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Chapter 31: Kinetic Molecular Theory 
 

Predict the bimolecular rate constant of the reaction H2 + I2  2 HI at 700.0 K using hard-
core collision theory. Assume the hard-core collision radii are: rH2 = 1.1 Å and rI2 = 1.7 Å. 

 
   Molecules must collide for a chemical reaction to occur. Not all collisions give successful 
reactions. Many reactions require the kinetic energy of the collision to exceed a threshold for a 
successful reaction to occur. The threshold is the activation energy, which is the collisional 
kinetic energy required to drive the bond breaking and making steps. In a gas, the collision rate 
depends on pressure and temperature. The kinetic energy of a gas molecule depends on 
temperature. The pressure, volume, and temperature relationships of a gas are determined by the 
equation of state. The classical theory of the pressure and kinetic energy relationships of ideal 
gases is called kinetic molecular theory, or KMT. Kinetic molecular theory is a necessary 
preliminary to classical and semi-classical theories of chemical reaction dynamics. 
   KMT was developed contemporaneously with thermodynamics. Thermodynamics and KMT 
provided the foundations of physical chemistry. The principles underlying KMT led to the 
development of statistical mechanics. 
   The pressure of a gas, the rate of collisions with a wall, and the rate of molecular collisions 
depend on the distribution of molecular speeds. Gas molecules travel with a wide range of 
molecular speeds, which on average are hundreds of meters per second. The distribution of 
molecular speed and translational kinetic energy are given by the Maxwell distribution. The 
Maxwell distribution can be derived using purely classical arguments. However, the derivation 
of the Maxwell distribution based on the Boltzmann distribution for the particle in a box brings 
together the core concepts of quantum mechanics and statistical mechanics. The result is a 
macroscopic theory of gas phase properties that is based on molecular theory. 
 
31.1 The Pressure of a Gas is Determined by Molecular Motion 
 

   The goal is to understand P, V, T relationships in ideal gases and the rates of molecular 
collisions. What are the simplest assumptions that are sufficient to give a useful theory of 
molecular motion of an ideal gas? The assumptions that are central to kinetic molecular theory 
are: 
 

1.  Molecules in a gas are in constant, random, rapid motion. 
2.  The motion is isotropic, meaning the same in all directions. 
3.  Gas molecules are modeled as point masses, having no volume. 
4.  No forces act between the molecules, except at the instant of a collision. 
5.  All collisions are instantaneous and elastic. No energy is lost to other degrees of freedom, 

such as rotations or vibrations. 
 

The assumption of the negligible volume of the gas molecules is relaxed when considering 
intermolecular collisions. 
   The pressure of a gas is the average force of collisions imparted to the walls of a container per 
unit area: 
 

 P = 
f
A           31.1.1 

 

The force of collisions with the wall of a container in a given time interval is given by: 
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  f = (number of collisions)(force per collision)(fraction molecules moving in correct direction) 
            31.1.2 
 

Consider a container with N molecules and volume V, Figure 31.1.1a. The number density of 
molecules is N/V and the number of moles of gas is n = N/NA, where NA is Avogadro’s number. 
Consider a portion of the wall in the y-z plane with area A. Each molecule has velocity 
components vx, vy, and vz, Figure 31.1.1b. However, the rate of collisions with the wall depends 
only on the x-component of the velocity. Consider one molecule with velocity component +vx. In 
a given time t, the molecule will collide with the wall if the distance between the molecule and 
the wall is less than or equal to vxt. The total number of collisions within the area A in time 
interval t is given by the number of molecules in the box with end area A and length vxt. 
 

 
 

Figure 31.1.1: (a). Molecules within a distance vxt strike the wall in the given time interval. 
Consider the chosen molecule in black. (b). Only the velocity component towards the wall, 
+vx, determines if a collision occurs. 

 
 
We needn’t worry about the y- and z-components of the molecules in the box. On average, a 
molecule leaving the box in the y- or z-directions will be replaced by molecule entering the box, 
Figure 31.1.2a. The number of collision in the time interval t is given by the number density 
and the box volume Avxt: 
 

 collisions = 
N
V Avxt         31.1.3 

 

The force of the collision is given by f = ma = m (dv/dt), where m is the mass of the molecule. 
For a finite time interval with a single collision the force is f = m (vx/t). A molecule initially 
with velocity +vx reverses direction after the collision resulting in velocity –vx, giving the change 
in velocity as vx = (+vx) – (–vx) = 2vx, Figure 31.1.2b. The force per collision is: 
 

 force per collision = 
2mvx

t
        31.1.4 
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The total force is the product of the number of collisions in time interval t and the force per 
collision: 
 

 f = 
N
V Avxt 

2mvx

t
 = 

2NAmv2
x

V         31.1.5 
 

 

 
Figure 31.1.2: (a). On average, molecules leaving the box in the y- and z-directions are 
replaced by molecules entering the box. (b). The change in velocity during the collision is 
2vx. 

 
 
Dividing this last equation by the cross-sectional area gives: 
 

 
f
A = 

2Nmv2
x

V           31.1.6 
 

This relationship assumes the velocity is the single value vx. Molecules travel with a wide range 
of velocities, so that the force per unit area must be averaged over all the possible molecular 
velocities to give the pressure: 
 

 
f
–

A = 
2Nmv2

x
––

V           31.1.7 
 

We indicate an average with an “over-bar,” where v2
x

––
 is the average of the squared velocity. We 

now determine the number of molecules moving in the correct direction. Only molecules with 
positive velocities in the x-direction strike the target area. On average half of the molecules are 
moving in the +vx direction and half in the –vx direction. Dividing the last expression by two 
gives the pressure as: 
 

 P = 
Nmv2

x
––

V           31.1.8 
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In general, we don’t need to know the x-, y-, z-components of the velocity. Rather only the 
magnitude of the velocity is of interest. The speed of a molecule, c, is the magnitude of the 
velocity, which is related to the x, y, z-components by the Pythagorean theorem: 
 

 c2 = v2
x + v2

y + v2
z         31.1.9 

 

The average squared speed is then given by: 
 

 c2––
 = v2

x
––

 + v2
y

––
 + v2

z
––

         31.1.10 
 

The motion of the molecules is isotropic, so that the components of the squared velocity on 
average are equal, v2

x
––

 = v2
y

––
 = v2

z
––

. The average squared velocity in the x-direction is then one-third 
the average squared speed: 
 

 c2––
 = v2

x
––

 + v2
y

––
 + v2

z
––

 = 3v2
x

––
  giving   v2

x
––

 = c2––
/3   31.1.11 

 

Substituting this last expression into Eq. 31.1.8 gives the final result for the pressure: 
 

 P = 
Nmc2––

3V            31.1.12 
 

Note that the average in this last relationship is of the squared speed, which is not equal to the 
square of the average speed: c2––

  ( c– )2. The root-mean-squared speed, or rms-speed, is 
defined as: 
 

  u  ( )c2–– ½
         31.1.13 

 

Noting that u2 = c2 allows us to write Eq. 31.1.12 in terms of the rms-speed: 
 

 P = 
Nmu2

3V           31.1.14 

The average translational kinetic energy of a molecule is t
– = ½ mu2. Also note that Eq. 31.1.14 

resembles the ideal gas law; multiplying both sides by V gives: 
 

 PV = 1/3 N mu2 = 2/3 N t
–        31.1.15 

 

From the ideal gas law, we also know that PV = nRT. The constant R is the gas constant per 
mole. Boltzmann’s constant is defined as the gas constant per molecule, k  R/NA = 
1.38065x10-23 J K-1. On a per molecule basis for N molecules, nR = (N/NA)(NAk) = Nk. Using 
PV = NkT with Eq. 31.1.15 and solving for the average translational kinetic energy gives: 

 t
– =  3/2 kT          31.1.16 

 

where kT is the available thermal kinetic energy at temperature T per molecule and RT is the 
available thermal kinetic energy per mole. This result is surprising, since we find that the average 
translational kinetic energy of an ideal gas is independent of the molar mass. Translational 
kinetic energy is only a function of temperature. At a given temperature all ideal gases have the 
same kinetic energy. On a molar basis, t

– = 3/2 NA kT = 3/2 RT, as expected from the experimental 
internal energies of monatomic gases, which only have translational energy. Eq. 31.1.16 is also 
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expected based on the Equipartition Theorem. Given that t
– = ½ mu2, Eq. 31.1.16 also allows us 

to find the rms-speed of the molecules as: 
 

 u = 
3 kT

m        (m in kg)  31.1.17 
 

The units of the molecular mass in this last equation are kg. Given that the molar mass is 
M = (NA m) and that NA k = R, Eq. 31.1.17 is also written as: 
 

 u = 
3 RT

M        (M in kg mol-1) 31.1.18 
 

The rms-speed of the molecules depends on the temperature and the molar mass. At a given 
temperature heavy molecules move slowly and light molecules move rapidly. 
 
 
              

Example 31.1.1:   Average Kinetic Energy and rms-Speed 
Calculate the average translational kinetic energy and rms-speed of N2 and CO2 at 298.2 K. 
 
 
Answer:  The average translational kinetic energy is the same for N2 and CO2. Using Eq. 31.1.16 
on a per molecule basis: 

 t
– =  3/2 kT = 3/2 (1.38065x10-23 J K-1)(298.2 K) = 6.176x10-21 J 

On a per mole basis: t
– = 3/2 RT = 8.3145 J K-1 mol-1(298.2 K)(1 kJ/1000 J) = 3.718 kJ mol-1 

The rms-speed of the molecules, using Eq. 31.1.18 is: 
 

 u = 
3 RT

M  = 
3(8.3145 J K-1mol-1)(298.2 K)
28.013 g mol-1(1 kg/1000 g)  = 515.2 m s-1   for N2 

 

 u = 
3(8.3145 J K-1mol-1)(298.2 K)
44.0098 g mol-1(1 kg/1000 g)  = 411.1 m s-1   for CO2 

 
              

 
 

31.2 The Maxwell Distribution 
 

   The distribution of molecular speeds is a specific example of a probability distribution. We 
begin with an instructive example of the determination of average values using a probability 
distribution. Consider first an experiment that has results given by integers, xi. There are two 
basic ways of determining an average. The first is to simply add the results of each trial and 
divide by the total number of trials, N:  x– = (1/N)  xi, Figure 31.2.1. The sum extends over each 
observation, i = 1 to N. The second method is to count the number of occurrences, ni, of each 
result xi. The average is the weighted average with the weighting factors ni/N: 
 

 x– = (1/N)  ni xi   with N =  ni     31.2.1 
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In this case the sum extends over all possible outcomes of the experiment. The weighting factors 
are the probabilities of occurrence of each experimental result, pi = ni/N. This set of probabilities 
is the probability distribution of the outcomes of the experiment, Figure 31.2.1a: 
 

 x– =  xi pi    with pi = ni/N  and    pi = 1   31.2.2 
 

Probability distributions should be normalized,  pi = 1, giving that the total probability of 
occurrence of any possible value is one, or 100%. A plot of the probability distribution versus the 
corresponding experimental value provides a visual summary of the variability in the results, 
Figure 31.2.1b. The maximum of the probability distribution gives the most probable result, xmp. 
 
 
  Example data set with N = 9 trials: 

   xi:  6   3   4   6   6   3   7   8   6   with   x– = (1/N)  xi = 49/9 = 5.44 
 

  Using a weighted average: each possible result is weighted by the number of occurrences, ni: 
 

      ni xi 
          

   x– = 
 ni xi

 ni
  = 

0(2) + 2(3) + 1(4) + 0(5) + 4(6) + 1(7) + 1(8)
0 + 2 + 1 + 0 + 4 + 1 + 1  = 49/9 = 5.44 

 

  Using a probability distribution: the number of occurrences is converted to a probability, pi = ni/N: 
 

           xi  pi 
                 

  (a).   x– =  xi pi = 2(0/9) + 3(2/9) + 4(1/9) + 5(0/9) + 6(4/9) + 7(1/9) + 8(1/9) = 5.44 

 (b).   
 

Figure 31.2.1: (a). There are two ways of doing averages, the traditional  x– = (1/N)  xi and 
using a weighted average with the weights given by a probability distribution. (b). The 
maximum of the probability distribution is the most probable experimental outcome, xmp. 

 
 
   Our example used integer values. If the experimental results are on a continuous range, the 
summation is replaced by an integral over all possible values of x. Then the probability 
distribution p(x) dx determines the probability of occurrence of a value in the range of x to 
x + dx. The specification of a range is necessary because the probability of occurrence of any 
specific exact value, say 6.0111343561, is vanishingly small. But values near 6.00  0.02 may be 
quite common. The normalization is established by setting the integral over all possible values 
equal to one: 
 

 -


 p(x) dx = 1        (normalization) 31.2.3 
 

The average value of x is then given as an integral over the probability distribution. Any 
function, such as x2, may be averaged in an analogous fashion: 
 

probability, pi 

experimental outcome 2            3            4            5            6            7          8 

0.5 – 
0.4 – 
0.3 – 
0.2 – 
0.1 – 
   0 – 

xi 

xmp 
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 x–  = -


 x p(x) dx  and       x2––
  = -


 x2 p(x) dx   31.2.4 

                     
        variable to be averaged       variable to be averaged 
 

If you have studied quantum mechanics, you will notice the parallel with expectation values, for 
which the probability distribution is 2 dx. Now that we know about probability distributions, 
we are ready to find the distribution of molecular speeds in an ideal gas. 
 
The Distribution of Molecular Speeds from the Boltzmann Distribution:  The distribution of 
translational kinetic energies can be determined using the particle in a box model from quantum 
mechanics. If you haven’t covered that material yet, don’t worry. We will simply present the 
result, which you can verify during your later study. The result is the Boltzmann distribution for 
translational energy in one-dimension. Consider a molecule of mass m traveling in the x-
direction in a container of length a. The normalization is given by the partition function 
(see Sec. 8.10 for further information on the Boltzmann distribution and partition functions): 
 

 qt = (2mkT)½ a/h      (quantum)( 30.2.17) 31.2.5 
 

The distribution function, which is the probability that a particle will have translational kinetic 
energy x, is: 
 

 pi = 
ni

N = 
e–x/kT

qt
 = 

e–x/kT

(2mkT)½ a/h
     (quantum) 31.2.6 

 

for ni molecules in energy level i and N total molecules. Classically the kinetic energy in the x-
direction is given by x = ½ mv2

x. Noting the exponential form of Eq. 31.2.6 suggests that the 
classical distribution function of molecular velocities has the form: 
 

 p(vx) dvx = A e–mv2
x/2kT dvx        31.2.7 

 

where A is a normalization constant. (We will do a careful derivation of this functional form in 
Sec 31.6.) To find the normalization constant, we set the integral over all possible values equal to 
one: 
 

 


–


 p(vx) dvx = A 


–


 e–mv2

x/2kT dvx = 1      31.2.8 

Standard tables give the integral as 
0


 e–ax2

 dx = 
1
2 





a

½
. Substitution into Eq. 31.2.8 results in: 

 

 


–


 p(vx) dvx = A 









m/2kT

½
 = 1  giving  A = 





m

2kT

½
  31.2.9 

 

Notice the similarity of the classical normalization with the quantum mechanical partition 
function and normalization, Eqs. 30.2.17 and 31.2.5. Substitution of the normalization constant 
back into Eq. 31.2.7 gives the one-dimensional distribution function of molecular velocities as: 
 

 p(vx) dvx = 




m

2kT

½
 e–mvx

2/2kT dvx       31.2.10 
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Analogous relationships hold for motion in the y-, and z-directions. The distribution of velocities 
is in the general form of a Gaussian distribution, see General Pattern 5 in Chapter 6. A 
Gaussian distribution with standard deviation of  and zero mean is: 
 

 g(x) = 
1

 2
 e–x2

/22  comparing Eq. 31.2.10 gives:   = 
kT
m   31.2.11 

 

A Gaussian distribution has a full-width at half maximum of:  fwhm = 2 2 ln 2  = 2.355 . 
Comparing the general form of the Gaussian distribution to Eq. 31.2.10, the standard deviation of 
the x-velocity is x = kT/m. The distribution broadens as the temperature increases. 
   The kinetic energies of the molecule in the x-, y-, and z-directions are independent. The 
molecule can have any values for the three components without restriction. As a result for a 
three-dimensional container the total kinetic energy is the sum: t = ½ m(v2

x + v2
y + v2

z) and the 
overall distribution function is the product of the one-dimensional distribution functions in x, y, 
and z: 
 

 p(vx,vy,vz) dvx dvy dvz = 




m

2kT

3/2
 e–m(vx

2+vy
2+vz

2)/2kT dvx dvy dvz   31.2.12 
 

The result is the probability of a molecule having velocities in the ranges [vx, vx + dvx], 
[vy, vy + dvy], and [vz, vz + dvz]. However, that is way too much information. We usually don’t 
care about the individual components of the velocity. Rather, we only need to know the speed of 
the molecule, independent of the direction of travel. As we did in Eq. 31.1.11, the squared speed 
and corresponding total translational kinetic energy are related to the velocity components by: 
 

 c2 = vx
2

 + vy
2 +vz

2  and t = ½ mc2     31.2.13 
 

Substituting these two relationships into Eq. 31.2.12, the distribution function of the speed is: 
 

 p(c) dvx dvy dvz = 




m

2kT

3/2
 e–mc2/2kT dvx dvy dvz     31.2.14 

 

The differentials are still in an awkward form. Because the motion of a molecule in a gas is 
isotropic, this equation is simplified by conversion to spherical polar coordinates. We need to 
take a short diversion to discuss spherical polar coordinates and averaging in three-dimensions. 
 
Spherical Polar Coordinates Simplify Spherically Symmetrical Systems:  For an isotropic system, 
the spherical polar coordinate system is useful for determining the velocity of a molecule. The 
speed of the molecule, c, is the length of the velocity vector, Figure 31.2.2. The polar angle, , is 
the angle between the z-axis and the vector. The azimuthal angle, , is the angle between the x-
axis and the projection of the vector onto the xy-plane. To completely cover all space, the ranges 
of the coordinates are: 
 

 0  c   0     0    2      31.2.15 
 

The projection of the vector onto the z-axis is c cos , Figure 31.2.3a. The projection of the 
vector onto the xy-plane has length c sin . The transformation between spherical polar 
coordinates and Cartesian coordinates is then given by Eq. 31.2.13 and: 
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 c = vx
2

 + vy
2 +vz

2 
 vx = c sin  cos  
 vy = c sin  sin  
 vz = c cos           31.2.16 
 
 

 
 

Figure 31.2.2: (a). A molecule of mass m with velocity components vx, vy, vz. (b). Spherical 
polar coordinates, c, , and  completely specify the position of the particle. 

 
 

   Spherical polar coordinates are particularly useful for simplifying integrals in spherically 
symmetric systems. For example consider the integral of a function f(vx,vy,vz) in Cartesian 
coordinates over all velocities: 
 

 I = o

o 

o  f(vx,vy,vz) dvx dvy dvz       31.2.17 

 

In general terms the differential is called the volume element, which is given the symbol d. In 
Eq. 31.2.17 the volume element of Cartesian velocities is d = dvx dvy dvz. The volume element is 
the volume of an infinitesimal “box” of sides lengths dvx, dvy, and dvz that is swept out by a 
change from vx to vx + dvx, from vy to vy + dvy, and form vz to vz + dvz, respectively. What is the 
corresponding volume element in spherical polar coordinates? 
 
 

 
 

Figure 31.2.3: (a). The transformation from r, ,  to x, y, z. (b). The volume element in 
“three-space” in spherical polar coordinates: d = c2 sin  dc d d. 
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Consider a change in c, , and  from c to c + dc,  to  + d, and  to  + d. The corresponding 
sides of the small volume element that are swept out by these differential changes are dc, c d, 
and c sin  d, Figure 24.5.3b. The volume element in three-space is the product of these sides: 
 

 d = dvx dvy dvz = dc (c d)(c sin  d) = c2 sin  dc d d    31.2.18 
 

In spherical polar coordinates, the integral in Eq. 31.2.17 is written: 
 

 I = o

o

2
o  f(c,,) c2sin  dc d d       31.2.19 

 

Quite commonly, the function to be integrated only depends on the speed, f(c), and is 
independent of orientation. The integral is then separable, the integral factors into a product of 
three one-dimensional integrals: 
 

 I = o  f(c) c2 dc  o sin  d  2o  d       31.2.20 
 

The integrals over all possible  values and over all possible  values are: 
 

 


0


 sin  d = [– cos  |0


 = 1 + 1 = 2  and 


0

2
 d = [  | 0

2
 = 2  31.2.21 

 

The angular portion of the integral over all space is then just 4: 
 

 


0


 


0

2
 sin  d d = 4        31.2.22 

 

Given a spherically symmetrical function f(c), Eq. 31.2.20 then simplifies to: 
 

 I = 4 o  f(c) c2 dc         31.2.23 
 

   The factor of 4 c2dc is the volume of an annular region with radius c and thickness dc, 
Figure 31.2.3a. The volume of the annular region increases as c2. In other words, for the same 
thickness, there are many more increments of volume at large c compared to small c, Figure 
31.2.3b. Please see Sec. 24.5 and Addendum 24.8.1 for additional information on integration in 
multiple dimensions. 
 
 

 
Figure 31.2.3:  (a). The volume of an annular region of thickness dc is dV = 4c2 dc. A thin 
annular region is like a thin spherical piece of onion skin. (b). For the same thickness, a small 
increase in radius gives a large increase in annular volume. The segments are equal in 
volume for the two cases shown. 

dc 

c 

dV = 4 c2 

c1 c2 

(a). (b). 
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Averaging in 3-Dimensions:  For an average of the function f in three dimensions, the probability 
distribution can be expressed in terms of Cartesian, p(vx,vy,vz), or spherical polar coordinates, 
p(c,,). Eqs. 31.2.16 are used to transform p(vx,vy,vz) to p(c,,) and f(vx,vy,vz) to f(c,,). The 
average of a function f is given equivalently in Cartesian and spherical polar coordinates by: 
 

 f
–

 = o

o


o  f(vx,vy,vz) p(vx,vy,vz) dvx dvy dvz 

 f
–

 = o

o

2
o  f(c,,) p(c,,) c2sin  dc d d      31.2.24 

 

For our case, we wish to find the averages of the speed, squared speed, and kinetic energy, none 
of which depends on angles  and . Spherical polar coordinates simplify the integrals using 
Eqs. 31.2.22 and 31.2.23. 
 
The Maxwell Distribution of Molecular Speeds has a Maximum:   We don’t need to know the 
direction of motion. Converting Eq. 31.2.14 to spherical polar coordinates and averaging over 
the direction of the motion gives the distribution function of molecular speeds as: 
 

 p(c) dc = 




m

2kT

3/2
 


0


 


0

2
 e–mc2/2kT c2 sin dc d d    31.2.25 

 

The integral is separable. The angular integrals then reduce to 4, Eq. 31.2.23. The result is the 
Maxwell distribution of molecular speeds: 
 

 p(c) dc = 4 




m

2kT

3/2
 e–mc2

/2kT c2 dc      31.2.26 
 

A plot of the Maxwell distribution for O2 at several temperatures shows that as the temperature 
increases the distribution broadens and the most probable speed increases, Figure 31.2.4. As the 
distribution broadens, the maximum value of the probability decreases to maintain 
normalization; the area under the curve must remain at unity and the distribution “flattens.” As 
temperature increases, the probability of molecules with high speed, while small, increases 
greatly. This increase in energy rich molecules is the reason that organic and inorganic chemists 
often heat their flasks during synthetic reactions. The importance of the Maxwell distribution to 
chemical kinetics is difficult to overstate. 
   The Maxwell distribution is the product of a decreasing function and an increasing function of 
speed. The decreasing function is the exponential term e–mc2/2kT. The probability of high kinetic 
energies is less than low kinetic energies for a specific speed and direction, as specified by c, , 
and . The increasing function is the volume of the annular region, which is 4c2 dc. As the 
speed increases there is more volume for possible values at the given speed, independent of 
direction, Figure 31.2.3b. The product of a decreasing function and an increasing function has a 
maximum value. Very slow speeds and very high speeds are improbable. The most-probable 
speed, cmp, is given by setting the derivative of the Maxwell distribution with respect to speed 
equal to zero (see the Problems): 
 

 
dp
dc = 0   giving  cmp = 

2kT
m       31.2.27 
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With the Maxwell relationship in hand, we next determine the average speed of the molecules in 
an ideal gas. 
 
 

 
 

Figure 31.2.4: Maxwell distribution of molecular speeds at increasing temperatures. Few 
molecules have low speeds and few have high speeds. 

 
 
The Average Speed is Less than the RMS-Speed:   The average speed of a molecule at 
temperature T is given by the integral over the Maxwell distribution: 

 

 c– = 


0


 c p(c) dc         31.2.28 

 

Using the Maxwell distribution, Eq. 31.2.26, the integral becomes: 
 

 c– = 4 




m

2kT

3/2
 


0


 c3 e–mc2/2kT dc       31.2.29 

 

Standard tables give the integral as 
0


 x3 e–ax2

 dx = 
1

2a2 , which upon substitution gives: 
 

 c– = 4 




m

2kT

3/2
 
1
2 



2kT

m

2
 = 

2
½ 



m

2kT

–½
      31.2.30 

 

Gathering the constants gives the average speed: 
 

 c– = 
8kT
m

 = 
8RT
M       (M in kg mol-1) 31.2.31 

 

Notice that the average of c ends up being an integral over c3, which results from the product of c 
with the volume element 4c2 dc. 
   The average squared speed of a molecule at temperature T is given by the integral over the 
Maxwell distribution: 
 

 c2––
 = 


0


 c2 p(c) dc         31.2.32 
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Using the Maxwell distribution, Eq. 31.2.26, the integral becomes: 
 

 c2––
 = 4 





m

2kT

3/2
 


0


 c4 e–mc2/2kT dc       31.2.33 

 

Standard tables give the integral as 
0


 x4 e–ax2

 dx = 
3

8a2 




a
½

, which upon substitution gives: 

 c2––
 = 4 





m

2kT

3/2
 
3
8 



2kT

m

2





2kT

m

½
= 

43
8  






½

3/2  



m

2kT

3/2





2kT 

m

5/2

= 
3kT
m   31.2.34 

 

Taking the square root gives the rms-speed as: 
 

 u = ( c2––
 )½ = 

3kT
m  = 

3RT
M     (M in kg mol-1) 31.2.35 

 

We derived this same expression as Eq. 31.1.17, based on the ideal gas law. Our current 
derivation is from first principles and avoids using the empirical gas law. We should compare the 
various measures of molecular speed that we have derived in Eqs. 31.2.27, 31.2.31, and 31.2.35. 
For the average speed, c–, the numerical constant is 8/ = 2.546, which shows that cmp < c– < u, 
Figure 31.2.5. The reason for the differences is that the averages in c– and u include large values 
of c, which while improbable do increase the averages slightly compared to the most probable 
value. Because of the c2-dependence in u = ( c2––

 )½, the rms-speed weights the fast speeds from 
the “tail” of the Maxwell distribution more heavily than the average speed. 
 
 

 
Figure 31.2.5: Comparison of the most probable, average, and rms-speeds of O2 at 298.2 K, 
which are cmp = 394 m s-1, c– = 444 m s-1, and u = ( c2––

 )½ = 482 m s-1. 
 
 
31.3 The Rate of Molecular Collisions 
 

    Collisions with a Wall: Effusion:  Collisions with the walls of a reaction vessel, the surfaces of 
solid particles, or solid substrates can accelerate or decelerate chemical reactions. The same 
general theory also applies to gas phase effusion, which is used in isotope separation, the 
measurement of vapor pressure of solids, and the determination of molecular masses. Collisions 
of molecules with a wall closely parallels our derivation of the pressure of a gas. 
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   Once again consider a container with N molecules and volume V, Figure 31.1.1a, The number 
density of molecules is N/V and the mass density is d = n M/V, where M is the molar mass of 
the molecules. Consider a portion of the wall in the y-z plane with area A. Consider one 
molecule with velocity component +vx. In a given time t, the molecule will collide with the 
wall if the distance between the molecule and the wall is less than or equal to vxt. The total 
number of collisions within the area A in time interval t is given by the number of molecules in 
the box with end area A and length vxt, Eq. 31.1.3. The rate of collisions per unit area is given 
by dividing by At: 
 

 collision rate per unit area = 
N
V vx       31.3.1 

 

We only considered one velocity. The collision rate is determined by averaging over the 
distribution of velocities in the positive x-direction. Only molecules with velocity +vx are headed 
towards the wall. Using the velocity distribution in Eq. 31.2.10, the average collision rate per 
unit area, Zwall, is: 
 

 Zwall = 
N
V o vx p(vx) dvx = 

N
V 




m

2kT

½
 o vx e–mvx

2
/2kT dvx    31.3.2 

 

Standard tables give the integral as 
0


 x e–ax2

 dx = 
1
2a , which upon substitution gives: 

 

 Zwall = 
N
V 




m

2kT

½





2kT

2m  = 
N
V 




kT

2m

½
      31.3.3 

 

This expression can be rewritten in terms of the average speed, Eq. 31.2.31. Multiplying and 
dividing by 4, rearranging, and substituting the relationship for the average speed gives the 
average collision rate per unit area as: 
 

 Zwall = 
1
4 

N
V 




8kT

m

½
 = 

1
4 

N
V 






8RT

M

½
 = 

1
4 

N
V c–   (M in kg mol-1) 31.3.4 

 

As the average speed of the molecules increases, the collisions with the walls of the container 
increase. The average speed increases with temperature as T½ and decreases with molar mass as 
M–½. The dependence on molar mass is the key to practical applications. 
   In gas effusion, a gas is placed in a container with a small hole. “Collisions” with the hole 
allow molecules to escape from the container. The rate of escape is the effusion rate. If the wall 
surrounding the hole is so thin that the escaping molecules don’t collide with the side-wall of the 
hole, then the effusion rate is given by Eq. 31.3.3 multiplied by the cross-sectional area of the 
hole: 
 

 effusion rate = 
dN
dt  = Zwall A = 

N
V A 







RT

2M

½
      31.3.5 

 

where N is the number of molecules of gas escaping the container. The number density is given 
by the ideal gas law as N/V = NAP/RT. The effusion rate in moles of molecules per second, 
dn/dt, is then given by dividing Eq. 31.3.5 by Avogadro’s number: 
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 effusion rate = 
dn
dt  = 

Zwall A
NA

 = 
P

RT A 






RT

2M

½
 = P A 







1

2MRT

½
   31.3.6 

 

For mixtures of gases, P is replaced by the partial pressure of the substance, Pi. Consider a 
mixture of two types of molecules with molar masses M1 and M2. The ratio of the rates of 
effusion of n1 moles of molecules of type 1 and n2 moles of molecules of type 2 using Eq. 31.3.5 
for each substance or Eq. 31.3.6 for each substance is: 
 

 
effusion rate 2
effusion rate 1 = 

n2

n1
 






M1

M2

½
 = 

P2

P1
 






M1

M2

½
      31.3.7 

 

Effusion and processes related to effusion are used to separate uranium isotopes based on the 
gases 235UF6 and 238UF6 and the small difference in molar mass. The dependence on pressure 
also allows effusion to be used to measure the vapor pressures of solids. 
 

The Rate of Molecular Collisions in Ambient Conditions is Screamingly Fast:  The collision rate 
in gases near ambient conditions is amazingly fast. The hard-core collision model for collisions 
between A and B molecules assumes that the molecules have volume, but no forces act between 
the molecules except at the instant of a collision. We model each molecule, no matter how 
complex, as a sphere with radius rA for A and rB for B. The molecules act like billard balls during 
the collisions. Consider NA molecules of A and NB molecules of B in a container of volume V. 
The number density of A molecules is NA/V and of B molecules is NB/V. The centers of mass of 
A and B must approach each other to a distance of d = rA + rB for a collision to occur, Figure 
31.3.1. The parameter d is the hard-core collision diameter. Any B molecule approaching A 
within the hard-core collision cross section, HC, undergoes a collision, with HC given as the 
area of the circle with radius d: 
 

 HC =  (rA + rB)2 =  d2        31.3.8 
 

To simplify matters, we initially assume that molecule A is moving with average speed c– and all 
B-molecules are in fixed positions. In time interval t, molecule A sweeps out a cylinder of 
cross-section HC and length c– t, Figure 31.3.1. 
 

 swept volume = HC c– t        31.3.9 
 

The molecules travel a zig-zag path caused by the collisions, but the swept volume is the same. 
 
 

 
 

Figure 31.3.1: The hard core collision diameter is the distance of closest approach of 
molecule A with radius rA and molecule B with radius rB: d = rA + rB. A collision occurs if a 
B molecule center of mass is in the volume swept by molecule A in time interval t. 
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Any B molecule with a center in this volume undergoes a collision during the time interval. The 
number of molecules inside this volume is given by the number density of B: 
 

 number of molecules inside swept volume = HC c– t NB/V    31.3.10 
 

The collision frequency is the number of collision per unit time. Dividing the last equation by t 
gives: 
 

 collision frequency = HC c– NB/V       31.3.11 
 

We have only considered one A-molecule. Multiplying the last equation by the total number of 
A-molecules gives the total of collision rate in volume V: 
 

 collision rate = NA HC c– NB/V       31.3.12 
 

Usually we require the collision rate per unit volume. Dividing the last equation by the volume 
gives: 
 

 collision rate per unit volume: = HC c– (NA/V)(NB/V)     31.3.13 
 

Our model assumes that the B-molecules are not moving, which of course is unrealistic. To relax 
this restriction, we must replace the average speed of the A-molecules with the average relative 
speed of the molecules, c–rel. The speed of approach of A and B molecules relative to each other 
determines the collision rate. We will show in Sec. 32.5 that the average relative speed has the 
same form as c– except that the mass is replaced with the reduced mass of the colliding pair of 
molecules: 
 

 c–rel = 




8kT



½
          31.3.14 

 

with  = 
mA mB

mA + mB
 = 







MA MB

MA + MB
 

1
NA

 (1 kg/1000 g)      31.3.15 
 

Substitution of the relative speed into Eq. 31.3.13 gives the A-B collision rate per unit volume, 
ZAB: 
 

 ZAB = HC c–rel (NA/V)(NB/V)        31.3.16 
 

The last equation was derived for bimolecular collisions of dissimilar molecules. In a pure gas or 
for A-A collisions in a mixture, the collision partners are identical, with N = NA and m = mA. The 
reduced mass is  = m/2 and the relative speed, Eq. 31.3.14, simplifies to: 
 

 c–rel = 






8kT

 m/2

½
 = 2 





8kT

m

½
 = 2 c–          (A-A) 31.3.17 

 

For A-A collisions the collision rate per unit volume is: 
 

 ZAA = ½ HC 2 c– (N/V)2        31.3.18 
 

The leading factor of ½ adjusts for the fact that a collision of molecule 1 with molecule 2 is the 
same encounter as a collision of molecule 2 with molecule 1. 
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Example 31.3.1: Hard-Core Collision Rate 
Calculate the collision rate per cubic meter in pure O2 at 1 bar and 298.2 K. Hard-core collision 
diameters are typically listed in the literature, which are twice the radius of the molecule: 
dO2 = (2 rO2) = 3.61 Å. 
 
 
Answer:  The collision cross-section, using Eq. 31.3.6: 
 

 HC =  (2rA)2 =  [3.61x10-10 m]2 = 4.094x10-19 m2 = 0.409 nm2 = 40.9 Å2 

 

The mass of O2 is:  m = 32.00 g mol-1 (1 kg/1000 g)/6.0221x1023 mol-1 = 5.331x10-26 kg 
 

With Eq. 31.2.31 the average speed of O2 molecules at 298.2 K is: 
 

 c– = 




8(1.381x10-23 J K-1)(298.2 K)

 5.331x10-26 kg

½
= 443.5 m s-1 

 

The number density is given by the ideal gas law with 1 bar = 1x105 Pa = 1x105 N m-2 as: 
 

 N/V = NAP/RT = 
6.0221x1023 mol-1(1.00x105 N m-2)

8.3145 J K-1 mol-1(298.2 K)  = 2.429x1025 m-3 
 

Concerning the units, remember that 1 J = 1 N m. Using Eq.31.3.18 gives the collision rate per 
square meter as: 
 

 ZAA = ½ HC 2 c– (N/V)2 = ½ 4.094x10-19 m2 2 (443.5 m s-1)(2.429x1025 m-3)2 
     = 7.57x1034 s-1 m-3 

 

Since the mass and size of O2 and N2 are similar, the total collision rate in ambient air is roughly 
the same. The large collision rate results from the large number density and rapid movement. 
Even though the collision cross-section is tiny, 41 Å2, the overall collision rate is immense. This 
result presents the important question: if the collision rate is so screamingly fast, why are gas 
phase chemical reactions often slow in comparison? 
 
              

 
 
   We will take a careful look at relative coordinates in Sec.31.5. However, we can justify that the 
relative speed is 2 times the average speed in the special case of A-A collisions. Picture two 
bumper cars at your favorite amusement park; obviously the point is to suffer collisions. The best 
collision occurs if the cars travel in opposite directions on the track. If both cars are traveling at 
the same speed in the same direction, no collisions occur. The two bumper cars must move at 
different speeds and/or in different directions. The two cars must have relative motion towards 
each other. If both cars are traveling in the same direction, but at different speeds, the relative 
speed is the difference, crel = c1 – c2. If c1 is 8 km hr-1 and c2 is 10 km hr-1 the relative speed is 
-2 km hr-1. 
   Each molecule has a velocity vector that determines the speed and direction of travel. The 
velocity vectors for molecules 1 and 2 are v 1 and v 2. The relative velocity of the two molecules 
is the vector difference v rel = v 1 – v 2, Figure 31.3.2a. The relative speed is the length of the 
relative velocity vector. Consider two molecules moving at the same average speed, c–. If the 
molecules travel in opposite directions, the relative speed is 2c–, Figure 31.3.2b. If the two 
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molecules travel in the same direction, the relative speed is zero and they never approach each 
other, Figure 31.3.2c. In general, collisions occur at all possible angles, from  = 0 to 180. The 
“average” angle of a collision is 90, Figure 31.3.2d. The vectors v 1 and v 2 each have length c–; 
from the Pythagorean theorem the relative speed is 2 c–. 
 
 

 
 

Figure 31.3.2: (a).  The relative velocity is v rel = v 1 – v 2 and c–rel is the length of v rel. (b). 
Assume each molecule travels at the average speed, c–. If the molecules travel in opposite 
directions, c–rel = 2c–. (c). If both molecules travel in the same direction, c–rel = 0.  (d). For an 
average collision, at 90, c–rel = 2 c–. 

 
 
Molecules must collide for a chemical reaction to occur: We can use the hard-core collision rate, 
ZAB, to estimate the rates of chemical reactions. Consider the ideal gas reaction: 
 

 A + B  products         31.3.19 
 

If every collision is successful and gives products, the rate of the reaction is given by the rate of 
collisions: 
 

 – 
d(NA/V)

dt  = ZAB = HC c–rel 



NA

V  



NB

V        31.3.20 
 

We normally express reaction rate laws in terms of the concentrations of the reactants. The gas-
phase concentrations of A and B are given as: 
 

 [A] = 
1

NA
 



NA

V   and   [B] = 
1

NA
 



NB

V      31.3.21 
 

Dividing both sides of Eq. 31.3.20 by Avogadro’s number, NA, and using (NA/V) = NA (NA/NAV) 
converts the number densities to molar concentrations: 
 

 – 
d(NA/NAV)

dt  = 
ZAB

NA
 = HC c–rel NA 



NA

NAV  



NB

NAV      31.3.22 
 

Substituting the concentrations from Eq. 31.3.21 into Eq. 31.3.22 gives the reaction rate as: 
 

 – 
d[A]

dt  = 
ZAB

NA
 = HC c–rel NA [A] [B]       31.3.23 

 

The rate law for a second-order elementary mechanistic step has the conventional form: 
 

v 1 
v 2 

v rel 

(a). 

v rel 

(b). (c). (d). 

v 1 

v 2 

v rel 

v 1 

v 2 

v 1 

v 2 

v rel = 0 

v 1 v 2 = 

} 
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 – 
d[A]

dt  = k2 [A] [B]         31.3.24 
 

Comparing Eqs. 31.2.23 and 31.3.24 gives the second-order rate constant, k2, as: 
 

 k2 = HC c–rel NA = HC 




8kT



½
 NA =  d2 





8kT



½
(1000 L/m3) NA   31.3.25 

 

The units of HC c–rel are m3 s-1. To convert k2 to L mol-1 s-1, we use 1 m3 = 1000 L. Of course not 
every collision is successful. Kinetic molecular theory offers no method for correcting that 
assumption. Instead, Eq. 31.3.25 gives the upper limit for the reaction rate. 
 
 
              

Example 31.3.2: Bimolecular Rate Constants and Hard-Core Collision Theory 
Predict the bimolecular rate constant of the reaction H2 + I2  2 HI at 700.0 K using hard-core 
collision theory. Assume the hard-core collision radii are: rH2 = 1.1 Å and rI2 = 1.7 Å. 
 
 

Answer:  The collision cross-section, using Eq. 31.3.6, is: 
 

 HC =  (rA + rB)2 =  (1.1x10-10 m + 1.7x10-10 m)2 = 2.46x10-19 m2 = 0.246 nm2 = 24.6 Å2 

 

The reduced mass of the collision is: 
 

  = 






MA MB

MA + MB
 

1
NA

 (1 kg/1000 g) = 



2.02 g mol-1(253.81 g mol-1)

2.02 g mol-1 + 253.81 g mol-1  
1

NA
 (1 kg/1000 g) 

    = 3.321x10-27 kg 
 

With Eq. 31.3.14 the relative speed is: 
 

 c–rel = 




8(1.381x10-23 J K-1)(700.0 K)

 3.321x10-27 kg

½
= 2722. m s-1 

 

Assuming each collision is successful, the rate constant is predicted to be, Eq. 31.3.25: 
 

 k2 = HC c–rel (1000 L/m3) NA = 2.46x10-19 m2 (2722. m s-1)(1000 L/m3) 6.022x1023 mol-1 
     = 4.03x1011 L mol-1 s-1 
 

This result gives an upper limit to the observed rate constant. 
 
              

 
 

The deficiencies of the hard-core prediction of bimolecular rate constants are significant. The 
basic theory neglects intermolecular forces. An attractive potential between collision partners 
increases the effective collision cross-section. The colliding partners don’t need to be so close 
together for an interaction to occur. Molecules also have a softer repulsive potential than 
assumed in the hard-core model. Molecules aren’t spherical structureless particles. Molecular 
shape, molecular rotation, and vibration are important. Not every collision is successful in 
bringing about the bond breaking and making steps required for the formation of products. More 
fundamentally the molecules should be represented by strongly interacting quantum mechanical 
wave functions. Classical theory cannot provide the detailed description of molecular collisions 



522 
 

that is required for accurate predictions of rate constants. Molecular reactions dynamics is the 
subject of the next chapter. One important correction is to take the kinetic energy of the collision 
into account. 
 
Mean Free Path and the Rate of Molecular Collisions:  The mean free path is the average 
distance between molecular collisions. The collision rate per unit volume is ZAA. The volume per 
molecule is the inverse of the number density, V/N. If the molecule is traveling at an average 
speed of c– and undergoes collisions at a rate of (ZAA V/N), the mean free path, , is defined as: 
 

  = 
c–

ZAA V/N          31.3.26 
 

The units are (m s-1)/(s-1 m-3 m3) = m. Using Eq. 31.3.18 for the collision rate and the ideal gas 
law for the volume per molecule V/N = (1/NA)RT/P = kT/P, Eq. 31.3.26 reduces to: 
 

  = 
c–

HC 2 c–(N/V)2(V/N)
 = 

V
2 HC N

 = 
kT

2 HC P
 = 

RT
2 NA HC P

   31.3.27 

 

As the pressure increases the molecules are closer together, which increases the collision rate and 
shortens the mean free path. The mean free path has important practical consequences. For 
example in a time-of-flight mass spectrometer, a molecular ion must travel from the ionization 
source to the detector without a collision. The time-of-flight analyzer must be kept at a very low 
pressure to reduce the collision rate of the molecular ion with residual air in the flight tube. 
 
 
              

Example 31.3.3:  Mean Free Path 
Determine the pressure required to increase the mean free path in residual air to 1.00 m in a time-
of-flight mass analyzer at 298 K. Assume residual air is essentially pure N2 with the hard-core 
collision diameter dN2 = (2rN2) = 3.75 Å. 
 
 

Answer:  The collision cross-section, using Eq. 31.3.6: 
 

 HC =  (2rA)2 =  [3.75x10-10 m]2 = 4.418x10-19 m2 = 0.442 nm2 = 44.2 Å2 

 

Using Eq. 31.3.27 the required pressure is: 
 

 P = 
RT

2 NA HC 
 = 

8.3145 J K-1 mol-1(298.2 K)
2 6.022x1023 mol-1(4.418x10-19 m2) 1.00 m

 
 

    = 6.59x10-3 N m-2 = 6.59x10-3 Pa = 6.59x10-8 bar 
 

In alternate units: P = 6.59x10-8 bar (1 atm/1.01325 bar) = 6.50x10-8 atm = 4.94x10-5 torr 
 
              

 
 

31.4 The Distribution of Molecular Kinetic Energies Has a Maximum 
 

   The Maxwell distribution of molecular speeds can be converted into a distribution function of 
translational kinetic energies. The distribution function of kinetic energies lends insight into the 
energy available from collisions that is available to initiate bond rearrangements. The speed and 
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kinetic energy are related through t = ½ mc2. To change variables in Eq. 31.2.26 from c to t, the 
derivative of the energy with respect to speed is: 
 

 
dt

dc = mc = (2mt)½ giving   dc = (2mt)–½ dt  while c2 = 
t

2m   31.4.1 
 

Substituting the definition of the kinetic energy and using Eqs. 31.4.1 for the differential and c2 
gives the distribution of kinetic energies as: 
 

 p(t) dt = 4 




m

2kT

3/2
 e–t/kT 

t

2m (2mt)–½ dt     31.4.2 
 

Collecting terms gives the Maxwell distribution of translational kinetic energy: 
 

 p(t) dt = 2 




1

kT

3/2
 e–t/kT t

½ dt       31.4.3 
 

The distribution function depends only on temperature: at the same temperature all ideal gases 

have the same kinetic energy. The distribution is the product of a decreasing function, e–t/kT, 
and an increasing function, t

½, so that the distribution has a maximum, Figure 31.4.1. Similarly, 
we also found a maximum in the distribution of molecular velocities. The fraction of molecules 
with large kinetic energies is small. 
 
 

 
Figure 31.4.1: Maxwell distribution of translational kinetic energy in an ideal gas. The most 
probable kinetic energy is mp = kT/2. 

 
 

Using the Maxwell distribution of kinetic energies, Eq. 31.4.3, the average translational kinetic 
energy of an ideal gas is: 
 

 t
–– = o t p(t) dt = 2 





1

kT

3/2
 


o t
3/2 e–t/kT dt     31.4.4 

 

We can simplify the integral with the change in variables t = x2 or equivalently x = t
½, giving: 
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dt

dx = 
dx2

dx  = 2x  giving   dt = 2x dx     while    t
3/2 = x3   31.4.5 

 

Substituting the expressions for the change of variables into Eq. 31.4.4 gives: 
 

 t
–– = 2 





1

kT

3/2
 2 



o x4 e–x2
/kT dx       31.4.6 

 

Standard tables give the integral as 
0


 x4 e–ax2

 dx = 
3

8a2 




a
½

, which upon substitution gives: 
 

 t
–– = 2 





1

kT

3/2
 2 

3(kT)2

8  (kT)½ = 3/2 kT      31.4.7 
 

which is exactly the result that we expect from experiments on monatomic gases and from 
Equipartition. The importance of this expression, however, is that the result is derived from first 
principles. No experimental information, such as the ideal gas law, is used in the derivation. In 
fact we can now derive the ideal gas law. 
   The PV product of an ideal gas is given by Eq. 31.1.15. Substitution of Eq. 31.4.7 into 
Eq. 31.1.15 gives the ideal gas law without any dependence on experimental information: 
 

 PV = 1/3 N mu2 = 2/3 N t
– = NkT = nRT      31.4.8 

 

This derivation of the ideal gas law also shows that the relationships that we have developed for 
the average speed and the rms-speed are also from first principles. 
   Eq. 31.3.21 gives an upper limit for the bimolecular rate constant, because many collisions are 
unsuccessful at producing products. Consider the possibility that for a successful reaction, 
sufficient energy must be available from the translational kinetic energy of the collision to bring 
about the bond breaking and making steps. In the next chapter we will relate this minimum 
collisional energy to the activation energy of the reaction. A typical activation energy is 
50 kJ mol-1, while at room temperature RT is only 2.48 kJ mol-1. The fraction of the molecules in 
an ideal gas that have translational kinetic energies above a given threshold, *, is given by 
integrating the Maxwell distribution from * to . This integral has no closed form solution and 
must be integrated numerically. However, if the threshold energy is large compared to 3kT, the 
integral is adequately approximated as (see the Problems):1,2 

 

 p(t > *) = * p(t) dt = 2 




1

kT

3/2
 



* t
½ e–t/kT dt   

2


 



*

kT

½
e–*/kT 

          (* > 3kT)    31.4.9 
 

At room temperature, if the threshold energy is 50 kJ mol-1, the fraction of molecules with 
energies greater than the threshold is only 4x10-8. Relatively few molecules are sufficiently 
energy rich. However, this fraction is roughly an exponentially increasing function of 
temperature. At 500 K with the threshold again at 50 kJ mol-1, the fraction of molecules with 
energy greater than the threshold is 8x10-5, or a factor of 2000 greater than at room temperature. 
We need to take into account that the appropriate kinetic energy is the relative collision energy, 
and not the kinetic energy of a single molecule. However, Eq. 31.4.9 is helpful in understanding 
why reactions are often slow. We should also remember that not all reactions have an activation 
energy. 
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31.5 Center of Mass Coordinates2 

 

   Only the relative motion of two colliding molecules is significant. The motion of the center of 
mass of the two molecules makes no contribution to the collision. The purpose of transforming to 
center of mass coordinates is to allow us to focus on the relative motion of the two molecules. 
The mass of molecule 1 is m1 and the mass of molecule 2 is m2. The total mass is M = m1 + m2. 
The position of molecule 1 is specified by position vector 1, r1 and the position molecule 2 by 
r2. The vector velocities of the two molecules are the derivatives of position with respect to time: 
 

 v1 = 
d r1

dt   and    v2 = 
d r2

dt        31.5.1 
 

The relative velocity of the two molecules is the vector difference vrel = v1 – v2, Figure 31.5.1b. 
The speeds are the magnitudes of the velocity vectors. The speed corresponding to vrel is: 
 

 c2
rel = v2

x,rel + v2
y,rel + v2

z,rel = vrel  vrel = v2
rel      31.5.2 

 

where vrel  vrel  is the vector dot product, which is commonly symbolized as v2
rel.  The velocity 

of the center of mass, COM, is determined from: 
 

 M vcom = m1v1 + m2v2        31.5.3 
 

If molecule 1 is heavier, the center of mass lies closer to molecule 1 than molecule 2; in other 
words, if m1 > m2 the weighting in the last equation favors the m1v1 term in the sum. We now 
need to show that the kinetic energy during the collision is the sum of the kinetic energy of the 
center of mass and the relative kinetic energy of the colliding molecules: 
 

 t = ½ M c2
com + ½  c2

rel        31.5.4 
 

where  is the reduced mass of the collision, Eq. 31.3.13. Only the relative kinetic energy is 
available to meet the activation energy demand. 
 

 
 

Figure 31.5.1: Center of mass coordinates. (a). Laboratory reference-frame time-course of the 
collision. The four diagrams are snapshots at successive time intervals. (b). The velocity 
vectors are translated to a common origin. Then the relative velocity vector is vrel = v1 – v2. 
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The first step is to determine the relative motion of each velocity vector compared to the center 
of mass. Given that the total mass is M = m1 + m2, then: 
 

 
m1

M + 
m2

M = 1          31.5.5 
 

The motion of molecule 2 relative to the center of mass is: 
 

 v2 – vcom = 



m1

M + 
m2

M  v2 – vcom = 
m1

M v2 + 
m2

M v2 – vcom    31.5.6 
 

Dividing Eq. 31.5.3 by M and rearranging gives: 
 

 
m2

M v2 – vcom = – 
m1

M v1        31.5.7 
 

Substitution of this last equation into the last two terms in Eq. 31.5.6 gives, Figure 31.5.2: 
 

 v2 – vcom = 
m1

M v2 – 
m1

M v1 = 
m1

M (v2 –v1) 

     = 
m1

M vrel         31.5.8 

 
 

 
Figure 31.5.2: The relative motion of each velocity vector compared to the center of mass: the 
vector differences are  v1 – vcom and  v2 – vcom.  
 
 
Repeating the steps in Eqs. 31.5.5-31.5.8 for molecule 1 gives: 
 

 v1 – vcom  = – 
m2

M vrel         35.5.9 
 

Solving 35.5.9 for v1 and Eq. 31.5.8 for v2 gives: 
 

 v1 = vcom – 
m2

M vrel  and  v2 = vcom + 
m1

M vrel    35.5.10 
 

The total kinetic energy is given by: 

v2 v1 

vrel vcom 

v1 – vcom = – (m2/M) vrel 

v2 – vcom= (m1/M) vrel 

m1 

m2 
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 t = ½ m1 v
2

1  + ½ m2 v
2

2        35.5.11 
 

where v2
1 and v2

2 are the corresponding dot products. Substituting Eqs. 35.5.10 for v1 and v2 into 
the last equation gives: 
 

 t = ½ m1 



vcom – 

m2

M vrel
2
 + ½ m2 



vcom + 

m1

M vrel
2
     35.5.12 

 

Doing the multiplications and collecting terms gives (a bit of a mess, frankly): 
 

     t = ½ m1 v
2

com – 
2m1m2

2M  vrel vcom + 
m1m2

2

2M2  v2
rel + ½ m2 v

2
com + 

2m2m1

2M  vrel vcom + 
m2m2

1

2M2  v2
rel 

            35.5.13 
 

Giving M = m1+ m2, the terms in combine to give the kinetic energy of the center of mass 
motion. The cross terms in vrel vcom cancel. The remaining terms in v2

rel have a common factor of 
m1m2.Again using M = m1+ m2, finally gives: 
 

 t = ½ M v
2

com + 
m1m2M

2M2  v2
rel = ½ M v

2
com + 

m1m2

2M  v2
rel 

 t = ½ M v
2

com + ½  v2
rel        35.5.14 

 

Substituting the square scalar speeds for the dot products gives Eq. 31.5.4. 
   To gain some appreciation for the center of mass frame of reference, picture an otherwise 
darkened room with only two bumper cars in view. Assume that the velocity vectors of the cars 
are as shown in Figure 31.5.1, the cars are rolling forward while tending towards each other. You 
sit on a sled that travels with the center of mass. Because the room is dark, you don’t notice that 
you are moving forwards. One bumper car is on your left and one on your right. What would you 
observe as time advances? The bumper cars appear to move directly towards you with a speed 
given by the relative speed. You are all traveling forwards, but only the relative motion matters 
and then you find yourself in the middle of the collision. 
   The center of mass frame is convenient when dealing with collisions. However, is the 
probability distribution of the relative speed still given by the corresponding Maxwell 
distribution? Using the identity ea+b = ea eb with Eq. 31.5.4, the Maxwell weighting factor gives 
the probability distribution as a function of: 
 

 e–t/kT = e–(Mc2
com + c2

rel)/2kT = e–Mc2
com/2kT e–c2

rel/2kT    31.5.15 
 

Upon normalization the Maxwell distribution is given by: 
 

    p(vcom,x,vcom,y,vcom,z,vrel,x,vrel,y,vrel,z) dvcom,x dvcom,y dvcom,z dvrel,x dvrel,y dvrel,z  

              = 




M

2kT

3/2









2kT

3/2
 e–Mc2

com/2kT e–c2
rel/2kT dvcom,x dvcom,y dvcom,z dvrel,x dvrel,y dvrel,z 

            31.5.16 
 

which parallels Eq. 31.2.12 for this two-particle distribution. The distribution function is 
separable in the center of mass and relative coordinates. Fortunately, we don’t need to know 
about the velocity of the center or mass; only the relative motion has an effect on the collision. 
Integrating over the center of mass velocity components gives the distribution function of the 



528 
 

relative speed. The center of mass portion of the Maxwell distribution integrates to unity, since 
the distribution is normalized: 
 

    p(vrel,x,vrel,y,vrel,z) dvrel,x dvrel,y dvrel,z 

     = 




M

2kT

3/2









2kT

3/2
 e–c2

rel/2kT dvrel,x dvrel,y dvrel,z -

-


- e–Mc2

com/2kT dvcom,x dvcom,y dvcom,z 

     = 








2kT

3/2
 e–c2

rel/2kT dvrel,x dvrel,y dvrel,z       31.5.17 
 

Conversion to spherical polar coordinates is often convenient: 
 

 p(crel) dcrel,x d d = 








2kT

3/2
 e–c2

rel/2kT c2
rel sin dcrel d d   31.5.18 

 

For an isotropic system, the angular integrals then reduce to 4 using Eq. 31.2.23: 
 

 p(crel) dcrel = 4 




m

2kT

3/2
 e–c2

rel/2kT c2
rel dcrel     31.5.19 

 

The result is identical to the Maxwell distribution of molecular speeds of a single particle, 
Eq. 31.2.16, except that the relevant random variable is now the relative speed and the mass of 
the particle is replaced by the reduced mass, . 
 
31.6 Derivation of the Maxwell Distribution from the Particle In a Box3 

 

   The Maxwell distribution of translational kinetic energies, Eq. 31.4.3, is one of the central 
equations in physical chemistry. We developed this important equation using a change of 
variables from the distribution of molecular velocities, the form for which was suggested by 
analogy with the quantum Boltzmann distribution of the particle in a box. A rigorous derivation 
of the Maxwell distribution from the Boltzmann distribution is instructive for two reasons. First, 
the interrelationship of the quantum and macroscopic worlds is delineated and second, the 
derivation requires the density of states. We introduced the density of states concept in Secs. 28.3 
and 28.6. Particle in a box energy states are highly degenerate and essentially continuous near 
room temperature, giving a large density of states, Figure 31.6.1. 
   The quantum mechanical energy of a particle in a cubical box with side length a is a function 
of the three quantum numbers, nx, ny, and nz: 
 

 t = 
h2

8ma2 (n2
x + n2

y + n2
z) = 

h2

8ma2 n2     (23.6.17) 31.6.1 
 

For convenience, the quantum numbers are combined into a single variable using the definition 
n2  (n2

x + n2
y + n2

z). 
   The Boltzmann distribution of a 3D-particle in a box is the product of the one-dimensional 
expressions, Eq. 31.2.7, for each direction: 
 

 pi = 
ni

N = 
e–t/kT

(2mkT)3/2 V/h3  t = x + y + z = ½ m(v2
x + v2

y + v2
z)  31.6.2 
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Figure 31.6.1: Particle in a cubical box energy states are highly degenerate and essentially 
continuous near room temperature, giving a large density of states increasing with t.4 

 
 

The translational energy levels of macroscopic systems are essentially continuous, so that 
averages over the distribution function can be determined using integrals rather than 
summations. In converting the quantum distribution to a continuous distribution, the differential 
of the continuous variable, dn, is introduced: 
 

 p(t) dn = 
ni

N dn = 
e–t/kT

(2mkT)3/2 V/h3 dn       31.6.3 
 

To complete the change in variables from the quantum numbers to a kinetic energy distribution, 
the density of states, (t), is required: 
 

 dn = 
dn
dt

 dt = (t) dt       (28.3.3) 31.6.4 
 

The density of states is the number of quantum states in the energy range from t to t + dt. 
From a different perspective, the density of states is just the derivative that is required to do a 
normal change of variables in an integral. The derivative is difficult to do directly. Instead, let 
N(t) be the number of states from zero energy up to energy t. Both dn and dN(t) give the 
change in number of quantum states at energy t. The density of states is then the derivative: 
 

 (t) = 
dN(t)

dt
         (28.3.3) 31.6.5 

 

t

h2
/8ma2
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The number of quantum states up to energy t can be determined using a graphical analogy, 
Figure 31.6.2. Each choice of quantum numbers, nx , ny, nz is represented as a point in an x-y-z 
coordinate plot, Figure 31.6.2a. Each unit change of nx, ny, and nz corresponds to a unit volume 
cube. Each unit of volume corresponds to one specific value of nx, ny, and nz. The maximum 
value of n for states with energy less than or equal to t is calculated by solving Eq. 31.6.1 for n: 
 

 nmax = (8m)½ 


a

h  ½
t          31.6.6 

 

 
  (a).       (b). 
 

Figure 31.6.2: (a). Each possible set of quantum numbers lies at the corner of a cube of unit 
volume. Each translational state corresponds to a set of quantum numbers, nx, ny, nz. The 
total volume equals the number of states. (b). Only positive quantum numbers are possible. 
The total number of states with energy from 0 to t is 1/8 volume of a sphere of radius nmax. 

 
 
The total number of states with energies between zero and t is given by 1/8 of the volume of the 
sphere with radius nmax, Figure 31.6.2b. The factor of 1/8 is necessary because a sphere centered 
on the origin is divided into octants, but only one-octant has all positive x, y, z values. The 
volume of a sphere is 4/3r3, which gives the number of states with energy from zero to t as: 
 

 N(t) = 
1
8 



4

3  n 3
max  = 





6  (8m)3/2 


a

h
3
 3

t /2 = 




6  (8m)3/2 
V
h3 3

t /2   31.6.7 
 

The density of states is the derivative with respect to t, Eq. 31.6.5: 
 

 (t) = 
dN(t)

dt
 = 





6  (8m)3/2 
V
h3 



3

2  ½
t  = 


4 (8m)3/2 

V
h3 ½

t     31.6.8 
 

The density of states increases with increasing kinetic energy; this increase is also observable in 
Figure 31.6.1. The density of translational states is quite large for macroscopic systems; 
molecules are in an extensive “bath” of available translational states. Substituting the density of 
states into Eq. 31.6.3 gives the probability of occurrence of a molecule with translational energy 
t as: 
 

4,1,1 

1,4,1 

1,4,2 

1,4,3 

1,4,4 

4,2,1 4,3,1 

4,1,2 4,2,2 4,3,2 

4,1,3 4,2,3 4,3,3 

4,1,4 4,2,4 4,3,4 
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3,4,2 

3,4,1 
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                                              
  
                                              
  
                                              

                                              
  
                                              
  
                                              
  
                                              
  
                                              

                                              
  
                                              
  
                                              
  
                                              
  
                                              

nmax 
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 p(t) dt = 
e–t/kT

(2mkT)3/2 V/h3 (t) dt = 
e–t/kT

(2mkT)3/2 V/h3 

4 (8m)3/2 

V
h3 ½

t  dt  31.6.9 

 

Canceling common terms gives the Maxwell distribution of translational kinetic energy: 
 

 p(t) dt = 2 




1

kT

3/2
 e–t/kT t

½ dt                (31.4.3) 
 

The e–t/kT factor decreases strongly with increasing energy; high energy states are less probable 
than low energy states. However, the density of translational states increases as ½, giving a 
maximum in the distribution function at thermodynamically significant energies, Figure 31.4.1. 
This derivation shows that the quantum and macroscopic views are completely consistent. While 
we live in a quantum world, under practical circumstances translational quantum states become 
essentially continuous and classical mechanics often provides an accurate description. 
 
31.7 Summary – Looking Ahead 
 

   The kinetic molecular theory description of the pressure of an ideal gas seems an unassuming 
beginning of the foundations of physical chemistry. However, KMT is the first historical 
instance of a rigorous molecular description of matter. The microscopic structure of atoms and 
molecules is reflected in all chemical processes. KMT is based on the Maxwell distribution 
functions of molecular velocity and of translational kinetic energy. Distribution functions are 
inherently statistical descriptions of the underlying degrees of freedom. Molecules are in a “bath” 
of available translational states. Molecules occupy the available states at random. The statistical 
distribution of available thermal kinetic energy, as defined by the temperature, is the key to 
understanding the underlying form of chemistry. In this way, KMT provides the foundations of 
modern statistical mechanics. For example, the Maxwell distribution is the cornerstone of 
modern theories of protein motion. 
   This pattern is common in the physical sciences. Old theories and models are often found to be 
a subset of new theories. New theories don’t necessarily invalidate old theories. The old theories 
are valid within a specific “realm of applicability” or “realm of convenience.” For macroscopic 
scale chemical phenomena, molecular translation lies within the realm of convenience of 
classical theory, except at temperatures near absolute zero. 
   We have completely overlooked an important aspect of kinetic molecular theory. KMT plays a 
central role in understanding gas phase transport phenomena, including viscosity, thermal 
conductivity, and diffusion. Historically viscosity provided an important window into 
intermolecular forces and the role of fluctuations in kinetic phenomena. However, these 
applications are outside our primary focus on chemical reactivity. We must leave these important 
areas to your further study. 
   Kinetic molecular theory provides an upper limit to the value of the bimolecular rate constants 
of ideal gas reactions. KMT is an excellent start towards predicting how often collisions occur. 
However, many factors contribute to the successful production of products in a chemical 
reaction. The rotational and vibrational energies of the reactants, the timing of the collision with 
respect to the rotational and vibrational motions, and the collision energy all play critical roles. 
Many collisions, if not most collisions, are unsuccessful at producing products. The concept of a 
transition state is a key insight for discussing the progress of the bond breaking and making steps 
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after the onset of the collision. Chemical reaction dynamics and the properties of the transition 
state are the subject of the next chapter. 
 
 

Chapter Summary 
 

1. The kinetic molecular theory assumptions are: Molecules in a gas are point masses with no 
volume in constant, random, rapid, isotropic motion. No forces act between molecules, except 
at the instant of a collision. Collisions are instantaneous and elastic. 

2. The assumption of negligible molecular volume is relaxed for intermolecular collisions. 

3. The pressure in Pa of an ideal gas of mass m and molar mass M, with N molecules in a 
container of volume V having rms-speed u is: 

 P = 
Nmc2––

3V  = 
Nmu2

3V  = 
nMu2

3V     u = ( )c2–– ½
 

4. The average translational kinetic energy of a molecule is t
– = ½ m c2––

 = ½ mu2. 
5. The ideal gas law is: PV = 1/3 N mu2 = 2/3 N t

– = nRT  giving t
– = 3/2 kT. 

6. The one-dimensional Maxwell distribution function of molecular velocities is: 

 p(vx) dvx = 




m

2kT

½
 e–mvx

2/2kT dvx 

7. Spherical polar coordinates span the ranges:  0  c   , 0     , 0    2. 

8. The transformation between spherical polar coordinates and Cartesian coordinates is: 

 c = vx
2

 + vy
2 +vz

2 vx = c sin  cos  vy = c sin  sin  vz = c cos  

9. The volume element in “three-space” in spherical polar coordinates: d = c2 sin  dc d d. 

10. The angular integral over all space is: o 2o  sin  d d = 4, giving 4 radians in a sphere. 

11. The Maxwell distribution of molecular speeds is:  p(c) dc = 4 




m

2kT

3/2
 e–mc2

/2kT c2 dc 

12. The most probable, average, and rms-speeds, with m in kg or M in kg mol-1, are: 

 cmp = 
2kT
m   c– = 

8kT
m

 = 
8RT
M   u = ( c2––

 )½ = 
3kT
m  = 

3RT
M  

13. The rate of collisions with a wall for a molecule with velocity vx per unit area is = 
N
V vx. 

14. The ideal gas law gives the number density as: N/V = NAP/RT. 

15. The average collision rate with a wall per unit area is:  Zwall = 
N
V 




kT

2m

½
 = 

1
4 

N
V c– 

16. For a hole with cross-sectional area A, the rate of effusion in mol s-1 is: 

 
dn
dt  = 

Zwall A
NA

 = P A 






1

2MRT

½
 

For a gas mixture, the pressure P is replaced by the partial pressure of the substance, Pi. 

17. The relative effusion rate of n1 moles of molecule 1 at pressure P1 and n2 moles of molecule 2 
at pressure P2 is: 
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effusion rate 2
effusion rate 1 = 

n2

n1
 






M1

M2

½
 = 

P2

P1
 






M1

M2

½
 

18. A collision occurs if molecules with radii rA and rB approach within the hard-core collision 
cross section, HC =  (rA + rB)2 =  d2, with d the hard-core collision diameter. 

19. The average relative speed with the reduced mass of the colliding pair of molecules, , is: 

 c–rel = 




8kT



½
    = 

mA mB

mA + mB
 = 







MA MB

MA + MB
 

1
NA

 (1 kg/1000 g) 

20. For NA and NB molecules of A and B, the A-B collision rate per unit volume is: 
 ZAB = HC c–rel (NA/V)(NB/V)  with     Ni/V = NAPi/RT 

21. For A-A collisions the collision rate per unit volume is: ZAA = ½ HC 2 c– (N/V)2. 
22. Assuming each collision gives products, the hard-core bimolecular reaction rate is: 

 – 
d[A]

dt  = 
ZAB

NA
 = HC c–rel NA [A] [B] 

23. The hard-core bimolecular rate constant in L mol-1 s is: 

 k2 = HC c–rel NA =  d2 




8kT



½
(1000 L/m3) NA 

24. The mean free path is:    = 
c–

ZAA V/N = 
V

2 HC N
 = 

RT
2 NA HC P

 

25. The Maxwell distribution of translational kinetic energy: p(t) dt = 2 




1

kT

3/2
 e–t/kT t

½ dt 

26. The fraction of molecules with translational kinetic energy exceeding *, if * > 3kT is: 

 p(t > *) = * p(t) dt = 2 




1

kT

3/2
 



* t
½ e–t/kT dt  

2


 



*

kT

½
e–*/kT 

27. For collision partners with velocities v1 and v2, the relative velocity is vrel = v1 – v2  and 
relative speed is the magnitude of vrel using: c2

rel = v2
x,rel + v2

y,rel + v2
z,rel = vrel  vrel = v2

rel 

28. For collision partners with masses m1 and m2, the velocity of the center of mass is 
determined using M vcom = m1v1 + m2v2, with the total mass M = m1 + m2. 

29. The total kinetic energy during the collision is the sum of the kinetic energy of the center of 
mass and the relative kinetic energy of the colliding molecules:  t = ½ M c2

com + ½  c2
rel 

30. The distribution function of relative speeds is a Maxwell distribution with the mass of the 
particle replaced by the reduced mass of the collision partners, . 

31. The density of states is the number of quantum states in the energy range from  to  + d: 

 () d = 
dn
d d = 

dN()
d  d 

where N() is the number of states from zero energy up to energy . 

32. The density of states of translational energy levels is:  (t) = 

4 (8m)3/2 

V
h3 ½

t  

33. The density of translational states is quite large for macroscopic systems; molecules are in an 
extensive “bath” of available translational states. 

34. The Maxwell distribution of translational kinetic energy is proportional to the density of 
states of translational energy levels at energy t in the interval d: 
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 p(t) d = 
e–t/kT

(2mkT)3/2 V/h3 (t) d = 2 




1

kT

3/2
 e–t/kT t

½ dt 

35. Distribution functions are statistical descriptions of the underlying degrees of freedom. 
Molecules are in a “bath” of available translational states. Molecules occupy the available 
states at random, subject to the available thermal kinetic energy at the given temperature. 
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Chapter 31 Kinetic Molecular Theory Problems 
 

1.  Calculate the average translational kinetic energy in J, cm-1, and kJ mol-1 and the rms-speed of 
CO2 at 298.2 K, assuming ideal gas behavior. 
 

2.  Calculate the rate of molecular collisions in a balloon filled with N2 at 298.2 K given the 
balloon has a 1.00 L volume at 1.00 bar. The hard-core collision diameter is dN2 = (2rN2) = 
3.75 Å. 
 

3.  Derive a relationship for the rate of a unimolecular surface-catalyzed reaction of an ideal gas. 
Assume every collision with the surface gives products and that the rate law is expressed in 
terms of the gas phase concentration of the reactant in mol L-1. 
 

4.  Find the most probable molecular speed using the Maxwell distribution of molecular speeds. 
 
5.  (a). Find the standard deviation of the molecular speed of an ideal gas at temperature T in 
terms of the molar mass. (b). Find the most probable, average, and rms-speeds and standard 
deviation of the speed of CO2 at 298.2 K. 
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6.  (a). Show that the rms-speed is given by the pressure P and mass density d by : u = 3P/d. 
(b). At 1.01325 bar and 373.2 K the density of water vapor is 598 g m-3. Calculate the rms-speed 
of water molecules in water vapor. 
 
7.  A compound with molar mass of 255.2 g mol-1 is placed in a small container that has a hole of 
radius 0.0500 mm. In 30.0 min at 50.0C, 0.872 g of the substance effuses from the container. 
Calculate the vapor pressure of the substance. 
 
8.  A compound with a vapor pressure of 1.680 kPa is placed in a small container closed by a 
metal membrane with a 0.0500 mm radius hole. The initial mass is 123.5 mg. After 30.0 min at 
35.0C the mass decreases to 39.9 mg. Calculate the molar mass of the substance. 
 
9.  Integrals of the form xc

o  e–ax2
 dx are common in determining the probability of occurrence of 

speeds or energies within a given range. The integral has no closed form solution and must be 
integrated numerically. The numerical integrals in dimensionless form are tabulated as the error 
function, erf( ), where the error function is defined by: 
 

 
2


  t

o e
–y2

 dy = erf(t) 

 

The error function is used extensively in statistics and probability. The inside back cover lists a 
short table. Extensive tables are available in standard reference sources and Excel has an erf( ) 
function. In this regard erf( ) is similar to the more familiar functions sin( ), cos( ), exp( ) and 
ln( ), which are all evaluated as power series expansions. 

(a). Show that: xc

o  e–ax2
 dx = ½ 





a

½
 erf( a xc) 

(b). Verify the result in part (a) by showing that  o  e–ax2
 dx gives the result listed in standard 

integral tables. 
(c). Show the probability of a molecule having a velocity in the x-direction in the range ±v* is: 
 

  v*
–v* p(vx) dvx = 2 vo

*
 




m

2kT

½
 e–mvx

2/2kT dvx = erf( )mv*2/2kT  
 

(d). Show that the probability of a molecule having a kinetic energy in the x-direction less than 
or equal to kT is 84.3%. [Hint: note that erf(1) = 0.8427] 
 
10.  Derive the integration by parts formula using the following steps: (a). Let u and v be two 
functions. Using the product rule for the differential d(uv), show that  d(uv) =  v du +  u dv. 
(b). Finally show that for the integral limits u1v1 to u2v2 : 

  u dv = uv|u2v2

u1v1
 –  v du 

 
11.  Integrals over the Maxwell distribution of molecular speeds are in the general form 

 t
o y

2 e–y2
 dy. Use integration by parts,  u dv = uv|u2v2

u1v1
 –  v du, with u = y and dv = (y e–y2

 dy) 

to show that: [See the next problem for an application of this relationship.] 
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4


  t

o y
2 e–y2

 dy = erf(t) – 
2


 t e–t2

 

 
12.  The probability of occurrence of molecular speeds over a range of values is determined by 
an integral over the distribution function. (a).Show that the integral of the Maxwell distribution 
of molecular speeds over the range from c = 0 to c* is: 
 

 
c

o

*
 p(c) dc = 4 





m

2kT

3/2
 

c

o

*
 e–mc2

/2kT c2 dc = erf( )mc*2/2kT  – 
1


 

mc*2

2kT  e–mc*2
/2kT 

(b). The kinetic energy at the upper limit is *
t = ½mc*2. Show that the total probability is: 

 
c

o

*
 p(c) dc = 4 





m

2kT

3/2
 

c

o

*
 e–mc2

/2kT c2 dc = erf( )*
t/kT  – 

2


 



*

t

kT
½

 e–*
t/kT 

 

[Hint: use the relationship in the previous problem with the change in variables y2 = mc2/2kT] 
 
13.  Determine the probability that a molecule has a speed equal to or less than the most probable 
speed. [Hint: Use the relationship in the previous problem, note that erf(1) = 0.8427] 
 
14.  The fraction of molecules with translational kinetic energy exceeding * is:1,2 

 p(t > *) = * p(t) dt = 2 




1

kT

3/2
 



* t
½ e–t/kT dt  

(a).  Use the change of variable x2 = t/kT to show: [Hint: see Eq. 31.4.5 for a similar change in 
variables.] 

 p(t > *) = 
4


 x* x

2 e–x2
 dx 

 

(b). Use integration by parts to show: [Hint: let u = x  and  dv = x e–x2 dx] 
 

 


x* x
2 e–x2 dx = –½ x e–x2|



x*  – (–½) 


x* e–x2 dx 
 

(c). Show that:  


x* e–x2 dx = 


o e–x2 dx – 
x

o

*
 e–x2 dx 

(d). Use integral tables and the definition of the error function: 
2
½ 

t

o e
–x2 dx = erf(t) to show that: 

 


x* e–x2 dx = 


2  – 


2  erf(x*) 

(e). Using the previous expressions, derive the final result: 
 

 p(t > *) = 
4


 



x* x2 e–x2 = 
2


 






*

kT

½
 e–*/kT + 1 – erf









*

kT

½
 

 (f). Show that for large threshold energies, * >> kT:      p(t > *)  
2


 



*

kT

½
e–*/kT 

 
15.  Find the most probable translational kinetic energy of an ideal gas using the Maxwell 
distribution of translational kinetic energy. 
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16.  The rate constant for the recombination of methyl radicals is 4.5x1010 L mol-1 s-1 at 398.2 K.  
 

 H3C + CH3  H3C–CH3 
 

The reaction has no activation energy. Assuming the hard-core collision radii of the methyl 
radicals are one-half the normal C–C bond length, rCH3 = 0.77 Å, calculate the bimolecular rate 
constant assuming hard-core collision theory at 398.2 K.3 
 
17.  (a). Show that the density of states of a one-dimensional particle in a box is: 
 

 (x) dx = (8m)½ 
a
h (x)–½ dx 

 

[Hint: you don’t need to use the graphical approach that we used for three-dimensions.] 
(b). Compare the behavior of the one-dimensional and three-dimensional particle in a box as a 
function of energy. Why the difference with the change in dimensionality? 
 
18.  Calculate the number of translational energy states at 298.2 K for O2 in a box of volume 
1.00 m3 with energies from kT to 1.001 kT (i.e. a 0.1% change in energy). 
 
19. (a). For a square box with side length a and area A = a2, show that the density of states of a 
two-dimensional particle in a box is: 
 

 (t) dt =  2m 
A
h2 dt 

 

The two-dimensional case has some applicability to free translational motion on a surface and 
electrical conduction in restricted geometries. (b). The density of states of a one-dimensional 
particle in a box is given in the previous problem. Compare the one, two, and three-dimensional 
cases in terms of the behavior with respect to increasing energy. (c). Find the two-dimensional 
Maxwell distribution of translational kinetic energy. 
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