relaxed steric requirements. The relaxed steric 
requirements might result from orientation independence, long range forces that increase the 
effective collision cross section, or relaxed collision timing requirements for the reactive 
asymmetric stretch. 
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7. The pre-exponential factor for the reaction CH3Br + Cl–  CH3Cl + Br– in acetone solution is 
2.0x109 L mol-1 s-1 and the activation energy is 65.7 kJ mol-1. What are the Gibbs energy, 
entropy, and enthalpy of activation at 298.15 K? 
 
 
Answer:  The plan is to follow Example 32.1.2, but based on Eqs. 32.1.31-32.1.34, since the 
reaction is in solution. 

   At 298.15 K, the transmission factor is:  
kT
h  = 

1.38064x10-23 J K-1(298.15 K)
6.62608x10-34 J s  = 6.2124x1012 s-1 

 

Using Eq. 32.1.34 for the solution phase pre-exponential factor with the given experimental 
value, A = 2.0x109 L mol-1 s-1, results in: 
 

 A = 
kT
h  e e∆rS≠

/R 

     = 6.2124x1012 s-1 (2.7183) e∆rS≠
/R = 2.0x109 L mol-1 s-1 

 

  or   e∆rS≠
/R = 1.184x10-4 

Solving for the activation entropy: 
 ∆rS≠ = 8.3145 J K-1 mol-1 ln(1.184x10-4) = -75.2 J K-1 mol-1 
 

Since rng = 0, Eq. 32.1.32, ∆rH≠ = Ea – RT 
 ∆rH≠ = 65.7 kJ mol-1 –8.3145 J K-1 mol-1(298.15 K)(1 kJ/1000 J) 
           = 65.7 kJ mol-1 – 2.4790 kJ mol-1 = 63.22 kJ mol-1 
 

With Eq. 32.1.23: ∆rG≠ ∆rH≠ – T∆rS≠ 
 ∆rG≠ = 63.22 kJ mol-1 – (298.15 K)(-75.2 J K-1 mol-1)(1 kJ/1000 J) = 85.6 kJ mol-1 
 

For pre-exponential factors in the range A ~ 1010 – 1011 the entropy of activation is in the range: 

 e∆rS≠
/R = 8.79x10-6 to 8.79x10-5   giving   ∆rS≠ = -96.8 to -77.7 J K-1 mol-1 

or in round numbers ~ -80 J K-1 mol-1. The value for this reaction is a little below typical, 
indicating a little more forgiving steric constraints than normal for a bimolecular gas phase 
reaction. Collision timing constraints are often relaxed because of the cage effect in solution. 
 
 
8.  Find the activation enthalpy, entropy, and Gibbs energy of the gas phase isomerization: 
 

 trans-CHCl=CHCl  cis-CHCl=CHCl 
 

at 800.0 K. The Arrhenius pre-exponential factor is 5.0x1012 s-1. The activation energy is 
27.8 kJ mol-1: 
 

Answer:  The plan is to follow Example 32.1.2, noting that the reaction is unimolecular, giving 
rng = 0 for the formation of the transition state. 

   At 800.0 K, the transmission factor is:  
kT
h  = 1.6669x1013 s-1 

Using Eq. 32.1.35 for the unimolecular pre-exponential factor with the given experimental pre-
exponential factor of A = 5.0x1012 s-1 results in: 
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 A = 
kT
h  e e∆rS≠

/R         1 

     = 1.6669x1013 s-1 (2.7183) e∆rS≠
/R = 5.0x1012 s-1 

 

  or   e∆rS≠
/R = 0.11035         2 

Solving for the activation entropy: ∆rS≠ = 8.3145 J K-1 mol-1 ln(0.11035) = -18.33 J K-1 mol-1 
 

The entropy of activation is seen to be a moderate value, compared to the “garden variety” 
-80 J K-1 mol-1 that is expected for a bimolecular gas phase reaction. 
 

   With rng = 0, ∆rH≠ = ∆rU≠ and then ∆rH≠ = Ea – RT, from Eq. 32.1.32: 
 

 ∆rH≠ = 27.8 kJ mol-1 – 8.3145 J K-1 mol-1(800.0 K)(1 kJ/1000 J) 
          = 27.8 kJ mol-1 – 6.652 kJ mol-1 = 21.15 kJ mol-1    3 
 

With Eq. 32.1.23, ∆rG≠ ∆rH≠ – T∆rS≠: 
    ∆rG≠ = 21.15 kJ mol-1 – (800.0 K)(-18.33 J K-1 mol-1)(1 kJ/1000 J) = 35.8 kJ mol-1 4 
 

   Alternatively for ∆rG≠ we can use the corresponding equation to Eqs. 32.1.20 and 
32.1.22¸which for rng = 0 gives K≠

p = K≠
c and: 

 

 k1 = 
kT
h  e–rG/RT         5 

To use this approach, we require the value of the unimolecular rate constant at 800.0 K: 
 

 k1 = A e–Ea/RT = 5.0x1012 s-1 e–27800 J/8.3145 J K-1mol-1(800.0 K) = 7.653x1010 s-1 6 
 

Substituting this value for k1 into Eq. 5 gives: 

 e–rG/RT = 7.653x1010 s-1
/1.6669x1013 s-1 = 4.591x10-3    7 

and   ∆rG≠ = – 8.3145 J K-1 mol-1 (800.0 K) ln(4.591x10-3) (1 kJ/1000 J) = 35.8 kJ mol-1 

 

which matches Eq. 4. 
 
 
9.  The gas phase reaction: cis-1,3,5-hexatriene  1,3-cyclohexadiene has an activation enthalpy 
of 121.5 kJ mol-1 and an entropy of activation of -30.4 J K-1 mol-1. Comment on the ease of 
formation of the transition state. 
 
 
Answer:  The plan is to compare the activation parameters to the values in Table 32.1.1, the 
“garden variety” activation energy of ~ 50 kJ mol-1 given in Sec. 3.5, and the typical bimolecular 
activation entropy of -80 J K-1 mol-1 given in Sec. 32.1. 
   The reaction is diagrammed below: 
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The activation enthalpy is related to the activation energy through ∆rH≠ = Ea – RT. In other 
words, the activation energy and enthalpy differ by only 2.5 kJ mol-1 at 298.15 K. The large 
activation energy suggests the approach to the transition state is dominated by a bond cleavage. 
The activation entropy is intermediate between “loose and floppy” unimolecular transition states 
and typical bimolecular transition states. As a result we expect some considerable steric restraints 
in the formation of the transition state. These results seem reasonable because the process is 
more complicated than a simple ring closure. The relatively large activation entropy (for a 
unimolecular process) suggests that the formation of the transition state involves a concerted ring 
closure and hydride transfer. 
 
10. Draw the trajectory, on the potential energy surface below, of a reactive atom-diatom 
collision that experiences multiple crossings and produces a product in a highly excited 
vibrational state. Label the side of the graph that corresponds to the reactants and specify the 
corresponding reaction, choosing from either A + B–C  A–B + C   or   A–B + C  A + B–C. 
 

 
Answer: Choosing the reaction A + B–C  A–B + C and the given axis labels, the reactant well is 
at the top of the potential energy surface. The trajectory crosses the 45 line more than once and 
the amplitude of the product vibrations is large. 
 

 
 
 
11.  Consider the exothermic gas phase reaction:  O(3P) + CS  CO + S(3P). Is the reaction 
likely to have an early or late barrier? Does translational or vibrational energy in the collision 
favor the formation of products? Choose the corresponding energy surface, below. Label the 
axes with either ROC or RCS. Label the reactant and product valleys. Draw an example of a 
trajectory that has the favorable combination of translational and vibrational energy for the 
collision. (You will use only one of the surfaces). 

C C 

C C 

H 
H 

H 

H 

H H 

C 

C 

H 

H 

H 

H 

C C 

C 

C 

H H 

C 

C 

H 
H 

H H 

RAB 

RBC 

reactants: A + B–C 

products: 
A–B + C 
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Answer:  Exothermic reactions often have early barriers, as in the potential energy surface at 
right. Initial translational energy favors the formation of products. To explain why, consider 
standing in the reactant valley looking towards the transition state barrier. The barrier is straight 
ahead, instead of being a bit around the corner to the left. The best approach to the transition 
state is then to go straight ahead. Translational energy moves you straight ahead, but vibrational 
energy moves you to the left and right, perpendicular to the minimum energy path. The 
amplitude of the initial vibration is small, showing that the energy is primarily in translation. 
Exothermic reactions are more likely to give products in excited vibrational states than 
endothermic reactions. Consistent with this expectation, the trajectory in the product valley is 
shown with a large amplitude, but this choice is not necessary for this problem. 
 

 
 
12. The reaction profile of an atom-diatom collision is shown below, including the vibrational 

levels. Draw a corresponding trajectory for the collision. Label the reactant and product sides. 
 
 
Answer:  Given the reaction A + B–C  A–B + C and the given axis labels, the reactant well is at 
the top of the potential energy surface. The reaction begins in an excited vibrational state and 
ends in the ground vibrational state. The amplitude of the vibrations in the reactant well is then 
large and in the product well is small (at the minimum amplitude given  = 0).  
 

 
 

Endothermic: 
late barrier 

Exothermic: 
early barrier 

reactants: O + CS 

ROC 

RCS 

products: 
CO + S 

reaction progress 

E 

A + BC 

products 

 

 = 
     3 
     2 
 

     1 
     0 

 = 
     4 
     3 
 

     2 
  
     1 
     0 

AB + C 

RAB 

R
BC

 

reactants: A + B–C 

products: 
A–B + C 
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13. Use collision theory to calculate the theoretical value of the bimolecular rate constant of the 

reaction H2 (g) + I2 (g)  2 HI (g) at 650 K. The collision cross-section is 0.36 nm2, the 
reduced mass is 3.32x10-27 kg, and the activation energy is 171. kJ mol-1 

 
 
Answer: The plan is to use Eq. 32.7.18 with the given cross-section:  = b 2

max = 0.36 nm2. 
   The relative collision speed is, Eq. 31.3.14: 
 

 c–rel = 




8kT



½
 = 




8(1.38065x10-23 J K-1)(650 K)

 3.32x10-27 kg

½
 = 2624. m s-1 

 
   The pre-exponential factor is using Eq. 32.7.18 and converting  to m2: 
 

 A = b 2
max c–rel (1000 L/m3)NA  

 A = 0.36 nm2 (1x10-9 m/ 1nm)2(2624. m s-1) (1000 L/m3) 6.022x1023 mol-1  
     = 5.7x1011 L mol-1 s-1 
 
14. The rate constant of an aqueous ionic reaction with zA = 2 and zB = -1 at zero ionic strength is 
k(I = 0). Calculate the ratio of the rate constant of the reaction done in 0.1 M NaCl, k, to the rate 
constant at zero ionic strength: k/k(I = 0) at 298 K. 
 
 
Answer:  The plan is to use Eq. 32.6.6 to estimate the kinetic salt effect. 
   The difference of the logs cancels the leading term in Eq. 32.6.6: 
 

 log k2 – log k(I=0) =  log



kT

h  K≠
c´ co-1  + 0.509 (2zAzB) I½ -  log



kT

h  K≠
c´ co-1   

       =   0.509 (2zAzB) I½ 
 

Solving for the ratio gives: 
 

 k/k(I = 0) = 100.509 (2zAzB) I½
 

 

The ionic strength is given by Eq. 19.4.22. Assume that the ionic strength is dominated by the 
NaCl. For 0.1 M NaCl, because NaCl is a 1:1 electrolyte, I = m/mº = 0.1. Given zA = +2 and zB = 
-1 for the reacting ions gives: 
 

 k/k(I = 0) = 100.509 (2(+2)(-1))(0.1)½
  =  0.227 

 

The reaction is slower at higher ionic strength because the ionic atmosphere decreases the 
attraction of the two reactant ions. 
 
 
15. Use Eq. 32.7.13 to prove that the hard-core collision cross section is HC = d2

HC, where dHC is 
the hard-core collision diameter. 
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Answer:  The plan is to assume the reaction probability is a function of the impact parameter 
only, P(rel,b) = P(b), which in turn is defined as unity for an impact parameter less than the hard-
core collision diameter in Eq. 32.7.13. 
   The probability that a collision with relative kinetic energy rel and impact parameter b gives 
products is P(rel,b). The reaction cross-section is then the integral of the reaction probability 
over the impact parameter, Eq. 32.7.13: 
 

 (rel) = 2 o  P(rel,b) b db       (32.7.13) 
 

Assuming that the reaction probability is unity for every collision with impact parameter b  dHC, 
P(rel,b) = 1, and zero for any greater impact parameter gives the cross-section as: 
 

 (rel) = 2 dHC

o  b db = b2|dHC

o  = d2
HC 

 

This result shows that the more general definition in Eq. 32.7.13 is consistent with the KMT 
model. 
 
 
16.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a). In atom-diatom collisions, A + BC  AB + C, the reaction coordinate is an unstable 
asymmetric stretch.  
 

(b). Once the transition state surface is crossed, the activated complex does not return to 
reactants. 
 

(c). Activated Complex Theory assumes a Boltzmann distribution among vibrations and rotations 
in the reactants and the activated complex. 
 

(d). Excluding the reactive asymmetric stretch, the vibrations and rotations of the activated 
complex do not have an effect on the reaction rate. 
 

(e). Reactions are more likely with excess energy in translation rather than vibration. 
 

(f). Exothermic reactions are more likely to give products in excited vibrational states than 
endothermic reactions. 
 

(g). The common existence of chemical reactions that are much slower than the corresponding 
kinetic molecular theory hard-core collision rate is evidence of long-lived transition states. 
 

(h). In the RRKM theory of unimolecular processes, the vibrational and rotational states of the 
reactants are treated as a continuum while the vibrational and rotational states of the critical 
configuration are treated as discrete and countable. 
 

(i). In the RRKM theory of unimolecular processes, the critical configuration never returns to the 
activated reactant. 
 

(j). Non-adiabatic transitions occur by avoided curve crossing. 
 

(k). The Born-Oppenheimer approximation is valid for the progression of the transition state to 
give products. 
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(l). Experimental reaction cross-sections are never larger than the hard-core collision cross-
sections, although the experimental reaction cross-sections is often smaller than the hard-core 
collision cross-section. 
 

(m). In collision theory, the line of centers velocity and kinetic energy increase with decreasing 
impact parameter. 
 

(n). In collision theory, the reaction cross section is independent of the collision relative kinetic 
energy. 
 

(o). In solution, equilibrium constants are functions of the activities of the reactants and products, 
rather than the concentrations. Reaction rates are functions of the solution concentrations, and 
not the activities. 
 
 
Answers: (a). True. 
 

(b). False, multiple crossings can occur, which increase the probability of the return to reactants. 
 

(c). True, but too restrictive. Activated Complex Theory also assumes a Boltzmann distribution 
of the available energy into the reactive asymmetric stretch, which is represented by the kT/h 
factor. We also must consider the electronic degrees of freedom in the reactants and the activated 
complex. For many reactions the electronic partition functions are equal to the ground state 
degeneracies, and the ground state degeneracies are often singlets. However, this simplification 
is not always true, especially if a reactant is atomic, Table 30.2.2. 
 

(d). False. The bimolecular rate constant is the number of accessible states in the activated 
complex divided by the product of the number of accessible states in the reactants. The 
vibrations and rotations of the activated complex increase the number of accessible states of the 
activated complex. 
 

(e). Sometimes true and sometimes false. Endothermic reactions with late barriers are more likely 
with excess energy in vibration rather than translation. Exothermic reactions with early barriers 
are more likely with excess energy in translation rather than vibration. 
 

(f). True. Exothermic reactions are more likely to give products in excited vibrational states than 
endothermic reactions. 
 

(g). False: The traversal of the transition state region is typically very fast – tens of 
femtoseconds. The sluggishness of many reactions is a reflection of the improbability of 
collisions with sufficient relative kinetic energy, proper orientation, and timing with respect to 
the progress of the vibrations of the reactants. 
 

(h). True. 
 

(i). False: The critical configuration is considered to be in equilibrium with the reactants, Eq. 
32.5.3, which can only occur if the formation of the critical configuration is reversible from the 
perspective of the reactants. 
 

(j). True. 
 

(k). False: Classical trajectory calculations do calculate the potential energy surface of a collision 
within the Born-Oppenheimer approximation. Never-the-less, the Born-Oppenheimer 
approximation is violated from the perspective of the bound-vibrational potential energy wells of 
the reactants and products. The unstable transition state maximum in energy cannot be 
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represented in the bound-state product potential energy functions. The Born-Oppenheimer 
approximation is violated for the progression of the transition state to give products. 
 

(l). False: Attractive intermolecular potentials can result in reaction cross-sections that are larger 
than the hard-core collision cross-sections. Reactions that have little or no activation energy are 
commonly in this category. However, it is true that the experimental reaction cross-section is 
often smaller than the hard-core collision cross-section. 
 

(m). True, see Eq. 32.7.11. 
 

(n). False: In collision theory, the reaction cross section can be strongly dependent on the 
collision relative kinetic energy, Figure 32.7.4. 
 

(o). False: Reaction rates in real gases and in solution are functions of the gas phase fugacities or 
solution activities and not the concentrations. The thermodynamic activity of a solute differs 
from the concentration because of intermolecular forces. Intermolecular forces play an important 
role in molecular dynamics. 
 
 
 
 
  


