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Chapter 29: Magnetic Resonance Spectroscopy 
 
“But because throughout the universe from time everlasting countless numbers of them [atoms], buffeted and 
impelled by blows, have shifted in countless ways, experimentation with every kind of movement and combination 
has at last resulted in arrangements such as those that created and compose our world.” 
 

“at absolutely unpredictable times and places they deflect slightly from their straight course, to a degree that could 
be described as no more than a shift of movement”      Lucretius1 

 
   Nuclear magnetic resonance and electron spin resonance are distinguished from other forms of 
spectroscopy by the ability to directly determine molecular connectivity. Molecular connectivity 
is the pattern of atomic connections that distinguish structural and geometric isomers. 
Magnetically active nuclei are observed in nuclear magnetic resonance, NMR. Unpaired 
electrons in molecules or ions are observed in electron spin resonance, ESR. ESR is alternately 
called electron paramagnetic resonance, EPR. Nuclear and electron spins behave analogously 
when placed in a magnetic field. In a magnetic field, transitions between spin states are observed. 
The transition frequencies reflect the chemical shifts of the spins and the coupling between the 
spins. 
   NMR and Xray diffraction are the most direct and indispensable techniques in molecular 
structure determination. NMR techniques are well-developed for small and large molecules, 
including proteins and nucleic acids. NMR and Xray diffraction are the experimental foundation 
of diverse areas such as natural products chemistry, organometallic chemistry, and Structural 
Biology. ESR is particularly useful in characterizing paramagnetic metal complexes and reactive 
intermediates in chemical reactions. Chemical shifts in  magnetic resonance spectra provide 
information about the electronic environments in a molecule or free radical. In addition, the 
coupling between spins is manifested in spin-spin splitting, which aids the determination of 
molecular connectivity. Magnetic resonance is also a sensitive probe of molecular motion. 
   The utility of magnetic resonance techniques is enhanced using pulsed modes of spectral 
acquisition. In pulsed spectroscopies a short pulse of radiation is used to create a coherent 
superposition of states. The time evolution of the coherent superposition allows the study of 
molecular connectivity, state dynamics, and molecular motion. Because NMR is the lowest 
frequency common form of spectroscopy, coherent techniques have been first introduced in 
NMR and later applied to ESR, terahertz, and optical spectroscopies. Coherence based 
spectroscopy uses the careful production and manipulation of known superposition of states, 
which includes the relative phase of each state in the superposition. Coherent states evolve along 
a coupled, deterministic, and cooperative path. The intricate control of coherence allows many 
new forms of spectroscopy that meet critical needs in molecular structure and motion 
characterization. 
 
29.1 Nuclear Magnetic Resonance 
 

Nuclear Spin States Have Different Energies in a Magnetic Field:   Charged particles that have 
non-zero angular momentum have a magnetic moment. A nucleus with spin quantum number I 
has angular momentum with magnitude ħ I(I+1), which in an applied magnetic field has 
projections along the magnetic field axis of ħmI with mI = –I, –I+1, .., 0, …, I–1, I. The number 
of projections is 2I + 1, Eq. 24.5.36. The magnetic moment is proportional to the angular 
momentum. The projection of the nuclear magnetic moment along the applied field, z, is 
correspondingly quantized: 
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 z = n ħ mI    mI = –I, –I+1, .., 0, …, I–1, I   29.1.1 
 

where n is the magnetogyric ratio. The magnetogyric ratio, which is also called the 
gyromagnetic ratio, has units of radians per second per unit field strength in tesla and is 
characteristic of the given nucleus, Table 29.1.1. Of the naturally occurring elements, only argon 
has no magnetic isotope. 
 
 

Table 29.1.1: Typical Magnetic Nuclei with Resonance Frequencies at 9.395 T. The 
receptivities relative to 1H and 13C are the relative spectroscopic sensitivities.2 

 

Nucleus I Abundance 
(%) 

   n 

(106 s-1 T-1) 
 (MHz) Receptivity 

Recept 1H 
Receptivity 
Recept 13C 

1H ½ 99.989 267.522 400.0 1.00 5870 
2H 1 0.0115 41.066 61.40 1.11x10-6 0.00652 
13C ½ 1.07 67.283 100.58 1.70x10-4 1.00 
14N 1 99.632 19.338 28.90 0.00100 5.90 
15N ½ 0.368 -27.126 40.55 3.84x10-6 0.0225 
17O 5/2 0.038 -36.281 54.23 1.11x10-5 0.0650 
19F ½ 100 251.181 376.4 0.834 4900 
31P ½ 100 108.394 161.9 0.0665 391.0 
35Cl 3/2 75.78 26.24 39.24 0.00358 21.0 
195Pt ½ 33.83 58.385 87.30 0.00351 20.1 

 
 
   Consider first the nuclei of hydrogen atoms, which are protons or equivalently 1H. Protons 
have spin quantum number I = ½. When placed in a magnetic field, the magnetic moment of the 
proton has two orientations with respect to the applied magnetic field, giving angular momentum 
projections mI = ½, Figure 29.1.1. 14N has I = 1, giving three possible projections of the spin 
angular momentum. 35Cl has I = 3/2, giving four possible projections. 
   The classical energy of interaction of a magnetic moment with an applied magnetic field is:3 

 

 E = – n  B


o          29.1.2 
 

where n is the magnetic moment vector and B


o is the applied magnetic field vector, with 
magnitude Bo. For convenience, we align the direction of the applied magnetic field with the z-
axis. The z-axis is then the direction of quantization in Eq. 29.1.1; the projection of the magnetic 
moment along the z-axis determines the energy. The quantum mechanical Hamiltonian is then 
derived from the classical expression giving the energy of a single spin as: 
 

 H^  = – n ħ I
^
z Bo         29.1.3 

 

where I
^
z is the quantum operator that determines the projection of the angular momentum along 

the z-axis. The corresponding spin wave functions are eigenfunctions of both I
^
z and the 

Hamiltonian with energy: 
 

 E = – n ħ mI Bo `        29.1.4 
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Figure 29.1.1: Energy levels of a nuclear spin in an applied magnetic field. (a). The z-axis 
projection of the angular momentum is quantized. (b). The energy level diagram has equally 
spaced spin states corresponding to unit changes in the z-axis angular momentum projection. 

 
 
   For protons and other spin-½ nuclei, the spin wave functions are:  for mI = +½ or “spin-up” 
and  for mI = –½ or “spin-down.” Using the spin Hamiltonian, Eq. 29.1.3, gives: 
 

 I
^
z  = +½  and H^   = E  with  E = –½ n ħ Bo 

 I
^
z  = –½  and H^   = E  with  E = +½ n ħ Bo    29.1.5 

 

The specific selection rule requires a unit change in angular momentum for an allowed transition. 
As a result light absorption and emission cause transitions only between adjacent spin levels. The 
allowed transition energy differences are, Figure 29.1.1b: 
 

 E = ho = n ħBo      ()   29.1.6 
 

where o is the transition frequency. NMR transition frequencies are in the radio-frequency 
region of the electro-magnetic spectrum. When the frequency of the exciting radiation matches 
the transition frequency, energy is absorbed or emitted and spins “flip” going from spin-up to 
spin-down or spin-down to spin-up, respectively. This frequency matched condition is said to be 
at resonance, whence the name nuclear magnetic resonance. 
   The sensitivity of NMR, relative to optical spectroscopies, is quite poor. One cause is that high 
energy photons are easier to detect than low energy photons. Secondly, the Boltzmann 
population differences are unfavorable in NMR. For example, at room temperature, the 
Boltzmann population difference for the mI = ½ transition of protons at  = 400 MHz is: 
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n–

n+
 = e– 

E/kT = e–nħBo/kT = e–/(kT/h) = e–400x106 s-1
/6.2124x1012 s-1 = 0.999936 

 n+ – n– = (n+ + n–) 



1 – 0.999936

1 + 0.999936  = (n+ + n–) 3.20x10-5     (400 MHz at 298.2 K) 29.1.7 
 

Values of kT/h are tabulated on the inside front cover of this text. The population difference is 
only 32 out of a million protons. High field strength results in higher transition frequency and 
larger population differences, which greatly enhance sensitivity. Instruments operating up to 
1 GHz for 1H at 23.5 T are commercially available. A third cause of the poor sensitivity of NMR 
is that the natural abundance of many magnetic nuclei is small. Only one out of every 100 carbon 
atoms is a 13C. Receptivity, which takes into account the transition energy, population difference, 
and natural abundance, is a measure of the spectroscopic sensitivity. Relative receptivity as 
compared to protons or 13C are commonly tabulated, Table 29.1.1. 13C NMR is roughly four-
orders of magnitude less sensitive than proton NMR. The proton and 13C spectra of ethanol are 
shown in Figure 29.1.2. 
 

 
Figure 29.1.2: 1H and 13C NMR spectra of ethanol. (a). 1H spectrum at 400 MHz in 
deuterated methanol. (b). Scale expansions about the chemical shifts for the methylene and 
methyl groups, respectively. (c). 1H spectrum at 90 MHz in deuterated chloroform. The inset 
shows the exchange broadened hydroxyl peak on an expanded chemical shift scale. (d). 13C 
proton-decoupled spectrum at 100 MHz in deuterated chloroform. The 1:1:1-triplet at 77.4 
ppm is the solvent. 
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The Chemical Shift is Dependent on Local Electron Denisty:   The proton NMR spectrum of 
ethanol, Figure 29.1.2a, is a plot of signal intensity, or absorption, versus frequency. For 
historical reasons, the convention is to plot frequency increasing to the left. At low resolution the 
spectrum shows three resonances, which correspond to three different chemical environments. 
The differences between the chemical environments are small. As a result, the horizontal axis is 
usually presented as relative shifts in parts per million, ppm, instead of directly in frequency. For 
resonance i, the chemical shift in ppm is defined as: 
 

 i  
i – ref

ref
 1x106 ppm        29.1.8 

 

where i is the given resonance frequency and ref is the reference frequency. For 1H NMR, 
tetramethylsilane, TMS, is often chosen as the reference, which by definition is assigned a 
chemical shift of 0 ppm. The small shift in frequency between different chemical environments 
is remarkable. For example, a 10 ppm chemical shift at a resonance frequency of 300 MHz 
corresponds to: 10 ppm(300x106 Hz)(1/106 ppm) = 3000 Hz. If TMS resonates at 
300.00000 MHz, then 10 ppm corresponds to 400,003,000 Hz. The typical chemical shift range 
of 1H NMR is -1 – 14 ppm. 
   The integrals under the transitions are proportional to the number of protons in each chemical 
environment. Using the integrals to identify the chemical environments in ethanol, the most 
“downfield” resonance at 4.8 ppm is the –OH proton.The resonance at 3.68 ppm is for the 
methylene protons, -CH2-. The “upfield” resonance at 1.88 ppm is for the methyl protons. The 
chemical shifts are caused by differences in the electronic environment at each nucleus. The 
chemical shifts of different chemical environments are amazingly constant from molecule to 
molecule, Tables 29.1.2-29.1.3. However, because the –OH proton in ethanol is labile, the 
chemical shift of the –OH proton is variable and the transition is broadened, Figure 29.1.2c. This 
special case is discussed in the section on chemical exchange. 
 
 

Table 29.1.2: 1H Chemical Shifts of Methyl, Methylene, and Methine Groups.(DS)4 
 

 Methyl protons H Methylene protons H Methine protons H 
C CH3–R 0.9 R–CH2–R 1.4 >CH–R 1.5 
 CH3–C–O 1.3 R–CH2–C–O 1.9 >CH–C–O 2.0 
 CH3–C=C 1.6 R–CH2–C=C 2.3 >CH–C=C 2.6 
 CH3–Ar 2.3 R–CH2–Ar 2.7 >CH–Ar 3.0 
 CH3–C(=O)–R 2.2 R–CH2-C(=O)–R 2.4 >CH–C(=O)–R 2.7 
 CH3–C(=O)–OR 2.0 R–CH2-C(=O)–OR 2.2 >CH–C(=O)–OR 2.5 
N CH3–N 2.3 R–CH2–N 2.5 >CH–N 2.8 
 CH3–N–Ar 3.0 R–CH2–N–Ar 3.1 >CH–N–Ar 3.6 
 CH3-N–C(=O)–R 2.9 R–CH2–N–C(=O)–R 3.2 >CH–N–C(=O)–R 4.0 
O   R–CH2–OH 3.6 >CH–OH 3.9 
 CH3–OR 3.3 R–CH2–OR 3.4 >CH–OR 3.7 
 CH3–O–Ar 3.8 R–CH2–O–Ar 4.3 >CH–O–Ar 4.5 
 CH3–O–C(=O)–R 3.7 R–CH2–O–C(=O)–R 4.1 >CH–O–C(=O)–R 4.8 
X   R–CH2–Cl 3.6 >CH–Cl 4.2 

R = alkyl, Ar = aromatic ring. Typically 0.3 ppm for methyl and methylene and 0.5 ppm for methine unless 
electronic or anisotropic effects from other groups are strong. 
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Table 29.1.3:  Chemical shift ranges for protons attached to multiple bonds.4 
 

Structure H Structure H 
RCH=O 9.4 – 10.0 >CCH 4.5-6.0 
ArCH=O 9.7 – 10.5 >CCHC(=O) 5.8 – 6.7 
OCH=O 8.0 – 8.2 HCCC(=O) 6.5 – 8.0 
>NCH=O 8.0 – 8.2 HCCO 4.0 – 5.0 
CCH 1.8 – 3.1 >CCHO 6.0 – 8.1 
>CCCH 4.0 – 5.0 HCCN 3.7 – 5.0 
ArH 6.0 – 9.0 >CCHN 5.7 – 8.0 

 
   13C NMR is a commonly used tool, especially in natural products chemistry, Figures 29.1.2d, 
29.1.3. 13C chemical shifts are roughly 20 times the corresponding proton chemical shifts, with 
the typical range of 0 to 220 ppm relative to TMS. One advantage of 13C spectra is the 
appearance of resonances for aldehydes, ketones, carboxylic acids, esters, amides, acid 
anhydrides, and nitriles, which have no corresponding 1H equivalent, Table 29.1.4. Quaternary 
carbons, which have no attached hydrogens, also appear. 
 
 

 Saturated (sp3)              R–CH3        8-30 
                 R–CH2–R                  15-55 
                        R3CH      R4C                20-60 
                          –C–O–                     40-80 
                             –C–Cl                         35-80 
                       –C–Br                      25-65 
 Alkyne, Nitriles (sp)           –CC–                65-90 
          –CN      nitriles                110-135 

 Unsaturated (sp2)                    >C=C<               olifins              100-150 
                         aromatic                    aromatics             110-175 
                                       >C=O         acids, esters, amides, anhydrides             155-185 
                    >C=O          aldehydes,ketones                185-220 
        |––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––|––––| 
                                 200                                     150                                      100                                       50                                         0 
       (ppm) 
 

Figure 29.1.3: 13C-chemical shift ranges using TMS as a reference.5 

 
 

Table 29.1.4: 13C Chemical Shifts of Carbonyl Carbons.(DS) 4 

             

          O            O 
           ||               || 
          C            C 
                  /     \                   /     \ 
             R1             R2  C              R1             R2    C 
 

Et–  –H 206.0 Et–  –OMe 173.3 
CH2=CH–  –H 192.4 CH2=CH–  –OMe 165.5 

Ph–  –H 192.0 Ph–  –OMe 166.8 
Et–  –Me 207.6 Et–  –NH2 174.3 

CH2=CH–  –Me 197.2 CH2=CH–  –NH2 168.3 
Ph–  –Me 197.6 Ph–  –NH2 169.7 
Et–  –OH 180.4 Me–  –OAc 167.3 

CH2=CH–  –OH 171.7 Ph–  –OAc 162.8 
Ph–  –OH 172.6 Et–  –Cl 174.7 

   Ph–  –Cl 168.0 
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   A semi-classical descriptive model is useful to understand the origins of the chemical shift. 
Consider one of the protons in a methyl group, Figure 29.1.4a. 
 

 
 

Figure 29.1.4: Diamagnetic shielding of a proton is caused by induced currents in the orbitals 
forming the C–H bond. (a). The force caused by the velocity of the electron and the applied 
magnetic field causes a ring current about the C-H bond. (b). The induced magnetic field 
opposes the external applied magnetic field. (c). Attached electronegative atoms decrease the 
electron density in the C-H bond, decreasing the ring current, which then decreases the 
induced magnetic field. The result is a downfield, less diamagnetic chemical shift. 

 
 

First assume that the methyl group is attached to a neighboring carbon-atom, -C-CH3. When 
placed in a magnetic field the electrons in the molecular orbitals forming the C –H bond 
experience a force given by F


B = –ev x B


o, where F


B is the force, –e is the charge, and v is the 

velocity vector of the electron. The resulting direction of the force is given by the familiar “right-
hand” rule.3 Assume that the electron has an initial velocity away the viewer, perpendicular to 
the plane of the paper, Figure 29.1.4a. The corresponding force is towards the nuclei. The 
subsequent motion of the electron creates a circular orbit about the C–H bond. The result is a 
ring current that is opposite in direction to the electron motion, since the charge of the electron 
is negative. The ring current in turn produces a magnetic field. The direction of this induced 
magnetic field is given by the corresponding right-hand rule, Figure 29.1.4b. With the thumb in 
the direction of the current, the fingers curl in the direction of the magnetic flux lines. The 
direction of the induced magnetic field at the proton is opposed to the applied magnetic field. As 
a result, the proton experiences a magnetic field that is slightly smaller than the applied magnetic 
field, Bo. The opposition of the induced and applied magnetic fields is called a diamagnetic 
interaction. The effect is a diamagnetic shift, which is upfield, to smaller frequency, and smaller 
chemical shift (to the right). Alkyl methyl groups are typically the most upfield chemical shifts. 
If the methyl group is attached to an electronegative element, rather than a carbon-atom, then the 
difference in electronegativity withdraws electron density away from the C-H bond, which 
decreases the ring current density, which decreases the induced magnetic field. The result is that 
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methyl groups attached to N- or O-atoms resonate downfield from alkyl methyl groups, Table 
29.1.2. The shift is still diamagnetic, but less so than alkyl groups. Conversely, if the proton is 
attached to an aromatic ring the result is opposite. 
 

 
 

Figure 29.1.5: (a). Delocalized -electrons give a ring current that (b) induces a magnetic 
field that adds to the applied field, giving a paramagnetic shift for aromatic protons. (c). 
Anisotropic chemical shifts depend on location of the nucleus. “+” regions give downfield 
shifts. (d). Conventional presentation and corresponding chemical shifts for NMR spectra. 

 
 
   Consider a proton attached to an aromatic ring, Figure 29.1.5ab. Assume that the ring is 
oriented perpendicular to the applied magnetic field. Consider an electron in the delocalized -
molecular orbitals. The force induced by the applied field creates a ring current that circulates 
above and below the plane of the molecule. Again using the right-hand rule, this aromatic ring 
current creates an induced magnetic field that runs through the center of the aromatic ring. 
However, in this instance the position of the protons is in a region where the induced magnetic 
field is in the same direction as the applied field, Bo. As a result, protons attached to aromatic 
rings experience a larger magnetic field than the applied field. The effect is a paramagnetic 
shift, which is downfield, to larger frequency, and larger chemical shift (to the left). As a result 
aromatic protons typically resonate near 7 ppm. Alternately, in molecules with an extended 
geometry, protons can be near the center of the aromatic ring, where they experience a strong 
upfield shift. Such an orientation is one cause of negative ppm chemical shifts, which are upfield 
of TMS. The chemical shift clearly depends on the orientation of the proton relative to the 
aromatic ring current. Such geometric variability is termed chemical shift anisotropy. Isotropic 
properties are independent of orientation, while anisotropic properties depend on orientation. 
The orientation dependence of aromatic chemical shifts can be described by anisotropy cones, 
Figure 29.1.5c. Protons in regions inside the cones experience upfield shifts and regions outside 
the cones experience downfield shifts. Olefins and aldehydes also show chemical shift 
anisotropy. Anisotropy effects cause deviations from the tabulated values of chemical shifts, 
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Tables 29.1.2 and 29.1.3. Never-the-less chemical shifts are an indispensable tool in structure 
elucidation. Deviations from expected chemical shifts provide useful information concerning 
3D-structure. 
   A change in the spin Hamiltonian, Eqs. 29.1.3-29.1.6, is required to account for chemical 
shifts. For spin-i: 
 

 H^ i = –n ħ I
^
z,i (1 – i) Bo Ei = –n ħ mI,i (1 – i)Bo Ei = hi = n ħ(1 – i)Bo 

            29.1.9 
 

where i is the parameter that accounts for the change in magnetic field induced by the chemical 
environment of spin-i. The Hamiltonian and corresponding energy levels are converted into 
frequency units by substituting hi = n ħ(1 – i)Bo into the Hamiltonian and dividing by h: 
 

 
H^ i

h  = –i I
^
z,i  

Ei

h  = –i mI,i   with    i = 
n

2 (1 – i)Bo   29.1.10 
 

The relationship between the chemical shift expressed as i and i is given by substituting the 
last expression, with chemical shift i, and the corresponding expression for the reference, with 
chemical shift ref, into Eq. 29.1.5: 
 

 i  
i – ref

ref
 106 ppm = 

ref – i

1 – ref
 106 ppm  (ref – i) 106 ppm   29.1.11 

 

The final approximation is excellent, since the chemical shifts are so small: (1 – ref)  1. 
Chemical shifts are not the only information determined from magnetic resonance spectra. 
 

The Number of Chemical Shift is the Number of Magnetically Distinct Environments:  
Determining the number of resonances, or chemical shifts, that are observed for a compound is 
an important first step in predicting spectra. In solution spectra, free rotation about single bonds 
gives an average environment that generates chemical equivalence. For example, free rotation 
about the C–C bonds to methyl groups averages the environment of each of the methyl protons. 
As a result the three methyl protons are chemically equivalent and have the same chemical shift. 
Correspondingly, linear and branched saturated chains with free rotation average the 
environment of the protons on each atom. The methyl on a given carbon atom and the methylene 
protons on a given atom have identical chemical shifts, Figure 29.1.6a. Rapid ring flipping also 
results in chemical equivalence of the methylene protons on cyclohexane, Figure 29.1.6b. 
However, steric or structural restriction of free bond rotation in rings gives inequivalent 
methylene protons, of which camphor is an example in Figure 29.1.6c. 
 

 
 

Figure 29.1.6: a.-b. Free rotation about single bonds or ring flips average the chemical 
environment for protons on each carbon. (c). The methylene protons of camphor are 
inequivalent because of the rigid ring. Camphor is shown from two perspectives. 

 

(a). (b). (c).
1 resonance 10 resonances5 resonances
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Symmetric molecules, those molecules that have a mirror of reflection or a rotational symmetry 
axis, also result in chemical equivalence, Figure 29.1.7.  
 

 
 

Figure 29.1.7: Molecular symmetry decreases the number of resonances that appear in 
spectra. The numbers listed are specifically for 1H spectra.  

 
 
   A distinction between chemical equivalence and magnetic equivalence will be made after the 
next section. 
 
Spin-Spin Multiplets are Determined by Connectivity:   At high resolution many resonances are 
not single lines, but rather groups of related transitions centered on each chemical shift, Figure 
29.1.2b. For example in ethanol the resonance at 1.22 ppm is composed of three closely spaced 
transitions with the intensity ratio of 1:2:1, which is called a triplet. The resonance at 3.68 ppm is 
composed of four closely spaced transitions in the intensity ratio of 1:3:3:1, which is called a 
quartet. This fine-structure is called spin-spin splitting and results from the interaction of the 
spins in a given resonance with neighboring spins. The strength of the interaction is given by the 
spin-spin coupling constant, J, which is usually measured in Hz. The spin-spin coupling constant 
for proton-proton coupling in ethanol is 7.0 Hz. Spin-spin splitting between nuclei of the same 
type is called homonuclear coupling. For the ethanol example the multiplets arise from the 
homonuclear splitting of the protons in one chemical environment with other nearby protons, 
which is measured by the corresponding JHH. Spin-spin coupling between nuclei of different 
types is called heteronuclear coupling. For example, 13C and proton neighbors can spin-spin 
couple, which is measured by the corresponding JHC. Magnetically equivalent spins do not show 
spin-spin splitting; the protons in a methyl group do not show spin-spin splitting with each other. 
Nuclei must experience different chemical environments to show spin-spin splitting. 
   Consider two inequivalent protons, protons A and B. The resonance of proton A is split into a 
doublet by the interaction with proton B and the resonance of proton B is split into a doublet by 
proton A. Doublets result because each proton has spin quantum number I = ½ and 
correspondingly is either spin-up or spin-down, Figure 29.1.8. Focusing first on proton A, the 
neighbor B is either spin-up or spin-down, giving the resonance for proton A as a doublet with 
component frequencies A  JAB/2. The frequency difference between the two lines is JAB. 
Focusing next on proton B, the neighbor A is either spin-up or spin-down, also giving the 
resonance for proton B as a doublet, B  JAB/2. For mutually coupled resonances the spin-spin 
coupling constant is the same for both multiplets; that is JAB = JBA. 
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Figure 29.1.8: Spin-Spin splitting. Neighbor B splits the resonance of chemical shift A into a 
doublet; neighbor B is either spin-up of spin-down. Neighbor A splits the resonance of 
chemical shift B into a doublet; neighbor A is either spin-up or spin-down. The transition 
spacing of each mutually coupled multiplet is identical, JAB. 

 
 

   A splitting tree is a useful graphical tool for predicting the frequencies and intensities of spin-
spin splitting multiplets in more complicated cases. Consider proton A coupled to the three 
equivalent protons B1, B2, and B3 in an adjacent methyl group, Figure 29.1.9. Since B1, B2, and 
B3 are equivalent, the coupling constant to A is identical: JAB1 = JAB2 = JAB3. The A resonance is 
first split into a doublet by proton B1. The resulting two lines are each split into doublets by 
proton B2. The resulting four lines are each split into doublets by proton B3. Because the 
coupling constant is the same for each subsequent doublet, the interior lines coincide to give a 
quartet with relative line intensities of 1:3:3:1. 
 

 
Figure 29.1.9: Splitting tree and resulting multiplet for proton A coupled to three equivalent 
neighbors, B1, B2, and B3. The coupling constant from A to each equivalent neighbor is 
JAB = 6 Hz. The interior lines are shown with small offsets to highlight the number of 
components at each frequency. The doublet for B is not shown. 

 
 

The expression for the multiplicity of a resonance with n-equivalent neighbors is analogous to 
Eqs. 25.6.1-25.6.5 with , the total nuclear spin quantum number, replacing S. The total coupled 
spin angular momentum is  = ( mI,i)max = n  ½ giving the multiplicity as: 
 

 multiplicity = 2  + 1 = 2 n ½ + 1 = n + 1        (n equivalent spin ½ neighbors) 29.1.12 
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Equivalent neighbors give the minimum number of lines in a multiplet. Instead, if each coupled 
proton is inequivalent then the maximum number of lines is observed, which is 2n. 
   The intensity ratios for components within a multiplet for coupling to n-equivalent near-
neighbors is predicted using Pascal’s triangle, Table 29.1.5. The outer entries in each row are set 
to one. An intermediate entry in a given row is the sum of the two closest entries in the preceding 
row. For example, a quintet has the relative line intensities of 1:4:6:4:1. 
 
 

Table 29.1.5: Intensity Ratios for Multiplets with n Equivalent Near-Neighbors 
 

n n+1 Multiplet Intensity ratios 
0 1 Singlet   1 
1 2 Doublet            1      1 
2 3 Triplet        1      2      1 
3 4 Quartet                  1     3      3     1 
4 5 Quintet              1      4      6      4     1 
5 6 Sextet          1      5    10    10      5    1 
6 7 Septet      1      6    15     20    15     6     1 

 
 

A variety of multiplet patterns result if not all the neighbors are equivalent. For example, assume 
proton A has one neighbor B with coupling constant JAB = 6 and two equivalent neighbors C1 
and C2. Consider two cases: with coupling constant JAC = 2 Hz, Figure 29.1.10a, or JAC = 4 Hz, 
Figure 29.1.10b. Starting with the largest coupling constant, B splits A into a doublet and 
subsequently C1 and C2 split the resulting lines into triplets. A doublet of triplets results. 
However, the appearance depends on the sizes of the coupling constants. 
 

 
(a).      (b). 
 

Figure 29.1.10: Splitting tree and multiplet for proton A coupled to B and two equivalent 
neighbors C1, and C2 with JAB = 6 Hz. (a). The AC coupling constant is JAC = 2 Hz. (b). The 
AC coupling constant is JAC = 4 Hz. The doublets for B and C are not shown. 

 
 

   We now present a quantum mechanical treatment of spin-spin splitting, which is helpful in 
understanding the transitions shown in Figure 29.1.10. 
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The Spectrum Results from Transitions Between Total Angular Momentum States:6   Consider 
two inequivalent spins, A and B. The energy of the interaction between the two spins through 
spin-spin coupling with strength JAB is given by the vector dot-product: JAB I


A IB. The spin 

Hamiltonian in frequency units is then: 
 

 
H^

h  = – A I^zA – B I^zB + JAB I


A IB       29.1.13 
 

If the difference in chemical shifts is large compared to the coupling constant, the dot product 
can be approximated using just the z-projections of the spin angular momenta: 
 

 
H^

h   – A I^zA – B I^zB + JAB I^zA I^zB    (|A – B| >> |JAB|) 29.1.14 
 

This approximation is called first-order coupling. For the two spins the possible spin 
eigenfunctions are , , , , where spin A is listed first and B second. Using Eqs. 29.1.10 
and 29.1.14 gives the energies of the four spin states as listed and diagrammed in Figure 29.1.11. 
 
 

 
 

Figure 29.1.11: Two spin-spin coupled protons with different chemical shifts result in two 
doublets, with the doublet spacing of JAB. 

 
 

From the specific selection rule, the allowed transitions correspond to unit change in angular 
momentum. Only one spin flip is allowed at a time. The corresponding A-spin transitions are 
31 for  to , and 42 for  to . The B-spin transitions are 21 for  to , and 
43 for  to : 
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The corresponding spectrum is diagrammed in Figure 29.1.12 using the example parameters: 
A = 3 ppm, B = 1 ppm, and JAB = 8 Hz which is equivalent to 0.02 ppm at 400 MHz. 
 
 

 
 

Figure 29.1.12: Spin-spin coupling for an AB system. The doublet spacings are both JAB. 
 
 
The reader should verify that the initial spin state assignments in Figure 29.1.8 agree with Figure 
29.1.11. We are now able to understand why equivalent spins don’t give an observable splitting. 
In other words, why is the spectrum of an isolated methylene or methyl group a sharp singlet? 
   The allowed spin states for two equivalent A spins need to be adjusted to take into account 
indistinguishability. This process mirrors the requirement placed upon electron configurations by 
Pauli Exclusion. The allowable spin states of two equivalent spins are the symmetric 
combinations: , 1/ 2 ( + ), and , while the fourth spin state is antisymmetric: 
1/ 2 ( – ). The full Hamiltonian with the dot product, Eq. 29.1.13, must be used in this case 
to find the energies. The resulting energy levels are diagrammed in Figure 29.1.13. The allowed 
transitions require the same exchange symmetry; only transitions between adjacent symmetric 
states are allowed. As a result, even though spin-spin coupling changes the energies of all the 
levels, the allowed transitions remain at the same frequency as a non-interacting spin system. In 
other words, equivalent spins don’t produce an observable splitting. 
 
 

 
 

Figure 29.1.13: The symmetric spin-states of two coupled equivalent spins have identical 
energy shifts. The allowed transitions are unchanged compared to non-interacting spins. 

 
 
Spin-Spin Coupling is Primarily Through-Bond:   The most common cause of spin-spin 
interactions is the Fermi-contact mechanism. In Fermi-contact, spin-spin interactions are 
“through-bond” interactions. The coupling is mediated by interactions of the nuclei with the 
electrons in the intervening bonds. Fermi-contact interactions are best illustrated using the Dirac 
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vector model.7 Consider first a proton-proton 1H-C-1H geminal interaction, Figure 29.1.14a. 
Thick arrows represent angular momentum vectors of the nuclei and thin arrows represent 
angular momentum vectors of the electrons. The left-most proton interacts with a nearby electron 
with the spin-paired orientation (anti-parallel) the most favorable. The two electrons in the 
molecular orbital localized between the bonded left-H and C-atoms spin-pair, according to the 
Pauli Exclusion Principle. For the electrons surrounding the C-atom, the lowest energy atomic 
configuration is determined by Hund’s first rule, giving parallel orientations of the electrons the 
lowest energy. The atomic configuration resulting in sp3 hybridization is: s   p    . 
Finally, the electrons in the right-most C-H bond are once again spin-paired by Pauli Exclusion. 
The electron-nuclear interaction for the right-most H atom is favorable for spin-paired 
orientations. Taking account of all the electron-nuclear and electron-electron interactions gives 
the low energy state with parallel nuclear spins. For such an interaction the  state is lowest in 
energy, which corresponds to a negative spin-spin coupling constant in Eqs. 29.1.13 and 29.1.14. 
 
 

 
Figure 29.1.14: Spin-spin coupling is mediated by interactions with the electrons in the bonds 
between the two interacting nuclear spins. Thick arrows are nuclear spins and thin arrows are 
electron spins. (a). For germinal coupling JAB is negative; the nuclear spin-parallel state is the 
low energy state. (b) For vicinal interactions JAB is positive. (c). For heteronuclear directly 
bonded 1H–13C, the nuclear spin-paired state is lowest energy, predicting a positive JHC. 

 
 

   Consider a 1H-C-C-1H vicinal interaction, Figure 29.1.14b. The left-most proton interacts with 
a nearby electron, with the spin-paired orientation the most favorable. The two electrons in each 
intervening molecular orbital spin-pair, according to the Pauli Exclusion Principle. For the 
electrons surrounding each C-atom, the lowest energy atomic configuration is determined by 
Hund’s first rule, giving parallel orientations of the electrons near each C-atom the lowest 
energy. Finally, the electron-nuclear interaction for the right-most H atom is favorable for spin-
paired orientations. Taking account of all the electron-nuclear and electron-electron interactions 
gives the low energy state with anti-parallel nuclear spins. For such an interaction the  state is 
lowest in energy, which corresponds to a positive spin-spin coupling constant. However, the 
appearance of spectra for positive and negative coupling constants is identical. Some 2D-
experiments are sensitive to the sign of the coupling constant. 
   The heteronuclear coupling constant between directly connected 1H and 13C atoms, JHC, is also 
positive, Figure 29.1.14c. The strength of Fermi-contact coupling decreases with increasing 
number of intervening bonds. For directly connected 1H and 13C atoms, the typical coupling 
constant is JHC  150 Hz. Geminal coupling constants are typically JHH  12-18 Hz, but depend 
on the hybridization and H-C-H angle about the central C-atom. Vicinal coupling constants are 
typically JHH  6 Hz, but depend on the H-C-C-H dihedral angle. In addition, nearby electron 
withdrawing groups decrease vicinal coupling constants. 
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   The dihedral angle dependence of vicinal coupling results from the degree of overlap between 
the intervening molecular orbitals. The Karplus relationship applies to vicinal coupling 
between hydrogens attached to sp3 hybridized C-atoms with dihedral angle , Figure 29.1.15: 
 

 JHH = 8.5 cos2 – 0.28   0    90 
 JHH = 9.5 cos2 – 0.28   90    180   (sp3-sp3)   29.1.16 
 

 

 

 

 
 

     (a).   Dihedral angle   (b). 1H–C–C–1H Spin-spin coupling constant 
 

Figure 29.1.15: (a). Vicinal coupling constants are functions of dihedral angle, shown using a 
line structure and Newman projection. (b). The Karplus relationship given by Eq. 29.1.16 is 
specific to vicinal homonuclear 1H–C(sp3)–C(sp3)–1H. 

 
 

The vicinal JHH coupling constant varies from near zero for dihedral angles close to 90 and 
increases to ~9 Hz for dihedral angles near 0 or 180. More accurate relationships that take into 
account attached electron-withdrawing groups or different carbon atom hybridization have also 
been developed. Karplus-type relationships are important in natural products chemistry and 
protein and oligonucleotide structure determination.8 For cases with free bond rotation, such as 
sterically unhindered alkyl chains, a torsion-averaged J is observed. Spin-spin coupling constants 
can be accurately predicted using correlated electronic structure calculations. 
 

Heteronuclear Spin-Spin Coupling Parallels Homonuclear Coupling:   Nuclei of different types 
also spin-spin couple. In 13C spectra using deuterated chloroform as the solvent, the 1:1:1 triplet 
at 77.4 ppm is an example, Figure 29.1.1d. The 13C resonance of deuterated chloroform, CDCl3, 
is a triplet because deuterium has spin quantum number I = 1, giving the multiplicity of the 
attached 13C resonance as 2I + 1 = 3. In proton spectra, an example is the residual proton 
resonance of D6-acetone as the solvent. Deuterated solvents for use in NMR are never 100% 
deuterated; a small amount of protonated acetone, D3C(=O)CD2H, remains. The result is a small 
quintet at 2.09 ppm. The total nuclear spin angular momentum of the two deuterium neighbors is 
 = 21 = 2, giving the residual proton resonance as a 2  + 1 = 5 quintet. This quintet is often 

used as a reference for chemical shift calibration, if TMS is not added to the solution. Other 
examples in proton NMR are 13C-satellites. The one-bond JCH coupling constant is in the range 
of 100-250 Hz, with 150 Hz typical. Each proton that is directly attached to a 13C is split into a 
doublet. However, only one in every 100 carbons is a 13C, so these doublets are only 1% of the 
intensity of the main resonance peaks. These doublets are observable as tiny copies of the main 
resonance spaced at ~75 Hz above and below each main resonance, Figure 29.1.2a. 
   In 13C spectra, the one-bond JCH coupling produces a quartet for each methyl 13C-resonance, a 
triplet for each methylene 13C-resonance, and a doublet for each methine 13C-resonance. These 
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multiplet splittings are large, 100-250 Hz, which often causes confusion from the overlap of the 
multiplets with similar chemical shifts. To simplify interpretation and to provide increased 
signal-to-noise, 13C spectra are usually acquired with proton decoupling. Weak intensity 
continuous irradiation of the sample at the proton resonance frequency causes rapid spin-flips of 
the protons, which averages the spin-spin coupling to zero. As a result, each 13C resonance in a 
proton decoupled spectrum appears as a sharp singlet, independent of the number of attached 
protons, Figure 29.1.2d. 
 

Spin-Spin Multiplets Appear Narrower at High Field:  Comparison of Figure 29.1.2a and 29.1.2c 
shows that the appearance of the methylene and methyl resonances of ethanol change with 
applied field strength. The chemical shift is plotted on a relative scale in ppm. As a result, the 
chemical shifts in ppm are unaffected by the field strength. The term in the Hamiltonian for the 
spin-spin splitting, JAB I


A IB, in Eq. 29.1.13 is independent of field strength so the spacing 

between the transitions in a multiplet in Hz are unchanged with increasing field strength. 
However, the spectral width in Hz does change with field strength. At 60 MHz, 10 ppm 
corresponds to 600 Hz but at 400 MHz the same 10 ppm corresponds to 4000 Hz. As a result the 
transitions that make up a spin-spin multiplet are plotted closer together at high field than low 
field. At high field, spectra at expanded scale about each resonance must be plotted to determine 
the multiplicity and spin-spin splitting constants of each resonance. The difference in behavior 
between the plotted chemical shifts and the spin-spin splittings is more than cosmetic. High field 
provides better clarity. Spin-spin multiplets are easier to see at high field because of less overlap 
with multiplets that have similar chemical shifts. In addition, second order effects are less 
pronounced at high field; Eq. 29.1.14 is more generally applicable than Eq. 29.1.13. 
 

Magnetic Equivalence Requires the Same Coupling Constants: Magnetically equivalent nuclei 
have the same chemical shift and the same spin-spin coupling constants to each equivalent 
neighbor. Magnetic equivalence requires chemical equivalence, but magnetic equivalence is 
more restrictive. Each magnetic environment results in a single chemical shift and magnetically 
equivalent nuclei don’t result in observable spin-spin splitting. The distinction between 
difluoromethane and difluoroethylene is instructive. The A, A' and B, B'-spin pairs in both 
difluoromethane and difluoroethylene are chemically equivalent and therefore have the same 
chemical shifts, Figure 29.1.16.  
 

 
 

Figure 29.1.16: Magnetic equivalence requires chemical equivalence and the same coupling 
constants to equivalent spins. The protons in difluoromethane are magnetic equivalents, 
while the A-A' and B-B' pairs in difluoroethylene and para-substituted aromatics are not 
magnetic equivalents. 
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However, the protons in difluoromethane are magnetically equivalent, while the protons in 
difluoroethylene are not. In difluoroethylene, the spin-spin coupling constant of A with B is 
different than A with B'. As a result B and B' cannot be equivalent. Conversely the coupling 
constants of B with A is different than B with A'. As a result A and A' cannot be equivalent. 
However, in difluoromethane the A-B, A-B', A'-B, and A'-B' coupling constants are identical 
making the proton pair in difluoromethane magnetically equivalent. Para-substituted aromatics 
are also examples of chemically equivalent but magnetically inequivalent spin pairs. JAA' and JBB' 
have an observable effect on the spin-spin multiplet.9 

 
 
29.2 Predicting Chemical Shifts 
 

Chemical Shifts Depend on the Orientation of the Molecule in the Magnetic Field:   Chemical 
shifts are orientation dependent; chemical shifts are anisotropic. In the solid state, as single 
crystals are rotated in the magnetic field the resonances change frequency. This orientation 
dependence is not normally observed because in solution molecules tumble rapidly and the 
chemical shifts are motionally averaged. Physical properties are commonly orientation 
dependent. In general, properties such as the electric and magnetic susceptibilities can be 
approximated by a series, much like a Taylor power series. The first term in the series is a scalar. 
This first scalar term is isotropic, independent of orientation. For electric properties the charge on 
the molecule or ion is the scalar term in the series. The second term in the series is a vector. The 
electric dipole moment is a vector property with x, y, and z components. The third term in the 
series transforms as a 3x3 matrix. For electric properties the matrix term is called the electric 
quadruple moment. Each successive term provides a more complete approximation of the 
electric distribution of the molecule or ion. A matrix that expresses the directionality of an 
atomic or molecular property is called a tensor. Polarizability, moments of inertia, and NMR 
chemical shifts are tensor properties. The polarizability tensor that we introduced in Raman 
spectroscopy is an example, Ch. 27.7. The orientation dependence is given by the rotational 
properties of the 3x3 matrix (see Problem 2.25 for 2D-rotation). The chemical shift tensor in an 
arbitrary orientation with respect to the x, y, and z-axes is: 
 

   = 








xx xy xz

yx yy yz

zx zy zz

         29.2.1 

 

The zz component is determined from the spectrum. Analogous to the moment of inertia, 
Section 27.4, a principal coordinates frame can be found by reorienting the molecule about the 
axes to give zeros for the off-diagonal components. In the principle coordinates frame, the 
chemical shift is visualized as an ellipse, with chemical shift components xx, yy, and zz along 
the principle axes of the ellipse, Figure 29.2.1. The xx, yy, and zz values in the principle 
coordinates frame of reference are the eigenvalues of the chemical shift tensor from an arbitrary 
orientation. 
   The trace of a matrix is the sum of the diagonal components: tr(


) = xx + yy + zz. In 

solution, small molecules tumble rapidly around all three axes. In solution the motionally 
averaged chemical shift is calculated from the trace of the chemical shift tensor: 
 

 soln = ⅓ tr(

) = ⅓ (xx + yy + zz)        29.2.2 
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Figure 29.2.1: Acetaldehyde anisotropic chemical shifts. In the principle axes coordinate 
frame the chemical shift is visualized as an ellipse with principle axes xx, yy, and zz. The 
carbonyl carbon chemical shift is strongly anisotropic with zz > xx > yy. In other words, 
the ellipse is flattened in the y-direction. 

 

 
The trace of the chemical shift tensor is invariant to rotation, so the average in Eq. 29.2.2 is 
independent of the choice of orientation. The averaged value is also called the isotropic value. 
The tensor property of the chemical shift is important for solids and liquids with reduced 
motional freedom, such as liquid crystals and liquid polymers. The tensor character of the 
chemical shift also needs to be taken into account when using electronic structure calculations to 
estimate chemical shifts. 
 

Chemical Shifts can be Calculated from Molecular Orbital Theory:   The accurate prediction of 
chemical shifts is often crucial in molecular structure determination. A wide variety of empirical 
methods have been developed to estimate chemical shifts. These methods are incorporated into 
commonly used NMR analysis and molecular drawing applications.10-12 This approach uses 
tabulated fragment parameters based on functional groups and connectivity (methyl, methylene, 
methane, etc.)12 Fragment parameter approaches fail when through-space interactions, such as 
chemical shift anisotropy and aromatic ring currents, are important. Predicting the proton and 13C 
chemical shifts of heterocyclic aromatic compounds is challenging. Electronic structure methods 
are available that accurately predict chemical shifts. Two important modifications to commonly 
used molecular orbital algorithms are necessary. In the theory of electricity and magnetism, the 
gauge of a calculation relates to the orientation of the Cartesian coordinates relative to the 
atom.13 The properties of atoms should not depend on the choice of coordinate axes. In other 
words the calculation must be gauge invariant. Modifications must be made to molecular orbital 
codes to ensure gauge invariance. The results are gauge invariant atomic orbital, GIAO, 
methods. Secondly, the effect of the magnetic field on the molecule must be taken into account. 
This effect is the purely quantum mechanical analog to ring currents, Figures 29.1.4 and 29.1.5. 
The effect of an applied magnetic field can be thought of in the context of perturbation theory. 
The magnetic field applies a perturbation to the ground state electronic structure of the molecule. 
The perturbation series mixes excited states into the ground state to approximate the change in 
electronic distribution.13 Remember that the perturbation approach is used to take electron 
correlation into account in the absence of a magnetic field. The presence of a magnetic field 
increases the contribution of excited states in excess of that required to account for electron 
correlation. As result, excited states must be accurately characterized and their effect on the 
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ground state must be carefully taken into account for successful chemical shift estimation. As a 
result correlated methods are required as the basis for GIAO calculations. B3LYP is a commonly 
used method in chemical shift estimation. Because of the need to accurately characterize electron 
correlation in multiple excited states, GIAO calculations are time consuming. 
   The output of the B3LYP/6-31G(d) GIAO calculation for acetaldehyde and the corresponding 
atom numbering is shown in Figure 29.2.2. The full chemical shift tensor with respect to the 
calculated orientation of the molecule, the eigenvalues, and the resulting isotropic values are 
listed. The eigenvalues are the components of the chemical shift in the principle coordinates 
frame. The final shifts are referenced to TMS by subtracting the isotropic value of the given 
chemical environment from the isotropic chemical shift of TMS, Eq. 29.1.11: 
 

 i (ppm) = isotropic(TMS) – isotropic(i)       29.2.3 
 

The 1H isotropic chemical shift of TMS is 32.180 ppm and the 13C isotropic chemical shift is 
189.746 ppm at the B3LYP/6-31G(d) level. 
 
 

 
 

SCF GIAO Magnetic shielding tensor (ppm): 
1  C  Isotropic = 159.908    5  H  Isotropic = 30.179 
      Anisotropy = 49.357          Anisotropy = 4.298 
 XX= 146.512  YX= -26.399  ZX=   0.000  XX=  30.188  YX=   1.339  ZX=   1.485 
 XY= -12.310  YY= 184.723  ZY=   0.000  XY=  -0.704  YY=  28.946  ZY=  -0.470 
 XZ=   0.000  YZ=   0.000  ZZ= 148.490  XZ=   2.842  YZ=   0.178  ZZ=  31.404 
 Eigenvalues: 138.421  148.490  192.813   Eigenvalues: 28.352  29.141  33.045 
2  C  Isotropic = 4.222    6  H  Isotropic = 30.412 
      Anisotropy = 155.985          Anisotropy = 5.244 
 XX= -17.170  YX= -17.424  ZX=   0.000  XX=  29.573  YX=  -0.898  ZX=   0.000 
 XY= -19.158  YY= -78.374  ZY=   0.000  XY=   3.771  YY=  33.432  ZY=   0.000 
 XZ=   0.000  YZ=   0.000  ZZ= 108.212  XZ=   0.000  YZ=   0.000  ZZ=  28.231 
 Eigenvalues: -83.424  -12.121  108.212   Eigenvalues: 28.231  29.097  33.908 
3  O  Isotropic = -318.923   7  H  Isotropic = 30.179 
      Anisotropy = 1015.345         Anisotropy = 4.298 
 XX=-900.820  YX= -39.618  ZX=   0.000  XX=  30.188  YX=   1.339  ZX=  -1.486 
 XY= -60.251  YY=-413.922  ZY=   0.000  XY=  -0.704  YY=  28.946  ZY=   0.470 
 XZ=   0.000  YZ=   0.000  ZZ= 357.974  XZ=  -2.842  YZ=  -0.178  ZZ=  31.404 
 Eigenvalues: -905.889 -408.854 357.974   Eigenvalues: 28.352  29.141  33.045 
4  H  Isotropic = 22.167     
      Anisotropy = 4.618     
 XX=  20.698  YX=   0.656  ZX=   0.000   
 XY=  -3.293  YY=  24.863  ZY=   0.000   
 XZ=   0.000  YZ=   0.000  ZZ=  20.941   
 Eigenvalues: 20.315  20.941  25.246   

 

Figure 29.2.2:  Acetaldehyde GIAO chemical shielding tensors at B3LYP/6-31(d) from 
Gaussian ’03 (or Spartan/QChem). 
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   The chemical shifts of the carbonyl carbon, C2, and the methyl carbon, C1, are predicted to be: 
 

 C (C=O) = 189.75 ppm – 4.22 ppm = 185.5 ppm 
and      C (CH3) = 189.75 ppm – 159.91 ppm = 29.8 ppm     29.2.4 
 

The literature 13C chemical shifts are 199.7 ppm and 30.9 ppm, respectively, Table 29.1.3(DS). 
Both predicted values are low at 94% of the observed values. Common practice is to use several 
compounds as a training set to determine a correction factor, which is then applied to all 
subsequent calculations at a comparable level of theory. The factor is 1/0.94 = 1.06 in this case. 
The 1H chemical shifts are: 
 

 H (HC=O) = 32.180 ppm – 22.167 ppm = 10.01 ppm 
 

and H (CH3) = 32.180 ppm – 30.179 ppm = 2.00 ppm 
 H (CH3) = 32.180 ppm – 30.412 ppm = 1.77 ppm 
 H (CH3) = 32.180 ppm – 30.179 ppm = 2.00 ppm     29.2.5 
 

The three methyl protons should have identical chemical shifts. Assuming a small barrier for the 
torsion, rapid rotation around the C–C bond averages the methyl group chemical shifts to give 
H = 1.93 ppm. The literature values are 9.79 ppm and 2.21 ppm, respectively. The agreement of 
both 1H and 13C shifts are sufficient for many purposes. A more complete basis set improves the 
agreement between predicted and experimental values. 
   The chemical shift of the carbonyl carbon is highly anisotropic with components -83.42 ppm, 
-12.12 ppm, and 108.21 ppm, before referencing to TMS. This chemical shift is strongly 
dependent on the orientation of the molecule in the applied field, as show in Figure 29.2.1. 
 

29.3: A Classical Model for the Magnetization 
 

The Net Magnetization Precesses About the Applied Field:   Magnetic resonance experiments 
require a detailed description of the behavior of the net magnetization upon interaction with the 
applied radiofrequency irradiation. The net magnetization, M


, is the vector sum of all the 

magnetic dipoles of each nuclear spin in the system. The projection of the net magnetization on 
the z-axis, Mz, is proportional to the difference in the populations of the two levels.  
 

 Mz  (spins in lower state) – (spins in upper state)     29.3.1 
 

In other words, the net magnetization is given by the difference of the number of up and down-
spins. The magnetization is a macroscopically observable quantity. The Bloch equation provides 
a classical description of the behavior of the magnetization in a magnetic resonance experiment: 
 

 
dM



dt  = n (M


 x B


)      (no spin-relaxation) 29.3.2 
 

where B


 is the total magnetic field experienced by the nuclear spins, which includes the constant 
applied field and, if present, the radiofrequency field. The applied magnetic field, Bo, is assumed 
to be in the z-direction. Consider first the behavior of the spin system in the applied magnetic 
field, without radiofrequency, rf, irradiation. The behavior of the magnetization in the applied 
magnetic field is analogous to a spinning-top in the field of gravity. Picturing the motion of a top 
is an aid to understanding the cross-product relationship in Eq. 29.3.2. When placed in the field 
of gravity, a tilted spinning top precesses about the gravitational field direction, Figure 29.3.1a. 
When nuclear spins are placed in an applied magnetic field, the net magnetization precesses 
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about the applied magnetic field direction, Figure 29.8.1b. The projection on the z-axis is Mz. 
The precession of the net magnetic moment about the z-axis is called Larmor precession. The 
frequency of the Larmor precession is the resonance frequency i in Eq. 29.1.9. 
 

 
Figure 29.3.1:  (a). A tilted top precesses about the gravitational field. (b). A tilted 
magnetization precesses about the applied field, which is aligned along the z-axis. 

 
   The equilibrium position of the net magnetization is stationary and parallel to the z-axis. To 
observe precession, the magnetization must be tilted away from the z-axis. Tilting of the 
magnetization is accomplished by an applied rf-field. The rf-field is generated in the probe of the 
spectrometer by passing an oscillating radiofrequency current though a coil of wire, Figure 
29.3.2a. The rf-coil is oriented with the axis perpendicular to the applied field direction. The 
magnetic field induced in a coil of wire oscillates along the axis of the coil. This linear 
oscillation is said to be linearly polarized. How can a linearly polarized magnetic field interact 
with the net magnetization, which instead precesses in a circular path about the z-axis? The 
nuclear precession is said to be circularly polarized. The linearly polarized rf-irradiation can be 
decomposed into two counter-rotating circularly polarized rf-fields of equal strength, Figure 
29.3.2b. One of the circularly polarized fields rotates in the same sense as the nuclear precession 
and is responsible for the interaction with the net magnetization. The other circularly polarized 
component rotates in the opposite sense and is simply ignored. The applied rf-field rotates in the 
x-y plane, perpendicular to the applied field. If the applied linear rf-field intensity is 2B1, the 
effective component rotating in the x-y plane has magnetic field strength B1. The rf-field is 
orders of magnitude weaker than the applied field, B1 << Bo. 
 

 

 
Figure 29.3.2:  (a). The rf coil is oriented perpendicular to the main applied field and is 
wrapped in a Helmholtz configuration to allow sample access from above. (b). A linearly 
polarized rf-field is composed of two counter-rotating circularly polarized rf-fields. Only the 
component rotating in the same sense as the magnetization induces transitions. 

z 

 

 

z 

x 
y 

M


 

(a). (b). 

z 

x 

Mz 

y 

x 

y 

(b). (a). 



401 
 

 

 

The applied rf field produces a torque that tilts the net magnetization away from the z-axis. 
During the rf-pulse, the net magnetization continues to precess about the z-axis, while 
simultaneously precessing about the applied rf field, as given by the right-hand rule, Figure 
29.3.3. The tilted magnetization induces an oscillating rf-current in the rf-coil that when 
amplified is recorded as the detected signal. The detected signal is called the free induction 
decay, FID. The nuclear magnetization and the rf-coil act as a miniature AC electric generator. 
The signal intensity is proportional to the magnitude of the precessing magnetization in the x and 
y-directions, Mx and My. 
 

 
Figure 29.3.3: The rotating component of the applied rf field has magnitude B1 in the x-y 
plane. The rf field applies a torque, (M


 x B


1), to the net magnetization tilting the 

magnetization away from the z-axis. A 90 pulse tilts the net magnetization into the x-y 
plane. After the rf-irradiation is turned off, the precessing net magnetization induces a current 
in the rf-coil to give the signal, which is the free induction decay, FID. 

 
   The projection of the net magnetization on the x-y plane is determined by the tilt angle. A tilt 
angle of 90 provides the maximum projection of the net magnetization in the x-y plane and 
correspondingly the biggest signal. The tilt angle is proportional to the length of time that the rf-
irradiation is applied. A pulse of rf-irradiation of optimal length tilts the net magnetization by 
90. Such a pulse is called a 90 pulse or equivalently in radians a /2 pulse. A pulse of twice the 
90 pulse length, a 180 or  pulse, tilts the net magnetization to the –z axis. A 180 pulse leaves 
no projection on the x-y plane and correspondingly no signal is produced. As a result, careful 
timing of the rf-pulse length is required for optimal signal generation. Rf-pulses of various 
lengths are used in advanced experiments. 
   The precession of the magnetization in the preceding figure is complicated. The behavior of the 
magnetization is most conveniently described in the rotating frame of reference.14 Figure 29.3.3 
is drawn in the laboratory frame of reference: the observer is stationary while the magnetization 
precesses about the z-axis. Picture a carousel while you observe from the ground. The horses on 
the carousel follow a circular path. Now, we jump on the carousel. Observing from the carousel, 
the horses appear stationary while the surroundings whirl by. The rotating frame of reference is 
analogous. The observer is rotating at the Larmor frequency, while the laboratory appears to 
whirl around the observer. In the absence of rf-irradiation, a tiled magnetization at resonance 
appears stationary to the rotating observer and remains at a fixed tilt angle with respect to the z-
axis. In the rotating frame, an applied rf-field at the Larmor frequency also appears stationary in 
the x-y plane. Assume that the applied rf-field is aligned along the x-axis in the rotating frame, 
Figure 29.3.4. The torque caused by the rf-field causes the magnetization to rotate in the y-z 
plane. The tilt angle is proportional to the rf-pulse length. 
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Figure 29.3.4: In the rotating frame, the observer rotates about the z-axis at the Larmor 
frequency. The effect of a pulse is the precession of the magnetization about the rf-field 
direction, which for convenience is assumed to lie along the x-axis. The corresponding free 
induction decays and final spectra are shown beneath the magnetization diagrams. The rf-
coils are only shown in the first panel to avoid congestion. The coils are present in each case. 

 
 

A 90-pulse tilts the magnetization into the x-y plane along the y-axis. The resulting signal after 
the pulse is turned off is positive. The 90 phase relationship between the exciting rf and the 
resulting magnetization is an expectation of all forms of spectroscopy, but in this case the phase 
shift is easy to visualize. A 180-pulse tilts the magnetization along the –z-axis, giving no signal. 
A 270, or 3/2-pulse tilts the magnetization along the –y-axis, giving a negative signal. A 360, 
or 2-pulse returns the magnetization to the z-axis as if nothing had happened. In each case, in 
the absence of relaxation, the magnitude of the net magnetization remains at the equilibrium 
value of Mz. 
 
29.4: Fourier Transform Spectroscopy 
 

Pulsed Spectroscopy: Fourier Transform Techniques Provide a Multiplex Advantage:   Most 
current NMR and advanced ESR spectrometers make use of pulsed Fourier transform 
techniques. In pulsed experiments, as we have discussed, a short pulse of radio-frequency 
radiation at the resonance frequency is applied to the sample, Figure 29.3.3. The sample responds 
with a transient response in emission, which is the FID, Figure 29.4.1. The Fourier transform of 
the FID gives the absorption spectrum. Please review Section Ch. 27.3. The FID is the 
superposition of all the frequencies that make up the spectrum. The Fourier transform is the 
mathematical technique that unravels all the frequency components in the FID to give the 
spectrum of the sample. The result, while acquired in emission is equivalent to the spectrum that 
results from a conventional continuous scan absorption experiment. The advantage of pulsed 
Fourier NMR experiments is that cw-experiments require minutes per spectrum, while pulsed 
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techniques require ~5 seconds or less. As a result, pulsed experiments are easily repeated and the 
results averaged, which allows significant improvement in signal to noise ratio over a single 
experiment. The signal to noise, s/n, improves as the square root of the number of individual 
spectra that are averaged, Nscans: 
 

 s/n  Nscans          26.4.1 
 

Signal averaging is required for the practical acquisition of NMR spectra other than 1H and 19F.  
 
 

 
 

Figure 29.4.1: Pulsed Fourier transform NMR spectroscopy. A radio-frequency pulse at the 
resonance frequency of the detected nucleus excites a free induction decay, FID. The Fourier 
transform of the FID gives the spectrum. The envelope of the excitation is a rectangular pulse 
of length tp. 

 
 
The time savings of pulsed spectroscopy results because all the frequencies that make up the 
spectrum are acquired simultaneously, instead of scanning the exciting frequency and measuring 
the emission or absorption signal one frequency at a time. This time savings is called the 
multiplex advantage. 
   The Fourier relationship between the FID and the corresponding frequency spectrum are: 
 

 f(t) = 


– g()e–i2t d   (time domain: FID)    (27.3.8) 
 

 g() = 2 


0
 f(t)ei2t dt   (frequency domain: spectrum)  (27.3.9) 

 

The absorption and dispersion spectra are given by the real and imaginary parts of g(): 
 

 Absorption = RE[g()]  Dispersion = IM[g()]     (27.3.10) 
 

This real/imaginary terminology is often used in the spectroscopy literature, highlighting the 90 
phase shift between the absorptive and dispersive response. The terminology is also used in 
NMR acquisition software for the two spectral display buffers; both the real and imaginary parts 
of the spectrum are always calculated (assuming conventional 1D-spectra). 
   In pulsed NMR a short pulse at the resonance frequency, say at 300.0000 MHz, is applied to 
the sample. How can all the transitions throughout the spectrum be excited by a pulse at a single 
frequency? The frequency width of the spectrum of a rectangular pulse is inversely proportional 
to the pulse width, Figure 27.3.4 and Eq. 27.3.7: 
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  full width to first nulls = 
1
tp

       29.4.14 
 

The shorter the pulse the wider the range of component frequencies that make up the pulse. A 
shorter pulse provides broader spectral coverage. In NMR, 1H pulse widths are typically near 
10 s, giving a spectral width of 1/10x10-6 s = 1x105 Hz or 100 kHz. At 10 ppm, the required 
spectral width is 3000 Hz for a central frequency of 300 MHz. In other words, the spectral 
coverage of a 10 s pulse is more than sufficient to span the entire 1H chemical shift range. 
 
29.5 Magnetic Resonance Relaxation 
 

Spin-Lattice Relaxation Returns the Spin-System to Equilibrium:14-17   Radiofrequency irradiation 
moves a system away from equilibrium. The spin-system must then undergo transitions from the 
upper state to the lower state to return to equilibrium, which is called relaxation. Energy is 
conserved by heat transfer to the surroundings, Figure 29.5.1. The surroundings in magnetic 
resonance are called the lattice; therefore the process is called spin-lattice relaxation. The 
characteristic life-time of a spin in the upper state is called the spin-lattice relaxation time T1. 
Spin-lattice relaxation is essentially identical to non-radiative decay in electronic spectroscopy, 
except at a much lower frequency, Ch. 28.6. 
 
 

 
 

(a).          (b).  
 

Figure 29.5.1. (a). Absorption and spin-lattice relaxation, which is caused by non-radiative 
transitions to the low energy state. Energy is conserved by heat transfer to the lattice. (b). 
Spin-spin relaxation is caused by mutual spin flips. Energy is approximately conserved in 
spin-spin relaxation. 

 
 

   One method of measuring T1 is called “saturation recovery,” Figure 29.5.2. The net rate of 
absorption is proportional to the population difference between the lower and upper states, 
Eq. 27.1.3. At left the molecules start at equilibrium with the largest population difference. A 
low-intensity radiofrequency source is then turned on, which causes transitions between the two 
levels. After the rf-source has been on for a few seconds the populations of the two levels are 
equalized. With equal populations, the two levels are said to be saturated. The source is then 
turned off. Immediately after turning off the rf-source the saturated system gives no resonance 
signal. However, as time progresses the molecules relax back to equilibrium. With longer delays, 
the spectrum grows back to the original intensity. About five times T1 is required for the system 
to return to equilibrium. (Remember that we used this general criterion in Ch. 14.3 “Internal 
Constraints for Chemical Reactions.”) 
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Figure 29.5.2. Saturation-recovery method for T1 measurement. The signal intensity, which is 
proportional to the projection of the magnetization along the z-axis, is monitored as a 
function of time after turning off the rf-irradiation at t = 0. 

 
 
   The projection of the net magnetization of the spins along the z-axis, Mz, is detected in NMR. 
The net magnetization is proportional to the difference in the populations of the two levels: 
 

 Mz  (spins in lower state) – (spins in upper state)     29.5.1 
 

Spin-lattice relaxation is a first order kinetic process: 
 

 
dMz

dt  = – 
1
T1

 (Mz – Mo)         29.5.2 
 

where Mz is the magnetization at time t and Mo is the magnetization at equilibrium. Integrating 
Eq. 29.5.2 for the recovery from saturation gives simple exponential growth of the magnetization 
back to equilibrium: 
 

 Mz = Mo(1 – e–t/T1)         29.5.3 
 

Based on this relationship, the T1 relaxation time is derived using curve fitting of the signal 
intensity as a function of time. A second type of relaxation also plays an important role in 
magnetic resonance. 
 

Spin-Spin Relaxation Determines the Transition Line Width:  Spin-spin relaxation occurs through 
mutual spin-flips. Listing first spin A and then spin B, a mutual spin-flip corresponds to 
  , Figure 29.5.1b. The characteristic lifetime of a spin in a given spin state is decreased 
by spin-spin exchange. The characteristic lifetime under spin-spin exchange is called T2. The 
Heisenberg uncertainty principle relates the energy uncertainty of a state to the lifetime of the 
state, ΔE Δt  ħ/2, Eq. 23.4.45. The energy uncertainty of the state corresponds to an uncertainty 
in the transition line width, ΔE = h Δ, Eq. 23.4.46. The corresponding effect of T2-processes is 
to cause lifetime broadening. In practical applications, magnetic resonance transitions are also 
broadened by small spatial variations of the applied magnetic field across the sample. This non-
uniformity of the applied magnetic field is called field inhomogeneity. The effects of intrinsic 
lifetime broadening and the applied field inhomogeneity, Δ*, are combined to give the effective 
spin-spin relaxation time, T2': 
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1

T2'
 = 

1
T2

 + Δ*     (inhomogeneous field) 29.5.4 
 

In non-viscous solution, a transition at frequency A is given by the Lorentzian line shape:12 
 

 g() = 
2T2'

1 + 42T2'2 ( – A)2      (solution) (27.3.10) 29.5.5 
 

where g() is the intensity at frequency , Figure 29.5.1b. The full-width at half-height is: 
 

 ½ = 
1

T2'
   and   T2' = 

g()max

2      29.5.6 

 

where g()max is the maximum of the line intensity. Efficient spin-spin relaxation shortens the 
spin state lifetime, which then broadens the transition. In the solid state, spin-spin relaxation is 
typically faster or much faster than spin-lattice relaxation, T2 << T1. However, in non-viscous 
solution T2 and T1 are approximately equal. What molecular processes control relaxation? 
 

Spin-lattice Relaxation is a Sensitive Probe of Molecular Motion:   Relaxation is caused by 
fluctuating magnetic fields in the sample. There are several sources of fluctuating magnetic 
fields. One source is magnetic dipole-dipole coupling. The strength of the dipole-dipole coupling 
is changed, or modulated, by molecular motion. Translational diffusion of one molecule past 
another, whole molecule reorientation, bond torsions, and other vibrations all influence dipole-
dipole coupling. We first focus on molecular reorientation. Small molecules tumble rapidly about 
their axes. 
 
 

 

 

 
 

Figure 29.5.3: Magnetic dipole-dipole coupling is a through-space interaction between two 
magnetic dipoles. In solution, the angle dependence is (1 – 3 cos2). 

 
 

Nuclear spins interact through space, Figure 29.5.3. The dipole-dipole interaction is a function of 
the distance between the spins and the orientation with respect to the applied magnetic field: 
 

 Vij = 
A
r3
ij

 (1 – 3 cos2)       (solution) 29.5.7 

 

where rij is the distance between the two spins, i and j, and  is the angle between the applied 
field and the vector joining the two spins, r


ij. The constant A depends on the magnetic moments 

of the two coupled spins, which for the interaction of two protons is A = 2
nħ2. When a molecule 
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tumbles in solution, the angle  changes rapidly and at random causing a fluctuating magnetic 
field at each nucleus. This fluctuating magnetic field can bring about relaxation. 
   Not any fluctuating magnetic field is efficient at bringing about relaxation. To be efficient the 
fluctuations must have a large component at the frequency of the transition. In Figure 29.5.4a, 
the transition frequency that corresponds to the magnetic resonance transition, o, is shown at the 
top. Typical frequencies are 300-500 MHz for protons or 75-125 MHz for 13C. 
   Large molecules reorient slowly in solution, so that the angle  changes slowly, Figure 29.5.4b. 
The fluctuating magnetic fields caused by the tumbling of large molecules change too slowly to 
be efficient at relaxation at the transition frequency. The result is a long T1. Intermediately sized 
molecules tumble at a rate that produce fluctuations with frequency components that match the 
transition frequency, Figure 29.5.4c. This motion is efficient at causing relaxation and gives a 
short T1. Small molecules tumble too rapidly, causing fluctuating magnetic fields with frequency 
components that are too high to cause efficient relaxation, Figure 29.5.4d. Just as in large 
molecules, in small molecules T1 is long. As a result, the motion of a molecule can be either too 
fast or too slow to cause efficient relaxation. Only when the motion of the molecule is matched 
to the transition frequency is relaxation efficient and T1 short. 
   The motions in a molecule are characterized by a correlation time, c. The correlation time is 
roughly the average time that a molecule spends in a given orientation. Large molecules tumble 
slowly and therefore have long c. Small molecules tumble rapidly and therefore have short c. 
Only when the motion has c about equal to 1/2o is relaxation efficient. 
 
 

 
 

Figure 29.5.4. Effect of motion on relaxation. (a) When motions are slow relaxation is 
inefficient and T1 is long. (b) When the frequency of the motions match the transition 
frequency, relaxation is efficient and T1 is short. (c) When motions are too fast, relaxation is 
once again inefficient and T1 is long. Small molecule reorientations are too fast. 
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   Molecular tumbling is not the only motion that can cause relaxation. Internal motions can be 
effective at causing relaxation. Most importantly, different parts of a molecule can have different 
frequencies of motion, because of torsional rotation around single bonds. 1-Bromodecane is a 
good example of a molecule that has different motional regimes. The 13C-relaxation times in 1-
bromodecane are:17 

 

 Br – CH2 – CH2 – CH2 – CH2 – CH2 – CH2 – CH2 – CH2 – CH2 – CH3 
          2.8     2.7      1.9      2.0      2.1      2.1      2.2      3.1      3.9      5.3 s 
         too slow      optimal     too fast 
 

At the methyl end of the chain the motions are too fast to provide an efficient mechanism for 
relaxation. Because the bromine is massive, the motions at the bromine end of the chain are 
slower and are therefore more efficient at relaxation. The minimum relaxation time occurs not 
next to the bromine, but three carbons away. Motions at the methylenes adjacent to the bromine 
are too slow for the most efficient relaxation. 
   As a result of different motions, molecules have multiple correlation times. Diffusion, 
molecular reorientation, and vibrations all act independently and are characterized by different 
correlations times. For example, methyl group rotation, which is torsion around the C-C bond 
leading to the methyl group, is often too fast to provide effective relaxation. However, the C-C 
bond to the methyl group may be wagging around because the methyl group is attached to a ring. 
This wagging motion may have the correct frequency components to provide efficient relaxation, 
leading to a short T1 for the methyl protons. Therefore, all the motions that a particular atom 
experiences must be considered. Some motions may be too slow, some may be too fast, but if 
one or a few are just at the right frequency the relaxation will be efficient leading to short T1. 
   In summary, spin-lattice relaxation times are a sensitive probe of molecular motion. Analysis 
of relaxation times can tell us whether a given chemical environment is in a rigid portion of the 
molecule or in a flexible part of the molecule. 
   However, caution must be exercised when interpreting relaxations times. For 13C, the biggest 
effect on relaxation is the number of attached protons. The attached protons are typically the 
closest spin-active nuclei to a given carbon, providing the largest dipole-dipole coupling. 
Correlation times being equal, a methyl carbon is expected to relax more rapidly than a 
methylene, and a methylene relaxes more rapidly than a methine. Quaternary carbons, those with 
no attached hydrogens, typically have a long T1. For equal correlation times, the expected ratio 
of T1 values for 13C in methine, methylene, and methyl groups is 6:3:2. A simple solution to the 
problem is to compare carbons with the same number of attached protons. On the other hand, for 
protons intermolecular relaxation from diffusion is important. For this reason, 13C relaxation is 
preferable for careful studies. 
   Another source of fluctuating magnetic fields comes from paramagnetic substances in solution. 
Molecular oxygen is paramagnetic and greatly enhances spin-lattice relaxation. The effect of 
dissolved O2 is so strong that O2 must be removed by a process called “degassing.”  
   Having established a qualitative understanding of relaxation, we next take a more quantitative 
approach. The fundamental process of relaxation progresses through fluctuations caused by the 
molecular motion. 
 
11              
General Pattern: Fluctuation Dissipation18-21 

   Spectroscopic relaxation is governed by the fluctuation dissipation theorem: the time 
evolution of a non-equilibrium system is driven by fluctuations. These fluctuations are the same 
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as the fluctuations the system experiences at equilibrium. The fluctuations are characterized by a 
correlation time, c. Rapid random motions have short correlation times and slow random 
motions have long correlation times. As a specific example we continue with our discussion of 
spin-lattice relaxation.  
   Fluctuations are quantitatively characterized by a correlation function, C(). The motion can 
be translational diffusion as characterized by the x, y, z-position of the center of mass, or 
molecular rotation as characterized by the angles with respect to the x, y or z-axes. The motion 
can also be vibrational as characterized by the x, y, z-position of each atom. For example, the 
rotational correlation function describes the orientation of the molecule at time  compared to the 
orientation at time 0. Collisions cause reorientation at random intervals. For example, the 
rotational correlation time is the average time that a molecule spends in a given orientation. An 
average is necessary because of the random nature of the motion. For short times, , the 
orientation is similar to the initial orientation at time 0, giving a large value of the correlation 
function. However, as time progresses collisions cause greater and greater random deviations of 
the orientation from the value at t = 0. At long-values the correlation function tends to zero. 
   Consider the value of the coordinate at time t of a random motion, f(t). Assume the average of 
the coordinate over time is zero. The correlation function is calculated by comparing the values 
of the coordinate at times t and t +  averaged over a series of measurements: 
 

 C() = < > ¯¯¯¯¯¯¯¯¯  f(t + ) f(t)         29.5.8 
 

The overbar indicates a time average from t = 0 to ∞. For example at one value of t, if both 
f(t + ) and f(t) have the same sign, then the product gives a positive contribution to the time 
average, Figure 29.5.5. At a subsequent value of t, if f(t + ) and f(t) have opposite sign, then the 
product gives a negative contribution to the time average. For  shorter than the correlation time, 
the system doesn’t move much and the signs of f(t + ) and f(t) are the same, giving a large C(). 
For long , on average the positive and negative contributions cancel giving C(∞) as zero. 
Since fluctuations are random, each experiment that is used to calculate the time averages gives a 
different, though similar, result. If the fluctuations are much faster than the resulting relaxation 
behavior, we expect the dynamics to be identical with each measurement. To remove the 
changing repeat behavior, the macroscopic dynamics are given by an ensemble average of 
¯¯¯¯¯¯¯¯¯f(t + ) f(t)  in the equilibrium state.19 The “<” and “>” in Eq. 29.5.8 symbolize the ensemble 
average. An ensemble is a group of identical systems. A fundamental postulate of statistical 
mechanics is that the observed value of a macroscopic observable, such as the spin-lattice 
relaxation time, is given by an ensemble average of the corresponding microscopic, quantum 
mechanical property (see Chs. 12.1 and 30.1). The ensemble average is calculated by finding 
¯¯¯¯¯¯¯¯¯f(t + ) f(t)  for each system in the ensemble and then averaging the result over the ensemble. The 
important stipulation of the fluctuation dissipation theorem is that the ensemble is held at 
equilibrium for the averages. 
   Under many circumstances, correlation functions decay roughly exponentially with time: 
 

 C() = ¯¯¯f(t)2 e–/c      ( > 0)   29.5.9 
 

Where ¯¯¯f(t)2  C(0) is the mean square average of the fluctuating coordinate. The exponential time 
constant c is the correlation time. Correlation functions are even functions of ; past behavior is 
predictive of future behavior. For  < 0 the exponential factor is instead e/c. Correlation 
functions can be thought of as measures of persistence. For short time periods the original 
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orientation persists and C() is large. As time progresses, the molecule loses track of its previous 
orientation and C() approaches zero, Figure 29.5.5. The Fourier transform of the correlation 
function gives the frequencies and amplitudes of the underlying fluctuations. The Fourier 
transform of the correlation function is called the spectral density, J(). Using 
Eq. 29.5.9 to find the Fourier transform gives: 
 

 J() = 2 


0
 C() e–i 2t d        29.5.10 

 

 

 
Figure 29.5.5: Random fluctuations are characterized by a correlation function with a 
correlation time c. The spectral density is the Fourier transform of the correlation function. 

 
 

The spectral density is the amplitude of the fluctuations at frequency . For example, the rate of 
spin-lattice relaxation at the resonance frequency o of 300 MHz is directly proportional to the 
spectral density of the fluctuations at 300 MHz, Figure 29.5.4. Substituting the correlation 
function, Eq. 29.5.9, into the Fourier transform gives:18 

 

 J() = 2 


0
 ¯¯¯f(t)2 e–/c e–i 2t d = ¯¯¯f(t)2 







2c

1 + 4222
c

      29.5.11 

 

For short or long correlation times the spectral density at the resonance frequency is low, 
Figure 29.5.6.  
 
 

 
           (a).     (b). 
 

Figure 29.5.6: (a). The spectral density has relatively low amplitude at the resonance 
frequency, o, for short and long correlation times and is maximal for a correlation time of 
c  1/2o. (b). T1 passes through a minimum at c  1/2o 
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   The maximum spectral density and minimum T1 result when the correlation time is just right, 
c = 1/2o. Relaxation is a “Goldilocks and the three bears” kind of thing. Note that proton and 
13C NMR sample different frequencies of the spectral distribution. In addition, characterizing the 
spectral density by studies of the same nucleus at different frequencies is also common (e.g. 1H 
at o of 60 MHz, 100 MHz, 300 MHz). 
   The spectral density function is a generalization of the density of states concept that we used to 
explain non-radiative processes in electronic spectroscopy. The spectral density approach is 
appropriate for motions that are essentially random, but the concepts are identical. The 
relationship between the correlation function and the spectral density, Eq. 29.5.10, is justified by 
a general mathematical relationship called the Wiener-Khintchine theorem.21 The fluctuation 
dissipation and Wiener-Khintchine theorems are applied to a wide variety of processes apart 
from spectroscopy, including reaction dynamics. Electronic and audio noise are also fluctuation 
phenomena. Historically, the first full introduction of the fluctuation dissipation theorem was the 
theory of gas phase viscosity.21 Thinking of the physical world as a bath of fluctuations that drive 
dynamic processes is a powerful unifying concept. 
            11 
 
   For the spectral density in spin-lattice relaxation, ¯¯¯f(t)2 in Eq. 29.5.11 is the average square of 
the fluctuating magnetic field intensities perpendicular to the applied field, ¯¯¯¯¯¯¯¯¯¯¯¯Bx(t)2 + By(t)2 .18 For 
a single proton with resonance frequency o the relationship between the spin-lattice relaxation 
time and the spectral density from Eq. 29.5.11 is:18 

 

 
1
T1

 = 
2

n

ħ2  ¯¯¯¯¯¯¯¯¯¯¯¯Bx(t)2 + By(t)2  






c

1 + 422
o

2
c

       29.5.12 

 

Magnetic dipole-dipole interactions are important sources of the fluctuating magnetic fields at 
the nucleus. The correlation time is then determined by the details of the molecular motion. 
 

Inversion-Recovery Experiments Determine T1-Relaxation Times:  The saturation-recovery 
method for T1 determination was discussed above. A better method, available in pulsed 
spectrometers, is the inversion-recovery pulse sequence.14 The pulse sequence is a 180 pulse 
followed at time  by a 90 pulse, Figure 29.5.7. The 180 pulse in the inversion-recovery 
sequence inverts the magnetization, which causes all the up-spins to become down-spins, and 
visa-versa. This 180 pulse creates a population inversion in which there are more spins in the 
high energy state than in the low energy state. After time  the FID is acquired by applying a 90 
pulse. The -interval is called an evolution period, during which the spins relax towards 
equilibrium. For short -values the peaks in the spectrum are negative; the combined result of the 
two pulses is effectively a 270 pulse. For long values, the system is able to regain equilibrium 
before the second pulse and the spectrum appears normally at full intensity. 
   The spectra at various values are often plotted on the same chart, giving the so-called 
partially relaxed spectra for the system, Figure 29.5.8. The T1 value of each chemical 
environment is obtained by fitting the corresponding peak intensity as function of  to: 
 

  ln(Mo – Mz) = ln(2Mo) – 

1

       29.5.13 
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Figure 29.5.7: Inversion-recovery sequence for T1 determination. The pulse profiles are 
shown; the final pulses are at the resonance frequency (e.g. 300 MHz). The 180 pulse 
inverts the magnetization. The system relaxes towards equilibrium during the evolution 
period , after which the spectrum is obtained by applying a 90 pulse. 

 
 

 
Figure 29.5.8:  Partially relaxed inversion-recovery 13C-spectra.22 The zero-crossing -values, 
for which 1 ln 2, are shown by “” symbols. 
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By comparison, taking the logarithm of both sides of Eq. 29.5.3 gives ln(Mz)=ln(Mo) – 1. The 
difference is that in the inversion-recovery method, the signal for small  is negative. The point 
when a peak changes from negative to positive is a rough measure of the T1, which from setting 
Eq. 29.5.13 equal to zero gives 1 ln 2. 
 
29.6 Chemical Exchange23-26 

 

Chemical Exchange Broadens Transitions:      The hydroxyl resonance in ethanol, Figure 
29.1.3ab, is significantly broader than the methylene and methyl resonances. The chemical shift 
of the hydroxyl is strongly temperature dependent and also shifts with changes in solvent; 
compare Figure 29.1.3a to 29.1.3c. The cause of this variable behavior is that the hydroxyl 
protons are labile. The hydroxyl proton on one ethanol molecule is rapidly exchanged with the 
hydroxyl proton on another alcohol molecule or with the protons from trace amounts of water, 
which is absorbed from the atmosphere. The exchange of labile protons is an example of a 
dynamical process called chemical exchange. The protons on carboxylic acids, amines, amides, 
ammonium, quanidinium, and thiol groups are similarly labile and exchangeable. NMR is one of 
the most commonly used spectroscopic tools for studying chemical exchange, which also 
includes conformational changes and chemical reactions.23 Examples of conformational studies 
are the boat-chair interconversions in cyclohexanes and cis-trans isomerization. Chemical 
reaction types include keto-enol tautomerization and complexation. There are two requirements 
for the applicability of dynamic NMR. The magnetically active nucleus must change 
environments so that the chemical shift of the nucleus differs from one environment to another. 
The time scale of the exchange must also be slow enough or fast enough to cause the NMR 
transitions to be broadened. The time scale for broadening is called the NMR time scale. The 
utility of dynamic NMR studies is twofold. First, dynamic aspects of systems that are at 
equilibrium can be studied. For example, rate constants can be obtained for “virtual” reactions, 
such as the cis-trans isomerization of N,N-dimethylacetamide in which reactants and products 
are chemically identical: 
 

 29.6.1 
 

Secondly, the NMR time scale corresponds to reaction rate constants in the range of 10-1-10-5 s-1, 
which are too fast for classical kinetics studies.24 

 

The Exchange Rate Constant is Determined by Line Widths:  If two groups of nuclei are 
exchanged, the broadening of the transitions is a function of the difference in their resonance 
frequencies,  = AB, and the exchange rate constant, k. The exchange lifetime is defined as 
e = 1/2k. At low temperatures the exchange is slow, e >> 1/ giving two sharp singlets at A 
and B, Figure 29.6.1a. At high temperatures the exchange is fast, e << 1/ and a single sharp 
transition is observed, Figure 29.6.1d. At intermediate temperatures the spectrum consists of two 
significantly broadened overlapping lines, Figure 29.6.1b. At the coalescence temperature the 
two transitions broaden sufficiently that the two transitions merge into a single broad peak. 
   In the absence of chemical exchange, spin-spin relaxation and magnetic field inhomogeneity 
determine the width of an NMR transition. Chemical exchange shortens the lifetime of each spin 
state, additionally contributing Heisenberg uncertainty broadening of ½ = 1/2, in analogy 
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with Eq. 23.4.46. The line shape that results from the exchange process is derived from the Bloch 
equations.24,25 The resulting line shape in the case of two exchanging groups with equal 
probability of occurrence and no spin-spin coupling is:25 
 

 g() = 
K (A – B)2

( )½(A + B) –  2 + 42T2
2,eff(A – )2 (B – )2  (50:50, JAB  0, slow) 

         with    
1

T2
2,eff

 = 
1

T2A'2  + 
1
         29.6.2 

 

where g() is the intensity at frequency  K is a normalization constant, and T2,eff combines the 
effective spin-spin relaxation time and chemical exchange. Nonlinear curve fitting of the 
observed line shape to Eq. 29.6.2 is used to determine A, and B. Approximations are also 
commonly made that apply over different ranges of exchange rates. 
 

 
 

Figure 29.6.1.  Effect of chemical exchange on NMR line shapes. The two transitions just 
merge to give a single peak at the coalescence temperature, such that k = o/ 2. 

 

 
   The full widths at half-height, as defined in Figure 29.6.1, are used in approximate methods to 
find the exchange lifetime and exchange rate constant. The line widths of the two transitions are 
assumed to be identical. In the slow exchange limit the spectrum consists of two sharp lines. For 
the A-transition at frequency A, Eq. 29.6.2 reduces to:25 

 

 g()  
KT2A'

1 + 42T2A'2 (A – )2          ( >> 1/, slow) 29.6.3 
 

where T2A' is the effective spin-spin relaxation time. A parallel equation holds for the B-
transition. Comparing Eq. 29.6.3 to Eq. 29.6.2 shows that the linewidth of the transition at A is: 
 

 (A)½ = 
1

T2A'
            ( >> 1/, slow) 29.6.4 

 

In the intermediate range,26 exchange results in additional broadening of 1/: 
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 (A) e
½ = 

1
T2A'

  + 
1
       (intermediate)  29.6.5 

 

The exchange rate constant is determined by comparing linewidths of exchanging peaks to those 
recorded at temperatures at which the rate of exchange is negligible: 
 

 k  

2
 [ ](A) e

½ – (A)½       (intermediate)  29.6.6 
 

Often T2A' is long ( 5 s) so that the second term in Eq. 29.6.6 can be dropped. The exchange rate 
constant is also related to the change in peak separation: 
 

 k  

2
 [ ]o

2 – e
2 ½      (intermediate)  29.6.7 

 

where o is the peak separation in the absence of exchange, at low temperature, and e is the 
peak separation with intermediate exchange. At the coalescence temperature the rate constant is: 
 

 k  
o

2
       (coalescence)  29.6.8 

 

In other words the NMR time scale is determined by the chemical shift differences with 1/2k. 
In the fast exchange limit, at temperatures above the coalescence temperature, the spectrum 
consists of a single peak. In this region k << (A – B) and Eq. 29.6.2 reduces to: 
  

 g() 
KT2'

1 + 42T2'2 (A + B – 2)2        ( << 1/, fast) 29.6.9 
 

with the average 1/T2' = (1/T2A' + 1/T2B')/2. The fast exchange limit is called extreme 
narrowing. If the signal is not completely collapsed, exchange is slow enough to contribute to 
the width but much faster than the rate corresponding to separate signals, then: 
 

 k  
o

2

2   
1

[ ](½)e – (A)½
         ( << 1/, fast) 29.6.10 

 
              

Example 29.6.1: Chemical Exchange 
   For N,N-dimethylacetamide at low and intermediate temperatures, the -N(CH3)2 group gives 
two resonances, Eq. 29.6.1. One N-methyl group is cis to the carbonyl and the other is cis to the 
acetyl methyl group. The spectrum is acquired at three temperatures. The full width at half height 
and difference in peak maxima for the corresponding transitions in slow, intermediate, and fast 
exchange are given schematically below at 400 MHz. Calculate the exchange lifetimes and rate 
constants at the temperatures with intermediate and fast exchange. 
 

 
Figure 29.6.2: N, N-dimethylacetamide –N(CH3)2 proton resonances at 400 MHz. 
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Answer:   The lowest temperature gives the effective spin-spin relaxation time in the absence of 
chemical exchange, Eq. 29.6.4: 
 

 (A)½ = 
1

T2A'
  which gives T2A' = 4.5 s-1 

In intermediate exchange, at 50.0C, the line width is 19.2 s-1, so that Eq. 29.6.6 gives: 
 

 k  

2
 [ ](A) e

½ – (A)½  = 

2
 [19.2 s-1 – 0.071 s-1] = 42.5 s-1             or   e = 11.8 ms 

 

At coalescence, 64.5C: k  
o

2
 = 
 77.0 s-1

2
 = 171. s-1                    or  e = 2.92 ms 

 

In fast exchange, at 70.3C, the line width is 37.6 s-1, so that Eq. 29.6.10 gives: 
 

      k  
o

2

2   
1

[ ](½)e – (A)½
 = 
(77.0 s-1)2

2   
1

(37.6 s-1 – 0.071 s-1) = 248. s-1  or  e = 2.02 ms 

 

The activation energy for the exchange is given by the torsional energy barrier. Assuming 
Arrhenius behavior, the temperature dependence of the rate constant is used to determine the 
activation energy of the torsion. A plot of ln k vs. 1/T gives Ea from the slope: slope = –Ea/R. 
              

 
29.7 Electron Spin Resonance 
 

   ESR is best explained by drawing a direct analogy between proton-NMR and ESR, Table 
29.7.1. An electron with spin quantum number s = ½ has angular momentum with magnitude 
| S | = ħ ½(½+1), which in an applied magnetic field has projections of ms = ±½ħ along the field 
axis, Figure 29.7.1. The magnetic moment is proportional to the angular momentum. The 
projection of the electron spin magnetic moment along the applied field, µz, is correspondingly 
quantized: 
 

z = e ħ ms      or alternatively         z = ge B ms  (isolated electron) 29.7.1 
 

where e is the magnetogyric ratio of the electron. In the alternative relationship, the 
proportionality constant is given by the isolated electron g-factor, ge, and the Bohr magneton: 
 

 B = 
–eh-

2 me
           29.7.2 

 

Comparing the two relationships in Eqs. 29.7.1 gives e ħ = ge B. The g-factor of an isolated 
electron is 2.0023. The nuclear magneton can also be defined in an analogous expression, Table 
29.7.1, using the mass of the proton instead of the mass of the electron. The nuclear and Bohr 
magnetons are opposite in sign, because the nucleus is positively charged and the electron is 
negatively charged. In the applied field, Bo, the isolated electron energy levels are: 
 

 E = ge B Bo ms          (isolated electron)  29.7.3 
 

Because of the smaller mass of the electron, the Bohr magneton is roughly ~ 2000 times larger 
than the nuclear magneton. As a result the energy level spacing in ESR, E = ge B Bo, is much 
larger than in proton-NMR. Depending on the applied field strength, ESR spectra occur in the 
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microwave and mm-wave regions of the electromagnetic spectrum. Microwave frequencies are 
in the gigahertz range, 1 GHz = 1x109 Hz, and mm-wave frequencies extent to the terahertz 
range, 1 THz = 1x1012 Hz. By comparison Bluetooth networks operate at 2.4 GHz. 
 

 
Table 29.7.1: Correspondence between 1H-NMR and ESR Expressions. 

 

property NMR, I ESR, s=½ 
angular momentum | I | = ħ I(I+1) | S | = ħ ½(½+1) 

magnetic moment |  | = n ħ I(I+1) | e| = e ħ ½(½+1) 

projection on z-axis z = n ħ mI  

z = gn n mI 

z = e ħ ms 

z = ge B ms 

nuclear or Bohr magneton 
n = 

eħ
2 mp

 for 1H B = 
–eħ
2 me

   2000 n 

energy   E = –B


o= –z Bo E = –n ħ Bo MI E = ge B Bo Ms 

chemical shift E = n ħ Bo (1-) E = g B Bo 

 

 

 
 

Figure 29.7.1: Correspondence between 1H-NMR and ESR of a one-electron radical. 
Resonance occurs when the magnetic field increases the level spacing to equal the fixed 
microwave frequency. The energy scale of the NMR plot is 1/20 the scale of the ESR plot. 

 
 

Table 29.7.2: NMR and ESR Resonance Frequencies at Common Field Strengths. 
 

Band X Q W D mm-wave 
            (mm) 30 8.5 3.2 2.1   1.1 
ESR: o (GHz) 9.75 34.0 94 140   263 
1H:    o (MHz) 15 52 143 213   400 
Bo          (T) 0.35 1.24 3.35 5.0   9.4 
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The g-Factor and Hyperfine Splitting:   For an unpaired electron in a molecule, we need to take 
into account the local effective magnetic field. The electron experiences a net magnetic field that 
has shifts in analogy to the nuclear chemical shift. To account for chemical shifts, the g-factor ge 
of an isolated electron is replaced by an effective g-factor, g: 
 

 E = g B Bo            (molecule)  29.7.4 
 

   The applied magnetic field in ESR is chosen over a wide range. The resulting ESR transition 
frequencies of a one-electron radical with g  2.00, are given in Table 29.7.2. The corresponding 
proton NMR frequencies in the same field are tabulated for comparison. The early development 
of ESR was based on advances in radar technology. The frequency ranges for ESR are named 
based on the ranges, or bands, typical in radar. The most common band for ESR is X-band at 
9.75 GHz requiring a magnetic field strength of 0.35 T. In the same magnetic field, proton-NMR 
occurs at 15 MHz, which is a factor of 650 times smaller. The historical trend to higher field 
strengths in ESR is three-fold. ESR spectra have higher resolution and sensitivity at higher field 
strength. Higher field strengths also facilitate simultaneous NMR and ESR experiments. 
   ESR spectra are acquired on solids, liquids, and gases. Spectra of solutions are typical, either at 
room temperature or frozen at cryogenic temperatures. The biggest difference between NMR and 
ESR is that the occurrence of molecules or ions with unpaired electrons is rare. All molecules 
have magnetically active nuclei, subject to natural abundance, so that NMR spectra are universal. 
For organic molecules, on the other hand, few room-temperature stable odd-electron radicals are 
known. Instead, radical species must be generated in the sample tube or in flow systems by 
chemical reactions, electrochemistry, or photochemistry. The lifetimes of radicals and triplet 
states are usually short at room temperature, but radical lifetimes are lengthened at low 
temperature. As a result low temperature ESR spectra of solids or solid solutions is common. In 
spite of the lack of generality, ESR is a powerful and common tool in the laboratory. The 
detection of free radical intermediates using ESR is often a key step in finding the mechanism of 
complex reactions. Many, if not most, transition metal, lanthanide, and actinide complexes have 
unpaired electrons. Another advantage is that the typical high frequencies make ESR orders of 
magnitude more sensitive than proton-NMR, Eq. 29.1.7. Compared to proton NMR, unpaired 
electron species are easily detected in small numbers. 
    ESR spectra are commonly acquired by keeping the irradiation frequency constant while 
scanning the applied magnetic field, Bo. Historically, scanning the magnetic field was 
electronically easier than scanning the frequency. This mode is called continuous wave mode, 
cw. As the applied magnetic field increases, the spacing between the levels increases. A 
transition occurs when the spacing between the levels matches the fixed irradiation frequency, 
E = ho, Figure 29.7.1. The horizontal axis in ESR spectra is usually magnetic field strength in 
Tesla or Gauss, where 1 T = 104 G. Pulsed Fourier transform instruments are also available. In 
cw-mode for odd-electron radicals, the magnetic field sweep range is typically small, up to a 
maximum of 50-700 mT (500 to 7000 G) depending on the instrument. Note that 1 mT = 10 G. 
Detection of triplet states requires wide field scan ranges, because zero-field splitting of triplet 
states is variable (see below). 
 

Field Modulation Produces a Derivative Line Shape:   The tradition in ESR spectroscopy is to 
display the derivative of the absorption signal. The derivative signal results because magnetic 
field modulation is used to enhance signal to noise. In field modulation a constant amplitude, 
weak, oscillating magnetic field is applied to the sample along with the slowly swept main 
magnetic field. The modulation frequency is typically 100 kHz and the spectrum sweep time is 
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generally minutes. The detected signal follows the combined magnetic fields. Consider a Bo 
value near the beginning of the absorption line, Figure 29.7.2a. 
 

 
 

Figure 29.7.2:  ESR spectra are commonly recorded as derivatives using magnetic field 
modulation. A constant amplitude, weak, oscillating-field is superimposed on the slowly 
swept main field, which causes the detected signal to oscillate proportionally to the change in 
absorbance for the fixed modulation of the magnetic field, dA/dB. 

 
 

The modulation causes a small change in signal because the slope of the signal is small. Next 
consider a Bo value at a steep portion of the absorption line, Figure 29.7.2b. The modulation 
causes a large change in output signal, because the slope of the signal is large. The amplitude of 
the detected signal is displayed as a function of Bo. The slope at the maximum of the absorption 
signal is zero, giving a zero value for the derivative in the middle of the transition. 
   Spin-spin splitting occurs in both ESR and NMR. In the ESR context, spin-spin splitting is 
called hyperfine structure. In ESR the spin of the odd electron interacts with nearby magnetic 
nuclei. Electron-nuclear coupling with a single proton gives a doublet, coupling with equivalent 
methylene protons gives a triplet, and coupling with methyl protons gives a quartet. As in NMR, 
electron-nuclear coupling with n-equivalent nuclear spins with spin quantum number I gives the 
multiplicity of 2nI + 1, Figure 29.7.3.  
 

 
Figure 29.7.3:  The derivative passes through zero at the absorption maximum. The 
multiplicity is equal to the zero crossings of the signal: (a). doublets and (b). triplets. 
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   The spin-spin coupling constant, or hyperfine-structure constant, is given the symbol a, as a 
distinction with J in NMR. The multiplicity of a resonance is easy to determine from the 
derivative spectra, if the line-width is much less than the peak spacing, Figure 29.7.3. However, 
broad line width causes the derivative signals to overlap, which at first may appear confusing. A 
quick trick to find the multiplicity is to count the zero-crossings of the signal, Figure 29.7.3b. 
   The NMR spectrum of ethanol and the ESR spectrum of the 1-hydroxyethyl radical highlight 
the similarity and differences between NMR and ESR, Figure 29.7.4. The radical was created by 
oxidation of ethanol with H2O2 using Ti(III) as a catalyst. NMR spectra typically have multiple 
chemical shifts. Secondarily, the resonances often show spin-spin splitting. Interpreting the 
chemical shifts of the different environments in the molecule is the first step in molecular 
structure determination. In ESR of an odd-electron radical, however, there is only one chemical 
shift, because there is only one unpaired electron. The g-factor does shift with chemical 
environment, but the primary information in most circumstances is a single hyperfine-structure 
multiplet. For the 1-hydroxyethyl radical, the largest splitting is between the electron and the 
protons of the methyl group at 22.0 G, which gives a 1:3:3:1 quartet. Additional splitting 
between the electron and the single remaining methylene proton is 15.0 G, giving the final 
multiplet as a quartet of doublets. 
 
 
                NMR:  Ethanol          ESR:  1-Hydroxyethyl radical 
Several chemical shifts with fine structure  One chemical shift with fine structure 
 

 
Figure 29.7.4: Comparison of NMR and ESR spectra. Electron-nuclear hyperfine structure 
(spin-spin splitting) is often the primary information obtained using ESR.27 

 
 
   The ESR spectrum of the ammonia radical, produced by X-ray irradiation, shows a triplet of 
quartets, Figure 29.7.5a. The triplet results from coupling with 14N, which has a spin of I = 1. 
Additional splitting by the three methyl protons gives the triplet of quartets. 
   The nature of the chemical shifts and spin-spin interactions determined by NMR and ESR are 
another difference. The NMR chemical shift is a measure of the electronic environment in a 
localized part of the molecule adjacent to the given nucleus. In contrast, in ESR the odd-electron 
in a radical is often delocalized over many nuclei, because the electron is often in a delocalized 
molecular orbital. As a result, the multiplicity of a radical is often an indicator of the extent of 
delocalization of the electron, Figures 29.7.5b, 29.7.6ab. Each of the three examples shows 
extensive electron-delocalization over all the sp2-centers. The radical structures shown in each 
case are just one of several possible resonance structures. 
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Figure 29.7.5: ESR spectra (X-band). (a). X-ray irradiation of solid ammonium perchlorate. 
(b). Semiquinone radical formed from reduction of 2,3-butanedione.28 

 
 

In the semiquinone radical, Figure 29.7.5b, the methyl groups are equivalent and the ring-protons 
are equivalent by delocalization. The two equivalent methyl groups give a septet, 2nI+1 = 
2(6)(½)+1 =7. Additional splitting by the two equivalent ring-protons give a final septet of 
triplets. The hyperfine coupling constant to the methyl-protons is larger than to the ring protons, 
because the ring protons lie in the nodal plane of the delocalized -orbital.  
 

    
 

Figure 29.7.6: ESR spectra (X-band). (a). Oxidation of reductic acid with H2O2.29 
(b). Reduction of 3-nitrophthalic anhydride with Zn.28 
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In the radical anion produced by H2O2 oxidation of reductic acid, Figure 29.7.6a, delocalization 
makes the two methylenes equivalent. As a result the hyper-fine pattern is a 1:4:6:4:1 quintet. 
The alkaline oxidation of 3-nitrophthalic anhydride produces a radical anion with extensive 
delocalization over both rings, Figure 29.7.6b. The 14N from the nitro-group produces a triplet, 
which is additionally split by two approximately equivalent aromatic ring protons into a triplet, 
and again by the remaining aromatic-proton into doublets. 
   A block diagram of an ESR spectrometer is shown in Figure 29.7.7. Microwaves dissipate 
rapidly traveling along short wires; short wires are effective antennas for microwaves. As a 
result, the electronic paths for microwaves are usually constructed from waveguides. 
Waveguides are metallic tubes with rectangular cross section. The width of the waveguide is 
approximately the wavelength of the microwaves, Table 29.7.2. The sample tube for an ESR 
study is placed in the middle of a rectangular cavity at the end of a length of waveguide. The 
microwave cavity is placed between the pole pieces of a magnet. Iron-core electromagnets are 
usually used for X and Q-band instruments. In bench-top spectrometers, smaller rare-earth 
permanent magnets are used. High frequency ESR depends on superconducting magnets, as does 
NMR. Sample absorption is measured by determining the reflected power from the cavity using 
a reflectance bridge. 
 
 

 
 

Figure 29.7.7: A typical X- or Q-band ESR spectrometer. The sample is placed in the middle of a 
rectangular cavity at the end of a waveguide. Sample absorption decreases reflected power from 
the cavity. Field modulation coils are placed on the exterior of the cavity. Field scan coils sweep 
the main applied magnetic field linearly over a ~500 mT (~5000 G) range. 
 
 
   In our discussion so far we have emphasized the spectra of odd-electron radicals. ESR of triplet 
states is also common and distinct from the one-electron case. 
 
Triplet States Often Give Three ESR Resonances:30   The electron spin wave functions of a triplet 
electronic state are: 
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 αα    ms = +1 
 1/ 2(αβ + βα)  ms = 0           (25.4.20) 
 ββ   ms= –1 
 

First consider a triplet state in the absence of an applied magnetic field. If the interaction 
between the two electrons is small, the three spin-states are degenerate. However, for many 
triplet states magnetic dipole-dipole coupling between the two electrons breaks the degeneracy. 
The energy difference between the resulting degenerate (or nearly degenerate) ms = ±1 states and 
the ms = 0 state is given by the zero-field splitting.30 This interaction occurs in the absence of an 
applied field. In the presence of an applied magnetic field the ms = ±1 levels split in proportion 
to the strength of the field (see also Ch. 25.6-25.7). With no zero-field splitting, the two Δms = 
±1 transitions are at the same frequency, and only one resonance is detected, Figure 29.7.8a. The 
Δms = ±2 is not allowed. With moderate zero-field splitting, at fixed frequency, two different 
Δms = ±1 transitions are observed. If the zero-field splitting is small compared to the microwave 
frequency, a third transition with Δms = ±2 is then magnetic dipole allowed.30 The three 
transitions are usually at significantly different applied fields, Figure 29.7.8b. As a result, ESR 
spectrometers designed for the study of triplet states do not use fixed-field main magnets, such as 
those found in bench-top spectrometers. The necessary magnetic field scan range is over many 
tesla. Most importantly, as in the one-electron radical case, each transition can also carry 
electron-nuclear hyperfine-structure, which shows the extent of delocalization. 
 

 
Figure 29.7.8: (a). Triplet states with negligible zero-field splitting give one resonance. 
(b). Triplet states with moderate zero-field splitting give two Δms = ± 1 resonances and, if the 
zero-field splitting is small, a Δms = ± 2 transition. (zfs ordering assuming Bo || z-axis) 

 
 
29.8 Coherence 
 

A Strong Oscillating Field Produces a Superposition of States:   The vector model described by 
the Bloch equation presents a classical model of a fundamentally quantum mechanical 
phenomenon. What is the quantum mechanical description of the response of the spin system to a 
short, strong pulse of rf irradiation? Consider the energy level diagram of a spin-½ system, 
Figure 29.8.1. The average number of spins in each level is N and the population difference is . 
The rf-field promotes transitions from the lower level to the upper level in absorption and from 
the upper level to the lower level in stimulated emission. The net result is a change in 
populations of the two states. The rf-field couples the two states with the populations oscillating 
in proportion to the length of the rf-field pulse, tp: 
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 P+½ = N + 

2 cos   P–½ = N –


2 cos  with   = 2nB1tp  29.8.1 

 

 
 

Figure 29.8.1:  The populations of the two coupled states oscillate with frequency nB1. 
 
 
   A 90 pulse gives equal populations, Figure 29.8.1. A 180 pulse corresponds to a population 
inversion, giving more spins in the upper state than the lower state. With continuous radiation of 
a weak field, the populations are equalized giving a saturated transition that produces no signal. 
However, a strong 90 pulse gives a maximum signal, as correctly predicted by the vector model. 
If the states have equal populations after a strong 90° pulse, why does the spin system give a 
strong signal? The answer is that irradiation with a strong rf-field creates a coherent 
superposition of spin states that has a large effective magnetic moment in the x-y plane. The 
precession of this magnetization produces the free induction decay after the pulse is stopped. 
What is meant by a coherent superposition? In the presence of irradiation, the state of a spin is no 
longer purely spin-up or spin-down, but rather a linear combination of the two with coefficients 
that evolve sinusoidally with time: (t) = cos(2nB1tp)  + sin(2nB1tp) . The coupling of the 
two states has important implications for the relative phases of the individual spin magnetization 
vectors. 
   At equilibrium, each individual spin has a fixed z-axis projection with a few more spin-up than 
spin-down, as given by the Boltzmann distribution. The x and y-axis projections of the individual 
nuclear magnetic moments are distributed at random. The ends of the individual spin 
magnetization vectors precess around the top and bottom of the cones corresponding to mI = ½, 
Figure 29.8.2a. A strong rf-pulse has the effect of causing the x and y-projections of the 
magnetization to bunch-up. Because of the coherent superposition, the spin-up and spin-down 
states are not independent, the phases are held in step. The result is a net magnetization in the x-y 
plane, Figure 29.8.2b. The synchronization of the x and y-axis projections of the individual spin 
moments is called temporal coherence. Before the pulse, the individual spins precess at random. 
The strong rf-field causes the phase of the precession of each individual spin moment to 
synchronize. In the vector model the generation of coherence is pictured as the tilt of the 
magnetization away from the z-axis, generating a component of the magnetization in the x-y 
plane. In both models, angular momentum is conserved by maintaining a constant magnitude of 
the magnetization vector at any tilt angle. 
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Figure 29.8.2: (a) Before irradiation, the Mx and My projections of the individual spin 
magnetizations are randomly distributed. A strong rf field synchronizes the precessional 
phases generating a resultant magnetization in the x-y plane. (Rotating frame perspective) 

 
 
Coherence Maintains Phase Relationships, Remember e–iEt/ħ:   The quantum mechanical 
temporal phase is determined by the time-dependent part of the wave function. For a stationary 
energy state of a single particle, the time dependence is given by Eqs. 23.7.32-23.7.34: 
 

 (t) = e–iEt/ħ = e–i 2ot with  E = ho             (23.7.32) 
 

The factor of 2ot is the phase angle in radians, Eq. 23.7.33. However for multiple spins, in the 
absence of irradiation, each spin has a random phase offset, : 
 

 (t) = e–i(2ot + )      (multiple spins) 29.8.2 
 

At equilibrium  is randomized by T2 spin-spin interchanges. The presence of an rf-field 
synchronizes the phases giving a narrow distribution of phase offset angles. However, in many 
experiments, the vector model is an easier way of visualizing the evolution of coherence 
generation and decay. The motion of the magnetization vector describes the creation and 
evolution of the coherent superposition of states prepared by the applied rf-pulses. 
 

Temporal Coherence Can Be Observed in UV/Visible and Infrared Spectroscopy:   Temporal 
coherence is not specific to magnetic resonance. Coherence is observable in pulsed UV/visible, 
infrared, and microwave spectroscopy, which gives a powerful tool for the study of the effects of 
molecular motion on relaxation processes. In magnetic resonance, an oscillating magnetic field 
pulse creates the coherent superposition. In electronic, vibrational, and rotational spectroscopy, 
the electric field of the pulse creates the superposition of the ground and excited states. Temporal 
coherence is observable when the irradiation field strength is sufficient to provide tilt angles near 
90 in times short compared to the active relaxation times (the equivalent of T2 processes). 
Relaxation in electronic and vibrational spectroscopy is orders of magnitude faster than in NMR. 
As a result, high power lasers with picosecond or shorter pulse widths are necessary to observe 
coherence in pulsed optical spectroscopy. 
 
29.9 Summary – Looking Ahead 
 

   Magnetic resonance is an immense field with strategic implications for the characterization of 
structure and motion in all the molecular sciences. Developing the principles of magnetic 
resonance has also greatly advanced quantum mechanics, statistical mechanics, and spectroscopy 
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in general. The developments in coherence, non-equilibrium dynamics, and non-linear 
spectroscopy are especially noteworthy. We have only had the opportunity to present the briefest 
of introductions to this important field. 
   The fluctuation dissipation theorem provides an important window into the relationship 
between microscopic, quantum mechanical processes and macroscopically observable behavior. 
Dynamic processes, in the absence of driving forces such as applied electromagnetic fields, 
evolve by isoenergetic transfers of energy to fluctuations in the surroundings. Fluctuations are 
caused by the wiggling and jiggling of the atoms in the system caused by translation, rotation, 
and vibration. The important motional frequencies are those that are matched to the frequency of 
the transition. In non-radiative electronic transitions, the important fluctuations are high 
frequency vibrations. In NMR and ESR relaxation, the important fluctuations are much slower: 
translations, rotations, and low-frequency torsional vibrations. The fluctuations that occur in the 
system at equilibrium drive the dynamics of non-equilibrium processes. In other words, non-
equilibrium and equilibrium systems are not distinct. Systems relax to equilibrium using the 
same fluctuations that exist in and maintain the system at equilibrium. 
   Detailed Balance, the Gibbs Phase Rule, the Pauli Exclusion Principle, and the Fluctuation 
Dissipation Theorem are fundamental principles that govern all chemical phenomena. These 
four, central generalizations describe the interrelationships between different aspects of chemical 
processes. Each principle is a simple statement with wide ranging ramifications. We will see in 
the next chapter that the fluctuations of the system about the equilibrium configuration are small. 
The equilibrium state is the most probable state, which is calculated using an ensemble average 
of the quantum mechanical properties of the molecules that comprise the system. 
   The quote at the beginning of this chapter from Lucretius’s On the Nature of the Universe is 
prescient in stating the centrality of fluctuations in the dynamic processes that drive the universe. 
The quotes are poetic pronouncements of the underlying form of nature as based on the statistical 
probability of random events. Lucretius wrote his six book poem in the first century B.C.E. 
 
 
 

Chapter Summary 
 

1. The projection of the nuclear magnetic moment along the applied field, z, is quantized: 

 z = n ħ mI   with  mI = –I, –I+1, .., 0, …, I–1, I 

2. The Hamiltonian of a single spin is: H^  = – n ħ I
^
z Bo, where I

^
z is the operator for the projection 

of the angular momentum along the z-axis. 

3. The spin wave functions are eigenfunctions of I
^
z. For spin-½ nuclei:  for mI = +½ or “spin-

up” and  for mI = –½ or “spin-down”: 
 I

^
z  = +½  and H^   = E  with  E = –½ n ħ Bo 

 I
^
z  = –½  and H^   = E  with  E = +½ n ħ Bo   that is:   E = – n ħ mI Bo 

4. The specific selection rule requires a unit change in angular momentum E = ho = n ħBo. 

5. The sensitivity of NMR is poor, because of low energy photons, unfavorable Boltzmann 
population differences, and the natural abundance of many magnetic nuclei is small. 

6. For resonance i with frequency i and reference frequency ref, the chemical shift in ppm is 
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 i  
i – ref

ref
 1x106 ppm 

7. The transition integral is proportional to the number of nuclei in the chemical environment. 

8. The chemical shift of a non-labile nucleus in a specific chemical environment is predictable 
from model compounds. 

9. The chemical shift of a labile nucleus is variable, spin-spin multiplets are often collapsed, and 
the transition is often broadened by chemical exchange (e.g. hydroxyl protons). 

10. Chemical shifts are a function of the electron density at the nucleus. Diamagnetic shifts are 
upfield, to smaller frequency, smaller  and are caused by induced magnetic fields that are 
opposed to the applied magnetic field at the nucleus. 

11. Paramagnetic shifts are downfield, to larger frequency, larger  and are caused by induced 
magnetic fields that are additive to the applied magnetic field. The induced magnetic field is 
produced by ring currents of the electrons in the molecular orbitals of the molecule. 

12. Chemical shifts show chemical shift anisotropy; they depend on the orientation of the 
nucleus relative to functional groups in the molecule. The chemical shift of a nucleus near a -
orbital depends on the orientation and distance with respect to the orbital. 

13. The spin Hamiltonian and transition energy including the chemical shift i of spin-i is: 
 H^ i = –n ħ I

^
z,i (1 – i) Bo Ei = –n ħ mI,i (1 – i)Bo Ei = hi = n ħ(1 – i)Bo 

The Hamiltonian and corresponding energy levels converted into frequency are: 

 
H^ i

h  = –i I
^
z,i  

Ei

h  = –i mI,i   with    i = 
n

2 (1 – i)Bo 

14. The chemical shift expressed as i and i is: i = 
ref – i

1 – ref
 106 ppm  (ref – i) 106 ppm 

15. Chemically equivalent nuclei have the same chemical shift. Chemical equivalence results 
from free bond rotation that averages the chemical environments of the equivalent protons and 
from molecular symmetry (mirror planes or axes of rotation). 

16. Magnetically equivalent nuclei have the same chemical shift and the same coupling constants 
to each equivalent neighbor. Magnetically equivalent nuclei couple, but the effects of the 
coupling have no effect on the spectrum. 

17. Spin-spin splitting is the interaction of spins in a given resonance with neighboring spins. 
The strength is given by the spin-spin coupling constant, J, usually in Hz. 

18. The spin-spin multiplicity of a resonance with n-equivalent neighbors is 2  + 1 = n + 1. 

19. Equivalent neighbors give the minimum number of lines in a multiplet. All inequivalent 
neighbors give the maximum number of lines, 2n. 

20. The spin Hamiltonian for nuclei A and B is:   
H^

h  = – A I^zA – B I^zB + JAB I


A IB 

   If |A – B| >> |JAB| the first-order approximation is valid:      
H^

h   – A I^zA – B I^zB + JAB I^zA I^zB 

21. Magnetically equivalent nuclei don’t split because levels of the same symmetry shift equally. 

22. In Fermi-contact, spin-spin interactions are “through-bond” interactions mediated by 
interactions of the nuclei with the electrons in the intervening bonds. 
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23. For positive J (1J and 3J) the low energy state of the coupled nuclei is spin-paired (). For 
negative J (2J - germinal) the low energy state of the coupled nuclei is spin-parallel (). 

24. Spin-spin coupling is a function of dihedral angle. The Karplus relationship gives the vicinal 
coupling between protons attached to sp3 C-atoms with dihedral angle  as approximately: 
     3JHH = 8.5 cos2 – 0.28   for   0    90   and   3JHH = 9.5 cos2 – 0.28   for   90    180 
25. Proton decoupled 13C spectra are acquired with weak intensity continuous irradiation at the 
proton o, which causes rapid spin-flips of the protons that average JHC-coupling to zero. 

26. Spin-Spin multiplets appear narrower at high field with the spectrum plotted in ppm. 

27. Chemical shifts are a tensor interaction, which correspondingly depend on the orientation of 
the molecule in the applied magnetic field. The isotropic shift is  ⅓ tr(


) = ⅓ (xx + yy + zz). 

28. Gauge invariant atomic orbital, GIAO, chemical shift calculations mix excited state character 
with the ground state to approximate the electronic distribution in the applied magnetic field. 

29. The Bloch equation is a classical description of the behavior of the magnetization: 

 
dM



dt  = n (M


 x B


)      (no spin-relaxation) 

where B


 is the total magnetic field, which includes the applied field and the radiofrequency field. 

30. The net magnetization precesses at the Larmor frequency about the applied field. Application 
of rf-irradiation adds concurrent precession about the rotating rf-field direction. 

31. In the rotating frame, the net magnetization appears stationary in the absence of rf-
irradiation. An applied rf-field at the Larmor frequency appears stationary in the x-y plane in the 
rotating frame. Application of rf-irradiation gives precession about the rf-field direction. 

32. A 90 rf-pulse (/2 pulse) flips the net magnetization into the x-y plane giving the maximum 
FID. A 180 pulse ( pulse) flips the net magnetization to the –z-axis giving no signal. 

33. Precession of the component of the net magnetization in the x-y plane gives the free 
induction decay, FID. The Fourier transform of the FID gives the spectrum. 

34. Spin-lattice relaxation, T1, returns the populations of the spin states to equilibrium, 
conserving energy by energy exchange with the lattice (the surroundings). 
35. Spin relaxation is a first-order kinetic process, with Mz the magnetization at time t and Mo the 
equilibrium magnetization: 

 
dMz

dt  = – 
1
T1

 (Mz – Mo)  giving exponential growth Mz = Mo(1 – e–t/T1) 

36. Spin-spin relaxation, T2, progresses through energy conserving mutual spin flips that shorten 
the life time of the spin states. Shortened lifetime gives Heisenberg broadening, intrinsic lifetime 
broadening, of spin transitions with full-width-at-half-height: ½ = 1/T2. 
37. Intrinsic lifetime broadening and applied field inhomogeneity, Δ*, give the effective spin-
spin relaxation time, T2': 

 
1

T2'
 = 

1
T2

 + Δ* 

37. In non-viscous solution, a transition at A is Lorentzian:  g() = 
2T2'

1 + 42T2'2 ( – A)2  

38. Relaxation is caused by fluctuating magnetic fields in the sample. The most effective 
fluctuations match the frequency of the transition. 
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39. One source of fluctuating magnetic fields that drive relaxation are magnetic dipole-dipole 
interactions, with rij the distance between the spins and  the angle between the internuclear 
vector and the applied magnetic field. In solution: 

 Vij = 
A
r3
ij

 (1 – 3 cos2)  for 1H – 1H:      A = 2
nħ2 

40. The fluctuating magnetic fields caused by the tumbling of large molecules give long 
correlation times and change too slowly to be efficient at relaxation at the transition frequency. 
Small molecules tumble too rapidly giving short correlation times causing fluctuating magnetic 
fields with frequency components that are too high to cause efficient relaxation. 

41. Diffusion, molecular reorientation, and vibrations act independently and are characterized by 
different correlations times. Some motions are too slow, some are too fast, but if one or a few are 
at the right frequency the relaxation will be efficient leading to short T1. 

42. The biggest effect on relaxation is the number of nearby protons. 

43. Fluctuation Dissipation theorem: the time evolution of a non-equilibrium system is driven by 
fluctuations that the system experiences at equilibrium. 

44. A correlation function compares the values of a coordinate at times t and t +  averaged over 
a series of measurements: C() = < > ¯¯¯¯¯¯¯¯¯  f(t + ) f(t) . The overbar is a time average from t = 0 to ∞. 
The “<” and “>”symbolize the ensemble average; an ensemble is a group of identical systems. 

45. Correlation functions often decay exponentially with time: C() = ¯¯¯f(t)2 e–/c, where ¯¯¯f(t)2 = 
C(0) is the mean square average of the fluctuating coordinate and c is the correlation time. 

46. Wiener-Khintchine theorem: The spectral density is the amplitude of fluctuations at 
frequency , which is given by the Fourier transform of the correlation function: 

 J() = 2 


0
 C() e–i 2t d 

47. The spectral density of an exponential correlation function is a Lorentzian based on c: 

 J() = 2 


0
 ¯¯¯f(t)2 e–/c e–i 2t d = ¯¯¯f(t)2 







2c

1 + 4222
c

 

48. The maximum spectral density and minimum T1 result with correlation time c = 1/2o. 
49. For a proton at frequency o, 1/T1 is the product of average squared magnitude of the 
fluctuating magnetic field (e.g. from dipole-dipole interactions) and the spectral density:  

 
1
T1

 = 
2

n

ħ2  ¯¯¯¯¯¯¯¯¯¯¯¯Bx(t)2 + By(t)2  






c

1 + 422
o

2
c

  

50. Inversion-recovery determines T1-relaxation using a 180 - - 90 pulse sequence giving: 
 ln(Mo – Mz) = ln(2Mo) – 1 

51. Transitions are broadened by chemical exchange if the nucleus experiences environments 

having different chemical shifts, o, and the rate of exchange is roughly k  o/ 2. 

52. Given the line width with slow exchange (A)½ and the line width with intermediate 
exchange, (A) e

½, the exchange rate constant is:                           k   [(A) e
½ – (A)½]/ 2 

52. The peak separation, e, with intermediate exchange gives:  k   [o
2 – e

2]½/ 2 

53. The exchanging transitions coalesce at exchange rate:             k  o/ 2. 
54. If exchange contributes to the width but is faster than the coalescence rate,  << 1/, then: 
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 k  
o

2

2   
1

[(½)e – (A)½]
 

55. The projection of the electron spin magnetic moment along the applied field, µz, is quantized: 

z = e ħ ms   z = ge B ms   (isolated electron) 

where e is the magnetogyric ratio of the electron, ge = 2.0023 is the isolated electron g-factor, 
and the Bohr magneton is defined as: 

 B = 
–eh-

2 me
 

56. Including chemical shifts, the transition energy is E = g B Bo with g  2.0. The chemical 
shift changes the g-factor. 

57. ESR spectra occur in the microwave and mm-wave regions. X-band is 9.75 GHz with Bo = 
0.35 T and a waveguide dimension of 30 mm. 

58. The signal-to-noise ratio of cw-ESR is enhanced using magnetic field modulation, which 
produces a derivative line shape. 

59. A spin-spin splitting multiplet in ESR is called hyperfine structure, with hyperfine constant a. 

60. Zero-field splitting is the energy difference between the ms = ±1 and the ms = 0 state for 
triplet states interacting through magnetic dipole-dipole coupling between the two electrons. 

61. Depending on the zero-field splitting, a triplet state can give three ESR transitions at widely 
different applied magnetic field strengths. 

62. Irradiation by a strong rf-field creates a coherent superposition of states. Coherence results 
when the phases of the individual spin moments synchronize: the time dependent wave functions 
of the spins, (t) = e–i(2ot + ), have a narrow distribution of phase angles, . 
63. The fluctuation dissipation theorem relates microscopic, quantum mechanical processes and 
macroscopically observable behavior. Dynamic processes, in the absence of driving forces such 
as applied electromagnetic fields, evolve by isoenergetic transfers of energy to fluctuations in the 
surroundings. The important motional frequencies are those that are matched to the frequency of 
the transition. Systems relax to equilibrium using the same fluctuations that exist in and maintain 
the system at equilibrium. 
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Chapter 29: Magnetic Resonance Problems. 
 

1.  Deuterium NMR, 2H, is quite common. High field instruments have a channel for protons, 
one or two channels for 13C or other nucleus, and an additional channel for deuterium. The 
deuterium channel is used for acquiring the resonance frequency of a peak from the deuterated 
solvent and using that frequency in maintaining a constant magnetic field. This process is called 
field-locking. The deuterium channel is also used for magnetic field shimming, which adjusts the 
uniformity of the magnetic field to achieve the narrowest, and hence most intense, transitions. 
Shimming enhances the resolution of the spectrum. Draw the energy level diagram for deuterium 
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in an applied magnetic field and calculate the resonance frequency of protons and deuterium at a 
magnetic field of 7.046 T. 
 
2.  The spin quantum number of 35Cl is I = 3/2. For a single 35Cl, assuming no spin-spin coupling, 
how many transitions are observed for 35Cl? 
 
3.  A spectral width of at least 10 ppm is required to cover the 1H-NMR spectra of many 
compounds. (a). Calculate the spectral width in Hz if the resonance frequency of protons is 
60 MHz and if the resonance frequency is 500 MHz. (b). The resonance frequency of 13C is ¼ 
the resonance frequency of protons at the same field strength. A spectral width of 160 ppm is 
required to cover the 13C-spectra of many compounds. Calculate the spectral width in Hz if the 
resonance frequency of 13C is 75 MHz (300 MHz for protons) and if the resonance frequency is 
125 MHz (500 MHz for protons). 
 
4. In a given instrument, the NMR resonance frequency of a proton in a methyl group is centered 
at 399,095,832 Hz. The resonance frequency of TMS at the same field strength is 399,095,432 
Hz. (a).  Calculate the chemical shift of the methyl group. (b). The methyl group is split into a 
triplet by an adjacent methylene with a spin-spin coupling constant of 7.0 Hz. Calculate the spin-
spin splitting in ppm assuming the same resonance frequency as part (a). 
 
5. The NMR chemical shift of a methyl group is centered at 1.240 ppm at a 60 MHz resonance 
frequency and the spin-spin splitting constant with an adjacent methylene is 7.0 Hz. (a). 
Calculate the multiplet peak positions in ppm assuming TMS at 60 MHz. (b). Calculate the 
multiplet peak positions in ppm with TMS at 500 MHz. (c). Describe the difference in 
appearance between the spectrum at 60 MHz and 500 MHz. 
 
6. (a). Derive Eq. 29.1.7 for the population difference of the spins states of a spin-½ nucleus. (b). 
Determine the number of spins in the upper and the lower spin states for protons at 400 MHz at 
298.2 K. Assume 106 total spins. (c). Table-top, permanent magnet NMR spectrometers 
commonly operate at 60 MHz. Determine the number of spins in the upper and the lower spin 
states for protons at 60.0 MHz at 298.2 K. Assume 106 total spins. 
 
7.  (a). Give the peak intensities in a sextet that result from coupling to equivalent spins. (b). 
Give the peak intensities in a doublet of triplets. (Don’t worry about the transition frequencies.) 
(c). How many spins are coupled to the observed resonance if the multiplet is a doublet of 
quartets? Assume each quartet has intensity ratios: 1:3:3:1. 
 
8.  Show the spin-spin splitting pattern for nucleus A in the following molecular fragment. 
Assume JAB = 10 Hz and JAC = 15 Hz. Indicate the relative intensities. Assume first-order 
behavior. 
 

   

R C C C R

H

H

R

H

R

HAB

B

C  
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9.  Show the spin-spin splitting pattern for nucleus A in the following molecular fragment with 
JAB = 5 Hz and JAC = 10 Hz.  Indicate the relative intensities. Assume first-order behavior. 
 

          HB   R   HC 
           |      |      | 
  Br––C––C––C––CH3 
           |      |      | 
         HB   HA  HC 

 
10.  In an isolated ethyl group, -CH2CH3, there is no spin-spin coupling through the attachment 
point. Examples include ethyl alcohol, ethylbromide, diethylether, and ethylacetate. An isolated 
ethyl gives characteristic spin-spin splitting patterns of a quartet and triplet, in the order 
-CH2CH3. Give the characteristic splitting patterns of isolated n-propyl, iso-propyl, n-butyl, 
sec-butyl, iso-butyl, tert-butyl, and iso-amyl. Assume the vicinal spin-spin coupling constants are 
approximately equal, with no longer range coupling, and free rotation about the bonds. (Note:  
iso-propyl = 1-methylethyl, sec-butyl = 1-methylpropyl, iso-butyl = 2-methylpropyl, tert-butyl = 
1,1-dimethylethane, iso-amyl = 3-methylbutyl ) 
 
11.  The geminal coupling constant between inequivalent methylene protons on sp3-hybridized 
carbons is often large, ~12 Hz. (a). Use the Karplus relationship to estimate the JAC and JAD spin-
spin coupling constants of the labeled protons in camphor, below. (b). Sketch the expected 
multiplet pattern of proton-A based on your estimated geminal and vicinal coupling constants. 
Note that proton-B will also give a similar multiplet that will likely overlap with the multiplet of 
proton-A. We don’t consider the proton-B multiplet in this problem for simplicity. (In practice 
the appearance of the spectrum is sensitive to the exact values of all the parameters. The purpose 
of this exercise is to give just one reasonable prediction of the appearance of the spectrum.) 
 

 
      Dihedral angles:  AC = 0  and AD = 120 
 
 
12.  Determine the structure of the following compound. The spectrum was acquired at 
200 MHz, so the spin-spin multiplets are easy to see. The degree of unsaturation is a useful 
starting point if the formula of the compound is known. The degree of unsaturation is equal to 
the sum of the number of double bonds and rings: dbr = (2c – h + 2 + n – x)/2, where c is the 
number of carbons, h the number of hydrogens, n the number of nitrogens, and x the number of 
monovalent atoms, which includes F, Cl, and I. 
 

A

B

C

D

D

C

B

A
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13.  Determine the structure of the following compound. The spectrum was acquired at 
300 MHz. The down field resonance at 8.01 ppm is a singlet. Expanded spectra of the multiplets 
are shown below the full spectrum. The 13C spectrum has five peaks with the most downfield at 
161.2 ppm. [Hint: see the comments about the degree of unsaturation in the previous problem.] 
 

 

       4.0                                               3.0                                                2.0                                                1.0 
     (ppm) 

C6H12O2 
 
1H at 200 MHz 

8.0                 7.0                   6.0                 5.0                 4.0                  3.0                 2.0                  1.0                  0.0 
      (ppm) 

C6H12O2 
 
1H  at 300 MHz 

8.
01

 

4.
20

 

1.
71

 
1.

56
 

0.
94
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14.  Determine the number of proton and carbon resonances that are observed for the following 
compounds. Determine the corresponding multiplicities of the spin-spin coupling multiplets. 
 

           
 
 
15.  Equivalent Spins Don’t Split:  Derive the energy levels and transition frequencies of a 
system with two equivalent protons. This problem fills in the details of the energy level diagram 
in Figure 29.1.13. Because the chemical shift differences are not greater than the spin-spin 
coupling constant, the full spin-spin coupling Hamiltonian must be used for this problem: 
 

 Ĥ = – A I^zA – B I^zB + JAB I


A IB      (29.1.13) 
 

where I


A IB = I^xA  I^xB + I^yA  I^yB + I^zA  I^zB. 
 

The allowable spin states for two equivalent spins are the symmetric combinations: , 
1/ 2 ( + ), and , while the fourth spin state is antisymmetric: 1/ 2 ( – ). In Ch. 24.7 
we found the relationship between the angular momentum raising and lowering operators and the 
x and y-components of the angular momentum, Eq. 24.7.18. Expressed explicitly in terms of 
nuclear angular momentum operators, Eqs. 24.7.18 are recast as: 
 

1.9         1.8           1.7        1.6         1.5 

    (ppm) 
1.0         0.9 
    (ppm) 

4.3        4.2         4.1 
    (ppm) 
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 I^– = I^x – i I^y (lowering) and  I^+ = I^x + i I^y  (raising)  (24.7.18) 
 

which have the following effects on the spin wave functions: 
 

 I^+  = 0  I^+  =  
 I^–  =   I^+  = 0 
 

Solving for I^x and I^y gives for both A and B spins: 
 

 I^x  = ½( I^+ +  I^–)  and I^y = ½ i( I^+ –  I^–) 
 

In a subsequent problem we will prove that the spin-spin interaction can be written as: 
 

 JAB I


A IB = JAB [ I^zA I^zB  + ½( I^+
A I^–

B + I^–
A I^+

B)] 
 

 (a). For simplicity of notation set J = JAB. Show that: 

 J I


A IB  =   J/4  

 J I


A IB  = – J/4  + J/2  

 J I


A IB  = – J/4  + J/2  

 J I


A IB  =     J/4  
 

(b). Combine these results to show that: 

 J I


A IB [1/ 2(+)] =  J/4 [1/ 2 ( + )] 

 J I


A IB [1/ 2(–)] =  –3J/4 [1/ 2 ( – )] 
 

(c). Use these results to verify the energies of the levels shown in Figure 29.1.13. 
 
16.  Using the relationships given in the introduction to the previous problem to prove that the 
spin-spin interaction can be written as: 
 

 JAB I


A IB = JAB [ I^zA I^zB  + ½( I^+
A I^–

B + I^–
A I^+

B)] 
 
17.  Consider the spin-spin coupling of two inequivalent spins. If the difference in chemical shift 
is much larger than the spin-spin coupling constant then Eq. 29.1.14 is a good approximation. As 
seen in Figure 29.1.13, the wave functions , , , and  are then good eigenfunctions of 
the approximate Hamiltonian, Eq. 29.1.14. If the chemical shift difference is comparable to the 
spin-spin coupling constant, then the exact Hamiltonian must be used, Eq. 29.1.13. Use the 
results of Problem 15(b) to determine if , , , and  are eigenfunctions of the exact 
Hamiltonian. If , , , and  are eigenfunctions of the exact Hamiltonian, then they may 
be used to determine the energies of the final spin levels directly from the eigenvalues, as we did 
in Figure 29.1.13. If , , , and  are not eigenfunctions of the exact Hamiltonian, then 
the exact wave functions are linear combinations of , , , and . The wave functions 
must then be determined from the secular equation that is based on the exact Hamiltonian. 
 
18.  Use the “JD: Spin-Spin Splitting Simulation” applet (jdplot.html) on the course Web site or 
companion CD to determine the spectrum of an 1H AB-system. An AB-system is comprised of 
two inequivalent spin-spin coupled protons, with the difference in chemical shifts between the 
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two protons comparable to the spin-spin coupling constant. Assume the two chemical shifts are 
1.00 ppm and 1.20 ppm, with the resonance frequency at 60.000 MHz. Use a spin-spin coupling 
constant of J = 9.0 Hz. Compare the results to the first-order predictions based on the energy 
levels derived in Figure 29.1.11. 
 
19.   A surprising result of strong second-order effects in spin-spin splitting is that more 
transitions appear than expected based on first-order analysis. Consider a 1H AB2 pattern as an 
example. An AB2 pattern corresponds to two chemical environments, A with one proton and B 
with two protons, with the difference in chemical shifts between the two environments 
comparable to the spin-spin coupling constant. In comparison, an AX2 pattern corresponds to the 
same proton distribution but with the difference in chemical shifts between the two environments 
much larger than the spin-spin coupling constant. (a). Use the “JD: Spin-Spin Splitting 
Simulation” applet (jdplot.html) on the course Web site or companion CD to determine the 
spectrum of an 1H AX2-system. Assume the two chemical shifts are 3.20 ppm and 1.00 ppm, 
with the resonance frequency at 60.000 MHz. Use a spin-spin coupling constant of J = 9.0 Hz. 
Does the resulting spectrum agree with the first-order prediction? (b). Determine the spectrum of 
an 1H AB2-system. Assume the two chemical shifts are 1.20 ppm and 1.00 ppm, with the 
resonance frequency at 60.000 MHz. Once again, use a spin-spin coupling constant of 
J = 9.0 Hz. Decrease the line width to 0.75 Hz to better observe the number of transitions. How 
many transitions are evident? 
 
20.  In pulsed NMR, the free induction decay of all the chemical shifts in the spectrum are 
excited by a short pulse at a single frequency. For example, the proton chemical shift range is 
~5000 Hz at a resonance frequency of 400.00 MHz, while the pulse is at a single frequency of 
400.000 MHz. Explain how all the chemical shifts in the spectrum can be excited by a short 
pulse at a single frequency. Assume the pulse length is 15.0 s. 
 
21.  Qualitatively sketch the relative changes in the spectra obtained by Fourier transformation of 
the second FID as compared to the first: 
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22.  The inversion recovery sequence was used to determine the 1H spin-lattice relaxation time of 
the geminal-dimethyl groups of -ionone. The data is reproduced below. Determine the T1. 
(Don’t bother to get the uncertainty using linest(), just use a linear trendline.) 
 

 
 

 (s) 0.0625 0.2500 0.5000 1.000 2.000 8.000 
intensity -64.8 -32.2 4.43 47.4 76.9 84.1 

 
 
23. Derive Eq. 29.7.3 by integrating Eq. 29.7.2. 
 
 
24.  Consider the following molecule with tert-butyl groups as the R-groups: 
 

 
 

Steric interactions of the tert-butyl groups prevent the amide bonds from being planar with each 
respective ring. The N-methyl groups are not equivalent, because the amide groups are twisted 
out of plane.2,3 Rotation about the amide C-N bonds exchanges the chemical environment of the 
N-methyl resonances. Outline the experimental and data analysis steps necessary to find the 
activation energy of the chemical exchange process for twisting about the amide bonds. 
 
 
25.  The 1H-NMR spectra of the N-methyl compound shown below are plotted at -94C and 
-30C at 300 MHz. The R-groups are tert-butyl groups, which force the amide groups to be 
twisted out of plane, which makes the two N-methyl groups inequivalent. The spectra are taken 
in deuterated methylene chloride solution. The resonances near 3.2 ppm are the N-methyl 
groups. The difference in chemical shift at low temperature for the N-methyl groups is 35.0 Hz. 
Assume that the effective T2' is 1.5 s. At -94C, the full-width at half-height of one of the two N-
methyl transitions in the exchanging doublet is 13.5 Hz. The coalescence temperature is -70.5C. 
The width of the coalesced N-methyl peak at -30C is 10.4 Hz. Calculate the activation energy 
for the twisting motion of the amide groups.2,3 
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26.  Create an Excel spreadsheet to do the time averages to determine the correlation function for 
a random signal. Generate the random signal at equal time increments, of length t, with varying 
persistence, p: 
 

 f(t + t) = f(t) + (1 – p)[(2*RND() – 1) – f(t)] 
 

where RND() is the built-in random number generator in Excel and (2*RND() – 1) generates a 
random number between -1 and +1. Plot f(t) and the corresponding correlation function. Hints for 
setting up the spreadsheet are given below. Use four different values of the persistence: p = 0, 
0.2, 0.5, and 0.8. With p = 0, the signal is purely random with no correlation, 
f(t + t) = (2*RND() – 1). Increasing p gives a signal that is increasingly slowly varying. For 
each value of p, generate several different plots. The results will be different in each plot; you 
can estimate the equivalent of the ensemble average by “averaging” the successive plots by eye. 
To generate each new set of random numbers, change the value in any arbitrary unused cell in 
the spreadsheet. Any unused cell will do, the cell chosen for generating updates shouldn’t be 
used in the main part of the spreadsheet. From your comparison of the results for the different 
values of p, discuss the relationship among the persistence, the appearance of f(t), and the 
observed approximate correlation time. You don’t need to find a numerical value of the 
correlation time, discuss the results qualitatively. 
   An example spreadsheet is shown below. Only the first few rows and the final three rows are 
shown, to save space. Rows 2-5 and column B are input directly, that is with no formulas. The 
main time variable t in column B runs in 5 ns increments up to 200 ns in row 46. Seven values of 
the time delay, , are specified in row 3. The number of rows that correspond to the chosen  
value are entered in row 4. For example, 3 rows are required to give a  delay of 15 ns. 
 
 
 
 

(A) e
½ =13.5 Hz 

(Δ½)e = 10.4 Hz 

3.5                                   3.0                                  2.5                                   2.0                                  1.5                                   1.0 
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A1 B C D E F G H I J 

2 persistence= 0.5               

3    =  (ns) 0 5 10 15 20 25 30 

4   offset 0 1 2 3 4 5 6 

5 t (ns) f(t) f(t+)f(t) f(t+)f(t) f(t+)f(t) f(t+)f(t) f(t+)f(t) f(t+)f(t) f(t+)f(t) 

6 0 -0.8037 0.6459 -0.0719 -0.3803 -0.0622 -0.1562 0.2355 0.3560 

7 5 0.0895 0.0080 0.0423 0.0069 0.0174 -0.0262 -0.0396 -0.0567 

8 10 0.4731 0.2238 0.0366 0.0919 -0.1386 -0.2096 -0.2997 -0.3480 
            ⁞ 

46 200 0.0258 0.0007             

47                   

48   average= 0.1326 0.0539 0.0126 0.0180 -0.0133 -0.0164 0.0163 
 
The starting random value of the signal, f(t), at time zero is in cell C6: =(2*RND()-1) 
 

The subsequent value of f(t) in cell C7 is:  = C6 + (1-$C$2)*((2*RND()–1)–C6) 
 

This formula is “filled down” to fill in the values for the remaining rows in column C. The 
product f(t+) f(t) is created using the Excel OFFSET function. The formula in cell D6 is: 
 

 =OFFSET($C6:$C$46,D$4,0,1,1)*$C6 
 

The offset is specified in row 4. Make sure to set up the absolute references exactly as shown. 
This formula is “filled right” for columns E-J and then “filled down” for all the rows up to 46. 
Some cells near the bottom of the table will read “0” after filling, because there is insufficient 
data to complete the required calculation for long -values. Delete the contents of these zero 
cells. The averages of each column are calculated in row 48 giving ¯¯¯¯¯¯¯¯¯f(t + ) f(t) . The formula in 
cell D48 is: =AVERAGE(D6:D46) 
 

This cell is “filled right” for the remaining columns E-J. Construct a plot of column C versus 
column B to see the time-varying random signal. Construct a plot of the averages from row 48 on 
the vertical axis against the -values on the horizontal axis. 
 
27.  The benzene radical anion, C6H6

–, is produced at low temperature by reduction of benzene 
with an alkali metal. Predict the multiplicity of the ESR transition of the benzene radical anion 
and the corresponding transition intensities of the components of the multiplet. 
 

 
 
28.  Sketch by hand the ESR derivative spectrum of a doublet of doublets, shown below. (Note 
the positions of the maxima in the absorption spectrum as a basis for the zero-derivative points 
on the plot.) 
 

– 

       H              H 
 
 
H                           H 
 
 
       H              H 

 



442 
 

 

 
 
29.  The -systems of the aromatic radicals are extensively delocalized. If the nuclei of the 
aromatic radical lie in the x-y plane, then the -orbitals are constructed from the overlap of 2pz-
orbitals. The hyperfine interaction, aH, is then approximately proportional to the unpaired 
electron density in the 2pz-orbital at each C-H, which is denoted : 
 

 aH = Q       (aromatic hydrocarbons) 
 

where Q is a proportionality constant derived from model compounds. The hyperfine interaction 
in the benzene radical anion is 0.375 mT, or 3.75 G; assuming a -electron density of 1/6 gives Q 
= 2.25 mT = 22.5 Gauss. The hyperfine coupling constants for the naphthalene radical anion are 
given below. Calculate the -electron density on the two types of ring positions. 
 

 
 
30.  The hyperfine coupling constants from the ESR spectra of the radical anion of toluene are 
shown below. The AM1 level -molecular orbitals for toluene as a neutral molecule are also 
diagrammed below. Are the hyperfine constants consistent with the -molecular orbitals? Orbital 
18 is the HOMO and orbital 19 is the LUMO. (In benzene, MO 17 and 18 are degenerate and 
MO 19 and 20 are degenerate.) 
 

 
 
31.  The ESR hyperfine coupling constants and low-lying -molecular orbitals of the toluene 
anion radical are given in the previous problem. Using Spartan or Gaussian, build and geometry 
minimize the toluene radical anion (doublet state) at the HF 3-21G level or higher. Request the 
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molecular orbital coefficients and then generate the “radical density” or “spin density” surface 
for the toluene radical anion. Does this unpaired electron density surface agree with the 
hyperfine coupling constants and molecular orbitals listed in the previous problem? (Note that 
the -molecular orbital energies depicted in the previous problem are for neutral toluene.) 
 
32.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

 (a).  The spacing in ppm between the component transitions of a spin-spin splitting multiplet is 
constant with increasing field strength. 
 

 (b).  In 1H NMR spectroscopy, for a given spin with n-coupled neighboring protons the 
minimum number of transitions in the multiplet is n+1 and the maximum possible number of 
transitions in the multiplet is 2n. Assume the given spin has a unique chemical shift. 
 

 (c).  The differences between the exact spin-spin splitting pattern and the first-order prediction  
are called second-order effects. The exact spin-spin splitting pattern is based on JAB I


A IB while 

the first-order prediction is based on JAB I^zA  I^zB. Second-order effects are more important at high 
field (e.g. 500 MHz) than at low field (e.g. 60 MHz). 
 

 (d).  The spin-lattice relaxation time of a given chemical environment in a 1H-spectrum 
increases with an increase in temperature. Assume that the motion of the molecule that is most 
important for relaxation is faster than the resonance frequency at the starting temperature. 
 

 (e).  Consider chemical exchange between two inequivalent chemical environments. The line 
widths decrease with an increase in temperature if the system is initially at a temperature that is 
below the coalescence temperature. 
 

 (f).  The frequency spectrum of fluctuations in the lattice has a maximum at intermediate 
frequency. If that maximum frequency matches the transition frequency, relaxation is fast. 
 

 (g).  In spin-lattice relaxation the energy loss of a transition from the upper state to the lower 
state is absorbed by isofrequency fluctuations of the motions of the lattice. 
 

 (h).  The fluctuations that drive relaxation exist only in the non-equilibrium state. 
 

 (i).  In spin-lattice relaxation, the fluctuations of the lattice must have an energetic coupling to 
the spin system. Magnetic dipole-dipole interactions of the relaxing spin with nearby spins is an 
example. 
 

 (j).  High frequency fluctuations of the lattice are more likely than low frequency fluctuations. 
 

 (k).  The Fluctuation Dissipation theorem only applies to magnetic resonance relaxation. 
 

 (l).  Fourier transforms resolve the intensity of fluctuations at different frequencies. 
 

 (m).  The driving forces that change spin states must be aligned perpendicular to the external 
field direction. Such forces include rf-irradiation and the fluctuating magnetic fields responsible 
for spin-lattice relaxation. 
 

 (n).  The correlation function of a random motion follows the value of the coordinate at time t 
relative to the value at a time delay of  seconds later. 
 

 (o).  The ensemble average used in finding the correlation function is necessary because each 
determination of the time average of f(t)f(t+), for the same , gives a different result. 
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