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Chapter 30: Statistical Mechanics Problems 
 
1. For a diatomic molecule, the rotational energy is J = B

~
hc J(J+1). (a.) Evaluate the rotational 

partition function of a heteronuclear diatomic molecule at 298.15 K by numerically summing the 
Boltzmann weighting factors over many energy levels in a spreadsheet. Take B

~
hc/kT = 0.00200. 

The degeneracy of each level is gJ = 2J + 1. (b.) Compare your numerical answer to the partition 
function using the high temperature approximation: qr = kT/(B

~
hc). (c). Which rotational level 

has the maximum population of molecules? Why? 
 
 
Answer:  The plan is to note that summing over energy levels, the Boltzmann weighting factors 
are in the form (2J + 1)e–J/kT, with J = B

~
hc J(J+1). 

(a).  The Excel spreadsheet to accomplish the sums is given below. The sum from J = 0 to J =90 
is required to find a five-significant figure value for the partition function. Not all rows are 
shown. 
 

A1 B C D E F 
2 Bhc/kT= 0.002    
3      
4 J 2J+1 BhcJ(J+1)/kT e-eJ/kT (2J+1) e-eJ/kT 
5 0 1 0 1 1 
6 1 3 0.004 0.99601 2.98802 
7 2 5 0.012 0.98807 4.94036 
8 3 7 0.024 0.97629 6.83400 
9 4 9 0.04 0.96079 8.64710 

10 5 11 0.06 0.94176 10.35941 
11 6 13 0.084 0.91943 11.95261 
12 7 15 0.112 0.89404 13.41066 
13 8 17 0.144 0.86589 14.72009 
14 9 19 0.18 0.83527 15.87013 
15 10 21 0.22 0.80252 16.85289 
16 11 23 0.264 0.76797 17.66339 
17 12 25 0.312 0.73198 18.29954 
18 13 27 0.364 0.69489 18.76206 
19 14 29 0.42 0.65705 19.05436 
20 15 31 0.48 0.61878 19.18229 
21 16 33 0.544 0.58042 19.15392 
22 17 35 0.612 0.54227 18.97928 
23 18 37 0.684 0.50459 18.67000 
24 19 39 0.76 0.46767 18.23899 
25 20 41 0.84 0.43171 17.70013 
26  ⁞  ⁞  ⁞  ⁞  ⁞ 
27 90 181 16.38 7.696E-08 1.393E-05 
28      
29    qr = 500.33343 

 

Cell D5 is “=$C$2*B5*(B5+1)”. Cell E5 is “=EXP(-D5)”. Cell F5 is “=C5*E5”. 
 

(b). For a heteronuclear diatomic, the symmetry number is one,  = 1, since rotation by 180 
gives a distinguishable state. The high temperature approximation then gives the rotational 
partition function as qr = kT/(B

~
hc) = 1/0.00200 = 500.0. The exact result is slightly higher at 

500.333. 
(c). The level with the maximum population is J = 15. While the Boltzmann distribution gives an 
exponentially decreasing probability of occupation of a given state with increasing J, the 
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degeneracy increases with increasing J. The product of a decreasing function and an increasing 
function has a maximum at intermediate value. 
 
 
2.  The fundamental vibration frequency for H35Cl is 2885.3 cm-1. Calculate the ratio of the 
number of molecules in the first excited vibrational state to the number in the ground vibrational 
state at 298.2 K. 
 
 
Answer:  The plan is to note that the ratio is given by Eq. 8.10.8 and that at 298.2 K 
kT/hc = 207.224 cm-1. 
   The Boltzmann probability of being in state i is: pi = ni/N = e–i/kT/q. The ratio of the number of 
molecules in states j and i is given by the ratio of the Boltzmann probabilities: 
 

 
nj

ni
 = 

e–j/kT/q
e–i/kT/q

 = e–(j – i)/kT = e–/kT  with  = j – i 
 

For the first two vibrational states,  = ho, giving: 
 

 
n1

no
 = e–hc~o/kT = e–2885.3 cm-1/207.224 cm-1

 = 8.976x10-7 

 

In other words, about one in a million are in the first excited vibrational state at room 
temperature. 
 
 
3.  The rotational constant for the linear molecule H–CN is 1.4782 cm-1.2 Calculate the ratio of 
the number of molecules in excited rotational level J = 3 to the number in the ground rotational 
level J = 0 at 298.2 K. [Hint: take the rotational degeneracy 2J + 1 into account.] 
 
 
Answer:  The plan is to note that the degeneracy is 2J + 1 and that at 298.2 K the effective 
temperature is kT/hc = 207.224 cm-1. The ratio without taking degeneracy into account is given 
by Eq. 8.10.8 
   The Boltzmann probability of being in level i is: pi = ni/N = gi e–i/kT/q, with gi the degeneracy 
of level i. The ratio of the number of molecules in levels j and i is given by the ratio of the 
Boltzmann probabilities: 
 

 
nj

ni
 = 

gj e–j/kT/q
gi e–i/kT/q

 = 



gj

gi
 e–(j – i)/kT = 



gj

gi
 e–/kT   with  = j – i 

 

The rotational energy is J = B
~

hc J(J + 1). For rotational levels J = 3 and 0: 
 

  = B
~

hc [3(3 + 1) – 0(0 + 1)] = 12 B
~

hc 
 

For H–CN the rotational constant is B
~

 = 1.4782 cm-1, giving: 
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n3

no
 = 







23 + 1

20 + 1
 e–12 B~hc/kT = 



7

1  e–12(1.4782 cm-1)/207.224 cm-1
 = 



7

1  0.9180 = 6.425 
 

Even though the probability of being in a single rotational state with J = 3 is less than J = 0, the 
degeneracy gives roughly 6.5 times more molecules in J = 3 than J = 0 at room temperature. 
 
 
4.  Verify the units conversion factor,  = 0.0259467, for the translational partition function in 
Eqs. 30.3.1-30.3.2 for a P = 1 bar standard state.  
 
 
Answer:  The units conversion factor  is defined with R = 8.3145 J K-1 mol and 
P = 1 bar = 1x105 N m-2. Moving the factor of h3 into the first term and using R/NA = k gives: 
 

  = 



2k

NA 1000 g kg-1

3/2 R
NAP h3 = 



2k

NA h2 1000 g kg-1

3/2
 




k

P  

    = 



2(1.3806488x10-23 J K-1)

6.0221367x1023 mol-1(6.6260755x10-34 J s)2(1000 g/kg)

3/2





1.3806488x10-23 J K-1

1x105 N m-2  

    = 0.02594674  8x10-8 = 0.02594674(8) 
 

We estimated the uncertainty using the “Uncertainty Calculator” applet that is available on the 
text book Web site and companion CD. The input formula was: 
 “(2*pi*k/Na/h^2/1000)^1.5*k/1e5”. 
   For the units note that for energy 1 J = 1 kg m2 s-2 and for pressure 1 N m-2 = 1 J m-3. The units 
of k/h2 are 1/(J s2 K). The units of k/P are m3 K-1: 
 

  ~ 



1

J kg-1s2

3/2
 



1

g mol-1 K

3/2
 (m3 K-1) 

 

The units of J kg-1 s2 are (kg m2 s-2)(kg-1 s2) = m2. 
 

  ~ (m–3) 



1

g mol-1 K

3/2
 (m3 K-1) ~ 



1

g mol-1

3/2





1

K

5/2
 

 

These final units are grouped with the factors of (M/g mol-1)3/2 and (T/K)5/2 to give an overall 
unitless result. Note that the factor of NA in qt /NA is the molecule count and in this context is 
unitless, giving qt /NA as overall unitless. 
 
 
5.  (a). Calculate the translational partition function in the form qt ,m/NA for hydrocyanic acid, 
H–CN, at 298.2 K. (b). Calculate the rotational partition function of H–CN at 298.2 K. 
Hydrocyanic acid is linear with rotational constant 1.4782 cm-1.2  
 
 
Answer: (a). Using isotope averaged atomic masses from the periodic table, the molar mass of 
H–CN is 27.03 g mol-1. The standard state translational partition function is: 
 

 
qt ,m

NA
 =  (M/g mol-1)3/2 (T/K)5/2 = 0.0259467 (27.03)3/2(298.15)5/2 = 5.597x106 
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or lots and lots of accessible translational states per molecule: qt ,m = NA(5.597x106). 
 

(b).  The rotational symmetry number is  = 1, since H–CN is unsymmetrical. The rotational 
partition function at 298.2 K is given using Eqs. 30.1.39 and 30.1.40: 
 

 qr = 
kT

B
~

hc
 = 

207.224 cm-1

1.4782 cm-1  = 140.187 

 

Once again, there are a large number of accessible rotational states. 
 
 
6.  Does anharmonicity have a significant effect on the vibrational partition function? The 
vibrational constants for diatomic Mg2 are ~e = 51.12 cm-1, e~e = 1.64 cm-1, and 
Ye~e = 0.0162 cm-1. Using the zero-point energy as the zero in energy, determine the vibrational 
partition function at 298.2 K by explicit summation for three cases. (a). Assume a harmonic 
oscillator with the observed vibrational frequency ~o. Calculate ~o using the first and second 
anharmonicity corrections, extending Eq. 27.5.11 as: ~o = ~e – 2e~e + 13/4 Ye~e. (b). Assume an 
anharmonic oscillator including only the first anharmonicity correction, Eq. 27.5.8. (c). Assume 
an anharmonic oscillator including the first and second anharmonicity corrections, Eq. 27.5.5. 
[Hint: for the anharmonic oscillator cases, extend the sums until the vibrational energy reaches a 
maximum, which corresponds to the dissociation limit.] 
 
 
Answer:  The plan is to determine the vibrational energies in reference to the energy of the  = 0 
level at the required levels of approximation. 
   The observed harmonic oscillator fundamental is at: 
 

 ~o = ~e – 2e~e + 13/4 Ye~e = 51.12 cm-1 – 2(1.64 cm-1) + 13/4 (0.0162 cm-1) = 47.893 cm-1 
 

The energy levels are:              harmonic G
~
 = ~o( + ½) 

   first-anharmonicity G
~
 = ~e( + ½) – e~e( + ½)2 

       first and second-anharmonicity G
~
 = ~e( + ½) – e~e( + ½)2 + Ye~e( + ½)3 

The zero point energies are:  harmonic  ZPE = G
~

o = ~o/2 

    first-anharmonicity ZPE = G
~

o = ~e/2 – e~e/4 

       first and second-anharmonicity ZPE = G
~

o = ~e/2 – e~e/4 + Ye~e/8 
 

The spreadsheet implementing these calculations and the corresponding Boltzmann weighting 
factors is given below. The vibrational partition function is the sum of the Boltzmann weighting 
factors. For the harmonic case, states up to  = 40 are necessary to obtain a good estimate of the 
sum. For the harmonic calculation not all rows are shown to save space. Summing through  = 
40 gives qv = 4.846. Using the first-anharmonicity correction, the vibrational energy is maximum 
at  = 15, which corresponds to the dissociation energy. Summing through  = 15 gives qv = 
5.898. The first-anharmonicity correction increases the number of accessible states by 22% over 
the harmonic approximation. For the full expression, using the first and second-anharmonicity 
corrections, the vibrational energy is maximum at  = 24. Summing through  = 24 gives the 
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best estimate of the partition function as qv = 6.613. Using only the first-anharmonicity 
correction underestimates the partition function by 11%. 
 
 

e 51.12 cm-1     
ee 1.64 cm-1     
yee 0.0162 cm-1     
o 47.89265 cm-1     
 harmonic:  e(+½ -ee(+½)2 full  
ZPE 23.946325  25.15  25.152025 cm-1 
      

0 0 1 0 1 0 1 
1 47.89265 0.793647903 47.84 0.793849573 47.89265 0.793647903 
2 95.7853 0.629876994 92.4 0.640251444 92.6511 0.639476101 
3 143.67795 0.499900556 133.68 0.524610591 134.37255 0.52286025 
4 191.5706 0.396745028 171.68 0.436714565 173.1542 0.433618785 
5 239.46325 0.314875859 206.4 0.369345179 209.09325 0.364575932 
6 287.3559 0.249900565 237.84 0.317352066 242.2869 0.310614436 
7 335.24855 0.19833306 266 0.277028442 272.83235 0.268043515 
8 383.1412 0.157406617 290.88 0.245686631 300.8268 0.234172175 
9 431.03385 0.124925431 312.48 0.221366973 326.36745 0.207017892 

10 478.9265 0.099146807 330.8 0.202636774 349.5515 0.185105522 
11 526.81915 0.078687655 345.84 0.188450735 370.47615 0.167327012 
12 574.7118 0.062450293 357.6 0.178053922 389.2386 0.15284253 
13 622.60445 0.049563544 366.08 0.170914689 405.93605 0.141010078 
14 670.4971 0.039336003 371.28 0.166679185 420.6657 0.1313349 
15 718.38975 0.031218936 373.2 0.165141979 433.52475 0.123432776 
16 766.2824 0.024776843 371.84 0.166229361 444.6104 0.117003133 
17 814.17505 0.01966409   454.01985 0.111809169 
18 862.0677 0.015606363   461.8503 0.107663023 
19 909.96035 0.012385958   468.19895 0.104414603 
20 957.853 0.009830089   473.163 0.101943073 
21 1005.74565 0.00780163   476.83965 0.100150309 
22 1053.6383 0.006191747   479.3261 0.098955801 
23 1101.53095 0.004914067   480.71955 0.098292619 
24 1149.4236 0.003900039   481.1172 0.098104182 
25 1197.31625 0.003095258   480.61625 0.098341629 
26 1245.2089 0.002456545     

⁞   ⁞ ⁞     
40 1915.706 9.66307E-05     

qv =  sum = 4.845714312  5.898082748  6.613415718 
 

The vibrational partition function in the harmonic approximation using Eq. 30.1.31 is slightly 
larger than we obtained stopping the sum at  = 40: 
 

 qv = 
1

1 – e
~/207.224 cm-1

 = 
1

1 – e47.893/207.224 = 4.8465 

Mg2 is atypical. The bond strength in Mg2 is small and the vibration is unusually anharmonic. 
For most stable common diatomics, such as O2, N2, CO, and HF, anharmonicity makes a 
negligible contribution to the vibrational partition functions, because there are so few accessible 
states. 
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7.  Calculate the electronic partition function of atomic carbon at 298.2 K. The spectroscopic 
constants for the low-lying electronic states are given in Table 30.1.2. 
 
 
Answer: The plan is to follow Example 30.1.3 to determine the electronic partition function. 
   Consider a general three level system with energies o, 1, and 2 with corresponding 
degeneracies go, g1, and g2, respectively. The general form of the partition function of a three-
level system is given by the sum of the Boltzmann weighting factors over the three-levels: 
 

 qe =  gi e–i/kT = go + g1 e–1/kT + g2 e–2/kT 
 

Using the spectroscopic constants for C-atoms gives the partition function at room temperature: 
 

 qe = 1 + 3 e–16.40/207.22 + 5 e–43.40/207.22 = 7.827 = 1 + 3(0.9239) + 5(0.8110) = 7.827 
 

The low-energy electronic terms of the C-atom are closely spaced in energy compared to kT. C-
atoms are an excellent example of a case that gives a significant error by assuming the electronic 
partition function is the ground state degeneracy. 
 
 
8.  Calculate the contribution of translation to the molar standard state entropy of H–CN at 
298.2 K. Compare this translation-only result to the literature value of the thermodynamic 
standard state absolute entropy. 
 
 
Answer:  The plan is to use the Sackur-Tetrode equation. 
   Using isotope averaged atomic masses from the periodic table, the molar mass of H–CN is 
27.026 g mol-1. For standard state at 298.2 K, using Eq. 30.2.35: 
 

 Sm,298.15 K = 26.6929 + 71.0587 + 3/2 R ln(M/g mol-1) + 11.1037 J K-1 mol-1 
      = 26.6929 + 71.0587 + 3/2 R ln(27.026) + 11.1037 J K-1 mol-1 
      = 149.972 J K-1 mol-1 
 

Using Table 8.4.1 in the Data Section, S298 K = 201.78 J K-1 mol-1. The difference is primarily the 
contribution of rotation. 
 
 
9.  Calculate the contribution of rotation to the molar entropy of H–CN at 298.2 K. Combine 
the translational contribution from the previous problem with the rotational contribution. 
Compare this translation-rotation only result to the literature value of the thermodynamic 
standard state absolute entropy. Hydrocyanic acid is linear with rotational constant 1.4782 cm-1.9 
 
 
Answer:  The plan is to use the Sackur-Tetrode equation for the translational contribution, kT/hc 
= 207.224 cm-1, the high temperature approximation or Equipartition rotational contribution of a 
diatomic molecule of U – U(0) = RT, and Eq. 30.2.27. 
   The translational contribution is determined in the previous problem using the Sackur-Tetrode 
equation, Sm,298.15 K = 149.972 J K-1 mol-1. The rotational symmetry number is  = 1, since 
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H–CN is unsymmetrical. The rotational partition function at 298.2 K is given using Eqs. 
30.1.39 and 30.1.40: (see also Problem 5b.) 
 

 qr = 
kT

B
~

hc
 = 

207.224 cm-1

1.4782 cm-1  = 140.186 

 

The contribution of rotation of a linear molecule to the internal energy is U – U(0) = RT, as 
based on the high temperature approximation, Table 30.3.3, or correspondingly from 
Equipartition. Using Eq. 30.2.27 the molar rotational entropy is: 
 

 Sr = R ln qr + R = 8.31446 J K-1 mol-1(ln 140.186 + 1) = 49.413 J K-1 mol-1 

 

Neglecting vibration, the predicted molar standard state entropy is: 
 

 Sm,298.15 K = 149.972 J K-1 + 49.413 J K-1 mol-1 = 199.38 J K-1 mol-1 
 

Using Table 8.4.1 in the Data Section, S298 K = 201.78 J K-1 mol-1 giving a 1.2% difference. The 
difference is primarily a small contribution from the doubly degenerate bending vibration. 
 
 
10.  Determine the contribution of a vibration to the internal energy of a substance. Use the zero-
point vibrational level,  = 0, as the zero in energy. Repeat the derivation giving Eq. 30.3.13. 
However, this result was derived using Eq. 30.2.15; use Eq. 30.2.6 as the basis of your 
derivation, instead. 
 
 
Answer:  The plan is to use Eq. 30.1.31, written in terms of  instead of kT with Eq. 30.2.6. 
   The partition function for the vibration of a diatomic molecule or a single vibrational mode of a 
polyatomic in the harmonic approximation is given by Eq. 30.1.31. The version of this equation 
written in terms of  is the most convenient form: 
 

 qv = 
1

(1 – e–ho)
 

 

The internal energy is given by Eq. 30.2.6. Using the chain rule, the required derivative is: 
 

 




∂q

∂ v
 = 

–1
(1 – e–ho)2  (ho e–ho) 

 

Substitution of the derivative and the vibrational partition function into Eq. 30.2.6 gives: 
 

 U – U(0) = – 
N
q 



∂q

∂ V
 = – 

N







 

1
1 – e–ho

  
–ho e–ho

(1 – e–ho)2 

 

Cancelling the common factors gives the final result: 
 

 U – U(0) = 
Nho e–ho

1 – e–ho
      (30.3.13) 
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11.  Find the contribution of a vibration to the enthalpy, Hv – Hv(0). Assume the energy zero is at 
the bottom of the vibrational potential, giving the zero-point  = 0 vibrational level at o = ½ ho. 
For vibrations Hv – Hv(0) = Uv – Uv(0). The reason vibrational enthalpy and internal energy are 
equal is that even though H  U + PV, the PV correction term is included in calculating the 
translational enthalpy. [Hint: Eq. 30.2.15 is most convenient for this problem. Note that 
Eq. 30.3.13 was derived with the  = 0, zero-point vibrational level as the reference energy.] 
 
 
Answer:  The plan is to take the derivative with respect to  based on Eq. 30.1.29 instead of Eq. 
30.1.31 using Eq. 30.2.15 for the internal energy. 
   Based on Eq. 30.1.29, the logarithm of the partition function is: 
 

 qv = 
e–ho/2

1 – e–ho
  ln qv = –½ho – ln(1 – e–ho) 

The derivative with respect to  is:  




∂ln qv

∂ V
 = –½ho – 

ho e–ho

1 – e–ho
 

 Hv – Hv (0) = Uv – Uv(0) = –N 




∂ln qv

∂ V
 = ½Nho + 

Nho e–ho

1 – e–ho
 

 

The first term in the sum is the zero-point vibrational energy, ZPE. The second term is identical 
to Eq. 30.3.13. In other words, the difference caused by shifting the energy zero to the zero-point 
vibrational level is just an additive term in the ZPE. This result is used in correcting SCF total 
electronic energies from ab initio electronic structure calculations to the spectroscopic reference 
energy. 
 
 
12.  For one mole of an ideal gas at 25C and constant volume, the number of accessible states 
increases by 10% with a temperature increase of 20C. Estimate to a single significant figure 
(don’t use a calculator) the internal energy of the substance. Based on Equipartition neglecting 
vibration, the value of Um – Um(0) for a monatomic ideal gas is 3/2 RT, for a diatomic ideal gas is 
5/2 RT, for a linear triatomic is 5/2 RT, and for a bent triatomic is 6/2 RT. To which case does this 
result most closely correspond? 
 
 
Answer:  The plan is to use the estimate given by Eq. 30.2.13. 
   For a 10% increase in the partition function, q/q = 0.10. For the change in temperature of 
10C: 
 

 Um – Um(0)  1000 kJ K mol-1





0.10

20 K   5 kJ mol-1 
 

As a factor of R:  [Um – Um(0)]/RT  5 kJ mol-1/RT  2 
 

This factor of 2RT is in rough neighborhood of the values for diatomics and linear triatomics. 
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13.  We can find an approximate formula for the internal energy based on the order of magnitude 
of the change in accessible states by converting Eq. 30.2.16 to base-ten log: ln x = 2.303 log x: 
 

 U – U(0) = 2.303 nRT2 




∂log q

∂T V
 

and at 298.2 K:  Um – Um(0) = 1702 kJ K mol-1





∂log q

∂T V
  2000 kJ K mol-1





∂log q

∂T V
 

For one mole of an ideal gas at 298 K and constant volume, the number of accessible states 
increases by a factor of ten for a temperature increase of 20 K. Estimate to a single significant 
figure (don’t use a calculator) the internal energy of the substance. 
 
 
Answer:  The plan is to let the initial partition function, before the temperature increase be qo. 
For a factor of ten increase log q = log 10qo – log qo = log 10 = 1. 
   For the change in temperature of 10 K: 
 

 Um – Um(0)  2000 kJ K mol-1 



1

20 K   100 kJ mol-1 

 
 
14.  A quick estimate of the rotational contribution to the Gibbs energy of a linear molecule at 
room temperature is available by converting ln x to log x and using 2.303RT = 5.71 kJ mol-1: 
 

 Gm – Gm(0) = –2.303 RT log






207.2 cm-1

B
~   -6 kJ mol-1 log







207.2 cm-1

B
~  

 

Without using a calculator estimate the contribution of rotation to the molar Gibbs energy of 
CO2. The rotational constant for CO2 is 0.379 cm-1. [Hint: use log 10n = n] 
 
 
Answer:  The plan is to note that the symmetry number for CO2 is  =2 since rotation by 180 
gives an indistinguishable state. 
   The ratio of the available thermal kinetic energy to the molecular constants is roughly: 
 

 






207.2 cm-1

B
~  = 

207.2 cm-1

(0.379 cm-1)
  

100
   250 

 

By course estimation: log 250  log 100 = 2. The estimate of the molar Gibbs energy of rotation 
is then: 
 

 Gm – Gm(0)  -6 kJ mol-1 log 250  -6 kJ mol-1 (2) = -12 kJ mol-1 

 

We will spend a lot of time on very careful calculations in this chapter. However, rough, 
approximate calculations are very helpful in building insight. The precise result for this problem 
is given in Example 30.3.1 as -13.9 kJ mol-1. 
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15.  The atomic energy levels for low-lying states of atomic oxygen are given in Figure 30.1.7. 
These low-lying states are an example of a three-level system. Consider a three level system with 
energies o, 1, and 2 with corresponding degeneracies go, g1, and g2, respectively. The lowest 
energy level is defined as the energy zero, o = 0. (a). Show that the contribution of the electronic 
degree of freedom of a three-level system to the molar internal energy is given by: 
 

 Um – Um(0) = NA 
g1 1 e–1/kT + g2 2 e–2/kT

go + g1 e–1/kT + g2 e–2/kT
 

 

(b). Plot the electronic contribution to the molar internal energy of O-atoms as a function of 
temperature, in the range 10 K to 800 K. 
 
 
Answer: The plan is to note that the electronic partition function for O-atoms, as a specific case, 
is given in Example 30.1.2; however, the necessary derivative is easier in terms of  rather than 
T. 
(a). The partition function is the sum over the three levels, taking degeneracy into account: 
 

 qe = go + g1 e–1 + g2 e–2 
 

with  = 1/kT. The required derivative is: 




∂qe

∂ V
 = –g1 1 e–1 – g2 2 e–2 

Using this derivative, the partition function, and  = 1/kT, the contribution to the molar internal 
energy is given by Eq. 30.2.6: 
 

 Um – Um(0) = – 
NA

q 



∂q

∂ V
 = NA 

g1 1 e–1/kT + g2 2 e–2/kT

go + g1 e–1/kT + g2 e–2/kT
 

 

This result is identical to the result using Eqs 30.1.1 and 30.1.2 for molecular partition functions: 

U – U(0) = N  i e–i/kT/q. Using the spectroscopic constants for O-atoms, from Example 30.1.2, 
at room temperature: 
 

 qe = 5 + 3 e-158.265/207.22 + 1 e-226.977/207.22 = 6.7322 
 

and Um – Um(0) = 
NA

6.7322 [3(158.265 cm-1) e-158.265/207.22 + 1(226.977 cm-1) e-226.977/207.22] 

         = 
NA

6.7322 [3(158.265 cm-1)(0.4659) + 1(226.977 cm-1)(0.3344)] 

         = NA(44.14 cm-1) = (44.14 cm-1)(11.96266 J mol-1)(1 kJ/1000 J)  
         = 0.528 kJ mol-1 

 

where we used the conversion  1cm-1 = 11.96266 J mol-1 (from the inside front cover). 
 

(b).  The spreadsheet based on the preceding calculation at the given range of temperatures and 
the corresponding plot are shown below. 
 

 

go = 5 o = 0     
g1 = 3 1 = 158.265 cm-1   
g2 = 1 2 = 226.977 cm-1                 
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T 
(K) 

kT/hc 
(cm-1) e-1/kT e-2/kT qe 

U-U(0) 
(cm-1) 

U-U(0) 
(kJ mol-1) 

10 6.95 0.0000 0.0000 5 0.00 0.0000 
50 34.8 0.0105 0.0015 5.033 1.06 0.0127 
75 52.1 0.0480 0.0129 5.157 4.99 0.0597 

100 69.5 0.1026 0.0382 5.346 10.73 0.1284 
200 139 0.3203 0.1954 6.156 31.91 0.3817 
298 207 0.4659 0.3344 6.732 44.14 0.5280 
400 278 0.5659 0.4420 7.140 51.69 0.6183 
500 348 0.6342 0.5204 7.423 56.48 0.6756 
600 417 0.6842 0.5803 7.633 59.81 0.7155 
800 556 0.7523 0.6648 7.922 64.14 0.7673 

       
hc/k = 1.4388 cm K    
1  cm-1= 11.963 J mol-1    

 

0.0
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0.4

0.6

0.8

0 200 400 600 800

U
-U
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16.  Calculate the contribution of the electronic degree of freedom to the molar internal energy of 
atomic carbon at 298.2 K. The spectroscopic constants for the low-lying electronic states are 
given in Table 30.1.2. 
 
 
Answer: The plan is to use Eq. 30.2.6 after following Example 30.1.2 to determine the 
electronic partition function. 
   Consider a general three level system with energies o, 1, and 2 with corresponding 
degeneracies go, g1, and g2, respectively. The derivation of the contribution of a three-level 
system to the molar internal energy is given in the previous problem. Using the spectroscopic 
constants for C-atoms gives the partition function at room temperature: 
 

 qe = go + g1 e–1 + g2 e–2 = 1 + 3 e–16.40/207.22 + 5 e–43.40/207.22 = 7.827 
 

The electronic contribution to the molar internal energy is: 
 

 Um – Um(0) = NA 
g1 1 e–1/kT + g2 2 e–2/kT

go + g1 e–1/kT + g2 e–2/kT
 

         = 
NA

7.827 [3(16.40 cm-1) e–16.40/207.22 + 5(43.40 cm-1) e–43.40/207.22] 

         = 
NA

7.827 [3(16.40 cm-1)(0.9239) + 5(43.40 cm-1)(0.8110)] 

         = NA(28.29 cm-1) = (28.29 cm-1)(11.96266 J mol-1)(1 kJ/1000 J) 
         = 0.3385 kJ mol-1 

 

where we used the conversion  1cm-1 = 11.96266 J mol-1 (from the inside front cover). The low-
energy electronic terms of the C-atom are closely spaced in energy. C-atoms are an excellent 
example of a case that gives a significant error by assuming the electronic partition function is 
the ground state degeneracy. 
 
 



12 
 

17.  Calculate the contribution of the electronic degree of freedom to the molar Gibbs energy of 
atomic oxygen at 298.2 K. The spectroscopic constants for the low-lying electronic states are 
given in Table 30.1.2. 
 
 
Answer: The plan is to note that the electronic partition function for O-atoms is given in Example 
30.3.1; the contribution to the Gibbs energy is given by Eq. 30.2.53. 
   The explicit sum over the Boltzmann weighting factors gives, using Figure 30.1.7 as shown in 
Example 30.1.2: 
 

 qe = 5 + 3 e-158.265/207.22 + 1 e-226.977/207.22  = 5 + 1.39776 + 0.33443 = 6.7322 
 

The electronic contribution to the molar Gibbs energy is: 
 

 Ge – Ge(0) = –RT ln qe  
       = –8.3145 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 6.7322 = -4.727 kJ mol-1 

 
 
18.  The nucleus of a deuterium atom has a spin of one, I = 1. In a magnetic field of strength Bo, 
a deuterium nucleus has energy levels  = ħBo mI, with mI = +1, 0, -1. The magnetogyric ratio, 
, is a constant that is different for each isotope of each element. For deuterium, 
 = 41.065 radians s-1 T-1, with the magnetic field strength given in tesla, T. For thermodynamic 
calculations, setting the lowest energy level at  = 0 is most convenient. With the shifted zero in 
energy, the deuterium nuclear energies are at  = 0 for mI = +1,  = ħBo for mI = 0, and  = 
2ħBo for mI = -1. Find the partition function and the contribution of the nuclear energy to the 
internal energy. [This three-level system is the basis of deuterium NMR spectroscopy. Deuterium 
NMR is common, especially for locking and shimming operations while doing conventional 
proton and 13C NMR.] 
 
 
Answer:  The plan is to find the partition function as the sum of the three Boltzmann weighting 
factors. The derivative to determine the internal energy is easier with the Boltzmann weighting 
factors expressed in terms of  instead of kT. 
   The partition function is the sum of the Boltzmann weighting factors: 
 

 qn =  e–i = e0 + e–ħBo + e–2ħBo = 1 + e–ħBo + e–2ħBo 
 

The derivative with respect to  is:  






q

 v
 = –ħBo e–ħBo – 2ħBo e–2ħBo 

The contribution of the nuclear degree of freedom to the internal energy is given by Eq. 30.2.6: 
 

 U – U(0) = – 
N
q  






q

 v
 = N 

ħBo e–ħBo + 2ħBo e–2ħBo

1 + e–ħBo + e–2ħBo   

     = N 
ħBo e–ħBo/kT + 2ħBo e–2ħBo/kT

1 + e–ħBo/kT + e–2ħBo/kT  = NħBo 
e–ħBo/kT + 2 e–2ħBo/kT

1 + e–ħBo/kT + e–2ħBo/kT 
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A magnetic field strength of 11.74 T gives a deuterium NMR transition frequency of 76.73 MHz 
and a proton NMR frequency of 500 MHz. At 76.73 MHz or  = 76.73 s-1, for one mole of 
deuterium nuclei: 
 

 NA ħBo = NA h = 6.022x1023 mol-1(6.6261x10-34 J s)(76.73x106 s-1) = 0.03062 J mol-1 
 

The small size of this energy explains why we don’t normally bother considering nuclear degrees 
of freedom in thermodynamic problems. At 76.73 MHz the corresponding transition in wave 
numbers is: 
 

 ~ = /c = 76.73x106 s-1/2.9979x1010 cm s-1 = 0.002559 cm-1 
 

NMR transitions are very low energy transitions. The ratio to the thermal kinetic energy at room 
temperature is: 
 

 ħBo/kT = 0.002559 cm-1/207.224 cm-1 = 1.235x10-5   giving    e–ħBo/kT = 0.9999877 
 

The average molar internal energy at 298.2 K is: 
 

 U – U(0) = 0.03062 J mol-1 
0.999988 + 2 (0.999988)2

1 + 0.999988 + (0.999988)2 = 0.03062 cm-1 

In other words, the populations of the three levels are almost identical, so that the internal energy 
is near the maximum. 
 
 
19.  The translational partition function of a mobile species on a surface is: 
 

 qt = 
2mkT

h2   
 

where  is the surface area (not to be confused with the rotational symmetry number). Find the 
contribution of translation to the molar internal energy of the species, Ut – Ut(0). 
 
 
Answer:  The plan is to use Eq. 30.2.16 and ln qt = ln(2mk/h2) + ln T. 
   Substitution of the partition function into Eq. 30.2.16 with n = 1 mol gives: 
 

 Ut – Ut(0) = RT2







 ln q

T v
 = RT2







(ln(2mk/h2) + ln T)

T v
 = RT2







 ln T

T v
 

 

The derivative of the first term in the sum is zero, since the values are all constants. Then 
completing the derivative gives: 
 

 Ut – Ut(0) = RT2




1

T  = RT 
 

This value is predicted by Equipartition, since there are two translational degrees of freedom on 
the surface with each degree of freedom contributing ½ RT to the internal energy. 
   Alternately, the derivation can also be based on Eq. 30.2.12: 
 

 Ut – Ut(0) = 
RT2

q 





q

T v
 = 

RT2

q 





(2mkT/h2)

T v
 = 

RT2

q (2mk/h2) 
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       = 
RT2 (2mk/h2)

(2mkT/h2)
 = 

RT2

T  = RT 

 
 
20.  Find the relationship between the Helmholtz energy and the molecular partition function. 
Start with A – A(0) = –kT ln Q, Eq. 30.2.40. Find the relationship between the Helmholtz energy 
and the molecular partition functions of rotation, vibration, and electronic degrees of freedom 
(just in the form qr qv qe). 
 
 
Answer:  The plan is to parallel the derivation of Eq. 30.2.25 for the entropy. 
   The Helmholtz energy in terms of the ensemble partition function is A – A(0) = –kT ln Q. For 
independent molecules the ensemble partition function is given by Eq. 30.1.13. For very large 
numbers of systems, the factor of N! can be expressed using Sterling’s approximation, Eq. 
30.2.24: 
 

 Q  



qe

N

N

 

Substitution into Eq. 30.2.40 gives: A – A(0) =  –NkT ln



qe

N  = –nRT ln



qe

N  

To find the relationships to the molecular degrees of freedom, we parallel the process we used 
for the entropy and Gibbs energy, Eqs. 30.2.26 and 30.2.52. The molecular partition function 
factors as q = qt qint with qint = qr qv qe, Eq. 30.1.16. The factors that arise from the correction for 
indistinguishability are grouped with the translational partition function: 
 

 A – A(0) = –nRT ln



qte

N  – nRT ln qint = –nRT ln



qte

N  – nRT ln qr qv qe 
 

In other words, the contribution of internal degrees of freedom to the Helmholtz and Gibbs 
energies are identical. The Helmholtz energy is particularly useful in molecular dynamics 
simulations at constant volume. See the next problem to explore the relationship between 
Helmholtz and Gibbs energy. 
 
 
21.  Find the relationship between the Helmholtz energy and the molecular partition function. 
Start with A – A(0) = –kT ln Q, Eq. 30.2.40. (See also Problem 30.20). From the resulting 
equation, derive Eq. 30.2.51. 
 
 
Answer:  The plan is to parallel the derivation of Eq. 30.2.25 for the entropy. 
   The derivation of the relationship between the Helmholtz energy and the molecular partition 
function is given in the previous problem: 
 

 A – A(0) = –nRT ln



qe

N  
 

This result can be expanded to separate the factor of “e”: 
 



Chapter 30: Statistical Mechanics  15 

 A – A(0) =  –nRT ln



qe

N  = –nRT ln



q

N  – nRT ln e = –nRT ln



q

N  – nRT 
 

Using the definition of Gibbs energy with PV = nRT for an ideal gas, this last result gives: 
 

 G  A + PV or   G – G(0) = A – A(0) + PV = –nRT ln



q

N  – nRT + nRT = –nRT ln



q

N  
 

Remember that e is just a number e = 2.7183. 
 
 

22.  Calculate the rotational partition function for HF at 298.15 K. Calculate the contribution of 
rotation to the molar entropy and molar Gibbs energy of HF. 
 
 

Answer:  The plan is to use the spectroscopic constants from Table 27.6.1, kT/hc = 207.224 cm-1, 
and the high temperature approximation or Equipartition rotational contribution of a diatomic 
molecule of U – U(0) = RT. 

   Table 27.6.1 lists B
~

e = 20.9537 cm-1. Using Eq. 30.1.39 with  = 1, the rotational partition 
function is: 
 

 qr = 
kT

B
~

hc
 = 

207.224 cm-1

B
~  = 

207.224 cm-1

20.9537 cm-1 = 9.88961 

 

The contribution of rotation of a linear molecule to the internal energy is U – U(0) = RT, from 
the high temperature approximation, Table 30.3.3, or correspondingly from Equipartition. 
Using Eq. 30.2.26 the molar rotational entropy is: 
 

 Sr = R ln qr + R = 8.31446 J K-1 mol-1(ln 9.88961 + 1) = 27.3669 J K-1 mol-1 

 

Using Eq. 30.2.52, the contribution to the molar Gibbs energy is: 
 

 Gr – Gr(0) = –RT ln qr = – 8.31446 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 9.88964 
       = -5.6805 kJ mol-1 

 

As a check, note that for the rotational contribution, Hr – Hr(0) = Ur – Ur(0); the factor of nRT in 
the conversion of the overall internal energy to enthalpy, H = U + nRT, is combined with the 
translational contribution. Then using the definition of Gibbs energy, G  H – TS, and the 
entropy result, above: 
 

 Gr – Gr(0) = Hr – Hr(0) – T Sr = Ur – Ur(0) – T Sr 
       = 2.47896 kJ mol-1 – 298.15 K(27.3669 J K-1 mol-1)(1 kJ/1000 J) 
       = 2.47896 kJ mol-1 – 8.15944 kJ mol-1 = -5.6805 kJ mol-1 

Even though you might expect six significant figures given B
~

e, our treatment neglects centrifugal 
distortion and vibration-rotation interaction, which limits the accuracy of the statistical 
mechanical result. In addition, the statistical mechanical and thermodynamic values have limited 
precision and accuracy caused by experimental error. See Problem 30.24 for a spreadsheet that 
implements these calculations. 
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23.  Calculate the rotational spectroscopic temperature and partition function for HF at 298.15 K. 
Calculate the contribution of rotation to the molar entropy and molar Gibbs energy of HF. 
 
 

Answer:  The plan is to use the spectroscopic constants from Table 27.6.1 and the conversion 
factor hc/k = 1.438778 cm K. 

   Table 27.6.1 lists B
~

e = 20.9537 cm-1, giving the spectroscopic temperature: 

 r = 
B
~

hc
k

 = 20.9537 cm-1(1.438778 cm K) = 30.1477 K 

Using Eq. 30.3.3 with  = 1, the rotational partition function is: 
 

 qr = 
T
r

 = 
298.15 K

30.1477 K = 9.88964 
 

The preceding problem gives the corresponding contribution of rotation to the molar entropy and 
Gibbs energy. 
 
 
24.  Calculate the rotational partition function for 24Mg2 at 298.15 K. The bond length is Re = 
3.07859 Å. Calculate the contribution of rotation to the molar entropy and molar Gibbs energy of 
Mg2. 
 
 

Answer:  The plan is to use kT/hc = 207.224 cm-1, and the high temperature approximation or 
Equipartition rotational contribution of a diatomic molecule of U – U(0) = RT. 
   The molar mass of 24Mg is 23.98504 g mol-1. The reduced mass of 24Mg2 is: 
 

  = 
m1 m2

m1 + m2
 = 

MMg/2
NA

 (1 kg/1000 g) = 1.991406x10-26 kg. 

With Eqs. 24.4.10 and 24.5.41, the rotational constant is:  B
~

e = 
ħ

4 R2
e c

 
 

 B
~

e = 
1.05457266x10-34 J s

4(1.991406x10-26 kg)(3.8905x10-10 m)2(2.99792458x1010 cm s-1)
 = 0.09287 cm-1 

 

Using Eq. 30.1.39 with  = 2, the rotational partition function is: 
 

 qr = 
kT

B
~

hc
 = 

207.224 cm-1

B
~  = 

207.224 cm-1

2(0.09287 cm-1) = 1115.7 

 

The contribution of rotation of a linear molecule to the internal energy is U – U(0) = RT, from 
the high temperature approximation, Table 30.3.3, or correspondingly from Equipartition. 
Using Eq. 30.2.26 the molar rotational entropy is: 
 

 Sr = R ln qr + R = 8.31446 J K-1 mol-1(ln 1115.7 + 1) = 66.659 J K-1 mol-1 

 

Using Eq. 30.2.52, the contribution to the molar Gibbs energy is: 
 

 Gr – Gr(0) = –RT ln qr = – 8.31446 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 1115.7 
       = -17.395 kJ mol-1 
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As a check, note that for the rotational contribution, Hr – Hr(0) = Ur – Ur(0); the factor of nRT in 
the conversion of the overall internal energy to enthalpy, H = U + nRT, is combined with the 
translational contribution. Then using the definition of Gibbs energy, G  H – TS, and the 
entropy result, above: 
 

 Gr – Gr(0) = Hr – Hr(0) – T Sr = Ur – Ur(0) – T Sr 
       = 2.47896 kJ mol-1 – 298.15 K(66.659 J K-1 mol-1)(1 kJ/1000 J) 
       = 2.47896 kJ mol-1 – 8.15944 kJ mol-1 = -17.395 kJ mol-1 
 

The spreadsheet format is particularly convenient for statistical mechanical calculations. A 
spreadsheet that implements these calculations for translation, rotation, and vibration in 
diatomics is shown below. We are so lazy that we even included a section that calculates the 
molar mass from the molecular formula. The most abundant isotope specific masses are used. 
This spreadsheet applies to several problems: 
 

A1 B C D E F G H I J 

2  T 298.15 K kT/hc = 207.224 cm-1 
  

3  M 47.97008 g mol-1      
4  B 0.09287 cm-1      
5   2       
6   44.367 cm-1      
7  ge 1       
8          

9 Contribution   
ZPE 
(kJ mol-1) 

U-U(0) 
(kJ mol-1) 

H-H(0) 
(kJ mol-1) 

S 
(J K-1mol-1) 

G-G(0) 
(kJ mol-1)  

10 translation qt/NA = 13232012   3.71844 6.19739 157.12797 -40.65031  
11 rotation qr = 1115.669   2.47896 2.47896 66.65879 -17.39536  
12 vibration qv = 5.188517 0.26537 2.22304 2.22304 21.14545 -4.08147  
13 electronic qe = 1   0 0 0 0  
14 Total    8.42044 10.89939 244.93222 -62.12714 kJ mol-1 
15 Formula mass # mass (g mol-1)     
16 C 12  0   Constants     
17 H 1.007825  0   hc/k 1.4387782 cm K 
18 N 14.00307  0   NAhc 11.96266 J cm mol-1 
19 O 15.99492  0    0.025946759  
20 P 30.97376  0   k 1.380649E-23 J K-1 
21 S 31.97207  0   h 6.626076E-34  
22 F 18.9984  0   NA 6.022137E+23  
23 Cl 34.96885  0   R 8.3144621 J K-1mol-1 
24 Br 78.91834  0   V 24.78956875 L 

25 Li 6.015122  0      
26 Na 22.98977  0      
27 Mg 23.98504 2 47.9701       
28 M=   47.9701 g mol-1     

 

Cell G2 is: “=D2/I17” 
Cells D10:E12 are: 
 

A1 B C D E 

9 Contribution    ZPE  (kJ mol-1) 
10 translation qt/NA = =I19*D3^1.5*D2^2.5   
11 rotation qr = =$G$2/D5/D4   
12 vibration qv = =1/(1-EXP(-D6/$G$2)) =D6*$I$18/2/1000 
13 electronic qe = 1   
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Cell F10 is:  “=3*$I$23*$D$2/2/1000” 
Cell G10 is: “=F10+I23*$D$2/1000” 
Cell H10 is: “=$I$23*(LN($I$24)+3*LN($D$2)/2+3*LN(D3)/2)+11.1037” 
Cell I10 is:   “=-I23*D2*LN(D10)/1000” 
 
 
25.  Calculate the contribution of vibration to the molar entropy at 298.15 K for HCN, given the 
literature value of the observed bending vibration frequency at ~o = 711.98 cm-1 and the two 
stretching vibrations at 2096.85 cm-1 and 3311.47 cm-1.3 The bending vibration is doubly 
degenerate. (See also Problems 8 and 9 for the contributions of translation and rotation.) 
 
 
Answer:  The plan is to use Eqs. 30.3.15 and 30.2.26 for the degenerate bending vibrations; the 
overall vibrational entropy is the sum of the entropy of each normal mode. 
   The Boltzmann weighting factor for the bending vibration is: 
 

 e–711.98 cm-1/207.224 cm-1 = 0.032200 
 

Using Eq. 30.1.31, the vibrational partition function for each bending vibration is: 
 

 qv = 
1

1 – e–~o/207.224 cm
-1
 = 

1
1 – e–711.98/207.224 = 1.033270 

 

The vibrational partition functions for the two stretches are 1.000035 and 1.000000115, 
respectively, which are too close to one to contribute significantly to the final entropy. The 
constant NAhc is given as (see inside front cover of the text): 
 

 NAhc = 6.0221367x1023 mol-1(6.6260755x10-34 J s)(2.99792458x1010 cm s-1) 
          = 11.962658 ± 1.0x10-5 J cm mol-1 = 11.962658(10) J cm mol-1 
 

giving:    NAhc~o = 11.96266 J cm mol-1(1 kJ/1000 J)(711.98 cm-1) = 8.51729 kJ mol-1 

The zero-point energy is:    ½NAhc~o = ½(8.51717 kJ mol-1) = 4.259 kJ mol-1 
Using Eq. 30.3.15, the contribution of each bending vibration to the molar internal energy is: 
 

 Um,v – Um,v(0) = 
NAho e–ho/kT

1 – e–ho/kT
 = 8.51729 kJ mol-1 

0.032200
1 – 0.032200 = 0.283377 kJ mol-1 

 

Using Eq. 30.2.26 the molar vibrational entropy of each bending vibration is: 
 

 Sv = R ln qv + 
Uv – Uv(0)

T   

     = 8.31446 J K-1 mol-1(ln 1.03327) + 
0.283377x103 J mol-1

298.15 K   

     = 0.27212 J K-1 mol-1 + 0.95045 J K-1 mol-1 = 1.22253 J K-1 mol-1 
 

For both bending vibrations the total is: Sv = 2.4451 J K-1 mol-1 
 

In Problem 9, we worked out the translational and rotational contributions to the molar standard 
state entropy: Sm,298.15 K = 199.38 J K-1 mol-1. Adding in the vibrational contribution gives: 
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 Sm,298.15 K = 199.38 J K-1 mol-1 + 2.4451 J K-1 mol-1 = 201.83 J K-1 mol-1 
 

Using Table 8.4.1 in the Data Section, S298 K = 201.78 J K-1 mol-1 giving only a 0.02% 
difference. 
 
 
26.  Calculate the vibrational partition function at 298.15 K for Mg2, given the literature value of 
the fundamental vibration frequency, ~o = 47.89 cm-1. Calculate the contribution of vibration to 
the zero point energy, and molar internal energy, entropy, and Gibbs energy of Mg2. 
 
 
Answer:  The plan is to use Table 30.3.3 and Eq. 30.3.15. (See Problem 6 for the calculation of 
~o = 47.89 cm-1 for Mg2). 
   Using Eq. 30.1.31, the vibrational partition function is: 
 

 qv = 
1

1 – e–~o/207.224 cm
-1
 = 

1
1 – e–47.89/207.224 = 4.8463 

 

The zero-point energy is ½NAhc~o. The constant NAhc is given as (see inside front cover of the 
text): 
 

 NAhc = 6.0221367x1023 mol-1(6.6260755x10-34 J s)(2.99792458x1010 cm s-1) 
          = 11.962658 ± 1.0x10-5 J cm mol-1 = 11.962658(10) J cm mol-1 
 

giving:    NAhc~o = 11.96266 J cm mol-1(1 kJ/1000 J)(47.89 cm-1) = 0.57289 kJ mol-1 

The zero-point energy is:    ½NAhc~o = ½(0.57289 kJ mol-1) = 0.28645 kJ mol-1 
 

The Boltzmann weighting factor is:  e–47.89 cm-1/207.224 cm-1 = 0.79366 
Using Eq. 30.3.15, the contribution of a vibration to the molar internal energy is: 
 

 Um,v – Um,v(0) = 
NAho e–ho/kT

1 – e–ho/kT
 = 0.57289 kJ mol-1 

0.79366

1 – 0.79366
 = 2.2035 kJ mol-1 

 

Using Eq. 30.2.26 the molar vibrational entropy is: 
 

 Sv = R ln qv + 
Uv – Uv(0)

T   

     = 8.31446 J K-1 mol-1(ln 4.8463) + 
2.2035x103 J mol-1

298.15 K  = 20.511 J K-1 mol-1 

 

Using Eq. 30.2.52, the contribution to the molar Gibbs energy is: 
 

 Gv – Gv(0) = –RT ln qv = – 8.31446 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 4.8463 
     = -3.912 kJ mol-1 

 

As a check, note that for the rotational contribution, Hr – Hr(0) = Ur – Ur(0); the factor of nRT in 
the conversion of the overall internal energy to enthalpy, H = U + nRT, is combined with the 
translational contribution. Then using the definition of Gibbs energy, G  H – TS, and the 
entropy result, above: 
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 Gv – Gv(0) = Hv – Hv(0) – T Sv = Uv – Uv(0) – T Sv 
       = 2.2035 kJ mol-1 – 298.15 K(20.511 J K-1 mol-1)(1 kJ/1000 J) 
       = 2.2035 kJ mol-1 – 6.1154 kJ mol-1 = -3.912 kJ mol-1 
 

See Problem 30.24 for a spreadsheet that implements these calculations. 
 
 
27.  The symmetry number,, in the rotational partition function may seem arbitrary at first. 
This problem is designed to explore the effects of the symmetry number on the properties of 
molecules. A good test case is to consider N2 and CO. We will look at the contribution of 
rotation to the entropy of these two very similar diatomic molecules. The mass of N2 is 28.02 g 
mol-1 and the mass of CO is 28.01 g mol-1, so the contribution of translation to the entropy is 
essentially identical. The fundamental vibration frequencies of the two are very similar, ~o for N2 
is 2359.6 cm-1 and for CO is 2170.2 cm-1. The vibrational contribution to the entropy is 
essentially identical. Both molecules have singlet ground states. The rotational constants are also 
very similar, B

~
e for N2 is 2.010 cm-1 and for CO is 1.9314 cm-1. So, the only major difference is 

the symmetry. 
(a). Using the result of part a, prove that the contribution of rotation to the molar entropy of a 
diatomic gas is: 

 Sm = R ln






kT

B
~

e hc
 + R – R ln  

(b). Using the result from part a, and assuming that the differences in B
~

e of N2 and CO are 
negligible, calculate the theoretical difference in entropy of N2 and CO. The experimental 
entropies are 191.61 J K-1 mol-1 for N2 and 197.67 J K-1 mol-1 for CO. Compare theory and 
experiment. 
(c). Evaluate the contribution of just the symmetry part of the rotational partition function to the 
equilibrium constant for the reaction:   N2 + CO2  CO + N2O 
 
 
Answer:  The plan is to use Eq. 30.3.7 as the basis for this problem. 
(a). Splitting out the symmetry number term from Eq. 30.3.7 for one mole gives: 
 

 Sr,m = R ln






kT

B
~
hc

 + R = R ln






kT

B
~
hc

 + R – R ln  

 

(b). The difference assuming equal rotational constants with N2 = 2 and CO = 1 is then: 
 

 Sr(N2) – Sr(CO) = –R ln N2 – (–R ln CO)  
     = 8.3145 J K-1 mol-1(ln CO – ln N2) 
     = 8.3145 J K-1 mol-1(ln 1 – ln 2) = -5.763 J K-1 mol-1 

 

with the experimental difference: Sr(N2) – Sr(CO) = 191.61 J K-1 mol-1 – 197.67 J K-1 mol-1 = 
-6.06 J K-1 mol-1. The difference in entropy is primarily given by symmetry. 
 

(c). The contribution of the symmetry part of the rotational partition function to the equilibrium 
constant for the reaction using N2 = 2, CO2 = 2, CO = 1, and N2O = 1 is 
Kp =(1)(1)/(2)(2) = 0.25 
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28.  Write your own spreadsheet that reproduces Example 30.4.1. 
 
 
Answer:  The cells C11:C18 are: 
 

A B C 
11 qt/NA =$C$24*$C$20^2.5*C6^1.5 
12 qr =$C$21/C8/C5 
13 qv =1/(1-EXP(-C4/$C$21)) 
14 qe =C7 
15 G-G(0) internal =-$C$22*$C$20*LN(C12*C13*C14)/1000 
16 G-G(0) (kJ mol-1) =-$C$22*$C$20*LN(C11*C12*C13*C14)/1000 
17 G(0)    (kJ mol-1) =-C9*$C$27 
18 G        (kJ mol-1) =C17+C16 

 

Cell G20 is “=(2*G18-C18-E18)” and Cell G21 is “=G20/2”. 
 
 
29. The equilibrium constant expression in Eq 30.4.24 can be related directly to the bond length 
of the diatomic molecules: RAB for the product and RBC for the reactant. (a). Express Eq. 
30.4.24 directly in terms of the bond lengths of the diatomic species. The result clearly shows 
the relationship between molecular structure and the position of equilibrium. (b). For atom-
diatom exchange on the basis of rotation alone, if RAB > RBC are products or reactants favored? 
 
 
Answer:  The plan is to use the definition of the rotational constant in terms of the moment of 
inertia of a diatomic molecule, Eqs. 24.4.10 and 24.5.41, to find the relationship to the bond 
lengths. 
(a).  Given the moment of inertia of a diatomic molecule is I = R2 with the rotational constant: 

 B
~

 = 
ħ

4 I c
 = 

ħ
4 R2 c

       (24.4.10, 24.5.41) 
 

The ratio for the rotational partition functions simplifies to:  
 

 








1/B

~
AB

1/B
~

BC

 = 
ABR2

AB

BCR2
BC

 

 

From Eq. 30.4.24, the equilibrium expression is: 
 

 Kp = 



mAB mC

mA mBC

3/2
 
ABR2

AB

BCR2
BC

 







   

1

1–e–h~o(AB) c/kT
   

   
1

1–e–h~o(BC) c/kT
   

 



gAB gC

gA gBC
 e–∆Eo/RT 

         translation       rotation           vibration              electronic   zero-point energy shift 
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(b).  From this final expression, if RAB > RBC the numerator is larger than the denominator, which 
favors products. Alternatively, thinking of the string of relationships, if RAB increases compared 
to RBC: 
 

If RAB then: 
     IAB, B

~
AB, rotational level spacing, accessible rotational states of products, Kp 

 

The flow of the logic provides a concise summary of the relationships of fundamental quantum 
mechanics, spectroscopy, and thermodynamics. The progression is from the structural properties 
of individual molecules to the many-body phenomena of macroscopic equilibrium. 
 
 
30.  Use typical values of the partition functions, Eq. 30.3.5, to estimate the equilibrium 
constant of the ideal gas reaction: O2 + F  OF + O at 298 K. This reaction is a possible reaction 
in ozone depletion in the stratosphere. Use qt/NA = 1x107, qr = 100, and qv = 1. Since OF has an 
odd number of electrons, assume the ground state of OF is a doublet, 2. The bond dissociation 
energies are: Do(O2) = 5.126 eV = 494.6 kJ mol-1 and Do(OF) = 1.61 eV = 155 kJ mol-1. 
 
 
Answer:  The zero point energy shift term is simplified by using the equivalent temperature in eV 
from Table 30.3.1, kT/e = 0.02569 eV at 298.15 K. 
   The equilibrium constant for O2 + F  OF + O is: 
 

 Kp = 






qOF/NA

 qO/NA

qO2/NA
 qF/NA

 e–Eo/RT 

 

with Eo = [–Do(OF)] – [–Do(O2)] = [-1.61 eV] – [-5.126 eV] = 3.52 eV = 340. kJ mol-1 
 

The zero point shift term in eV is:      e–Eo/RT = e–3.53 eV/0.02569 eV = e–137 = 3.2x10-60 
 

Alternatively, the zero point shift term in kJ mol-1 is: 

 e–Eo/RT = e–340x103 J mol-1
/(8.314 J K-1mol-1 298.2 K) = e–137 = 3.2x10-60 

The rotational symmetry numbers are O2 = 2 and OF = 1. The vibrations are too high in 
frequency to make a contribution (> 500 cm-1). At a low level of approximation we can take the 
electronic partition functions as the ground state degeneracies, which for atoms are given in 
Table 30.1.2. The ground state degeneracies are gO2 = 3, gF = 4, gOF = 2, and gO = 5. The 
equilibrium constant is roughly approximated: 
 

 Kp  



107 107

107 107     






100

100/2
     



1

1       






2  5

3  4      e–137              5x10-60 

 

          translation       rotation     vibration    electronic     zero point shift 
 

Products are favored by rotation and reactants are favored by electronic degeneracy. However, 
the order of magnitude of the equilibrium constant is dominated by the bond dissociation 
energies. Diatomic O2 has the stronger bond, strongly favoring reactants. 
   One of the possible large errors in using “garden variety” estimates is in the rotational 
contribution. The rotational constants are B

~
e(OF) = 1.0587 cm-1 and B

~
e(O2) = 1.446 cm-1 , giving 

more precise values of the rotational partition functions: 
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    qr(OF) = 
207.224 cm-1

1.0587 cm-1  = 196.7   and   qr(O2) = 
207.224 cm-1

2(1.446 cm-1) = 71.65 
 

 with qr(OF)/qr(O2) = 196.7/71.65 = 2.75 rather than the “garden variety” estimate of 2. 
 
 
31.   Use the “Equilibrium Constants from Molecular Structure” applet, “efs.html,” on the 
textbook Web site and companion CD to calculate the equilibrium constant for the reaction in the 
previous problem: O2 + F  OF + O at 298 K. The spectroscopic parameters are available as 
examples, or the values given in the previous problem can be input by hand. Compare with the 
approximate results from the previous problem. 
 
 
Answer: The parameters were input using the “Examples” buttons to give the following results: 
 

 
 

These accurate calculations agree favorably with the “garden variety” estimates used in the 
previous problem. See also Problem 30.24 for a similar spreadsheet for a single species. 
 
 
32.  Consider the reaction AB  A + B, where A and B are atoms. Predict the effect on the 
equilibrium constant if the following changes are made. (a). The AB molecule is a ground state 
triplet (like O2) instead of a singlet. (b). The AB bond length is increased. (c). The AB force 
constant is increased. (d). The AB bond dissociation energy is increased. [In reality changing just 
one molecular parameter is impossible, bond strength changes have multiple effects. However, 
for the purposes of this exercise assume that the given change is done without changes in other 
parameters.] 
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Answer:  The plan is to note if the change increases or decreases the number of accessible states 
and if the change is for a reactant or product. 
   The equilibrium constant is given in terms of the partition functions as: 
 

 Kp = 






qA/NA

 qB/NA

qAB/NA

 e–Eo/RT = 






qA/NA

 qB/NA

qAB/NA

 



1

qr(AB)  



1

qv(AB)  



qe(A) qe(B)

qe(AB)  e–Eo/RT 

 

with Eo = –o(AB) = – [–Do(AB)] 
 

(a). If the AB molecule is a ground state triplet (like O2) instead of a singlet, the ground state 
degeneracy increases from one to three, and the number of accessible electronic states increases. 
Since AB is a reactant, increasing the number of accessible states shifts the equilibrium towards 
reactants. 
(b). The rotational constant of a diatomic molecule is given by Eq.30.1.34 with moment of 

inertia I = R2 for a diatomic molecule : B
~

 = 
ħ

4 R2 c
 

If the bond length of AB is increased, the moment of inertia is increased, the rotational constant 
is decreased, the rotational energy level spacing is decreased, and the number of accessible states 
is increased for AB. Since AB is a reactant, increasing the number of accessible states shifts the 
equilibrium towards reactants. In summary: 
 

If RAB then: 
     IAB, B

~
AB, rotational level spacing, accessible rotational states of reactants, Kp 

 

(c). If the bond force constant of AB is increased, the fundamental vibration frequency of AB is 
increased, the vibrational energy level spacing is increased, and the number of accessible states is 
decreased. Since AB is a reactant, decreasing the number of accessible states shifts the 
equilibrium towards products. In summary: 
 

If kAB then: 
     ~o(AB), vibrational level spacing, accessible vibrational states of reactants, Kp 

 

(d). If the bond dissociation energy of AB is increased, the zero-point energy shift is increased, 
the overall energy states of AB are lowered, and the number of accessible AB states are 
increased. Since AB is a reactant, increasing the number of accessible states shifts the 
equilibrium towards reactants. AB becomes more stable and so is favored in the equilibrium 
state. 
 
 
33.  Calculate the equilibrium constant of the ideal gas dissociation Mg2  Mg + Mg at 
298.15 K. Assume the isotope is 24Mg. The spectroscopic constants for Mg2 are Re = 3.8905 Å, 
~o = 47.89 cm-1, and De = 0.04979(4) eV.1 The ground state of Mg2 is 1+

u and the ground state of 
Mg-atoms is 1So. 
 
 
Answer:  The molar mass of 24Mg is 23.98504 g mol-1. The mass of Mg2 is 47.97954 g mol-1 and 
with Eqs. 30.3.1 and 30.3.2: 
 

 
qt ,Mg2

NA
 =  (M/g mol-1)3/2(T/K)5/2 = 0.0259472 (47.97954)3/2 (298.15)5/2 = 1.32320x107 



Chapter 30: Statistical Mechanics  25 

For Mg-atoms:  
qt ,Mg

NA
 = 0.0259472 (23.98504)3/2 (298.15)5/2 = 4.678223x106 

 

The reduced mass of Mg2 is:    = 
m1 m2

m1 + m2
 = 

MMg/2
NA

 (1 kg/1000 g) = 1.991406x10-26 kg. 

With Eqs. 24.4.10 and 24.5.41:  B
~

e = 
ħ

4 R2
e c

 
 

 B
~

e = 
1.05457266x10-34 J s

4(1.991406x10-26 kg)(3.8905x10-10 m)2(2.99792458x1010 cm s-1)
 = 0.09287 cm-1 

 

Using Eq. 30.1.39 with  = 2, the rotational partition function is: 
 

 qr = 
kT

B
~

hc
 = 

207.224 cm-1

B
~  = 

207.224 cm-1

2(0.09287 cm-1) = 1115.7 

 

Using Eq. 30.1.31, the vibrational partition function is: 
 

 qv = 
1

1 – e–~o/207.224 cm
-1
 = 

1
1 – e–47.89/207.224 = 4.8463 

See Problem 30.24 for a spreadsheet that implements these calculations. The reaction products 
are atoms, while the reference point is for totally dissociated atoms. The zero-point energy shift 
is then just Eo = –o(Mg2) = – [–Do(Mg2)] = 0.04979(4) eV. In terms of bond energy, the 
reactions runs uphill from Mg2. Using Table 30.3.1, kT/e = 0.025693 eV at 298.15 K, the zero-
point energy sift term is: 
 

 e–Eo/RT = e–0.04979 eV/0.025693 eV = e–1.938 = 0.1440 0.0023 

 

Even though the bond dissociation energy is unusually small, the zero-point energy shift term is 
still unfavorable. Considering each degree of freedom separately, the overall equilibrium 
constant is: 
 

 Kp = 
qMg qMg

qMg2
 e–Eo/RT 

      = 



(4.678223x106)2

1.32320x107  



1

1115.7  



1

4.8463
   



11

1      0.1440 

      =     1.65400x106   0.0008963  0.20634      1        0.1440        = 44.05  0.70 
 

        translation         rotation    vibration  electronic  zero-point energy shift 
 

Mg2 is 99% dissociated at 298.2 K and 1 bar, Eq. 20.2.8. Our expectation based on Lewis 
structures is that Mg2 is not stable, since Mg atoms are closed shell. 
 
 
34.  Heat capacities are the fundamental building blocks of all thermodynamic properties. For 
example, Third Law absolute entropies are based entirely on the temperature dependence of the 
heat capacity of the pure substance and enthalpies of the phase transitions, which in turn require 
heat capacities for their measurement. (a). Prove that the constant volume heat capacity of a pure 
substance is given by: 
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 Cv = 






U

T v
 = 2nRT







ln q

T v
 + nRT2







2ln q

T2
v
 

 

(b).  Show that the constant volume heat capacity of rotation of a linear molecule is nR. 
 
 
Answer:  The plan is to note that the constant volume heat capacity is the temperature derivative 
of the internal energy, Cv = (U/T)v. 
(a).  Using Eq. 30.2.16 and the product rule: 
 

 U – U(0) = nRT2 






ln q

T v
        1 

 

 Cv = 






U

T v
 = 2nRT







ln q

T v
 + nRT2







2ln q

T2
v
      2 

 

(b).  For rotations using Eq. 30.1.39: qr = 
kT

B
~
hc

  or  ln qr = ln






k

B
~
hc

 + ln T   3 

The derivatives are: 






ln q

T v
 = 







ln T

T v
 = 

1
T 






T

T v
 = 1/T   and     







2ln q

T2
v
 = –1/T2  4 

Substituting the derivatives into Eq. 2 gives: 
 

 Cv = 






U

T v
 = 2nRT(1/T) + nRT2(–1/T2) = nR 

 

as expected from Equipartition. 
 
 
35.  The Equipartition prediction of the contribution of a vibration to the molar heat capacity of a 
diatomic molecule is Cv = R, which is the maximum contribution at high temperatures. More 
accurately, the contribution of vibration to the internal energy of a diatomic molecule, in the 
harmonic approximation, is given by Eq. 30.3.13. (a).  Determine the heat capacity of a diatomic 
molecule, in the harmonic oscillator approximation, usng the following steps. (a). To make the 
derivation easier, start by showing that the vibrational contribution is given by: 
 

 U – U(0) = 
Nho e–ho

1 – e–ho  = 
Nho

eho – 1
 

(b).  Then, convert the heat capacity derivative to one written in terms of : 
 

 Cv = 






U

T v
 = 







U

 v







T v
 = – 

1
kT2 






U

 v
 

 

(c).  Show that:   Cv = 
N(ho)2

kT2  






eho

(eho – 1)2  
 

(d).  Finally show that:   Cv = 
N(ho)2

kT2  






e–ho/kT

(1 – e–ho/kT)2  
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(e).  Plot the molar heat capacity from T = 10 to 1000 K for a vibration frequency of 200.0 cm-1. 

At what temperature, compared to ~o, does the vibration begin to make a significant contribution 
to the heat capacity? 
 
 
Answer:  The plan is to note that the constant volume heat capacity is the temperature derivative 
of the internal energy, Cv = (U/T)v.  
(a).  Eq. 30.3.13 gives the contribution of a vibration to the internal energy as: 
 

 U – U(0) = 
Nho e–ho

1 – e–ho         1 

This relationship is simplified by multiplying numerator and denominator by eho: 
 

 
Nho e–ho

1 – e–ho  






eho

eho  = 
Nho

eho – 1
        2 

 

(b).  To make the derivative easier, using the product rule and Eq. 30.2.8: 
 

 Cv = 






U

T v
 = 







U

 v







T v
 = – 

1
kT2 






U

 v
      3 

 

(c).  Using the chain rule, the derivative is: 
 

  






U

 v
 = – 

Nho

(eho – 1)2 





(eho – 1)

 v
 = – 

Nho

(eho – 1)2 e
ho (ho) = – 

N(ho)2 eho

(eho – 1)2  4 
 

Substituting Eq. 4 into Eq. 3, the constant volume heat capacity is: 
 

 Cv = – 
1

kT2 





U

 v
 = 

N(ho)2

kT2  






eho

(eho – 1)2        5 
 

Now, we do the reverse of step 2: 
 

 Cv = 
N(ho)2

kT2  






eho

(eho – 1)2  






e–ho

e–ho

2

       6 
 

 Cv = 
N(ho)2

kT2  






e–ho

(1 – e–ho)2  = 
N(ho)2

kT2  






e–ho/kT

(1 – e–ho/kT)2      7 
 

(d).  The spreadsheet and plot are shown below. 
 
 
 
 
 

 

A1 B C D E 

2 o = 400 cm-1  
3     
4 T (K) kT/hc (cm-1) e-hoc/kT Cv (J K-1mol-1) 
5 10 6.9503 0.0000 0.0000 
6 50 34.7517 0.0000 0.0110 
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7 75 52.1276 0.0005 0.2279 
8 100 69.5034 0.0032 0.8776 
9 150 104.2551 0.0216 2.7569 

10 175 121.6310 0.0373 3.6195 
11 200 139.0068 0.0563 4.3499 
12 250 173.7585 0.1001 5.4433 
13 298.15 207.2244 0.1451 6.1510 
14 400 278.0137 0.2372 7.0172 
15 500 347.5171 0.3163 7.4543 
16 600 417.0205 0.3832 7.7053 
17 800 556.0273 0.4870 7.9650 
18     
19 hc/k 1.4387782 cm K  
20 NA 6.0221E+23 mol-1  
21 h 6.6261E-34 J s  
22 k 1.3806E-23 J K-1  
23 c 2.9979E+10 cm s-1  
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Cell C5 is “=B5/$C$19”. Cell D5 is “=EXP(-$C$2/C5)”. Cell E5 is: 
 

 =$C$20*($C$21*$C$23*$C$2)^2/$C$22/$B5^2*$D5/(1-$D5)^2 
 

The heat capacity “begins to thaw” near a wave number equivalent temperature of ~o/10. The 

heat capacity approaches 10% of the full value at ~o/4 or equivalently at a temperature of v/4, 
where v is the spectroscopic temperature of the transition. The high temperature limiting value 
is R, or 8.314 J K-1 mol-1, as expected from Equipartition. 
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