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Chapter 28 Problems: Electronic Spectroscopy  
 
1.  Why all the interest in diatomic molecules? 
 
 

Answer:  For diatomics and polyatomics, spectroscopic parameters are used to calculate 
thermodynamic equilibrium constants and kinetic rate constants. Reasons for all the fuss about 
diatomics include: 
(a). Diatomics play a direct role in many chemical reactions, O2 being a primary example. 
Atmospheric chemistry requires detailed knowledge of many diatomics including OH, O2, N2, 
NO, CO, Cl2, Br2, I2, ClO, BrO, HCl, and the corresponding ions. Diatomics act as ligands in 
metal complexes, including CO and NO. H2 is a commonly used reducing agent in the synthetic 
laboratory. CO blocks O2 transport in hemoglobin and is a major industrial reducing agent in 
metallurgical applications. The halogens are used as gas phase disinfection agents. Chemical 
vapor deposition of thin films involves diatomics, including H2 and F2. Hydride epitaxial growth 
of thin films using HCl and H2 is used in the semiconductor industry. Industrial high power 
ultraviolet excimer lasers are based on stimulated emission from excited state diatomics, 
including ArF, XeBr, XeCl, XeF, and KrF. Combustion engineering is based on chemical 
kinetics of gas phase free radical species, many of which are diatomics or derived from reactions 
with neutral diatomics, such as CO, N2, C2, and O2. 
(b). Our basic understanding of bonding, through bond strength measures, is based on diatomics. 
The correlations displayed in Figure 26.4.12 are central in this regard. For example, bond 
strength increases with increasing bond order and as bond strength increases equilibrium bond 
length decreases. These fundamental relationships are based on dissociation energies, force 
constants, and bond lengths that result from spectroscopic studies of diatomics. 
(c). To a first level of approximation, chemical bonding is a pairwise interaction. Knowing the 
coarseness of the approximation, we often think of chemical bond strength as being a function of 
just the two atoms involved in each bond. For example, bond enthalpy tables are based on atom 
pairs, Table 8.8.1. Pauling electronegativities are based on diatomic bond dissociation energies. 
Eq. 26.3.13. Of course bonding is extensively delocalized, but pair-wise interactions are still an 
important viewpoint. In this regard, diatomics are the fundamental reference point for pair-wise 
bonding interactions.1 

(d). Diatomics are a good point of reference. When we determine the bonding in a complicated 
molecule, diatomics provide a useful comparison that allows us to identify unusual bonding 
interactions. These comparisons are often based on bond strength correlations and changes in 
effective electronegativity as previewed in part (c). 
(e). Diatomics are useful for validating electronic structure methods. If an electronic structure 
method can’t reproduce bond dissociation energies for diatomics, then there is little hope of 
accurately predicting the properties of polyatomics. Excited electronic states are a particular 
challenge for electronic structure calculations. “Ground-truthing” with data from diatomics is 
necessary to help develop new excited state methods. 
(f). Diatomics often have resolved rotational and vibrational fine-structure, while polyatomics 
often do not. Rotational fine-structure is necessary for the determination of bond lengths in 
excited state species. Vibrational fine-structure is necessary for determination of the shape of 
potential energy surfaces. 
(g). Non-adiabatic kinetic processes are difficult to model, so keeping things simple by studying 
reactions of diatomics is often necessary. 
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2.  Calculate the transition wave number for the ground electronic state to first excited singlet 
state transition in carbon monoxide. Assume the ground state vibrational-rotational and quantum 
numbers are " = 0, J" = 3  and the excited state quantum numbers are ' = 3, J' = 4. The 
spectroscopic constants are given below.2,3 

 

State T
~

e   (cm-1) ~e  (cm-1) e
~

e  (cm-1) B
~

e  (cm-1) ~e  (cm-1) D
~

e  (cm-1) 
A 1 65075.7 1518.2 19.4 1.6115 0.02325 7.33x10-6 
X 1+ 0 2169.814 13.288 1.93128 0.017504 6.12x10-6 

 
 

Answer:  The plan is to use Eqs. 27.6.5 and 28.1.3. 
   With Eq. 27.6.5, the rotational constant for the ground electronic state with  = 0 is: 
 

 B
~ g


s = B
~ g

e
s – ~ g

e
s ( + ½) = 1.93128 cm-1 – 0.017504 cm-1(0 + ½) = 1.92253 cm-1 

 

For the excited electronic state with  = 3 the rotational constant is: 
 

 B
~ e


x = B
~ e

e
x – ~ e

e
x( + ½) = 1.6115 cm-1 – 0.02325 cm-1(3 + ½) = 1.53013 cm-1 

 

With Eq. 28.1.3, the energy of the ground state for " = 0, J" = 3 is: 
 

 E
~

i,,J = T
~

e,i + ~e.i (+ ½) – e,i 
~

 e,i (+ ½)2 + B
~
,i J(J + 1) – D

~
e,i[J(J + 1)]2 

 

 E
~

gs,0,3 = T
~ g

e
s + ~g

e
s (+ ½) – g

e
s
 
~g

e
s (+ ½)2 + B

~ g
o

s
 3(3 + 1) – D

~
e[3(3 + 1)]2 

           = 0 + 2169.814(+ ½) – 13.288(+ ½)2 + 1.92253[3(3 + 1)] – 6.12x10-6[3(3 + 1)]2 
           = 1104.65 cm-1 
 

The excited state energy for ' = 3, J' = 4 is: 
 

 E
~

gs,0,3 = T
~ e

e
x + ~e

e
x (+ ½) – e

e
x
 
~e

e
x (+ ½)2 + B

~ e
o
x

 3(3 + 1) – D
~e

e
x[3(3 + 1)]2 

   = 65075.7 + 1518.2 (+ ½) – 19.4 (+ ½)2 + 1.5301[3(3 + 1)] – 7.33x10-6[3(3 + 1)]2 
   = 70182.35 cm-1 

 

The transition wave number is given by the difference:  ~ = 69077.70 cm-1. 
 
 

3.  In rotation-vibration absorption, with B
~

' < B
~

", each line moves to lower wave number in 
proportion to the J"2 value, Eqs. 27.6.8-27.6.9. The R-branch lines get closer together and the P-
branch lines get further apart. Please review Problem 27.30. In electronic absorption, the 
rotational constant in the upper electronic states often differs markedly from the ground 
electronic state. Write a spreadsheet to simulate the electronic absorption spectrum of carbon 
monoxide for the " = 0 to ' = 1 vibrational transition. The spectroscopic constants are listed in 
the previous problem. Neglect centrifugal distortion. [Hints: Refer to the hint for Problem 27.30, 
however this time your plot will be clearer if you choose a scatter plot with marker symbols and 
a connecting line. Include transitions for J" = 0 to 10 for the R- and P-branches. To start with, to 
make the plot clearer you may want to use B

~
e = 1.93128 cm-1 for both electronic states. Then 

switch to B
~

e = 1.6115 cm-1 for the excited state.] 
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Answer:  The plan is to modify the spreadsheet for Problem 27.30 to calculate the B~ value for 
the ground and excited electronic state and specific vibrational quantum numbers " = 0 to 
' = 1. The previous problem discusses the necessary calculations. 
   Using the data and calculations from the previous problem, the spreadsheet appears as follows. 
The number of rows were increased to plot a wider range of transitions, from J" = 0 to 10 for the 
R- and P-branches. The “stick” spectrum is also shown for this problem. The R-branch lines 
move far enough to lower wave number that the transitions for high J" decrease in wave number 
even though J" is increasing. The rotational fine-structure lines “fall back” on each other. This 
effect is common in electronic spectroscopy. 
 

 

A
1 B C D E F 
2 Te 0 65075.7 cm-1  
3 e 2169.81 1518.2 cm-1  
4 ee 13.288 19.4 cm-1  
5  0 1   
6  1081.58 2233.65 cm-1  
7 Be 1.93128 1.6115 cm-1  
8 e 0.01750 0.02325 cm-1  
9 B 1.92253 1.576625 cm-1  

10      
11 J" J' F(J") (cm-1)  (cm-1) p(J") 
12 10 11 -3.36358 66224.401 7.568 
13 9 10 0.40123 66228.166 8.243 
14 8 9 3.474234 66231.239 8.716 
15 7 8 5.855432 66233.620 8.921 
16 6 7 7.544824 66235.310 8.804 
17 5 6 8.54241 66236.307 8.327 
18 4 5 8.84819 66236.613 7.476 
19 3 4 8.462164 66236.227 6.262 
20 2 3 7.384332 66235.149 4.729 
21 1 2 5.614694 66233.380 2.945 
22 0 1 3.15325 66230.918 1.000 
23 1 0 -3.84506 66223.920 2.945 
24 2 1 -8.38192 66219.383 4.729 
25 3 2 -13.6106 66214.154 6.262 
26 4 3 -19.5311 66208.234 7.476 
27 5 4 -26.1433 66201.622 8.327 
28 6 5 -33.4474 66194.318 8.804 
29 7 6 -41.4433 66186.322 8.921 
30 8 7 -50.131 66177.634 8.716 
31 9 8 -59.5105 66168.255 8.243 
32 10 9 -69.5818 66158.183 7.568 
33 11 10 -80.3449 66147.420 6.758 

 

 

 
 

 
 

The maximum wave number is called the band head. The 0  0 transition is called the band 
origin. In this problem the band origin is obscured, because of the extensive overlap of the R- 
and P-branches. 
 
 
4.  Predict the intensities of the different vibrational transitions in the electronic absorption 
spectrum of the following system. Show at least four peaks. Label each transition in the energy 
level diagram with the vibrational quantum numbers for the transition and each corresponding 
peak in the spectrum (e.g. 40). 
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Answer:  The plan is to draw in the vertical transition to predict the vibrational fine-structure 
transition with the largest Franck-Condon factor. 
   The vertical transition intersects the excited state potential energy curve above the dissociation 
limit. The highest intensity transitions are to vibrational levels near the convergence limit and to 
the translational continuum. The peak spacing goes to zero at the convergence limit 

 
 
 

5.  Show the relationship between the ground state and excited state potential energy curves for 
an electronic transition that has a maximum probability for the 20 vibrational fine-structure 
transition. Draw the corresponding absorption spectrum. Label each transition in the energy level 
diagram with the vibrational quantum numbers for the transition and each corresponding peak in 
the spectrum (e.g. 40). (Use the potential energy curves shown in the previous question for the 
style of your sketch). 
 
 

Answer:  The plan is to position the equilibrium internuclear separations of the ground and 
excited state potential energy curves to give the vertical transition with 20 as the largest 
Franck-Condon factor. 
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   Intense excitations into low lying vibrational levels of the excited state correspond to small 
changes in equilibrium internuclear separation, as shown in the figure above. Transitions of other 
adjacent vibrational levels typically have comparable intensities. The vertical transition just 
predicts the most intense. The absorption spectrum resembles that for benzene, Figure 28.1.12. 
 
 

6.  (a). In Figure 28.1.9b we needed to take the linear combination of four specific assignments 
to generate a state that satisfies both the Pauli Exclusion Principle and reflection symmetry. Why 
four states instead of two? Show that the following state does not properly account for electron 
indistinguishability and reflection symmetry: 
 

 
 
Answer:  Consider transformation of the state with respect to exchange of spin labels and 
reflection: 
 

 
 

The given linear combination is anti-symmetric with respect to exchange of spin labels, as 
required for the spatial part of a triplet state, but reflection symmetry results in a different set of 
singly occupied orbitals than the initial state. This linear combination is neither symmetric nor 
anti-symmetric with respect to reflection, it transforms to give a different state. The linear 
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combinations that transform as symmetric or anti-symmetric with respect to exchange of spin 
labels and reflection are given in Figure 28.1.9. 
 
 

7.  In Figure 28.1.10 we needed to take the linear combination of four specific assignments to 
generate a state that satisfies both the Pauli Exclusion Principle and reflection symmetry. 
However, there are eight possible combinations of the coefficients that give equal weight to each 
assignment: (++++), (++ – –), (+ – + –), (+ – – +), (+++ –), (+ – – –), (+ – ++), (++ – +). Show 
that only the two linear combinations listed in Figure 28.1.10 properly account for electron 
indistinguishability and reflection symmetry for the u triplet terms and two more for the singlet 
terms. 
 
 

Answer:  To make the states easier to compare, show only the singly occupied states. Then 
determine the symmetry with respect to exchange of spin labels and reflection: 
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Similarly (+ – ++) and  (++ – +) don't transform to give either the original state or its negative. 
Summarizing, the eight possible states give two states that are anti-symmetric with respect to 
exchange of spin labels and are either symmetric or anti-symmetric with respect to reflection. 
These states have the spatial symmetry appropriate to match the symmetric spin parts of the 
triplet terms. In addition there are two states that are symmetric with respect to exchange of spin 
labels and are either symmetric or anti-symmetric with respect to reflection. This second pair has 
the spatial symmetry appropriate to match the anti-symmetric spin part of the singlet terms: 
 

Linear combination Label exchange Reflection Term 
(++++) + + 1+

u 
(++ – –) + – 1–

u 
(+ – + –) – + 3+

u 
(+ – – +) – – 3–

u 
(+++ –) X   
(+ – – –) X   
(+ – ++) X   
(++ – +) X   

 
 
8.  In Chapter 25, we determined the complete set of atomic terms for a given electronic 
configuration by exhaustively enumerating all the possible explicit orbital assignments. In this 
chapter we took a bit of a short-cut. However, it is still informative to determine all possible 
molecular terms by exhaustive enumeration. Luckily, diatomic electronic states are simpler, 
because the  levels are only doubly degenerate. For example, the p1 atomic configuration gives 
a 2P term with ML = {1,0,-1}. However, the (g,2pz)

2 (u,2p)1 molecular configuration corresponds 
to only M= {1,-1}, because there are only two degenerate -molecular orbitals: 
 

      +1     -1  M 
 +1      0    -1 ML 
          1      1 

          0 

         -1 

            2P       -1 
 
         2 
 

 (a). atomic   (b). diatomic molecular 
 

Figure P28.8.1: (a). The p1 atomic configuration is triply degenerate with ML = {1,0,-1}. (b). 
The (g,2pz)

2 (u,2p)1 molecular configuration corresponds to only M= {1,-1}, since the  
orbitals are doubly degenerate. 

 
 
Similarly, a  term is also doubly degenerate, M= {2,-2}. Show that the molecular terms for the 
configuration KK (g,2s)2(*u ,2s)2(g,2pz)2(u,2p)4(π*g ,2p)2 are 3g + 1∆g + 1g , by exhaustive 

 
 

 
 
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enumeration of explicit molecular orbital assignments. Include the parity, g or u (you don’t need 
to find the reflection symmetry). 
 
 
Answer:  The explicit orbital assignments are: 
 

 KK (g,2s)2(*u ,2s)2(g,2pz)2(u,2p)4(π*g ,2p)2 
 

 
 

Using the same procedure that we used for atomic term symbols, we first list all the M values 
for the singlet states: 
 

 M = {2,0,-2} 
 

With  = 2, the first term is a 1 term. Removing M = {2,-2} leaves: 
 

 M = {0} 
 

The final singlet term is 1. The only triplet gives  = 0 for a 3 term. The parity of all the states 
is gguuuugg = g. The final terms are 1g + 1g + 3g, in agreement with Figure 28.1.5a. 
  You may wonder why we don’t consider assignments like the two below as distinct: 
 

 
 

The assignment on the right is the same triplet assignment as on the left with all the spins 
flipped. Therefore, right-hand assignment doesn’t represent a unique explicit orbital assignment. 
Instead, the two assignments are components of the same triplet state, with spin states {,  + 
, }. For another example, the two states below are the same explicit assignment with all the 
spins flipped. So they aren’t unique: 
 

 
 

These two assignments are degenerate and combine in symmetry adapted linear combination to 
form the final 1+

g state, as shown in Figure 28.1.9b. In general, two states that are related by 
flipping all the spins are not unique for the purposes of determining the possible values of ML for 
atoms or M for molecules. 
 
 

M =         2          -2   0      0 

  
  

 
   

   

    
   

singlets triplet 

u 
g 
u 
g 

 

 
  
  

 
  
 from above: then consider: 

 

 
  
  

 
  
 from above: then consider: 



Chapter 28: Electronic Spectroscopy  9 
 

9.  Find the molecular terms for the configuration KK (g,2s)2(*u ,2s)2(g,2pz)2(u,2p)3(π*g ,2p)3 
by exhaustive enumeration of explicit molecular orbital assignments. Include the parity, g or u 
(you don’t need to find the reflection symmetry). 
 
 
Answer:  There are two degenerate u,2p orbitals for placement of one unpaired electron and two 
degenerate π*g ,2p orbitals for placement of the second unpaired electron, so we expect 22 = 4 
explicit orbital assignments for triplet states and another 4 for singlet states. The explicit orbital 
assignments for the triplet states are: 
 

 KK (g,2s)2(*u ,2s)2(g,2pz)2(πu,2p)3(π*g ,2p)3  triplets: 
 

 
 
 
 
   M =          0           2        -2        0 
 
Using the same procedure that we used for atomic term symbols, we first list all the M values 
for the triplet states: 
 

 M = {2,0,0,-2} 
 

With  = 2, the first term is a 3 term. Removing M = {2,-2} leaves: 
 

 M = {0,0} 
 

The remaining terms are two 3 terms. The parity of all the states is gguuuggg = u. The singlet 
states are obtained by flipping one of the unpaired spins in the previous set: 
 

 KK (g,2s)2(*u ,2s)2(g,2pz)2(πu,2p)3(π*g ,2p)3 singlets: 
 

 
 
 
 
   M =          0           2        -2        0 
 
The resulting M set is the same as for the triplet states and the parity also remains the same. The 
final terms are 3u + 3u + 3u and 1u + 1u + 1u in agreement with Figure 28.1.5b. The repeat 
3 and 1 terms show the necessity of considering the reflection symmetry. 
 
 
10.  For a homonuclear diatomic molecule, determine which of the following transitions is 
allowed or forbidden, assuming weakly coupled spin and orbital angular momenta.4 [Note: 
identical term symbols can result from two different configurations; term symbols are unique 
within a given configuration.] 
 

2–
g  2u 1–

g  1–
g 1g  1u 1u  1+

g 1–
g  3–

u 3–
u  3–

g 
 
 

 
 
 

 

 
 
 


 

 
 

 

 

 
 



 

 
 

u 
g 
u 
g 

 
 
 

 

 
 
 


 

 
 

 

 

 
 



 

 
 

u 
g 
u 
g 
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Answer:  The plan is to note the selection rules, Eq. 28.1.12, for weakly coupled spin and orbital 
angular momenta. 
   The allowed transitions are 2–

g  2u, 1g  1u, and 3–
u  3–

g (the Schumann-Runge band 
is 3–

u  3–
g). The forbidden terms and the offended selection rule are: 

 

 Transition Rule broken       
 1–

g   /  1–
g g  u or u  g 

 1u   /  1+
g  = 0, 1 

 1–
g  /  3–

u S = 0 
 
 
11.  (a). Determine the possible values of the projection of the total angular momentum, 
 = | + s|, for a 3 term. (b). Determine if the transition to each of these 3 terms from a 3o 
state is allowed or forbidden. 
 
 
Answer:  The plan is to note that the projection of the spin angular momentum along the 
internuclear axis is from –S to +S in integer steps.4 

   For a -state,  = 2. For a triplet state, S = 1 and then the projections are s = -1 , 0, +1. The 
possible projection of the total angular momentum are then: 
 

   = | + s| = 2 – 1, 2 + 0, 2 + 1 = 1, 2, 3   giving 31, 32, and 33 terms 
 

The selection rules,  = 0, 1; S = 0; and  = 0, 1 give: 
 

 Allowed: 31  3o 

 Forbidden: 32   /  3o, 33   /  3o     ( too large) 
 

The  = 0, 1 selection rule holds even in cases with strong spin-orbital coupling, when the  
= 0, 1 and S = 0 selections rules no longer apply. 
   Note: Most authors use the symbol  and not s for the projection of the spin angular 
momentum. Unfortunately then, the two uses of the symbol , which are the term symbol and 
the projection of the spin, must be distinguished by context. 

 
 
12.  In Problem 25.31 we illustrated an angular momentum component diagram to help explain 
the occurrence of multiple total angular momentum states, given the projections of the orbital 
and spin angular momenta. Give the corresponding molecular diagram showing that the 
projections of the total angular momentum resolve 3 terms into three states: 31, 32, and 33. 
[Hint: simply replace ML, MS , and MJ with , s , and . Note that  is always positive.4 Use 
the S and  values corresponding to a 3 term.] 
 
 
Answer: The plan is to follow the diagram given in Problem 25.31, noting that  = 2 and S = 1. 
   See the previous problem for the derivation of the three total angular momentum states. The 
diagrams are: 
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13.  Describe in words the purpose of the Birge-Sponer extrapolation in the analysis of electronic 
absorption spectra. 
 
 
Answer: The dissociation energy of the ground state is given by the wave number at the 
convergence limit as: 

 D
~

o = ~o – E
~

atomic        (28.2.6) 
 

This equation is not necessarily dependent on the Birge-Sponer extrapolation. If the convergence 
limit is obvious from the spectrum, the Birge-Sponer extrapolation is not necessary. Such cases 
include ClF, IBr, and ICl.5 The purpose of the Birge-Sponer extrapolation is to determine the 
dissociation limit if the limit is obscured by noise or if vibrational fine-structure transitions near 
the dissociation limit are not observed. 
   Hertha Sponer (1895-1968) was a German physicist and physical chemist. The Birge-Sponer 
extrapolation was developed when she was on a Rockefeller Foundation fellowship with R. T. 
Birge at the University of California at Berkeley in 1925. In 1934, she was forced from her 
faculty position at the University of Göttingen by the Nazis, because she was a woman. In 1936 
she was appointed as the first woman on the physics faculty at Duke University, where she 
remained active until 1966. 
 
 
14.  Describe in words the meaning and purpose of the Franck-Condon factors in the 
interpretation of electronic absorption spectra. 
 
 
Answer:  Franck-Condon factors determine the intensity of vibrational fine-structure transitions 
in absorption and emission spectroscopy as well as the rate of non-radiative energy transfer in 
internal conversion, intersystem crossing, and intermolecular energy transfer. Franck-Condon 
factors are given by the square of the overlap integral of the vibrational wave functions of the 
two coupled states. Franck-Condon integrals have a significant value only if the two vibrational 
wave functions have high probability at a common internuclear separation. 
   For absorption and emission spectra, we often use the approximation of determining the 
intersection of a vertical transition with the final state potential energy surface to estimate the 
largest Franck-Condon factor. This short-cut is good for transitions to highly excited vibrational 

z-component of the spin angular momentum, s 
z-component of the total angular momentum,  

Legend: 

z 

s = -1 
 = 2 

z-component of the orbital angular momentum,  

 = 1 

z 


s
 = 0 

 = 2  = 2 

z 


s
 = 1 

 = 2 

 = 3 

31    32    33 
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states, but is poor for low lying vibrational states. Of course it is always best to calculate the 
Franck-Condon integrals directly, using the vibrational wave functions (if the potential energy 
surfaces are known) 
 
 
15.  The Schumann-Runge band for molecular oxygen is in the UV-region of the spectrum. The 
wave numbers for the 3–

u  3–
g transitions are given in the table below. The corresponding 

vibrational quantum numbers are not known. The ground state dissociates into two ground state 
3P oxygen atoms, and the 3–

u excited state dissociates into a 3P and a 1D oxygen atom. Calculate 
(a) the dissociation energy of the ground state (the bond strength). (b). Estimate the dissociation 
energy of the excited state by assuming the first observed transition is for   0. The atomic 
excitation energy, 3P  1D is 1.9674 eV, 15867.9 cm-1, or 189.82 kJ/mol. 
 


~

 (cm-1) 50062.6 50725.4 51369.0 51988.6 52579.0 53143.4 53679.6 54177.0 
continued 54641.8 55078.2 55460.0 55803.1 56107.3 56360.3 56570.6  

 
 
Answer:  The plan is to use a Birge-Sponer extrapolation following Example 28.2.2 and then Eq. 
28.2.6 to determine the dissociation energies. 
   The adjacent differences are calculated in the following spreadsheet with the corresponding 
Birge-Sponer extrapolation. An arbitrary quantum number of zero is assigned to the first 
transition, since the vibrational quantum numbers are not known. 
 

 

 ~   cm-1 ~ (cm-1) 
0 50062.6 662.8 
1 50725.4 643.6 
2 51369.0 619.6 
3 51988.6 590.4 
4 52579.0 564.4 
5 53143.4 536.2 
6 53679.6 497.4 
7 54177.0 464.8 
8 54641.8 436.4 
9 55078.2 381.8 

10 55460.0 343.1 
11 55803.1 304.2 
12 56107.3 253.0 
13 56360.3 210.3 

 56570.6  
 
 

slope -35.15121 693.34 b 
± 1.1829486 9.0478167 ± 
r2 0.9865918 17.842535 s(y) 
F 882.97582 12 df 
ssreg 281100.7 3820.2727 ssresidual 

 

 

 
 
 

 

(a). Using Eq. , the slope gives the anharmonicity: e
e
x
 
~e

e
x = – ½ slope = 17.58  0.59 cm-1 

Using Eq. 28.2.18: cl = 
~o

2e
e
x ~e

e
x
 = 

693.34
35.1512 = 19.73  0.71 

Using Eq. 28.2.19: area = ½ ~o cl = ½ (693.34)(19.73) = 6839.8  262 cm-1 

y = -35.151x + 693.34
R² = 0.9866

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

0 10 20 30


E 

(c
m

-1
)
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Using Eq. 28.2.20, the transition wave number at the convergence limit is: 

 ~ o = ~oo + area = 50062.6 cm-1 + 6839.8 cm-1 
        = 56902.4  262 cm-1 = 7.055  0.032 eV 
 

Using Eq. 28.2.6, the bond energy of the ground state is: 

in cm-1:    D
~

o = ~ o – E
~

atomic = (56902.4  262 cm-1) – 15867.9 cm-1 = 41035 ± 262 cm-1 

in eV:      Do = E(j,i,0) – Eatomic = (7.055  0.032 eV) – 1.9674 eV = 5.0876  0.032 eV 
in kJ mol-1:   = 490.9  3.1 kJ mol-1 
 
   Notice that the Birge-Sponer plot has significant systematic curvature, and the convergence 
limit by visual extrapolation appears to be less than  = 19, which decreases the calculated 
ground and excited state dissociation energies. The literature ground state dissociation energy is 
5.126 eV.  
(b). If   0 for the first transition, then the excited state dissociation energy is the area under the 
Birge-Sponer curve, Eq. 28.2.19: 
 

 D
~ e

o
x  area = 6840 cm-1 = 0.85 eV 

 

which suffices as a lower limit of the true excited state dissociation energy. The error is within a 
few multiples of ~e

o
x, which is 0.082 eV. If ~e

o
x is 662.8 cm-1 as we have assumed, then using Eq. 

27.5.11, ~e
e
x  ~e

o
x + 2e

e
x
 
~e

e
x = 662.8 cm-1 + 35.15 cm-1 = 698.0 cm-1. The literature value of ~e

e
x is 

799.1 cm-1, which suggests that the first observed transition is actually for  = 3. 
 
 
16.  For SiS the wave numbers for the E1+  X1+ transitions are given in the table below.6 The 
ground state is labeled as the X-state and this excited state, which has the same symmetry, is the 
E-state. Assume that the corresponding vibrational quantum numbers are not known. The ground 
and excited states dissociate into two ground-state 3P atoms. Calculate the dissociation energy of 
the ground state (the bond strength). 
 


~

 (cm-1) 44482.8 44857.6 45227.0 45592.2 45952.8 46308.3 46657.7 47001.0 47337.9 47664.0 

 
 
Answer:  The plan is to use a Birge-Sponer extrapolation following Example 28.2.2 and then 
Eq. 28.2.6 to determine the dissociation energies. The first transition is assigned an arbitrary 
vibrational quantum number of zero for the purposes of the extrapolation. 
   The adjacent differences are calculated in the following spreadsheet with the corresponding 
Birge-Sponer extrapolation. An arbitrary quantum number of zero is assigned to the first 
transition, since the vibrational quantum numbers are not known. Because we are assigning an 
arbitrary vibrational quantum number, the intercept is not the fundamental vibration frequency. 
The extrapolation to the convergence limit works out just fine, however. 
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  (cm-1)  (cm-1)
0 44482.8 374.8 
1 44857.6 369.4 
2 45227 365.2 
3 45592.2 360.6 
4 45952.8 355.5 
5 46308.3 349.4 
6 46657.7 343.3 
7 47001 336.9 
8 47337.9 326.1 
9 47664  

 

slope -5.7883 376.62 b 
± 0.2873 1.3679 ± 
r2 0.9830 2.2256 s(y) 
F 405.8631 7 df 
ssreg 2010.2882 34.6718 ssresidual 

 

 
 

 

(a). Using Eq. , the slope gives the anharmonicity: e
e
x
 
~e

e
x = – ½ slope = 2.894  0.14 cm-1 

Using Eq. 28.2.18: cl = 
~o

2e
e
x ~e

e
x
 = 

376.62
5.7883 = 65.07  3.24 

Using Eq. 28.2.19: area = ½ ~o cl = ½ (376.62)(65.07) = 12250  612 cm-1 
Using Eq. 28.2.20, the transition wave number at the convergence limit is: 

 ~ o = ~oo + area = 44482.8 cm-1 + 12250 cm-1 
        = 56732.8  612 cm-1 = 7.034  0.076 eV 
 

Since the excited state gives ground state atoms, E
~

atomic is zero for this transition. Using Eq. 
28.2.6, the bond energy of the ground state is: 

in cm-1:    D
~

o = ~ o – E
~

atomic = 56732.8  612 cm-1 

in eV:      Do = E(j,i,0) – Eatomic = 7.034  0.076 eV 
in kJ mol-1:   = 678.7  7.3 kJ mol-1 
 

Notice that the convergence limit is a long extrapolation on the Birge-Sponer plot, giving large 
uncertainties. The last data point also shows some downward curvature, which would decrease 
the convergence limit and corresponding dissociation energies. The literature ground state 
dissociation energy, which is based on the same data is 6.72 eV, which takes into account some 
of the observed curvature through a second anharmonicity correction. 
 
 

17.  Vibrational potential functions commonly deviate from Morse behavior. One possibility is 
the appearance of a maximum, Figure P28.17.1a. One cause of a maximum is a strong Van der 
Waals repulsion at large distances, but strong bonding interactions at short distances.5 Referring 
to Figure 26.2.4, strong electron-electron repulsion increases the potential energy at large R, 
possibly giving a maximum. A second cause, especially for excited states, is an avoided crossing 
between a bound-state potential energy curve and a repulsive state, Figure P28.17.1b. An 
example is a state of an alkali halide that tends to dissociate to ions, but because of the curve 
crossing dissociates to atoms instead.5 Discuss the effect of a potential maximum on the 
spectroscopic determination of the dissociation energy of the bound state. 
 

y = -5.7883x + 376.62
R² = 0.983
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Figure P28.17.1: (a). Some vibrational potential energy curves have a maximum. (b). One 
cause is an avoided crossing.  

 
Answer:  The plan is to consider what the results of a Birge-Sponer extrapolation would yield for 
the dissociation energy. 
   Birge Sponer extrapolation yields the dissociation energy D', which is greater than the true 
dissociation energy Do. The relationship is diagrammed below. Such circumstances are not 
uncommon, especially upon comparisons of spectroscopic and thermodynamically obtained 
values.1 

 

 
 
18.  The electronic absorption spectrum of water has a Rydberg series that start with the 
configuration …(3a1)2(1b1)1(3p)1 for a 3p-orbital on the O-atom. See Figure 26.6.4 for the 
molecular orbital diagram. Is the Rydberg series consistent with the ultraviolet photoelectron 
spectrum, UPS, of water shown in Figure 28.5.4b? The series has transitions: 
 

 ~n = 101786 cm-1 – 
H

(n – 0.7)2   n = 3, 4, 5, …… 

 
 

Answer:  The plan is to note that the Rydberg ionization limit corresponds to the formation of the 
molecular ion. 

   The ionization limit converted to eV is: ~n = 101786 cm-1(1 eV/8065.5 cm-1) = 12.62 eV 
which agrees exactly with the first ionization potential from the UPS spectrum in Figure 28.5.4b. 
Rydberg series don’t necessarily give the ground state of the molecular ion, but such is the case 
in this example. 
 
 

R (Å) 

E 

R (Å) 

E 

(a). (b). 

R (Å) 

E 

Do 
D' 
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19.  The diatomic molecule Na2 has a Rydberg series in the electronic absorption spectrum. The 
ionization limit gives the ground state of the molecular ion, Na2

+. The ionization limit from the 
Rydberg series and the ionization potential measured using UPS should be identical for the 
specific excited state of the molecular ion. The quantum numbers of the Rydberg transitions and 
the wave numbers are given in the table below. Determine the ionization potential to form Na2

+. 
Compare the value to the ionization potential determined using UPS, which is 4.90 eV (see 
Problem 37 for the reference to the literature value). 
 

n 4 5 6 7 

~n 20320.02 29382 33486.8 35557 
 
 
Answer:  The plan is to fit the data to the Rydberg series expression, Eq. 28.2.22. We first write a 
spreadsheet to approximate the fit coefficients and then use non-linear least squares curve fitting. 
   A spreadsheet to do an approximate curve fit is shown below. As usual the goal is to minimize 
the sum of squared residuals, which is calculated in cell E11. The fit parameters, which are the 
wave number of the ionization limit ~I in cell C3 and the quantum defect c in cell C4, are varied 
to achieve an approximate fit. With patience, or using Goal Seek, this guessing procedure is 
sufficient to complete the fit, but we only need to derive approximate fit values at this point. 
 

 

A1 B C D E F 

2 H 109737.32    

3 I 40000 cm-1 4.959 eV 

4 c -1.6    

5 n n (cm-1) fit r2  
6 4 20320.02 20948.4 394839.7  
7 5 29382 30507.2 1265968.5  
8 6 33486.8 34331.8 713940.9  
9 7 35557 36236.7 462016.0  

10      
11   sum r2 2836765.1  

 

 

 
 

 

Using approximate values close to those from the spreadsheet, a curve fit using the “Nonlinear 
Least Squares Curve Fitting” applet on the textbook Web site or companion CD is done using the 
functional form “a+c/(x+b)^2” as set up below with a constant c value for the Rydberg constant. 
 

 

 
 

 

============   Results   ============ 
 a= 39107 +- 194 
 b= -1.5887 +- 0.023 
____________ Output Data ____________ 
  x    y     y(fit)   residual 
 4.0   20320.02  20233.351   86.6684 
 5.0   29382.0   29676.904  -294.904 
 6.0   33486.8   33467.758   19.0413 
 7.0   35557.0   35359.440   197.559 
------------------------------------- 
 sum of squared residuals= 133900 
 stand. dev. y values= 258.7 
 correlation between a & b= -0.7453 
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Notice that the guesses don’t need to be very close to the final values; we just used the 
spreadsheet to get a reasonable estimate for c (small negative). The curve fit results give the 
ionization limit, ~I = 39107  194 cm-1 = 4.849  0.024 eV, which is in excellent agreement with 
the UPS derived ionization potential. 
 
 
20.  Using the potential energy curves shown below, predict the most intense vibrational fine-
structure transitions in the absorption and fluorescence spectra. Draw the corresponding 
absorption and fluorescence spectra. Show four of the intense transitions in each of the spectra. 
Label each transition in the energy level diagram with the vibrational quantum numbers for the 
transition and each corresponding peak in the spectrum (e.g. 40). 

 
 
 

Answer:  The plan is to draw in the vertical transitions to predict the vibrational fine-structure 
transition with the largest Franck-Condon factors. 

 
   The most probable internuclear separation in the " = 0 vibrational state of the electronic 
ground state is the middle of the potential energy well, giving the starting point for the vertical 
transition in absorption as Re. The most intense transition in absorption is to ' = 3, as shown in 

A
bs

or
ba

nc
e 

or
 I

nt
en

si
ty

 

   ~ (cm-1) 
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the figure above. Transitions to other adjacent vibrational levels typically have comparable 
intensities. The vertical transition just predicts the most intense. The most probable internuclear 
separation in the ' = 0 vibrational state of the first excited electronic state is also in the middle 
of the potential energy well, giving the starting point for the vertical transition in absorption as 
Re

e
x. The most intense transition in fluorescence is to " = 2, as shown in the figure above. 

 
 
21. We took a short cut in the derivation of Eq. 28.2.13 by working in analogy with Eq. 27.5.12. 
In this problem we derive Eq. 28.2.13 directly from the term values of the adjacent transitions. 
The energy of the " = 0 level of the ground electronic state is E

~
o. The energy difference from 

the minimum energy of the ground state potential energy curve to the minimum energy of the 
excited state potential energy curve, that is the energy without vibration, is T

~ e
e
x. The energy of the 

' vibrational level of the excited state is E
~ ex
' , neglecting rotation: 

 

 E
~ ex
' = T

~ e
e
x + ~e

e
x ('+ ½) – e

e
x
 
~e

e
x ('+ ½)2           P28.14.1 

 

The energy of an electronic transition from the " = 0 level of the ground electronic state to the 
' vibrational level of the excited state is: 
 

   E
~
(j,'i,0) = E

~ ex
' – E

~
o= T

~ e
e
x + ~e

e
x ('+ ½) – e

e
x
 
~e

e
x ('+ ½)2 – E

~
o        P28.14.2 

 

where the fundamental vibration frequency ~e
e
x and anharmonicity e

e
x~e

e
x are for the excited state. 

Consider two adjacent transitions: j, +1i,0 and j, i,0. The adjacent energy difference is: 
 

 ~ = E
~
(j,+1i,0) – E

~
(j,i,0)            P28.14.3 

 

(a). Prove that: ~ = = ~e
e
x – e

e
x
 
~e

e
x [(  ½) +)]2 + e

e
x
 
~e

e
x ( + ½)2        P28.14.4 

 

(b). Using ((+½)+1)2 = (+½)2 + 2(+½) + 1, starting with Eq. P28.14.4 prove that: 
 

 ~ = (h~e
e
x – 2e

e
x
 
~e

e
x) – 2e

e
x
 
~e

e
x      (

 

(c). Label E
~

o, E
~ ex
 , T

~ e
e
x, E

~
(j,+1i,0), E

~
(j,i,0), and ~ on a plot of the ground and excited 

state potential energy curves. Pick a convenient arbitrary  for your plot. 
 
 

Answer:  (a). The adjacent energy difference is: 
 

 ~ = E
~
(j,+1i,0) – E

~
(j,i,0) = [E

~ ex
+1 – E

~
o] – [E

~ ex
  – E

~
o] = E

~ ex
+1 – E

~ ex
          P28.14.5 

 

Substitution of Eq. P28.14.1 evaluated at +1 and  into Eq. P28.14.5 and cancelling the 
common T

~ e
e
x terms gives the adjacent energy difference as: 

 

 ~ = ~e
e
x( +  + ½) – e

e
x~e

e
x(   + ½)2 – ~e

e
x( + ½) + e

e
x~e

e
x( + ½)2 

 

Cancelling common terms and rearranging (+1+½) to give ((+½)+1) gives Eq. P28.14.4: 
 

 ~ = ~e
e
x – e

e
x
 
~e

e
x [(  ½) +)]2 + e

e
x
 
~e

e
x ( + ½)2          (P28.14.4) 

 

(b). As in Eq. 27.5.9, using ((+½)+1)2 = (+½)2 + 2(+½) + 1 and cancelling the resulting 
common terms gives: 
 

 ~ = e
e
x – e

e
x~e

e
x [(  ½)2 + 2(  ½) +)] + e

e
x
 
~e

e
x ( + ½)2 = ~e

e
x – e

e
x
 
~e

e
x (2 + ) 
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Rearranging the last equation into the form of a straight line gives Eq. 28.2.13: 
 

 ~ = (h~e
e
x – 2e

e
x
 
~e

e
x) – 2e

e
x
 
~e

e
x      ( 

 

(c).  

 
 

22.  The next three problems discuss errors in the Birge-Sponer extrapolation procedure and why 
different authors chose different variables to plot along the horizontal axis, ,  + ½, or  + 1. 
The vibrational fine-structure in an electronic absorption spectrum converges to a limit that is the 
sum of the dissociation energy of the ground state of the molecule and the atomic excitation 
energy. The convergence limit is equivalent to the sum of ~oo and the excited state dissociation 
energy, Eq. 28.2.8. Reference to Figure 28.2.5 shows that the excited state dissociation energy is 
the sum of all the adjacent wave number differences up to the convergence limit: 

E
~
(j,i,0) = D

~
o + E

~
atomic = ~oo + D

~ ex
o  = ~oo + 

=0



~        P28.22.1 

Based on the sum of adjacent differences, the Birge-Sponer extrapolation may be viewed from a 
different perspective. A graphical interpretation of Figure 28.1.20 allows a convenient 
calculation of the sum in Eq. P28.22.1. Consider a rectangle of unit width drawn at each data 
point, Figure P28.22.1.  
 

 
Figure P28.22.1: The excited state dissociation energy D

~ ex
o  is given by the sum of adjacent 

energy differences, which is conveniently calculated as the triangular area under the plot of 
~ versus . 
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e
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e
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" = 0 E
~

o 
  0 

E
~

ex

 

T
~

e
e
x 

E
~
(j,+1i,0) == ~+1,o 

E
~
(j,i,0) = ~,o 

~ 
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The area of each rectangle is the height multiplied by the width. The sum of all the successive 
differences is then equal to the total area of all the rectangles. The total area is approximated as 
the triangle with the area given by ½ baseheight: 
 

 
=0



~ = area = ½ ~o cl        (28.2.19) 

 

Compare this approximate result, which we also gave as Eq. 28.2.19, to the exact result using 
Eq. 28.2.15. Express your answer in terms of the anharmonicity, e

e
x
 
~e

e
x. 

 
 

Answer:  The plan is to compare ~o to ~e
e
x using Eq. 28.2.16. 

   The exact result is given by Eq. 28.2.15:  D
~ e

o
x = ½ ~e

e
x cl. Substituting Eq. 28.2.16: 

 

 ~o = ~e
e
x – e

e
x ~e

e
x 

 

into Eq. 28.2.16 gives: 

 D
~ e

o
x = ½ ~e

e
x cl = ½ (~o + e

e
x ~e

e
x) cl = ½ ~o cl + e

e
x ~e

e
x cl 

 

The error in using Eq. 28.2.19 is then e
e
x ~e

e
x cl, which is typically small since the anharmonicity 

is usually a small fraction of the fundamental vibration frequency. 
 
 

23.  Birge-Sponer extrapolations are plotted as a function of the vibrational quantum number  
based on the following the linear forms: 
 

 ~ = (~e
e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
x      (28.2.13) 

 or equivalently    ~ = ~o – 2e
e
x
 
~e

e
x      (

 

In the previous problem we discuss a graphical interpretation that leads to the use of the 
triangular area under the Birge-Sponer curve to estimate the dissociation energy of the excited 
state. This graphical interpretation in Figure P28.22.1 shows a problem in associating the area of 
each rectangle with the overall area; each rectangle has a small portion above the curve-fit line. 
Some authors suggest doing the curve fit versus +½ to limit the error in this area calculation, 
Figure P28.23.1. 
 

 
Figure P28.23.1: The excited state dissociation energy D

~ ex
o  is given by the sum of adjacent 

energy differences, which is conveniently calculated as the triangular area under the plot of 
~ versus +½. 

~o 

~ 
(cm-1) 

cl+½ 

slope = – 2e
e
x ~e

e
x 

width of each rectangle = 1 
 

height of each rectangle = ~ 
 

area of each rectangle = ~ 
 

area = ½ base height 
 

0    1     2    3    4    5    6    7    8    9   10   11  12  13 
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The dissociation energy of the excited state is given approximately by area D
~ ex

o  = ½ ~o cl, 
where ~o is taken as the first data point and cl = (x-intercept) – ½. This result is identical to the 
result taken from the plot versus  discussed in the Example 28.2.2. However, some authors 
instead use: 
 

 D
~ ex

o   area = ½(y-intercept)(x-intercept) 
 

Evaluate the error in the corresponding calculation of D
~ ex

o  by showing that: 
 

 D
~ e

o
x = ½ (y-intercept)(x-intercept) – ¼ ~e

e
x + ½ e

e
x ~e

e
x cl + ¼ e

e
x ~e

e
x 

 
 

Answer:  The plan is to compare the y-intercept to ~e
e
x using Eq. 28.2.13. Make the substitution 

x =  + ½, where x is the variable plotted along the horizontal axis. 

   The basis of the Birge-Sponer plot is Eq. 28.2.13: ~ = (~e
e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
x



To switch variables, rearrange to give  = x – ½ and substitute into the previous equation: 
 

 ~ = (~e
e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
x(x – ½) = (~e

e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
xx 

 

with the y-intercept = (~e
e
x – e

e
x ~e

e
x) and the x-intercept = cl + ½. 

   The exact result for the dissociation energy of the excited state is given by Eq. 28.2.15: 

D
~ e

o
x = ½ ~e

e
x cl. Solving the y- and x-intercepts for ~e

e
x and cl gives: 

 D
~ e

o
x = ½ ~e

e
x cl = ½ (y-intercept + e

e
x ~e

e
x)(x-intercept – ½)  

  = ½ (y-intercept)(x-intercept) – ¼ (y-intercept) + ½ e
e
x ~e

e
x(x-intercept) – ¼ e

e
x ~e

e
x 

  = ½ (y-intercept)(x-intercept) – ¼ (~e
e
x – e

e
x ~e

e
x) + ½ e

e
x ~e

e
x(cl + ½) – ¼ e

e
x ~e

e
x 

        = ½ (y-intercept)(x-intercept) – ¼ ~e
e
x + ½ e

e
x ~e

e
x cl + ¼ e

e
x ~e

e
x 

 

The last term is negligible. The error in the term ½ e
e
x ~e

e
x cl is typically small since the 

anharmonicity is usually a small fraction of the fundamental vibration frequency. The error in 

using the y- and x-intercepts directly is dominated by the term – ¼ ~e
e
x. Assuming ~e

e
x is typically 

on the order of ~2000 cm-1: 
 

 error = – ¼ ~e
e
x = – ¼ (2000 cm-1)(1 eV/8065.5 cm-1) = -0.06 eV 

 

which is often smaller than other sources of error. In summary, using D
~ e

o
x = ½ ~e

e
x cl is best, but 

using ½ ~o cl introduces small amounts of error. Using ½ (y-intercept)(x-intercept) from the 
plot versus +½ introduces small but significant error. 
 
 
24.  As an alternate to the Birge-Sponer plot where ~ is plotted versus , show that a plot of 
~ versus  + 1 gives ~e

e
x directly from the intercept. 

 
 

Answer:  The plan is to compare the y-intercept to ~e
e
x using Eq. 28.2.13. Make the substitution 

x =  + 1, where x is the variable plotted along the horizontal axis. 
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      The basis of the Birge-Sponer plot is Eq. 28.2.13: ~ = (~e
e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
x



To switch variables, rearrange to give  = x – 1 and substitute into the previous equation: 
 

 ~ = (~e
e
x – e

e
x ~e

e
x) – 2e

e
x
 
~e

e
x(x – 1) = ~e

e
x – 2e

e
x
 
~e

e
xx 

 

with the y-intercept = ~e
e
x and the x-intercept = cl + 1. 

   The exact result for the dissociation energy of the excited state is given by Eq. 28.2.15: 
D
~ e

o
x = ½ ~e

e
x cl. The dissociation energy is easily calculated exactly from the y-intercept and then 

cl = x-intercept – 1. This plot type is not commonly used, so we didn’t cover it in the body of 
the chapter. 
 
 
25.  The ultra-violet photoelectron spectrum of HCl taken with He discharge excitation at 
21.21 eV is shown below.7,8 The doublet peaks at 12.74-12.82 and at 13.04-13.12 occur for the 
23/2 and 2½ states. The doublet spacing is determined by spin-orbit coupling. The peak 
spacings listed on the spectrum are vibrational spacings. The ground state spectroscopic 
constants for HCl are listed in Table 27.6.1. (a). For each band, is the molecular ion stretching 
frequency greater, roughly equal, or less than that of the ground state HCl? Predict the type of 
orbital, bonding, non-bonding, or anti-bonding, of the corresponding ionized electron. Include 
observations on the length of the vibrational progression of each band. (b). The molecular orbital 
diagram for HI is given in Figure 28.2.7. Is the molecular orbital ordering for HCl consistent 
with the molecular orbital ordering for HI? 
 

 
 

Figure 28.25.1: UPS spectrum of HCl using He discharge excitation at 21.21 eV. 
 
 
Answer:  The plan is to note that, for comparison, the observed fundamental vibration frequency 

for HCl is ~o = ~e – 2e~e = 2990.925 – 2(52.800) cm-1 = 2885.325 cm-1, using Eq. 27.5.11. 
(a). The fundamental vibration frequency for the ground state of the molecular ion given for the 
a-band is only slightly smaller than the ground state, suggesting the removal of a non-bonding 
orbital. The removal of a high energy non-bonding electron is not surprising for halogens. The 
fundamental vibration frequency for the excited state of the molecular ion given for the b-band is 
significantly less than the ground state, suggesting the removal of a bonding electron. 
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   The length of each vibrational progression is consistent with these observations. The 
vibrational fine-structure includes only two transitions for the a-band, suggesting a small change 
in bond length between the neutral molecule and the molecular ion. The removal of the 
corresponding electron makes a small difference in the bond strength. The removal of a non-
bonding electron produces no change in the qualitative bond order. The vibrational fine-structure 
includes seven or eight transitions for the b-band, suggesting a large change in bond length 
between the neutral molecule and the molecular ion. The removal of the corresponding electron 
makes a large difference in the bond strength. This result suggests that the electron is removed 
from a bonding orbital resulting in a smaller qualitative bond order. 
(b). The lowest ionization energy for the molecular orbital ordering in Figure 28.2.7 for HI 
corresponds to the removal of a non-bonding atomic p-electron. The next ionization energy 
corresponds to the removal of a -bonding electron. This order is identical to the character of the 
transitions in the UPS spectrum. So even though the valence shell for Cl-atoms is 3s-3p the 
character of the molecular orbital diagram is similar. 
 
 
26. The molecular orbital diagram for HI is given in Figure 28.2.7. (a). Sketch the four molecular 
orbitals. (b). Compare the molecular orbitals to the molecular orbitals for LiH, Figure 26.3.4. 
Suggest the reason why the 5s-orbital on the I-atom doesn’t participate in the molecular orbitals 
to a significant extent (at least at a qualitative level). (c). The molecular orbital ordering in Figure 
28.2.7 is verified using UPS. Describe the vibrational fine-structure in the UPS spectrum that is 
expected for HI. That is for each of the three bands, is the molecular ion stretching frequency 
greater, roughly equal, or less than that of the ground state HI? Also, is each vibrational 
progression short or long? (d). Show the “box diagrams” for the 2P½ and 2P3/2 states of I-atoms. 
(e). Find the term symbols for the excited states of HI with configuration 2(o)3(*)1. (f). 
Determine the possible projections of the total angular momentum for each term:  = | + s|. 
 
 
Answer: (a). The four molecular orbitals are diagrammed below, based on the listed molecular 
orbitals: bonding  = 1sH+5pz,I, non-bonding pure atomic = 5px,I and = 5px,I, and anti-
bonding * = 1sH–5pz,I. 
 

 
 
(b). For HI, the difference is the absence of the predominately non-bonding -orbital just below 
the purely non-bonding atomic p-orbitals. This non-bonding -orbital does not exist because the 

– 

+ 

= 5px,I  = 5py,I 

+ 

+ 
               
H        I 

+ – 

– 
* 

+ – 

E 

    = 1sH+5pz,I 

* = 1sH–5pz,I 

 = 5px,I   = 5py,I 
    

 = 1sH+5pz,I 

* = 1sH–5pz,I 
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5s orbital on the I-atom is so low in energy, relative to the 1s(H), that the 5s is core non-bonding. 
The unavailablility of the 5s(I) leaves only two valence orbitals, the 1s(H) and the 2p(I) that 
points along the internuclear axis, to form the bonding and anti-bonding molecular orbitals. 
(c). The UPS spectrum for HI has an appearance very similar to the spectrum of HCl, which is 
illustrated in the previous problem. Ionization from the HOMO, which is a non-bonding 5px or 
5py, has little effect on the bond strength. The small change in bond strength predicts the lowest 
energy band to have a short vibrational progression and a molecular ion vibration frequency little 
changed from the neutral molecule. The next transition, transition-b in the previous problem, 
removes an electron from the strongly bonding -orbital, giving a large decrease in bond 
strength. As a result, the fundamental vibration frequency in the molecular ion is predicted to 
have a large decrease and a long vibrational progression. 
(d). Schematically, representing each state with a single box diagram for the configuration 
[Kr]4d105s25p7: 
 

            +1   0    +1               +1    0    -1 

 2P½           and  2P3/2              
  5s     5p       5s     5p 
 

which represent the total angular momentum states given by the Clebsch-Gordon series: 
 

 with S = ½ , L = 1   then     J: L–S, …., |L+S| = 1–½, 1+½ 
 

The atomic states have the overall degeneracies:  gJ = 2 for 2P½   and   gJ = 2J+1 = 4 for 2P3/2 
 

(e). The term symbols for the molecular configuration 2(o)3(*)1 are given by adding the 
orbital angular momenta. The explicit configuration with maximum S and  is shown below, 
giving the total orbital angular momentum as  = 1 for a 3 term. The spin multiplicity can also 
be a singlet with paired spins giving a 1 terms. 
 

 
 
(f). For a  state,  = 1. For the singlet S = ½ and for the triplet S = 1. The projection of the total 
angular momentum is given by the series. 
 

For the singlet, S = ½ , s = –½, +½,  = 1   with   = |+s| = ½, 3/2 
giving 1½ and 13/2 molecular terms. 

 

For the triplet, S = 1 , s = –1, 0, +1,  = 1   with   = |+s| = 0, 1, 2 
giving 3o, 31, and 32 molecular terms. 

 

Substates of the 1 and the 3 terms give the repulsive states diagramed in Figure 28.2.7b. The 
total angular momentum states for the transitions in HI are given in parentheses. The 3(0+) state 
has  = 0 with the projection of the orbital angular momentum +, rather than – ( states are 

E 

              

               * 

         

 =         0 

 =    +1       –1 

 =         0 
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degenerate).4  Note: Most authors use the symbol  and not s for the projection of the spin 
angular momentum. Unfortunately then, the two uses of the symbol , which are the term 
symbol and the projection of the spin, must be distinguished by context. 
 
 
27.  Determine the density of states of a one-dimensional particle in a box. Determine the density 
of states near the state with quantum number n = 100, for CO2 molecules in a 10.0 cm “box”. 
Express the units as states per wave number. 
 
 
Answer:  The plan is to determine the derivative corresponding to Eq. 28.3.3, which is the 
derivative of the translational quantum number n with respect to the energy. The energy of the 
particle in a box states is given by given by Eq. 23.4.9. 

   The energy of a state with quantum number n is:   En = 
h2n2

8ma2   with a the box length. 
 

 () =  
dn
d = 



d

dn

-1
       with       

d
dn = 



h2

8ma2  
d n2

dn  = 



h2n

4ma2  
 

Substituting the derivative into the density of states gives: 
 

 () = 
4ma2

h2n           states per joule 
 

For CO2 in a 10.0 cm box, for which m = 44.0 g mol-1/NA/(1000 g/1 kg) = 7.31x10-26 kg: 
 

 () = 
4ma2

h2n  = 
4(7.31x10-26 kg)(0.100 m)2

(6.626xc10-34 J s)2(100)  = 6.66x1037 J-1 
 

Remember that E
~
 = E/hc to convert to cm-1. The density of states is per unit energy giving the 

conversion to wave numbers as: 
 

 () = 6.66x1037 J-1(hc) = 6.66x1037 J-1(6.626x10-34 J s)(2.99792x1010 cm s-1) 

        = 1.32x1015 cm = 1.32x1015 
1

cm-1         that is 1.32x1015 states per wave number 
 

The density of states decreases with increasing energy because the spacing between particle in a 
box energy levels increases with increasing n. However, even at n = 100, the density of states is 
amazingly high. We will find that for a 3-dimensional particle in a box, the density of states 
increases with increasing energy, because of degeneracy.  
 
 
28. Determine the density of states of a linear rigid rotor. Rotational energy levels have a 
degeneracy of (2J + 1), which we must take into account. The degeneracy is the number of states 
at a given energy level. The density of states is the product of the number of states at the given 
energy level with the number of levels per unit energy. The rotational constant for H–CN is 
1.4782 cm-1.9 Calculate the density of states for H–CN. 
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Answer:  The plan is to determine the derivative corresponding to Eq. 28.3.3, which is the 
derivative of the rotational quantum numbers J with respect to the energy, which is then 
multiplied by the degeneracy. The energy of the rotational states is given by given by Eq. 27.4.1. 

   The energy of a state with quantum number J is J = B
~

hc J(J + 1) : 
 

 () = (2J + 1) 
dJ
d = (2J + 1) 



d

dJ

-1
       with       

d
dJ = 

d [B
~

hc J(J + 1)]
dJ  = B

~
hc (2J + 1) 

 

Substituting the derivative into the density of states gives: 
 

 () = (2J + 1)[B
~

hc (2J + 1)]-1 = 
1

B
~

hc
    per joule   or    () =  

1

B
~      per cm-1 

 

The energy spacing between rotational levels increases with J, so we might expect the density of 
states decrease to increase with energy. However, the degeneracy increases with J. As a result the 
rotational density of states is constant with increasing energy. The rotational constant for H–CN 
is 1.4782 cm-1.9 The density of rotational states is () = 1/1.4782 cm-1 = 0.676 states per wave 
number. 
 
 
29.  The UV-visible absorption spectrum of SO2 is given in Figure 28.1.1. The band origin of the 
visible transition is roughly 340 nm. The band origin corresponds to the '" vibrational fine-
structure transition of 00. Consider non-radiative energy transfer by internal conversion from 
this excited electronic state into the ground electronic state. The three normal modes of SO2 in 
the ground electronic state are at wave numbers 1151 cm-1, 518 cm-1, and 1362 cm-1, Figure 
28.3.2. (a) Assuming all the vibrational energy is in the asymmetric stretch-3, that is 1 = 2 = 0, 
calculate the vibrational quantum number of the ground state that is isoenergetic with the lowest 
energy vibrational level of the excited state. (b). Assuming the vibrational quantum numbers are 
all equal, that is 1 = 2 = 3, calculate the approximate vibrational quantum numbers of the 
ground state that is isoenergetic with the lowest energy vibrational level of the excited state. 
 
 
Answer:  The plan is to convert the band origin to wave numbers and then compare with the 
harmonic oscillator energy levels. 
   In wave numbers, ~oo = [1/(340x10-9 m)] (1 m/100 cm) = 29400 cm-1. This energy is referenced 
to the zero-point energy of the ground state at G

~
(0) = ½~o. 

(a).  Using the energy of a harmonic oscillator as G
~

() = ~o( + ½) gives:   = ~oo/~o = 
29400 cm-1/1362 cm-1 = 21.6  22. This is a highly excited vibrational level, which may be near 
the dissociation limit. 
(b). What happens if we don’t put all our eggs in one basket and consider vibrational excitation 
into each of the normal modes? 
 

  = 
~oo

(~1,o + ~2,o + ~3,o)
 = 

29400 cm-1

1151 cm-1 + 518 cm-1 + 1362 cm-1 = 9.70  10 

 

This vibrational level is very difficult to access using absorption directly from the ground 
electronic state (by infrared absorption spectroscopy for example). However, internal conversion 
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is seen to be mediated through such highly excited vibrational states. We assumed that all the 
vibrational quantum numbers were equal. However, a given molecular system may prefer to 
have more quanta in the modes with higher fundamental vibration frequency. For example, very 
high frequency C–H stretching vibrations play an important role in internal conversion processes 
in aromatic systems. 
 
 
30.  Avoided-crossings of degenerate states follow a common pattern. Consider two states 
represented by the wave functions A and B. The strength of the interaction between the two 
states is determined by the integral c =  A o^  B d. Possibilities for the o^  operator include spin-
orbit coupling for electronic interactions in intersystem crossing or (2/R2) for vibronically 
coupled states. Vibronic coupling is important in internal conversion and pre-dissociation. We 
consider the interaction as a perturbation on the unperturbed wave functions A and B. We 
assume that there is no net interaction without the perturbation, giving an overlap-type integral: 
 

  A B d = SAB = 0 
 

A zero overlap integral is often the result of orthogonality. Any two different electronic states of 
the same molecule are orthogonal. The unperturbed energies of the two states are: 
 

 a =  A H^  ' A d and b =  B H^  ' B d 
 

with H^  ' given by the unperturbed Hamiltonian (o^  is not present). The energies of the two states 
with the interaction present are the eigenvalues of the secular equations, i, as in Eq. 26.1.13: 
 

 



a –  c

c b –   = 0 
 

with the eigenvalues given by Eq. 6.3.23. Recasting Eq. 6.3.23 into the terms used in this 
problem gives: 
 

 i = 
(a + b)  (a – b)2 + 4 c2

2        P28.32.1 
 

(a). In pre-dissociation, a and b scale with the distance, with a = b at the avoided-crossing. 
Assume the two states are nearly degenerate and have energies:  a = 5.00 eV +  and 
b = 5.00 ev – . The energy gap, , has units of eV. Plot the energies of the two states with the 
interaction present for c = 0.2 eV for  in the range of -0.5 <  < 0.5. Determine the energy gap at 
 = 0. 
(b). Compare the previous plot to Figure 28.2.8. How can you tell that the crossing is avoided? 
(c). Decrease the interaction parameter to c = 0.01 eV. Is the interaction still avoided? RT at 
room temperature is 0.0257 eV. Predict the behavior of the system at room temperature at the 
avoided-crossing. 
 
 
Answer:  The plan is to solve for the eigenvalues as a function of the energy gap, . For large 
positive energy gaps, +  a and -  b. 
   A spreadsheet was developed that solves P28.32.1 as a function of the energy gap parameter.  
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A1 B C D E F G 
2  Eav = 5 eV    c= 0.2 eV 
3   a b + - 
4  -0.5 4.5 5.5 5.5385 4.4615 
5  -0.4 4.6 5.4 5.4472 4.5528 
6  -0.3 4.7 5.3 5.3606 4.6394 
7  -0.2 4.8 5.2 5.2828 4.7172 
8  -0.1 4.9 5.1 5.2236 4.7764 
9  0 5 5 5.2000 4.8000 

10  0.1 5.1 4.9 5.2236 4.7764 
11  0.2 5.2 4.8 5.2828 4.7172 
12  0.3 5.3 4.7 5.3606 4.6394 
13  0.4 5.4 4.6 5.4472 4.5528 
14  0.5 5.5 4.5 5.5385 4.4615 

 

 

 
 

(a).  The energy gap at the curve-crossing is 0.4 eV = 2c. 
(b).  The curve is analogous to pre-dissociation assuming a linear change in unperturbed energy 
with distance, near the curve-crossing. You can tell that the crossing is avoided because the + 
curve approaches curve-b for negative energy gaps, but approaches curve-a for positive energy 
gaps. If the system starts in the a-state, for increasing  the system progresses to the b-state for 
large . 
(c).  Decreasing the interaction parameter decreases the gap at the curve-crossing. If c = 0.01 eV, 
the gap is only 0.02 eV at the avoided-crossing. This gap is smaller than the available thermal 
kinetic energy, which easily allows the system to jump across the gap. As a consequence if the 
system starts in the a-state, for increasing  at the curve crossing the system can jump to the 
upper curve. Then instead of progressing to the b-state for large , the system stays in the a-state. 
The result is a mixture of products, some in the a-state and some in the b-state.  
 
 
31.  Determine the symmetry species of the following molecular orbitals of ethylene. The 
symmetry species are the irreducible representations. In addition, classify the molecular orbitals 
as  or , non-bonding or bonding. 
 

 
 
Answer:  The plan is to note that the point group is D2h for ethylene. The sufficient characteristic 
symmetries are the transformation properties under (xy), (xz), and (yz). 
    We don’t need to consider every symmetry operation of the point group. Such a complete 
enumeration could drive you crazy with some of the more symmetrical point groups. We can use 
just (xy), (xz), and (yz) since the results are unique and easy to see. The (xy)-plane 
contains all the atoms. For example, the first molecular orbital is symmetric with respect to the 
(xy)-plane, antisymmetric with respect to (xz), and antisymmetric with respect to (yz). 
Symbolizing symmetric with +1 and antisymmetric with -1, the results in the order 
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[(xy),(xz),(yz)] are [1,-1,-1]. Comparison with the D2h character table shows these characters 
correspond to B1g. The orbital overlaps are all in-plane and correspond to C–H bonds, giving a -
type orbital. The molecular orbital has four bonding C–H interactions and one anti-bonding C–C 
interaction, which is net bonding. The other results are given below. 
 

 
 

We can check our results by noting the transformation properties under inversion. The symmetric 
orbitals under inversion are g and the anti-symmetric orbitals are u, which agrees with our 
assignments. The choice of the (xy), (xz), and (yz) planes is in some ways arbitrary; other 
combinations of transformations also work. However, usually reflection planes are often the 
most convenient as long as the results give a unique one-to-one relationship with the irreducible 
representations of the point group. 
 
 
32.  Use electronic selection rules to determine if the LUMO+1  HOMO and LUMO+2  
HOMO transition are allowed in absorption spectra. The corresponding molecular orbital 
diagram for the 1b1g, 1b1u, 1b2g, ag, and b2g levels is given below. 

 
 
Answer:  The plan is to determine the direct products A1gB1u and B2uB1u. 
   The ground electronic state for ethylene is A1g, since all occupied orbitals are doubly filled. As 
a result we need only consider the symmetry of the excited state and the electric dipole operator. 
In D2h the x, y, and z components of the electric dipole transform as B3, B2, and B1, respectively. 
The LUMO+1  HOMO transition gives an excited state with configuration 
…(1b1g)2(1b1u)1(1b2g)0(ag)1 with direct product: A1gB1u. The A1g irreducible representation is 
the totally symmetric representation. Multiplication by the totally symmetric representation is the 
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unity operation for direct products, since all the characters are +1. As a result A1gB1u = B1u. 
The z-component of the dipole moment transforms as B1u, which gives the transition as allowed 
for the singlet states: 1B1u  1A1g. 
   The LUMO+2  HOMO transition gives an excited state with configuration 
…(1b1g)2(1b1u)1(1b2g)0(ag)1(2b2u)1 with direct product: B2uB1u. We can save ourselves some 
time by noting that the direct product will have g-parity. The x, y, and z-components of the 
dipole moment transform as u-parity, which gives the transition as forbidden. However, for 
practice, the direct product B2uB1u is: 
 

D2h E C2(z) C2(y) C2(x) i (xy) (xz) (yz) 
B1u 1  1 -1 -1 -1 -1  1  1 
B2u 1 -1  1 -1 -1  1 -1  1 
B2u  B1u 1 -1 -1  1  1 -1 -1  1 = B3g 

 

The result has g-parity as predicted giving a forbidden transition. The next problem gives the 
result from an electronic structure calculation using CIS/6-311G*, which agrees with the results 
in this problem. However, it is found that the LUMO+1HOMO transition, which is 1B1u  
1A1g, while allowed is significantly less intense than the LUMOHOMO transition. 
 
 

33. In Example 28.8.1 we used group theory based electronic selection rules to determine if the 
low energy * and * transitions of ethylene are allowed or forbidden. Configuration 
interaction calculations are used to find excited states, electronic transition energies, and 
intensities within the Hartree-Fock formalism. Single excitations don’t contribute to ground state 
stability, however single excitations generate many possible excited states. As a consequence 
configuration interaction with single excitations, CIS, is used to simulate UV-visible spectra. 
First, do a geometry optimization for ethylene at HF/6-311G* (equivalent to HF/6-311G(d)). 
Then do a CIS/6-311G* single point calculation to compare to the intensity predictions in 
Example 28.8.1. [Hints: To do a CIS calculation: Using the Spartan visualization environment 
select an Energy calculation and check “UV/Vis” and “Orbitals & Energies”. Using the WebMo 
visualization environment for Gaussian choose the Calculation type as “Excited States and UV-
Vis”. Use the Basis Set “Other” option to specify 6-311G(d). Using the GaussView visualization 
environment for Gaussian set the Method as CIS and check “Solve for More States, N = 6”.] 
 
 

Answer:  We give the Spartan version first and then the Gaussian version. The Spartan/Q-Chem 
results are shown below with transition wavelengths in nm: 
 

UV/Vis Allowed Transitions: 
nm    strength MO Component  
115.69 0.0000 HOMO-2 -> LUMO 92%  
125.52 0.0000 HOMO -> LUMO+3 95%  
128.17 0.0000 HOMO-1 -> LUMO 92%  
135.48 0.0000 HOMO -> LUMO+2 89%  
142.34 0.0443 HOMO -> LUMO+1 99%  
146.10 0.6127 HOMO -> LUMO 94% 

 

In Example 28.8.1, we predicted the LUMOHOMO transition to be fully allowed with B3u 
symmetry and the LUMOHOMO-1 transition to be forbidden with B3g symmetry. The CIS 
results agree with the group theory predictions. The calculation places the LUMO+1HOMO 
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transition that is weakly allowed and the LUMO+2HOMO forbidden transition in between the 
transitions in Example 28.8.1. 
The Gaussian results at CIS(NStates=10)/6-311G(d), as displayed by the WebMo “front-end” 
visualization environment, are shown below with transition wavelengths in nm. 
 

   State    Symmetry    Energy (nm) 
1 B1U 146.05 
2 B3U 142.28 
3 B1G 135.45 
4 B1G 128.18 
5 B2G 125.49 
6 B2G 115.61 
7 AU 106.02 
8 B3G 104.97 
9 B2U 96.32 
10 AU 95.40 

 

A plot of the electronic spectrum shows only the first transition, B1U at 146.05 nm, has 
significant intensity. We need to view the “raw” numerical data file to determine the molecular 
orbitals involved in the transition. Ethylene has 16 electrons, so that the HOMO is orbital 8. The 
orbitals are listed with the molecular orbital symmetry designations as: 
 
       Occupied  (AG) (B1U) (AG) (B1U) (B2U) (AG) (B3G) (B3U) 
       Virtual   (B2G) (AG) (B2U) (B1U) (B3G) (B1U) (AG) (B2U) 
                 (AG) (B3U) (B1U) (B2G) (B2U) (B3G) (AG) (B1U) 
                 (B3G) (B1U) (B1G) (B3U) (B2U) (AG) (AU) (B1U) 
                 (AG) (B3G) (B2G) (AG) (B1U) (B2U) (B1U) (B3U) 
                 (B3G) (B2G) (B2U) (AG) (B3G) (B1U) (AG) (B1U) 
 

Comparison of the assigned molecular orbital symmetries to Figure 28.8.2 shows the 
designations of the B1 and B3 molecular orbital labels to be switched. Unfortunately there is no 
definitive choice of symmetry labels for B1, B2, and B3; different authors use different labels. We 
just need to remember the switch when comparing to our original molecular orbital diagram. 
   The spectroscopic transitions are listed below. 
 

Excitation energies and oscillator strengths: 
  
 Excited State   1:   Singlet-B1U    8.4892 eV  146.05 nm  f=0.6131 
       8 ->  9         0.68385 
 This state for optimization and/or second-order correction. 
 Copying the excited state density for this state as the 1-particle RhoCI density. 
  
 Excited State   2:   Singlet-B3U    8.7144 eV  142.28 nm  f=0.0444 
       8 -> 10         0.70271 
  
 Excited State   3:   Singlet-B1G    9.1537 eV  135.45 nm  f=0.0000 
       7 ->  9         0.18364 
       8 -> 11         0.66646 
       8 -> 16         0.11486 
 
 Excited State   4:   Singlet-B1G    9.6728 eV  128.18 nm  f=0.0000 
       7 ->  9         0.67617 
       8 -> 11        -0.18519 

 

The LUMOHOMO transition corresponds to orbitals 8 -> 9 in the listings, below. The 
LUMO+2HOMO transition corresponds to 8 -> 11, which is the largest contributor to 
transition 3. In Example 28.8.1, we predicted the LUMOHOMO transition to be fully allowed 
with B2gB1u = B3u symmetry and the LUMOHOMO-1 transition to be forbidden with 
B2gB1g = B3g symmetry. Given the switch in labels, the CIS results agree as listed below for 
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transitions 1 and 4. The calculation interposes transition 2, the LUMO+1HOMO transition as 
weakly allowed, and transition 3, the LUMO+2HOMO transition as forbidden. 
 
 

34.  Determine the symmetry species of the following molecular orbitals of formaldehyde. The 
geometry is shown at bottom. The x-direction is the -bonding direction for these plots. The 
HOMO has a small contribution from the 2py orbital on the C-atom. As a result the HOMO is 
primarily a non-bonding 2py atomic orbital on the O-atom. [Hint: Use the symmetry operations 
given in Figure 26.6.4. Formal group theory is not required for this problem.] 
 

 
 
 

Answer:  The plan is to orient the C2 axis along z and the v-plane along the z- and x-axes. The 
atoms then lie on the z-y plane, which is called the v'-plane. 

   The symmetry operations are given in Figure 26.6.4 and reproduced below: 
 

symmetry rotate 180   (C2) reflect across v 

symmetric a 1 
antisymmetric b 2 

 

 

 

 
 
 

   The HOMO–1 is antisymmetric with respect to 180 rotation and symmetric with respect to 
reflection across v. The HOMO–1 has b1 symmetry. 
   The HOMO is antisymmetric with respect to 180 rotation and antisymmetric with respect to 
reflection across v. The HOMO–1 has b2 symmetry. 
   The LUMO is antisymmetric with respect to 180 rotation and symmetric with respect to 
reflection across v. The LUMO has b1 symmetry. 
   The LUMO+1 is symmetric with respect to 180 rotation and symmetric with respect to 
reflection across v. The LUMO has a1 symmetry. 
 

   These symmetry designations are applied in the next problem. 
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35.  Use electronic selection rules to determine if the LUMOHOMO, LUMOHOMO-1, and 
LUMO+1HOMO electronic transitions of formaldehyde are allowed or forbidden. The 
symmetries of the molecular orbitals are: 
 

Orbital 7 8 9 10 
MO HOMO-1 HOMO LUMO LUMO+1 
Symmetry b1 b2 b1 a1 
Type  n * * 

 
 
Answer:  The plan is to follow Example 28.8.1 under the C2v point group. 
   The ground electronic state for formaldehyde is A1, since all occupied orbitals are doubly 
filled. As a result we need only consider the symmetry of the excited state and the electric dipole 
operator. In C2v the x, y, and z components of the electric dipole transform as B2, B1 and A1. The 
required direct products of the upper and lower singly occupied molecular orbitals in the excited 
state are: 
 
LUMOHOMO with orbital types *n gives excited electronic state configuration 
…(b1)2(b2)1(b1)1 with symmetry B1B2 : 
 

MO Symmetry E C2 v v' Result 
B1 1 -1  1 -1  
B2 1 -1 -1  1  
B1B2 1  1 -1 -1 = A2  forbidden 

 

The A2 symmetry of the excited state does not match a component of the electric dipole moment, 
giving a forbidden transition. 
 

LUMOHOMO-1 with orbital types * gives excited electronic state configuration 
…(b1)1(b2)2(b1)1 symmetry B1B1 : 
 

MO Symmetry E C2 v v' Result 
B1 1 -1  1 -1  
B2 1 -1  1 -1  
B1B2 1  1  1  1 = A1  allowed 

 

The A1 symmetry of the excited state matches the z-component of the electric dipole moment, 
giving an allowed transition. We could have saved ourselves some work since the product of any 
non-degenerate irreducible representation with itself is always the totally symmetric group. 
 

LUMO+1HOMO with orbital types * gives excited electronic state configuration 
…(b1)2(b2)2(b1)0(a1)1 symmetry A1B2 = B2. The A1 irreducible representation is the totally 
symmetric representation. Multiplication by the totally symmetric representation is the unity 
operation for direct products, since all the characters are +1. As a result A1B2 = B2. The B2 
symmetry of the excited state matches the y-component of the electric dipole moment, giving an 
allowed transition. The next problem gives the result from an electronic structure calculation 
using CIS/6-311G*, which agrees with the results in this problem. 
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36.  Use a configuration interaction-singles calculation to determine the predicted intensity of the 
LUMOHOMO, LUMOHOMO-1, and LUMO+1HOMO electronic transitions of 
formaldehyde. First, do a geometry optimization for formaldehyde at HF/6-311G** (equivalent 
to HF/6-311G(d,p)). Then do a CIS/6-311G** single point calculation to compare to the 
intensity predictions in Problem 35. See Problem 33 for a discussion of the use of CIS 
calculations for predicting electronic spectra and for hints on doing the calculations. 
 
 
Answer:  All spin allowed transitions are for the singlet states, since the ground state of 
formaldehyde is a singlet, 1A1. We give the Spartan version first and then the Gaussian version. 
The Spartan/Q-Chem results are: 
 

UV/Vis Allowed Transitions: 
nm strength MO Component  
103.83 0.0000 HOMO-3 -> LUMO 95%  
104.28 0.3556 HOMO -> LUMO+2 90%  
117.65 0.1685 HOMO-1 -> LUMO 83%  
120.16 0.0006 HOMO-2 -> LUMO 96%  
125.60 0.1762 HOMO -> LUMO+1 97%  
261.24 0.0000 HOMO -> LUMO 96% 

 

The Gaussian results at CIS/6-311G(d), as displayed by the WebMo “front-end” visualization 
environment, are shown below with transition wavelengths in nm. 
 

    State    Symmetry    Energy (nm) 
1 A2 261.26  
2 B2 125.58  
3 B1 120.17  
4 A1 117.65  
5 A1 104.28 
6 A2 103.82 
7 B2 99.65  
8 B1 95.52  
9 A2 86.78  
10 B1 80.14 

 

We need to view the “raw” Gaussian numerical data file to determine the molecular orbitals 
involved in the transition. Formaldehyde has 16 electrons, so that the HOMO is orbital 8. The 
orbitals are listed with the molecular orbital symmetry designations as: 
 

   Orbital symmetries: 
       Occupied  (A1) (A1) (A1) (A1) (B2) (A1) (B1) (B2) 
       Virtual   (B1) (A1) (B2) (A1) (A1) (B2) (B1) (B2) (A1) (A1) 
                 (A1) (B1) (B2) (A2) (B1) (A1) (A1) (B2) (B2) (A1) 
                 (B1) (A2) (A1) (B2) (B2) (A1) (A1) (B1) (A2) (A1) 
                 (B1) (A1) (B2) (B2) (A1) (B1) (B2) (A1) (A1) (A1) 
 

The orbital symmetry labels, that is B1 versus B2, match those given in Problem 35. The B1 and 
B2 designations are arbitrary and don’t necessarily match. 
      The spectroscopic transitions are listed below. 
 

Excitation energies and oscillator strengths: 
  
 Excited State   1:   Singlet-A2     4.7456 eV  261.26 nm  f=0.0000 
       8 ->  9         0.69294 
 This state for optimization and/or second-order correction. 
 Copying the excited state density for this state as the 1-particle RhoCI density. 
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 Excited State   2:   Singlet-B2     9.8726 eV  125.58 nm  f=0.1760 
       8 -> 10         0.69548 
  
 
 Excited State   3:   Singlet-B1    10.3177 eV  120.17 nm  f=0.0006 
       6 ->  9         0.69272 
  
 Excited State   4:   Singlet-A1    10.5388 eV  117.65 nm  f=0.1688 
       7 ->  9         0.64570 
       8 -> 11         0.19390 
       8 -> 14        -0.13077 
  
 Excited State   5:   Singlet-A1    11.8893 eV  104.28 nm  f=0.3552 
       7 ->  9        -0.17516 
       8 -> 11         0.67138 

  

The LUMOHOMO transition is for orbitals 8 -> 9, which has zero oscillator strength 
corresponding to a forbidden transition. The LUMOHOMO–1 transition is for orbitals 
7 -> 9, which is the largest contributor to transition 4. Transition 4 is allowed. The 
LUMO+1HOMO transition corresponds to 8 -> 10, which is transition 2. Transition 2 is 
allowed. The CIS results agree as listed below for transitions 1 and 4. The calculation interposes 
transition 3, 6 -> 9 LUMOHOMO–2 transition, as very weakly allowed. 
   Comparison with experimental spectra don’t work out well for formaldehyde. The 
LUMO+1HOMO, LUMOHOMO–1, and LUMOHOMO–2 transitions are not observed. 
A series of O-atom centered Rydberg transitions is prominent in the spectrum. One reason for the 
disagreement is that the 1A2 and 3A2 excited states are not planar, which these calculations do not 
take into account. The point group of these excited states is Cs.10 Careful geometry optimized 
calculations on the excited states at higher levels than CIS are required to completely understand 
the spectra of many molecules, formaldehyde included. However, CIS calculations are a 
reasonable starting point, at least as a point of comparison. 
 
 
37. K. P. Huber and G. Herzberg have produced a comprehensive reference on the spectroscopic 
data of diatomic molecules.3 This reference has been transcribed by the National Institute of 
Standards and Technology, NIST, as an on-line database.2 The entry for Na2 is listed as an 
example below. The spectroscopic constants are presented in wave numbers and the equilibrium 
bond length in Å. The book tables start with a listing of the reduced mass, , in g mol-1. Next the 
dissociation energy at absolute zero, Do

o, which we have been referencing as just Do, and the 
ionization energy to form the ground state of the molecular ion, I.P. The on-line version excludes 
, Do

o, and I.P. By convention, the ground state is labeled as X, which for Na2 is explicitly X 1g
+. 

Excited electronic states are labeled as states A, B, C, D … in order of increasing energy if the 
states have the same spin multiplicity, or a, b, c, d … if the excited states have a different 
multiplicity. Many literature references and many notes are included in the tables, which we have 
omitted in this example for brevity. For this homework problem (a) find the Na2 reference in the 
book or on-line, http://webbook.nist.gov/chemistry, and (b) write a spreadsheet to plot the potential 
energy surfaces as a function of R for the X ground state, and A and B excited states. Use the 
Morse function for the potential energy surfaces. The A and B excited states dissociate to a 
ground and excited state Na atom: Na2  Na (2S) + Na (2P). The atomic excitation energy, 
Eatomic is 16961 cm-1 to the 2P½ state. From Figure 28.2.5, note that T

~
e + D

~ e
e
x = D

~
e + Eatomic. 
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State (1) Te e ee eye Be  (2) e De (3) re Trans. νoo

23Na2  = 11.4948852 Do
o = 0.720 eVa I.P. = 4.90 eVb     

 Diffuse bands of Na2 Van der Waals molecules close to the lines of principal series of Na.   

 Several fragments of other UV emission and absorption band systems.c    
E (1u) 35557 106.2 H 0.65 

     
E←X R 35530.6 H 

D 1u 33486.8 111.3 H 0.48 
 

d 
   

D↔X R 33462.9 H 
1g

+ (33000) Fragment observed in two-photon excited Na2 fluorescence 
   

C 1u 29382 119.33 H 0.53 
 

d 
   

C↔X R 29362 H 

B 1u 20320.02 124.090 Z 0.6999 
 

0.125277 7.237E-4 3.248E-7 3.4228 B↔X R 20302.49 Z 

A 1u
+ 14680.58 117.323 Z 0.3576 

 
0.110784 5.488E-4 3.882E-7 3.6384 A↔X R 14659.80 Z 

a 3 <14680 (145) 
  

(0.140) 
     

X 1g
+ 0 159.1245 Z 0.72547 

 
0.154707 8.736E-4 5.811E-7 3.07887 

  

a. From Do
e = 5890  70 cm-1 based on RKR potential curve for the ground state. The thermochemical value obtained by a 

molecular beam technique is 0.732 eV. 
b. From photoionization. A similar value is obtained by extrapolation of the Rydberg series B, C, D, E. 
c. Molecular absorption cross sections 27000 – 625000 cm-1. 
d. Barrow, Travis, et al., 1960 report the following rotational constants for D: Be = 0.1185, e = 0.001, C: Be = 0.12815, e = 

0.00084. Considerably different constants, however, are quoted by Richards in Rosen, 1970.  D: Be = 0.1152, e = 0.00110, 
C: Be = 0.1185, e = 0.00096. 

Footnotes:  
1. Units: Te, e ee eye Be, e, De, and νoo in cm-1, with e = ~e and re = Re in Å as given in this text. 
2. On-line NIST tables list the vibration-rotation interaction constant, e, for the expansion: B = Be – e ( + ½) + e ( + ½)2

 

3. On-line NIST tables list e for the centrifugal distortion expansion: D = De + e ( + ½). 

 
Table Legend          
H   Data obtained from band head measurements (see Problem 3) 
Z   Data obtained from, or referring to, band origins (see Problem 3) 
R   Shaded towards longer wavelengths (appearance of the rotational fine-structure, B'e < B"e) 
V   Shaded towards shorter wavelengths (appearance of the rotational fine-structure, B'e > B"e) 
( )   Uncertain data 
[ ]   Data refer to  = 0 or lowest observed level. Te values in square brackets give the energy of this level 

relative to the minimum of the ground-state potential energy curve. Vibrational frequencies in square 
brackets correspond to G(½) or the lowest observed interval. 

 
 
Answer:  The spectroscopic constants for the electronic term values, T

~
e, fundamental vibration 

frequencies, e = ~e, anharmonicities, ee = e~e, and equilibrium bond lengths, re = Re, are 
transcribed into cells D8:F11. The dissociation energy, D

~
e, and Morse a-parameter are calculated 

from the spectroscopic constants, Eqs. 27.5.6, 27.5.7, 27.5.12, and 27.5.17, allowing the potential 
energy curves to be calculated as columns in the spreadsheet. 
 

Cell D13 for the dissociation energy of the ground state is: “=D12*C4+D9/2-D10/4” 
Cell E13 for the dissociation energy of the first excited state is: “=$D$13+$C$3-E8” 
Cell D14 for the Morse a-parameter for the ground state is: 
 

 =2*PI()*D9*2.998E10*SQRT($C$2/1000/2/(D13*11.962))*1E-10 
 

Cell D17 for the first cell of the Morse potential energy curve for the ground state is: 
 

 =D$8+D$13*(1-EXP(-D$14*($C17-D$11)))^2 
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A1 B C D E F G 

2 reduced mass 11.4949 g/mol    
3 DEatomic = 16961 cm-1    
4 1 eV = 8065.5 cm-1    
5 1 cm-1 = 11.962 J/mol    
6       
7 State  X A B  
8 electronic  Te 0 14680.6 20320.0 cm-1 
9 vib. freq.  e 159.125 117.323 124.09 cm-1 

10 anharmonic. ee 0.7254 0.3576 0.6999 cm-1 
11 bond length Re 3.07887 3.6384 3.4228 Å 
12 dissoc. energy Do 0.720   eV 
13 dissoc. energy De 5886.54 8166.96 2527.52 cm-1 
14 Morse a a 0.85636 0.53604 1.01915  
15 R step  0.25 Å    

16  R (Å) 
V(X)  
cm-1 

V(A) 
cm-1 

V(B) 
cm-1  

17  1.9 17910.6    
18  2.15 8695.89 26851.3   
19  2.4 3659.46 21931.2 28839.7  
20  2.65 1159.30 18666.8 23948.2  
21  2.9 161.29 16606.4 21571.7  
22  3.15 20.56 15412.0 20579.7  
23  3.4 340.28 14832.3 20321.4  
24  3.65 880.78 14680.9 20428.0  
25  3.9 1501.16 14820.4 20694.9  
26  4.15 2121.91 15150.4 21012.5  
27  4.4 2701.20 15598.1 21325.1  
28  4.65 3219.78 16111.4 21607.4  
29  4.9 3671.61 16653.4 21850.2  
30  5.15 4058.00 17198.6 22052.8  
31  5.4 4384.03 17729.9 22218.6  
32  5.65 4656.40 18236.3 22352.2  
33  5.9 4882.28 18710.9 22458.9  
34  6.15 5068.52 19150.5 22543.5  
35  6.4 5221.41 19553.5 22610.2  
36  6.65 5346.50 19920.2 22662.6  
37  6.9 5448.56 20251.9 22703.5  
38  7.15 5531.65 20550.3 22735.6  
39  7.4 5599.19 20817.7 22760.5  
40  7.65 5654.01 21056.4 22780.0  
41  7.9 5698.46 21268.9 22795.1  

 

 

 

 

Potential energy surfaces are the necessary starting point for molecular dynamics calculations of 
chemical kinetics rate constants.  
 
 
38.  The Huber-Herzberg tables of diatomic spectroscopic constants are introduced in the 
previous problem. Refer to the previous problem for interpretation and footnotes. (a) Find the 
12C2 reference in the book or on-line, http://webbook.nist.gov/chemistry, and (b) write a spreadsheet 
to plot the potential energy surfaces as a function of R for the X 1g

+ ground state, and a 3u, 
b 3g

-, and A 1u excited states. Use the Morse function for the potential energy surfaces. The 
ground state dissociation energy is 6.21 eV. The a and b excited states dissociate to ground state 
atoms: C2  C (3P) + C (3P). The A excited state dissociates to a ground state and an excited 
state atom: C2  C (3P) + C (1D). The atomic excitation energy, Eatomic, is 10192 cm-1 to the 1D 
state. From Figure 28.2.5, note that T

~
e + D

~ e
e
x = D

~
e + Eatomic. 
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Answer:  The data table for C2 is reproduced below. The low lying a3u excited state is 
remarkable. Molecules don’t typically have such low lying excited states. C2 is generated at high 
temperature is carbon arc sources and lighting strikes. At 2000 K, the occupancy of all excited 
3 states is roughly 82%. 
 

State Te ωe ω e ωey Be αe De re Trans. ν00

12C2     = 6.000000            Do
o = 6.21 eV              I.P. = 12.15 eV     

F 1u [75456.9] [1557.5] Z   1.645 0.019 6.E-6 1.307 F←X R 74532.9 Z 
g 3g [73183.6] [1458.06]Z   1.5238 0.17 6.60E-6 1.3579 g←a R 71649.6 Z 
f 3g 71045.8 1360.5 Z 14.8  1.448 0.04 1.0E-5 1.393 f←a R 70188.4 Z 
E 1g

+ 55034.7 1671.50 Z 40.02 0.248 1.7897 0.0387 8.3E-6 1.2529 E→A V 46668.3 Z 
d 1u

+ 43239.44 1829.57 Z 13.94  1.8332 0.0196 7.32E-6 1.238 D↔X 43226.74 Z 
e 3g 40796.65 1106.56 Z 39.26 2.805 1.1922 0.0242 6.3E-6 1.5351 e→a R 39806.46 Z 
C 1g 34261.3 1809.1 Z 15.81  1.7834 0.018 6.8E-6 1.2552 C→A VR 25969.19 Z 
d 3g 20022.5 1788.22 Z 16.44 -0.5067 1.7527 0.01608 6.74E-6 1.2661 d↔a VR 19378.44 Z 
c 3u

+ 13312.1 1961.6 13.7  1.87   1.23   
A 1u 8391 1608.35 Z 12.078 -0.01 1.6134 0.01686 6.44E-6 1.31843 A↔X R 8268.16 Z 
b 3g

- 6434.27 1470.45 Z 11.19 0.028 1.49852 0.01634 6.22E-6 1.36928 b→a R 5632.7 Z 
a 3u 716.24 1641.35 Z 11.67  1.63246 0.01661 6.44E-6 1.31190   
X 1g

+ 0 1854.71 Z 13.340 -0.172 1.81984 0.01765 6.92E-6 1.24253   
 

   The spreadsheet from the previous problem was used after adding an additional column. For 
the triplet a- and b-states, Eatomic = 0 since the states dissociate to ground state C-atoms. The 
cells through the first half of the plot are reproduced below. 
 

A1 B C D E F G H 
2 reduced mass 11.49489 g/mol     
3 DEatomic = 10192 cm-1     
4 1 eV = 8065.5 cm-1     
5 1 cm-1 = 11.962 J/mol     
6        
7 State  X a b A  
8 electronic term Te 0 716.24 6434.27 8391 cm-1 
9 vibration freq. e 1854.71 1641.35 1470.45 1608.35 cm-1 

10 anharmonicity ee 13.34 11.67 11.19 12.078 cm-1 
11 bond length Re 1.24253 1.3119 1.36928 1.31843 Å 
12 dissoc. energy Do 6.210 6.21 6.21  eV 
13 dissoc. energy De 51010.775 50294.54 44576.51 52811.78 cm-1 
14 Morse a a 3.3907203 3.021953 2.875704 2.889762  
15 R step  0.05 Å     
16  R (Å) V(X) cm-1 V(a) cm-1 V(b) cm-1 V(A) cm-1  
17  1 83034.34     
18  1.05 43263.93 73938.33    
19  1.1 19696.11 41197.06 67374.14 49277.78  
20  1.15 6928.31 20747.87 40853.03 29151.20  
21  1.2 1227.49 8858.60 23964.17 17186.16  
22  1.25 31.91 2844.29 13897.95 10915.89  
23  1.3 1599.09 783.67 8600.83 8549.03  
24  1.35 4757.33 1311.11 6579.15 8792.50  
25  1.4 8730.70 3464.06 6752.95 10719.92  
26  1.45 13016.04 6571.32 8347.18 13673.90  
27  1.5 17296.81 10171.44 10810.80 17193.63  
28  1.55 21382.86 13953.10 13756.75 20961.25  
29  1.6 25168.59 17711.84 16917.42 24762.37  
30  1.65 28603.94 21318.53 20111.80 28456.87  
31  1.7 31674.56 24696.67 23221.15 31957.50  
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Figure P28.38.1: Potential energy surfaces for the four lowest electronic states of C2. The 
singlet states are shown as solid lines and the triplet states are shown as dotted. 

 
 
C2 is the source of blue light from flames and the glow from some comets.1 Synthesis with 
reactive carbon species is an established area in organic chemistry. The reactive carbon species 
are typically generated in high current carbon arc discharges.11 C2 undoubtedly plays a role in 
some of these systems. The relevance of this work extends to the formation of organic 
compounds in interstellar space and in pre-biotic environments in lightning strikes. 
 
 
39.  In Chapter 27, we did not justify the vibrational selection rule that in absorption, the 
transition dipole moment vanishes unless the normal mode transforms according to the same 
representation as the x, y, or z-component of the electric dipole moment. The transition electric 
dipole moment is proportional to the integral given by Eqs. 27.9.13. For a diatomic molecule 
aligned along the x-axis, the harmonic oscillator wave functions are functions of the 
displacement along the x-axis, x = R – Ro. The electric dipole operator along the internuclear 
axis is also a function of the x-axis position of the nuclei and the partial charge on the atoms. The 
transition dipole moment is then proportional to: 
 

 tr,x  
 

–
 ' x "  dx 

 

The integrand contains three functions, the final harmonic oscillator wave function with quantum 
number ', the x-operator, and the initial harmonic oscillator wave function with quantum 
number ". The x-operator is purely odd. The integral is over all space, so that the integral 
vanishes for an odd integrand. As a consequence the product of the three functions must be 
overall even for the transition moment integral to be non-zero. 
   For polyatomics, we must consider the x, y, and z-components of the transition dipole. The 
symmetry of each vibrational wave function is represented by an irreducible representation of the 
point group of the molecule. Consider the case for the fundamental transition 10. The ground 
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state vibrational wave function,  = 0, always transforms according to the totally symmetric 
irreducible representation. As a result, to give a non-vanishing integral the product of the excited 
state vibrational wave function and the x-operator must contain the totally symmetric irreducible 
representation. The normal mode must transform according to the same representation as the x, 
y, or z-component of the electric dipole moment. 
   How can we illustrate that the ground vibrational state is totally symmetric under the 
operations of the point group? Consider a simple polyatomic such as CO2 as compared to a 
diatomic molecule. The diatomic harmonic oscillator wave functions for  = 0 and 1 are shown 
at left and the corresponding wave functions are illustrated for CO2 at right, Figure P28.39.1. The 
ground state,  = 0, wave function of any normal mode necessarily retains the same sign upon 
any symmetry operation of the point group, since the wave function is always positive. Now, 
consider the action of the reflection operator on the excited state wave function. For the  = 1 
state, the inversion operation is symmetric for the symmetric stretch and anti-symmetric for the 
asymmetric stretch. As a result, the symmetric stretch is IR-inactive and the asymmetric stretch 
is IR-active. 
 

 
(a). Diatomic vibrational wave functions (b). Polyatomic normal modes 
 

Figure 28.39.1: Symmetry of harmonic oscillator wave functions for (a) diatomics and (b) the 
symmetric and asymmetric stretch of CO2. The CO2 symmetric stretch is symmetric with 
respect to a plane perpendicular to the internuclear axis, passing through the center of mass (a 
v-plane). The asymmetric stretch is anti-symmetric with respect to reflection. 

 
 
   The symmetry of bending vibrations is possibly confusing, based on displacement arrows. 
Please review Problem 27.38. For this problem, using depictions of the quantum mechanical 
wave function of the type shown in Figure 28.39.1b, determine the symmetry of the wag-bending 
vibration with respect to C2-rotation and reflection across v, Figure 28.39.2: 
 

 
     (a).    (b). 
 

Figure 28.39.2: (a). Top down view of the wag-mode of a CH2 group. (b). End-on view, 
down the C=C internuclear axis, showing the C2-rotation and v-reflection operations. 
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Answer:  The plan is to note that the wag-bending vibration will have in-phase “blobs” of 
probability above and below the plane of the equilibrium atom positions. 
   A schematic depiction of the harmonic oscillator wave function that roughly applies to a 
bending vibration is shown below. The phase of the lobes is that the positive lobe is in the 
positive direction for motion of both H-atoms. C2-rotation inverts the sign of the wave function 
while reflection maintains the phase of the wave function. The wag transforms as the B1 
irreducible representation of the C2v-point group, for example. The rock, which is the other 
bending vibration depicted in Problem 27.38, transforms as B2 under C2v. 
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