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Chapter 31 Problems: Kinetic Molecular Theory  
 
1.  Calculate the average translational kinetic energy in J, cm-1, and kJ mol-1 and the rms-speed of 
CO2 at 298.2 K, assuming ideal gas behavior. 
 
 
Answer:  The plan is to use Eqs. 31.1.16 and 31.1.18 and note that the rms-speed depends on the 
molar mass but the average translational kinetic energy does not. 
    The average translational kinetic energy of any ideal gas at 298.2 K is: 
 

 t
– = 3/2 kT = 3/2 1.38065x10-23 J K-1(298.2 K) = 6.175x10-21 J 

 t
– = 3/2 RT = 3.718 kJ mol-1 

 t
– = 3.718 kJ mol-1 (1000 J/1 kJ)(1 cm-1/11.9627 J mol-1) = 310.8 cm-1 

 

The values in kJ mol-1 and cm-1 are useful for comparisons, since we have often noted that the 
available thermal kinetic energy at room temperature is: RT = 2.48 kJ mol-1 or 207.2 cm-1. 
   The molar mass for CO2 is 44.01 g mol-1 or 0.04401 kg mol-1. The rms-speed, using 
Eq. 31.1.18 is: 
 

 u = 
3 RT
M  = 

3 (8.3145 J K-1 mol-1)(298.2 K)
0.04401 kg mol-1  = 411.1 m s-1 

 

To verify the units note that 1 J = 1 kg m2 s-2, which is the reason that the molar mass must be in 
kg mol-1. 
 
 
2.  Calculate the rate of molecular collisions in a balloon filled with N2 at 298.2 K given the 
balloon has a 1.00 L volume at 1.00 bar. The hard-core collision diameter is dN2 = (2rN2) = 
3.75 Å. 
 
 
Answer:  The plan is to use Eq. 31.3.8 to calculate the collision cross section. 
   The collision cross-section, using Eq. 31.3.8: 
 

 HC =  (2rN2)2 =  [3.75x10-10 m]2 = 4.418x10-19 m2 = 0.4418 nm2 = 44.18 Å2 

 

The mass of N2 is:  m = 28.02 g mol-1 (1 kg/1000 g)/6.0221x1023 mol-1 = 4.653x10-26 kg 
 

With Eq. 31.2.31 the average speed of N2 molecules at 298.2 K is: 
 

 c– = 




8(1.381x10-23 J K-1)(298.2 K)

 4.653x10-26 kg

½
= 474.6 m s-1 

 

The number density is given by the ideal gas law with 1 bar = 1x105 Pa = 1x105 N m-2 as: 
 

 N/V = NAP/RT = 
6.0221x1023 mol-1(1.00x105 N m-2)

8.3145 J K-1 mol-1(298.2 K)  = 2.429x1025 m-3 
 

Concerning the units, remember that 1 J = 1 N m. Using Eq.31.3.18 gives the collision rate per 
cubic meters as: 
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 ZAA = ½ HC 2 c– (N/V)2 = ½ 4.418x10-19 m2 2 (474.6 m s-1)(2.429x1025 m-3)2 
        = 8.75x1034 s-1 m-3 

 

For the 1.00 L volume: 
 

 collision rate = ZAA V = 8.75x1034 s-1 m-3(1 m3/1000 L)(1.00 L) = 8.75x1031 s-1. 
 

As mentioned in Example 31.3.1, the total collision rate in a 1 L balloon filled with ambient air 
is the almost the same. 
 
 
3.  Derive a relationship for the rate of a unimolecular surface-catalyzed reaction of an ideal gas. 
Assume every collision with the surface gives products and that the rate law is expressed in 
terms of the gas phase concentration of the reactant in mol L-1. 
 
 
Answer:  The plan is to follow the derivation of the bimolecular rate law, Eqs. 31.3.20-31.3.24 
for this specific case.  
   The rate of collisions per unit area of an ideal gas with a wall is, Eq. 31.3.4: 
 

 Zwall = 
1
4 
N
V 







8RT

M

½
 = 

1
4 
N
V c–       (31.2.4) 

 

for N molecules in total volume V. Given that every collision is successful, for a surface with 
area A, the rate of the reaction in molecules per second per unit total volume of reactant A is: 
 

 – 
d(NA/V)

dt  = Zwall 
A
V = 






c–A

4V  
NA

V  
 

The rate is given in molecules per unit volume per unit time. To convert to the rate in mol m-3 s-1, 
we divide the last equation by Avogadro’s number: 
 

  – 
d(NA/NAV)

dt  = Zwall 
A

NAV = 





c–A

4V  



NA

NAV  
 

Using Eq. 31.3.21 for the concentration A: 
 

 – 
d[A]

dt  = Zwall 
A

NAV = 





c–A

4V  [A] 
 

Expressing the classical rate law as – d[A]/dt = k1[A] gives the unimolecular rate constant as: 
 

 k1 = 





c–A

4V  = ¼ 






8RT

M

½





A

V  

 

The V in this last equation is in m3 to match the units of c–A. The catalyst surface does not need 
to be wall-like. This expression, assuming 100% successful collisions, pertains to suspended 
aerosol particles and liquid droplets as long as the products do not accumulate on the surface and 
decrease the surface activity. 
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4.  Find the most probable molecular speed using the Maxwell distribution of molecular speeds. 
 
 
Answer:  The plan is to set the derivative of the Maxwell distribution function equal to zero to 
find the maximum. 

   The Maxwell distribution of molecular speeds is: p(c) dc = 4 




m

2kT

3/2
 e–mc2

/2kT c2 dc 

Let the normalization constant be A = 4 (m/2kT)
3/2. Taking the derivative with respect to c 

using the product rule with the product as [e–mc2
/2kT][c2] gives: 

 

 
d p(c)

dc  = –A 



m

kT  c e–mc2
/2kT c2 + 2A c e–mc2

/2kT = 0 
 

Canceling common terms gives:  – 



m

kT  c2 + 2 = 0  or 



m

kT  c2 = 2      with c = cmp 

Solving for cmp gives Eq. 31.2.27: cmp = 



2kT

m
½

 = 
2kT
m  

 
 
5.  (a). Find the standard deviation of the molecular speed of an ideal gas at temperature T in 
terms of the molar mass. (b). Find the most probable, average, and rms-speeds and standard 
deviation of the speed of CO2 at 298.2 K. 
 
 

Answer:  The plan is to note that 2 = (c – c–)2–––––––
 = c2––

 – (c–)2, Eq. 23.4.36. See also Problem 1. 

(a).  First, in case you haven’t done it before, we derive 2 = (c – c–)2–––––––
 = c2––

 – (c–)2. Starting with 
the squared deviation from the mean: 
 

 (c – c–)2 = c2 – 2c c– + (c–)2 
 

Next we need to take the average. Because the average speed is a constant, the average of a 
constant is just that constant: 
 

 (c–)
–––

 = c– and  (c–)2–––
 = (c–)2 

Taking the averages of each term: 2 = (c – c–)2–––––––
 = c2––

 – 2 c– c– + (c–)2 = c2––
 – (c–)2 

Now from Eqs. 31.1.18 and 31.2.31 and 8/ = 2.546: 

 2 = c2––
 – (c–)2 = 

3RT
M  – 

8RT
M  = 0.4535 

RT
M      or    = 

0.4535 RT
M  = 0.673 

RT
M  

(b).   The molar mass for CO2 is 44.01 g mol-1 or 0.04401 kg mol-1. 
The most probable speed, using Eq. 31.2.27 is: 
 

 cmp = 
2 RT
M  = 

2 (8.3145 J K-1 mol-1)(298.2 K)
0.04401 kg mol-1  = 335.6 m s-1 
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The average speed, using Eq. 32.2.31 is: 
 

 c– = 
8 RT
M  = 

8 (8.3145 J K-1 mol-1)(298.2 K)
 0.04401 kg mol-1  = 378.7 m s-1 

 

The rms-speed, using Eq. 32.1.18 is: 
 

 u = 
3 RT
M  = 

3 (8.3145 J K-1 mol-1)(298.2 K)
0.04401 kg mol-1  = 411.1 m s-1 

 

The standard deviation is :  = 
0.4535 RT
M  = 0.673 

RT
M  = 159.7 m s-1 

In conventional notation we can state:  c– = 378.7 ± 159.7 m s-1, which is a considerable spread in 
velocities. 
   Note that for a symmetrical, purely-Gaussian distribution, the rms-speed is equal to the 
standard deviation. For the Maxwell distribution of molecular speeds the final distribution is 
unsymmetrical with a long tail at high velocity. 
 
 

6.  (a). Show that the rms-speed is given by the pressure P and mass density d by : u = 3P/d. 
(b). At 1.01325 bar and 373.2 K the density of water vapor is 598 g m-3. Calculate the rms-speed 
of water molecules in water vapor. 
 
 
Answer: The plan is to note that the mass and number density are related by d = NM/(NAV). 
   First we need to verify that d = NM/(NAV), which we can do by checking the units: 
 

 d = NM/(NAV) ~ (molecules)(g mol-1)/[(molecules mol-1)(m3)] = g m–3 
 

Then solving for the number density gives: N/V = NAd/M. The pressure is given by Eq. 31.1.14: 
 

 P = 
Nmu2

3V          (31.1.14) 

Substituting in N/V = NAd/M for the number density gives:  P = 
mu2

3  
NAd
M  = 

u2 d
3  

noting that NA m = M. Then solving for the rms-speed gives: u = 3P/d 
 

(b). For unit agreement the pressure is P = 1.01325x105 Pa = 1.01235x105 N m-2 and the density 
is d = 0.598 kg m-3, giving: 
 

 u = 3P/d = 3(1.01325x105 N m-2)/(0.598 kg m-3) = 713 m s-1 
 

With M = 18.02 g mol-1 = 0.01802 kg mol-1 and using Eq. 31.1.18, the value is: 
 

 u = 
3 RT
M  = 

3 (8.3145 J K-1 mol-1)(373.2 K)
0.01802 kg mol-1  = 718.7 m s-1 

 

The difference is caused by experimental error in the gas phase density and non-ideality. 
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7.  A compound with molar mass of 255.2 g mol-1 is placed in a small container that has a hole of 
radius 0.0500 mm. In 30.0 min at 50.0C, 0.872 g of the substance effuses from the container. 
Calculate the vapor pressure of the substance. 
 
 
Answer:  The plan is to use the effusion rate from Eq. 31.3.6. 

   The effusion rate is:  
dn
dt  = 

0.872 g
(255.2 g mol-1)(30.0 min)(60 s/1 min) = 1.898x10-6 mol s-1 

 

The hole area is A = (0.050x10-3 m)2 = 7.854x10-9 m2. The molar mass is 0.2552 kg mol-1. 

The effusion rate, Eq. 31.3.6, is:   
dn
dt  = PA 







1

2MRT

½
 

 

Solving for the pressure gives:   P = 
(2MRT)½

A  
dn
dt  

     = 
[2 0.2552 kg mol-1(8.3145 J K-1 mol-1)(323.2 K)]½

7.854x10-9 m2  (1.898x10-6 mol s-1) 

     = 1.586x104 N m-2 = 0.1586 bar = 15.86 kPa 
 

In alternate units: P = 0.1586 bar (1 atm/1.01325 bar) = 0.1566 atm = 119. torr 
 
 
8.  A compound with a vapor pressure of 1.680 kPa is placed in a small container closed by a 
metal membrane with a 0.0500 mm radius hole. The initial mass is 123.5 mg. After 30.0 min at 
35.0C the mass decreases to 39.9 mg. Calculate the molar mass of the substance. 
 
 
Answer:  The plan is to convert the effusion rate in Eq. 31.3.6 to the rate in kg s-1 by multiplying 
by the molar mass. 
   The effusion rate in kg s-1 is obtained by multiplying Eq. 31.3.6 by the molar mass in kg mol-1: 
 

 r = 
d(nM)

dt  = PAM 






1

2MRT

½
 = PAM½ 





1

2RT

½
     1 

Solving this expression for the molar mass in kg mol-1 gives: M = 
2RT
P2A2  r2   2 

 

The effusion rate is: r = 
d(nM)

dt  = 
0.0836 g(1 kg/1000 g)
(30.0 min)(60 s/1 min) = 4.644x10-8 kg s-1  3 

 

The area of the hole is A = (0.050x10-3 m)2 = 7.854x10-9 m2. 
With Eq. 2 the molar mass is: 
 

 M = 
2RT
P2A2  r2 = 

2 8.3145 J K-1 mol-1(308.2 K)
(1.680x103 N m-2)2(7.854x10-9 m2)2 (4.644x10-8 kg s-1) = 0.1994 kg mol-1 

 

or M = 199.4 kg mol-1. Concerning the units, 1 N = 1 J m-1 = 1 kg m s-2 and 1 N m-2 = 1 J m-3. 
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2RT
P2A2  r2 ~ 

J K-1 mol-1(K)
(J m-3)2(m2)2  (kg s-1)2 ~ 

mol-1

J m-2  (kg2 s-2) ~ 
mol-1

(kg m2 s-2) m-2 (kg2 s-2) ~ kg mol-1 

 
 
9.  Integrals of the form xc

o  e–ax2
 dx are common in determining the probability of occurrence of 

speeds or energies within a given range. The integral has no closed form solution and must be 
integrated numerically. The numerical integrals in dimensionless form are tabulated as the error 
function, erf( ), where the error function is defined by: 
 

 
2


  t

o e
–y2

 dy = erf(t) 

 

The error function is used extensively in statistics and probability. The inside back cover lists a 
short table. Extensive tables are available in standard reference sources and Excel has an erf( ) 
function. In this regard erf( ) is similar to the more familiar functions sin( ), cos( ), exp( ) and 
ln( ), which are all evaluated as power series expansions. 

(a). Show that: xc

o  e–ax2
 dx = ½ 





a

½
 erf( a xc) 

(b). Verify the result in part (a) by showing that  o  e–ax2
 dx gives the result listed in standard 

integral tables. 
(c). Show the probability of a molecule having a velocity in the x-direction in the range ±v* is: 
 

  v*
–v* p(vx) dvx = 2 vo

*
 




m

2kT

½
 e–mvx

2/2kT dvx = erf( )mv*2/2kT  
 

(d). Show that the probability of a molecule having a kinetic energy in the x-direction less than 
or equal to kT is 84.3%. [Hint: note that erf(1) = 0.8427] 
 
 
Answer:  For part (a) the plan is to do a change of variables. For part (c) the plan is to use the 
integral in part (a) with a = m/2kT. The plan for part (d) is to note that t = ½ mv2 

(a). Comparing the definition of the error function to xc

o  e–ax2
 dx requires the change of variables 

y2 = ax2 or equivalently y = a x with derivative and corresponding differential: 
 

 
dy
dx = a with  dx = 

1
a
 dy  and upper limit t = a xc 

 

then substituting for ax2 and dx gives: 
 

 xc

o  e–ax2
 dx = 

1
a
  t

o e
–y2

 dy = 
1
a
  


2  erf(t) = ½ 





a

½
erf( a xc) 

 

(b).  Tables of erf(t) show that the function approaches one for large values of t. In other words, 
(2/ )  t

o e–y2
 dy is normalized. Setting xc =  gives o e–ax2

 dx = ½ (/a)½ as listed in standard 
definite integral tables. 
(c).  The distribution function is even so that  v*

–v* = 2vo
*. For the one-dimensional velocity 

distribution with a = m/2kT and xc = v* using the integral in part (a) gives: 
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  v*
–v* p(vx) dvx = 2 





m

2kT

½
 vo

*
 e–mvx

2/2kT dvx = 




m

2kT

½
 



2kT

m

½
erf( )mv*2/2kT  

         = erf( )mv*2/2kT  

(d). Note that t = kT gives  ½ mv*2 = kT  and  mv*2/2kT = 1 with erf(1) = 0.8427. 
Note that erf(1) = 0.8427 is the area under a Gaussian distribution within x = ± 2 . 
 
 
10.  Derive the integration by parts formula using the following steps: (a). Let u and v be two 
functions. Using the product rule for the differential d(uv), show that  d(uv) =  v du +  u dv. 
(b). Finally show that for the integral limits u1v1 to u2v2 : 

  u dv = uv|u2v2

u1v1
 –  v du 

 
 
Answer:  (a). Using the product rule d(uv) = vdu + udv. Integrating both sides of the equation 
gives:  d(uv) =  v du +  u dv . 
(b). Solving for   u dv gives:   u dv =  d(uv) –  v du 

The integral of  d(uv) is just uv evaluated at the limits of the integral: 
u2v2

u1v1
 d(uv) = uv|u2v2

u1v1
. 

Substituting this result for the integral gives the final result:   u dv = uv|u2v2

u1v1
 –  v du. 

 
 
11.  Integrals over the Maxwell distribution of molecular speeds are in the general form 

 t
o y

2 e–y2
 dy. Use integration by parts,  u dv = uv|u2v2

u1v1
 –  v du, with u = y and dv = (y e–y2

 dy) 

to show that: [See the next problem for an application of this relationship.] 
 

 
4


  t

o y
2 e–y2

 dy = erf(t) – 
2


 t e–t2

 

 

Answer:  The plan is to start by integrating dv to give v in terms of y. 
   With u = y and dv = (y e–y2

 dy) then:   du = dy   and   v =  dv =  y e–y2
 dy = –½ e–y2

 

Integration by parts gives:  u dv = uv|u2v2

u1v1
 –  v du 

  t
o y

2 e–y2
 dy = –½ y e–y2| t

o – (–½)  t
o e

–y2
 dy 

 

The integral is given by the error function: (2/ )  t
o e

–y2
 dy = erf(t). The first term is evaluated at 

the limits and substituting in the error function gives: 
 

  t
o y

2 e–y2
 dy = –½ t e–t2

 + 


4  erf(t) 
 

The required integral is then: 
4


  t

o y
2 e–y2

 dy = erf(t) – 
2


 t e–t2

 
 

See the next problem for an application of this relationship. 
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12.  The probability of occurrence of molecular speeds over a range of values is determined by 
an integral over the distribution function. (a).Show that the integral of the Maxwell distribution 
of molecular speeds over the range from c = 0 to c* is: 
 

 
c

o

*
 p(c) dc = 4 





m

2kT

3/2
 

c

o

*
 e–mc2

/2kT c2 dc = erf( )mc*2/2kT  – 
1


 

mc*2

2kT  e–mc*2
/2kT 

(b). The kinetic energy at the upper limit is *
t = ½mc*2. Show that the total probability is: 

 
c

o

*
 p(c) dc = 4 





m

2kT

3/2
 

c

o

*
 e–mc2

/2kT c2 dc = erf( )*
t/kT  – 

2


 



*

t

kT
½

 e–*
t/kT 

 

[Hint: use the relationship in the previous problem with the change in variables y2 = mc2/2kT] 
 
 
Answer:  (a). With the substitution y2 = mc2/2kT  then y = (m/2kT)½ c and the derivative is: 
 

 
dy
dc = (m/2kT)½  giving   dc = 



2kT

m
½

dy with     c2 = 



2kT

m   y2 
 

and upper limit t = (m/2kT)½ c*. The integral over the Maxwell distribution is: 
 

 
c

o

*
 p(c) dc = 4 





m

2kT

3/2
 

c

o

*
 e–mc2

/2kT c2 dc = 4 




m

2kT

3/2
 



2kT

m  



2kT

m
½

  t
o y

2 e–y2
 dy 

       = 
4


  t

o y
2 e–y2

 dy 

 

Using the relationship derived in the previous problem gives:  
 

 
c

o

*
 p(c) dc = erf(t) – 

2


 t e–t2

 

 

The substitution variable is conveniently regrouped as y = (m/2kT)½ c = (mc2/2kT)½ 
Reversing the original substitution then gives:  
 

 
c

o

*
 p(c) dc = erf( )mc*2/2kT  – 

2


 

mc*2

2kT  e–mc*2
/2kT 

 

Or given that the kinetic energy at the upper limit of the speed is *
t = ½mc*2: 

 

 
c

o

*
 p(c) dc = erf( )*

t/kT  – 
2


 



*

t

kT
½

 e–*
t/kT 

 
 
13.  Determine the probability that a molecule has a speed equal to or less than the most probable 
speed. [Hint: Use the relationship in the previous problem, note that erf(1) = 0.8427] 
 
 
Answer: The plan is to note that the most probable speed is given by Eq. 31.2.27. 
The upper limit on the integral is c* = cmp. With Eq. 31.2.27 the most probable speed is: 
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 cmp = 



2kT

m
½

 = 
2kT
m  

The corresponding translational kinetic energy is: *
t  = ½ mc2

mp = kT. 

As a result the factor appearing in the result is: *
t/kT = 1 

The probability that a molecule has a speed equal to or less than the most probable speed is 
then:1 

 

 
c

o

*
 p(c) dc = 4 





m

2kT

3/2
 

c

o

*
 e–mc2

/2kT c2 dc = erf(1) – 
2


  1½ e-1 

       = 0.8427 – 
2


  0.3679 = 0.8427 – 0.4151 = 0.4276    or    42.8% 

 

The fraction above the most probable speed is 1 – 0.4276 = 0.572   or 57.2% 
 
 
14.  The fraction of molecules with translational kinetic energy exceeding * is:1,2 

 p(t > *) = * p(t) dt = 2 




1

kT

3/2
 



* t
½ e–t/kT dt  

(a).  Use the change of variable x2 = t/kT to show: [Hint: see Eq. 31.4.5 for a similar change in 
variables.] 

 p(t > *) = 
4


 x* x

2 e–x2
 dx 

 

(b). Use integration by parts to show: [Hint: let u = x  and  dv = x e–x2 dx] 
 

 


x* x
2 e–x2 dx = –½ x e–x2|



x*  – (–½) 


x* e–x2 dx 
 

(c). Show that:  


x* e–x2 dx = 


o e–x2 dx – 
x

o

*
 e–x2 dx 

(d). Use integral tables and the definition of the error function: 
2
½ 

t

o e
–x2 dx = erf(t) to show that: 

 


x* e–x2 dx = 


2  – 


2  erf(x*) 

(e). Using the previous expressions, derive the final result: 
 

 p(t > *) = 
4


 



x* x2 e–x2 = 
2


 






*

kT

½
 e–*/kT + 1 – erf









*

kT

½
 

 (f). Show that for large threshold energies, * >> kT:      p(t > *)  
2


 



*

kT

½
e–*/kT 

 
 

Answer:  (a). We can simplify the integral with the change in variables x2 = t/kT or t = kTx2: 
 

 
dt

dx = kT 
dx2

dx  = 2kTx  giving  dt = 2kTx dx   and   t
½ = (kT)½ x  1 
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 with the limits from x* = (
*
/kT)½  to : 

 p(t > *) = 2 




1

kT

3/2
(2kT)(kT)½ 



x* x2 e–x2 dx 

 p(t > *) = 
4


 x* x

2 e–x2
 dx        2 

(b). There is no closed-form solution to the integral, so we need to relate the integrals to the error 
function. To integrate by parts, let u = x  and  dv = x e–x2 dx giving: 
 

 du = dx    and     v =  dv =  x e–x2 dx = –½ e–x2     3 
 

so that:     u dv  =  uv|u2v2

u1v1
  –   v du     is: 

 


x* x
2 e–x2 dx = –½ x e–x2|



x*  – (–½) 


x* e–x2 dx     4 
 

(c).  The first term evaluated at the limits is ½ x* e–x*2. For the second integral note that: 

   


o e–x2 dx = 
x

o

*
 e–x2 dx + 



x* e–x2 dx       5 
 

which gives the integral we want by difference: 
 

 


x* e–x2 dx = 


o e–x2 dx – 
x

o

*
 e–x2 dx       6 

(d).  Standard integral tables give 


o  e–ax2 dx = 
1
2 





a

½
, giving: 



o e–x2 dx = 


2   7 

The 
x

o

*
 e–x2 dx integral is given by the error function: 

2
½ 

t

o e
–x2 dx = erf(t)   with t = x* or: 

As a result:  
x

o

*
 e–x2 dx = 


2  erf(x*)        8 

 

Substituting Eqs. 7 and 8 into Eq. 6 gives: 
 

 


x* e–x2 dx = 


2  – 


2  erf(x*)        9 
 

(e). Substituting the last equation into Eq. 4 gives: 
 

 


x* x
2 e–x2 dx = ½ x* e–x2 + 


4  – 


4  erf(x*)      10 

 

Substituting this last result into Eq. 2 with x2 = t/kT gives: 
 

 p(t > *) = 
4


 



x* x2 e–x2 = 
2


 






*

kT

½
 e–*/kT + 1 – erf









*

kT

½
   11 

 

(f). As * increases, the error function approaches 1, so that for large threshold energies. 
 

 p(t > *)  
2


 



*

kT

½
e–*/kT           (32.4.9) 
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The (*/kT)½ temperature dependence is weaker than the exponential term so that the fraction of 

translational-energy rich molecules increases roughly as e–*/kT with increases in temperature. 
 
 
15.  Find the most probable translational kinetic energy of an ideal gas using the Maxwell 
distribution of translational kinetic energy. 
 
 
Answer:  The plan is to set the derivative of the Maxwell distribution of translational kinetic 
energy equal to zero to find the maximum. 
   The Maxwell distribution of translational kinetic energy, Eq. 31.4.3, is: 
 

 p(t) dt = 2 




1

kT

3/2
 e–t/kT t

½ dt 

Let the normalization constant be A = 2 (1/kT)
3/2. Taking the derivative with respect to t 

using the product rule with the product as [e–t/kT][t
½] gives: 

 

 
d p(t)

dt
 = –A 



1

kT  e–t/kT t
½ + ½A t

–½ e–t/kT = 0 
 

Canceling common terms gives:  – 



1

kT  t
½ + ½ t

–½ = 0  or 



1

kT  t = ½      with t = mp 

Solving for mp gives:  mp = ½ kT 
 
 
16.  The rate constant for the recombination of methyl radicals is 4.5x1010 L mol-1 s-1 at 398.2 K.  
 

 H3C + CH3  H3C–CH3 
 

The reaction has no activation energy. Assuming the hard-core collision radii of the methyl 
radicals are one-half the normal C–C bond length, rCH3 = 0.77 Å, calculate the bimolecular rate 
constant assuming hard-core collision theory at 398.2 K.3 
 
 
Answer:  The plan is to follow Example 31.3.2. 
   The collision cross-section, using Eq. 31.3.8, is: 
 

 HC =  (2rCH3)2 =  [2(0.77x10-10 m)]2 = 7.45x10-20 m2 = 0.0745 nm2 = 7.45 Å2 

 

The molar mass of CH3 is 15.03 g mol-1. The reduced mass of the collision is: 
 

  = 






MA MB

MA + MB
 

1
NA

 (1 kg/1000 g) = 
15.03 g mol-1

2  
1

NA
 (1 kg/1000 g) = 1.248x10-26 kg 

 

With Eq. 31.3.14 the relative speed is: 
 

 c–rel = 




8(1.3806x10-23 J K-1)(398.2 K)

 1.248x10-26 kg

½
= 1059.1 m s-1 

 

Assuming each collision is successful, the rate constant is predicted to be, Eq. 31.3.25: 
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 k2 = HC c–rel (1000 L/m3) NA = 7.45x10-20 m2 (1059.1 m s-1)(1000 L/m3) 6.022x1023 mol-1 
     = 4.75x1010 L mol-1 s-1 
 

This result suggests that roughly each collision is successful (or that the estimate of the collision 
cross section is too small). The rough agreement of the experimental rate constant and the hard-
core prediction indicates that the steric requirements of the reaction are minimal; the orientation 
of the methyl radicals upon collision is largely immaterial. 
 
 
17.  (a). Show that the density of states of a one-dimensional particle in a box is: 
 

 (x) dx = (8m)½ 
a
h (x)–½ dx 

 

[Hint: you don’t need to use the graphical approach that we used for three-dimensions.] 
(b). Compare the behavior of the one-dimensional and three-dimensional particle in a box as a 
function of energy. Why the difference with the change in dimensionality? 
 
 
Answer:  The plan is to determine the derivative of the energy with respect to the quantum 
number nx; the final relationship should be written in terms of the energy (and not the quantum 
number). 

(a). The one-dimensional particle in a box energy, Eq. 23.4.9, is: x = 
h2

8ma2 n2
x  1 

The density of states is given by the derivative, Eq. 31.6.5:       (x) dx = 
dnx

dx
 dx  2 

The derivative is much easier as the inverse: 
dnx

dx
 = 



dx

dnx

–1
  with  

dx

dnx
 = 

h2

8ma2 (2 nx)  3 

However, we need to eliminate the dependence on the quantum number. Solving Eq. 1 for the 

quantum number gives:  nx = (8mx)½ 
a
h       4 

Substituting Eq. 4 into Eq. 3 gives: 
dx

dnx
 = 

h2

8ma2 (8mx)½ 
a
h = 

x
½

(8m)½ 
h
a   5 

Inverting this last equation gives the density of states as:  (x) dx = (8m)½ 
a
h (x)–½ dx 

(b). The density of states decreases as (x)–½ with increasing energy, as shown in Figures 23.4.2 
and 23.4.4.. The density of states of the three-dimensional particle in a box increases with energy 
as ½

t . The difference is the result of degeneracy. The one-dimensional problem is not degenerate 
but Figure 31.6.1 shows the 3D-problem to be highly degenerate, which increases the density of 
states. 
 
 
18.  Calculate the number of translational energy states at 298.2 K for O2 in a box of volume 
1.00 m3 with energies from kT to 1.001 kT (i.e. a 0.1% change in energy). 
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Answer: The plan is to use the density of states in three-dimensions, Eq. 31.6.8. 
   The mass of O2 is m = M/NA (1 kg/1000 g) = 5.314x10-26 kg. Using Eq. 31.6.8 with t = kT: 
 

 t = kT = 4.116x10-21 J 

 (kT) = 

4 (8m)3/2 

V
h3 (kT)½  

           = 

4 [8(5.314x10-26 kg)]3/2 

1 m3

(6.6261x10-34 J s)3 [(1.3806x10-23 J K-1)(298.15 K)]½ 

           = 4.801x1052 J-1 

 

With the energy range as t = 0.001 kT = 4.116x10-24 J giving the number of states as: 
 

 (t) t = 4.801x1052 (4.116x10-24 J) = 1.98x1029 

 

In other words, lots of available states. Concerning the units: 1 J s = kg m2 s-1 and then: 
 

 (t) = 

4 (8m)3/2 

V
h3 t

½ ~ kg3/2 
m3

(kg m2 s-1)3 (kg m2 s-2)½ ~ 
1

kg m2 s-2 ~ J-1 

 
 
19. (a). For a square box with side length a and area A = a2, show that the density of states of a 
two-dimensional particle in a box is: 
 

 (t) dt =  2m 
A
h2 dt 

 

The two-dimensional case has some applicability to free translational motion on a surface and 
electrical conduction in restricted geometries. (b). The density of states of a one-dimensional 
particle in a box is given in the previous problem. Compare the one, two, and three-dimensional 
cases in terms of the behavior with respect to increasing energy. (c). Find the two-dimensional 
Maxwell distribution of translational kinetic energy. 
 
 
Answer:  The plan is to note that this derivation is similar to Eqs. 31.6.4-31.6.8, with graphical 
areas instead of volumes. 
(a). The quantum numbers of the two-dimensional particle in a box are combined as n2 = n2

x + n2
y. 

The energy is:  t = 
h2

8ma2 (n2
x + n2

y) = 
h2

8ma2 n2      1 
 

The density of states is required, Eq. 31.6.5: 
 

 (t) = 
dN(t)

dt
           2 

 

The number of quantum states up to energy t can be determined using a graphical analogy. Each 
choice of quantum numbers, nx , ny is represented as a point in an x-y coordinate plot. Each unit 
change of nx, and ny corresponds to a unit area square. Each unit of area corresponds to one 
specific value of nx, and ny. The maximum value of n for states with energy less than or equal to 
t is calculated by solving Eq. 1 for n: 
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 nmax = (8m)½ 


a

h  ½
t        (31.6.6) 3 

 

The total number of states with energies between zero and t is given by 1/4 of the area of the 
circle with radius nmax. The factor of 1/4 is necessary because a circle centered on the origin is 
divided into quarters, but only one-quarter has both positive x and y values. The area of a circle 
is r2, which gives the number of states with energy from zero to t as: 
 

 N(t) = 
1
4  n 2

max  = 





4  (8m) 


a

h
2
 t = 2m 

A
h2 t     4 

 

The density of states is the derivative with respect to t, Eq. 31.6.5: 
 

 (t) = 
dN(t)

dt
 = 2m 

A
h2 or finally   (t) dt = 2m 

A
h2 dt   5 

 

(b). The density of states is constant with increasing kinetic energy. For one-dimension the 
density decreases as (x)–½, for two-dimensions the density is constant as (t)0, and for three-
dimensions the density increases as t

½. The density of states of a one-dimensional system 
decreases because the non-degenerate energy states of a one-dimensional box diverge with 
increasing quantum number. The density of states of a three-dimensional system increases 
because of the large degeneracy of high energy translational levels. 
 

(c).  Given the area A, the two dimensional distribution function, in analogy with Eq. 32.6.3, is: 
 

 p(t) dn = 
ni

N = 
e–t/kT

(2mkT) A/h2 dn   n2 = n2
x + n2

y   6 
 

Substituting the density of states into Eq. 6 to complete the change in variables from dn to dt 
gives: 
 

 p(t) dt = 
e–t/kT

(2mkT) A/h2 (t) dt = 
e–t/kT

(2mkT) A/h2 2m 
A
h2 dt   7 

 

Canceling common terms gives the two-dimensional Maxwell distribution of translational kinetic 
energy: 
 

 p(t) dt = 



1

kT  e–t/kT dt        8 
 

As a check, if we did things correctly, the final result should automatically be normalized: 
 

 o  p(t) dt = 



1

kT  o e–t/kT dt       9 
 

Integral tables list  o e–ax dx = 1/a  and since a = 1/kT, the integral is equal to one. 
 
 
 
 
 



Chapter 31 Kinetic Molecular Theory   15 

Literature Cited: 
1. W. Kauzmann, Thermal Properties of Matter Vol. I: Kinetic Theory of Gases, Benjamin, New York, 

NY, 1966. Sec. 4.4 

2. P. L. Houston, Chemical Kinetics and Reaction Dynamics, McGraw Hill, New York, NY, 2001; 
reprinted by Dover, Mineola, NY, 2006. Chap. 1. 

3. G. M. Barrow, Physical Chemistry, 6th Ed., McGraw-Hill, New York, NY, 1996, p. 822 Problem 16-7. 


