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Chapter 30: Statistical Mechanics 
 

Calculate Kp for ½ H2 (g) + ½ Cl2 (g)  HCl (g) at 25C from spectroscopic data. 
 
   Statistical mechanics is the bridge between the world of single molecules and macroscopic 
thermodynamic systems. Statistical mechanics is one of the three major sub-disciplines within 
physical chemistry, which are quantum mechanics, statistical mechanics, and thermodynamics. 
The quantum structure of atoms and molecules directly determines thermodynamic properties. 
The molecular information necessary to determine thermodynamic potentials is derived from 
spectroscopy. The most important goal is to understand the molecular basis of chemical 
equilibrium. The equilibrium constant is the ratio of the number of accessible product states 
divided by the number of accessible reactant states. We need to build insight into how different 
aspects of molecular structure effect the position of equilibrium. We need to develop efficient 
working expressions to calculate reaction Gibbs energies and equilibrium constants of gas phase 
reactions. Statistical mechanics presents a richly meaningful perspective on chemical reactivity. 
The key underlying concept is that the available thermal kinetic energy is partitioned at random 
among the quantum states of the system. The equilibrium state is the most probable distribution. 
Fluctuations away from the most probable distribution are quite small. All the information 
necessary to characterize the thermodynamic properties of a system is contained in the molecular 
partition function. 
 
30.1 Review of Statistical Mechanical Principles 
 

   The goal of statistical mechanics is to determine the equilibrium state of systems and the 
corresponding thermodynamic potential energy functions: U, H, A, and G. The flow of the 
concepts is summarized in Figure 12.2.6. The thermodynamic properties of a system are 
determined by time averages. Time averages are difficult to determine, so instead ensemble 
averages are used. The state of the ensemble is determined by the distribution of the energy 
states of the systems within the ensemble, Figure 30.1.1a. The most probable distribution is the 
overwhelmingly predominant distribution. As a result the ensemble average is given by the most 
probable distribution. The most probable distribution is the equilibrium state of the ensemble, 
which is given by the Boltzmann distribution. 
 
 

 
 

Figure 30.1.1: (a). A canonical ensemble with N identical systems with volume V and N 
molecules. (b). The statistical distribution of systems in the canonical ensemble at 
equilibrium is determined by the Boltzmann distribution with probability pi = ni/N. 
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The Boltzmann distribution gives the probability of occurrence of a given system energy state 
within the ensemble, which is a function of the energy states of the system Ei and the 
temperature T, Figure 30.1.1b: 
 

 pi = 
ni

N = 
e–Ei/kT

Q        (12.4.21) 30.1.1 
 

with ni the distribution number and N systems in the ensemble. The canonical ensemble partition 
function, Q, is the sum of the Boltzmann weighting factors over all system energy states: 
 

 Q = 
i=0


 e–Ei/kT          (all energy states)   (12.4.21) 30.1.2 

 

If energy levels are degenerate, the sum over all states can be replaced with a sum over all 
energy levels by taking the degeneracy of level i, gi, into account: 
 

 pi = 
ni

N = 
gi e–Ei/kT

Q   with   Q = 
i = 0



 gi e–Ei/kT (all energy levels) 30.1.3 

 

To provide for easier reading, we often omit the summation limits in formulas, with the 
understanding that the sums are over all possible energy states or levels. We will show that all 
thermodynamic properties of the system can be expressed in terms of the partition function. The 
partition function is central in determining the relationship between molecular and 
thermodynamic properties. 
 

Constraining the Number of Systems and the Total Energy of the Ensemble:   The canonical 
ensemble is constructed from N identical systems, each system with the same volume V and 
number of molecules N. The ensemble is isolated from the surroundings, constraining the 
number of systems and the total energy of the ensemble, E. The systems are distinguished by 
their fixed position within the ensemble. The systems are placed in thermal contact so that the 
systems are all at the same temperature T. A state of the ensemble is a specific configuration of 
system energies, for example: system 1 in system energy state E6, system 2 in state E3, system 3 
in E8, and so on for each system, Figure 30.1.1a. The internal energy and entropy of the system 
are given by the ensemble averages: 
 

 U – U(0) = 
E
N = 

i=0


 pi Ei      (ensemble,12.2.6) 30.1.4 

 S = 
k
N ln Wmax = –k 

i=0


 pi ln pi    (ensemble,12.2.1,12.4.9) 30.1.5 

where Wmax is the maximum number of ways of arranging the energy states of the ensemble. 
Maximizing W gives the most probable distribution. A process that increases Wmax increases 
energy dispersal. Because the systems are distinguished by their position in the ensemble, Wmax = 
W N

max, where Wmax is the maximum number of ways of arranging the states of a single system. As 
a simple example, for a two-system ensemble if systems A and B each have three possible states, 
taken together there are 32 possible states. The entropy with an N system ensemble is then: 
 

 S = 
k
N ln W N

max = k ln Wmax = – k 
i=0


 pi ln pi   (system,12.4.22) 30.1.6 
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This relationship allows us to think in terms of the properties of a single system, instead of an 
ensemble. The probability of the system being in system energy state Ei is given by the 
Boltzmann distribution, Eqs. 30.1.1-30.1.3. 
 
30.2 The Boltzmann Distribution is the Most-Probable Distribution 
 

Canonical Ensemble Partition Functions and Molecular Partition Functions:   The canonical 
ensemble partition function is the sum of the Boltzmann weighting factors over all states of the 
system. Thinking about states of the system is inconvenient. We prefer to think in terms of 
individual molecules. Can we write the canonical ensemble partition function in terms of states 
of individual molecules? We can in the case of an ideal gas. 
   No forces act between molecules in an ideal gas; the molecules are independent. Under the 
assumption of independent molecules, the energy of a system in state i is the sum of the 
molecular energies: 
 

 Ei = a,i + b,i + c,i + …      (system) 30.2.1 
 

where a,i is the energy of molecule a in system state i, b,i is the energy of molecule b in the 
same system state i, and similarly for each of the N molecules in the system, Figure 30.2.1. 
 
 

 
 

Figure 30.2.1:  In the canonical ensemble, the ensemble partition function is replaced by the 
molecular partition function using Q = qN/N! for N identical molecules in the system. 

 
 

The ensemble partition function is the sum over the Boltzmann weighting factors. Using 
Eq. 30.2.1 and noting that ea+b = eaeb, the system weighting factor is the product of the 
weighting factors of each molecule: 
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i

 e–Ei/kT = 
i

 [e–a,i/kT e–b,i/kT e–c,i/kT …]        30.2.2 

 

At this point it is tempting to ask if the sum of the products is the same as the product of the 
individual molecular sums: 
 

 Q =? 
i

 e–a,i/kT 
i

 e–b,i/kT 
i

 e–c,i/kT …         30.2.3 
 

The individual sums are over the energy states of a single molecule, for each molecule a, b, c, 
etc. The individual sums are the molecular partition functions: 
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 qa = 
i

 e–a,i/kT, qb = 
i

 e–b,i/kT,  etc.                30.2.4 

 

If Eq. 30.2.3 is true, the ensemble partition function is then simply the product of the individual 
molecular partition functions: 
 

 Q =? qa qb qc …                      30.2.5 
 

To explore if this relationship is correct, we consider an example of two identical molecules, a 
and b. Eq. 30.2.3 then reduces to just two multiplicative factors, one for molecule a and one for 
molecule b: 
 

 Q =? (e–a,1/kT + e–a,2/kT + e–a,3/kT +…)(e–b,1/kT + e–b,2/kT + e–b,3/kT +…)     30.2.6 
 

Doing the multiplication gives cross terms of the form e–a,1/kT e–b,2/kT and e–a,2/kT e–b,1/kT, 
which are diagrammed in Figure 30.2.2. The two different arrangements are indistinguishable 
because the two molecules are indistinguishable. The labels a and b are only used as 
conveniences to determine possible energy state assignments. We must not specify something 
that cannot be determined in the laboratory. One CO2 molecule looks like any other CO2 
molecule. The requirement of experimental verification is also fundamental in establishing the 
Pauli Exclusion Principle, Sec. 25.4. For N molecules there are N! permutations of the labels 
among the indistinguishable molecules. 
 
 

 
 

Figure 30.2.2:  For indistinguishable molecules, the energy states (a,1, b2) and (a,2, b1) are 
indistinguishable and should not be counted separately. The molecule labels a and b cannot 
be determined experimentally. 

 
 

To count only distinguishable states in a pure substance, the relationship in Eqs. 30.2.3 and 
30.2.5 must be divided by N!. Since the molecules are identical, defining q  qa = qb = qc, gives 
the ensemble partition function in terms of the molecular partition function as: 
 

 Q = 
qN

N!    indistinguishable molecules         30.2.7 
 

On the other hand, if the molecules are of the same species, but are distinguishable by position, 
Eq. 30.2.5 is correct: 
 

 Q = qa qb qc … = qN   distinguishable molecules        30.2.8 
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For example, in a solid, the molecules occupy fixed positions in a crystal lattice and may be 
distinguished by their positions in the lattice. 
   The validity of the factor of N! to account for indistinguishability depends on an additional 
approximation. The number of available quantum states must be much greater than the number 
of molecules. This approximation is called the dilute limit and is discussed in Sec. 30.6. 
 

The Partition Function is the Number of Accessible States:   The partition function can be 
interpreted in several important ways. The partition function is the normalization constant that 
ensures  pi = 1. More importantly, the partition function is a measure of the number of 
accessible states. We consider three cases of a Boltzmann distribution over a set of equally 
spaced vibrational energy levels, Table 30.2.1. In the first case we assume that the spacing 
between the energy levels is much larger than the available thermal kinetic energy,  = 5 kT. 
The probability of occupation of the  = 1 state is small. There is only one accessible state, q = 
1.007. In the second case we assume that the energy level spacing is equal to the available 
thermal kinetic energy,  = kT. A broader distribution among the states results and the partition 
function increases to q = 1.582. In the third case we assume that the energy level spacing is 
smaller than the available thermal kinetic energy,  = 0.1 kT. In this case there is sufficient 
energy to excite many molecules into higher energy states. A total of 114 states are necessary 
(not all shown in the table) to calculate the partition function, q = 10.508. We observe that q 
determines the average number of accessible states. This interpretation will be invaluable as we 
continue to relate thermodynamic variables to the partition function. 
 
 

Table 30.2.1: Boltzmann Distribution of the Available Energy States. The partition function 
is the sum down the column of the Boltzmann weighting factors: q =  e–i/kT. 
 

  = 5 kT     = kT      = 0.1  kT   

 i/kT e-i/kT ni/N   i/kT e-i/kT ni/N   i/kT e-i/kT ni/N  

0 0 1 0.99  0 0 1 0.63  0 0 1 0.10  
1 5 0.00674 0.01  1 1 0.3679 0.23  1 0.1 0.90484 0.09  
2 10 0.00005 0.00  2 2 0.1353 0.09  2 0.2 0.81873 0.08  
3 15    3 3 0.0498 0.03  3 0.3 0.74082 0.07  
4 20    4 4 0.0183 0.01  4 0.4 0.67032 0.06  
5 25    5 5 0.0067 0.00  5 0.5 0.60653 0.06  
6 30    6 6 0.0025   6 0.6 0.54881 0.05  
7 35    7 7 0.0009   7 0.7 0.49659 0.05  
8 40    8 8 0.0003   8 0.8 0.44933 0.04  
9 45    9 9 0.0001   9 0.9 0.40657 0.04  

10 50    10 10    10 1 0.36788 0.04  
11 55    11 11         
12 60    12 12    114 11.4 0.00001 0.00  

   q = 1.00678      q = 1.5819       q =  10.50823   

 
 

The Molecular Partition Function Factors into Translational, Rotational, Vibrational, and 
Electronic Partition Functions:  The total energy of a molecule includes translational, 
vibrational, rotational, and electronic energies. Assuming ideal gas behavior and that 
translational, rotational, vibrational, and electronic energies are independent, the total molecular 
energy is the sum of each degree of freedom: 
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  = t + r + v + e             (ideal gas, independent t,r,v,e)      30.2.9
 

Arguments parallel to Eqs. 30.2.2-30.2.6 show that if the energy is a sum of independent terms, 
the corresponding partition function is the product of partition functions: 
 

 q = qt qr qv qe              (ideal gas, independent t,r,v,e)      30.2.10 
 

where qt, qr, qv, and qe are the translational, rotational, vibrational, and electronic partition 
functions, respectively. The partition functions may then be considered separately. The 
individual partition functions are the number of accessible states occupied for the given degree of 
freedom. Taken together, rotation, vibration, and electronic degrees of freedom are called the 
internal degrees of freedom. The expression that we develop for the translational partition 
function is in the ideal gas limit and is based on the particle in a box model. The rotational 
partition function assumes a rigid-rotor. The vibrational partition function is in the harmonic 
approximation. The independence of the vibrational and electronic degrees of freedom is 
justified by the Born-Oppenheimer approximation. These approximations are usually sufficient 
to determine accurate values of the Gibbs energy and equilibrium constant of reactions of ideal 
gases near room temperature. By convention and for convenience, the correction for 
indistinguishability is grouped with the translational partition function, Q = (qN

t /N!)qN
r  qN

v  qN
e . 

   In the following discussions, the expressions for the molecular partition functions of 
translation, vibration, rotation, and electronic degrees of freedom are developed. In subsequent 
sections, these partition functions are used to determine the corresponding contributions to the 
internal energy, enthalpy, entropy, and Gibbs energy of a substance and to determine the Gibbs 
energy and equilibrium constants of chemical reactions. 
 

The Translational Partition Function Depends on Volume:  Translation of the center of mass of a 
molecule is independent of the internal degrees of freedom. The quantum mechanical model for 
translation of a molecule in an ideal gas is the particle in a box. Consider a rectangular box with 
side lengths a, b, and c. The volume of the container is then V = abc. The translational energy 
levels are given by Eq. 23.6.16. The x, y, and z components of the translation of the center of 
mass are independent with additive energies: 
 

 t = x + y + z =  
h2

8m 



n2

x

a2 + 
n2

y

b2 + 
n2

z

c2      (23.6.16)      30.2.11 
 

where m is the molecule’s mass and nx, ny, and nz are the quantum numbers of the particle in the 
box energy levels, Figure 30.2.3. 
 
 

  
Figure 30.2.3: Molecular translation in an ideal gas is modeled by the particle in a box with 
volume V = abc. The energy levels for motion in the x-direction are illustrated. 
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Arguments parallel to Eqs. 30.2.2-30.1.6 show that if the energy is a sum of independent terms, 
the corresponding partition function is the product of partition functions: 
 

 qt = qx qy qz                  30.2.12 
 

where qx, qy, and qz are the one-dimensional translational partition functions taken separately in 
the x, y, and z directions, respectively. The motion in a gas is isotropic, so that the x, y, and z 
partition functions are equivalent, except for the box side length. Considering just the x-
direction, the translational partition function is the sum of the Boltzmann weighting factors over 
the energy levels of one-dimensional translation with quantum number nx: 
 

 qx = 
i=1



 e–x,i/kT = 
nx=1



 e–h2nx
2/8ma2kT               30.2.13 

 

For ease of calculation, the lower limit of the summation is changed from nx = 1 to zero. The 
error introduced by this approximation is small; the Boltzmann weighting factor for nx = 0 is 
e0 = 1. The value of qx, the number of accessible translational states, will turn out to be greater 
than 1010, so that 1010+1 is a negligible error. At all but the lowest temperatures, the energy level 
spacing is much less than kT so that the summation in the last equation may be replaced by an 
integral over the quantum number: 
 

 qx =  


0
 e–h2nx

2/8ma2kT dnx     (h
2
/8ma2 << kT)       30.2.14 

 

The energy levels approach a continuum of available energy states, which gives the classical 
limit. We will also use this approximation, the high temperature approximation, for rotations 
and low frequency vibrations. To determine the integral, we define a change in variables 
replacing the exponent by: 
 

 x2 = 
h2nx

2

8ma2kT  x = 
h
a 



1

8mkT
½

nx  
dx
dnx

 = 
h
a 



1

8mkT
½

           30.2.15 
 

where nx and x2 both range from zero to infinity. Substitution of the change of variables into Eq. 
30.2.14 gives: 
 

 qx =  
a
h (8mkT)½ 



0
 e–x2

 dx                30.2.16 
 

The integral is in the standard form 
0
 e–x2

 dx = /2) giving the integral as: 
 

 qx = (2mkT)½ 
a
h               30.2.17 

 

In an isotropic ideal gas, the y and z partition functions have the same form, differing only by the 
corresponding box length: 
 

 qy = (2mkT)½ 
b
h  qz = (2mkT)½ 

c
h           30.2.18 

 

The overall translational partition is the product of the three terms, Eq. 30.2.12, with V = abc: 
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 qt = 
(2mkT)

3/2

h3  V               30.2.19 
 

The units for this expression are the molecule’s mass, m, in kg and the volume in m3.  
 
 
              

Example 30.2.1: Translational partition function 
Calculate the translational partition function for CO2. Use the volume occupied by one mole of 
ideal gas at standard state conditions and at 298.15 K. 
 
 
Answer:  For CO2 the molar mass is M = 44.01 g mol-1 giving m = 7.308x10-26 kg. 
At T = 298.15 K and standard state, P = 1 bar, the volume of the container is the molar volume: 
Vm = RT/P = 24.79 L = 0.02479 m3. Using Eq. 30.2.19, the translational partition function is: 
 

 qt = [2(7.308x10-26 kg)(1.38065x10-23 J K-1)(298.15 K)]3/2 
0.02479 m3

(6.6261x10-34)3 = 7.002x1030 

 
              




This example shows that the number of accessible translational states has a large magnitude. 
How many vibrational states are typically accessible? 
 
The Vibrational Partition Function is a Power Series:   The vibrational partition function of a 
harmonic oscillator is the sum of the Boltzmann weighting factors over energy levels 
 = ho( + ½), Eq. 24.2.15: 
 

 qv = 
=0

∞

 e–ho( +½)/kT = e–ho/2kT 
=0

∞

 e–ho/kT   (harmonic) 30.2.20 

 

where o is the observed fundamental vibration frequency and  is the vibrational quantum 
number. The zero point energy state is the  = 0 state with energy o = ½ho. The common term 
of e–ho/2kT factors out of the summation and is the Boltzmann weighting factor of the zero-point 
energy state. The sum in Eq. 30.2.20 is evaluated using the substitution: 
 

 a = e–ho/kT   giving     e–ho/kT = a    (harmonic) 30.2.21 
 

The sum is then a power series in a, which for the sum from  = 0 to  has the value: 
 

 1 + a + a2 + a3 + ... = 
1

1 – a      (harmonic) 30.2.22 
 

Substitution of a = e–ho/kT into the Eq. 30.2.22 and the resulting expression back into Eq. 30.2.20 
gives the vibrational partition function as: 
 

 qv = 
e–ho/2kT

1 – e–ho/kT
           (harmonic, o = ½ho) 30.2.23 
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This partition function is applicable to a diatomic molecule or a normal mode of a polyatomic. 
For polyatomics the overall vibrational partition function is the product of the partition functions 
of each of the 3N – 5 or 3N – 6 normal modes: 
 

 qv = qmode1 qmode2 qmode3....      (harmonic) 30.2.24 
 

The energy zero for Eq. 30.2.23 is the bottom of the potential energy well, Figure 30.2.4a. For 
many purposes, the energy zero is shifted to coincide with the zero-point energy level, Figure 
30.2.4b. Instead of o = ½ho, the more convenient energy zero is o = 0, and then the minimum 
of the potential energy well is at –½ho. The corresponding vibrational partition function is: 
 

 qv = 
1

1 – e–ho/kT
 = 

1

1 – e–hc~o/kT
       (harmonic, o = 0) 30.2.25 

 




Figure 30.2.4: (a). Rotational and vibrational states for a diatomic molecule, referenced to the 
bottom of the potential energy well. (b). Reference to the lowest rotational and vibrational 
level, which is the zero-point energy, ZPE. 


 

As a convenience in Eq. 30.2.25, the units of the fundamental vibration frequency are converted 
to wave numbers by ho = hc~o. The observed fundamental vibration frequency provides the link 
between spectroscopy and molecular structure. This last expression can be cast into a convenient 
form for use at room temperature. At 25C the constants can be combined to give the wave 
number equivalent of the temperature. At 298.15 K the wave number equivalent is: 
 

 
kT
hc = 207.2244 cm-1         30.2.26 

 

The available thermal kinetic energy at room temperature is 207.224 cm-1. Substitution of this 
factor into Eq. 30.2.25 gives a particularly convenient form of the vibrational partition function: 
 

 qv = 
1

1 – e–~o/207.224 cm-1
     (298.2 K, harmonic, o =0) 30.2.27 

 

The advantage of this expression is that the wave number of the transition can be read directly 
from the experimental spectrum, which highlights the close connection between the 
spectroscopic constants and the thermodynamic behavior. This expression is a direct and 
powerful instance of a structure-function relationship. Now, we can continue with a 
consideration of the effect of molecular rotation on the number of accessible states. 
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The Rotational Partition Function is Calculated in the High Temperature Approximation:  As a 
rigid-rotor, the rotational energy of a linear molecule is given by J = B

~
hc J(J + 1), 

Eq. 24.5.42, with degeneracy 2J + 1. The rotational partition function of a linear molecule is the 
sum of the Boltzmann weighting factors, accounting for the rotational degeneracy, Eq. 30.1.3: 
 

 qr = 
=0

∞

 (2J + 1) e–B
~

hc J(J+1)/kT  B
~

 = 
h

8π2Ic (linear rigid rotor) 30.2.28 

 

The rotational constant provides the link between spectroscopy and molecular structure, since the 
moment of inertia is determined by the bond length. The moment of inertia of a diatomic is I = 
R2. This sum is easily calculated exactly by direct summation. However the rotational constant 
is usually smaller than the available thermal kinetic energy, B

~
hc << kT, so that the summation 

can be approximated by an integral over all J values: 
 

 qr = 


0

∞

(2J+1) e–B
~

hc J(J+1)/kT dJ     (high T, rigid rotor) 30.2.29 
 

The relationship B
~

hc << kT is valid if the rotational constant is small or alternately if the 
temperature is high. This approximation is the high temperature approximation. The integral 
is simplified by noting that the derivative of the Boltzmann weighting factor gives: 
 

 
d (e–B

~
hc J(J+1)/kT)

dJ  = – 
B
~

hc
kT  (2J+1) e–B

~
hc J(J+1)/kT     30.2.30 

 

Solving for the integrand in Eq. 30.2.29 and substitution into the integral gives: 
 

 qr = – 
kT

B
~

hc
 



0

∞

d (e–B
~

hc J(J+1)/kT)
dJ  dJ    (high T, rigid rotor) 30.2.31 

 

 qr = – 
kT

B
~

hc
 e–B

~
hc J(J+1)/kT|

0
 = 

kT

B
~

hc
    (high T, rigid rotor) 30.2.32 

 

For example, the rotational constant of H35Cl is 10.59 cm-1, Table 27.6.1. At 25C, 
kT = 207.224 cm-1. The rotational partition function for H35Cl at room temperature is then 
qr = 207.224 cm-1/10.59 cm-1 = 19.6. The number of accessible rotational states is 19.6 at 25C. 
However, for symmetrical linear molecules, such as N2 and CO2, the values calculated using the 
last equation are a factor of two high compared to experiment. The reason is that rotation about 
an axis perpendicular to the internuclear axis by 180 gives an orientation that is 
indistinguishable from the original molecule, Figure 30.2.5. We encountered issues with 
indistinguishability before, concerning the Pauli Exclusion Principle and relating the system and 
molecular partition functions. In quantum mechanics we discovered that we must not specify a 
result that cannot be verified in the laboratory. We can’t count the two orientations of N2 that 
differ by 180 as separate states. To prevent over-counting indistinguishable states, a symmetry 
number is introduced into the denominator of the last expression: 
 

 qr = 
kT

B
~

hc
        (rigid rotor) 30.2.33 
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The symmetry number, , is the number of indistinguishable orientations produced by rotations 
about the center of mass of the molecule. The symmetry number for HCl and other heteronuclear 
diatomics is  = 1. The symmetry number for homonuclear diatomics and other symmetrical 
linear molecules is  =2, Figure 30.2.5. If you have covered the group theory section of the 
rotational vibrational spectroscopy chapter, you can conveniently determine the symmetry 
number as the order of the rotational sub-group of the point group of the molecule. The rotational 
sub-group is comprised of the proper rotations and the identity. For example, for H2O in the C2v 
point group, the rotational subgroup is {E, C2}. The H2O symmetry number is then  = 2. In 
general, for the Cnv point groups the symmetry number is  = n. For BF3 in the D3h point group, 
the rotational subgroup is {E, 2C3, 3C2'} giving  = 6. For benzene in the D6h point group, the 
rotational subgroup is {E, 2C6, 2C3, C2, 3C2', 3C2"} giving  = 12. 
 
 

 
Figure 30.2.5: The symmetry number avoids over-counting indistinguishable states. 

 
 

Specifically at 25C the rotational partition function is easily calculated by: 
 

 qr = 
207.224 cm-1

B
~       (298.2 K, rigid rotor) 30.2.34 

 

The available thermal kinetic energy at room temperature is a good point of comparison for 
which B

~
 values are “large” or “small.”  

   Non-linear molecules have three moments of inertia, Eq. 27.4.11, about three orthogonal axes, 
x, y, and z, Eq. 27.4.14. The rotational partition function of a non-linear molecule with the 
corresponding rotational constants, A

~
, B

~
, and C

~
, is: 

 

 qr = 

  







kT

A
~

hc

½







kT

B
~
hc

½







kT

C
~
hc

½
     with    A

~
 = 

ħ
4πIzzc

      B
~

 = 
ħ

4πIxxc
      C

~
 = 

ħ
4πIyyc

 

            30.2.35 
 

To complete the study of internal degrees of freedom, we still need to discuss the electronic 
degree of freedom, which is particularly important for atomic and reactive-molecular species. 
 

Low Lying Electronic Degrees of Freedom Contribute to Internal Energy and Gibbs Energy:   
The electronic partition function is given by the sum of the Boltzmann weighting factors: 
 

 qe = 
all energy levels

 gi e–i/kT         30.2.36 

 

H Cl N N 

= 1  = 2     = 3         = 6   = 12 
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H H 
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O 

C3 

F 
F
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F 
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C 
C 

H 
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C 
H 

C C 
H 
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C 

Cl 

Cl 

H 



456 
 

where gi are the electronic state degeneracies and i are the electronic states energies, with the 
energy of the ground state as the reference energy, gs = 0. The energies of the excited states of 
most molecules are significantly higher than the ground electronic state. As a consequence, 
under most circumstances the electronic partition function is simply the ground state degeneracy. 
Most stable molecules have ground singlet states giving qe = 1. Diatomic O2, however, has a 
ground state 3–

g term. The lowest energy excited state has a 1g term, which lies at 7918.1 cm-1 
above the ground state, which makes a negligible contribution to qe. The electronic partition 
function for 3–

g O2 is the ground state degeneracy qe = 2. Many atoms are also counter 
examples. The ground state configuration of oxygen is [He]2s22p4, giving three low lying terms 
3Po, 3P1, and 3P2. The degeneracy of each term is determined by the total angular momentum, 
gJ = 2J + 1, Figure 30.2.6. The energy of these levels is on the order of kT above the ground state 
at room temperature, so they are partially populated. 
 
 

 
 

Figure 30.2.6: The ground state configuration of O-atoms is 2s2 2p4, which results in low 
lying 3Po, 3P1, and 3P2 terms. The degeneracy of each electronic term is ge = 2J + 1. 

 
 
              

Example 30.2.2:  Electronic Partition Functions 
Calculate the electronic partition function of atomic oxygen at 298.2 K. 
 
Answer:  The ground state configuration of O-atoms is 2p4, giving low lying 3Po, 3P1, and 3P2 
terms: 
 

   O:  2p4:              
        2s          2p 
 

By Hund’s third rule, Sec. 25.6, 3P2 is the lowest energy term. The degeneracy of each term is 
gJ = 2J + 1. For example for the 3P3 term: 
 

 3P2      J = 2   MJ = -2,-1, 0, 1, 2     ge = 5 
 

The explicit sum over the Boltzmann weighting factors, Eq. 30.2.36, using Figure 30.2.6 gives: 
 

 qe = 5 + 3 e–158.265/207.22 + 1 e–226.977/207.22  = 5 + 1.39776 + 0.33443 = 6.7322 
 

Additional atomic examples are given in Table 30.2.2. 
 

              

 
 
 
 

E (cm-1) 
Atomic O 

0 

158.265 cm-1 

226.977 cm-1 
  200 

3
Po 

3
P2 

100 

M
J 
    

  
 -2       -1       0       1       2 

3
P1 
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Table 30.2.2: Ground State Atomic Terms, Low Lying Excited States, and Degeneracies (gi).1,2 

 

Element H B C N O F P S Cl Br 
GS Term 2S½ 2P½ 3Po 4S3/2 3P2 2P3/2 4S3/2 3P2 2P3/2 2P3/2 
ggs 2 2 1 4 5 4 4 5 4 4 
 

Excited states           

Term  2P3/2
 3P1

  3P1
 2P½

  3P1
 2P½

  
E (cm-1) 
    gex 

 15.287 
4 

16.40 
3 

 158.265 
3 

404.10 
2 

 396.055 
3 

882.352 
2 

 

Term   3P2
  3Po   3Po

   
E(cm-1) 
    gex 

  43.40 
5 

 226.977 
1 

  573.640 
1 

  

qe at 298.2 K 2 5.7155 7.8269 4 6.7322 4.2845 4 5.5065 4.0283 4 

 
 
              

Example 30.2.3: Electronic Partition Function for Molecules 
An important exception to the general expectation that most molecules have singlet ground states 
is NO. Determine the electronic partition function of NO. The ground state term is 2½ and the 
first excited state term is 23/2, which lies at 119.8 cm-1 above the ground state. The ground state 
configuration results in both terms:    NO:  12 1*2 22 3*2 22 14 1*1. 
 
 
Answer:  The degeneracies of 2½ and 23/2  are both ge = 2. The sum of the Boltzmann 
weighting factors, Eq. 30.2.36, for NO is: 
 

 qe = 2 + 2 e-119.8/207.22 = 3.156 
 

Why are the degeneracies of both terms ge = 2? In Sec. 28.1 we defined the projection of the total 
angular momentum as:    = | + s|, where the projection of the electron spin angular 
momentum varies as s: -S, …, +S. For NO,   = 1 and S = ½, giving the projection of the spin 
angular momentum as s  = +½, -½. The result is  = 3/2 and ½, giving two terms:  23/2 and 2½. 
The explicit enumeration of the possible values for the orbital and spin angular momenta are 
given below. 
 

 
The M+s = 3/2 states are the two degenerate states for 23/2. The M+s = ½ states are the 
components of the two degenerate states for 2½. For another example, a 1g term is for  = 2 
and has two degenerate projections of the orbital angular momenta, M =  2, while S = 0, which 
also gives ge = 2. 
 

              

 
 
 

E 

 
 

  
 

  
 
  

 

 

M+s :     3/2 

 

½ 
 

-½ 
 

 

-3/2 

2
3/2 

2
½ 

M s M+s 
 1   ½   3/2 
 1  -½   ½ 
-1   ½ -½ 
-1  -½ -3/2 
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30.3 Thermodynamic Properties are Determined by the Partition Function 
 

   The fundamental properties of thermodynamics are internal energy and entropy. By the First 
Law, the internal energy of a process is conserved. By the Second Law, the entropy of an 
isolated system always increases for a spontaneous process in an isolated system. The internal 
energy and entropy can be expressed directly in terms of the canonical ensemble and molecular 
partition functions. 
 

Internal Energy and Entropy:  For the internal energy, substitution of Eq. 30.1.1 into Eq. 30.1.4 
for the energy average over all states gives the internal energy as: 
 

 U – U(0) = pi Ei = 
 Ei e–Ei/kT

Q        30.3.1 
 

In some cases, the algebra of statistical mechanics is easier if we return to using  = 1/kT, where 
 is the Lagrange multiplier that we used in deriving the Boltzmann equation, Section 12.5: 
 

 U – U(0) = pi Ei = 
 Ei e–Ei

Q        30.3.2 
 

We then notice that the sum in the numerator of this last equation can be obtained as a derivative 
of the partition function with respect to : 
 

 






Q

 V
 = 






[e–Ei]

 V
 = –  Ei e–Ei       30.3.3 

 

Substitution of this last equation into Eq. 30.3.2 gives the internal energy entirely in terms of the 
partition function: 
 

 U – U(0) = – 
1
Q 






Q

 V
         30.3.4 

 

Thinking in terms of the energies of a system as a whole is awkward. The internal energy of a 
system can be written directly in terms of the molecular partition function. Substituting 
Eq. 30.2.7 into (Q/)V and using the chain rule to complete the derivative gives: 
 

 




∂Q

∂
V

 = 




∂qN/N!

∂ V
 = 

1
N! 



∂qN

∂ V
 = 

N qN-1

N! 



∂q

∂ V
   (ideal gas)     30.3.5 

 

Substituting the derivative into the expression for the internal energy, Eq. 30.3.4 simplifies to: 
 

 U – U(0) = – 
N
q 



∂q

∂ V
       (ideal gas)     30.3.6 

 

   The derivative with respect to  is often computationally convenient. However, to obtain better 
insight into the meaning of the internal energy, it is useful to switch to the derivative in terms of 
temperature. We can find the relationship to the derivative with respect to T by using the chain 
rule. For the ensemble partition function, from Eq. 30.3.4: 
 

 U – U(0) =  – 
1
Q 






Q

T V





T

         30.3.7 
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with   








T
 = 

1
k 






(1/T)

T
 = – 

1
kT2        30.3.8 

 

Inverting the last derivative and substitution back into Eq. 30.3.7 gives: 
 

 U – U(0) = 
kT2

Q  






Q

T V
         30.3.9 

 

Similarly, for the molecular partition function, from Eq. 30.3.6: 
 

 U – U(0) = – 
N
q 



∂q

∂ V
 = – 

N
q



∂q

∂T V
 
∂T
∂     (ideal gas)     30.3.10 

 

The T/ derivative is given by Eq. 30.3.8, which upon substitution into Eq. 30.3.10 shows 
that the internal energy is proportional to the change in the number of accessible states with 
small changes in temperature: 
 

 U – U(0) = 
NkT2

q 



∂q

∂T V
      (ideal gas)     30.3.11 

 

Given that Boltzmann’s constant is the gas constant per molecule gives Nk = nR with the result: 
 

 U – U(0) = 
nRT2

q 



∂q

∂T V
      (ideal gas)     30.3.12 

 

   What exactly does the internal energy of a system mean? Eq. 30.3.12 has a useful 
interpretation, Figure 30.3.1. The fractional increase of the number of accessible states is given 
by q/q. The internal energy is proportional to the fractional increase of the number of accessible 
states with a small increase in temperature, T. If the energy states are closely spaced compared 
to kT, a small change in temperature excites many molecules from low lying to higher energy 
states. This promotion requires the absorption of energy, resulting in a large internal energy. If 
the energy states are widely spaced, a small change in temperature promotes few molecules into 
higher energy states, which requires little or no absorption of energy. 
 
 

 
 

Figure 30.3.1: Internal energy is proportional to the fractional change of accessible states 
caused by a small change in temperature. (a). For small quantum spacing, a small change in 
temperature causes energy transfer into the system, giving a large internal energy. (b). For 
large quantum spacing, a small change in temperature excites few molecules into higher 
energy states, requiring little transfer of energy, giving a small internal energy. 
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Example 30.3.1:  Estimation of the Internal Energy 
For one mole of an ideal gas at 25C and constant volume, the number of accessible states 
increases by 10% with a temperature increase of 5C. Estimate to a single significant figure 
(don’t use a calculator) the internal energy of the substance. 
 
 

Answer:  We can develop an approximate formula based on the fractional change q/q and 
Eq. 30.3.12. Note that at room temperature RT2 = 739.1 kJ K mol-1, and using finite differences: 
 

 Um – Um(0) = RT2 






q/q

∂T V
  1000 kJ K mol-1 







q/q

T V
            30.3.13 

 

For a 10% increase in the partition function, q/q = 0.10. For the change in temperature of 5C: 
 

 Um – Um(0)  1000 kJ K mol-1





0.10

5 K   20 kJ mol-1 
 

We will have many opportunities to calculate accurate values of thermodynamic parameters, but 
intuition is often aided by approximate calculations without the use of a calculator. 
 
              

 
 
The molecular partition function, q, is for a single molecule. The ensemble partition function is 
for a system of N molecules. The internal energy written in terms of the molecular partition 
function, Eq. 30.3.11, is in exactly the same form as of the ensemble partition function, 
Eq. 30.3.9, except that the molecular result is multiplied by the number of molecules in the 
system. Comparing the relationships that are written in terms of q and Q, the advantage of using 
the molecular partition function is in ease of interpretation. However, the versions that we derive 
using the molecular partition function require independent molecules, in other words an ideal 
gas. The advantage of the relationship written in terms of the ensemble partition function is that 
the equations are general for any system, real or ideal. 
   The ratio q/q is the fractional change of accessible molecular states. Another way of looking 
at this relationship takes advantage of the useful property of logarithms: 
 

 




∂ln Q

∂ V
 = 

1
q 




∂Q

∂ V
  or 





∂ln q

∂ V
 = 

1
q 




∂q

∂ V
    30.3.14 

 

Combining these relationships with Eqs. 30.3.4, 30.3.6, 30.3.9, and 30.3.12 gives: 
 

 U – U(0) = – 




∂ln Q

∂ V
  or U – U(0) = –N 





∂ln q

∂ V
           30.3.15 

 

 U – U(0) = kT2 



∂ln Q

∂T V
 or U – U(0) = nRT2 





∂ln q

∂T V
           30.3.16 

 

The logarithm of the partition function is proportional to the order of magnitude of the number of 
accessible states, since ln x = 2.303 log x. For example, a factor of 10 increase in accessible 
states gives a factor of 2.303 larger internal energy. 
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   We have shown that the internal energy can be expressed entirely in terms of the partition 
function. Next we show that the entropy can also be related to the partition function. 
 

Entropy is Determined from the Partition Function:   The statistical definition of entropy is 
based on the number of ways of arranging the energy states of the ensemble at equilibrium, 
Wmax: 
 

 S = 
k
N ln Wmax          (Canonical ensemble) (12.2.1)      30.3.17 

 

where the number of ways of arranging the energy states of the ensemble is given by the 
distribution numbers, ni, Figure 30.2.1b: 
 

 W = 
N!

no!n1!n2!...
         (Canonical ensemble) (12.2.8)      30.3.18 

 

Defining the probability of occurrence of state i as pi = ni/N  and using Sterling’s approximation 
for the factorials gives the entropy of a substance as the sum over all energy states: 
 

 S = – k 
i=0



 pi ln pi           (12.4.9) 30.3.19 
 

The probabilities at equilibrium, which maximize W, are given by the Boltzmann distribution 
over the energy states of the ensemble, Ei: 
 

 pi = 
e–Ei/kT

Q   ln pi = – ln Q – Ei/kT        (12.5.14) 30.3.20 
 

Substitution of ln pi from the last expression into Eq. 30.3.19 gives: 
 

 S = – k 
i=0



 pi ln pi = k  pi ln Q + 
 pi Ei

T       30.3.21 
 

The Boltzmann distribution is normalized giving  pi = 1. The averaged quantum mechanical 
energy is <E> =  pi Ei, summed over all states of the ensemble. Eq. 30.3.21 then reduces to: 
 

 S = k ln Q + 
<E>

T          30.3.22 
 

The fundamental postulate of statistical mechanics is that the average quantum mechanical 
energy is equal to the internal energy of the system above the reference point, <E> = U – U(0), 
with U(0) the internal energy of the system at a temperature of absolute zero: 
 

 S = k ln Q + 
U – U(0)

T          30.3.23 
 

The entropy is also directly related to the molecular partition function. For N identical molecules 
in the system, the ensemble partition function is given in terms of the molecular partition 
function by Eq. 30.2.7. For very large numbers of systems, the factor of N! can be expressed 
using Sterling’s approximation, Eq. 12.4.2: 
 

 Q = 
qN

N!  with N!  (N/e)N
  gives Q  



qe

N

N

           30.3.24 
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Substitution of the last relationship into Eq. 30.3.23 gives the absolute entropy of an ideal gas as: 
 

 S = Nk ln



qe

N  + 
U – U(0)

T  = nR ln



qe

N  + 
U – U(0)

T               30.3.25 
 

   The importance of these expressions is that the absolute entropy of a substance is expressed 
entirely in terms of the partition function. The partition function gives the number of accessible 
states. As the number of accessible states increases the entropy increases; the available energy is 
more dispersed over multiple energy states. 
   We often consider the separate contributions of translation and internal degrees of freedom. By 
convention and for convenience, the factor that accounts for indistinguishability in Eq. 30.3.25, 
e/N, is combined with the translational partition function: 
 

 S = 



nR ln



qte

N  + 
Ut – Ut(0)

T  + 



nR ln qint + 

Uint – Uint(0)
T              30.3.26 

 

           center of mass translation            internal: qint = qr qv qe 
           Sackur-Tetrode equation 
 

where Ut and Uint are the contributions to the internal energy of translations and of internal 
degrees of freedom, respectively. 
 

Entropy of a Monatomic Gas:  An important test case of the validity of the statistical mechanical 
definition of entropy is to evaluate the absolute molar entropy of an ideal monatomic gas. In 
other words, we start with something simple and experimentally well characterized. We assume 
no low-lying electronic excited states. A monatomic gas then has only translational degrees of 
freedom. The internal energy of an ideal monatomic gas is well known from experiment and 
Equipartition, U – U(0) = 3/2 nRT = 3/2 NkT, giving Eq. 30.3.25 as: 
 

 S = nR ln



qe

N  + 3/2 nR      (monatomic ideal)   30.3.27 
 

Substitution of the translational partition function, Eq. 30.2.19, gives the entropy of an ideal 
monatomic gas as: 
 

 S = nR ln



(2mkT)3/2e

Nh3  V  + 3/2 nR    (monatomic ideal)   30.3.28 
 

The molar entropy is for N = NA and n = 1 mol and the molar volume, Vm. 
Eq. 30.3.28 can be condensed by noting that 3/2 = ln e3/2. Combining the logarithmic terms: 
 
 

 Sm = R ln



(2mkT)3/2e5/2

NAh3  Vm      (monatomic ideal)   30.3.29 
 

This historically important relationship is called the Sackur-Tetrode equation. In this 
expression the mass, m, is in kg molecule-1 and the volume V is in m3. Converting to more 
commonly used units of g mol-1 for the molecular mass and liters for the volume gives: 
 

 Sm = R ln Vm + 3/2 R ln T + 3/2 R ln M + R ln



(2k(1 kg/1000 g)/NA)3/2e5/2(1 m3/1000 L)

NAh3  
 
 

 Sm = R ln(Vm/L) + 3/2 R ln T + 3/2 R ln(M/g mol-1) + 11.1037 J K-1 mol-1 

         (monatomic ideal)    30.3.30 
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The change in entropy of various processes in a monatomic ideal gas can now be determined and 
compared to purely thermodynamic results. For specific processes constant terms in Eq. 30.3.30 
cancel between the initial and final states giving familiar results. For an isothermal expansion of 
one mole of ideal gas from volume V1 to V2, the change in entropy using Eq. 30.3.30 is: 
 

 Sm = R ln(V2/V1)         (ideal gas, cst. T)   30.3.31 
 

At constant volume from temperature T1 to T2 the change in entropy using Eq. 30.3.30 is: 
 

 Sm = 3/2 R ln(T2/T1) = Cv,m ln(T2/T1)      (monatomic, cst. V&Cv) 30.3.32 
 

where Cv,m = 3/2 R for an ideal monatomic gas. These results reproduce the results we obtained 
using purely thermodynamic considerations, Eqs. 13.2.4 and 13.2.29. 
   Absolute entropies are normally tabulated in the standard state, which fixes the molar volume 
at V = Vm. At standard state, P = 1 bar, the corresponding standard state volume at 298.15 K is: 
 

 Vm =RT/P = 0.0247890 m3 = 24.7890 L    (298.2 K) 30.3.33 
 

Using the standard state molar volume and R = 8.3145 J K-1 mol-1 in Eq. 30.3.30 gives the 
standard state molar entropy of an ideal monatomic gas as: 
 

 Sm,298.15 K = 26.6929 + 71.0587 + 3/2 R ln(M/g mol-1) + 11.1037 J K-1 mol-1  

               (monatomic ideal, P, 298 K)   30.3.34 
 

Comparison between theory and experiment requires only the molar mass of the substance. For 
example, the theoretical prediction using Eq. 30.3.34 of the absolute entropy of argon, with the 
isotope averaged molar mass from the Periodic Table, gives 154.85 J K-1 mol-1. The 
experimental value is 154.7335 J K-1 mol-1, showing excellent agreement. An important 
milestone in the acceptance of the principles of statistical mechanics was the accurate theoretical 
prediction of the absolute entropy of monatomic gases. 
   Eq. 30.3.30 also holds for the translational contribution to the molar entropy of any ideal gas. 
The translational kinetic energy of the center of mass of any polyatomic molecule is in the 
identical form as a monatomic substance. As a consequence, the Sackur-Tetrode equation is 
generally useful. However for polyatomics, the additional contributions of rotation, vibration, 
and electronic degrees of freedom are also required. Specification of standard state conditions 
only applies to the translational component, because internal degrees of freedom don’t depend on 
volume. The Sackur-Tetrode equation also shows an important attribute of statistical mechanics. 
The goal is to provide easily implemented working equations for the rapid prediction of 
thermodynamic properties. Statistical mechanics has a practical bent. Now that we have a better 
idea of the molecular basis of internal energy and entropy, we can proceed to calculate the 
reaction enthalpy, Helmholtz energy, and Gibbs energy of chemical process. 
 

All Thermodynamic Parameters can be Calculated from Partition Functions:  In this section we 
show that all thermodynamics functions can be expressed in terms of the partition function. The 
partition function gives the number of accessible states. The relationship between the number of 
accessible states and the thermodynamic functions provides an intuitive interpretation of the 
fundamental aspects of thermodynamic processes. The internal energy is directly accessible from 
the ensemble partition function using Eq. 30.3.4. However, for constant pressure processes, 
enthalpy is more useful. Enthalpy is defined using Eq. 7.8.14: 
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 H  U + PV          30.3.35 
 

However, in relating molecular properties to thermodynamic properties we need to be careful 
about the reference points. Thermodynamics does not provide a unique choice for a reference 
point. A useful reference point that is applicable in quantum mechanics and thermodynamics is 
the internal energy of the system at absolute zero. The PV product is zero at absolute zero; at 
absolute zero the enthalpy and internal energy of a system are identical. Subtracting H(0) = U(0) 
from both sides of Eq. 30.3.35 gives the enthalpy referenced to the enthalpy at absolute zero: 
 

 H – H(0) = U – U(0) + PV        30.3.36 
 

Internal energy and enthalpy at absolute zero correspond to each molecule occupying the zero-
point vibrational level,  = 0, and the lowest rotational state, J = 0. The differences, U – U(0) and 
H – H(0), are the contributions of thermally excited motions. For an ideal gas, PV = nRT giving 
the enthalpy as: 
 

 H – H(0) = U – U(0) + nRT      (ideal gas)     30.3.37 
 

Helmholtz energy is defined as, Eq. 15.2.4: 
 

 A  U – TS          30.3.38 
 

At absolute zero A(0) = U(0). Subtracting A(0) = U(0) from both sides of Eq. 30.3.38 gives the 
Helmholtz energy referenced to the Helmholtz energy at absolute zero: 
 

 A – A(0) = U – U(0) – TS        30.3.39 
 

Using Eq. 30.3.23 relates entropy to the partition function. Then cancelling terms gives: 
 

 A – A(0) = U – U(0) – kT ln Q – (U – U(0)) 
 A – A(0) = –kT ln Q         30.3.40 
 

This equation has a particularly useful interpretation. The contribution of thermally excited 
motions to the Helmholtz energy is given by the number of accessible states of the systems in the 
ensemble. The natural flow of a process is from fewer accessible states to more accessible states, 
which lowers the Helmholtz energy. For example consider translational energy in an isothermal 
expansion as modeled by the particle in a box. An increase in the volume of a system decreases 
the spacing between the translational energy levels, which increases the number of accessible 
states. From a purely thermodynamic perspective, Helmholtz energy is the total work available 
from a process. An isothermal expansion does work and decreases the Helmholtz energy, which 
is consistent with the statistical mechanical perspective. The spontaneous direction of a process 
at constant temperature is a decrease in Helmholtz energy. Greater stability results from 
increases in the number of accessible states. 
   The Helmholtz energy also provides a method for finding the pressure of a system using the 
thermodynamic force in Eq. 16.3.7: 
 

 P = – 






A

V T
          30.3.41 

 

Substituting into this equation the Helmholtz energy from Eq. 30.3.40 gives: 
 

 P = – 






(A(0) – kT ln Q)

V T
= kT 







ln Q

V T
      30.3.42 
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The pressure is a measure of the change in number of accessible states as the volume changes. 
Given the pressure and Helmholtz energy, the Gibbs energy follows directly from the definition, 
Eq. 15.2.15: 
 

 G  A + PV          30.3.43 
 

At absolute zero G(0) = A(0), given the PV product is zero at absolute zero. Subtracting G(0) = 
A(0) from both sides of the definition, Eq. 30.3.43, gives the Gibbs energy referenced to the 
Gibbs energy at absolute zero as: 
 

 G – G(0) = A – A(0) + PV        30.3.44 
 

Using the pressure from Eq. 30.3.42 gives the complete expression for the Gibbs energy: 
 

 G – G(0) = A – A(0) + kTV 






ln Q

V T
       30.3.45 

 

For an ideal gas, however, PV = nRT giving Eq. 30.3.44 as: 
 

 G – G(0) = A – A(0) + nRT      (ideal gas)     30.3.46 
 

Our focus of the remainder of this chapter is on ideal gases, so this last equation is the central 
relationship of our treatment of chemical reactions. Substituting Eq. 30.3.40 for the Helmhotlz 
energy into this last equation gives the Gibbs energy in terms of the ensemble partition function: 
 

 G – G(0) = –kT ln Q + nRT      (ideal gas)     30.3.47 
 

The interpretation of the Gibbs energy in terms of the number of accessible states is parallel to 
that for the Helmholtz energy, except that the Gibbs energy is particularly useful for constant 
temperature and constant pressure processes. In particular the Gibbs energy is the non-PV work 
available from a process, which is often our particular interest. Chemical work is non-PV work. 
The natural flow of a process is from fewer accessible states to more accessible states, which 
then lowers the Gibbs energy at constant temperature and pressure. 
   These thermodynamic expressions are more useful when recast into terms of the molecular 
partition function. Using Eq. 30.2.7 the ensemble partition function is given by Q = qN/N!, 
which when substituted into Eq. 30.3.47 gives: 
 

 G – G(0) = –kT ln qN + kT ln N! + nRT    (ideal gas)     30.3.48 
 

In the first term, we can rewrite ln qN as N ln q. Then using Sterling’s approximation, Eqs. 12.4.2 
and 12.9.12, in the form ln N! = N ln N – N gives: 
 

 G – G(0) = –NkT ln q + NkT ln N – NkT + nRT   (ideal gas)     30.3.49 
 

Remembering that Boltzmann’s constant is just the gas constant per molecule with Nk = nR, the 
last two terms cancel to give: 
 

 G – G(0) = –nRT ln q + nRT ln N     (ideal gas)     30.3.50 
 

Combining the logarithmic terms then gives the final particularly useful expression: 
 

 G – G(0) = –nRT ln



q

N       (ideal gas)     30.3.51 
 



466 
 

The partition function gives the number of accessible molecular states and the factor of N avoids 
counting indistinguishable states. The molecular partition function can be split into a term for the 
translation of the molecules and the remaining internal degrees of freedom, q = qt qint. The 
internal partition function includes rotation, vibration, and electronic degrees of freedom, 
qint = qr qv qe, Eq. 30.2.10. The influence of the internal degrees of freedom on the Gibbs energy 
can be seen by substituting qint into Eq. 30.3.51: 
 

 G – G(0) = –nRT ln



qt

N  – nRT ln qint  

                           = –nRT ln



qt

N  – nRT ln(qr qv qe)    (ideal gas)     30.3.52 
 

By convention and for convenience, the factor of N is always combined with the translational 
partition function. This final expression allows us to determine the influence of rotation, 
vibration, and electronic terms separately on the Gibbs energy. Doing so is a great aid to building 
our intuition about structure-function relationships. 
   On first introduction, thermodynamics can seem mysterious. The preceding relationships show 
that all thermodynamics can be derived from a few simple expressions. The understanding that 
random chance controls the partitioning of the available energy among the energy states of the 
system completely determines thermodynamic behavior. We are now in the position of being 
able to accurately calculate the thermodynamic properties of ideal gases directly from 
spectroscopic constants. 
 
30.4 Statistical Mechanics and the Ideal Gas 
 

Units, Units, Units:  For the translational partition function, Eq. 30.2.19, the molecular mass is 
in kg and the volume is in m3. These units are not the most convenient. In addition, the 
translational contribution is often required under standard state conditions, giving Vm = RT/P 
with R = 8.3145 J K-1 mol and P = 1x105 N m-2, Eq. 30.3.33. With the molecular mass 
converted to the more conventional molar mass, in g mol-1, the translational partition function is: 
 

 
qt ,m

NA
 = 

(2mkT)
3/2

h3  RT/P =  (M/g mol-1)3/2 (T/K)5/2      (P=1 bar)          30.4.1 
 

with the units conversion factor  defined as: 
 

  = 



2k

NA 1000 g kg-1

3/2
R

NAP h3 = 0.0259467      (P=1 bar)          30.4.2 
 

   For rotation and vibration, Eqs. 30.2.34 and 30.2.27, we converted the energy units to wave 
numbers, using kT/hc = 207.224 cm-1 at room temperature. Wave number units allow the use of 
spectroscopic constants directly from spectra. Equivalent temperatures in eV can also be used, 
with kT/e = 0.025693 eV at 298.15 K. However, at other temperatures, we need to recalculate 
the equivalent kT/hc and kT/e, Table 30.4.1. 
 

Table 30.4.1: Equivalent Temperature in Wave numbers and eV. 
 

T (K) 50.00 100.00 298.15 500.00 1000.0 1500.0 2000.0 
kT/hc  (cm-1) 34.752 69.503 207.224 347.52 695.03 1042.6 1390.1 
kT/e     (eV) 0.00431 0.008617 0.025693 0.04309 0.08617 0.12926 0.17235 
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Another useful method of handling the unit conversions is to define the spectroscopic 
temperature of the transition. The partition function for rotation is Eq. 30.2.33. For rotation, the 
spectroscopic temperature is defined as: 
 

 r = 
B
~

hc
k

  giving  qr = 
T
r

      (linear)  30.4.3 
 

The partition function for a vibration is Eq. 30.2.25. The vibrational temperature is defined as 
 

 v = 
~ohc

k
  giving  qv = 

1
1 – e–v/T

     (each mode)  30.4.4 

 
 
              

Example 30.4.1: Accessible States in Translation, Rotation, and Vibration 
For one mole of CO2 at 298.2 K, calculate (a) the standard state translational partition function, 
as qt ,m/NA, (b) the rotational partition function given the rotational constant B

~
o = 0.379 cm-1, and 

(c) the vibrational partition function of the bending mode with frequency ~o = 526. cm-1. (d). For 
comparison also calculate the vibrational partition function of a mode with ~o = 150. cm-1. 
 
 
Answer:  (a). For one mole at P=1 bar, T=298.2 K, and M = 43.99 g mol-1: 

with Eq. 30.4.1:      
qt ,m

NA
 =  (43.99)3/2 (298.15)5/2 = 0.0259467 (43.99)3/2(298.15)5/2 = 1.16x107 

(b). We use two equivalent methods to find the partition functions, the first in wave number units 
and the second using spectroscopic temperatures. A useful conversion constant to obtain 
spectroscopic temperatures is: 

 
hc
k

 = 1.438778 cm K  giving   r = 
B
~

hc
k

 = 0.379 cm-1(1.438778 cm K) = 0.545 K 
 

The symmetry number of CO2 is  = 2. The rotational partition function using Eq. 30.2.34 is: 
 

 qr = 
207.22 cm-1

B
~  = 

207.22 cm-1

(0.379 cm-1)
 = 

547
  

Equivalently using Eq. 30.4.3: qr = 
T
r

 = 
298.2 K

(0.545 K)
 = 

547
  

 (c). For the bending vibration with ~o  = 526. cm-1, the vibrational temperature is: 

 v = 
~ohc

k
 = 526. cm-1(1.438778 cm K) = 756.8 K 

The vibrational partition function using Eq. 30.4.33 is: 
 

 qv = 
1

1 – e–~o/207.22 cm
-1
 = 

1
1 – e–526./207.22 = 1.086 

Equivalently using Eq. 30.4.4: qv = 
1

1 – e–v/T
 = 

1
1 – e–756.8/298.2 = 1.086 

(d). For comparison, given ~o = 150. cm-1, the vibrational temperature is: 
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 v = 
~ohc

k
 = 150. cm-1(1.438778 cm K) = 215.8 K 

Using Eq. 30.4.33:   qv = 
1

1 – e–~o/207.22 cm
-1
 = 

1
1 – e–150./207.22 = 1.941 

Equivalently, using Eq. 30.4.4: qv = 
1

1 – e–v/T
 = 

1
1 – e–215.8/298.2 = 1.941 

 

Additional comparisons are listed in Table 30.4.2. The choice of method, wave number or 
spectroscopic temperature, is a matter of convenience and personal preference. 
 

              

 
 

Table 30.4.2: Vibrational Wave Number, Spectroscopic Temperature, and Gibbs Energy at 
298.2 K. 

 

~o  (cm-1) 50 69.50 100 104.26 150 207.224 300 500 1000 
v  (K) 71.94 100 143.88 150 215.82 298.15 431.63 719.39 1438.78 

qv 4.665 3.509 2.612 2.529 1.941 1.582 1.307 1.098 1.008 
G-G(0) (kJ mol-1) -3.82 -3.11 -2.38 -2.30 -1.64 -1.14 -0.66 -0.23 -0.02 

 
 
   Order of magnitude estimates of the number of accessible states in translation, rotation, and 
vibration are helpful in assessing thermodynamic contributions to the Gibbs energy of a 
substance. In summary for small molecules, the typical sizes of partition functions of the 
different degrees of freedom are: 
 

qt  1028 – 1029 V/L   q°t /NA  106 – 107 qr  10 – 100    qv  1 – 10            30.4.5 
 

We next consider the contributions of translation, rotation, and vibration to internal energy, 
entropy, and Gibbs energy. The molar contribution of translation to the internal energy is 3/2RT 
and the enthalpy is 5/2RT. The contribution of translation to the entropy is given by the Sackur-
Tetrode equation. Rotations and low energy vibrations also make significant contributions to the 
internal energy, enthalpy, entropy, and Gibbs energy of an ideal gas.  
 

Rotational Contribution to Internal Energy and Gibbs Energy:   The rotational partition function 
of a linear molecule, modeled as a rigid-rotor in the high temperature approximation, is given by 
Eq. 30.2.33. Substitution into Eq. 30.3.10 gives the contribution of molecular rotation to the 
internal energy of a diatomic molecule or a linear polyatomic as: 
 

 Ur – Ur(0) = 
nRT2

q 



∂q

∂T V
 = 

nRT2







kT

B
~
hc







k

B
~
hc

 = nRT  (linear rigid-rotor) 30.4.6 

 

The contribution of nRT of rotation corresponds to the Equipartition prediction, Sec. 8.9. Finding 
agreement with Equipartition isn’t surprising since we invoked the high temperature 
approximation in calculating the rotational partition function. In this limit the spacing between 
energy levels is much less than kT and the energy levels effectively approach a continuum. A 
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continuum of energy levels gives the classical limit, which gives the maximum value of the 
partition function and the maximum contribution to the corresponding thermodynamic function. 
At temperatures near absolute zero, Eq. 30.4.6 fails and the explicit summation must be used. 
   The contribution of rotation of a linear molecule to the entropy is obtained by substituting the 
rotational partition function into Eq. 30.3.26, assuming a rigid rotor at high temperature: 
 

 Sr = nR ln qr + 
Ur – Ur(0)

T  = nR ln






kT

B
~
hc

  + nR  (linear rigid-rotor) 30.4.7 

 

The contribution of rotation of a linear molecule to the Gibbs energy is obtained by substituting 
the rotational partition function into Eq. 30.3.52: 
 

 Gr – Gr(0) = –nRT ln qr = –nRT ln






kT

B
~
hc

   (linear rigid-rotor) 30.4.8 

 

The connection between the Gibbs energy and molecular structure is through the spectroscopic 
determination of the rotational constant, B

~
 = ħ/(4Ic). For a diatomic molecule, as the bond 

length increases, the moment of inertia increases, the rotational constant decreases, the spacing 
between rotational levels decreases, the rotational partition function increases, and the absolute 
value of the contribution to the Gibbs energy is increased. The Gibbs energy of a molecule is 
stabilized, made more negative, by an increase in bond length. The insight into the 
thermodynamic effects of molecular structure that is enabled by statistical mechanics is 
invaluable. Statistical principles place thermodynamic properties on a firm molecular foundation. 
   At 298 K, the available thermal connect energy is kT/hc = 207.224 cm-1, which when 
substituted into Eq. 30.4.8 gives: 
 

 Gv – Gv(0) = –nRT ln






207.224 cm-1

B
~    (298.2 K, linear rigid-rotor) 30.4.9 

 

The rotational constant can then be read directly from the microwave or rotational Raman 
spectrum or from the rotational fine-structure in the infrared or vibrational Raman spectrum. The 
corresponding relationship at other temperatures is given by the values of kT/hc in Table 30.4.1. 
 
 
              

Example 30.4.2: Rotational Contribution to Internal Energy and Gibbs Energy 
The rotational constant for CO2 is 0.379 cm-1. Calculate the contribution of rotations to the molar 
internal energy and Gibbs energy at 25.0C. 
 
 

Answer:  At 298 K, the rotational contribution of a linear molecule to the internal energy is 
RT = 2.479 kJ mol-1, in the high temperature approximation. The symmetry number of CO2 is 
 = 2, since CO2 gives indistinguishable states under rotation of 180. The contribution of 
rotation to the Gibbs energy is, Eq. 30.4.9: 
 

 Gm – Gm(0) = –RT ln qr = –RT ln






207.22 cm-1

B
~  = – (2.479 kJ mol-1) ln





207.22 cm-1

0.379 cm-1)
 

    = – (2.479 kJ mol-1) ln(273.4) = -13.9 kJ mol-1 
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   Non-linear molecules have three moments of inertia. The rotational contribution to the internal 
energy, at all but the lowest temperatures, is again equivalent to the Equipartition value of 
Ur – Ur(0) = 3/2 RT. Substitution of the rotational partition function of a non-linear molecule from 
Eq. 30.2.35 into Eqs. 30.3.27 and 30.3.53 gives the rotational contribution to the entropy and 
Gibbs energy as: 
 

 Sr = nR ln q + 
Ur – Ur(0)

T  = nR ln








  






kT

A
~

hc

½







kT

B
~
hc

½







kT

C
~
hc

½
 + 3/2 nR  30.4.10 

 

 Gr – Gr(0) = –nRT ln








  






kT

A
~

hc

½







kT

B
~
hc

½







kT

C
~
hc

½
     30.4.11 

 

Electronic structure programs use this relationship to calculate the Gibbs energy of substances. 
Rotation gives a significant contribution to the Gibbs energy, does vibration also? 
 

Low Energy Vibrations Contribute to Internal Energy and Gibbs Energy:  The partition function 
for vibration of a diatomic molecules in the harmonic approximation is given by Eq. 30.2.25. 
The version of this equation written in terms of  is the most convenient form. The internal 
energy is given by Eq. 30.3.15. Taking the logarithm and using the chain rule, the required 
derivative is: 
 

 ln qv = –ln(1 – e–ho)      giving 




∂ln q

∂ v
 = 

–1
(1 – e–ho)

 (–ho e–ho)  30.4.12 

 

Substitution of the derivative into Eq. 30.3.15 gives the final result: 
 

 Uv – Uv(0) = N 




∂ln q

∂ v
  = 

Nho e–ho

1 – e–ho
    (harmonic) 30.4.13 

 

The molar zero-point vibrational energy is: 
 

 ZPE = ½ NAho         30.4.14 
 

Converting Nho to molar terms gives: Nho = (N/NA)(NAho) = n(NAho) . The vibrational 

contribution to the internal energy is: 
 

 Uv – Uv(0) = 
n(NAho) e–ho

1 – e–ho
      (harmonic) 30.4.15 

 

The vibrational contribution to the internal energy is strongly dependent on the fundamental 
vibrational frequency, Figures 30.4.1a and 8.10.3. The vibrational contribution is largest for 
small fundamental vibration frequencies. However, the contribution always falls short of the 
Equipartition prediction of RT, for all temperatures. At room temperature the contribution of 
vibrations with wave numbers greater than 500 cm-1 is less than 1 kJ mol-1. As a result, only the 
weakest bonds have stretching frequencies that make a significant contribution to internal energy 
and Gibbs energy. Low energy single-bond torsions and bending vibrations often contribute 
strongly to thermodynamic properties. 
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     (a).            (b). 
 

Figure 30.4.1: Vibrational contribution to the (a) internal energy and (b) Gibbs energy of a 
harmonic oscillator. Three different fundamental vibration frequencies are illustrated. The 
dotted line is the classical limit given by Equipartition, Uv – Uv(0) = nRT. 

 
 
The contribution of a vibration to the entropy is given using Eqs. 30.2.25, 30.3.27, and 30.4.15: 
 

 Sv = –nR ln(1 – e–ho/kT) + 
n(NAho)

T  
e–ho/kT

1 – e–ho/kT
     30.4.16 

 

The contribution of a vibration to the Gibbs energy is simpler. Substitution of the vibrational 
partition function into the Gibbs energy, Eq. 30.3.52, gives the vibrational contribution to the 
Gibbs energy as: 
 

 Gv – Gv(0) = –nRT ln qv = nRT ln(1 – e–ho/kT)   (per mode) 30.4.17 
 

At room temperature the Gibbs energy is conveniently calculated as: 
 

 Gv – Gv(0) = nRT ln(1 – e–~o/207.22 cm-1)           (per mode, 298.2 K) 30.4.18 
 

where the fundamental vibration frequency is read directly from the infra-red or Raman 
spectrum. The connection between Gibbs energy and molecular structure is through the 
spectroscopic determination of ~o, giving the force constant for the bond from ~o = (1/2c) k/. 
For a diatomic molecule as the bond strength increases, the force constant increases, the 
fundamental vibration frequency increases, the spacing between vibrational levels increases, the 
vibrational partition function decreases, and the absolute value of the contribution to the Gibbs 
energy is decreased. The vibrational contribution to the Gibbs energy of a molecule is 
destabilized, made more positive, by an increase in bond strength. The vibrational contribution to 
the Gibbs energy is strongly dependent on the fundamental vibration frequency, Figure 30.4.1b. 
At room temperature, vibrations with wave numbers greater than 500 cm-1 make a negligible 
contribution to the Gibbs energy. 
   The contribution of vibration to Gibbs energy in Eq. 30.4.17 is for a diatomic molecule or a 
single mode of a polyatomic. Since the total vibrational partition function of a polyatomic is the 
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product of the partition functions of each mode, the total vibrational Gibbs energy is the sum of 
the Gibbs energy contributions of each mode. The overall contributions of rotation and vibration 
are summarized in Table 30.4.3. 
 
 

Table 30.4.3: Contributions of Internal Degrees of Freedom to Internal Energy and Gibbs 
Energy for a Rigid Rotor and a Harmonic Oscillator. 

 

per mole 
internal 

Rotation Vibration High temperature or    
ho << kT 

q 
qr = 

kT

B
~
hc

 qv = 
1

1 – e–ho/kT
 

 

qv = 
1

1 – e–ho
 

e–ho/kT  1 – 
ho

kT  
 

qv  
kT
ho

 

Um – Um(0) 

= 
RT2

q 



∂q

∂T
V

 

 
   RT 

(NAho) e–ho/kT

1 – e–ho/kT
 

 
   RT 

Gm – Gm(0) 
= –RT ln q –RT ln







kT

B
~

hc
 RT ln(1 – e–ho/kT) –RT ln



kT

ho
 

 

Gm – Gm(0) 
at 298.15 K 

 

–RT ln






207.22 cm-1

B
~  

 

RT ln(1 – e–~o/207.22 cm-1) 

 

–RT ln




207.22 cm-1

~o
 

 
 
The High Temperature Approximation Gives the Classical Limit:  The typically large quantum 
spacing of vibrational levels limits the influence of vibrations on thermodynamic properties. Low 
vibrational frequencies and high temperatures increase the vibrational contribution to internal 
energy and Gibbs energy. What is the maximum contribution that vibrations can make? The 
maximum contribution is determined by using the high temperature approximation. The 
approximation can be met in two ways, either with high temperatures or with low energy 
vibrations. At room temperature the requirement is ~ o << 207.22 cm-1. The vibrational partition 
function is given by Eq. 30.2.25. In the limit that ho << kT the exponential factor can be 
expanded in a Taylor series. Keeping only the first two terms gives: 
 

 e–ho/kT  1 – 
ho

kT        (ho << kT)   30.4.19 
 

Substitution of this approximation into the vibrational partition function gives: 
 

 qv  
1

1 – (1 – ho/kT) = 
kT
ho

      (ho << kT)   30.4.20 

 

We also invoked the high temperature approximation in evaluating the rotational partition 
function, Eq. 30.2.33. As a consequence, the vibrational partition function in the high 
temperature approximation has the same functional form as the rotational partition function. 
Substitution into Eq. 30.3.12 gives the maximum contribution to the internal energy as: 
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 Uv – Uv(0) = 
nRT2

q 



∂q

∂T V
 = 

nRT2





kT

ho





k

ho
 = nRT    (ho << kT)   30.4.21 

 

which is the Equipartition prediction. From the perspective of Equipartition, each quadratic term 
in the energy contributes ½RT to the internal energy. For vibrations, one quadratic term is the 
potential energy and one quadratic term is the kinetic energy. Substitution of Eq. 30.4.20 into 
Eq. 30.3.52 correspondingly gives the classical contribution to the Gibbs energy: 
 

 Gv – Gv(0) =  –RT ln qv = –RT ln




kT

ho
    (ho << kT)   30.4.22 

 

The high temperature approximation is valid for very low frequency vibrations and acts as a 
point of comparison with the quantum results. 
 
 
              

Example 30.4.3:  Gibbs Energy Contributions of Translation, Rotation, and Vibration 
Calculate the contributions of translation, rotation, and vibration to the standard state molar 
Gibbs energy of H35Cl, as an ideal gas at 298.2 K. For spectroscopic constants use Table 27.6.1. 
 
 
Answer:  (a). Translation contributes 3/2 RT to the molar internal energy. The definition of 
enthalpy is H  U + PV. Assuming ideal gas behavior, the molar translational enthalpy is: 
 

 Ht – Ht(0) = Ut – Ut(0) + RT = 5/2 RT = 3.7184 + 2.4789 kJ mol-1   30.4.3 
 

The molar translational entropy is given by the Sackur-Tetrode equation, Eq. 30.3.30, with: 
Vm = RT/P = 24.79 L, M = 35.976678 g mol-1, and R = 8.3145 J K-1 mol-1: 
 

     St  = R ln(Vm/L) + 3/2 R ln T + 3/2 R ln(M/g mol-1) + 11.1037 J K-1 mol-1 = 153.5398 J K-1 mol-1 
 

The translational contribution to the molar standard state molar Gibbs energy is: 
 

 Gm – Gm (0) = Hm – Hm(0) – T Sm 
 = 6.1973 kJ mol-1 – 298.15 K(153.5398 J K-1 mol-1)(1 kJ/1000 J) = -39.581 kJ mol-1 
 

The preceding calculations follow the method used in electronic structure programs such as 
Gaussian and Spartan. Alternately, a determination of the translational contribution to the molar 
Gibbs energy is based directly on the partition function by Eq. 30.3.52. Using Eqs. 30.4.1 and 
30.4.2: 

 
qt ,m

NA
 =  (M/g mol-1)3/2 (T/K)5/2 

        = 0.0259467 (35.976678)3/2 (298.15)5/2 = 8.5941x106 

 Gt  – Gt (0) = –RT ln(qt ,m/NA) = –8.32446 J K-1mol-1(298.15 K) ln(8.5943x106) 
        = -39.581 kJ mol-1 
 

(b). The rotational contribution to the molar Gibbs energy, Eq. 30.4.9, with  = 1 and B
~

e = 
10.5933 cm-1 is: 
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     Gm – Gm(0) = –RT ln






207.22 cm-1

B
~  = –8.3145 J K-1 mol-1(298.15 K) ln





207.22 cm-1

(10.5933 cm-1)
 

  = -7.371 kJ mol-1 
 

(c). The observed fundamental vibration frequency is given by Eq. 27.5.11: 
 

 ~o = ~e – 2e
~

e = 2990.925 cm-1 – 2(52.800 cm-1) = 2885.325 cm-1 
 

The vibrational contribution to the molar Gibbs energy using Eq. 30.4.18 is: 

     Gm – Gm(0) = RT ln(1 – e–~o/207.22 cm-1) 

 = 8.3145 J K-1 mol-1(298.15 K) ln(1 – e–2885.325 cm-1/207.22 cm-1) = -2.22x10-3 J mol-1 
 

The vibrational contribution at room temperature is negligible. The ground state is 1+
g with no 

low lying excited states giving the electronic contribution as zero. The total thermal contribution 
to the standard state molar Gibbs energy is: 
 

 Gm – Gm (0) = -39.581 kJ mol-1 + -7.371 kJ mol-1 + 0 = -46.952 kJ mol-1 
     translation          rotation        vibration 
 

              

 
 

30.5 Reaction Gibbs Energy 
 

Reaction Gibbs Energies are Calculated from Spectroscopic Constants:  The standard state 
reaction Gibbs energy is the difference in Gibbs energy between products and reactants: 
rG = i Gi , where i are the stoichiometric coefficients and Gi  are the molar standard state 
Gibbs energies of each pure substance i. The expressions in the previous section determine the 
thermal contribution to the Gibbs energy of each substance, Gi – Gi(0). The thermal contribution 
is the contribution above the zero kelvin reference point, Gi(0). The difference in reference 
points between thermodynamics and quantum mechanics must be taken into account in 
evaluating Gi(0). Using spectroscopic data, the quantum mechanical energy zero is most 
conveniently taken as totally dissociated atoms, Figure 30.5.1. As shown in Sec. 30.3, the 
thermodynamic potential energy functions are all equal at absolute zero. The primary assumption 
of statistical mechanics is that the quantum mechanical average energy is equal to the internal 
energy. As a result, for each pure substance i at absolute zero temperature: 
 

 Gi (0) = Ai (0) = Hi (0) = Ui  (0) = o,i = – Do,i     30.5.1 
 

where o,i is the quantum mechanical zero-point electronic energy, which is the total electronic 
and vibrational energy at the  = 0 vibrational level. Do,i is the dissociation energy to give atoms. 
The Gibbs energy at absolute zero is unaffected by the choice of standard state ensuring that 
Gi (0) = Gi(0). Using Eqs. 30.3.52 and 30.3.53 the molar standard state Gibbs energy of each 
substance is then: 
 

 Gi  = Gi (0) – RT ln





qi

NA
 = Gi (0) – RT ln






qt ,i

NA
 – RT ln(qr,i qv,i qe,i)   30.5.2 

 

   The reaction Gibbs energy at absolute zero is determined by the spectroscopic dissociation 
energies. For the general reaction: aA + bB  cC + dD, the quantum mechanical zero-point 
energy shift, ∆Eo, is given by: 
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 Eo = c oC + d oD – a oA – b oB 
 Eo = c (–Do,C) + d (–Do,D) – a (–Do,A) – b (–Do,B)     30.5.3 
 

From Eq. 30.5.1 the reaction thermodynamic potentials and the quantum mechanical zero-point 
energy shift are equal: 
 

 rG(0) = rA(0) = rH(0) = rU(0) = Eo     30.5.4 
 

The relationships for the simple example A  B are shown in Figure 30.5.1 
 

 
 

Figure 30.5.1: The potential energy curves for A  B are schematically drawn as diatomic 
potential curves with associated vibrational and rotational levels. The zero-point electronic 
energy levels are the negative of the total bond dissociation energy, oA = –Do(A). 

 
 
The reference energy difference, rG(0) = Eo, is then seen to be centrally important. Eq. 30.5.4 
is the link between the microscopic world of quantum mechanics and the macroscopic world of 
thermodynamics. More importantly, the zero-point electronic energies are the negative of the 
bond dissociation energies, which are often the dominant factor in determining the reaction 
Gibbs energy and equilibrium constant. 
 
 
              

Example 30.5.1:  Reaction Gibbs Energies from Spectroscopic Constants 
(a). Calculate the standard state molar Gibbs energy of formation of H35Cl (g) at 298.15 K. 
Assume ideal gases. The spectroscopic constants are given in Table 27.6.1. (b). Calculate the 
equilibrium constant for the formation reaction. 
 
 
Answer:  The reaction H2 (g) + Cl2 (g)  2 HCl (g) gives 2 fGo. The spectroscopic constants, 
partition functions, and resulting thermal contributions to the Gibbs energy of each pure 
substance are listed in the spreadsheet below. The input spectroscopic constants are listed at the 
top. The necessary fundamental constants are listed at the bottom. The equations used are listed 
under “Notes.” The row labeled “G – G(0) internal” gives the contribution of the internal degrees 
of freedom to the Gibbs energy, G – G(0) = –RT ln(qr qv qe). The next row adds in the 
translational contribution using Eq. 30.3.52, G – G(0) = –RT ln(qt/NA qr qv qe). The reference 
energy, G(0) is determined using Eq. 30.5.1, after conversion to kJ mol-1. The reaction Gibbs 
energy is the difference: 

0 
A B 

E 

Eo 

oA 
1A 
2A 
3A 
4A 

oB 1B 
2B 

3B 
4B… 

5A… 
– – – – – – – 
 
   – – – – – 
      – – – 

– – – – – – – 
 

   – – – – – 
      – – – – – – – – – – 

 
   – – – – – 
      – – – 

   – – – – – 
      – – – 

   – – – – – 
      – – – 

Do(A) 

Do(B) 
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 rG = 2G(HCl) – G(H2) – G(Cl2) = -190.818 kJ mol-1. 
 

Finally fGo = ½ rG = -95.409 kJ mol-1. 
 

A1 B C D E F G H 
2  H2 + Cl2  2 HCl  
3       Notes: 
4 o    (cm-1) 4158.53  554.3614  2885.325 Eq. 27.5.11 
5 Be    (cm-1) 60.853  0.2442  10.5933 Eq. 27.4.2 
6 M   (g mol-1) 2.01565  69.937706  35.976678  
7 g  (grnd.state) 1  1  1  
8  2  2  1  
9 Do    (eV) 4.4776  2.476  4.432 Eq. 27.5.12 

10        
11 qt/NA 113970.4  23293596.6  8594113.07 Eq. 30.4.1º 
12 qr 1.702664  424.292445  19.5618391 Eq. 30.2.33 
13 qv 1  1.07399255  1.0000009 Eq. 30.2.25 
14 qe 1  1  1 Eq. 30.2.35 
15 G-G(0) internal -1.319286  -15.1756931  -7.3713805 r+v+e 
16 G-G(0) (kJ mol-1) -30.18355  -57.2279467  -46.9518636 t+r+v+e 
17 G(0)    (kJ mol-1) -432.0226  -238.897625  -427.622889 -Do 
18 G        (kJ mol-1) -462.2061  -296.125557  -474.574753 Eq. 30.5.2 
19        
20 T (K) 298.15  rG°  (kJ mol-1) = -190.81781  
21 kT/hc (cm-1) 207.22443  fG°  (kJ mol-1) = -95.408906  
22 R (J K-1mol-1) 8.3144621      
23 NA (mol-1) 6.02214E+23  Kp = 5.18702E+16  
24  0.0259467      
25 h (J s) 6.62608E-34      
26 k (J K-1) 1.38065E-23      
27 1eV 96.485309 kJ mol-1    

 
The literature fG is -95.299 kJ mol-1. In this case and in general, the principal error is in the 
bond dissociation energies. Under many circumstances, especially under extreme temperatures 
with reactive species, the statistical mechanical equilibrium constant is more accurate than can be 
measured experimentally. 
   The reaction Gibbs energy at absolute zero, Eqs. 30.5.3 and 30.5.4, is the difference: 
 

 rG(0) = Eo = [2(–Do,HCl)] – [(–Do,H2) + (–Do,Cl2)] 
   = [2(-427.62 kJ mol-1)] – [-432.02 kJ mol-1 + (-238.90 kJ mol-1)] 
   = -184.33 kJ mol-1 
 

The final rG at 298.2 K of -190.82 kJ mol-1 is dominated by the zero-point energy shift. In this 
example, as is often the case, just using the zero-point energy shift alone is not a bad rough 
estimate of the reaction Gibbs energy. 
 

(b).  The equilibrium constant is given by rG = –RT ln Kp. Solving for Kp: 
 rG/RT = -95.409 kJ mol-1(1000 J/1 kJ)/8.3145 J K-1 mol-1/298.15 K = -38.487 

 Kp = e–rG/RT = e38.487 = 5.2x1016 

 

This example is a formation reaction, however the process applies equally to any reaction. 
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WWW    Using the methods illustrated in the previous example, two applets that calculate 

reaction Gibbs energies and equilibrium constants are available on the text Web site and 
companion CD. The “Equilibrium Constants from Molecular Structure” or “efs.html” applet is 
for atomic and diatomic species. The “Equilibrium Constants from Molecular Structure: 
Polyatomics” or “efsp.html” applet extends the applet to polyatomic species. Example data is 
included for simple reactions. The results of Example 30.5.1 are easily validated using the 
diatomic version of the applet (see the Problems). 
 
Reaction Gibbs Energies are Calculated from Electronic Structure Calculations:  When 
experimental spectra are not available, electronic structure calculations are used to estimate the 
moments of inertia, vibrational frequencies, and dissociation energies. However, the zero energy 
reference used in electronic structure calculations is for completely dissociated nuclei and 
electrons. For example, the SCF total electronic energy of formaldehyde at B3LYP/cc-pVTZ 
corresponds to the process: 
 

 2 H+ + C6+ + O8+ + 16 e-  H2C=O        SCF total energy: -114.5494128 H 30.5.5 
 

However, the dissociation energy, De, of formaldehyde corresponds to the process: 
 

 H2C=O  2 H + C + O        30.5.6 
 

The SCF energies of the atoms are needed to calculate the dissociation energy, using the same 
method and basis set as the molecular calculation, Table 30.5.1. 
 
 

Table 30.5.1: Atomic Energies in Hartrees (au) using Ab Initio Methods.*(DS) 

 

Atom HF/6-31G* MP2/6-311G* B3LYP/6-311G* B3LYP/6-311+G* B3LYP/cc-pVTZ 
H -0.4982329 -0.4998098 -0.5021559 -0.5021559 -0.5021563 
C -37.6808603 -37.7450232 -37.8559888 -37.8572669 -37.8585746 
N -54.3854425 -54.4750512 -54.5985435 -54.6007232 -54.601781 
O -74.7839336 -74.9181455 -75.0853748 -75.0898713 -75.0918572 
F -99.3649569 -99.5541705 -99.7538101 -99.7605798 -99.7628675 

  * SCF atom energies are identical at the “*” and “**” levels, or equivalently at the (d) and (d,p) levels. 
 
 
The dissociation energy is then given by [products] – [reactants] of the SCF electronic energies: 
 

 De = [2(-0.5021563) + (-37.8585746) + (-75.0918572)] – [-114.5494128] 
       = 0.594668441 H = 1561.30045 kJ/mol      30.5.7 
 

The observed spectroscopic dissociation energy, Do, is obtained by zero-point energy correction. 
The molar zero-point vibrational energy is the sum over all normal modes, Figure 27.5.2: 
 

 ZPE = ½ NAhc  ~o    giving Do = De – ZPE     30.5.8 
 

 
              

Example 30.5.2: Thermodynamic Parameters from Electronic Structure Calculations 
The thermodynamic analysis obtained by doing a normal mode calculation for formaldehyde at 
the B3LYP/cc-pVTZ level from the Spartan/Q-Chem program is shown in Figure 30.5.2. 



478 
 

Calculate the molar standard state Gibbs energy of formaldehyde at 298.2 K, with the energy 
reference as the dissociated atoms. 
 
 

Formaldehyde B3LYP/cc-pVTZ  SCF Total Energy = -114.549412841 
 
 Standard Thermodynamic quantities at 298.15 K and 1.00 atm 
 
             Term      ZPE     Enthalpy   Entropy     Cv      % in  
               cm-1    kJ/mol    kJ/mol   J/mol.K   J/mol.K  Ground IR Int. 
    --   ----------   -------   -------   -------      ---- 
  1  B2    1201.147    7.1845    0.0438    0.1722    0.8540   99.70   3.23 
  2  B1    1268.200    7.5855    0.0334    0.1304    0.6877   99.78  12.79 
  3  A1    1536.772    9.1919    0.0111    0.0421    0.2754   99.94   9.98 
  4  A1    1822.699   10.9022    0.0033    0.0123    0.0974   99.98 106.86 
  5  A1    2878.663   17.2182    0.0000    0.0001    0.0015  100.00  68.98 
  6  B1    2932.280   17.5389    0.0000    0.0001    0.0012  100.00 144.64 
    --   ----------   -------   -------   -------      ---- 
   Total Vibrations   69.6212    0.0916    0.3573    1.9171 
 
          Ideal Gas              2.4789                     
        Translation              3.7184  151.1751   12.4716 
           Rotation              3.7184   66.9384   12.4716 
         ----------             -------   -------   ------- 
             Totals             79.6286  218.4708   26.8604 

 
 Vibrational(v) Corrections: 
    Temp. Correction    Hv      79.6286   
  Entropy Correction (Hv-TSv)   14.4916   

 

Figure 30.5.2: Thermodynamic analysis for formaldehyde at B3LYP/cc-pVTZ using 
Spartan/Q-Chem ‘14.3 

 
 

Answer:  The thermodynamic calculations assume ideal gas behavior of one mole of substance at 
298.2 K. In Spartan and Gaussian the standard state pressure is set at 1 atm, but the difference 
caused by the change in standard state is well within the overall error of the calculation. The 
Spartan listing begins with the vibrational contributions. The molar zero point vibrational energy, 
ZPE, is given by Eq. 30.5.8. For rotations and vibrations H – H(0) = U – U(0). The reason is that 
even though H  U + PV, the PV correction term is included with the translational enthalpy. The 
vibrational contributions are given by Eqs. 30.2.25, 30.3.15, and 30.3.16. The heading 
“% in Ground” gives the Boltzmann probability of occupation of the  = 0 zero-point 
vibrational state. The heading “IR Int.” gives the infra-red intensity of the normal mode 
transition. The translational contributions are given next using Eq. 30.3.37; the “Ideal Gas” 
entry is the PV = RT correction and the “Translation” entry is Ut – Ut(0) = 3/2 RT. The 
translational entropy is given by the Sackur-Tetrode equation, Eq. 30.3.30. The “Rotation” 
enthalpy entry is Hr – Hr(0) = RT for a linear molecule and 3/2 RT for a non-linear molecule. The 
total enthalpy includes the zero-point vibrational energy: [ZPE + H – H(0)]. The “Rotation” 
entropy entry is given by Eq. 30.4.7. The thermal contribution to the Gibbs energy is listed as the 
“Entropy Correction (Hv –TSv)”: 
 

 ZPE + G – G(0) = [ZPE + H – H(0)] – TS     30.5.9 
     = 79.6286 kJ mol-1 – (298.15 K)(218.4708 J K-1 mol)(1 kJ/1000 kJ) 
     = 14.4916 kJ mol-1 
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Since the ground state of formaldehyde is a singlet, no electronic contribution from the 
multiplicity is required. The zero-point vibrational energy of formaldehyde is 69.6212 kJ mol-1 
giving the total dissociation energy, using Eqs. 30.5.7 and 30.5.8: 
 

 Do = De – ZPE = 1561.30045 kJ mol-1 – 69.6212 kJ mol-1 = 1491.6792 kJ mol-1 
 

The standard state Gibbs energy of formaldehyde with the energy reference as the dissociated 
atoms is using Eqs. 30.5.8 and 30.5.9: 
 

 G = G(0) + [G – G(0)] = –Do + [G – G(0)] = –De + ZPE+ [G – G(0)] 30.5.10 
      = -1561.30045 kJ mol-1 + 14.4916 kJ mol-1 = -1546.8089 kJ mol-1 
 

The uncertainty is difficult to determine, but is at least several kJ mol-1. The error is dominated 
by the difficulty in calculating the correlation energy. The final total Gibbs energy is then used in 
the calculation of reaction Gibbs energies and equilibrium constants. 
 

   Equivalently, the version of the thermodynamic analysis from Gaussian ’03 lists the 
spectroscopic temperatures for rotation and vibration, Figure 30.5.3. The E (Thermal) values are 
essentially identical to the Spartan version except that the units are in kcal mol-1, with 1 cal = 
4.184 J. The “Thermal correction” to the “Enthalpy” and “Gibbs Free Energy” again include the 
zero-point vibrational energy, ZPE + H – H(0) or ZPE + G – G(0). 
 

This molecule is an asymmetric top. 
 Rotational symmetry number  2. 
 Rotational temperatures (Kelvin)     13.69943     1.87889     1.65228 
 Rotational constants (GHZ):         285.45003    39.14976    34.42793 
 Zero-point vibrational energy      69627.0 (Joules/Mol) 
                                   16.64125 (Kcal/Mol) 
 Vibrational temperatures:   1730.75  1824.90  2210.73  2624.49  4140.04 
          (Kelvin)           4217.47 
  
 Zero-point correction=                           0.026520 (Hartree/Particle) 
 Thermal correction to Energy=                    0.029387 
 Thermal correction to Enthalpy=                  0.030331 
 Thermal correction to Gibbs Free Energy=         0.005523 
 Sum of electronic and zero-point Energies=           -114.522888 
 Sum of electronic and thermal Energies=              -114.520021 
 Sum of electronic and thermal Enthalpies=            -114.519077 
 Sum of electronic and thermal Free Energies=         -114.543885 
  
                     E (Thermal)             CV                S 
                      KCal/Mol        Cal/Mol-Kelvin    Cal/Mol-Kelvin 
 Total                   18.441              6.419             52.213 
 Electronic               0.000              0.000              0.000 
 Translational            0.889              2.981             36.130 
 Rotational               0.889              2.981             15.998 
 Vibrational             16.663              0.457              0.085 

 

Figure 30.5.3: Thermodynamic analysis of formaldehyde at B3LYP/cc-pVTZ using 
Gaussian 03.4 

              

 
 
   The preceding example is typical if reaction Gibbs energy calculations are done using 
spectroscopically derived dissociation energies. If the reaction Gibbs energy is to be determined 
using only information from electronic structure calculations, then dissociation energies need not 
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be calculated. The reference in thermodynamic calculations is arbitrary as long as the chosen 
reference is consistent for each reactant and product. The reference state of completely 
dissociated nuclei and electrons, Eq. 30.5.5, can be used to find the reaction Gibbs energy as 
shown in the next two examples, again using the synthesis of formaldehyde as an example. 
 
 
              

Example 30.5.3:  Reaction Gibbs Energies from Electronic Structure Calculations 
Calculate the standard state reaction Gibbs energy and equilibrium constant at 298.15 K for the 
reaction giving formaldehyde as the product, assuming ideal gases: 
 

 CO (g) + H2 (g)  H2C=O (g) 
 

Use parameters entirely based on electronic structure calculations, which at B3LYP/cc-pVTZ are 
given in the table below from Gaussian ’03 (see Figure 30.5.3 for the formaldehyde output): 
 

B3LYP/cc-pVTZ CO H2 H2C=O 
SCF total energy (H) -113.35725379 -1.1799987149 -114.549412841 
Zero-point correction 0.005038 0.010077 0.026520 
Thermal correction to Energy 0.007399 0.012437 0.029387 
Thermal correction to Enthalpy 0.008343 0.013381 0.030331 
Thermal correction to Gibbs Free Energy -0.014081 -0.001410 0.005523 
Sum of electronic and zero-point Energies -113.352216 -1.169922 -114.522888 
Sum of electronic and thermal Energies -113.349855 -1.167562 -114.520021 
Sum of electronic and thermal Enthalpies -113.348911 -1.166617 -114.519077 
Sum of electronic and thermal Free Energies -113.371334 -1.181409 -114.543885 

 
 

Answer:  The “Thermal correction to the Gibbs Free Energy” includes the zero-point vibrational 
correction: ZPE + [G – G(0)]. Even though the SCF energies are with respect to the ab initio 
electronic structure reference point, the reference point is arbitrary as long as the values of all 
reactants and products are on a consistent basis. As a result the standard state reaction Gibbs 
energy is just the difference [products] – [reactants] of the “Sum of the electronic and thermal 
Free Energies”: 
 

    rG = [-114.543885 H] – [-113.371334 H + -1.181409 H] = 0.008858 H = 23.257 kJ mol-1 
 

The agreement with the thermodynamically based literature value, 27.3 kJ mol-1, is better than 
typical at this level of ab initio approximation. The equilibrium constant is: 
 

 Kp = e–rG/RT = e–(23.26 kJ mol-1)(1000 J/1 kJ)/8.3145 J K-1mol-1 298.15 K = 8.43x10-5 
 
 
              

Example 30.5.4:  Reaction Gibbs Energies from Electronic Structure Calculations 
Calculate the standard state reaction Gibbs energy and equilibrium constant at 298.15 K for the 
reaction giving formaldehyde as the product, assuming ideal gases: 
 

 CO (g) + H2 (g)  H2C=O (g) 
 

Use parameters entirely based on electronic structure calculations, which at B3LYP/cc-pVTZ are 
given in the table below from Spartan ‘14 (see Figure 30.5.2 for the formaldehyde output): 
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B3LYP/cc-pVTZ CO H2 H2C=O 
SCF total energy (H) -113.357258 -1.179999791 -114.549412841 
ZPE (kJ mol-1) 13.2370 26.4308 69.6212 
Temp. Correction 21.9139 35.1071 79.6286 
Entropy Correction (Hv-TSv) -36.9627 -3.7306 14.4916 

 
 

Answer:  The “Temp. Correction” is the enthalpy and zero-point vibrational correction: 
[ZPE + H – H(0)]. The “Entropy Correction” is the Gibbs energy and zero-point vibrational 
correction. See the previous example for the discussion of the ab initio energy reference point. 
The difference in SCF total energies is not corrected for the vibrational zero-points: 
 

 rE = [-114.549412841 H] – [-113.357258 H + -1.179999791 H] 
        = -0.1215505 H (2625.4974 kJ mol-1/1 H) = -31.913 kJ mol-1 

 

The standard state reaction Gibbs energy is just the total sum of differences [products] – 
[reactants] of the SCF total energies and the “Entropy Corrections”: 
 

 r[ZPE + G – G(0)] = [14.4916 kJ mol-1] – [-36.9627 kJ mol-1+ -3.7306 kJ mol-1] 
             = 55.1849 kJ mol-1 
 

 rG =  -31.913 kJ mol-1 + 55.1849 kJ mol-1 = 23.272 kJ mol-1 
 

The small difference between the Gaussian and Spartan calculations is largely the result of 
differing default gradient convergence criteria, and is useful in estimating the corresponding 
uncertainty in the purely theoretical results. The corresponding equilibrium constant is: 
 

 Kp = e–rG/RT = e–(23.272 kJ mol-1)(1000 J/1 kJ)/8.3145 J K-1mol-1 298.15 K = 8.37x10-5 
 
              

 
 

Equilibrium Constants are Determined by Molecular Structure:  The equilibrium constant of a 
chemical reaction is given by rG = –RT ln Kp, with the reaction Gibbs energy given by rG = 
i Gi . In a more insightful way, the relationship between molecular structure and chemical 
equilibria is displayed by expressing the equilibrium constant directly in terms of the partition 
functions of the products and reactants. As an initial example, an ideal gas reaction with one-to-
one stoichiometry displays all the important attributes of any general chemical reaction: 
 

 A  B           30.5.11 
 

Reactions of this type include isomerizations, such as the cis-trans isomerization of retinal in the 
primary process in vision or HCN  HNC. As an introductory and schematic example, 
consider an equally spaced set of energy levels for the reactant and product, Figure 30.5.4a. To 
calculate the equilibrium constant, the product and reactant states are superimposed, Figure 
30.5.4b. The equilibrium constant is calculated by establishing a Boltzmann distribution while 
ignoring the distinction between product and reactant states. The Boltzmann weighting factors of 
each level are listed in the figure. The product states and reactant states are then separated, 
Figure 30.5.4c. The number of accessible product states and reactant states are the sums of the 
corresponding Boltzmann weighting factors. The equilibrium constant is the number of 
accessible product states divided by the number of accessible reactant states: 
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 Kp = 
accessible product states
accessible reactant states = 

0.368 + 0.050
1 + 0.135 + 0.018 = 0.363    30.5.12 

 

 
 

Figure 30.5.4:  (a). A schematic isomerization. (b). The Boltzmann distribution is established 
ignoring the distinction between product and reactant states. (c). The equilibrium constant is 
the number of accessible product states divided by the number of accessible reactant states. 

 
 
The equilibrium constant is determined by the random distribution of the available thermal 
energy among the product and reactant states. Occupations of low energy states have higher 
probability than high energy states, regardless of whether the state belongs to a product or 
reactant. The equilibrium state is the most probable state. This example shows that the molecular 
basis of chemical equilibrium is remarkably simple. Our discussion so far is schematic. We now 
need to determine the number of accessible states by evaluating partitions functions of the 
products and reactants that result from accurate models of translation, rotation, vibration, and 
electronic degrees of freedom. How do translation, rotation, vibration, and electronic states 
influence chemical equilibria? 
 

Equilibrium Constants of Ideal Gas Reactions:  The standard state reaction Gibbs energy of a 
reaction with stoichiometry A  B is the difference of products and reactants using Eq. 30.5.2: 
 

 rG = GB – GA = [GB(0) – GA(0)] – RT ln( )q
B/NA  + RT ln( )q

A/NA            30.5.13 
 

Using Eq. 30.5.4, the reaction difference at absolute zero is equal to the quantum mechanical 
zero-point energy shift, GB(0) – GA(0) = Eo. The zero-point energy shift is ∆Eo = oB – oA, 

Figure 30.5.1. Combining the logarithmic terms in Eq. 30.5.13 gives: 
 

 rG = Eo – RT ln






q
B/NA

q
A/NA

                 30.5.14 

 

Using rG = –RT ln Kp, we can solve for the logarithm of the equilibrium constant by dividing 
the previous equation by –RT: 
 

 ln Kp = 
–Eo

RT  + ln






q
B/NA

q
A/NA

                 30.5.15 

 

Exponentiation of both sides of this last equation gives the equilibrium constant: 

 6 kT 
 

5 kT 
 

4 kT 
 

3 kT 
 

2 kT 
 

1 kT 
 

     0 

 6 kT 
  
5 kT 
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     0  

 
 
 

A       B 

e–i/kT 
 
  
 
  
0.018 
  
0.050 
  
0.135 
  
0.368 
  
     1 

 6 kT 
  
5 kT 
  
4 kT 
  
3 kT 
  
2 kT 
  
1 kT 
  
     0  

 
 

 

A       B (a). (b). (c). 
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 Kp = 






q
B/NA

q
A/NA

 e–Eo/RT                  30.5.16 

 

The result is the ratio of the number of accessible product states divided by the number of 
reactant states. The partition functions are defined relative to the zero-point energies, Eq. 

30.2.25. The “zero-point energy shift term,” e–Eo/RT, adjusts for the difference in zero-point 
energies to put the reactants and products on a common energy scale. 
   Eq. 30.5.16 is derived for the special case of an A  B reaction. For a more general reaction: 
 

 aA + bB  cC + dD     ∆Eo = c oC + d oD – a oA – b oB           30.5.17 
 

where the oA, oB, etc. are the zero-point electronic energy levels of each product and reactant. 
Repeating the steps taken in Eqs. 30.5.13-30.5.16 gives the more general result: 
 

 Kp = 
( )q

C/NA

c
 ( )q

D/NA

d

( )q
A/NA

a
 ( )q

B/NA

b e
–Eo/RT                30.5.18 

 

   This last equation is so central to our understanding of chemical equilibria that we should do 
several examples. In particular, Eq. 30.5.18 allows us to focus on the relationship between 
molecular structure and the position of equilibrium. 
   An atom-diatom exchange reaction is a good first example, Figure 30.5.5: 
 

 A + BC  AB + C  ∆Eo = o(AB) – o(BC)     30.5.19 
 

where A, B, and C are atoms. The zero energy reference-point is chosen as the dissociated atoms, 
Figure 30.5.1. As a result ∆Eo is the difference in zero-point electronic energies of the product 
diatomic and the reactant diatomic molecules. The zero-point electronic energies are given by the 
negative of the bond dissociation energies, o(AB) = –Do(AB) and o(BC) = – Do(BC), giving the 
zero-point energy shift as: 
 

 Eo = o(AB) – o(BC) = [–Do(AB)] – [– Do(BC)]     30.5.20 
 

 
Rotation:  A  RBC   RAB    C 

Vibration:    ~o(BC)   ~o(AB) 
Electronic:  gA  gBC   gAB  gC 

Bond energy:   Do(BC)   Do(AB) 

 
Figure 30.5.5: An atom-diatom exchange reaction. The required spectroscopic information is 
listed for each species. 

 
 
The equilibrium constant is the ratio of accessible product and reactant states: 
 

+ + 
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 Kp = 
( )q

o
AB/NA ( )q

o
C/NA

( )q
o
A/NA ( )q

o
BC/NA

 e–∆Eo/RT           30.5.21 

 

where the standard state partition functions are qA for atom-A, qBC for diatomic-BC, qAB for 

diatomic-AB, and qC for atom-C. The partition function of each diatomic molecule factors into 
translation, rotation, vibration, and electronic terms. For example with BC the partition function 
is qBC = [qt (BC)/NA]qr(BC)qv(BC)qe(BC). All four species have translational and electronic 
partition functions. The equilibrium constant expression may be correspondingly rearranged into 
a product of terms for translation, rotation, vibration, and electronic degrees of freedom. The 
translational partition function is given by Eq. 30.2.19. In the equilibrium constant, 
Eq. 30.5.21, the common factors of (2kT)3/2Vm/h3 cancel between products and reactants to 
give the translational contribution as: 
 

 qt ,i = 
(2πmi kT)

3/2

h3 Vm  gives      
( )q

o
t (AB)

/NA ( )q
o
t (C)

/NA

( )q
o
t (A)

/NA ( )q
o
t (BC)

/NA

 = 



mAB mC

mA mBC

3/2
           30.5.22 

 

with masses mA, mBC, mAB, and mC. In the rotational contribution, the common factors of k/hc in 
the rotational partition functions, Eq. 30.2.33, cancel between products and reactants: 
 

 qr,i = 
kT

B
~

i hc
 gives       

qr(AB)
qr(BC) = 







1

ABB
~

AB

1

BCB
~

BC

    30.5.23 

 

The vibrational partition functions are given by Eq. 30.2.25, and are substituted directly into 
Eq. 30.5.21. For this simple example, we assume that there are no low lying excited electronic 
states, giving the electronic partition functions as the ground state degeneracies gA, gBC, gAB, and 
gC. For atomic species with low energy excited states, the full electronic partition function, 
Table 30.2.2, must be used. Substitution of Eqs. 30.5.22 and 30.5.23, the vibrational partition 
functions, and ground state electronic degeneracies into Eq. 30.5.21 gives the equilibrium 
constant of the atom-diatom reaction as: 
 

 Kp = 



mAB mC

mA mBC

3/2
 







1

ABB
~

AB

1

BCB
~

BC

 







   

1

1 – e–hc~o(AB) /kT
   

   
1

1 – e–hc~o(BC)/kT
   

 



gAB gC

gA gBC
 e–Eo/RT          30.5.24 

         translation       rotation           vibration               electronic   zero-point energy shift 
 

The first comment is to note that all parameters needed to calculate the equilibrium constant are 
derived from spectroscopy of the pure substances. Secondly, even though this relationship is 
restricted to ideal gas reactions of rigid-rotors and harmonic oscillators, the underlying principles 
govern all reactions, whether in gas or condensed phases. Lastly, we can build our insight into 
chemical equilibria by considering “what-if scenarios,” as illustrated in the next example. 
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Example 30.5.5:   Molecular Structure and Chemical Equilibria 
For the reaction A + BC  AB + C, consider the shift in equilibrium position, towards products 
or reactants, after making the following changes. (a). The bond length of AB is increased. (b). 
BC is changed from a heteronuclear to a homonuclear diatomic. (c). The bond force constant of 
AB is increased. (d). The ground state of BC is a triplet state instead of a singlet. (e). The bond 
dissociation energy of AB is increased. [In reality changing just one molecular parameter is 
impossible, bond strength changes have multiple effects. However, for the purposes of this 
exercise assume that the given change is done without changes in other parameters.] 
 
 

Answer:  The plan is to note if the change increases or decreases the number of accessible states 
and if the change is for a product or reactant. 

(a). The rotational constant of a diatomic molecule is given by Eq.30.1.34: B
~

 = 
ħ

4 R2 c
 

If the bond length of AB is increased, the moment of inertia is increased, the rotational constant 
is decreased, the rotational energy level spacing is decreased, and the number of accessible states 
is increased for AB. Since AB is a product, increasing the number of accessible states shifts the 
equilibrium towards products. Equivalently, in Eq. 30.5.24, decreasing the rotational constant 
increases the numerator in the accessible states ratio, favoring products. 
 

(b). If BC is changed from heteronuclear to a homonuclear diatomic, the symmetry number 
increases from one to two, and the number of accessible rotational states is decreased for BC. 
Since BC is a reactant, decreasing the number of accessible states shifts the equilibrium towards 
products. Equivalently, in Eq. 30.5.24, increasing the symmetry number of BC, BC, decreases 
the denominator in the accessible states ratio, favoring products. The number of distinguishable 
states is always greater than the number of indistinguishable states. 
 

(c). If the bond force constant of AB is increased, the fundamental vibration frequency of AB is 
increased, the vibrational energy level spacing is increased, and the number of accessible states is 
decreased. Since AB is a product, decreasing the number of accessible states shifts the 
equilibrium towards reactants. Equivalently, in Eq. 30.5.24, increasing the fundamental 
vibration frequency, ~o(AB), decreases the numerator in the accessible states ratio, favoring 
reactants. 
 

(d). If the ground state of BC is a triplet state instead of a singlet, the ground state degeneracy 
increases, and the number of accessible electronic states increases. Since BC is a reactant, 
increasing the number of accessible states shifts the equilibrium towards reactants. Equivalently, 
in Eq. 30.5.24, increasing the ground state degeneracy of BC, gBC, increases the denominator in 
the accessible states ratio, favoring reactants. 
 

(e). The zero-point energy shift is:  Eo = [–Do(AB)] – [– Do(BC)] = Do(BC) – Do(AB). 
 

If the bond dissociation energy of AB is increased, the zero-point energy shift is decreased, the 
overall energy states of AB are lowered, and the number of accessible AB states are increased. 
Since AB is a product, increasing the number of accessible states shifts the equilibrium towards 
products. Equivalently, in Eq. 30.5.24, decreasing Eo increases the exponential factor, which 
favors products. Increasing the bond dissociation energy of a product makes that product more 
stable, which favors products. 
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Example 30.5.6:   Molecular Structure and Chemical Equilibria 
Calculate the equilibrium constant of the ideal gas reaction Na2  Na + Na at 1000.0 K. The 
dissociation of Na2 is an important process in sodium vapor street lamps. The spectroscopic 
constants for Na2 are Re = 3.07859 Å, ~o = 157.66 cm-1, and De = 0.759 eV. The ground state of 
Na2 is 1+ 

g  and the ground state of Na-atoms is 2S½. 
 
 

Answer:  The mass of Na2 is 45.97954 g mol-1 and with Eqs. 30.3.1 and 30.3.2: 
 

 
qt ,Na2

NA
 =  (M/g mol-1)3/2(T/K)5/2 = 0.0259467 (45.97954)3/2 (1000.0)5/2 = 2.5582x108 

For Na-atoms:  
qt ,Na

NA
 = 0.0259467 (22.98977)3/2 (1000.0)5/2 = 9.0445x107 

 

The reduced mass of Na2 is:   = 
m1 m2

m1 + m2
 = 

MNa/2
NA

 (1 kg/1000 g) = 1.90877x10-26 kg. 

With Eqs. 24.4.10 and 24.5.41:  B
~

e = 
ħ

4 R2
e c

 
 

 B
~

e = 
1.05457266x10-34 J s

4(1.90877x10-26 kg)(3.07859x10-10 m)2(2.99792458x1010 cm s-1)
 = 0.154735 cm-1 

 

Using Table 30.4.1, kT/hc = 695.03 cm-1 at 1000 K and with Eq. 30.2.33: 
 

 qr,Na2 = 
kT

B
~

hc
 = 

695.03 cm-1

2(0.154735 cm-1) = 2245.9 

At 1000.0 K, using Eq. 30.2.25:  qv = 
1

1 – e–h~oc/kT
 = 

1

1 – e–157.66 cm-1/695.03 cm-1 = 4.9275 

The reaction products are atoms, while the reference point is for totally dissociated atoms. The 
zero-point energy shift is then just Eo = –o(Na2) = – [–Do(Na2)] = 0.759 eV. In terms of bond 
energy, the reactions runs uphill from Na2. Using Table 30.4.1, kT/e = 0.08617 eV at 1000 K 
giving the zero-point energy sift term as: 
 

 e–Eo/RT = e–0.759 eV/0.08617 eV = e–8.81 = 1.450 x10-4 

 

Even though the bond dissociation energy is unusually small and the temperature is 1000 K, the 
zero-point energy shift term is still unfavorable. Considering each degree of freedom separately, 
the overall equilibrium constant is: 
 

 Kp = 
qNa qNa

qNa2
 e–Eo/RT 

      =              






qt ,Na qt ,Na

qt ,Na2
               





1

qr ,Na2
    




1

qv ,Na2
  






qe,Na qe ,Na

qe ,Na2
 e–Eo/RT 

 

      = 



(9.0445x107)(9.0445x107)

2.5582x108  



1

2245.9  



1

4.9275       



22

1     1.450 x10-4 
 

            translation                      rotation      vibration     electronic  zero-point energy shift 
 Kp = 1.676 
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Na2 is only 79% dissociated at 1000 K. This example shows the ability of statistical mechanics to 
easily handle reactions of reactive species at high temperatures that are difficult to study in the 
laboratory. 
 

              

 
 

   To this point we have assumed that the system is always exactly at equilibrium. That restriction 
has allowed us to work through important issues including the effects of molecular structure on 
chemical equilibrium. We know that we live in a dynamic universe. Molecules are constantly 
undergoing collisions and the interactions between molecules are constantly changing, especially 
in the gas phase. We need to broaden our perspective to consider the extent of deviations from 
equilibrium in otherwise thermodynamically time-invariant systems. 
 
30.6 Fluctuations5 

 

   The equilibrium state is the most probable state. The most probable state is the overwhelmingly 
predominant distribution. The most probable state is given by the Boltzmann distribution. If a 
fluctuation occurs, then the distribution is perturbed from the Boltzmann distribution. In the 
canonical ensemble, each system has the same volume, number of molecules, and average 
energy, but the energy of each system can vary. The ensemble average energy of the system is 
given by Eqs. 30.3.2, 30.3.4, and 30.3.9: 
 

 U – U(0) = <E> = 
 Ei e–Ei

Q  = – 
1
Q 






Q

 V
 = 

kT2

Q  






Q

T V
  (30.2.2,30.2.4,30.2.9) 

 

Fluctuations of the energy of the system are given by the ensemble average of the standard 
deviation of the system energy, <E>. In analogy with Eq. 23.4.36, the square of the standard 
deviation is: 
 

 <E>2 = <(E – <E>)2> = <E2> – <E>2       30.6.1 
 

The ensemble average of the squared energy is given by the sum: 
 

 <E2> = 
 E2

i e
–Ei

Q          30.6.2 
 

In an analogous fashion to Eqs. 30.3.3 and 30.3.4, this sum is also related to a derivative of the 
partition function with respect to . Starting with Eq. 30.3.3, the second derivative of the 
partition function with respect to  is: 
 

 






2Q

2
V
 = – 







[ Ei e–Ei]

 V
 =  E2

i e
–Ei      30.6.3 

 

The square of the standard deviation is then given by substituting this last equation into 
Eq. 30.6.2 and then substituting the result and Eq. 30.3.4 into Eq. 30.6.1: 
 

 <E>2 = <E2> – <E>2 = 
1
Q 






2Q

2
V
 + 

1
Q2 






Q



2

V
     30.6.4 
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This last expression is, surprisingly, an old friend in disguise. First, using Eq. 30.3.8, the constant 
volume heat capacity is given by the derivative of the internal energy with respect to  by: 
 

 Cv = 






U

T v
 = – 

1
kT2 






U

 V
        30.6.5 

 

In turn, since U(0) is a constant, using the last expression and the internal energy as given by 
Eq. 30.3.4 gives: 
 

 Cv = – 
1

kT2 





[U – U(0)]

 V
 = 

1
kT2 














1

Q 
Q
 V

     30.6.6 
 

Using the product rule in the second derivative gives: 
 

 Cv = 
1

kT2 





1

Q 






2Q

2
V
 + 

1
Q2 






Q



2

V
       30.6.7 

 

Comparing this last expression with Eq. 30.6.4 gives the squared standard deviation of the 
system energy as: 
 

 <E>2 = kT2 Cv = 



RT2

NA
 Cv        30.6.8 

 

with NA as Avogadro’s Number. Who would have guessed? The direct relationship between 
fluctuations of the energy of the system and the heat capacity is quite remarkable. Heat capacities 
are the fundamental building blocks of all thermodynamic properties. For example, Third Law 
absolute entropies are based entirely on the heat capacity of the substance and the enthalpies of 
the phase transitions. Eq. 30.6.8 shows that without fluctuations, the heat capacity of the system 
is zero; the system cannot absorb energy from the surroundings. Fluctuations are seen to be 
central to the system, central to the establishment of equilibrium. The importance of fluctuations 
does not invalidate the concept of time-invariant equilibrium, however. 
 

Fluctuations are Small for Macro-Scale Systems: While fundamentally important, fluctuations of 
the system away from the most probable distribution are very small. For example, for a 
monatomic ideal gas, the internal energy is 3/2 RT and the heat capacity is 3/2 R. The ratio of the 
fluctuation of the energy to the average energy is: 
 

 
<E>
<E>  = 

(RT2/NA)(3/2 R)
3/2 RT  = 

1
(3/2NA)½ = 1.05x10-12     (monatomic ideal) 30.6.9 

 

which shows that the distribution of states around the most probable state is sharply peaked. 
Excursions of the probability distribution away from the Boltzmann distribution are exceedingly 
rare, and the Boltzmann averaged energy and corresponding temperature give the time-invariant 
equilibrium state. Equilibrium, on the other hand, is maintained through energy exchange with 
other systems in the ensemble, as enabled by tiny fluctuations in the system energy. In an 
isolated system, non-equilibrium distributions relax to the equilibrium state by fluctuations 
(General Pattern 11). 
   To this point we have considered each molecule from a quantum perspective. However, we 
have viewed the system as essentially a classical collection of molecules. We have also neglected 
the influence of a final molecular degree of freedom, that being the spin configuration of the 
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nuclei. As a final discussion in this chapter, we need to consider if we can consider the system as 
a collection of weakly interacting quantum molecules or if we need to consider the system of N 
molecules together as a completely quantum system, including the nuclear degree of freedom. 
 

30.7 Indistinguishability, Quantum Statistics, and Statistical Thermodynamics 
 

   The total energy of a molecule includes nuclear interactions, which we have neglected up to 
this point. The intrinsic spins of the nuclei interact with each other, interact with the intrinsic spin 
of the electrons, and interact with electric fields at each nucleus. These electric fields are created 
by the electron distribution. Nuclear interactions are probed in various forms of spectroscopy 
including NMR, ESR, nuclear quadrupole resonance, and rotational spectroscopy. For nuclear-
nuclear and nuclear-electron interactions the spin quantum number of the nuclei must be greater 
than zero, I > 0. For nuclear interaction with electric fields the spin quantum number must be one 
or greater, I > ½. Common nuclei with I = ½ include 1H, 13C, 15N, 18O, 19F, and 29Si, Table 
30.7.1. Common nuclei with I = 1 include 2H (deuterium), and 14N. However, the most abundant 
isotope of 12C, 16O, and 32S has I = 0. Except for H2, the energetic consequences of nuclear 
interactions are negligible in thermodynamic considerations near room temperature. However, 
nuclear based symmetry constraints do have important effects in rotational and vibrational 
spectroscopy and in determining the symmetry number in the rotational partition function. 
 
 

Table 30.7.1: Nuclear Spin Quantum Number, I, for Example Nuclei . 
 

I Examples* 

0 4He, 12C, 16O, 18O, 20Ne, 24Mg, 28Si, 32S, 40Ca, 40Ar, 48Ti, 52Cr, 56Fe, 58Ni, 64Zn, 74Ge, 80Se, 88Sr, 90Zr, 208Pb 
½ 1H, 3He, 13C, 15N, 19F, 29Si, 31P, 43Ca, 57Fe, 77Se, 111Cd, 113Cd, 117Sn, 119Sn, 123Te, 129Xe, 195Pt, 199Hg, 207Pb 
1 2H, 6Li, 14N 
3/2 9Be, 7Li, 11B, 23Na, 33S, 35Cl, 37Cl, 39K, 63Cu, 65Cu, 69Ga, 71Ga, 75As, 79Br, 81Br, 87Rb, 137Ba 
5/2 17O, 27Al, 55Mn, 47Ti, 121Sb, 127I, 185Re, 187Re 
3 10B 
7/2 45Sc, 49Ti, 51V, 59Co, 123Sb, 133Cs, 181Ta, 139La 
9/2 93Nb, 113In, 115In, 209Bi 
* For I = 0: examples of which the most abundant isotope of the element has I = 0. The list is not exhaustive. 

 
 

Particles are Fermions or Bosons:  Fundamental particles and atomic nuclei are divided into two 
types. Particles that have half-integer spin are called Fermions. Examples of Fermions include 
the electron, proton, neutron, and atomic nuclei with half-integer spin. Particles with integer spin 
are called Bosons. Examples of Bosons include photons and nuclei with zero and integer spin. 
Fermions are governed by Fermi-Dirac statistics, in that the wave functions of Fermions are 
antisymmetric with respect to exchange of nuclear labels. Bosons are governed by Bose-Einstein 
statistics, in that the wave functions of Bosons are symmetric with respect to exchange of 
nuclear labels. The consequence of Fermi-Dirac statistics for atomic and molecular structure is 
summarized by the Pauli Exclusion Principle; to ensure wave function anti-symmetry, no two 
electrons can have the same set of quantum numbers. As a result, no quantum state can hold 
more than one electron, having either ms = +½ or ms = –½. The consequence of Bose-Einstein 
statistics is that a quantum state can hold any number of Bosons. However, at high temperature 
the probability of multiple occupancy is negligible. An analogy is helpful:6 
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Imagine you and a friend are placed at random in rooms in the largest building you can 
imagine. (Each room represents a unique quantum state, and you are a molecule.) If both of 
you follow Fermi-Dirac rules, you are not allowed to be in the same room. However, if you 
adhere to Bose-Einstein rules, double occupancy is allowed. If you are both placed at 
random, and if the number of rooms in huge, the odds that you both land in the same room are 
quite small.  [John S. Winn, Physical Chemistry, ref. 6] 

 

   In determining the partition functions of systems of Fermions, the sum over states must 
exclude any configuration that has more than a single particle in the same spin-specific energy 
state. The distribution function of the occupancy of such states is not the Boltzmann distribution. 
For Bosons, many particles can occupy the same energy state, but then indistinguishability must 
be taken into account for each individual state. Once again the Boltzmann distribution is not 
valid. The effects of Bose-Einstein statistics are significant at low temperatures or for volume 
restricted systems. Luckily, at high temperature in macrosocopic systems there are many more 
accessible quantum states than particles and the dilute limit is applicable. The Boltzmann 
distribution is the “classical” average of the Fermi-Dirac and Bose-Einstein distributions and is 
entirely adequate in describing room temperature macroscopic chemical systems. 
 

The Dilute Limit Requires Many More Available Energy States than Molecules:  In Sec. 30.2 we 
determined that the canonical ensemble and molecular partition functions of a system containing 
N identical molecules is Q = qN/N!, where N! is the number of permutations of N particles 
among the N filled states. The validity of the factor of N! to account for indistinguishability 
requires the dilute limit. The number of available quantum states must be much greater than the 
number of molecules. Consider just translation as given by the 3D-particle in a box. For one 
mole of gas at one bar pressure and 298 K, the volume is 24.8 L. The corresponding cubical box 
of that volume is 2.96 m on a side. For CO2 with molar mass of 44.0 g mol-1, the spacing 
between the lowest two particle in a box states, which are (nx, ny, nz) = (1, 1, 1) and (2, 1, 1), is 
only h2/(8ma2) (22 – 12) = 2.57x10–44 J or equivalently 1.30x10–20 cm-1. At room temperature the 
available thermal kinetic energy is 207.22 cm-1, which is 22 orders of magnitude larger than the 
energy level spacing. An instructive case is for equal nx, ny, and nz quantum numbers. Assuming 
equal nx, ny, and nz, energy state (1011, 1011, 1011) has an energy equal to the available thermal 
kinetic energy at room temperature. At least (1011)3 states are available. In a macroscopic 
chemical system at room temperature with  6.02x1023 molecules, the dilute limit is clearly 
valid. Rotation adds many more accessible states. 
   In the dilute limit, occupation of a given state by more than one molecule is highly improbable. 
Under these circumstances the distinction between Fermi-Dirac and Bose-Einstein statistics is 
irrelevant. The system is then essentially classical from the statistical perspective and the 
Boltzmann distribution is an accurate representation of the probability distribution. In counting 
the number of indistinguishable states, the number of permutations of N particles is accurate, 
because there are no multiply occupied states. In fact most states are unoccupied. 
   For most chemical applications the distinction between Fermions and Bosons is irrelevant in 
terms of the energy of the system. However, the distinction is important in rotational 
spectroscopy and in counting the number of accessible rotational states. A good example to aid 
our discussion is diatomic H2. 
 

There are Two Kinds of H2: For the diatomic molecule composed of two 1H-atoms, the two 
nuclei can have either parallel or anti-parallel nuclear spins, in much the same way as electrons 
can fill atomic or molecule orbitals with parallel or anti-parallel electron spins, Figure 30.7.1. 
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Ortho-hydrogen results if the nuclear spins are parallel and para-hydrogen results if the nuclear 
spins are anti-parallel. 
 
 

 
 

Figure 30.7.1:  In ortho-H2 the nuclear spins are parallel. In para-H2 the nuclei have anti-
parallel spins. At 298 K, ortho-H2 is three times as abundant as para-H2. 

 
 

The conversion between ortho- and para-forms is slow; the conversion is catalyzed by 
inhomogeneous magnetic fields or the molecule must dissociate and then recombine. The para-
form is slightly lower in energy, but that energy difference is negligible at room temperature. 
The two forms have some important differences in their behavior. The rotational Raman 
spectrum of H2 clearly shows the effects of nuclear-spin symmetry. 
 

The Symmetry Number in Rotational Spectroscopy:  Since the nuclei of 1H–1H have spin ½, the 
nuclei are Fermions. What observable consequences result from symmetry restrictions required 
by Fermi-Dirac statistics? The protons that constitute the nuclei are given the wave functions:  
for mI = +½ or spin “up” and  for mI = –½ or spin “down.” These nuclear-spin wave functions 
are analogous to the spin wave functions of electrons. The two nuclei are indistinguishable, and 
so we cannot determine which is specifically “up” and which is specifically “down.” We must 
form symmetry-adapted combinations that don’t violate indistinguishability. The combination 
ns =  –  is then antisymmetric with respect to exchange of nuclear labels. The three 
combinations ns = ,  + , or  are symmetric with respect to exchange of labels. In 
considering the effect of the nuclear-spin symmetry on the properties of the complete molecular 
wave function, we note that the exchange of nuclear labels in H2 is identical to a rotation of 180 
about an axis perpendicular to the internuclear axis that runs through the molecule’s center of 
mass. The complete wave function of the molecule is the product of electronic, vibrational, 
rotational, and nuclear-spin wave functions: 
 

  = electronic vibration rotation ns       30.7.1 
 

For 1H–1H, the overall wave function must be antisymmetric with respect to rotation by 180. 
The electronic portion is given by the occupied molecular orbitals. The ground state of H2 is 1+

g. 
Rotation of 180 leaves the electronic wave function unchanged, giving a symmetric electronic 
part.7 The ground state vibrational wave function is always totally symmetric (see Problem 38.39 
and Figure P28.39.1). The symmetry of the overall wave function for H2 is then determined by 
the rotational and nuclear-spin wave functions. The rotational wave functions are given by the 
spherical harmonics with angular momentum quantum number J, Table 24.5.1. 
   The symmetry of the rotational wave functions under rotation by 180 can be conveniently 
determined through analogy with atomic orbitals. The angular portion of the atomic orbitals and 
the rotational wave functions have identical forms, with the angular momentum quantum number 
alternately given by l or J. Reference to Figure 25.2.2 shows that s- and d-orbitals are symmetric 
with respect to rotation by 180. On the other hand, p-orbitals are antisymmetric with respect to 

         

Para-H2 

         

Ortho-H2 
ns =  –  ns = 


 + 


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rotation by 180. By extension, orbitals with even l or J are symmetric with respect to rotation by 
180 and orbitals with odd l or J are antisymmetric with respect to rotation by 180.7 Now comes 
the important point. Given the nuclei are Fermions, if the overall molecular wave function is to 
be antisymmetric, then even J states must be combined with the antisymmetric nuclear-spin wave 
function, ns =  – . Correspondingly, odd J states must be combined with the symmetric 
nuclear-spin wave functions, ns = ,  + , or . 
   In rotational spectroscopy, para-hydrogen, which corresponds to ns =  –  can only have 
even J rotational states. Correspondingly, ortho-hydrogen can only have odd J rotational states. 
In addition, there are three symmetric nuclear combinations, giving that at room temperature the 
probability of occurrence of ortho-hydrogen is three times that of para-hydrogen. The rotational 
Raman spectrum then consists of two separate sub-spectra. The even-J transitions correspond to 
para-hydrogen and the odd-J transitions correspond to ortho-hydrogen. The rotational transitions 
alternate in intensity in the ratio 3:1 for odd and even J. 
   For para-hydrogen since only even J-states are possible, when calculating the rotational 
partition function the sum must include only even J-states. As a result the total partition function 
is half that of a non-symmetrical molecule. This restriction is the fundamental reason that we 
must assign the rotational symmetry number of two for symmetrical diatomics,  =2. The 
rotational symmetry number of ortho-hydrogen is also two; only odd J-states are accessible. 
   The influence of nuclear-spin symmetry on rotational spectra and the rotational partition 
function is even more striking in the case of CO2. The careful treatment of nuclear-spin 
symmetry is beyond the scope of this text. However, the general argument is similar to the case 
of molecular hydrogen. The nuclei of 12C16O2 all have zero spin. As a result the nuclei are all 
Bosons and the overall wave function must be symmetric. The nuclear-spin wave functions are 
necessarily symmetric (there are no nuclear spin “ups” and “downs”). The result is that CO2 can 
have only even J-states. Every other line is missing in the rotational Raman spectrum and in the 
rotational fine-structure of vibrational spectra of CO2. Once again, when calculating the 
rotational partition function, only even J-states are possible, which corresponds to assigning the 
rotational symmetry number as  = 2. The thermodynamic consequence is a decrease of –R ln  
in the contribution of rotation to the entropy of the molecule (see Problem 30.27). 
 

30.8 Summary – Looking Ahead 
 

   Classical thermodynamics guides us by determining the important interrelationships in energy 
transfer between chemical systems. In particular, Gibbs energy is the appropriate spontaneity 
criterion at constant temperature and pressure. However, using statistical mechanics we have 
discovered that all thermodynamics can be insightfully related to molecular properties. 
Molecular properties determine the number of accessible energy states. The mysteries of 
thermodynamics have hopefully been dispelled by relating the Gibbs energy of a system to the 
spectroscopic constants of the molecules. The spectroscopic constants are read directly from 
experimental spectra. Alternately, spectroscopic constants can be determined by careful 
electronic structure calculations. We are now able to sit at our desks while calculating the 
reaction Gibbs energy and equilibrium constant of any reaction of interest, at least in the ideal 
gas limit. Assuming accurate spectroscopic constants, the calculated equilibrium constant is 
likely to be better than is available from measurements in the laboratory. This achievement is 
remarkable and brings many of the goals of chemistry to fruition. However, these advances bring 
into stark contrast the work that remains to be done before we can truly say that we have a 
fundamental understanding of all chemical phenomena. We still need accurate theories to 
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determine solvent effects in condensed phase reactions. In addition, much work remains in 
achieving accurate predictions of the rates of chemical reactions and relaxation phenomena. 
Non-equilibrium systems relax towards equilibrium through fluctuations in the microscopic 
properties of the system. Fluctuations in the energy of the system are measured 
thermodynamically by the heat capacity. 
   The chemical insight available through statistical mechanics should leave a lasting impression. 
The interpretation of the equilibrium constant as the ratio of the number of accessible states of 
the products divided by the number of accessible states of the reactants is powerful. As chemists, 
our major goal is often to increase the production of products from a chemical reaction. 
Enhancing the production of products then reduces to molecular structure changes that decrease 
the energies of the accessible states of the products or increase the energies of the accessible 
states of the reactants. This insight is the foundation of structure-function relationships in 
chemical equilibria. 
 
 
 

Chapter Summary 
 

1.  For independent molecules the ensemble and molecular partition functions are related by: 
Q = qN/N! for N indistinguishable molecules. If the molecules are distinguishable, for example 
by position within a solid lattice, Q = qN. 

2.  For an ideal gas with independent translation, rotation, vibration, and electronic energies, the 
molecular partition function is the product of each degree of freedom: q = qt qint = qt qr qv qe, and 
the canonical ensemble partition function is Q = (qN

t /N!)qN
r  qN

v qN
e . 

3.  For independent, rigid rotor, harmonic molecules, the molecular partition functions are: 

 qt = 
(2mkT)

3/2

h3  V 

 qr = 
kT

B
~

hc
 linear  or qr = 


  





kT

A
~

hc

½





kT

B
~

hc

½





kT

C
~

hc

½
 non-linear 

 qv = 
e–ho/2kT

1 – e–ho/kT
     per mode, with reference o = ½ho 

 qv = 
1

1 – e–ho
 = 

1

1 – e–ho/kT
  = 

1

1 – e–hc~o/kT
  per mode, with reference o = 0 

4.  The rotational symmetry number, , is the number of indistinguishable orientations produced 
by rotations about the center of mass of the molecule. 

5. The rotational symmetry number is the order of the rotational sub-group of the point group of 
the molecule. The rotational sub-group is comprised of the proper rotations and the identity. 

6.  The electronic partition function is the sum of the Boltzmann weighting factors over all 
electronic energy levels with energy i and degeneracies gi, with the energy of the ground state as 
the reference energy, gs = 0:  qe =  gi e–i/kT 

7.  For a system at equilibrium, the internal energy is the Boltzmann average energy. The internal 
energy and entropy are direct functions of the ensemble partition function or, assuming 
independent molecules of a pure substance, a direct function of the molecular partition function: 
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Ensemble: General Molecular: Ideal gas 
Q =  e–Ei/kT q =  e–i/kT 

pi = 
e–Ei/kT

Q   pi = 
e–i/kT

q  

U – U(0) =  pi Ei = 
 Ei e–Ei/kT

Q  U – U(0) = N  pi i = N 
 i e–i/kT

q  

U – U(0) = – 
1
Q 



Q

 V
 U – U(0) = – 

N
q 



∂q

∂ V
 

U – U(0) = 
kT2
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


Q

T V
 U – U(0) = 

nRT2

q 



∂q

∂T V
 

U – U(0) = – 



∂ln Q

∂ V
 U – U(0) = –N 



∂ln q

∂ V
 

U – U(0) = kT2 



∂ln Q

∂T V
 U – U(0) = nRT2 





∂ln q

∂T V
 

S = –k  pi ln pi S = –nR  pi ln pi 

S = k ln Q + 
U – U(0)

T  S = nR ln



qe

N  + 
U – U(0)

T  

 

8. The molar entropy of an ideal monatomic gas or the translational entropy of any ideal gas is 
given by the Sackur-Tetrode Equation: 

 Sm = nR ln



(2mkT)3/2e

Nh3  V  + 3/2 nR = R ln



(2mkT)3/2e5/2

NAh3  Vm   
 

 Sm = R ln(Vm/L) + 3/2 R ln T + 3/2 R ln(M/g mol-1) + 11.1037 J K-1 mol-1 

9. All thermodynamic potential functions are directly related to the partition function, because 
internal energy and entropy are directly related to the partition function. 

 

Definition Ensemble: General Molecular: Ideal gas 
H  U + PV H – H(0) = U – U(0) + PV H – H(0) = U – U(0) + nRT 

A  U – TS A – A(0) = –kT ln Q A – A(0) =  –nRT ln



qe

N  

G  A + PV G – G(0) = –kT ln Q + PV G – G(0) = –nRT ln


q

N  

 

10.  Canonical ensemble partition function relationships apply in general for any system, real or 
ideal. Relationships in terms of the molecular partition function apply only to ideal gases. 

11.  For a real gas or condensed phase, the pressure and Gibbs energy are: 

 P = kT 






ln Q

V T
  G – G(0) = –kT ln Q + kTV 







ln Q

V T
 

12.  Assuming translation, rotation, vibration, and electronic degrees of freedom are independent, 
entropy and the thermodynamic potentials can be separated into additive terms for the center of 
mass translation and internal degrees of freedom, qint = qr qv qe : 

 S = 



nR ln



qte

N  + 
Ut – Ut(0)

T  + 



nR ln qint +

Uint – Uint(0)
T  

 G – G(0) = –nRT ln



qt

N  – nRT ln qint = –nRT ln



qt

N  – nRT ln(qr qv qe) 
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13.  For molar mass in g mol-1 the molar standard state translational partition function of an ideal 
gas is conventionally given in the form: 

 
qt ,m

NA
 = 

(2mkT)
3/2

h3  RT/P =  (M/g mol-1)3/2 (T/K)5/2       (P=1 bar) 

with the units conversion factor (gamma):  = 



2k

NA 1000 g kg-1

3/2
R

NAP h3 = 0.0259467 

14. The spectroscopic rotational temperature is: r = 
B
~

hc
k

  giving qr = 
T
r

   for a linear molecule. 

The spectroscopic vibrational temperature is: v = 
~ohc

k
  giving qv = 

1
1 – e–v/T

   for each mode. 

15.  The typical sizes of partition functions of small molecules are: 

  qt  1028 – 1029 V/L q°t /NA  106 – 107   qr  10 – 100  qv  1 – 10 

16.  In the high temperature approximation, energy levels approach a continuum of available 
energy states, which gives the classical limit. The approximation can be met with high 
temperatures or low energy rotations and vibrations, B

~
hc << kT or ~o hc << kT. 

17.  The contribution of rotation and vibration to the molar internal energy and Gibbs energy of 
an ideal diatomic gas, under the rigid-rotor and harmonic approximations are: 

 

per mole 
internal 

Rotation Vibration High temperature or    
ho << kT 

q 
qr = 

kT

B
~

hc
 qv = 

1

1 – e–ho/kT
 

 

qv = 
1

1 – e–ho
 

e–ho/kT  1 – 
ho

kT 
 

qv  
kT
ho

 

Um – Um(0) 

= 
RT2

q 



∂q

∂T V
 

 
   RT 

(NAho) e–ho/kT

1 – e–ho/kT
 

 
   RT 

 

Gm – Gm(0) 
= –RT ln q 

–RT ln






kT

B
~

hc
 RT ln(1 – e–ho/kT) –RT ln



kT

ho
 

 

Gm – Gm(0) 
at 298.15 K 

 

–RT ln






207.22 cm-1

B
~  

 

RT ln(1 – e–~o/207.22 cm-1
) 

 

–RT ln




207.22 cm-1

~o
 

 

18.  For each pure substance i: Gi (0) = Ai (0) = Hi (0) = Ui  (0) = o,i = – Do,i, where o,i is the 
zero-point electronic energy, which is the total electronic and zero-point vibrational energy, 
and Do,i is the dissociation energy to give atoms. The molar standard state Gibbs energy is: 

  Gi  = Gi (0) – RT ln





qt ,i

NA
 – RT ln(qr,i qv,i qe,i) 

19. The observed dissociation energy is: Do = De – ZPE, with the molar zero-point vibrational 
energy summed over all modes,  ZPE = ½ NAhc  ~o.   

20.  The equilibrium constant for a chemical reaction is the number of accessible product states 
divided by the number of accessible reactant states. 

21.  For aA + bB  cC + dD, the zero-point energy shift is ∆Eo = c oC + d oD – a oA – b oB, 
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where oC, oD, oA, and oB are the zero-point energy levels of each product and reactant, 
respectively. The equilibrium constant is: 

 Kp = 
( )q

C/NA

c
 ( )q

D/NA

d

( )q
A/NA

a
 ( )q

B/NA

b e
–Eo/RT 

where q
C
, q

D
, q

A
, and q

B
 are the standard-state molecular partition functions of each product 

and reactant, respectively. 

22.  The equilibrium constant for an atom-diatom exchange of ideal gas molecules in the rigid 
rotor-harmonic approximation is: 

 Kp = 



mAB mC

mA mBC

3/2
 









1

ABB
~

AB

1

BCB
~

BC

 









   

1

1 – e–hc~o(AB)/kT
   

   
1

1 – e–hc~o(BC)/kT
   

 



gAB gC

gA gBC
  e–∆Eo/RT 

         translation       rotation         vibration          electronic  zero-point energy shift 

23.  The constant volume heat capacity is: 

 Cv = 






U

T v
 = – 

1
kT2 






U

 V
 = 

1
kT2 






1

Q 






2Q

2
V
 + 

1
Q2 






Q



2

V
 

24.  Fluctuations are given by the squared standard deviation of the system energy as: 

 <E>2 = <E2> – <E>2 = kT2 Cv = 



RT2

NA
 Cv 

25.  Without fluctuations, the heat capacity of the system is zero; the system cannot absorb 
energy from the surroundings. Fluctuations, while thermodynamically negligible, allow the 
establishment of equilibrium. 

26.  The complete wave function of the molecule is the product of the electronic, vibrational, 
rotational, and nuclear wave-spin functions:   = electronic vibration rotation ns. 

27.  Half-integer spin particles are Fermions. Integer spin particles are Bosons. Under Fermi-
Dirac statistics, wave functions of Fermions are antisymmetric with respect to exchange of 
nuclear labels. Under Bose-Einstein statistics, wave functions of Bosons are symmetric. 

28.  In dilute systems, Boltzmann statistics are valid; there are many more energy states than 
molecules so that multiple occupancy of a state is highly improbable. The distinction between 
Fermi-Dirac and Bose-Einstein statistics is energetically irrelevant at high temperature in 
macroscopic volumes, except for H2. 

29.  Indistinguishability requires that nuclear-spin wave functions of symmetrical molecules are 
combined as symmetry adapted combinations, symmetric for Bosons and antisymmetric for 
Fermions. The result decreases the available rotational states in symmetrical molecules giving 
rise to the symmetry number in the rotational partition function. 
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Chapter 30: Statistical Mechanics Problems 
 

1. For a diatomic molecule, the rotational energy is J = B
~

hc J(J+1). (a.) Evaluate the rotational 
partition function of a heteronuclear diatomic molecule at 298.15 K by numerically summing the 
Boltzmann weighting factors over many energy levels in a spreadsheet. Take B

~
hc/kT = 0.00200. 

The degeneracy of each level is gJ = 2J + 1. (b.) Compare your numerical answer to the partition 
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function using the high temperature approximation: qr = kT/(B
~

hc). (c). Which rotational level 
has the maximum population of molecules? Why? 
 

2.  The fundamental vibration frequency for H35Cl is 2885.3 cm-1. Calculate the ratio of the 
number of molecules in the first excited vibrational state to the number in the ground vibrational 
state at 298.2 K. 
 

3.  The rotational constant for the linear molecule H–CN is 1.4782 cm-1.2 Calculate the ratio of 
the number of molecules in excited rotational level J = 3 to the number in the ground rotational 
level J = 0 at 298.2 K. [Hint: take the rotational degeneracy 2J + 1 into account.] 
 

4.  Verify the units conversion factor,  = 0.0259467, for the translational partition function in 
Eqs. 30.3.1-30.3.2 for a P = 1 bar standard state.  
 

5.  (a). Calculate the translational partition function in the form qt ,m/NA for hydrocyanic acid, 
H–CN, at 298.2 K. (b). Calculate the rotational partition function of H–CN at 298.2 K. 
Hydrocyanic acid is linear with rotational constant 1.4782 cm-1.2  
 

6.  Does anharmonicity have a significant effect on the vibrational partition function? The 
vibrational constants for diatomic Mg2 are ~e = 51.12 cm-1, e~e = 1.64 cm-1, and 
Ye~e = 0.0162 cm-1. Using the zero-point energy as the zero in energy, determine the vibrational 
partition function at 298.2 K by explicit summation for three cases. (a). Assume a harmonic 
oscillator with the observed vibrational frequency ~o. Calculate ~o using the first and second 
anharmonicity corrections, extending Eq. 27.5.11 as: ~o = ~e – 2e~e + 13/4 Ye~e. (b). Assume an 
anharmonic oscillator including only the first anharmonicity correction, Eq. 27.5.8. (c). Assume 
an anharmonic oscillator including the first and second anharmonicity corrections, Eq. 27.5.5. 
[Hint: for the anharmonic oscillator cases, extend the sums until the vibrational energy reaches a 
maximum, which corresponds to the dissociation limit.] 
 

7.  Calculate the electronic partition function of atomic carbon at 298.2 K. The spectroscopic 
constants for the low-lying electronic states are given in Table 30.2.2. 
 

8.  Calculate the contribution of translation to the molar standard state entropy of H–CN at 
298.2 K. Compare this translation-only result to the literature value of the thermodynamic 
standard state absolute entropy. 
 

9.  Calculate the contribution of rotation to the molar entropy of H–CN at 298.2 K. Combine 
the translational contribution from the previous problem with the rotational contribution. 
Compare this translation-rotation only result to the literature value of the thermodynamic 
standard state absolute entropy. Hydrocyanic acid is linear with rotational constant 1.4782 cm-1.9 
 

10.  Determine the contribution of a vibration to the internal energy of a substance. Use the zero-
point vibrational level,  = 0, as the zero in energy. Repeat the derivation giving Eq. 30.4.13. 
However, this result was derived using Eq. 30.3.15; use Eq. 30.3.6 as the basis of your 
derivation, instead. 
 

11.  Find the contribution of a vibration to the enthalpy, Hv – Hv(0). Assume the energy zero is at 
the bottom of the vibrational potential, giving the zero-point  = 0 vibrational level at o = ½ ho. 
For vibrations Hv – Hv(0) = Uv – Uv(0). The reason vibrational enthalpy and internal energy are 
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equal is that even though H  U + PV, the PV correction term is included in calculating the 
translational enthalpy. [Hint: Eq. 30.3.15 is most convenient for this problem. Note that 
Eq. 30.4.13 was derived with the  = 0, zero-point vibrational level as the reference energy.] 
 

12.  For one mole of an ideal gas at 25C and constant volume, the number of accessible states 
increases by 10% with a temperature increase of 20C. Estimate to a single significant figure 
(don’t use a calculator) the internal energy of the substance. Based on Equipartition neglecting 
vibration, the value of Um – Um(0) for a monatomic ideal gas is 3/2 RT, for a diatomic ideal gas is 
5/2 RT, for a linear triatomic is 5/2 RT, and for a bent triatomic is 6/2 RT. To which case does this 
result most closely correspond? 
 

13.  We can find an approximate formula for the internal energy based on the order of magnitude 
of the change in accessible states by converting Eq. 30.3.16 to base-ten log: ln x = 2.303 log x: 
 

 U – U(0) = 2.303 nRT2 




∂log q

∂T V
 

and at 298.2 K:  Um – Um(0) = 1702 kJ K mol-1





∂log q

∂T V
  2000 kJ K mol-1





∂log q

∂T V
 

For one mole of an ideal gas at 298 K and constant volume, the number of accessible states 
increases by a factor of ten for a temperature increase of 20 K. Estimate to a single significant 
figure (don’t use a calculator) the internal energy of the substance. 
 

14.  A quick estimate of the rotational contribution to the Gibbs energy of a linear molecule at 
room temperature is available by converting ln x to log x and using 2.303RT = 5.71 kJ mol-1: 
 

 Gm – Gm(0) = –2.303 RT log






207.2 cm-1

B
~   -6 kJ mol-1 log







207.2 cm-1

B
~  

 

Without using a calculator estimate the contribution of rotation to the molar Gibbs energy of 
CO2. The rotational constant for CO2 is 0.379 cm-1. [Hint: use log 10n = n] 
 

15.  The atomic energy levels for low-lying states of atomic oxygen are given in Figure 30.2.6. 
These low-lying states are an example of a three-level system. Consider a three level system with 
energies o, 1, and 2 with corresponding degeneracies go, g1, and g2, respectively. The lowest 
energy level is defined as the energy zero, o = 0. (a). Show that the contribution of the electronic 
degree of freedom of a three-level system to the molar internal energy is given by: 
 

 Um – Um(0) = NA 
g1 1 e–1/kT + g2 2 e–2/kT

go + g1 e–1/kT + g2 e–2/kT
 

 

(b). Plot the electronic contribution to the molar internal energy of O-atoms as a function of 
temperature, in the range 10 K to 800 K. 
 

16.  Calculate the contribution of the electronic degree of freedom to the molar internal energy of 
atomic carbon at 298.2 K. The spectroscopic constants for the low-lying electronic states are in 
Table 30.2.2. 
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17.  Calculate the contribution of the electronic degree of freedom to the molar Gibbs energy of 
atomic oxygen at 298.2 K. The spectroscopic constants for the low-lying electronic states are in 
Table 30.2.2. 
 

18.  The nucleus of a deuterium atom has a spin of one, I = 1. In a magnetic field of strength Bo, 
a deuterium nucleus has energy levels  = ħBo mI, with mI = +1, 0, -1. The magnetogyric ratio, 
, is a constant for each isotope of each element. For deuterium,  = 41.065 radians s-1 T-1, with 
the magnetic field strength given in tesla, T. For thermodynamic calculations, setting the lowest 
energy level at  = 0 is most convenient. With the shifted zero in energy, the deuterium nuclear 
energies are at  = 0 for mI = +1,  = ħBo for mI = 0, and  = 2ħBo for mI = -1. Find the 
partition function and the contribution of the nuclear energy to the internal energy. [This three-
level system is the basis of 2H NMR spectroscopy. 2H NMR is common, especially for locking 
and shimming operations while doing conventional proton and 13C NMR.] 
 

19.  The translational partition function of a mobile species on a surface is: 
 

 qt = 
2mkT

h2   
 

where  is the surface area (not to be confused with the rotational symmetry number). Find the 
contribution of translation to the molar internal energy of the species, Ut – Ut(0). 
 

20.  Find the relationship between the Helmholtz energy and the molecular partition function. 
Start with A – A(0) = –kT ln Q, Eq. 30.3.40. Find the relationship between the Helmholtz energy 
and the molecular partition functions of rotation, vibration, and electronic degrees of freedom 
(just in the form qr qv qe). 
 

21.  Find the relationship between the Helmholtz energy and the molecular partition function. 
Start with A – A(0) = –kT ln Q, Eq. 30.3.40. (See also Problem 30.20). From the resulting 
equation, derive Eq. 30.3.51. 
 

22.  Calculate the rotational partition function for HF at 298.15 K. Calculate the contribution of 
rotation to the molar entropy and molar Gibbs energy of HF. 
 

23.  Calculate the rotational spectroscopic temperature and partition function for HF at 298.15 K. 
Calculate the contribution of rotation to the molar entropy and molar Gibbs energy of HF. 
 

24.  Calculate the rotational partition function for 24Mg2 at 298.15 K. The bond length is Re = 
3.07859 Å. Calculate the contribution of rotation to the molar entropy and molar Gibbs energy. 
 

25.  Calculate the contribution of vibration to the molar entropy at 298.15 K for HCN, given the 
literature value of the observed bending vibration frequency at ~o = 711.98 cm-1 and the two 
stretching vibrations at 2096.85 cm-1 and 3311.47 cm-1.3 The bending vibration is doubly 
degenerate. (See also Problems 8 and 9 for the contributions of translation and rotation.) 
 

26.  Calculate the vibrational partition function at 298.15 K for Mg2, given the literature value of 
the fundamental vibration frequency, ~o = 47.89 cm-1. Calculate the contribution of vibration to 
the zero point energy, and molar internal energy, entropy, and Gibbs energy of Mg2. 
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27.  The symmetry number,, in the rotational partition function may seem arbitrary at first. 
This problem is designed to explore the effects of the symmetry number on the properties of 
molecules. A good test case is to consider N2 and CO. We will look at the contribution of 
rotation to the entropy of these two very similar diatomic molecules. The mass of N2 is 28.02 g 
mol-1 and the mass of CO is 28.01 g mol-1, so the contribution of translation to the entropy is 
essentially identical. The fundamental vibration frequencies of the two are very similar, ~o for N2 
is 2359.6 cm-1 and for CO is 2170.2 cm-1. The vibrational contribution to the entropy is 
essentially identical. Both molecules have singlet ground states. The rotational constants are also 
very similar, B

~
e for N2 is 2.010 cm-1 and for CO is 1.9314 cm-1. So, the only major difference is 

the symmetry. 
(a). Prove that the contribution of rotation to the molar entropy of a diatomic gas is: 
 

 Sm = R ln






kT

B
~

e hc
 + R – R ln 

 

(b). Using the result from part a, and assuming that the differences in B
~

e of N2 and CO are 
negligible, calculate the theoretical difference in entropy of N2 and CO. The experimental 
entropies are 191.61 J K-1 mol-1 for N2 and 197.67 J K-1 mol-1 for CO. Compare theory and 
experiment. 
(c). Evaluate the contribution of just the symmetry part of the rotational partition function to the 
equilibrium constant for the reaction:   N2 + CO2  CO + N2O 
 

28.  Write your own spreadsheet that reproduces Example 30.5.1. 
 

29. The equilibrium constant expression in Eq. 30.5.24 can be related directly to the bond 
lengths of the diatomic molecules: RAB for the product and RBC for the reactant. (a). Express Eq. 
30.5.24 directly in terms of the bond lengths of the diatomic species. The result clearly shows 
the relationship between molecular structure and the position of equilibrium. (b). For atom-
diatom exchange on the basis of rotation alone, if RAB > RBC are products or reactants favored? 
 

30.  Use typical values of the partition functions, Eq. 30.4.5, to estimate the equilibrium 
constant of the ideal gas reaction: O2 + F  OF + O at 298 K. This reaction is a possible reaction 
in ozone depletion in the stratosphere. Use qt/NA = 1x107, qr = 100, and qv = 1. Since OF has an 
odd number of electrons, assume the ground state of OF is a doublet, 2. The bond dissociation 
energies are: Do(O2) = 5.126 eV = 494.6 kJ mol-1 and Do(OF) = 1.61 eV = 155 kJ mol-1. 
 

31.   Use the “Equilibrium Constants from Molecular Structure” applet, “efs.html,” on the 
textbook Web site and companion CD to calculate the equilibrium constant for the reaction in the 
previous problem: O2 + F  OF + O at 298 K. The spectroscopic parameters are available as 
examples, or the values given in the previous problem can be input by hand. Compare with the 
approximate results from the previous problem. 
 

32.  Consider the reaction AB  A + B, where A and B are atoms. Predict the effect on the 
equilibrium constant if the following changes are made. (a). The AB molecule is a ground state 
triplet (like O2) instead of a singlet. (b). The AB bond length is increased. (c). The AB force 
constant is increased. (d). The AB bond dissociation energy is increased. [Changing just one 
molecular parameter is impossible, bond strength changes have multiple effects. For the purposes 
of this exercise assume that the given change is done without changes in other parameters.] 
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33.  Calculate the equilibrium constant of the ideal gas dissociation Mg2  Mg + Mg at 
298.15 K. Assume the isotope is 24Mg. The spectroscopic constants for Mg2 are Re = 3.8905 Å, 
~o = 47.89 cm-1, and De = 0.04979(4) eV.1 The ground state of Mg2 is 1+

u and the ground state of 
Mg-atoms is 1So. 
 

34.  Heat capacities are the fundamental building blocks of all thermodynamic properties. For 
example, Third Law absolute entropies are based entirely on the temperature dependence of the 
heat capacity of the pure substance and enthalpies of the phase transitions, which in turn require 
heat capacities for their measurement. (a). Prove that the constant volume heat capacity of a pure 
substance is given by: 
 

 Cv = 






U

T v
 = 2nRT







ln q

T v
 + nRT2







2ln q

T2
v
 

 

(b).  Show that the constant volume heat capacity of rotation of a linear molecule is nR. 
 

35.  The Equipartition prediction of the contribution of a vibration to the molar heat capacity of a 
diatomic molecule is Cv = R, which is the maximum contribution at high temperatures. More 
accurately, the contribution of vibration to the internal energy of a diatomic molecule, in the 
harmonic approximation, is given by Eq. 30.4.13. (a).  Determine the heat capacity of a diatomic 
molecule, in the harmonic oscillator approximation, usng the following steps. (a). To make the 
derivation easier, start by showing that the vibrational contribution is given by: 
 

 U – U(0) = 
Nho e–ho

1 – e–ho  = 
Nho

eho – 1
 

(b).  Then, convert the heat capacity derivative to one written in terms of : 
 

 Cv = 






U

T v
 = 






U

 v







T v
 = – 

1
kT2 






U

 v
 

 

(c).  Show that:   Cv = 
N(ho)2

kT2  






eho

(eho – 1)2  
 

(d).  Finally show that:   Cv = 
N(ho)2

kT2  






e–ho/kT

(1 – e–ho/kT)2  
 

(e).  Plot the molar heat capacity from T = 10 to 1000 K for a vibration frequency of 200.0 cm-1. 

At what temperature, compared to ~o, does the vibration begin to make a significant contribution 
to the heat capacity? 
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