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Chapter 32: Reaction Dynamics 
 

Calculate the bimolecular rate constant of the reaction H2 (g) + F2 (g)  2 HF (g) at 
298.2 K. The experimental activation energy is 50.0 kJ mol-1. 

 
   The extent of a chemical reaction is determined by thermodynamics. The rate of a chemical 
reaction is determined by chemical kinetics. Molecules must collide for a chemical reaction to 
occur. The sequence of elementary steps, as specified by the collision partners, determine the 
mechanism. The rate constants of elementary steps are calculated using reaction dynamics. 
Kinetic molecular theory provides a good estimate of the rate of collisions of ideal gases. 
However, not all collisions are successful in producing products. The key to understanding bond 
rearrangements during collisions is the postulation of the transition state. The bond breaking and 
making steps can be understood in coarse-grained detail by assuming the statistical distribution 
of the available energy among the degrees of freedom of the transition state. This statistical 
mechanical view is the basis of activated complex theory and thermodynamic transition state 
theory. In fine-grained detail, collision dynamics follows the flow of energy in the transition state 
assuming a quantum mechanical potential energy surface. In the laboratory, molecular beam 
techniques provide the experimental information necessary to validate reaction dynamics 
theories. The results of experimental studies are also used to extend kinetic molecular theory to 
better understand collision kinematics, taking molecular interactions into account. Reaction 
dynamics in solution is based on gas-phase dynamics utilizing the concept of a molecular 
encounter instead of discrete collisions. 
   Accurate reaction dynamics theories of complex mechanistic steps are an important goal with 
far reaching implications. Reaction dynamics is currently a highly active area of research in 
physical chemistry. The passage of a collision through the transition state is the principle focus 
of our prediction of rate constants. 
 
32.1 The Transition State 
 

The Reaction Coordinate is an Unstable Asymmetric Stretch:  Consider the gas phase atom-
diatom reaction: 
 

 H + HF  H2 + F         32.1.1 
 

Before the collision the HF molecule is in a vibrational potential energy well centered on the 
equilibrium internuclear separation Re(HF), giving a “bound” vibration, Figure 32.1.1a. After the 
reaction the H2 molecule is in an analogous vibrational potential energy well centered on the 
equilibrium internuclear separation Re(H2), giving a bound vibration. The vibrations are each 
characterized by a corresponding fundamental vibration frequency o = 1/2 k/. During the 
collision, the H-atom approaches the H-F molecule. The progress of the reaction occurs on the 
reaction profile, Figure 32.1.1b. The reaction profile is a plot of the minimum electronic energy 
path from reactants to products. The reaction path follows the profile energy with the addition of 
the zero-point energy of the corresponding vibrations. The transition state occurs when the H–H 
distance is roughly equal to the H–F distance, when the H–H bond forms simultaneously as the 
H–F bond breaks. The transition state occurs at the energy maximum of the reaction profile. The 
transition state lasts for a fleeting instant in time, typically on the order of a few femtoseconds. 
The motion of the three atoms during the collision shows the same atom displacements as the 
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asymmetric stretch of a linear triatomic, Figures 27.1.3 and 8.11.1. This reactive asymmetric 
stretch is the reaction coordinate. However, the motion during the collision corresponds to a 
maximum in the reaction profile, making the reactive asymmetric stretch unstable. The transition 
state corresponds to a surface, perpendicular to the reaction coordinate, separating the products 
from the reactants. A successful reaction corresponds to passage across this surface. For the H + 
HF example, a successful collision progresses to products giving an H2 molecule in a bound 
vibrational state and a free F-atom. An unsuccessful collision falls apart returning to reactants. 
 

 
Figure 32.1.1: (a). A bound vibration results from a potential energy minimum. (b). The 
reaction coordinate is the progress along the reactive asymmetric stretch. The reaction profile 
has a maximum in potential energy at the transition state. 

 
 
The Rate is Determined by the Frequency of the Reactive Asymmetric Stretch:  The reaction 
progress is plotted as the horizontal axes of the reaction profile and corresponds to the progress 
of the reactive asymmetric stretch. The configuration of atoms at the transition state is called the 
activated complex. Properties of the activated complex are symbolized using “.” The 
“activated” part indicates that sufficient energy is available to bring about the bond breaking and 
making steps. The energy is supplied by the relative translational kinetic energy of the collision 
and possibly the initial vibrational and rotational energies of the reactants. The term “complex” 
however, can be misleading. While some activated complexes exist for a few vibrational periods 
of the reactive asymmetric stretch, the transition state is not a complex at all. Rather, the 
activated complex is a “loose and floppy” transitory intermediate that typically falls forwards 
towards products or backwards towards reactants within a single vibrational period. The 
effective vibrational frequency of the reactive asymmetric stretch, , is the frequency at which 
the activated complex crosses the transition state surface. As a first approximation, the activated 
complex falls apart forwards towards products half the time with rate  and backwards towards 
reactants half the time with rate . 
   Consider now a general reaction, where reactants A and B are atoms or molecules. The reactive 
asymmetric stretch carries the reaction towards the transition state and the formation of the 
activated complex, AB: 
 

 A + B  AB  products        32.1.2 
 

The classical rate law for a bimolecular mechanistic step has the form: 
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 – 
d[A]

dt  = k2 [A][B]         32.1.3 
 

Activated complex theory, ACT, expresses the reaction rate as the product of the concentration 
of the activated complex and the vibrational frequency of the reactive asymmetric stretch: 
 

 – 
d[A]

dt  =  [AB]         32.1.4 
 

Comparing the classical and ACT expressions, Eqs. 32.1.3 and 32.1.4, the bimolecular rate 
constant is given as: 
 

 k2 = 
≠ [AB≠]
[A][B]           32.1.5 

 

The concentration of the activated complex can be considered to be in equilibrium with the 
reactants, with equilibrium constant K≠

c: 
 

 K≠
c = 

[AB≠]
[A][B]   giving   k2 =  K≠

c     32.1.6 
 

In this expression K≠
c has units of L mol-1. The assumption of equilibrium is not necessary, 

however the assumption simplifies the mathematics of the derivation. 
 
Partition Functions Determine the Number of Accessible States in the Activated Complex:  
Statistical mechanics provides useful insight into equilibrium constants of chemical reactions. 
The statistical mechanical approach assumes the available thermal kinetic energy is distributed 
according to the Boltzmann distribution, which is applied to each degree of freedom of the 
activated complex: translational, rotational, and vibrational. However, the statistical mechanical 
expression for the equilibrium constant is for Kp, whereas the kinetic expressions are typically 
written in terms of concentrations. Kp and Kc, with concentration units, are related by Eq. 20.2.5: 
 

 Kp = Kc 



RT

P°

∆rng

   Kc with units (mol L-1)rng   
 

where rng is the change in number of moles of gas and P is the standard state pressure. For the 
formation of the transition state, A + B  AB, the change in number of moles is –1. The 
concentration based equilibrium constant of the formation of the activated complex is then: 
 

 K≠
c = K≠

p 



RT

P°   giving    k2 =  



RT

P°  K≠
p      

 

Each degree of freedom is assumed to be at equilibrium with the available thermal energy, which 
is distributed according to random statistical chance giving the most probable state. The 
equilibrium constant is the number of accessible states of the activated complex divided by the 
number of accessible states of the reactants. Using Eq. 30.5.18: 
 

 K≠
c = 

[AB]

[A][B] = 
q/NA

(q°A/NA) (q°B/NA)
 



RT

P°  e–∆E
o/kT     32.1.9 

 

where q, qA, and qB are the standard state partition functions of the activated complex, reactant 
A , and reactant B, respectively. The energy parameter that characterizes the transition state is 
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the quantum mechanical zero-point energy shift, E
o, Figure 32.1.2 (compare with Figure 

30.5.1). The activation energy and E
o are distinct but closely related, see below. At the level of 

approximation of ACT, the energies along the reaction profile are determined using the Born-
Oppenheimer approximation. 
 
 

 
Figure 32.1.2:  The reaction progress is the progress of the reactive asymmetric stretch. The 
energy axis is E = total electronic + rotation + vibration without the reactive asymmetric 
stretch. The transition state barrier is the quantum mechanical zero-point energy shift, E

o. 
The shorter horizontal lines represent vibrational states, other than the reactive asymmetric 
stretch. Rotational states are not shown. 

 
 
   The partition function of the activated complex includes all normal modes of the activated 
complex. However, one of the normal modes is the reactive asymmetric stretch. The overall 
partition function of the activated complex is the product of the partition function of the reactive 
asymmetric stretch, q, and the partition function of the remaining translational, rotational, 
vibrational, and electronic degrees of freedom, q': 
 

 q  = q q'                 32.1.10 
 

The vibrational partition function of the reactive asymmetric stretch is, Eq. 30.2.25: 
 

 q = 
1

(1 – e–h/kT)
                 32.1.11 

 

The frequency of the reactive asymmetric stretch is quite small, given that the activated complex 
is loosely bond and unstable. Assuming that h/kT << 1, the Boltzmann weighting factors can 
be expanded as a power series. Retaining only the first two terms, the partition function is given 
in the high temperature approximation as, Eq. 30.4.20: 
 

 e–h/kT = 1 – h/kT + ... giving  q = 
kT
h           32.1.12 

 

Substituting this result into Eq. 32.1.10 gives the partition function of the activated complex as: 
 

reaction progress 

E 

E
o 

A + B 

products 

 
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 q  = 
kT
h q

'  and K≠
c = 

kT
h K

≠
c´             32.1.13 

 

where K≠
c´ is the equilibrium constant without the reactive asymmetric stretch. Substitution of K≠

c 
into Eq. 32.1.6 and the activated complex partition function into Eq. 32.1.9 gives the 
bimolecular rate constant as: 
 

 k2 = 
kT
h  K≠

c´ = 
kT
h  

q'/NA

(q°A/NA) (q°B/NA)
 



RT

P°  e–∆E
o/kT            32.1.14 

 

Even though the factors of  cancel, the reactive asymmetric stretch is still represented through 
the kT/h factor. The kT/h factor represents the statistical distribution of available thermal kinetic 
energy into the reactive asymmetric stretch. The strength of ACT is that the relationship in 
Eq. 32.1.14 is readily interpreted in terms of the number of accessible states of the activated 
complex and the reactants, as in Example 30.4.5. Activated complex theory presents a distinctly 
different view of chemical dynamics compared to hard-core collision theory. However, are ACT 
and hard-core collision theory to some extent consistent? 
 

Atom-Recombination Under ACT is Consistent with Hard-Core Collision Theory:  Hard-core 
collision theory represents collisions between spherical structureless particles. In the richer 
context of ACT, atom-recombination reactions mimic the hard-core collision theory 
assumptions. The general reaction is A + B  AB, where A and B are atoms. Consider first 
the translational partition functions in Eq. 32.1.14. The masses are mA, mB, and m = mA + mB. 
The reduced mass of the collision is  = (mA + mB)/m. The translational partition functions are 
given by Eq. 30.2.19. The ratio of the partition functions is: 
 

 
( )qo

t

/NA

( )q
o
t (A)

/NA ( )q
o
t (B)

/NA

 = 
NA h3

(2π kT)
3/2Vm

 



m

mA mB

3/2
 = 

NA h3

(2πkT)
3/2Vm

            32.1.15 

 

The rotational partition function of the activated complex is given by Eqs. 30.2.33, 24.5.41 and 
24.4.10: 
 

 qr,i = 
kT

B
~

i hc
 with  B

~
i = 

h
82R2

ic
 gives       q

r  = 






82kT

h2  R2  32.1.16 

 

where R is the bond length in the activated complex. If A and B are different atoms the 
symmetry number is  = 1, while if A collides with A, the activated complex is symmetric and 
then  = 2. The stretching vibration of the activated complex is the reaction coordinate, which is 
represented by the kT/h term. To mimic the structureless particles of hard-core collision theory, 
we assume that the electronic partition functions are unity. Also note that in Eq. 32.1.15, 
RT/P = Vm. The overall bimolecular rate constant using Eq. 32.1.15 is: 
 

 k2 = 
kT
h  

NA h3

(2πkT)
3/2Vm

 






82kT

h2  R2 Vm e 

 

     = 
R2


 





8kT

π
½

 NA e–∆E
o/kT                32.1.17 
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Given a few additional assumptions, this result is in the same form as the hard-core collision rate 
constant, k2 = HC c–rel NA, Eq. 31.3.25. The first assumption is that we associate the hard-core 
collision cross section HC = d2 with R2 in Eq. 32.1.17. For heteronuclear collisions, the 
symmetry number is one, in agreement with Eq. 31.3.25. For homonuclear collisions the factor 
of  = 2 applies, in agreement with the factor of two in Eq. 31.3.18 for ZAA. Secondly, from 
kinetic molecular theory, the relative speed of the particles in the collision is c–rel = (8kT/)½. 
Finally, the exponential term relates the relative collisional kinetic energy to the energy barrier, 
E

o. The extension of the hard-core collision relationship with this threshold activation term 
resolves a deficiency of the basic KMT approach. When applied to collisions of spherical 
structureless particles, ACT and hard-core collision theory are consistent, with the addition of 
threshold activation. 
 

Multiple Crossings, Coupling of Degrees of Freedom, and Tunneling Are Neglected:  Numerous 
comparisons of ACT have been made to experiment. The principle difficulty in applying ACT is 
in predicting the structure of the activated complex and in estimating the vibrational frequencies 
of the normal modes, Table 32.1.1. Historically, the E

o zero-point energy shift was also 
difficult to calculate. As an expedient, E

o was assumed to be equal to the experimentally 
determined activation energy. As a result, comparing the Arrhenius equation, k2 = A e–Ea/RT, to 
Eq. 32.1.14 gives the pre-exponential factor as: 
 

 A  
kT
h  

q'/NA

(q°A/NA) (q°B/NA)
 



RT

P°              32.1.18 

 
 

Table 32.1.1:  Experimental Tests of Activated Complex Theory, Eq. 32.1.14. The 
presumed geometry of the activated complex is shown.1-3 

 

Reaction Ea (kJ mol-1) A (exp) (L mol-1 s-1) A (theory) 
NO + O3  NO2 + O2 

 

10.5 0.79 x 1012 0.4 x 1012 

NO2 + CO  NO + CO2 

 

132  12.6 x 1012  6.3 x 1012 

2 ClO  Cl2 + O2 

  

0.0 0.063 x 1012 0.01 x 1012 

 

 
  As seen in Table 32.1.1, experimental tests of activated complex theory typically show that 
theoretical predictions are too small by factors of two to six or more. By obtaining good order of 
magnitude estimates, ACT represents a significant accomplishment. However, the goal is to 
develop accurate theories of reaction dynamics. The underestimates have many potential causes. 
The basic assumption of ACT is that the activated complex crosses the transition barrier only 
once in a successful reaction. We will see that detailed reaction dynamics calculations show that 
in some cases the activated complex exists for several vibrational periods along the reaction 
coordinate. In such cases, the activated complex crosses over the transition state barrier multiple 
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times before giving products or returning to reactants. These cases are said to show multiple 
crossings through the transition state barrier. 
   The disadvantage of using statistical mechanics to determine the concentration of the activated 
complex is that all degrees of freedom are presumed to be at equilibrium. The short lifetime of 
the activated complex may not allow all degrees of freedom to come to equilibrium.4 Instead, the 
collision energy might be portioned favorably into a few internal degrees of freedom. The 
statistical development of the reaction rate assumes degrees of freedom do not interact. However, 
having energy in rotation or extra energy above the zero-point in bending vibrations or in the 
non-reactive stretches might have a strong effect on the fate of the activated complex.4 For 
example, rapid rotation might help “throw” the activated complex towards products, depending 
on the masses of the atoms. Having extra energy in the bending vibration might aid the bond 
breaking and making processes. 
   ACT also neglects quantum mechanical effects along the reaction coordinate.4 For example, 
tunneling may occur through the transition barrier. Tunneling processes are especially important 
in the transfer of light particles such as hydrogen atoms and electrons. H-atom transfer reactions 
often proceed more rapidly than predicted by ACT because the H-atom nuclei, which are just 
protons, tunnel through the reaction barrier. An additional difficulty inherent in ACT is that the 
relationship between the experimental activation energy and the quantum mechanical zero-point 
energy shift, E

o, is not well-defined. 
   Extensive progress has been made towards improvements in ACT and other reaction dynamics 
approaches. However, before we consider some of those approaches we next discuss a 
thermodynamically inspired simplification of ACT that is particularly useful in organic 
chemistry and biochemistry. 
 
 
              

Example 32.1.1:  Activated Complex Theory 
Determine the pre-exponential factor of the reaction O + H2  OH + H at 500 K. The transition 
state is linear, (OHH), with ROH = 1.137 Å and RHH = 0.983 Å. The corresponding rotational 
constant is B

~
e = 7.414 cm-1. The doubly degenerate bend is at 709 cm-1 and the symmetric stretch 

is at 1484 cm-1. The transition state is a 3 term,5 giving the degeneracy as g = 6. The electronic 
partition function of O-atoms at high temperature is estimated as qe(O) = 9, Table 30.1.2. The 
experimental activation energy is 37.2 kJ mol-1.6 

 
 
Answer:  The pre-exponential factor is given by Eq. 32.1.18, which factors into translational, 
rotational, vibrational, and electronic partition function ratios. The translational partition function 
ratio is given using Eq. 30.2.19: 
 

 
q

t/NA

(q°t ,A/NA) (q°t ,B/NA)
 = 

NA h3

Vm
 

1
(2kT)3/2

 



m

mAmB

3/2
 = 

NA

(2kT/h2)3/2 Vm
          32.1.19 

 

with m = mA + mB and  the collision reduced mass. With O + H2  (OHH) ,  is: 
 

         = 



mAmB

mA + mB

3/2
= 

(15.9994 g mol-1)(2.01588 g mol-1)
15.9994 g mol-1 + 2.01588 g mol-1  



1

NA
 (1 kg/1000 g) = 2.973x10-27 kg 

 



546 
 

The standard state volume is RT/P = 0.083145 bar L K-1 mol-1 500 K/1 bar = 41.57 L mol-1 = 
0.04157 m3 mol-1. We used R = 0.083145 L bar K-1 mol-1 because we want the concentrations in 
the rate law to be expressed in molar, mol L-1, terms. The translational partition function ratio is: 
 

     
NA

(2kT/h2)3/2 Vm
 = 

          = 
6.022x1023 mol-1

[2 2.973x10-27 kg (1.3806x10-23 J K-1)(500.0 K)/(6.626x10-34 J s)2]3/2 0.04157 m3 mol-1 

          = 2.878x10-6         (translation) 
 

Translation favors reactants. The spectroscopic constants for H2 are in Table 27.6.1. The 
rotational constant for H2 is 60.853 cm-1 with H2 = 2. The transition state is unsymmetrical 
giving  = 1. The rotational partition function ratio is: 
 

 
q

r

(qr,A) (qr,B) = 
q

r'

q°r ,H2

 = 
1/B

~ 

1/H2B
~

H2

 = 
1/7.414 cm-1

1/2(60.853 cm-1)
 = 16.416   (rotation) 

 

Rotation favors the transition state, since the transition state has a large moment of inertia. The 
stretching vibration of H2 and the symmetric stretch of the transition state are too energetic to 
contribute significantly to the pre-exponential factor, which leaves just the degenerate bend of 
the transition state. The factor of kT/hc = 347.5 cm-1 at 500 K: 
 

 
q

v'
(qv,A) (qv,B)  (q

bend)
2 = 







1

1 – e–hc~/kT

2

 = 




1

1 – e–709/347.5

2

 = 1.321  (vibration) 

 

Vibration favors the transition state because of the extra low-frequency vibrational degrees of 
freedom. At high temperature, the electronic partition functions are assumed to be given by the 
electronic degeneracies of the ground state configurations: gO = 9, gH2 = 1, and g = 6: 
 

 
q

e'
(qe,A) (qe,B)  6/9 = ⅔        (electronic) 

 

At 500 K, kT/h = 1.048x1012 s-1 so that the pre-exponential factor using Eq. 32.1.18 is: 
 

    A  
kT
h  

q'/NA

(q°A/NA) (q°B/NA)
 



RT

P°  
 

        = 1.048x1012 s-1 (2.878x10-6) (16.416) (1.321) (  ⅔  ) (41.57 L mol-1) = 1.80x1010 L mol-1 s-1 
          reaction coordinate      translation         rotation    vibration  electronic   KpKc

 

 

At 500 K, the rate constant is k2 = A e–Ea/RT = 2.32x106 L mol-1 s-1. This reaction has been 
extensively studied because of its importance in combustion and atmospheric processes.6-8 The 
3 transition state corresponds to two degenerate states that separate upon bending and have 
significantly different PE surfaces, bending frequencies, and hence reaction rates. 
              

 
 
Thermodynamic Transition State Theory Defines the Gibbs Energy of Activation:  Activated 
complex theory as represented by Eq. 32.1.14 is useful in providing insight into the properties 
of the transition state. However, quantitative applications of ACT are difficult. A useful approach 
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that maintains the insights inherent in ACT while making the theory easy to apply to complicated 
reactions is thermodynamic transition state theory. The basic form of Eqs.32.1.8 and 
32.1.13 is maintained. We assume the activated complex is in equilibrium with the reactants 
with equilibrium constants K≠

c and K≠
p and use the high temperature approximation for the 

reactive asymmetric stretch, Eq. 32.1.13: 
 

 k2 = 
kT
h  K≠

c´  = 
kT
h  





RT

P  K≠
p´       (bimolecular ideal gas)    32.1.20 

 

The equilibrium constant of the formation of the activated complex is related to the Gibbs 
energy of activation, ∆rG≠, by: 
 

 ∆rG≠ = –RT ln K≠
p´         32.1.21 

 

We now picture the reaction profile plotted against the Gibbs energy with the transition state 
barrier characterized by the Gibbs energy of activation, Figure 32.1.3a. 
 
 

 
 

Figure 32.1.3:  (a). The reaction profile is plotted versus Gibbs energy with the maximum 
giving the Gibbs energy of activation. (b). For unimolecular gas or solution reactions, the 
enthalpy and entropy of activation are determined from a plot of ln(k/T) vs. 1/T. 

 
 
Solving for the equilibrium constant in the last equation and substitution into Eq. 32.1.20 gives 
the bimolecular rate constant as: 
 

 k2 = 
kT
h  





RT

P  e–rG/RT       (bimolecular ideal gas)    32.1.22 

 

In practice, this expression defines the Gibbs energy of activation. Another useful perspective is 
obtained by splitting the Gibbs energy into the corresponding enthalpy and entropy components. 
The enthalpy and entropy of activation are defined by: 
 

 ∆rG≠  ∆rH≠ – T∆rS≠                  32.1.23 
 

Substitution of this last definition into Eq. 32.1.22 gives the Eyring equation, which separates 
the entropic and enthalpic effects upon the formation of the activated complex: 
 

 k2 = 
kT
h  





RT

P  e∆rS≠
/R e–rH/RT      (bimolecular ideal gas)    32.1.24 

G 

products 
G 

A+B 

 

reaction progress 

ln
k1

T   
 

 

1/T 

 

slope = –rH/R 

rS/R + ln(k/h) 

(a). (b). 
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Even though Eqs. 32.1.22 and 32.1.24 are reminiscent of Arrhenius form, k2 = A e–Ea/RT, 
neither ∆rG≠ nor ∆rH≠ are equal to the activation energy. To find the relationship to the 
activation energy, we use the differential form of the Arrhenius expression, Eq. 4.5.25: 
 

 



∂ln k2

∂T V
 = 

Ea

RT2         32.1.25 
 

To complete the derivative using Eq. 32.1.22, we note that RT/P = V, which is the standard 
state volume. Finding the logarithm of Eq. 32.1.22 and taking the derivative gives: 
 

 









∂





ln 
kT
h  + ln V – 

∆rG≠

RT
∂T V

 = 
Ea

RT2                  32.1.26 
 

V is constant since the derivative is taken at constant volume. The derivative of rG/T with 
respect to T at constant volume is analogous to the derivative at constant pressure, which is the 
Gibbs-Helmholtz relationship, Eq. 16.3.12. The derivative at constant pressure is –rH/T2, 
while the derivative at constant volume is –rU/T2. rU is the internal energy of activation. 
Eq. 32.1.26 then reduces to: 
 

 
1
T + 

∆rU≠

RT2  = 
Ea

RT2                   32.1.27 
 

Solving for the activation energy gives:  Ea = ∆rU≠ + RT. For ideal gas reactions we relate the 
internal energy and enthalpy using: ∆rH≠ = ∆rU≠ + ∆rngRT. For a bimolecular reaction the 
change in number of moles of gas upon forming the activated complex is ∆rng = –1. Solving for 
∆rU≠ and substituting this result into Ea = ∆rU≠ + RT gives: 
 

 Ea = ∆rH≠ + 2RT     (bimolecular ideal gas)         32.1.28 
 

For a bimolecular reaction ∆rH≠ = Ea – 2RT, which with Eq. 32.1.24 gives the rate constant as: 
 

 k2 = 
kT
h  





RT

P  e2 e∆rS≠
/R  e

–Ea/RT   (bimolecular ideal gas)         32.1.29 
 

Comparing these relationships to the Arrhenius equation, k2 = A e–Ea/RT, gives the pre-
exponential factor as: 
 

 A = 
kT
h  





RT

P  e2 e∆rS≠
/R    (bimolecular ideal gas)         32.1.30 

 

Thermodynamic transition state theory is commonly applied to reactions in solution. For either a 
unimolecular gas phase reaction or for reactions in solution ∆rng = 0 and ∆rH≠ = Ea – RT; using 
Eq. 32.1.7 gives: 
 

 k1 = 
kT
h  e∆rS≠

/R e
–rH/RT      (unimolecular ideal gas or solution)         32.1.31 

 

 Ea = ∆rH≠ + RT       (unimolecular ideal gas or solution)         32.1.32 
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 k1 = 
kT
h  e e∆rS≠

/R  e
–Ea/RT      (unimolecular ideal gas or solution)         32.1.33 

 

 A = 
kT
h  e e∆rS≠

/R       (unimolecular ideal gas or solution)         32.1.34 
 

In other words, the activation energy and enthalpy of activation differ by ~2.5-5 kJ mol-1 
depending on the molecularity and state of aggregation. The linearized form of Eq. 32.1.31 is 
obtained by dividing by T and taking the logarithm, Figure 32.1.3b: 
 

 ln



k1

T  = – 
rH

R  


1

T  + 
rS

R  + ln


k

h       (unimolecular ideal gas or solution)         32.1.35 

 

   Typical bimolecular pre-exponential factors are in the range of A = 1010 - 1011 L mol-1 s-1, 
which gives the entropy of activation using Eq. 32.1.30 as ∆rS  -80 J K-1 mol-1 (see Example 
32.1.2). This strongly negative entropy of activation results because two reactants combine to 
form the one activated complex. This value is a good point of comparison with experiment in 
determining the molecularity of a mechanistic step. Reactions that have an entropy of activation 
more negative than -80 kJ mol-1 are presumed to have a strong orientation preference to give 
reactive collisions. Unimolecular processes have an activated complex that is more “loose and 
floppy” than the reactant. As a result, unimolecular processes are expected to be entropy neutral 
or have a positive entropy of activation, Table 32.1.2: 
 

 A2  (AA)  2 A    or   AB  (AB)  A + B   give    ∆rS  0  32.1.36 
 
 

Table 32.1.2: Enthalpy and Entropy of Activation of Gaseous Reactions.9 
 

Reaction rH (kJ mol-1) rS (kJ mol-1) 
O + O3  2 O2  17.53 -62.55 
N + O2  NO + O  21.37 -83.56 
2 CH3  C2H6   -5.82 -61.87 
N2O5  NO3 + NO2   85.12  29.26 
CH3CH2Cl  C2H4 + HCl 230.83  -1.93 
cis-CHCl=CHCl  trans-CHCl=CHCl 227.45 -16.65 

 
 
              

Example 32.1.2:  Thermodynamic Transition State Theory 
Find the activation enthalpy, entropy, and Gibbs energy of the decomposition of ozone at 298 K. 
The Arrhenius pre-exponential factor is 4.6x1012 M-1 s-1. The activation energy is 10.0 kJ mol-1: 
 

 2 O3 (g)  3 O2 (g) 
 

 
Answer:  Two handy constants at 298.15 K and 1 bar pressure are: 
 

    
kT
h  = 6.2124x1012 s-1   and    





RT

P  = 
0.0831446 L bar K-1 mol-1(298.15 K)

1.000 bar  = 24.7896 L mol-1 

 

Using Eq. 32.1.30 for the bimolecular pre-exponential factor with the given A = 4.6x1012 M-1 s-1 
results in: 
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 A = 
kT
h  





RT

P  e2 e∆rS≠
/R 

     = 6.2124x1012 s-1 (24.7896 L mol-1)(2.7183)2 e∆rS≠
/R = 4.6x1012 L mol-1 s-1 

 

  or   e∆rS≠
/R = 4.043x10-3 

Solving for the activation entropy: ∆rS≠ = 8.3145 J K-1 mol-1 ln(4.043x10-3) = -45.8 J K-1 mol-1 
 

With Eq. 32.1.28:  ∆rH≠ = Ea – 2RT 
 ∆rH≠ = 10.0 kJ mol-1 – 2(8.3145 J K-1 mol-1)(298.15 K)(1 kJ/1000 J) 
          = 10.0 kJ mol-1 – 4.9579 kJ mol-1 = 5.04 kJ mol-1 
 

With Eq. 32.1.23: ∆rG≠ ∆rH≠ – T∆rS≠ 
 ∆rG≠ = 5.04 kJ mol-1 – (298.15 K)( -45.8 J K-1 mol-1)(1 kJ/1000 J) = 18.7 kJ mol-1 
 

For pre-exponential factors in the range A ~ 1010 – 1011 the entropy of activation is in the range: 

 e∆rS≠
/R = 8.79x10-6 to 8.79x10-5   giving   ∆rS≠ = -96.8 to -77.7 J K-1 mol-1 

or in round numbers ~ -80 J K-1 mol-1. 
 
              

 
 

The Transition State Geometry can be Determined Using Molecular Orbital Theory:  ACT and 
similar theories generate the reaction profile within the Born-Oppenheimer approximation. 
Working within the Born-Oppenheimer approximation allows the properties of the transition 
state to be estimated using standard electronic structure codes. In electronic structure programs, 
the properties of the transition state are determined by a normal mode calculation. The transition 
state has the unique property that one and only one normal mode frequency is imaginary. The 
imaginary normal mode frequency results because the reactive normal mode coordinate has a 
maximum in energy and not a minimum. Some electronic structure programs list an imaginary 
frequency as a negative frequency, as a notational expedient. The transition state is located by 
adjusting the geometry until the normal mode calculation gives one and only one imaginary 
frequency. The E

o of the reaction is the electronic energy of the transition state relative to the 
sum of the electronic energies of the reactants, after adding in the zero-point vibrational energies. 
Semi-empirical and low level ab initio approaches are only helpful while developing guesses for 
the geometry of the transition state. Meaningful results require advanced ab initio approaches 
with careful treatment of electron correlation. From the perspective of perturbation theory and 
configuration interaction, significant excited state character typically mixes into the transition 
state. Many transition states more closely resemble excited states of the reactants rather than the 
ground states of the reactants. 
 
32.2 Potential Energy Surfaces for Reactive Collisions 
 

   Reaction dynamics theories such as ACT take a coarse-grained approach to molecular 
collisions. The properties of the transition state are taken as statistical averages over the 
rotational and vibrational degrees of freedom of the activated complex and over the motion along 
the reaction coordinate. A completely different approach is to model the reaction collision-by-
collision, taking careful account of the motion along the reaction coordinate and the rotational 
and vibrational states of the activated complex. In classical collision dynamics, the collision is 
modeled as classical motion upon a quantum mechanical potential energy surface. 
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   Consider an atom-diatom reaction such as Eq. 32.1.1: 
 

 H + HF  H2 + F        (32.1.1) 
 

To determine if a reaction occurs, we must follow the total energy as the reactants collide at the 
transition state. Before the reactants collide, each molecule has translational, rotational, and 
vibrational energy. During the collision, the energies of the reactants are combined into the 
translational, rotational, and vibrational energy of the transition state. If the energy in the 
transition state is partitioned, or funneled, into the reactive asymmetric stretch, bond breaking 
and making may occur. If the combined energy of the reactants is insufficient or if the energy 
flows into the wrong degrees of freedom, the transition state falls apart to produce reactants. The 
first step is to add some detail to the reaction profile plot, Figure 32.2.1. The reaction profile is 
the minimum energy path proceeding to products on the electronic potential energy surface. The 
total energy of the collision is the sum of the electronic, vibrational, rotational, and relative 
translational kinetic energy: tot = elec + v + r + rel. The relative translational kinetic energy is 
converted by the collision into energy in the reactive asymmetric stretch. The lowest possible 
vibrational energies are the zero-point vibrational energies: v = ZPE for  = 0. For reaction 
Eq. 32.1.1, the zero-point energy of the reactants is for HF, the zero-point energy of the products 
is for H2, and the zero-point energy of the activated complex is the sum of the degenerate bends 
and symmetric stretch. The translational energy is the difference rel = tot – (elec + v + r). The 
total energy is conserved during the collision. The total energy must exceed the transition state 
barrier, E

o. The transition state barrier is related to the quantum mechanical barrier height, b, 
by the zero point energies of the reactants, ZPEreac, and the transition state, ZPR: 
 

 E
o = b + ZPE – ZPEreact        32.2.1 

 

The difference in energy at the zero-point vibrations for products and reactants is the reaction 
internal energy at absolute zero, Eo = rU(0). The H + H–F reaction is endothermic. 
 
 

 
 

Figure 32.2.1:  The reaction profile is plotted as the electronic energy only. The total energy 
(top dotted line) includes the relative translational kinetic energy, rel. Total energy is 
conserved in the collision. The illustrated collision starts with the diatomic reactant in an 
excited rotational and vibrational state. 
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The Born-Oppenheimer Approximation is Assumed:  The potential energy surface is generated 
within the Born-Oppenheimer approximation using electronic structure methods while varying 
the geometric parameters. Again, consider the H + HF reaction. We assume that the molecules 
don't rotate and that the molecules collide with the best orientation for a successful collision. 
Restricting the collision geometry greatly simplifies the calculations while retaining the 
important attributes of a reactive collision. The collision takes place along the bonding axis of 
the HF molecule and the HHF activated complex. This orientation is called a collinear 
collision. Other collision orientations have higher E

o, making collinear the most important. The 
coordinate system for the reaction is given by the atom-atom distances, RHH and RHF: 

 

  H    +    H – F    H – H  +  F      32.2.2 
  |   |      | 

      RHH    RHF 
 

The transition state occurs when RHH is roughly equal to RHF: 
 

  HHF         32.2.3 
   |        |       | 
    RHH   RHF 

 

The potential energy surface is generated by determining the ab initio electronic energy as a 
function of RHH and RHF, Figure 32.2.2. The vertical axis in the perspective view is the electronic 
energy. 
 

 
 

Figure 32.2.2:  Potential energy surface for H + HF  H2 + F. (a). Perspective view. (b). 
Contour surface. The equilibrium bond lengths are at the bottom of the reactant (H + HF) and 
product potential energy valleys. Reactants start at the top of the diagram. 

 
 

PE Surfaces Result in Stable Molecular Vibrations and the Reaction Coordinate:  At large RHH 
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complete dissociation to atoms, H + H + F. The bond dissociation energy of HF is the depth of 
the reactant valley at large RHH, as compared to the total dissociation limit, Figure 32.2.2a. The 
bond dissociation limit of H2 is the depth of the product valley at large RHF, as compared to the 
total dissociation limit. The bond dissociation energies of HF and H2 are 6.126 eV and 4.749 eV, 
respectively. As a result, the H + HF reaction is endothermic; the product valley is at higher 
energy than the reactant valley. As a consequence in the contour plot, more contour levels are 
required in the reactant valley as compared to the product valley, Figure 32.2.2b. At large RHH, 
before the collision, the minimum of the PE valley is at the equilibrium bond length of HF. 
Motion at constant RHH, which is the horizontal direction on the contour diagram, corresponds to 
the H–F stretch. At large RHF, after a successful collision, the minimum of the PE valley is at the 
equilibrium bond length of H2. Motion at constant RHF, which is the vertical direction on the 
contour diagram, corresponds to the H–H stretch. The reaction profile is the minimum energy 
path along the PE surface leading from reactants to products. The transition state is at the energy 
maximum along this path. The transition state is a saddle-point, Figure 32.2.3a. The surface is 
shaped like a saddle, which means that motion along the reaction coordinate is at a maximum, 
while motion perpendicular to the reaction coordinate is at a minimum. Motion perpendicular to 
the reaction coordinate corresponds to the symmetric stretch; both RHH and RHF increase and 
decrease together: H


–H–F


. 

 

 

 

Figure 32.2.3:  (a). The transition state is a saddle point along the reaction profile. The 
reaction coordinate is the reactive asymmetric stretch. Motion perpendicular to the reaction 
coordinate corresponds to the symmetric stretch, which has a minimum at the transition state. 
(b). The transition state for thermoneutral HA + HB–HC  HA–HB + HC is at RAB = RBC. 

 
 

The Transition-State Saddle Point can be Early or Late:  The gray dashed line in Figure 32.2.2b 
is at 45, along which RHH = RHF. This line is positioned to highlight the relative location of the 
transition state. One reaction that has been extensively studied using classical collision dynamics 
is the very simple hydrogen-hydrogen atom-exchange reaction, Figure 32.2.3b: 
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Letter subscripts are given to differentiate the H-atoms, which are otherwise indistinguishable. 
Although seemingly trivial, this reaction displays many of the important attributes of all atom-
diatom collisions. Because the products and reactants are the same, this reaction is necessarily 
thermo-neutral. The reactant and product valleys are of equal depth and the equilibrium bond 
lengths are identical. The PE surface of this reaction is symmetrical about the 45 line. As a 
result the transition state occurs on the 45 line. By comparison, the H + H–F reaction has a late 
transition barrier. In other words, the transition state occurs on the product side of the 45 line. 
Late transition barriers often occur with endothermic reactions. Conversely the H + H–Br 
reaction is exothermic and has an early transition barrier. The H + H–Br transition state is on 
the reactants side of the 45 line. We will see that the position of the transition state has a 
significant effect on the energy demand and disposal of the reaction. 
 
32.3 Classical Trajectory Calculations 
 

   Classical trajectory calculations simulate collisions by integrating Newton’s equations of 
motion on the quantum mechanical potential energy surface. Consider a simple one-dimensional 
example of a harmonic oscillator. The potential energy of bond stretching is: 
 

 V= ½ k (R – Ro)2         32.3.1 
 

where R is the current bond length, Ro is the equilibrium bond length, and k is the force constant 
of the bond. Simplifying Eq. 32.3.1, using the definition of the displacement x  R – Ro, gives: 
 

 V= ½ k x2          32.3.2 
 

The force that acts on the system is the negative of the derivative of the potential: 
 

 F = – 
dV
dx          32.3.3 

 

Taking the derivative of Eq. 32.3.2 gives: 
 

 F = –k x          32.3.4 
 

which is Hooke's Law for a mass, m, on a spring with force constant k. Newton’s Law tells us 
that F = ma, where a is the acceleration. The acceleration is the rate of change of the velocity: 
 

 F = –k x = m 
dv
dt          32.3.5 

 

The position of the system, x, is determined by integrating the equation: 
 

 
dx
dt  = v           32.3.6 

 

Integrating Eq. 32.3.5 gives the velocity as a function of time, with an initial velocity of v1: 
 

 
v2

v1
 dv = 

t2

t1
  

F
m dt         32.3.7 

 

Assuming the time interval is so short that the force is essentially constant over the time interval: 
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 v2 = v1 + 
F
m (t2 – t1)      (t small)  32.3.8 

 

For the specific case of a vibrating molecule m is replaced by the reduced mass, . Integrating 
Eq. 32.3.6 gives the position as a function of time, starting from an initial position of x1: 
 

 
x2

x1
 dx = 

t2

t1
 v2 dt         32.3.9 

 

Assuming the time interval is so short that the velocity is essentially constant over the time 
interval gives the position at time t2 as: 
 

 x2 = x1 + v2 (t2 – t1)      (t small)  32.3.10 
 

Since the force, velocity, and position are all changing with time, Eqs 32.3.8 and 32.3.10 are 
solved repeatedly over short time steps, first updating the velocity and then updating the position. 
The value of x for each of these successive time intervals is the trajectory of the system. In 
molecular dynamics simulations the time step must be very short, usually dt = t2 – t1 = 1x10-15 s 
or 1 femtosecond, 1fs. Assuming that the force and velocity are constant over short time intervals 
during each time step is called the finite difference approximation to the solution of the 
differential equations. In classical trajectory calculations of H + HF as an example, Newton’s 
equations are integrated over the two-dimensional potential energy surface. The coordinates are 
RHH and RHF. Eqs 32.3.8 and 32.3.10 must be modified for the two-dimensional problem, but 
otherwise the approach is the same; v and x become vectors. 
   Three collisions are illustrated in Figure 32.3.1. The collisions begin at the top of the PE 
surface diagrams. Classical trajectory calculations are often likened to rolling a marble or riding 
a skate board on the PE surface. The first collision has the HF molecule in the zero-point,  = 0, 
vibrational level and relative translational kinetic energy of 1.4 eV. The first collision is 
unsuccessful, returning to reactants, because the relative translational plus vibrational energy is 
less than the energy barrier.  
 

 
Figure 32.3.1: Classical trajectory calculations. (a). Unsuccessful collision, HF in  = 0: 
insufficient relative translational kinetic energy. (b). Successful collision, HF in  = 0: the 
product H2 produced in an excited vibrational state. (c). Successful collision, HF in  = 1: the 
product produced in the zero-point vibrational state. 
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The second collision also has the HF molecule in the zero-point vibration level, but with relative 
translational energy increased to 1.6 eV. The second collision is successful. The third collision 
has the HF molecule in the  = 1 vibrational level, but the relative translational energy is reduced 
to 0.9 eV. This collision has insufficient translational energy, alone, to exceed the energy barrier. 
The third collision is successful, showing that the energy demand is satisfied by the sum of the 
relative translational and vibrational energy. The relative translational energy need not exceed 
the barrier on its own. 
   Figure 32.3.2 is another view of the successful trajectory in Figure 32.3.1b. The trajectory is 
plotted as a function of time. At the beginning, the RHH distance is large. The initial values of 
RHF oscillate about the HF equilibrium bond length in the reactant valley. A successful collision 
produces H2 and the final values of RHH oscillate about the H2 equilibrium bond length in the 
product valley. A rough value of the time span of the transition region can be determined from 
the end of the time period with regular oscillations of the HF bond length to the onset of regular 
oscillations of the H2 bond length. This region is underlined in the figure and lasts roughly 10-20 
fs, that is only ~ 20x10-15 s. A collision with this type of smooth, direct traversal of the transition 
region is called a direct transition. Direct transitions are typical. The critical bond making and 
breaking events in many chemical reactions require an amazingly short period of time. The 
reason that reactions appear to be slow is that few collisions result in the formation of products, 
because of insufficient collision energy, improper orientation, or poor collision timing. The 
astoundingly sort time period required for chemical change is a key insight that is shown by 
trajectory studies and molecular beam experiments (see below). 
 

 
 

Figure 32.3.2: Trajectory in Figure 32.3.1b plotted as a function of time in femtoseconds. 
The transition region, underlined in gray, lasts roughly 10-20 fs. 

 
 

   The vibrational states of the reactant and product are determined by observing the amplitude of 
the vibration perpendicular to the reaction path. In the first and second trajectories in Figure 
32.3.1, the amplitude of the initial vibration is small showing the initial zero-point vibrational 
states. In the third trajectory, the initial amplitude is significantly larger showing the  = 1 state. 
In the second trajectory, the final vibrational amplitude, in the vertical direction of the diagram, 
is large. The second trajectory produces product in an excited vibrational state. The product of 
the third collision is in the zero-point vibrational level. The partitioning of the energy of the 
products into translational kinetic energy or vibrational energy is called the energy disposal. 
Total energy of the collision is conserved, so that translational and vibrational energy compete 
for the overall energy disposal. The translational energy is determined using the spacing between 
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the vibrational maxima. Closely spaced vibrational maxima mean that the molecule hasn’t 
moved very far during a vibrational period.   
   The third trajectory shows that the energy of a successful collision can be supplied by 
vibrational or translational energy. The partitioning of the initial energy as translational or 
vibrational energy is called the energy demand. Can we predict the energy demand and disposal 
of reactions? 
 

Reaction Energy Demand and Disposal Depends on the Shape of the PE Surface:  The second 
and third trajectories, Figure 32.3.1b-c, show that PE surfaces with a late barrier have a 
significantly lessened demand for translational energy when the reactant is in an excited 
vibrational state. For an additional comparison, consider a late barrier with two trajectories 
having equal total translational and vibrational energy, Figure 32.3.3a-b. Collisions at this total 
energy with zero-point vibrational energy are not successful, while collisions with  = 1 are 
successful. 
 

 
 

Figure 32.3.3: Trajectory pairs with equal total energy. Late barriers have an energy demand 
that favors vibration, while early barriers have an energy demand that favors translation. 
(a). rel + v = 1.55 + 0.268 eV = 1.818 eV, (b). rel + v = 1.013 + 0.805 eV = 1.818 eV, 
(c). rel + v = 0.50 + 0.164 eV = 0.664 eV, (d). rel + v = 0.172 + 0.492 eV = 0.664 eV 
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Consider an early barrier with two trajectories having equal total translational and vibrational 
energy, Figure 32.3.3c-d. Collisions at this total energy with zero-point vibrational energy are 
successful, while collisions with  = 1 are not successful. Late barriers have an energy demand 
that favors vibration, while early barriers have an energy demand that favors translation. In effect 
for late barriers, energy in vibration helps the trajectory turn the corner towards the transition 
state. For early barriers the transition state barrier is straight ahead along the reactant valley, 
favoring translational energy. 
   The energy disposal of the reaction is also predicted using the shape of the potential energy 
surface. Endothermic reactions have less energy available for vibration and rotation of the 
products than exothermic reactions. On this basis alone, the prediction is that exothermic 
reactions are more likely than endothermic reactions to produce products in excited vibrational 
states. In finer detail, endothermic reactions often have later barriers. Motion across the transition 
state is aligned along the product valley, Figure 32.3.3b. Little impetus exists for throwing the 
products in the perpendicular direction, which corresponds to vibration. Exothermic reactions 
often have early barriers. Motion across the transition state is perpendicular to the product valley, 
Figure 32.3.3c. Motion across the transition state often throws the products against the repulsive 
wall of the product valley, which corresponds to the large amplitude motion perpendicular to the 
product valley giving vibrational excitation. Summarizing, vibrational energy disposal is favored 
by early-barrier exothermic reactions and translational energy disposal is favored by late-barrier 
endothermic reactions. 
 

The Timing of the Reaction During the Vibrational Period of the Reactant Matters:  One of the 
most useful and surprising results of classical trajectory studies is that reaction timing can have a 
significant effect on the probability of reaction. Otherwise equivalent trajectories with the 
collision occurring at different phases of the HF vibration have different results, Figure 32.3.4. 
 

 
 

Figure 32.3.4: The timing of the collision with respect to the course of the vibrational motion 
is important for some collision conditions. The two trajectories have the same translational 
and vibrational energy and differ only in the initial RHH distance. The collision occurs at 
different points, or phases, during the vibration. 

 
 

For example, if the H atom approaches while the HF molecule is at its minimum internuclear 
distance, the reaction is less likely to occur, Figure 32.3.5. If the H atom approaches while the 
HF molecule is near its maximum internuclear distance, the leaving atom is already moving in 
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the right direction for bond breaking and the reaction is more likely to occur. In trajectory 
calculations the reaction probability is averaged over a uniform distribution of collision phases. 
 
 

 
 

Figure 32.3.5. The effect of reaction timing on reactive collisions. Not all reactions with 
sufficient total energy are successful. 

 
 

Some Conditions Give Multiple Crossings:  The second trajectory in Figure 32.3.4 also shows 
that some trajectories cross the transition state dividing surface more than once. Many theories of 
reaction rates assume that once the activated complex crosses the transition state barrier that 
products always form. If the activated complex crosses the transition state barrier more than 
once, then we say that there are multiple crossings. Multiple crossings sometimes lead the 
activated complex to return to reactants; therefore such theories overestimate the rate of the 
reaction. However, even with multiple crossings the total time is a few vibrational periods. 
 

Reactions in Solution and Enzyme Catalyzed Reactions are Treated Using Hybrid Molecular 
Dynamics:  Classical trajectory calculations on quantum mechanical potential energy surfaces 
are one aspect of the much larger field of molecular dynamics simulation. Trajectories are often 
calculated on purely classical potential energy functions based on molecular mechanics force 
fields, Sec. 8.8. Molecular dynamics, MD, is a powerful approach to understanding processes in 
solution, in proteins and oligonucleotides, and at interfaces. MD simulation of reactions in 
solution or in enzyme catalysis requires a potential energy surface with thousands of dimensions. 
The use of purely quantum mechanical potential energy functions in MD simulations of solutions 
or enzymes is clearly impractical. However, hybrid methods are used for large systems, where 
parts of the system, such as the solvent, are treated using molecular mechanics force fields and 
the important coordinates along the reaction path are treated quantum mechanically.10,11 The 
examples we have discussed such as H + HF are done on a potential energy surface that is 
prepared in advance of the MD simulation; the quantum mechanical results are fit to a 
parameterized surface based on the Morse potential (LEPS surfaces). For large systems this 
approach is impractical; rather the potential energy surface is generated “on the fly” by tightly 
integrating the quantum electronic structure and molecular dynamics algorithms. The electronic 
potential energies aren’t calculated until needed, at the current coordinates in the MD 
simulation.10,11 These hybrid or QC/MM molecular dynamics simulations have become the 
principle tool for extending the theories of gas phase reaction dynamics into systems of 
biochemical interest. So far we have been focusing on theoretical aspects of reaction dynamics. 
How do we ensure that our theoretical methods are on the right track? 
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32.4 Molecular Beams 
 

Reactions can be Studied Collision by Collision:   Molecular beam scattering experiments 
provide a collision by collision view of chemical reactions. These techniques are the 
experimental counterpart to classical trajectory studies. An amazing variety of molecular beam 
experiments are available. One of the first molecular beam experiments is typical. The reaction 
K + HBr  KBr + H is studied by forming a narrow beam of K-atoms which collide with a 
narrow beam of HBr molecules with a collision angle of 90, Figure 32.4.1. Such a collision 
geometry is called a crossed molecular beam experiment. Molecular beams are formed by 
expansions of a gas through a small hole or nozzle with the beam divergence being narrowed by 
one or several skimmers that are placed in the beam, Figure 32.4.1b. Beams of alkali metal atoms 
are easily formed by placing the metal in a small oven with a hole. The velocity of either of the 
reactants can be selected using a velocity selector, which are spinning disks with offset slots, 
Figure 32.4.1c. At a given rotation speed, only molecules with the proper velocity can pass 
through the slots in both disks. Higher velocities are selected by higher rotation speeds. The 
orientation and rotational states of molecular reactants can also be selected using inhomogeneous 
electric fields. Excited vibrational states can be produced by laser irradiation. The products of the 
reaction are determined as a function of scattering angle by a movable detector that is mounted 
on an arc surrounding the collision region. Use of a mass spectrometer as a detector allows the 
identity of the products to be determined. The velocity of the products is also often determined. 
The vibrational state of the products is determined using infrared emission or by laser induced 
fluorescence. The entire apparatus must be held at high vacuum to ensure the mean free path of 
all species is greater than the instrument dimensions.  
 

 
 

Figure 32.4.1: Crossed molecular-beam scattering. (a). A heated oven is the source of K 
atoms and a nozzle is the source of HBr molecules which meet with a 90 collision geometry. 
(b). Skimmers are metal disks with conical cross section and a small hole, which may be used 
in either beam to narrow the beam divergence. (c). Velocity selectors are spinning disks with 
offset slots, which may be used in either beam to select a narrow range of velocities.  
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The Scattering Angular Distribution Depends on the Potential Energy Surface:  The angular 
dependence of the products of a molecular beam experiment is determined in the “laboratory” 
frame of reference. Collisions are best discussed in the center of mass frame of reference, 
Sec. 32.5. In the center of mass frame of reference, the collision partners approach with 
trajectories opposed at 180,  , Figure 32.5.1. The conversion of the laboratory-frame 
angular distribution to the center of mass frame of reference is geometrically detailed. For our 
purposes, we just present some of the results of molecular beam experiments. Most importantly, 
the intermolecular potential energy function can be determined from a detailed analysis of the 
velocity profile of the scattering angular distribution. 
    The scattering distribution is in part determined by the lifetime of the transition state. Long 
lived transition states give little preference for scattering direction. The long lifetime of the 
transition state allows the activated complex to undergo many rotations before falling apart. An 
example is the reaction H + CN  HC + N. The HCN transition state corresponds to a stable 
molecule. While an inherently stable species, the HCN formed in the collision must dissociate 
because of conservation of energy. The transition state has too much total energy to remain 
bound. However, the stability of HCN gives a minimum on the potential energy surface and a 
long-lived transition state. 
   Transition states with short lifetimes tend to give scattering with narrow angular distribution, 
which are characterized as being in the “forward” or “backwards” directions, in the center of 
mass reference frame. Stripping type-mechanisms typically give forward scattering and rebound 
type-mechanisms give backward scattering, Figure 32.4.2. Several examples help to clarify the 
relationships. 
 

 
 

Figure 32.4.2: (a). A stripping type-collision gives scattering in the “forward” direction with 
respect to the incident K-atom. (b). A rebound type-collision gives scattering in the 
“backward” direction with respect to the incident K-atom. The K-atom is much less massive 
than the CH3I molecule.12 

 
 
   The K + Br2  KBr + Br is an example of a stripping collision. The experimental reaction 
cross-section is factor of 4.8 larger than the hard-core collision cross-section. The large reaction 
cross-section results because an electron is transferred between the reactants at long distances. 
After the charge transfer, the K+ and Br–

2 ions experience a strong Coulomb attraction that 
accelerates the ions towards each other: 
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    e– 

 K – – – – – –  Br2 

      
 K+          +          Br–

2 
     
        (K-Br-Br)                      KBr ( > 0) + Br     32.4.1 
 

In effect, the electron is stripped from the K-atom by the Br2 molecule. Because the electron is 
very light compared to the collision partners and the resulting Coulomb attraction is strong, the 
momentum of the collision is carried forward, Figure 32.4.2a. This particular stripping 
mechanism is called the harpoon mechanism, because after the electron is “shot” between the 
collision partners, the resulting strong attraction pulls the partners together, giving a reaction 
cross-section bigger than the hard-core cross section. The reaction is strongly exothermic. After 
the collision, the product KBr is produced in a vibrationally excited state, as is often the case 
with exothermic reactions. 
   H-atom transfer reactions are also examples of stripping collisions. In the Cl + HI  I + HCl 
reaction, an H-atom is transferred between two heavy atoms in a short-lived transition state. 
Because the H-atom is much lighter than the I-atom, the I-atom momentum remains essentially 
unchanged during the collision, which carries the momentum in the forward direction. The heavy 
atoms are spectators during the light atom transfer. As spectators, the momenta are little 
changed by the transfer of the H-atom. The reaction is strongly exothermic, and correspondingly 
gives products in excited vibrational states. The HCl vibrational state with the maximum 
probability is  = 3. 
    The K + CH3I  KI + CH3 reaction has a rebound type-mechanism, Figure 32.4.2b. The 
heavy K-atom collides with the heaver CH3I molecule. The momenta of the heavy particles is 
reversed, similar to collisions of billiard balls, which gives backwards scattering. 
   Velocity selection of the reactants allows the reaction cross-section to be determined as a 
function of collision kinetic energy. As we will discuss in Sec. 32.7 reaction cross-sections are 
strongly energy dependent. For many reactions, the cross-section is small near the relative 
energy threshold, proceeds through a maximum, and returns to small values at very high 
collision energies. 
   One difficulty in comparing molecular beam measurements with theoretical trajectory 
calculations is that molecules are rapidly rotating in a wide range of rotational levels near room 
temperature. However, using molecular beams formed using rapid expansion through small 
nozzles provides a unique opportunity. The expansion of a gas starting at pressures on the order 
of 100 torr through a small nozzle into a vacuum provides an adiabatic expansion that cools the 
molecules in the beam to low temperature. The molecules travel along the beam direction near 
supersonic velocities, giving a supersonic expansion. At the low temperatures produced, most 
molecules are in low lying rotational J-states within the zero-point vibrational level. Even though 
traveling at high velocity along the direction of the beam, supersonic expansion creates a low 
translational temperature transverse to the beam. This low transverse temperature greatly 
decreases the collision rate within the beam, which slows collisional rotational and vibrational 
energy transfer. As a result, microwave absorption can be used to excite molecules into specific 
rotational states for use in scattering experiments. Supersonic expansion also allows the 
formation of molecular complexes that are disrupted by collisions at room temperature. 
Complexes that are bound only by Van der Waals forces can easily be studied in supersonic 
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expansions, which yields useful experimental information on these important intermolecular 
forces. 
   Molecular beam experiments are necessary for validating reaction dynamics theories. High 
levels of electronic structure theory are needed to reproduce the results of molecular beam 
experiments. Theory development in reaction dynamics is progressing at a rapid pace as a result 
of the detailed information available from molecular beam studies. 
 
Break-down of the Born-Oppenheimer Approximation:12 All chemical reactions that require bond 
scission result from the break-down of the Born-Oppenheimer approximation, as discussed in 
Secs. 28.2 and 28.9. The vibrations of the molecular reactants and products in a reaction occur on 
different adiabatic, Born-Oppenheimer surfaces. The systems jumps or crosses-over from the 
reactant to the product potential energy surface at the transition state. The harpoon mechanism of 
the reaction, K + Br2  KBr + Br, is an example of a non-adiabatic curve-crossing. The potential 
energy curves of the K + Br2 reactants and K+Br–

2 ion-pair cross at large distances, Figure 
32.4.3. The K + Br2 potential is relatively constant at large K – Br2 distances. The K+ + Br–

2 
potential energy surface is dominated by the Coulomb potential at large distances. The avoided-
crossing, which carries the reaction from the K + Br2 surface to the ion-pair, results from long-
distance electron transfer. The electronic energy is coupled to the nuclear motion. 
 
 

 
 

Figure 32.4.3:  (a). Curve-crossing between the K + Br2 and K+Br–
2 potential energy 

surfaces. (b). Avoided-crossing carries the collision from the K + Br2 to the K+Br–
2 surface, 

which corresponds to the long distance electron transfer. (Adapted from Ref. 12) 
 
 
  We have been working hard to characterize bimolecular reaction dynamics, all the while 
ignoring unimolecular processes. Our theories of the transition state in bimolecular dynamics 
inform our understanding of equally important unimolecular processes. 
 
32.5 Unimolecular Processes 
 

   Unimolecular processes have long been intriguing.13 At first glance mono-molecularity 
suggests that only one molecule is involved, just the reactant. However, the Lindemann-
Henshelwood mechanism, Example 4.2.2, shows that as long as the unimolecular decomposition 
is the rate limiting step, the process can still be activated by molecular collisions: 
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  k2        k1 

  A + A  A + A*  A*  B + C            (4.2.37) 
  k-2 
 

However, the unimolecular step must be the slow step. But if the activated molecule, A*, has 
sufficient energy to react, why does it not promptly fall apart? Why is unimolecular 
decomposition often slow? Unimolecular processes also occur after photochemical excitation to 
an excited state: 
 

     k1 

  A + h   A*    B + C        32.5.1 
 

After excitation, the primary photochemical dissociation or isomerization can be a slow process. 
Pre-dissociation, which is one possible unimolecular pathway, often requires multiple vibrational 
periods before avoided curve-crossing generates products. While sufficient energy exists after 
the initial collision or photochemical excitation, some time must be required for the available 
energy to funnel into the reactive asymmetric stretch that constitutes the reaction coordinate. 
During this time interval, the activated reactant is susceptible to vibrational relaxation caused by 
collisions and internal conversion, which generate the ground state reactant and heat, Sec. 28.6. 
One advantage of studying photochemical unimolecular processes is that the excitation energy 
can be easily controlled, simply by changing the wavelength of the incident light. 
   Unimolecular photochemical processes have common characteristics with fluorescence. In 
fluorescence, internal conversion involves energy transfer to high energy vibrational states of the 
ground state. At high energies, vibrational levels form a continuum of states. Can a unimolecular 
process be modeled similarly, with consideration of the high energy vibrational continuum of the 
activated molecule? Internal conversion and unimolecular reactions are necessarily non-
adiabatic, because the unimolecular transition state must cross from the reactant to the product 
potential energy surfaces. 
   The energy levels involved are shown in Figure 32.5.1. The probability of unimolecular 
reaction depends on the excitation energy. Consider an activated molecule with excitation energy 
*. The excitation energy must be greater than the zero-point energy shift E+

o that forms the 
barrier. We wish to calculate the unimolecular rate constant ka(*) for a range of excitation 
energies from * to * + d. For chemical reactions, the unimolecular rate constant, k1, is the 
thermal average of ka(*) over the excitation energy distribution. The rate law of production of 
products for the given excitation energy range is then: 
 

 A*  
ka(*)

  B + C   
d[B]

dt  = ka(*) [A*]    32.5.2 
 

The activated molecule progresses to the transition state. For unimolecular processes the analog 
of the activated complex is called the critical configuration, A+. The critical configuration can 
progress along the reaction coordinate to form products or fall back to A* at a rate given by the 
frequency of the reactive asymmetric stretch, +. Following our derivation of transition state 
theory, the activated molecule and the critical configuration may be considered to be in 
equilibrium: 
 

      + 
 A*    A+  B + C         32.5.3 
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Figure 32.5.1:  Energy relationships in a unimolecular reaction.13 The excitation energy * must 
be greater than E+

o to form an activated molecule, A*. The excitation energy in the activated 
molecule is in vibration and rotation, *

vr. The energy in the critical configuration, A+, is in 
vibration, rotation, and the reaction coordinate: + = * – E+

o = +
vr + +

rc.  
 

 
The equilibrium constant for the formation of the activated complex is K+ = [A+]/[A*]. This 
equilibrium constant is given by the ratio of the number of accessible states of the critical 
configuration divided by the number of accessible states of the activated reactant. The energy 
available to the critical configuration is + = * – E+

o. Over the narrow excitation energy range 
d, the number of assessable states is given by the density of states. The density of states of the 
activated molecule is at energy * and the density of states of the critical configuration is at 
energy +, Figure 32.5.1: 
 

 K+ = 
[A+]
[A*] = 

+(+)
*(*)

         32.5.4 
 

The rate law for the unimolecular formation of products in terms of + is then: 
 

 
d[B]

dt  = + [A+] = + K+[A*]        32.5.5 
 

Comparing Eqs. 32.5.2, 32.5.4, and 32.5.5 gives the unimolecular rate constant with excitation 
energy *: 
 

 ka(*) = + 
+(+)
*(*)

         32.5.6 
 

The density of states of the critical configuration is given by the product of the density of states 
of the reactive asymmetric stretch, rc(+), and the density of states of the remaining rotational 
and vibrational degrees of freedom, +'(+). The density of states of a harmonic oscillator with 
vibration frequency o is (v) = 1/ho, Eq. 28.3.4. Applied to our current case, the density of 
states of the reactive asymmetric stretch is rc(+) = 1/h+. The frequency of the reaction 
coordinate cancels between Eq. 32.5.6 and the density of states giving the unimolecular rate 
constant as:13 
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 ka(*) = 
1
h 
+'(+)
*(*)

         32.5.8 
 

The density of states of the activated molecule, A*, includes all rotations and normal modes of 
vibration, which form a continuum at the typically high energies required to surmount the energy 
barrier. However, the vibrations and rotations of the critical configuration are close in energy to 
the zero-point. As a consequence, we cannot consider the critical configuration energy states as a 
continuum. The number of accessible states must be determined by explicit summation. For a 
given excitation energy, a range of vibrational and rotational energy states contribute: low lying 
ro-vibrational states contribute if the energy in the reaction coordinate is large, higher energy ro-
vibrational states contribute if the energy in the reaction coordinate is small. The range of 
vibrational and rotational states that contribute to the reaction rate for a given * is from 
+

vr = 0 to +. Let N+(+) be the total number of vibrational and rotational states with energies 
from +

vr = 0 to +. The unimolecular rate constant with excitation energy * is then:13 

 

 ka(*) = 
1
h 

N+(+)
*(*)

         32.5.8 
 

The critical configuration state count and the density of states of the activated molecule are 
tricky to calculate; computer alogrithms are available to aid the calculations. More importantly, 
the final result is easily interpretable on the same basis as activated complex theory. We need to 
consider those molecular properties that enhance the number of accessible states, such as low 
normal mode vibrational frequencies and large rotational constants. The approach is called 
RRKM theory, named after the original developers: O. K. Rice, H. C. Ramsperger, L. S. Kassel, 
and R. A. Marcus. Our derivation is simplified; more general treatments are available.14-15 

   Transition state theory and classical trajectory calculations provide the foundation of theories 
of reaction rates in the gas phase. While not as quantitatively accurate as we would like, these 
approaches provide a useful perspective that we can use to picture the processes that occur upon 
the formation of the transition state or critical configuration. Can these models be extended into 
solution? Are gas phase theories useful in understanding reactions in solution? 
 
32.6 Reaction Rates in Solution 
 

   A variety of behaviors are observed for solution phase reactions in comparison with the 
corresponding gas phase reactions. Solution phase reactions can be faster, the same rate, or 
slower than the gas phase process. The determining factor is often the polarity of the reactants or 
the polarity of the activated complex as compared to the reactants. Reaction dynamics in solution 
is a vast field. For our introduction to the field, we focus on two special cases, non-polar 
reactants and ionic reactants in aqueous solution. 
 

Some Reactions are Diffusion Limited:  The rate constant of many reactions in solution is equal 
to the diffusion coefficient of the reactants in the given solvent. This effect is especially common 
with non-polar reactants in aqueous solution. In Sec. 19.2 we noted that non-polar solutes are 
often structure makers. The entropy of the primary solvation sphere is more ordered than the 
bulk of the solvent. The ordered primary solvation sphere acts as a cage around the solutes. As 
two non-polar reactants diffuse together, the solvent cages merge. The reactants are then held in 
close proximity in the combined solvent cage, which allows multiple collisions to occur. The 
multiple collisions alleviate steric restrictions that slow reactions in the gas phase, increasing the 
probability of the production of products. The collision of reactants in solution and the resulting 
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union of the solvent cages is better called an encounter. The reaction rate is then given by the 
encounter rate, which in turn is simply given by the rate of diffusion of the reactants. For more 
complex cases, thermodynamic transition state theory provides a useful perspective. 
 

Activity Coefficients in Rate Laws:  Thermodynamic transition state theory is easily extended to 
solution dynamics. In solution, the equilibrium constant for the formation of the activated 
complex is expressed with activities, which in turn are given by the product of the activity 
coefficients and the solution concentrations: 
 

 K≠
c = 

a

aA aB
 = 

/co

A/co B/co
 



[AB]

[A][B]        32.6.1 

 

where co is the standard state concentration, with  and [AB] as the activity coefficient and 
solution concentration of the activated complex. While the equilibrium constants are written in 
terms of the solution activities, the rate constant expression is written in terms of concentrations. 
Solving Eq. 32.6.1 for the concentration ratio gives: 
 

 
[AB]
[A][B]  = K≠

c co-1 A B

         32.6.2 
 

The term co-1 essentially handles the units conversion to give L mol-1 s-1. Separating out the 
reactive asymmetric stretch using 32.1.13 and substitution into Eq. 32.1.5 gives: 
 

 k2 = 
kT
h  K≠

c´ co-1 A B

          32.6.3 
 

If the activated complex is stabilized in solution relative to the reactants, then  is decreased 
compared to A or B and then A B/ is increased. As a result the activated complex is easier to 
form and the rate constant is increased, Figure 32.6.1. 
 

 
 

Figure 32.6.1: Stabilization of the activated complex by solvation, relative to the reactants, 
decreases the barrier to the formation of the activated complex, which in turn increases k2. 

 
 

The Kinetic Salt Effect:  The extension of thermodynamic transition state theory into solution is 
particularly easy for reactions of dilute ions. The Debye-Hückel limiting law is used to determine 
approximate values of the ionic activity coefficients for use in Eq. 32.6.3. For each reactant and 
the activated complex the Debye-Hückel activity coefficients are given as a function of the ionic 
strength. Combining Eqs. 19.5.30, 19.5.24, and 19.4.22 gives the activity coefficients using: 
 

  G 
(kJ mol-1) 

reaction progress 
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A + B 
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     ln i = -1.171 z2
i I

½   or    log ,i = -0.509 z2
i  I

½ with    I = ½ z2
i 

mi

m   32.6.4 
 

for ion i. The constants, -1.171 or -0.509, apply to dilute aqueous solutions at 25C. If the 
charges of the reactants are zA and zB, the activated complex has charge zA + zB: 
 

 AzA + BzB   (AB)zA+zB  products      32.6.5 
 

Taking the logarithm of Eq. 32.6.3 and substituting Debye-Hückel estimates for each ion gives: 
 

 log k2 = log



kT

h  K≠
c´ co-1   + log A + log B – log  

           = log



kT

h  K≠
c´ co-1  – 0.509 [z2

A + z2
B – (zA + zB)2] I½ 

           = log



kT

h  K≠
c´ co-1  + 0.509 (2zAzB) I½   (aqueous, 25C) 32.6.6 

 

The argument of the logarithmic term is the rate constant at zero ionic strength, k2(I = 0). The 
strong ionic strength dependence of reactions of ions is called the kinetic salt effect or the 
primary salt effect. The reaction rate increases or decreases with ionic strength depending on 
the ionic charges. The logarithm of the ratio of the rate constant to the rate constant at zero ionic 
strength is plotted as a function of I½ in Figure 32.6.2. The slope is 0.509 (2zAzB). For example in 
the reaction of S2O8

2– and I–, the activated complex is more highly charged than the reactants and 
correspondingly has a smaller activity coefficient, giving an increase in k2 with increasing ionic 
strength. For S2O8

2– and I– the activated complex is preferentially stabilized by the Coulombic 
forces in solution, because of the large charge of -3, as in Figure 32.6.1. If the mechanism is 
unknown, the kinetic salt effect can be used to determine the charges of the reactants in the rate 
determining step, as zAzB. 
 

 
 

Figure 32.6.2: Kinetic isotope effect. Reactions:16 

(+2, +2) 2[Co(NH3)5Br]2+ + Hg2+ +2 H2O  2[Co(NH3)5H2O]3+ + HgBr2 
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32.7 Collision Theory 
 
    In the previous chapter we discussed the kinetic molecular theory approach to molecular 
collisions. Many extensions of basic KMT have been developed. In particular, the influences of 
intermolecular forces and of the translational energy demand of reactive collisions have been 
determined. 
 

The Collision Cross-Section and Intermolecular Forces:  Careful experiments show that 
collision cross-sections are functions of the collision energy. Until now, we have assumed that 
the collision partners act like billiard balls. If attractive and repulsive forces act between collision 
partners, the effective size of the collision partners depends on the relative collision energy, 
Figure 32.7.1.17 The collision trajectories are shown as a function of the impact parameter, b. The 
impact parameter is the straight-line distance between the centers of mass at closest approach. 
For direct, “head-on” collisions, the impact parameter is zero. For hard-core collisions the impact 
parameter must be less than or equal to the hard-core diameter, b  dHC. Considering 
intermolecular forces, the collision cross-section is greater than the hard-core value for low 
collision energy and smaller than the hard-core value for large collision energy.18 For low 
collision energy the partners are pulled together so they don’t need as small an impact parameter 
to interact as is necessary for hard spheres. For high collision energy, the angle of deflection of 
the collision trajectories is decreased, showing less change than hard-core collisions. In effect, 
the spheres are “squishy” so they can slip by each other for impact parameters less than but close 
to the hard-core diameter. As a result the collision cross-section is dependent on relative collision 
energy, (rel). We have not taken this energy dependence into account in deriving the 
bimolecular rate constant using kinetic molecular theory, Eq. 31.3.25. 
 
 

 
 

Figure 32.7.1:  Collision trajectories for a Lennard-Jones 6-12 potential, Eq. 8.8.17. (a). The 
collision cross-section is greater than the hard-core value for low collision energy. (b). The 
collision cross-section is smaller than the hard-core value for large collision energy. 
(Adapted from Ref. 17) 

b 

(a). 

b 

(b). 
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Thermal Reaction Cross-Sections Include Collision Size and Reaction Probability:  The 
bimolecular collision rate derived using kinetic molecular theory, k2 = HC c–rel (1000 L/m3)NA, 
usually greatly overestimates the value of the bimolecular rate constant. The use of the hard-core 
cross-section is the source of the overestimate. Because of the collision energy dependence, not 
all collisions have the same effective cross-section. In addition, the hard-core collision rate is the 
rate of all collisions, many of which do not give products. We can use Eq. 31.3.25 to calculate 
the thermal reaction cross-section, which is the effective cross-section for the production of 
products averaged over all collisions.19 For example for the H2 + I2  2 HI reaction, the 
experimental rate constant is 0.0764 L mol-1 s-1 at 700 K. From Example 31.3.2, the relative 
speed is 2722 m s-1 giving the thermal reaction cross section, –r, as: 
 

 –r = 
k2

c–rel (1000 L/m3) NA

 = 
0.0764 L mol-1 s-1

2722 m s-1(1000 L/m3)6.022x1023 mol-1 

 

     = 4.66x10-32 m2 = 0.466 nm2 = 4.66x10-12 Å2     32.7.1 
 

This effective cross-section is much smaller than the molecular sizes. The corresponding 
interpretation is that the reaction cross-section not only expresses the physical size of the 
collision partners but also includes the likelihood of a reaction. The likelihood of a reaction 
depends on the relative collision energy. We might expect that the greater the collision energy, 
the greater the probability of reaction, and the greater the reaction cross-section. As a result, we 
once again find that the collision cross-section is a function of energy, (rel). 
 
Kinetic Molecular Theory and Reactive Bimolecular Collisions:  To incorporate the energy 
dependence of the cross-section into the theory of bimolecular collisions, we need to return to the 
derivation of the KMT collision rate. The bimolecular rate constant is the average of the rate of 
collisions with cross-section (rel) over the distribution of relative kinetic energy, p(rel) drel: 
 

 k2 = NA 


o  (rel) crel p(rel) drel       32.7.2 
 

The relative speed and kinetic energy are related by rel = ½c2
rel or crel = (2rel/)½. Substituting 

for the relative speed in the last equation gives the rate constant entirely in terms of the relative 
collision kinetic energy: 
 

 k2 = 



2


½

 NA 


o  (rel) ½
rel p(rel) drel       32.7.3 

 

Our supposition is that only collisions with relative kinetic energy exceeding a threshold, *, are 
reactive. For typical reactions this threshold energy is large compared to kT and the 
corresponding fraction of collisions with sufficient kinetic energy is quite small, Eq. 31.4.9. As a 
result, the collision cross-section is zero for energies less than the threshold. As a first 
approximation, we assume that the cross-section is equal to the hard-core cross-section for 
energies higher than the threshold: 
 

 (rel) = 0 if  rel < * and    (rel) = HC if  rel  *   32.7.4 
 

If only collisions with relative kinetic energy above * have a non-zero cross-section, we can 
change the integral limits to * to  and substitute HC for (rel). Finally, the Maxwell 
distribution of relative kinetic energy is given by combining Eqs. 31.5.19, 31.4.3, and 32.7.3: 
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 k2 = 



2


½

2NA



1

kT

3/2
 


* HC rel e–rel/kT drel     (HC for rel> *) 32.7.5 
 

Leaving the integral to the Problems and converting to molar units gives: 
 

     = HC 




8


½

 



1

kT

3/2
 (1000 L/m3)NA (kT)2







1 + 
*

kT  e–*/kT 

     = HC 




8kT


½

 (1000 L/m3)NA 





1 + 
*

kT  e–*/kT     (HC for rel > *) 32.7.6 

     = HC c–rel (1000 L/m3)NA 





1 + 
*

kT  e–*/kT      (HC for rel > *) 32.7.7 
 

For purposes of comparison with Arrhenius form, we assume the threshold energy is roughly 
equivalent to the activation energy. Then the term multiplying the exponential factor in Eqs. 
32.7.6 and 32.7.7 is the pre-exponential factor, A: 
 

 A = HC 




8kT


½

 (1000 L/m3)NA 





1 + 
*

kT  

      = HC c–rel (1000 L/m3)NA 





1 + 
*

kT        (HC for rel > *) 32.7.8 
 

The Arrhenius pre-exponential factor is often observed to be independent of or weakly 
dependent on the temperature, Eq. 3.5.19. If * >> kT, the overall temperature dependence in 
Eq. 32.7.8 is ~ T–½. While plausible for some reactions, this temperature dependence is not often 
observed. The problem is that we assumed that the cross-section of reactive collisions is constant 
at the hard-core value. The temperature dependence in Eq. 32.7.8 suggests that not all collisions 
with relative kinetic energy greater than the threshold are successful. 
 

Reaction Cross-Sections are a Function of Collision Energy:20  We next add the assumption that 
the probability of a reactive collision increases with relative kinetic energy. The threshold is the 
minimum relative kinetic energy that gives products; any excess beyond the threshold increases 
the probability of reaction. The problem is that not all collisions are direct, “head-on” collisions. 
Most collisions occur with non-zero impact parameter and therefore the available collision 
energy is less than the full collision energy. The full collision energy is rel = ½c2

rel. Consider 
several collisions at increasing impact parameter, Figure 32.7.2. For simplicity we assume that 
one molecule is stationary, within the center-of-mass reference frame, while the partner travels at 
the relative collision velocity vrel. The direction of the collision is given by the velocity vector of 
the moving molecule, Figure 32.7.2a. The magnitude of the relative velocity vector is the relative 
speed, crel. As the impact parameter increases, less collision energy is available, Figure 32.7.2b. 
If b is at the maximum value of the collision, b = bmax, essentially no collision energy is available 
for bond breaking and making steps. In other words, if b = bmax the collision is a grazing 
collision. The collision energy is transferred at the instant of collision. A simple approximation is 
that the available collision energy is given by the line-of-centers kinetic energy, lc. The line-of-
centers is the line extending between the molecular centers at the instant of the collision. The 
kinetic energy along the line-of-centers is given by the speed along the line of centers: lc = ½c2

lc
. The line-of-centers speed is the magnitude of the projection of vrel along the line-of-centers, 
Figure 32.7.2c. The line-of-centers angle, , is also defined at the instant of the collision. 
Remember that in a right-triangle the cosine of the angle is the ratio of the side adjacent divided 
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by the hypotenuse: cos  = clc/crel. The speed along the line-of-centers is then a function of the 
collision angle: 
 

 clc = crel cos           32.7.9 
 

where  depends on the impact parameter. For example, if b = 0 then  = 0, clc = crel, lc = rel, 
and the full collision energy is available for bond breaking and making. If b = bmax,  = 90 and 
the line-of-centers speed and collision energy are zero. 
 
 

 
 

Figure 32.7.2: Line-of-centers collision energy. (a). Before the collision with impact 
parameter, b. The direction of the collision is determined by vrel. (b). Three different 
collisions. The line-of-centers kinetic energy is available at the instant of collision. (c). 
Geometric relationships defining the line-of centers speed, clc. (d). Geometric relationships 
defining the line-of centers angle, , in terms of the impact parameter, b. 

 
 
The line-of-centers angle is determined by the impact parameter, Figure 32.7.2d: 
 

 sin  = b/bmax          32.7.10 
 

Given that cos2 = 1 – sin2 and lc = ½c2
lc, the line-of-centers collision energy is: 

 

 lc = ½c2
lc = ½c 2

rel cos2 = ½c 2
rel(1 – sin2) = rel(1 – b

2
/b2

max)   32.7.11 
 

   Collisions occur with a statistical distribution of impact parameters. The reaction cross-section 
has the radius given by the average of the impact parameters of all reactive collisions. The 

b = 0 
lc = rel 
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probability of a collision with impact parameter b is proportional to the area of an annulus of 
radius b and thickness db, which is: (b + db)2 – b2 = 2b db, Figure 32.7.3. All molecules 
within this annulus have the same impact parameter. However, we must only count collisions 
that have sufficient energy to exceed the threshold; that is lc > *. The maximum impact 
parameter, b*, meeting the energy threshold is given by: 
 

 lc = rel(1 – b
2
/b2

max)  * or   b*  bmax(1 – 
*
/rel)

½     (lc > *) 32.7.12 

 
 

 
Figure 32.7.3: Large impact parameter collisions are more probable than small impact 
parameter collisions. Molecules within an area of an annulus of radius b and thickness db 
have the same impact parameter. 

 
 
The probability that a collision with relative kinetic energy rel and impact parameter b gives 
products is P(rel,b). The reaction cross-section is then the integral of the reaction probability 
over the impact parameter: 
 

 (rel) = 2 o  P(rel,b) b db         (lc > *) 32.7.13 
 

Assuming that the reaction probability is zero for impact parameters greater than b* allows the 
integral limits to be reduced to 0 to b*. Assuming that the reaction probability is unity for every 
collision with the line-of-centers energy greater than the threshold, P(rel,b) = 1 for lc > *, gives 
the cross-section as: 
 

 (rel) = 2 b
*

o  b db = b*2         (lc > *) 32.7.14 
 

Substituting Eq. 32.7.12 for the maximum impact parameter gives the cross-section: 
 

 (rel) = b 2
max(1 – */rel)         (lc > *) 32.7.15 

 

For small threshold energies this result is analogous to the hard-core result, (rel) = b 2
max  HC. 

The reaction cross-section begins at zero at the threshold energy and increases to the maximum 
value, b 2

max, Figure 32.7.4. We can now calculate the bimolecular rate constant. 
 
 

vrel 

b 

db 

area= 2b db 
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Figure 32.7.4:  Maxwell distribution of kinetic energy, p(rel), reaction cross-section, (rel), 
and the principle contributions to the cross-section, (rel)p(rel) (------). This example uses * 
= 10 kJ mol-1, HC = 10 Å2, at 298.2 K. (The Maxwell distribution is scaled as p(rel)/1019). 

 
 
   Using Eqs. 32.7.5 and 32.7.15, the bimolecular rate constant is the average of [(rel) crel NA] 
over the Maxwell distribution. Since the reaction cross section is zero below the threshold 
energy, we can narrow the integration limits to * to : 
 

 k2 = 



2


½

2NA



1

kT

3/2
 


* b 2
max(1 – */rel) ½

rel e–rel/kT drel     (lc > *) 32.7.16 
 

Leaving the integral to the Problems and converting to molar units gives: 
 

 k2 = b 2
max c–rel (1000 L/m3)NA e–*/kT        (lc > *) 32.7.17 

 

The b 2
max term is analogous to the hard-core cross-section. For purposes of comparison with 

Arrhenius form, we assume the threshold energy is roughly equivalent to the activation energy. 
Then the term multiplying the exponential factor in Eq. 32.7.15 is the pre-exponential factor, A: 
 

 A = b 2
max c–rel (1000 L/m3)NA         (lc > *) 32.7.18 

 

The predicted pre-exponential factor temperature dependence is determined by c–rel, which varies 
as ~ T½. However, the Arrhenius pre-exponential factor is temperature independent. For most 
reactions the weak temperature dependence of the pre-exponential factor is overshadowed by the 
exponential term. As a result, the functional form of the pre-exponential factor is difficult to 
determine experimentally. Many reactions are equally well fit with temperature independent and 
temperature dependent pre-exponentials. However, where experimental data is available over a 
wide temperature range, a pre-exponential that increases with temperature is common. For 
example, O + H2  OH + H has k2 = 1.8x107 T e–Ea/RT, with Ea = 37.2 kJ mol-1.21 The weak 
increase of A with temperature in Eq. 32.7.18 is generally more common than the form of 
Eq. 32.7.8. 
   More importantly, collision theory predictions based on Eq. 32.7.16 often overestimate 
reaction rates, in some cases by more than an order of magnitude. The difference between theory 
and experiment is often ascribed to orientation effects during the collision. For the reaction 
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CH3 + HI  CH4 + I, for example, the collision geometry CH3 + H–I is more likely to produce 
products than CH3 + I–H. To account for orientation effects, a steric factor, p, is introduced into 
Eq. 32.7.18: A = p b 2

max c–rel (1000 L/m3)NA. However, p is usually difficult to calculate from 
theory. Transition state theory and classical trajectory calculations are better equipped to handle 
steric effects than is basic collision theory. In summary, the assumption that is required to 
achieve agreement with experiment for many reactions is that the line-of-centers translational 
kinetic energy must exceed a threshold value, *. This threshold value is related to, but not equal 
to the experimental activation energy. 
   The experimental activation energy is a thermal average over all collision conditions, including 
relative collisional kinetic energy, impact parameter, initial vibrational and rotational state, 
collision orientation, and collision timing. Quantum effects such as tunneling are also often 
significant. Perhaps the best definition of the activation energy is due to Tolman: the activation 
energy is the difference between the average energy of all reactive collisions and the average 
energy of all collisions.22,23 Approaches based on kinetic molecular theory are too coarse-grained 
to take internal degrees of freedom and collision timing into effect. Only classical or, even better, 
quantum mechanical trajectory calculations are sufficiently detailed to determine the activation 
energy of a reaction. However the computational complexity of averaging over all internal 
degrees of freedom and reaction trajectories is daunting. 
 
32.8 Summary – Looking Back 
 

   We have barely scratched the surface of the theories of reaction dynamics. However, we have 
introduced three major points of view: collision theory based upon kinetic molecular theory, 
transition state theory based upon statistical mechanics, and classical trajectory studies based 
upon classical motion on quantum mechanical potential energy surfaces. These treatments will 
hopefully provide an adequate basis for your further study. Collision theory introduces the 
concepts of center of mass coordinates, energy dependent cross-sections, impact parameters, and 
threshold relative kinetic energy. Transition state theory introduces the statistical distribution of 
the available thermal kinetic energy into the reactive asymmetric stretch and internal degrees of 
freedom of the activated complex. Classical trajectory calculations introduce potential energy 
surfaces, the determination of the full reaction coordinate, vibrational and rotational state-
specific reaction probabilities, and reaction timing. Trajectory calculations also introduce 
multiple crossing of the transition state surface. 
   In reflection it is interesting to note that thermodynamics provides a singular, unified view of 
macroscopic equilibrium. Quantum mechanics provides a singular, unified view of molecular 
structure and spectroscopy. However at this stage of development, reaction dynamics requires 
multiple points of view, because of the inherent complexity. Reaction dynamics is one of the 
most active areas of current research. 
   We have emphasized chemical reactivity and structure-function relationships throughout our 
study. Thermodynamics is the study of the equilibrium state. Quantum mechanics is the study of 
individual atoms and molecules and their interactions. Statistical mechanics is the bridge that 
relates molecular structure to the equilibria and rates of chemical reactions. The fundamental 
principle of statistical mechanics is that the most probable state is the equilibrium state. Random 
statistical chance determines the outcome of chemical processes. However, because of the large 
number of molecules involved we can focus only on the most probable distribution of energy. 
Through statistical mechanics, the intricate detail of the microscopic world is transformed into 
the equilibrium and rate constants that are needed to understand the position of equilibrium and 
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the approach to equilibrium. These relationships underlie all chemical phenomena. Current 
theory is sufficient to calculate, from first principles, the equilibrium constants of ideal gas 
reactions more accurately than can be determined in the laboratory. Rapid progress is being 
made towards the first-principles calculation of rate constants of chemical reactions and 
spectroscopic relaxation phenomena. Further progress is needed in solvation energetics before 
accurate calculations of equilibrium constants and rate constants in solution can be made. 
   What is this knowledge good for? All the phenomena in our physical world have a molecular 
basis. Solving critical challenges in day-to-day life is enabled by the careful understanding of the 
underlying form of nature. The perspectives gained by understanding the molecular basis of 
structure-function relationships inform all our research efforts. Rapid progress in the future is 
enabled by the careful understanding of the work of those scientists who have come before us. In 
every aspect, much more is known than we have presented here. The foundations of physical 
chemistry are well established. At the same time, much is left unknown. Many key attributes of 
chemical phenomena remain for you to discover. 
 
 
 

Chapter Summary 
 

1. The reaction coordinate is an unstable asymmetric stretch. 

2. The configuration of atoms at the transition state is the activated complex, which is denoted . 

3. The effective vibrational frequency of the reactive asymmetric stretch, , is the frequency of 
crossing the transition state surface. Approximately, the activated complex forms products half 
the time with rate  and returns to reactants half the time with rate . 

4. The activated complex can be considered to be in equilibrium with the reactants, with 
equilibrium constant K≠

c: 

 K≠
c = 

[AB≠]
[A][B]   giving   k2 =  K≠

c =  



RT

P°  K≠
p 

5. K≠
c is the number of accessible states of the activated complex divided by the number of 

accessible states of the reactants. The quantum mechanical zero-point energy shift is E
o: 

 K≠
c = 

[AB]

[A][B] = 
q/NA

(q°A/NA) (q°B/NA)
 



RT

P°  e–∆E
o/kT 

6. The reactive asymmetric stretch is separated from the partition function of the activated 
complex, q  = q q', where q' includes the remaining vibrations along with translation, 
rotation, and electronic partition functions. Assuming the activated complex is loosely bond 
and unstable, h/kT << 1 gives:   q = kT/h 

7. The bimolecular rate constant as approximated by activated complex theory, ACT, is: 

 k2 = 
kT
h  

q'/NA

(q°A/NA) (q°B/NA)
 



RT

P°  e–∆E
o/kT 

8. Atom-recombination under ACT is consistent with hard-core collision theory. Assuming 
spherical structureless particles, the reduced mass of the collision is  = (mA + mB)/m. 
Associating HC = R2, c–rel = (8kT/)½, rotational symmetry number  = 1 for heteroatomic 
collisions, and adding threshold activation: 
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 k2 = 
R2


 





8kT

π
½

 NA e–∆E
o/kT 

9. ACT does not account for multiple crossings of the transition state barrier, coupling of internal 
degrees of freedom with the reactive asymmetric stretch, or quantum mechanical effects. 

10. Thermodynamic Transition State Theory defines the Gibbs energy, enthalpy, and entropy of 
activation, ∆rG≠, ∆rH≠, and ∆rS≠ through: 

 k2 = 
kT
h  





RT

P  e–rG/RT = 
kT
h  





RT

P  e∆rS≠
/R e–rH/RT 

11. For a bimolecular reaction, ∆rH≠ = Ea – 2RT and   k2 = 
kT
h  





RT

P  e2 e∆rS≠
/R  e

–Ea/RT 

12. For a bimolecular reaction, the Arrhenius pre-exponential factor is: A = 
kT
h  





RT

P  e2 e∆rS≠
/R 

13. For a unimolecular gas phase reaction or reactions in solution, ∆rH≠ = Ea – RT and: 

 k1 = 
kT
h  e∆rS≠

/R e
–rH/RT 

14. For a unimolecular gas phase reaction or reactions in solution, the linearized form is: 

 ln



k1

T  = – 
rH

R  


1

T  + 
rS

R  + ln


k

h  

15. Bimolecular pre-exponential factors of A = 1010-1011 L mol-1 s-1 give ∆rS  -80 J K-1 mol-1. 

16. Reactions with ∆rS more negative than -80 kJ mol-1 are presumed to have a strong 
orientation preference. 

17. Unimolecular processes are expected to have ∆rS  0:    AB  (AB)  A + B 

18. The transition state has one and only one imaginary normal mode frequency. 

19. In classical collision dynamics the total energy of the collision is the sum of the electronic, 
vibrational, rotational, and relative translational kinetic energy: tot = elec + v + r + rel. The 
relative translational kinetic energy is converted by the collision into energy in the reactive 
asymmetric stretch. 

20. The transition state barrier is the quantum barrier height, b, adjusted by the zero point 
energies of the reactants, ZPEreac, and transition state, ZPR. E

o = b + ZPE – ZPEreact 

21. The transition state is a saddle-point on the quantum mechanical potential energy surface. 

22. Direct transitions are typical and require times typical of a single vibration period, 10-20 fs. 

23. Reactions appear to be slow because few collisions result in the formation of products, as a 
result of insufficient collision energy, improper orientation, or poor collision timing. 

24. The energy demand of late barriers favors vibration, while early barriers favor translation. 

25. The energy disposal of late barriers favors translation, while early barriers favor vibration. 

26. Reaction timing with respect to the phase of the vibrations of the reactants can have a 
significant effect on the reaction probability. 

27. In molecular beam studies, the velocity of the reactants can be chosen using a velocity 
selector, which is a set of spinning disks with offset slots. 

28. The molecular beam scattering angular distribution depends on the potential energy surface. 

29. Short lifetime transition states give narrow angular distribution in scattering: stripping gives 
forward and rebound gives backward scattering in the center of mass reference frame. 
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30. Supersonic expansion sources produce low molecular beam temperatures with most 
molecules in low lying rotational J-states within the zero-point vibrational level. 

31. All chemical reactions that require bond scission result from the break-down of the Born-
Oppenheimer approximation: the electronic energy is coupled to the nuclear motion. 

32. Non-adiabatic curve-crossing joins reactant and product potential energy surfaces. 

33. The probability of unimolecular reaction depends on the excitation energy. 

34. In unimolecular processes, the activated complex is called the critical configuration, A+: 

  A*    A+  B + C 

35. The unimolecular rate constant with excitation energy * is:  ka(*) = + 
+(+)
*(*)

 

where the excess energy in vibration, rotation, and the reaction coordinate available to the 
critical configuration is + = * – E+

o with E+
o the quantum mechanical energy barrier. 

36. The density of states of the critical configuration +(+) is the product of the density of states 
of the reactive asymmetric stretch, rc(+), and the density of states of the remaining rotational 
and vibrational degrees of freedom, +'(+). The density of states of the activated molecule, 
*(*), includes all rotations and normal modes of vibration, which typically form a continuum. 

36. If N+(+) is the total number of vibrational and rotational states of the critical configuration 
with vibrational and rotational energies from +

vr = 0 to +, the RRKM rate constant is: 

 ka(*) = 
1
h 

N+(+)
*(*)

 

37. The rate constant of many reactions in solution with non-polar reactants is equal to the 
diffusion coefficient of the reactants in the given solvent. In an encounter, the collision of 
reactants in solution combines the solvent cages, which allows multiple collisions. 

38. The ACT bimolecular rate constant in solution, with A and B the activity coefficients of the 
reactants and  of the activated complex, is based on the equilibrium ratio: 

 
[AB]
[A][B]  = K≠

c co-1 A B

  giving  k2 = 
kT
h  K≠

c co-1 A B

  

The term co-1 = 1/co, with standard state co = 1 mol L-1, converts the units of k2 to L mol-1 s-1. 

39. The kinetic salt effect is based on ACT with ionic reactants and transition state using Debye-
Hückel activity coefficents, which in aqueous solution at 25 gives: 

 log k2 = log



kT

h  K≠
c co-1  + 0.509 (2zAzB) I½   with  k2(I = 0) = 

kT
h  K≠

c co-1 

40. The impact parameter, b, is the straight-line distance between reactant’s centers of mass at 
closest approach. Hard-core collisions have b  dHC, with dHC the hard-core diameter. 

41. For low collision energy, attraction between collision partners allows larger b to interact, 
compared to hard spheres. For high collision energy, the angle of deflection of the collision 
trajectories is decreased compared to hard-core collisions. 

42. As a result, the collision cross-section is dependent on relative collision energy, (rel). 
43. Thermal reaction cross-sections account for collision cross-section and reaction probability: 

 –r = 
k2

c–rel (1000 L/m3) NA
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44. Bimolecular rate constants average the rate of collisions with cross-section (rel) over the 
distribution of relative kinetic energy, p(rel) drel, with relative kinetic energy rel = ½c2

rel: 

 k2 = NA 


o  (rel) crel p(rel) drel = 



2


½

 NA 


o  (rel) ½
rel p(rel) drel 

45. Assuming (rel) = HC for energies higher than the threshold for reaction, *: 

 k2 = 



2


½

2NA



1

kT

3/2
 


* HC rel e–rel/kT drel = HC c–rel (1000 L/m3)NA 





1 + 
*

kT  e–*/kT 

46. Assuming *  Ea the Arrhenius pre-exponential factor has temperature dependence ~ T–½: 

 A = HC 




8kT


½

 (1000 L/m3)NA 





1 + 
*

kT  = HC c–rel (1000 L/m3)NA 





1 + 
*

kT  

47. Assuming the probability of a reactive collision increases with relative kinetic energy, the 
maximum impact parameter, b*, that meets the energy threshold, *, is: 

 b*  bmax(1 – 
*
/rel)

½     giving the cross-section      (rel) = b 2
max(1 – */rel) 

with bmax the maximum impact parameter for collision. Grazing collisions occur at b = bmax. 
48. Assuming the reactive cross-section is dependent on relative kinetic energy with a threshold 

energy, the bimolecular rate constant is:    k2 = b 2
max c–rel (1000 L/m3)NA e–*/kT 

49. Assuming variable (rel) and *  Ea the Arrhenius pre-exponential factor varies as ~ T½: 
 A = b 2

max c–rel (1000 L/m3)NA 

50. Addition of a steric factor, p, accounts for orientation effects: A = p b 2
max c–rel (1000 L/m3)NA 

51. Ea is the difference between the average energy of all reactive collisions and the average 
energy of all collisions (Tolman). 
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Chapter 32 Reaction Dynamics Problems 
 
1. One possible geometry of the activated complex for the 2 ClO  Cl2 + O2 reaction is shown 
in Table 32.1.1. Is this square geometry consistent with the expectation that the reaction 
coordinate is an unstable asymmetric stretch? 
 
2. The lifetime of the transition state is typically on the order of a single vibration period. 
Calculate the period of a vibration of wave number 500 cm-1. 
 
3. Use Activated Complex Theory to discuss the reaction: 
 

 H +  F–F    [ H--F--F ]††    H–F  +  F 
 

(a). Do the translational partition functions favor or hinder the rate of the reaction? Why? 
(b). Do the rotational partition functions favor or hinder the rate of the reaction? Why? 
 
4. Use Activated Complex Theory to discuss the reaction: 
 

 H +  F–F    [ H--F--F ]††    H–F  +  F 
 

Consider the shift in reaction rate, faster or slower, after making the following changes. (a). The 
bond length of F2 is increased. (b). F2 is changed from a homonuclear to a heteronuclear 
diatomic. (c). The symmetric stretch force constant of the activated complex is increased. (d). 
The bond dissociation energy of F2 is increased. (e). The 1H-atom is changed to deuterium, 2H, 
considering translation only. [In reality changing just one molecular parameter is impossible, 
bond strength changes have multiple effects. However, for the purposes of this exercise assume 
that the given change is done without changes in other parameters.] 
 
5. The pre-exponential factor for the reaction CH3Br + Cl–  CH3Cl + Br– in acetone solution is 
2.0x109 L mol-1 s-1 and its activation energy is 65.7 kJ mol-1. What are the Gibbs energy, entropy, 
and enthalpy of activation at 298 K? 
 
6. In the derivation of the Eyring equation, Eq. 32.1.21, what is the source of the kT/h term? 
 
 
7. Draw the trajectory, on the potential energy surface below, of a reactive atom-diatom collision 
that experiences multiple crossings and produces a product in a highly excited vibrational state. 
Label the side of the graph that corresponds to the reactants and specify the corresponding 
reaction, choosing from either A + B–C  A–B + C   or   A–B + C  A + B–C. 
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     RAB 
 
 
 
 

       RBC 
 
8.  Consider the exothermic gas phase reaction:  O(3P) + CS  CO + S(3P). Is the reaction likely 
to have an early or late barrier? Does translational or vibrational energy in the collision favor the 
formation of products? Choose the corresponding energy surface, below. Label the axes with 
either ROC or RCS. Label the reactant and product valleys. Draw an example of a trajectory that 
has the favorable combination of translational and vibrational energy for the collision. (You will 
use only one of the surfaces) 

 
 
9. The reaction profile of an atom-diatom collision is shown below, including the vibrational 

levels. Draw a corresponding trajectory for the collision. Label the reactant and product sides. 
 

 
 
10. Use collision theory to calculate the theoretical value of the bimolecular rate constant of the 

reaction H2 (g) + I2 (g)  2 HI (g) at 650 K. The collision cross-section is 0.36 nm2, the 
reduced mass is 3.32x10-27 kg, and the activation energy is 171. kJ mol-1 

 

reaction progress 

E 

A + BC 

products 

 

 = 
     3 
     2 
 

     1 
     0 

 = 
     4 
     3 
 

     2 
  
     1 
     0 

AB + C 

RAB 

R
BC
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11.  (a). Find the activation enthalpy, entropy, and Gibbs energy of the reaction: 
 

 2 NO2 (g)  2 NO + O2 
 

at 600.0 K. The Arrhenius pre-exponential factor is 3.06x1012 s-1. The activation energy is 
110.9 kJ mol-1. (b). The reaction does not necessarily proceed by a single step mechanism. Is 
the activation entropy consistent with a bimolecular transition state for the rate limiting step? 

 
12.  Find the activation enthalpy, entropy, and Gibbs energy of the isomerization: 
 

 trans-CHCl=CHCl  cis-CHCl=CHCl 
 

at 800.0 K. The Arrhenius pre-exponential factor is 5.0x1012 s-1. The activation energy is 
27.8 kJ mol-1: 

 
13.  The reaction: cis-1,3,5-hexatriene  1,3-cyclohexadiene has an activation enthalpy of 

121.5 kJ mol-1 and an entropy of activation of -30.4 J K-1 mol-1. Comment on the ease of 
formation of the transition state. 

 
 
14. The rate constant of an aqueous ionic reaction with zA = 2 and zB = -1 at zero ionic strength is 
k(I = 0). Calculate the ratio of the rate constant of the reaction done in 0.1 M NaCl, k, to the rate 
constant at zero ionic strength: k/k(I = 0) at 298 K. 
 
15. Use Eq. 32.7.13 to prove that the hard-core collision cross section is HC = d2

HC, where dHC is 
the hard-core collision diameter. 

 
16. Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a). In atom-diatom collisions, A + BC  AB + C, the reaction coordinate is an unstable 
asymmetric stretch.  
 

(b). Once the transition state surface is crossed, the activated complex does not return to 
reactants. 
 

(c). Activated Complex Theory assumes a Boltzmann distribution among vibrations and rotations 
in the reactants and the activated complex. 
 

(d). Excluding the reactive asymmetric stretch, the vibrations and rotations of the activated 
complex do not have an effect on the reaction rate. 
 

C C 

C C 

H 
H 

H 

H 

H H 

C 

C 

H 

H 

H 

H 

C C 

C 

C 

H H 

C 

C 

H 
H 

H H 
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(e). Reactions are more likely with excess energy in translation rather than vibration. 
 

(f). Exothermic reactions are more likely to give products in excited vibrational states than 
endothermic reactions. 
 

(g). The common existence of chemical reactions that are much slower than the corresponding 
kinetic molecular theory hard-core collision rate is evidence of long-lived transition states. 
 

(h). In the RRKM theory of unimolecular processes, the vibrational and rotational states of the 
reactants are treated as a continuum while the vibrational and rotational states of the critical 
configuration are treated as discrete and countable. 
 

(i). In the RRKM theory of unimolecular processes, the critical configuration never returns to the 
activated reactant. 
 

(j). Non-adiabatic transitions occur by avoided curve crossing. 
 

(k). The Born-Oppenheimer approximation is valid for the progression of the transition state to 
give products. 
 
(l). Experimental reaction cross-sections are never larger than the hard-core collision cross-
sections, although the experimental reaction cross-sections is often smaller than the hard-core 
collision cross-section. 
 

(m). In collision theory, the line of centers velocity and kinetic energy increase with decreasing 
impact parameter. 
 

(n). In collision theory, the reaction cross section is independent of the collision relative kinetic 
energy. 
 

(o). In solution, equilibrium constants are functions of the activities of the reactants and products, 
rather than the concentrations. Reaction rates are functions of the solution concentrations, and 
not the activities. 


