Table of Contents

Chapter 23: The Foundations of Quantum Mechanics 23.1 A Brief Review of Classical Mechanics	1
Newton's Laws of Motion	1
Classical Hamiltonian is the Sum of the Kinetic and Potential Energy	2
Energy if Often Expressed in Electron Volts	3
Waves Show Oscillatory Behavior	3
Waves can be Represented by Complex Waveforms	4
23.2 Steps Toward Quantum Theory	7
Matter Has Quantized Energy Levels	7
Light Has a Particle Nature – Photoelectric Effect	8
Particles Have a Wave Nature – Bragg's Law	11
Structure of the Atom	12
23.3 Free Particle Motion	15
The Schrödinger Equation	15
Kinetic Energy is Given by the Curvature of the Wavefunction	17
The Square of the Wave Function Determines the Probability of Finding a Particle at a Given Point	19
23.4 Confined Particle Motion	21
The Model for a Confined Particle is the Particle in a Box	21
The Solutions to the Schrödinger Equation are Orthogonal	24
Confined Particles are a Model for the Spectra of Conjugated Molecules	26
The Schrödinger Equation is an Eigenvalue Equation	27
Observable Properties are Eigenvalues or Expectation Values	28
Particles are Fuzzy – Position and Momentum Can't Both be Determined with High Precision	30
Zero Point Energy is a Result of the Uncertainty Relationship	33
23.5 Tunneling – Particles can Penetrate Into Barriers	33
The Tunneling Probability Depends on the Barrier Height and Width	33
Scanning Tunneling Microscopy can Image Single Atoms	36
23.6 Particle in a 3-Dimensional Box	37
For Separable Potentials, $\Psi(x,y,z)$ is a Product of One-Dimensional Wave Functions	37
23.7 The Postulates of Quantum Mechanics	40
Operators Have Properties Independent of the Function They Operate On	40
The Order of Operations Can Make a Difference	42
The Eigenvalues for Quantum Mechanical Operators are Real	44
The Time Dependent Schrödinger Equation is Separable for Time-Independent Potentials	45
Complementary Observables Obey an Uncertainty Relationship	4/
Does Quantum Mechanics Work? The Correspondence Principle	4/
23.8 Summary – Looking Ahead	48
23.9 Addendum: Complex Variables	49
Chapter 24: The Quantum Mechanics of Rotation and Vibration	63
24.1 A Brief Review of Classical Mechanics: Vibration	63
The Vibrational Restoring Force is Proportional to the Extension	65
24.2 Vibration	65
The Harmonic Oscillator is a Model for Molecular Vibrations	65
The Harmonic Oscillator is Quantized	67
Excited State Wavefunctions are Built from the Ground State Wavefunction	68
24.3 The Hermite Equation	70
The Harmonic Oscillator Schrödinger Equation Reduces to the Hermite Equation	70

24.4 A Brief Review of Classical Mechanics: Rotation and Angular Momentum	71
Angular Momentum	71
24.5 Angular Momentum and Molecular Rotation The Rigid Rotor is a Model for Molecular Rotation Rotation in a Plane is Quantized Spherical Polar Coordinates are Used for Spherically Symmetric Systems Angular Momentum in 3-Dimensions Rotation in 3D Involves Two Angular Dimensions	74 74 76 77 79
24.6 Angular Momentum Vector Diagrams	83
24.7 Ladder Operators Simplify Finding Quantum States	85
Harmonic Oscillator Excited States can be Generated Using Ladder Operators	85
For Angular Momentum, the Values for m _t can be Determined Using Ladder Operators	88
24.8 Summary – Looking Ahead	89
24.9 Addendum: Integrals in Multiple Dimensions and Spherical Polar Coordinates	90
Chapter 25: Atomic Structure	99
25.1 Hydrogen Atom	99
The Ground State of the Hydrogen Atom	100
How Big is an Atom? Expectation Values	104
25.2 Excited States are Built from the Ground State Wavefunction	106
Spherical Polar Coordinate Transforms Specify the Angular Portion of "Oriented" Atomic Orbitals	110
The Atom can have Orbital Angular momentum	111
The Intrinsic Angular Momentum of the Electron gives the Fourth Quantum Number	112
25.3 Multi-Electron Atoms	112
Independent Electron Approximation	113
Perturbation Method	114
Variation Method	117
25.4 Self-Consistent Field Theory Shielding of the Nuclear Charge and Electron-Electron Repulsion Electron-Electron Repulsion Breaks the Orbital Degeneracy Pauli Exclusion Principle and Electron Spin Hund's First Rule Applies to Degenerate Sub-Shells The Aufbau Principle Predicts the Configuration of the Elements The Energy Levels for an Ion Are Different from the Neutral Atom The Echange Interaction is the Result of Electron Indistinguishability The Configuration $1s^{1}2s^{1}$ gives a Singlet and Triplet State Multiple Slater Determinants are Required for $S > 0$	118 118 120 121 122 122 125 125 125 128 129
25.5 Representations of Atomic Orbitals	130
Slater Type Orbitals, STOs, have no Radial Nodes	130
Gaussian Orbitals are Easier to Integrate	132
25.6 Atomic Spectra	135
Spin Angular Momentum Adds Vectorially	135
Orbital Angular Momenta Add Vectorially	137
Term Symbols are Nicknames for Energy States	138
Spin and Orbital Angular Momenta Couple	141
Selection Rules Govern the Intensities of Transitions	145
25.7 Magnetic Interactions	146
25.8 Summary – Looking Ahead	149
25.9 Addendum: Electron-Electron Repulsion in Helium	149
Perturbation Theory: The Expectation Value of the Electron-Electron Repulsion in Helium	149
Variation Theory: The Expectation Value of the Exact Helium Atom Hamiltonian	151

Chapter 26: Molecular Structure 26.1 Hydrogen Molecular Ion, H ₂ ⁺	165 165
Born-Oppenheimer Approximation The Molecular Orbitals are Approximated as a Linear Combination of Atomic Orbitals	165 167
Bonding and Anti-Bonding Orbitals	171
26.2 The Hydrogen Diatomic Molecule	172
Molecular Orbitals are Approximated as the Products of One-Electron Orbitals	172
The Variation Method Allows the Calculation of the Effective Nuclear Charge	173
Accounting for Electron-Electron Repulsion: Polarization Functions	173
The Motion of the Electrons is Correlated: Configuration Interaction Why Do Atoms Stick Together?	175
26.3 Heteronuclear Diatomic Molecules	177
Wanted: Good Orbital Overlap and Energy Matching!	177
Lithium Hydride has Partial Ionic Character	179
Population Analysis Determines the Atomic Electron Density and Bond Order	181
Electronegativity Differences Cause Deviations from Perfect Sharing	183
26.4 Second-Period Homonuclear Diatomic Molecules	184
<i>O</i> ₂ <i>Molecular Orbitals: The LCAO Approach</i>	186
Molecular Orbitals Can be Described by Their Symmetry Why is the Orbital Ordening Different for O. and N.2 Energy Matching	18/
Does Molecular Orbital Theory Really Work? Experimental Bond Strength Measures	190
26.5 Self-Consistent Field Hartree-Fock Theory	192
LCAO+Slater Determinants+One-Electron Products = Roothaan Equations	193
Semi-Empirical Molecular Orbital Theory: CNDO, MNDO, AM1, PM3	196
Density Functional Theory: DFT	197
26.6 Bonding in Polyatomic Molecules	199
Linear BeH ₂ , triplet CH ₂ , NH ₂ , and H ₂ O: An Initial Model	199
Walsh Diagrams Predict the Equilibrium Bond Angle	203
H_2O is Bent	204
CO_2 has 3-Center π -Orbitals	204
Is Ozone Linear or Bent?	200
26. / Hybridization Unbuidization Combines Atomic Oubitals to Maximize Overlan	208
Hybrialzation Completes Alomic Orbitals to Maximize Overlap Different Hybrids Give Different Bond Angles	208
26.9. Hästert Malassian Oshitet Theorem	210
20.8 Huckel Molecular Orbital Theory Conjugated Double Bonds and Extensively Delogalized	212
The Extended Hückel Method Accommodates All Elements and Orbital Overlap	212
26.9 Summary – Looking Ahead	221
Chapter 27: Rotational and Vibrational Spectroscopy	235
2/.1 Spectroscopy in General: The Intensity of Spectroscopic Transitions	235
Selection Rules Fredici the Occurrence of Transitions The Transition Dipole Moment Involves the Initial and Final States	238
	230
2/.2 The Width of Spectroscopic Transitions	240
Motion Contributes to the Width of Spectral Transitions	240 240
27.3 Fourier Transform Methods	242
Fourier Transform Based Spectroscopy Gives a Multiplex Advantage	242
27.4 Rotational spectroscopy	247
Selection Rules Require a Permanent Dipole Moment	247

The Rotational Constant Gives the Bond Length	247
Centrifugal Distortion Decreases the Energy Level Spacing	250
Non-Linear Polyatomic Molecules Have Three Moments of Inertia	251
Pulsed Microwave Spectroscopy Uses the Multiplex Advantage	255
27.5 Vibrational Absorption Spectroscopy	256
IR Selection Rules Require a Changing Dipole Moment	256
Diatomic Molecules	257
Anharmonicity Decreases the Energy Level Spacing	257
Normal Modes Describe Vibrations for Polyatomic Molecules	262
Anharmonicity Causes Vibrational Modes to Interact	262
27.6 Rotational-Vibrational Spectroscopy	262
Rotational Constants Are Available from Vibrational Spectra	262
27.7 Raman Spectroscopy	268
Selection Rules are Different for Light Scattering	270
Rotational Raman	271
Vibrational Raman and Absorption Spectroscopy are Complimentary	272
Raman Transitions of Totally Symmetric Normal Modes are Polarized	273
Forbidden Transitions Can Borrow Intensity from Allowed Combinations and Overtones	275
Raman Spectroscopy Works Well in Water and is Enhanced On Some Surfaces	276
27.8 The Effects of Molecular Symmetry: Group Theory	276
The Symmetry of a Molecule Is Described by a Point Group	277
Vibrations Behave Differently Under Transformations of the Point Group	281
The Transition Dipole Has a Corresponding Symmetry	282
Normal Mode Symmetry Determines IR and Raman Activity	283
ymmetry Relationships are Summarized in a Character Table	284
27.9 A More Intense Discussion of Transition Probabilities	287
Oscillator Strength is Proportional to the Integrated Absorption Coefficient	289
Harmonic Oscillator Transitions Only Occur Between Adjacent Levels	291
27.10 Summary – Looking Ahead	291
Problems: Time Dependent Perturbation Theory	309
Chapter 28: Electronic Spectroscopy	313
28.1 Electronic Absorption and Emission Spectroscopy	313
High Resolution Spectra Show Vibrational and Rotational Fine-structure	314
Transition Probabilities are Determined by the Transition Dipole Moment	316
Term Symbols are Unique Nicknames for Electronic States of Atoms and Molecules	316
Electronic Selection Rules	321
Reflection Symmetry (+,-) takes Orbital Degeneracy and Electron Indistinguishablity into Account	t 322
28.2 Vibrational Fine-Structure and Molecular Dissociation The Franck–Condon Principle Predicts the Intensity of Vibrational Transitions Dissociation Energies Can Be Measured Using Electronic Absorption Spectra The Convergence Limit is Estimated by Birge-Sponer Extrapolation Photochemistry - Dissociation and Predissociation Rydberg States Give a Series of Atomic-like Transitions	324 324 328 328 328 332 334
28.3 Electronic Absorption and Emission Spectroscopy-Polyatomic Molecules	335
A Continuous Distribution of Quantum States is Characterized by the Density of States	335
28.4 Fluorescence and Phosphorescence	338
Where-Oh-Where Has My Energy Gone?	338
The Franck–Condon Principle Predicts the Intensity of Vibrational Transitions	340
Fluorescence and Phosphorescence Lifetime Measurements	340
Electronic Energy Transfer	341
Förster Resonance Energy Transfer Can Determine Distances, FRET	342

344 345 347 350 350 352 356 357 379 379 379 379 379 383 387 388
347 347 350 350 352 356 357 379 379 379 379 383 387 388
350 350 352 356 357 379 379 379 379 383 387 388
352 356 357 379 379 379 383 387 388
356 357 379 379 379 383 383 387 388
379 379 379 383 387 388
379 383 387 388
383 387 388
387 388
388
391
392
394
395
396
396
397
399
399
402 402
404
404
405
406
408
413
413
413
416
418
418
422
423 423
425 425
425
115
445 445

Constraining the Number of Systems and the Total Energy of the Ensemble	446
30.2 The Boltzmann Distribution is the Most-Probable Distribution	447
Canonical Ensemble Partition Functions and Molecular Partition Functions	447
The Partition Function is the Number of Accessible States	449
The Molecular Partition Function Factors into Translational, Rotational, Vibrational,	
and Electronic Partition Functions	449
The Translational Partition Function Depends on Volume	450
The Vibrational Partition Function is a Power Series	452
The Rotational Partition Function is Calculated in the High Temperature Approximation	454
Low Lying Electronic Degrees of Freedom Contribute to Internal Energy and Globs Energy	433
30.3 Thermodynamic Properties are Determined by the Partition Function	458
Internal Energy and Entropy	458
Entropy is Determined from the Partition Function	461
Entropy of a Monatomic Gas	402
Au Thermodynamic Turumeters can be Calculated from Turution Tunctions	405
30.4 Statistical Mechanics and the Ideal Gas	466
Units, Units Less Franzes Vibrations Contribute to Leternal Franzes and Cibbs Franzes	466
Low Energy Vibrations Contribute to Internal Energy and Globs Energy The High Tomporature Approximation Cives the Classical Limit	470
The High Temperature Approximation Gives the Classical Limit	472
30.5 Reaction Gibbs Energy	474
Reaction Gibbs Energies are Calculated from Spectroscopic Constants	474
Reaction Gibbs Energies are Calculated from Electronic Structure Calculations	4//
Equilibrium Constants of Ideal Cas Reactions	401
Equilibrium Constants of facul Gas Reactions	+02
30.6 Fluctuations	487
Fluctuations are small for Macro-Scale Systems	488
30.7 Indistinguishability, Quantum Statistics, and Statistical Thermodynamics	489
Particles are Fermions or Bosons	489
The Dilute Limit Requires Many More Available Energy States than Molecules	490
There are 1 wo Kinds of H ₂ , Orino and Para Hydrogen. The Symmetry Number in Potational Spectroscopy	490
	491
30.8 Summary – Looking Ahead	492
Chapter 31: Kinetic Molecular Theory	503
31.1 The Pressure of a Gas is Determined by Molecular Motion	503
21.2 The Meywell Distribution	507
51.2 The Maxwell Distribution The Distribution of Molecular Speeds from the Roltzmann Distribution	507
Spherical Polar Coordinates Simplify Spherically Symmetrical Systems	510
Averaging in 3-Dimensions	513
The Maxwell Distribution of Molecular Speeds has a Maximum	513
The Average Speed is Less than the RMS-Speed	514
31.3 The Rate of Molecular Collisions	515
Collisions with a Wall Effusion	515
The Rate of Molecular Collisions in Ambient Conditions is Screamingly Fast	517
Molecules must collide for a chemical reaction to occur	520
Mean Free Path and the Rate of Molecular Collisions	522
31.4 The Distribution of Molecular Kinetic Energies Has a Maximum	523
31.5 Center of Mass Coordinates	525
31.6 Derivation of the Maxwell Distribution from the Particle In a Box	528
31.7 Summary Looking Ahead	520
51.7 Summary – Looking Aneau	331

Chapter 32: Reaction Dynamics	539
32.1 The Transition State	539
The Reaction Coordinate is an Unstable Asymmetric Stretch	539
The Rate is Determined by the Frequency of the Reactive Asymmetric Stretch	540
Partition Functions Determine the Number of Accessible States in the Activated Complex	541
Atom-Recombination Under ACT is Consistent with Hard-Core Collision Theory	543
Multiple Crossings, Coupling of Degrees of Freedom, and Tunneling Are Neglected	544
Thermodynamic Transition State Theory Defines the Gibbs Energy of Activation	546
The Transition State Geometry can be Determined Using Molecular Orbital Theory	550
32.2 Potential Energy Surfaces for Reactive Collisions	550
The Born-Oppenheimer Approximation is Assumed	552
PE Surfaces Result in Stable Molecular Vibrations and the Reaction Coordinate	552
The Transition-State Saddle Point can be Early or Late	553
32.3 Classical Trajectory Calculations	554
Reaction Energy Demand and Disposal Depends on the Shape of the PE Surface	557
The Timing of the Reaction During the Vibrational Period of the Reactant Matters	558
Some Conditions Give Multiple Crossings	559
Reactions in Solution and Enzyme Catalyzed Reactions are Treated Using Hybrid Molecular Dynamics	559
32.4 Molecular Beams	560
Reactions can be Studied Collision by Collision	560
The Scattering Angular Distribution Depends on the Potential Energy Surface	561
Break-down of the Born-Oppenheimer Approximation	563
32.5 Unimolecular Processes: RRKM Theory	563
32.6 Reaction Rates in Solution	566
Some Reactions are Diffusion Limited	566
Activity Coefficients in Rate Laws	567
The Kinetic Salt Effect	567
32.7 Collision Theory	569
The Collision Cross-Section and Intermolecular Forces	569
Thermal Reaction Cross-Sections Include Collision Size and Reaction Probability	570
Kinetic Molecular Theory and Reactive Bimolecular Collisions	570
Reaction Cross-Sections are a Function of Collision Energy	571
32.8 Summary – Looking Back	575

Appendix 1: Data Section