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Chapter 27 Problems: Rotational and Vibrational Spectroscopy 
 

1.  Calculate the ratio, N1/No, of molecules in the  = 1 and  = 0 vibrational states for carbon 
monoxide, CO, at 25.0 C. Assume a harmonic oscillator with ~e = 2169.8 cm-1 [Hint: at 25.0 C, 
kT = 207.2 cm-1] 
 
 
Answer: The plan is to use the Boltzmann population ratio, Eq. 8.10.8, for a harmonic oscillator 

with energy G
~
 = 

~
e( + ½), Eq. 27.5.2. 

   The energy difference in wave numbers is,  = G
~

1 – G
~

o = ~e(1 + ½) – ~e(0 + ½) = ~e. The 
Boltzmann population ratio, Eq. 8.10.8, gives: 
 

 
N1

No
 = e–/kT = e–2169.8 cm-1

/207.2 cm-1 = 2.83x10-5 

 

A negligible number of CO molecules are in upper vibrational states, giving a large population 
difference. As a result, IR absorbance is a sensitive method compared to NMR and microwave 
spectroscopy. 
 
2.  Calculate the ratio, N1/No, of molecules in the J = 1 and J = 0 rotational levels for carbon 
monoxide, CO, at 25.0 C. Assume a rigid rotor with B

~
e = 1.932 cm-1 [Hint: at 25.0 C, 

kT = 207.2 cm-1] 
 
 
Answer: The plan is to use the Boltzmann distribution, taking into account the 2J + 1 degeneracy 
of the rotational states. 
   The energy in wave numbers of a rigid rotor is F

~
J = B

~
e[J(J + 1)]. Since the J = 0 state of a rigid 

rotor is at zero in energy,  = F
~

1 – F
~

o = B
~

e[J(J + 1)], in wave numbers. The Boltzmann 
population ratio, Eq. 8.10.8, gives for any single rotational state with J = 1: 
 

 
N1

No
 = e–/kT = e–2(1.932 cm-1)/207.2 cm-1 = 0.9815  for mJ = -1, 0, or +1 

 

The degeneracy of the J = 1 level is gJ = 2J + 1 = 3, giving the final ratio as: 
 

 
N1

No
 = gJ e

–/kT = 3 e–2(1.932 cm-1)/207.2 cm-1 = 2.945 
 

In other words, there are more CO molecules in the J = 1 level than the J = 0 level, because of 
the degeneracy. However, the probability of a radiative transition is proportional to the state to 
state population difference. 
 
 
3.  How does the Doppler width of a transition depend on temperature and the mass of the 
molecule? 
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Answer:  As the temperature increases the root-mean-squared speed of gas molecules increases, 
thus increasing Doppler broadening. As the mass of the molecule increases the root mean 
squared speed decreases, thus decreasing the Doppler broadening. 
 
 
4.  Calculate the Doppler line width of the 83305. cm-1 electronic transition of HF at 500.0 K. 
This temperature is on the order of the temperature in the ionosphere. 
 
 
Answer:  The plan is to refer to Example 27.2.1. 
   The mass of HF is m = (20.00 g mol-1/NA)(1 kg/1000 g) = 3.321x10-26 kg: 
 

 ~D = 2 





~o

c  
2kT ln(2)

m  = 2 



83305. cm-1

2.998x108 m s-1  
2(1.381x10-23 J K-1)(500.0 K) ln(2)

3.321x10-26 kg  

         = 0.298 cm-1 = 8.94x109 s-1 = 8.94 GHz 
 

See example 27.2.1 for a note about the proper units of the speed of light. The broadening is 
much greater than some interesting interactions involving the nuclei and is also significant 
relative to rotational fine-structure spacing. Collisional broadening in the ionosphere is 
negligible, since the pressure is so low. 
 
 
5.  (a). Draw the Fourier transformed spectrum of the function f(t) in Figure 27.3.2 as a 
histogram, in the same style as the Fourier transforms shown in Figure 27.3.1b for the three 
Fourier coefficients. (b). The period of the function, L, is 1.00x10-3 s. Calculate the lowest 
frequency Fourier component. 
 
 
Answer:  (a). From Figure 27.3.2, the Fourier coefficients are large for 1 kHz and 2 KHz and 
zero for 3 kHz: 
 

 
 

(b). The fundamental Fourier frequency is o = 1/L = 1/1.00x10-3 s = 1000 s-1 = 1.00 kHz. The 
Fourier components then occur at frequencies no = 1 KHz, 2 kHz, 3 KHz, 4 kHz, …. 
 
 
6.  Many experiments give a time response that decays exponentially in time: f(t) = e–t/, where  
is the time constant for the decay. (a). Show that the Fourier transform, using Eq. 27.3.8, is: 

 g() = 
2

1 + i2 

(b). The square of the magnitude of a complex function is given using Eq. 23.9.7. Show that: 
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f(t) 
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FT 
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 g()*g() = 
42

1 + 4222 
 

(c). The result of experiments is often given as a magnitude spectrum, A2() = g()*g(). Do a 
quick plot of the magnitude spectrum assuming  = 1 s. 
 
 
Answer:  (a). The Fourier transform using Eq. 27.3.8 is: 
 

 g() = 2 0  e–t/ e–i2t dt = 2 0  e–(1/ + i2)t dt = – 2 
e–(1/ + i2)t

1/ + i2 |


0
 

          = – 2 






e–

1/ + i2 – 
e0

1/ + i2  = 
2

1/ + i2 = 
2

1 + i2 

 
(b). The squared magnitude is given by the complex conjugate multiplied by the original 
function: 

 A2() = g()*g() = 






2

1 – i2  






2

1 + i2 = 
42

(1 – i2)(1 + i2)
 = 

42

1 + 4222 
 

(c). The spreadsheet and plot are given below. The value of A2() is given in cell D5 as: 
 “=4*$D$2/(4*PI()^2*C5^2*$D$2^2 +1)” 
 

 

A1 B C D E 
2  tau =  1 s 
3     
4   (s-1) A2()  
5  0 4.0000  
6  0.025 3.9037  
7  0.05 3.6407  
8  0.075 3.2731  
9  0.15 2.1183  

10  0.225 1.3340  
11  0.3 0.8785  
12  0.375 0.6105  
13  0.45 0.4447  
14  0.525 0.3367  
15  0.6 0.2629  
16  0.675 0.2107  
17  0.75 0.1724  
18  0.825 0.1435  
19  0.9 0.1213  
20  0.975 0.1038  
21  1.05 0.0898  

 

 

 
 
 

 
 
7.  Which of the following molecules give pure-rotational absorption spectra? N2, O2, NO, CH, 
CO, CO2, N2O, SO2, C2H4, CH4, and H2C=O (formaldehyde). 
 
 

Answer:  The gross selection rule for rotational absorption is that the molecule must possess a 
permanent dipole moment. As a result only NO, CH, CO, N2O, SO2, and H2C=O are microwave 
active. 
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8.  Which of the following molecules give vibrational absorption spectra? N2, O2, NO, CH, CO, 
CO2, N2O, and SO2. 
 
 
Answer: The gross selection rule for vibrational absorption is that the molecule must give a 
changing dipole moment during the vibration. For the diatomics, only NO, CH, and CO are 
infrared active. The symmetric stretch of linear triatomics is IR forbidden, but the asymmetric 
stretch and bending modes are IR active, see Table 27.7.1. As a result, the asymmetric stretch 
and the two degenerate bending modes of CO2 are IR active. All normal modes of bent 
triatomics are IR active; so SO2 is IR active. All normal modes for asymmetric linear triatomics 
are IR active, so N2O is IR active; the symmetric stretch, the asymmetric stretch, and bending 
modes all present an oscillating dipole moment. 
 
 
9.  Which of the following molecules give vibrational Raman spectra? N2, O2, NO, CH, CO, 
CO2, N2O, and SO2. 
 
 
Answer:  The plan is to note the molecules that have a center of symmetry, that is have an 
inversion center. Molecules with a center of symmetry are centrosymmetric. The exclusion rule 
is then applied. 
   The short answer is only the asymmetric stretch and the bending vibrations of CO2 are Raman 
forbidden. All the other molecules and the symmetric stretch of CO2 are Raman active. 
   The molecules with a center of symmetry are N2, O2, and CO2. No normal mode of a 
centrosymmetric molecule is both Raman and IR active. Since the homonuclear diatomics and 
the symmetric stretch of CO2 are IR forbidden, the stretches must be Raman active. 
   For the heteronuclear diatomics, the stretch is both Raman and IR active. Remember that the 
polarizability is a function of the volume of the molecule. As a result for the heteronuclear 
diatomics, the polarizability and dipole moment both change during the vibration. Therefore, 
NO, CH, and CO are Raman active. 
   All normal modes for asymmetric linear triatomics and bent triatomics are Raman active, so 
N2O and SO2 are Raman active, see Table 27.7.1. 
 
 
10.  Which of the following normal modes are infrared active and which are Raman active? The 
arrows indicate the movement of the exterior atoms. In the asymmetric stretches, the central 
atoms also move to maintain a fixed center of mass, but that movement is not shown. [Formal 
group theory is not required for this problem.] 
 

 
 
 

HCCH 
 
 

HCCH 
 

     acetylene 

H           H 
          
     C=C 
          
H          H 
    ethylene 

     H 
      
     Si 
     
H   H  H 
 

  silane 

      F 
       
FXeF 
       
      F 
 

   XeF4 

      F 
       | 
FXeF 
       | 
      F 
  
   XeF4 

H           H 
          
     C=C 
          
H          H 
    ethylene 
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Answer:  The plan is to use the volume change during the vibration to judge the change in 
polarizability and the asymmetry of the vibration to judge the change in dipole moment. No 
normal mode of a centrosymmetric molecule is both Raman and IR active. 
   None of the molecules has a permanent dipole moment. We need to look for a changing dipole 
moment during the vibration. Each molecule is centrosymmetric, so if the mode is IR active, then 
it must be Raman forbidden. For the totally symmetric stretches, all the exterior atom movements 
are outward, away from the center of mass. The symmetric stretches are all IR forbidden and 
Raman active, which includes the symmetric modes for acetylene, ethylene, and silane. The 
asymmetric stretches, where some exterior atoms move inward and some move outward, are all 
IR allowed and Raman forbidden, which include the asymmetric stretches for acetylene, 
ethylene, and the second mode for XeF4. The symmetric stretches all change the volume of the 
molecule without a net shift of the electron density, relative to the center of mass. 
    The difficult case is the first mode for XeF4. The motion of the F-atoms is symmetrical with 
respect to the center of mass for the opposite pairs. The mode does not change the dipole 
moment, so the mode must be IR forbidden and correspondingly Raman active. The mode is 
symmetric, but not totally symmetric. The question remains as to whether the mode changes the 
volume of the molecule. Luckily the lack of a dipole moment and the center of symmetry give 
the Raman activity using the Exclusion Rule. In the table below, IR is for IR active and R is for 
Raman active. 
 

 
 
 
11.  The lowest energy transitions in the rotational spectrum of HF are 41.105 and 82.211 cm-1. 
Calculate the equilibrium bond length of HF, Ro. 
 
 
Answer: The plan is to note that the spacing between adjacent lines in the rotational absorption 
spectrum of a diatomic molecule is 2B

~
, following Example 27.4.1. 

   The spacing between rotational transitions for HF is 41.106 cm-1. The rotational constant is B
~

 = 
41.106 cm-1/2 = 20.553 cm-1. The reduced mass for HF is: 
 

 HF = 
(1.007825)(18.998403)
1.007825+18.998403  (g mol-1) 

1
NA

 (1kg/1000 g) = 1.589229x10-27 kg 
 

For units, the B
~

 value can be converted to m-1 and then c = 2.99792x108 m s-1: 

 B
~

 = 20.553 cm-1 (100 cm/1 m) = 2055.3 m-1 
 

with Eq. 27.4.2:  I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(2055.3 m-1)(2.997925x108 m s-1)] 
        = 1.36198x10-47 kg m2 

Alternatively, keeping B
~

 in cm-1 and the speed of light in cm s-1 for the B
~

c product: 
 

HCCH 
  symm  R 
 
 

HCCH 
          
    asymm IR 

H           H 
          
     C=C 
          
H          H 
    symm R 

     H 
      
     Si 
     
H   H  H 
 

  symm R 

      F 
       
FXeF 
       
      F 
 

   symm R 

      F 
       | 
FXeF 
       | 

      F 
  
 asymm IR 

H           H 
          
   C=C 
          
H          H 
   asymm IR 
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with Eq. 27.4.2:    I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(20.553 cm-1)(2.997925x1010 cm s-1)] 
           = 1.36198x10-47 kg m2 
 

with Eq. 27.4.2:    Ro = (I/)½ = 9.2574x10-11 m = 0.9257 Å 
 
 
12.  Two adjacent lines in the rotational absorption spectrum of 14N1H are at 98.036 and 130.714 
cm-1. Calculate the equilibrium bond length of HF, Ro, and the rotational quantum numbers of 
the lower states of the two transitions. 
 
 
Answer:  The plan is to note that the spacing between adjacent lines in the rotational absorption 
spectrum of a diatomic molecule is 2B

~
, with the transitions at F

~
 = F

~
J"+1 – F

~
J" = 2B

~
(J"+ 1). 

   The spacing between rotational transitions for 14N1H is 32.678 cm-1. The rotational constant is 
B
~

 = 32.678 cm-1/2 = 16.339 cm-1. The reduced mass for 14N1H is: 
 

 NH = 
(1.007825)(14.003074)
1.007825+14.003074  (g mol-1) 

1
NA

 (1kg/1000 g) = 1.561174x10-27 kg 
 

For units, the B
~

 value can be converted to m-1 and then c = 2.99792x108 m s-1: 

 B
~

 = 16.339 cm-1 (100 cm/1 m) = 1633.9 m-1 
 

with Eq. 27.4.2:  I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(1633.9 m-1)(2.997925x108 m s-1)] 
        = 1.71325x10-47 kg m2 

Alternatively, keeping B
~

 in cm-1 and the speed of light in cm s-1 for the B
~

c product: 
 

with Eq. 27.4.2:    I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(16.339 cm-1)(2.997925x1010 cm s-1)] 
          = 1.71325x10-47 kg m2 
with Eq. 27.4.2:    Ro = (I/)½ = 1.04757x10-10 m = 1.0476 Å 
 

Given Eq. 27.4.3 and the transitions at 98.036 and 130.714 cm-1, the quantum numbers for the 
lower state, J", are: 
 

   F
~
 = 98.036 cm-1 = 2B

~
(J"+ 1) = 2(16.339 cm-1)(J"+ 1) giving J" = 2  i.e.  32 

 and     130.714 cm-1 = 2B
~

(J"+ 1)     giving J" = 3  i.e.  43 
 
 
13.  Calculate the moment of inertia of water about the z-axis, which is the figure axis. The 
rotational constant about the z-axis is A

~
 = 14.512 cm-1. Assume the bond angle is 104.48.1 

Calculate the O–H bond length. 
 
 
Answer:  The plan is to follow Figure 27.4.2 and Example 27.4.2. 
   The geometry is illustrated below with the water molecule in the x-z plane. 
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Reference to figure, above, shows that x2 = –x3 = ROH sin(/2), where  is the H-O-H bond angle 
and ROH is the O–H bond length. The O-atom does not contribute to the moment of inertia about 
the z-axis, because it lies on the z-axis. Since all the yi coordinates are zero, the moment of 
inertia of water about the z-axis is, as in Equation 27.4.25: 
 

 Izz =  mi(x2
i + y2

i) =  mi x2
i = 2 mH [ROH sin(/2)]2 

 

The mass of the H-atom is 1.67353x10-27 kg. The moment of inertia is given by Eq. 27.4.2: 

 Izz = ħ/(4A
~

c) = 1.05457266x10-34 J s/[4(9.285 cm-1)(2.997925x1010 cm s-1)] 
 Izz = 1.9289x10-47 kg m2 = 2 mH [ROH sin(104.48/2)]2 

        = 2(1.67353x10–27 kg)[ROH (0.79058)]2 

 

Solving for the bond angle gives ROH = 9.6024x10-11 m or 0.96024 Å. 
 
 
14.  Use Eqs. 27.4.11 to calculate the three moments of inertia of H2O. Use units of g mol-1 for 
the masses and Å for the distances. The coordinates of water, aligned with the O-atom at the 
origin and one O–H bond extending along the x-axis, are: 
 

Atom x y z 
O 0 0 0 
H 0.9728 0 0 
H -0.2623 -0.9369 0 

 

The coordinates of the center of mass are: 
 

 xcm = 1/m  mixi  ycm = 1/m  miyi  zcm = 1/m  mizi 
 

where mi is the isotope specific mass of atom-i, with coordinates xi, yi, zi, and total molecular 
mass m =  mi. First, build a spreadsheet to calculate the moment of inertia matrix with the input 
orientation.2 Second, the eigenvalues of this matrix are the three moments of inertia. To calculate 
the eigenvalues use MatLab, Maple, Mathematica, or the “Eigen” matrix diagonalization applet 
that is on the textbook Web site or on the companion CD. [Hint: The example spreadsheet shown 
below uses the same geometry for water as given above, but the orientation is chosen as already 
aligned with the principal axes. For this aligned example, the off-diagonal elements of the 
moment of inertia matrix should be zero, within round-off error. You should use these values to 
test your spreadsheet. Your final eigenvalues, starting from the orientation listed above, should 
give the same results; the final moments of inertia should not depend on the input orientation. 
The spreadsheet was designed to make the addition of atoms easy for larger molecules.] 
 
 
 
 

z Izz 

rz,1 = 0 
x 

m3 

m1 

/2 /2 ROH ROH 

rz,3 = x3 rz,2 = x2 
m2 -ROH sin(/2)   ROH sin(/2) 
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A1 B C D E F G H I 
2         
3  original data:      
4 atom mass x y z mx my mz 
5 O 15.9949 0 -0.0657 0 0 -1.050865 0 
6 H 1.0078 0 0.5222 0.775 0 0.5262732 0.781045 
7 H 1.0078 0 0.5222 -0.7752 0 0.5262732 -0.78125 
8 sums 18.0105    0 0.0016814 -0.0002 
9 com  0 9.33561E-05 -1.11912E-05    

10         
11     m(x-xcm)(y-ycm) m(x-xcm)(z-zcm) m(y-ycm)(z-zcm) m(x-xcm)2 m(y-ycm)2 m(z-zcm)2 
12 O 15.9949 0 0 -1.17772E-05 0 0.0692382 2E-09 
13 H 1.0078 0 0 0.407794672 0 0.2747216 0.605327 
14 H 1.0078 0 0 -0.407888131 0 0.2747216 0.605605 
15 sums  0 0 -0.000105236 0 0.6186814 1.210932 
16  Results:      
17 I =  x y z     
18 x 1.82961         
19 y 0 1.210932206       
20 z 0 0.000105236 0.618681357     

 

The input atomic coordinates are placed in cells D5:F7. The calculated center of mass 
coordinates, “com”, are listed in cells D9:F9, which are then used to form the sums for Eqs. 
27.4.11. The resulting moment of inertia matrix is listed in cells C18:E20. The moment of inertia 
matrix is symmetric, so that only the lower triangular matrix need be listed. In the general case, 
the moment of inertia matrix will not be a diagonal matrix. The final moment of inertia elements 
are then input into the “eigen” applet to determine the eigenvalues. 
 
 
Answer:  The spreadsheet with the new orientation is shown below.  
 

A1 B C D E F G H I 
2         
3  original data:      
4 atom mass x y z mx my mz 
5 O 15.9949 0 0 0 0 0 0 
6 H 1.0078 0.9728 0 0 0.9803878 0 0 
7 H 1.0078 -0.2623 -0.9369 0 -0.2643459 -0.944208 0 
8 sums 18.0105    0.7160419 -0.944208 0 
9 com  0.039756914 -0.052425409 0    

10         
11     m(x-xcm)(y-ycm) m(x-xcm)(z-zcm) m(y-ycm)(z-zcm) m(x-xcm)2 m(y-ycm)2 m(z-zcm)2 
12 O 15.9949 -0.03333773 0 0 0.0252817 0.0439608 0 
13 H 1.0078 0.049296703 0 0 0.8773598 0.0027699 0 
14 H 1.0078 0.269245527 0 0 0.09195 0.7883972 0 
15 sums  0.2852045 0 0 0.9945916 0.8351278 0 
16  Results       
17 I =  x y z     
18 x 0.83513         
19 y -0.2852 0.994591615       
20 z 0 0 1.82971944     

 

   The input to the “eigen” matrix diagonalization applet appears as below: 
 

 0.83513    

 -0.2852       0.994592  

 0                 0                1.829719  
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The output agrees with the moments of inertia given in the pre-aligned example and appears as: 
 

Eigenvector 1: Eigenvalue=1.829719 
0 
0 
1 
------------- 
Eigenvector 2: Eigenvalue=1.21095 
-0.604517 
0.796593 
0 
------------- 
Eigenvector 3: Eigenvalue=0.618698 
0.796593 
0.604517 
0 
------------- 

 

An on-line applet is available that automatically determines the moments of inertia, 
spectroscopic rotational constants, symmetry point group, and the contributions of rotation to the 
entropy and Gibbs energy of a molecule. The “ABC Rotational Constant Calculator” applet is 
available on the textbook Web site or on the companion CD. The pre-aligned orientation of H2O 
is available through the applet as an example, in addition to other examples of larger molecules. 
 
 

15.  Calculate the bond force constant, k, for H35Cl. The fundamental vibration frequency is 
~e = 2990.9 cm-1. 
 
 
Answer:  The plan is to use Eq. 27.5.4 to calculate the bond force constant. Remember to use 
isotope specific masses to calculate the reduced mass. 

   The reduced mass for H35Cl is:  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

  = 



(1.007825)(34.968853)

(1.007825 + 34.968853) (g mol-1)
1

6.022137x1023 (1 kg/1000 g) 

               = 1.6266526x10–27 kg 
 

The bond force constant is given by rearranging Eq. 24.2.1: 
 

     k = 42~2
ec2 = 42(2990.9 cm-1)2(2.997925x1010 cm s-1)2(1.62665x10-27 kg) = 516.30 N m-1 

 
 

16.  Does CH or CO have the greater bond strength? Base your answer on the fundamental 

vibration frequency for 12CH, which is ~e = 2860.75 cm-1, and for 12C16O, which is 2169.76 cm-1, 
Table 27.6.1. 
 
 
Answer: The plan is to calculate the bonds force constants and then compare. Fundamental 
vibration frequencies cannot be compared directly, especially when the reduced masses are so 
different. 

   For 12CH, the reduced mass is:  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 
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  = 



(1.007825)(12.00000)

(1.007825 + 12.00000)  (g mol-1) 
1

6.022137x1023 (1 kg/1000 g) 

     = 1.5438711x10–27 kg 
 

The bond force constant for CH is given by rearranging Eq. 24.2.1: 
 

     k = 42~2
ec2 = 42(2860.75 cm-1)2(2.997925x1010 cm s-1)2(1.5438711-27 kg) = 448.30 N m-1 

 

For 12C16O, the reduced mass is: 
 

  = 



(12.000000)(15.994915)

(12.000000 + 15.994915)  (g mol-1) 
1

6.022137x1023(1 kg/1000 g) 

    = 1.138500x10–27 kg 
 

The bond force constant for CO is: 
 

     k = 42~2
ec2 = 42(2169.76 cm-1)2(2.997925x1010 cm s-1)2(1.138500x10-27 kg) = 1901.8 N m-1 

 

The larger force constant corresponds to the stronger bond. Even though CH has a higher 
vibration frequency, CO has a stronger bond. The reversal in order results because the reduced 
mass of the CH bond is small, which in g mol-1 is: 
 

 for C–H     = 0.9297 g mol-1  versus  for CO     = 6.856 g mol-1 

 

This result is expected since the qualitative bond order in C–H is one and the qualitative bond 
order in CO is three. The molecular orbital filling for CH is given by Figure 26.3.4 with three 
valence electrons. The correlation of bond strength with force constant is displayed in Figure 
26.4.12. 
 
17.  The force constant is defined as the second derivative of the vibrational potential function, 
Eq. 8.11.2. For a non-harmonic potential, such as the Morse potential in Eq. 27.5.8, we must add 
the stipulation that the second derivative is evaluated at the equilibrium internuclear distance: 
 

 



d2V

dR2
R = Re

  k 
 

Derive the relationship that determines the Morse a-parameter, Eq. 27.5.8, using the following 
steps: (a). Show that the second derivative of the Morse potential function, Eq. 27.5.7, is: 
 

 
d2V
dR2 = –2a2Dee–a(R – Re) + 4a2De e–2a(R – Re) 

 

(b). Evaluate the second derivative at the equilibrium internuclear distance, R = Re, and use the 
definition of the force constant to give: 
 

 a = 



k

2 De

½
 

 

(c). Use the relationship between the fundamental vibration frequency and the force constant, 

e = 2e = k/ , to give Eq. 27.5.8. 
 
 

Answer:  The Morse potential is given by Eq. 27.5.7: V(R) = De (1 – e–a(R – Re))2 with first 
derivative using the chain rule twice: 
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dV
dR = De 2(1 – e–a(R – Re)) (– e–a(R – Re))(–a) = –2aDe(– e–a(R – Re) + e–2a(R – Re)) 

The second derivative is:  
d2V
dR2 = –2aDe[– e–a(R – Re)(–a) + e–2a(R – Re)(–2a)] 

Gathering terms:       
d2V
dR2 = –2a2Dee–a(R – Re) + 4a2De e–2a(R – Re) 

Evaluating the second derivative at the equilibrium internuclear separation, R = Re, gives: 
 

 
d2V
dR2 = –2a2De e0 + 4a2De e0 = 2a2De 

Setting this result equal to the force constant gives 2a2De = k and solving for a: 
 

 a = 



k

2 De

½
 

 

(b). Using e = k/ gives the force constant as k = 2
e , which upon substitution into the 

previous result gives Eq. Eq. 27.5.8. 
 
 
18. The bond strength parameters for NF are important in validating bond order-bond strength 
correlations as displayed in Figure 26.4.12. However, the literature bond dissociation energy for 
NF varies widely depending on the experimental method used. The bond energy from 
thermochemical measurements is 29742 kJ mol-1 or 3.080.44 eV.3 Determine ~e, the force 
constant, zero point energy, and bond dissociation energies D

~
e and D

~
o, for 14NF based on the 

fundamental vibration frequency ~o = 1123.4 cm-1 and anharmonicity e~e = 9.0 cm-1. Report the 
bond dissociation energies in cm-1, eV, and kJ mol-1. Compare the spectroscopic bond 
dissociation energy, as Do, with the thermochemical value. What effect does using the 
spectroscopic value have on the bond order-bond strength correlation in Figure 26.4.12? 
 
 
Answer: The plan is to use Eqs. 27.5.4, 27.5.8, 27.5.11, 27.5.18, and 27.5.12 to “correct for 
anharmonicity.” 

   For 14NF, the reduced mass is:  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

  = 



(14.003074)(18.998403)

(1.007825 + 12.00000)  (g mol-1) 
1

6.022137x1023 (1 kg/1000 g) 

     = 1.338617x10–26 kg 

   Based on ~o = 1123.4 cm-1 and e~e = 9.0 cm-1 

with Eq. 27.5.11:   ~e = o+ 2ee = 1123.4 cm-1 + 2(9.0) cm-1 = 1141.4 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(1141.4 cm-1)2(1.62668x10-27 kg) 

         k = 618.7 N m-1 

with Eq. 27.5.8:     ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(1141.4 cm-1) – ¼(9.0 cm-1) = 568.44 cm-1 

with Eq. 27.5.18:   D
~

e = ~2
ee~e = (1141.4 cm-1)2/(4(9.0 cm-1)) 

         D
~

e = 36,187 cm-1 = 4.49 eV = 433 kJ mol-1 
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with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 36,187 cm-1 – 568.44 cm-1 = 35618. cm-1 

         D
~

o = 4.42 eV = 426 kJ mol-1    (spectroscopic) 
 

The spectroscopic and thermochemical dissociation energies differ by 43%. The spectroscopic 
dissociation energy for NF is in better agreement than the thermochemical value with the 
dissociation energy for O2 and falls closer to the extrapolated curve on the plot in Figure 26.4.12. 
 
 
19. Bond order-bond strength correlations as displayed in Figure 26.4.12 play an important role 
in understanding the chemical bond. Figure 26.4.12 is based on second period elements. Do the 
same quantitative correlations hold for third period elements? Consider NCl as an example. 
Determine ~e, the force constant, zero point energy, and bond dissociation energies D

~
e and D

~
o, 

for 14N35Cl based on the fundamental vibration frequency ~o = 817.358 cm-1 and anharmonicity 
e~e = 5.300 cm-1. Report the bond dissociation energies in cm-1, eV, and kJ mol-1. How well do 
the force constant and bond dissociation energy of NCl agree with the bond order-bond strength 
correlation in Figure 26.4.12? 
 
 
Answer: The plan is to use Eqs. 27.5.4, 27.5.8, 27.5.11, 27.5.18, and 27.5.12 to “correct for 
anharmonicity.” 

   For 14N35Cl, the reduced mass is:  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

  = 



(14.003074)(34.968853)

(1.007825 + 12.00000)  (g mol-1) 
1

6.022137x1023 (1 kg/1000 g) 

     = 1.660378x10–26 kg 

   Based on ~o = 817.358 cm-1 and e~e = 5.300 cm-1 

with Eq. 27.5.11:   ~e = o+ 2ee = 817.358 cm-1 + 2(5.300) cm-1 = 827.958 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(827.958 cm-1)2(1.62668x10-27 kg) 

         k = 403.85 N m-1 

with Eq. 27.5.8:    ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(827.958 cm-1) – ¼(5.300 cm-1) = 412.654 cm-1 

with Eq. 27.5.18:   D
~

e = ~2
ee~e = (827.958 cm-1)2/(4(5.300 cm-1)) 

         D
~

e = 32340 cm-1 = 4.009 eV = 386.8 kJ mol-1 

with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 32340 cm-1 – 412.654 cm-1 = 31923. cm-1 

         D
~

o = 3.958 eV = 381.9 kJ mol-1    (spectroscopic) 
 

The often listed literature Do value is the spectroscopic value. The dissociation energy of NCl is 
in good agreement with the extrapolated curve on the plot in Figure 26.4.12, assuming a doubly-
bonded species. However, the NCl force constant, at 404 N m-1, is closer to the force constant for 
singly-bonded F2 at 450 N m-1 and B2 at 350 N m-1. Quantitatively, the correlation is poor based 
on the force constants. However, third period diatomics do show an excellent correlation with 
qualitative MO bond order, but with weaker bonds overall for a given bond order, compared to 
the second period diatomics. 
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20.  Determine ~e, the force constant, anharmonicity, zero point energy, and the bond 
dissociation energies D

~
e and D

~
o, for H2. The fundamental and overtones for H2 are listed below. 

 

 1 2 3 4 5 6 7 8 

~0 (cm-1) 4161.14 8087.11 11782.35 15250.36 18491.92 21505.65 24287.83 26830.97 

 
 
Answer:  The plan is to follow Example 27.5.1 by doing a Birge-Sponer plot, Eq.27.5.20, and 
using the relationship between the anharmonicity and the bond dissociation energy based on the 
Morse potential, Eq. 27.5.18. 
   A Birge-Sponer plot based on Eq. 27.5.20 is implemented in the following spreadsheet. 
 

 

 ~0 (cm-1) ~ (cm-1) 
1 4161.14 3925.97 
2 8087.11 3695.24 
3 11782.35 3468.01 
4 15250.36 3241.56 
5 18491.92 3013.73 
6 21505.65 2782.18 
7 24287.83 2543.14 
8 26830.97  

 
slope -229.603 4156.96 intercept 
± 0.809909 3.622021 ± 

r2 0.999938 4.285633 s(y) 
F 80368.15 5 df 

ssreg 1476094 91.83325 ssresid 
 

 

 
 
 

 

The curve fit gives the anharmonicity as e~e = 229.603/2 = 114.80  0.40 cm-1. The difference 
between the intercept and the experimental fundamental of 4161.14 cm-1 is caused by deviations 
from the Morse potential form and experimental error. The final spectroscopic constants are: 
 

with Eq. 27.5.11:   ~e = o+ 2ee = 4161.14 cm-1 + 2(114.80) cm-1 = 4390.74 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(4390.74 cm-1)2(1.62668x10-27 kg) 

         k = 1113. N m-1 

with Eq. 27.5.8:     ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(4390.74 cm-1) – ¼(114.80 cm-1) = 2166.7 cm-1 

with Eq. 27.5.18:   D
~

e = ~2
ee~e = (4390.74 cm-1)2/(4(114.80 cm-1)) 

         D
~

e = 41,982 cm-1 = 5.205 eV = 502.2 kJ mol-1 

with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 41,982 cm-1 – 2166.7 cm-1 = 39816. cm-1 

         D
~

o = 4.937 eV = 476.3 kJ mol-1 

 

  The literature values are ~e = 4401.2 cm-1, e~e = 121.34 cm-1 and D
~

o = 4.4774  0.0004 eV = 
432.00  0.04 kJ mol-1, Table 27.6.1. The literature values include the second anharmonicity 

y = -229.6x + 4157
R² = 0.9999

2000

2500

3000

3500

4000

4500

0 2 4 6 8
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correction giving greater accuracy. The need for accuracy in the bond dissociation energy of H2 
is nicely exemplified by Figure 26.2.2. 
 
 
21. The fundamental and first two overtones in the vibrational spectrum of the OH radical are 
3569.8, 6974.6, and 10217.8 cm-1, respectively. Determine ~e, the force constant, anharmonicity, 
zero point energy, and the bond dissociation energies, D

~
e and D

~
o. 

 
 
Answer: The plan is to follow Example 27.5.1 by doing a Birge-Sponer plot, Eq.27.5.20, and 
using the relationship between the anharmonicity and the bond dissociation energy based on the 
Morse potential, Eq. 27.5.18. 
   The successive differences between the transitions is plotted as a function of the overtone. The 
fundamental transition is included as the value for  = 0 in the following spreadsheet. 
 

 

 ~0 (cm-1) ~  (cm-1) 
0 3569.8 3569.8 
1 6974.6 3404.8 
2 10217.8 3243.2 

 
slope -163.30 3569.233 intercept 
 0.981495 1.267105  
r2 0.999964 1.388044 s(y) 
F 27681.89 1 df 
ssreg 53333.78 1.926667 ssresid 

 

 

 
 
 

 

 

 
The curve fit gives the anharmonicity as e~e = 81.65  0.5 cm-1. The final spectroscopic 
constants are: 
 

with Eq. 27.5.11:   ~e = o+ 2e~e = 3569.8 cm-1 + 2(81.65) cm-1 = 3733.1 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(3733.1 cm-1)2(1.62668x10-27 kg) 

         k = 804.3 N m-1 

with Eq. 27.5.8:     ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(3733.1 cm-1) – ¼(81.65 cm-1) = 1846.14 cm-1 

with Eq. 27.5.18:   D
~

e = ~2
ee~e = (3733.1 cm-1)2/(4(81.65 cm-1)) 

         D
~

e = 42,670 cm-1 = 5.29 eV = 510.4 kJ mol-1 

with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 42,670 cm-1 – 1846.14 cm-1 = 40824. cm-1 

         D
~

o = 5.06 eV = 488.4 kJ mol-1 

 

The literature values are ~e = 3737.76 cm-1, e~e = 84.88 cm-1 and D
~

o = 4.40 eV = 424. kJ mol-1, 
Table 27.6.1. The literature values include the second anharmonicity correction giving greater 
accuracy and averaging with thermochemically derived values. 
 

y = -163.30 x + 3569.23 
   R2 = 1.000 

3600 
 
 
3500 
 
 
3400 
 
 
3300 
 
 
3200 

~o 

~  

(cm-1) 

 

 

0                                         1                                          2  



Chapter 27: Rotational and Vibrational Spectroscopy 15 
 

 
22.  Calculate the Morse a-parameter for the diatomic molecule Na2. The fundamental vibration 
frequency is ~e = 159.13 cm-1 and the dissociation energy from the bottom of the potential 
energy well is D

~
e = 5886.54 cm-1. The most useful final units for a are Å-1. [Hint: the units of 

(/(2De))½ are (s m-1), so you will need to convert to Å-1 using 1 Å = 1x10–10 m. Typical values 
of a are in the range of ~ 0.5-3 Å-1.] 
 
 
Answer:  The plan is to convert ~e to the corresponding radial frequency and D

~
e into joules. 

   In s-1:  e = 2~ec = 2(159.13 cm-1)(2.99792x1010 cm s-1) = 2.99736x1013 s-1 

The reduced mass is:   = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

   = (22.98977 g mol-1/2)/6.022137x1023(1 kg/1000 g) = 1.908772x10–26 kg 
 

The dissociation energy in joules is: 

 De = D
~

e hc = 5886.54 cm-1(6.626076x10–34 J s)(2.997925x1010 cm s-1) = 1.169330x10–19 J 
 

Using Eq. 27.5.8, the Morse a-parameter is: 

 a = e





2De

½
 = 2.99736x1013 s-1





1.908772x10–26 kg

2(1.169329x10–19 J)
½

 = 8.56313x109 m-1 

   = 8.56313x109 m-1(1x10-10 m/1 Å) = 0.856313 Å-1 
 

A note about units: In the ratio /(2De), you can use the reduced mass in kg mol-1 and the 
dissociation in J mol-1, since the per mol units cancel. Then the conversion factor 
1 cm-1 = 11.962658 J mol-1 is handy. Once again: 
 

 a = 2~ec 





2De

½
 

   = 2(159.13 cm-1)(2.99792x1010 cm s-1) 



11.49489 g mol-1(1 kg/1000 g)

2(5886.54 cm-1)(11.962658 J mol-1)

½
 

   = 8.56313x109 m-1(1x10-10 m/1 Å) = 0.856313 Å-1 
 
 
23.  Calculate the Morse a-parameter for H35Cl in Å-1. The fundamental vibration frequency is ~e 
= 2990.925 cm-1 and the dissociation energy from the bottom of the potential energy well is D

~
e = 

37270. cm-1. [Hint: The conversion 1 cm-1 = 11.96266 J mol-1 is handy. The units of (/(2De))½ 
are (s m-1), so you will need to convert to Å-1 using 1 Å = 1x10–10 m. Typical values of a are in 
the range of ~ 0.5-3 Å-1.] 
 
 
Answer: The plan is to convert ~e to the corresponding radial frequency and D

~
e into J mol-1. See 

the previous problem for comments on the units. 
   The reduced mass is: 
 

  = 
M1M2

M1 + M2
 = 

(1.007825)(34.968853)
1.007825 + 34.968853  = 0.979593 g mol-1 
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Using Eq. 27.5.8 and e = 2~ec, the Morse a-parameter is: 

 a = 2~ec 





2De

½
 

   = 2(2990.925 cm-1)(2.99792x1010 cm s-1) 



0.979593 g mol-1(1 kg/1000 g)

2(37270 cm-1)(11.962658 J mol-1)

½
 

   = 1.867x1010 m-1(1x10-10 m/1 Å) = 1.867 Å-1 
 
 
24.  Plot the vibrational potential energy function for Na2. Assume a Morse potential function. 
The dissociation energy from the bottom of the potential energy well is D

~
e = 5886.54 cm-1, the 

Morse a-parameter is a = 0.8563 Å-1, and the equilibrium bond length is Re = 3.079 Å. [See 
Problem 22 for the calculation of a.] 
 
 
Answer:  The plan is to write a spreadsheet based on Eqs. 27.5.7-27.5.8. 
 

The Morse function in cell D11 is given as: “=D$7*(1-EXP(-D$8*($C11-D$6)))^2”. 
 

 

A1 B C D E 

5 vibration freq.  ne 159.1245 cm-1 
6 bond length Re 3.07887 Å 
7 dissociation energy De 5886.54 cm-1 
8 Morse a a 0.8563  
      

10  R (Å) V(R) cm-1  
11  2 13581.22  
12  2.15 8694.26  
13  2.4 3658.84  
14  2.65 1159.12  
15  2.9 161.27  
16  3.15 20.55  
17  3.4 340.24  
18  3.65 880.69  
19  3.9 1501.03  
20  4.15 2121.75  
21  4.4 2701.01  
22  4.65 3219.58  
23  4.9 3671.42  
24  5.15 4057.81  
25  5.4 4383.85  
26  5.65 4656.24  
27  5.9 4882.13  

 
 

 

 
 
 

 
25.  Plot the Morse and harmonic vibrational potential energy functions for H35Cl. Assume the 
fundamental vibration frequency ~e = 2990.9 cm-1, dissociation energy from the bottom of the 
potential energy well is D

~
e = 37270 cm-1, the Morse a-parameter is a = 1.867 Å-1, and the 

equilibrium bond length is Re = 1.275 Å. [See Problem 23 for the calculation of a.] 
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Answer:  The plan is to use Eq. 27.5.4 to calculate the bond force constant and then write a 
spreadsheet based on Eqs. 24.2.1 and 27.5.7-27.5.8. 

   The reduced mas for H35Cl is:  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

  = 



(1.007825)(34.968853)

(1.007825 + 34.968853)
1

6.022137x1023(1 kg/1000 g) = 1.6266526x10–27 kg 
 

The bond force constant is given by rearranging Eq. 24.2.1: 
 

     k = 42~2
ec2 = 42(2990.9 cm-1)2(2.997925x1010 cm s-1)2(1.62665x10-27 kg) = 516.30 N m-1 

 

The cell D4 gives this calculation: “=4*PI()^2*D3^2*(2.99792E+10)^2*D2” 
 

 

A1 B C D E 
2 reduced mass  1.627E-27 kg 
3 vibration freq. e 2990.9 cm-1 
4 force constant k 516.29563 N m-1 
5 bond length Re 1.275 Å 
6 dissociation energy De 37270 cm-1 
7 Morse a a 1.867 Å-1 
8     
9  R (Å) V(R) cm-1 V(Harm) 

10  0.8 75937.6 31031.7 
11  0.95 25954.8 14527.3 
12  1.1 5565.2 4212.1 
13  1.25 85.1 86.0 
14  1.4 1614.7 2149.0 
15  1.55 6009.7 10401.2 
16  1.7 11181.3 24842.6 
17  1.85 16146.3 45473.1 
18  2 20502.1 72292.7 
19  2.15 24138.7 105301.5 
20  2.3 27083.8 144499.5 
21  2.45 29422.1 189886.6 
22  2.6 31253.4 241462.9 
23  2.75 32674.2 299228.3 
24  2.9 33768.8 363182.8 
25  3.05 34608.1 433326.5 
26  3.2 35249.1 509659.4 
27  3.35 35737.5 592181.4 

 

 

 
 
 

 

The Morse function in cell D10 is: 
 “=D$6*(1-EXP(-D$7*($C10-D$5)))^2”. 
 

The harmonic potential is  V(R) = ½ k (R – Re)2, however to convert from joules to wave 

numbers is given by V
~

(R) = V(R)/(hc) where R is in meters, as given in cell E10: 
 

 “=$D$4*((C10-$D$5)/1E10)^2/2/6.2608E-34/2.99792E10” 
 
 
26.  Plot the Morse potential energy function for 7LiH. See Table 27.6.1 for the spectroscopic 
constants. Superimpose on the potential energy surface the 15 lowest vibrational energy levels, 
including the effects of anharmonicity. [Hints: See Problem 22 for hints on calculating the Morse 
a-parameter. A few rows of an example spreadsheet for Na2 are given below. The calculation of 
the Morse potential, rows B and C, is independent of the calculation of the vibrational energy 

0.0

10000.0

20000.0

30000.0

40000.0

50000.0

60000.0

70000.0

0.5 1.5 2.5 3.5

E 
(c

m
-1

)

R (Å)



Chapter 27: Rotational and Vibrational Spectroscopy 18 
 

levels, rows D and E. However, you can use the R values as a dummy variable to superimpose 
the vibrational energy levels on top of the potential energy curve. In other words, use columns B, 
C, and E to construct your scatter plot. Join the potential energy data points with a curve, but 
leave the vibrational levels as dots. The horizontal position of the vibrational level data points 
will be meaningless, but the vertical position gives the vibrational energies. You can draw in the 
horizontal lines representing the vibrational levels by hand.] 
 

 For Na2:      Na2 
 

A1 B C D E 
2 reduced mass  11.495 g mol-1 
3 vibration freq. e 159.125 cm-1 
4 anharmonicity ee 0.725 cm-1 
5 bond length Re 3.079 Å 
6 dissociation E Do 0.720 eV 
7 dissociation E De 5887 cm-1 
8 Morse a a 0.856 Å-1 
9     

10 R (Å) V(R) cm-1   G() cm-1 
11 2.3 5293.9 0 79.4 
12 2.5 2423.6 1 237.1 
13 2.75 622.8 2 393.3 
14 3 28.7 3 548.0 
15 3.25 109.4 4 701.4 
16 3.5 539.6 5 853.2 
17 3.75 1124.8 6 1003.7 
18 4 1752.3 7 1152.6 
19 4.25 2360.0 8 1300.1 
20 4.5 2916.4 9 1446.2 

 

 

 
 

 
 
Answer:  The plan is to use Eq. 27.5.8 to calculate the Morse a-parameter and then write a 
spreadsheet based on Eqs. 27.5.7 and 27.5.9. The units work out if the reduced mass is given in 
kg mol-1 and the dissociation energy is converted to J mol-1 using 1 cm-1 = 11.9627 J mol-1. 

   The reduced mas for 7LiH is:  = 






M1M2

M1 + M2
 = 



(1.007825)(6.015122)

(1.007825 + 6.015122)  = 0.8632 g mol-1 

Using constants from Table 27.6.1 the dissociation energy from the bottom of the potential 
energy well using Eq. 27.5.12 is: 
 

 D
~

e = D
~

o + ½ ~e – ¼ ~e e  
                 = 2.429 ev(8065.5 cm-1/1 eV) + ½(1405.498 cm-1) – ¼(23.168 cm-1) = 20288. cm-1 

 

Using the discussion in Problem 22, the Morse a-parameter is: 

 a = 2~ec 





2De

½
 

   = 2(1405.498 cm-1)(2.99792x1010 cm s-1) 



0.8632 g mol-1(1 kg/1000 g)

2(20288. cm-1)(11.9627 J mol-1)

½
 

   = 8.56313x109 m-1(1x10-10 m/1 Å) = 1.116 Å-1 
 

Spreadsheet cell D8 does this calculation for the a-parameter: 
 

 =2*PI()*D3*2.998E10*SQRT(D2/1000/2/(D7*11.9627))*1E-10 
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The spreadsheet to generate the potential energy surface and the vibrational energies and the 
corresponding plot are listed below. Cell C11 for the Morse function is: 
 

 =D$7*(1-EXP(-D$8*($B11-D$5)))^2 
 

Cell E11 for the anharmonicity correscted vibrational energy levels is: 
 

 =$D$3*(D11+0.5)-$D$4*(D11+0.5)^2 
 

 

A1 B C D E 
2 reduced mass  0.863 g mol-1 
3 vibration freq. e 1405.498 cm-1 
4 anharmonicity ee 23.168 cm-1 
5 bond length Re 1.596 Å 
6 dissociation E Do 2.429 eV 
7 dissociation E De 20288 cm-1 
8 Morse a a 1.116 Å-1 
9     

10 R (Å) V(R) cm-1   G() cm-1 
11 0.98 19826.5 0 697.0 
12 1.25 4501.3 1 2056.1 
13 1.5 258.0 2 3368.9 
14 1.75 508.1 3 4635.4 
15 2 2677.1 4 5855.6 
16 2.25 5450.8 5 7029.4 
17 2.5 8197.3 6 8156.9 
18 2.75 10645.8 7 9238.0 
19 3 12710.2 8 10272.8 
20 3.25 14393.3 9 11261.3 
21 3.5 15736.0 10 12203.5 
22 3.75 16791.4 11 13099.3 
23 4 17612.6 12 13948.7 
24 4.25 18246.8 13 14751.9 
25 4.5 18734.0 14 15508.6 
26 4.75 19106.8 15 16219.1 
27 5 19391.2 16 16883.2 

 

 

 
 
 

 

The conclusion is that the illustrations in text books usually overemphasize the effects of 
anharmonicity. There are typically many more vibrational levels before the dissociation limit 
than are often depicted, for example Figure 27.5.2. 
 
 
27.  The overtone wave numbers are given directly by Eq. 27.5.8 for the transition '0: 

 ~'0 = G
~
' – G

~
 = ~e('+½) – e~e('+½)2 – ~e(+½) + e~e(+½)2 

         = ~e ' – e~e('2 + ' + ¼) + ¼ e~e 

         = – e~e '2 + (~e – e~e)'         (Morse, ':upper) 
 

Rather than plotting adjacent differences in a Birge-Sponer plot, this last equation can be used in 
least squares curve fitting. The result is essentially equivalent, but the process and the associated 
uncertainties are more direct. Use the data in Example 27.5.1 and a quadratic fit to determine ~e 

and e~e for H35Cl. Compare to the results in the example. 
 
 
Answer:  The overtone data can be directly input into the “Nonlinear Least Squares Curve 
Fitting” applet on the textbook Web site or companion CD. The result using the fit function 
“ax^2 + bx + c” with c fixed at c = 0 is shown below: 
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======================   Results   ========================= 
 a= -51.568 +- 0.0528 
 b= 2937.055 +- 0.22 
______________________ Output Data _________________________ 
     x                           y         y(fit)                    residual 
   1.0     2885.98 2885.48658  0.49342 
   2.0     5667.98 5667.83714  0.14286 
   3.0     8346.78   8347.05168 -0.27168 
   4.0     10922.83 10923.13019 -0.30019 
   5.0     13396.32 13396.07267  0.24733 
------------------------------------------------------------ 
 sum of squared residuals= 0.489 
 stand. dev. y values= 0.4037 
 correlation between a & b= -0.9696 

 

The fit anharmonicity, e~e = 51.568  0.053 cm-1, differs by 0.3% from the Birge-Sponer value 
in Example 27.5.1, which is certainly not significant. The fundamental vibration frequency is 
given by: 
 

 b = (~e – e~e) 

or ~e = b + e~e = (2937.055  0.22) + (51.568  0.053) cm-1 = 2988.62  0.23 cm-1 
 

which also differs from the result in Example 27.5.1 by an insignificant amount. One advantage 
of this direct method is that we can see that the between-parameter correlation coefficient is 
unacceptably large at -0.9696. This warning suggests that the second anharmonicity correction 
needs to be taken into account for an accurate representation of the data. The same conclusion 
can be drawn by noticing that there is some systematic curvature in the final curve fit results, 
rather than a random scatter of points about the curve fit polynomial. The choice of using the 
Birge-Sponer method or the quadratic curve fit is a matter of preference. 
 
 
28.  Often only the fundamental and first overtone vibration frequencies are observable in 
infrared spectra. The experimental values for the fundamental and the first overtone are sufficient 
to obtain a rough estimate of the anharmonicity and the bond dissociation energy. We can use 
H35Cl as a good test case. Determine ~e, the force constant, anharmonicity, zero point energy, 
and the bond dissociation energies D

~
e and D

~
o, for H35Cl. The fundamental and first overtone for 

H35Cl are 2885.98 and 5667.98 cm-1. 
 
 
Answer:  The first-overtone adjacent difference is ~1 = 2782.10 cm-1. Using just the 
fundamental and first overtone with Eq. 27.5.21 gives: 
 

 e~e = (~o – ~1)/2 = (2885.98 – 2782.10)/2 cm-1 = 51.90 cm-1 
 

The final spectroscopic constants are: 
 

with Eq. 27.5.11:   ~e = o+ 2ee = 2885.98 cm-1 + 2(51.90) cm-1 = 2989.78 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(2989.78 cm-1)2(1.62668x10-27 kg) 

         k = 515.9 N m-1 

with Eq. 27.5.8:   ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(2989.78 cm-1) – ¼(51.90 cm-1) = 1481.92 cm-1 
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with Eq. 27.5.18:   D
~

e = ~2
ee~e = (2989.78 cm-1)2/(4(51.90 cm-1)) 

         D
~

e = 43,058 cm-1 = 5.339 eV = 515.1 kJ mol-1 

with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 43,058 cm-1 – 1481.92 cm-1 = 41576. cm-1 

         D
~

o = 5.155 eV = 497.3 kJ mol-1 

 

In this case the results are remarkably close to the Birge-Sponer extrapolated value in Example 
27.5.1. In all honesty, the agreement with only a single observed overtone and more carefully 
obtained values is rarely so close. Factor of two errors can occur between values obtained using 
different extrapolation methods and between methods based on other experimental techniques 
(e.g. thermochemical values or values from mass spectrometry appearance potentials). 
 
 
29.  A schematic rotational-vibrational absorption spectrum of a diatomic molecule is shown 
below. The bond length is assumed to be the same in the two vibrational states. Sketch the 
resulting spectrum if, in the absence of any other changes, (a) the bond length of both vibrational 
states is increased, (b) the bond force constant is increased, (c) the temperature is increased, and 
(d) the bond length of just the upper vibrational state is increased. 
 

 
 
Answer:  The plan is to note that the missing, forbidden transition is at ~o = 1/2 k/ and the 
peak-to-peak spacing, assuming equal bond lengths in the two vibrational states, is 2B

~
. 

(a).  Increasing the bond length decreases the rotational constant B
~

, moving the peaks closer 
together. 
(b).  Increasing the bond force constant increases the fundamental vibration frequency, ~o, which 
shifts all the transitions to higher frequency. Higher wave number, higher energy, higher 
frequency, and bluer are all towards the left. 
(c).  Increasing temperature has no effect on the spectroscopic constants. However, increasing 
temperature does increase the population of higher rotational states, Figure 27.6.7. As a 
consequence the rotational transition of maximum intensity is a higher J state. 
(d).  Increasing the bond length of just the upper vibrational state decreases the B

~
' value. With 

B
~

' < B
~

", each line moves to lower wave number in proportion to the J"2 value, Eqs. 27.6.8-
27.6.9. In other words, lines further away from ~o move more than lines closer to ~o. The R-
branch lines get closer together and the P-branch lines get further apart. 
The effects are diagrammed below. 
 

~  (cm-1) 

A 
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30.  Write a spreadsheet to simulate the rotational-vibrational infrared spectrum of 12CH for the 
1  0 fundamental vibrational transition at 25C. Use the spectroscopic constants in Table 
27.6.1. Include six R-branch and six P-branch transitions. The relative intensity of the transitions 
is proportional to the Boltzmann weighting factors of the initial rotational levels for the  = 0 
vibrational state: p(J")  (2J" + 1) e–B~ " J"(J"+1)/kT. To emphasize the differences caused by 
B
~

' < B
~

", compare the appearance for e equal to zero, the literature value, and three times the 
literature value. [Hints: Display your results as an unconnected scatter plot of relative intensity, 
p(J"), versus the transition wave number. You won’t get a “stick” spectrum as in the previous 
problem, but you can draw lines by hand from each data point to the horizontal axis to sketch the 
spectrum. Remember that kT = 207.2 cm-1 at 25C.] 
 
 
Answer:  The plan is to use Eqs. 27.5.12, 27.6.5, and 27.6.6 to calculate the wave number of each 
transition. The intensity is proportional to the Boltzmann probability of occupation of each of the 
ground vibrational state energy levels. The ground state of CH is a doublet, so spectra of CH 
include Q-branches, which we neglect in this problem. 
   Using Eq. 27.5.12, the center of the rotational-vibrational band, which is the observed 
fundamental vibration frequency, is at: 
 

 ~o = ~e – 2e~e = 2731.87 cm-1 
 

The rotational constants for the " = 0 and ' = 1 states are calculated from e using Eq. 27.6.5. 
The spreadsheet is reproduced below.  
 

A 

 ~ (cm
-1

) ~o 

2B
~

 
R  J = +1 P  J = –1 

original 

A 

~o 

2B
~
 

(a). 

A 

~o 

(b). 

A 

~o 

(c). 

A 

~o 

(d). 

re  B
~

  

B
~ ' = B

~
" 

k   ~o 

T  

re'  B
~ '  

B
~ ' < B

~
" 
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A1 B C D E F 
2      
3 o 2731.87 cm-1   
4 Be 14.46 cm-1   
5 e 0.536 cm-1   
6 B" 14.192 cm-1 =0  
7 B' 13.656 cm-1 =1  
8      
9 J" J' F(J") cm-1   cm-1 p(J") 

10 6 7 168.672 2900.542 0.732 
11 5 6 147.792 2879.662 1.409 
12 4 5 125.84 2857.71 2.287 
13 3 4 102.816 2834.686 3.077 
14 2 3 78.72 2810.59 3.315 
15 1 2 53.552 2785.422 2.616 
16 0 1 27.312 2759.182 1.000 
17 1 0 -28.384 2703.486 2.616 
18 2 1 -57.84 2674.03 3.315 
19 3 2 -88.368 2643.502 3.077 
20 4 3 -119.968 2611.902 2.287 
21 5 4 -152.64 2579.23 1.409 
22 6 5 -186.384 2545.486 0.732 

 

 

 

     With e = 0.536 cm-1: 

0

1

2

3

4

25002600270028002900

A

wave number (cm-1)
 

 

     With e = 3(0.536 cm-1): 

0

1

2

3

4

25002600270028002900

A

wave number (cm-1)
 

 

Cell C3 to calculate the observed fundamental frequency is: “=2860.75-2*64.44” 
Cell C6 to calculate the rotational constant in the " = 0 vibrational state is: “=C4-C5/2” 
Cell C7 to calculate the rotational constant in the ' = 1 vibrational state is: “=C4-3*C5/2” 
Cell D10 for the first rotational term value is: “=$C$7*(C10)*(C10+1)-$C$6*B10*(B10+1)” 
Cell F10 to find the Boltzmann weighting factor for the J" state is: 
 

 =(2*B10+1)*EXP(-$C$6*B10*(B10+1)/207.2) 
 

The first transition wave number in cell E10 just adds the observed fundamental vibration wave 
number to the rotational term value: “=$C$3+D10” 
   Note that B

~
'  < B

~
" as expected, since the vibration-averaged bond length increases with 

vibrational quantum number thus decreasing the corresponding rotational constant. The effect of 
B
~

'  < B
~

" is that all transitions move to smaller wave number, but the transitions for high J" shift 
more than low J" transitions. As a result the R-branch transitions are closer together and the P-
branch transitions are further apart. Only when B

~
' = B

~
" is the adjacent peak spacing 2B

~
o. 

 
 

31.  The experimental fundamental vibration frequencies in infrared absorption for N2O are 
2224 cm-1, 1285 cm-1, and 588 cm-1. Assuming N2O is linear, determine if the bonding 
configuration is NNO or NON. 
 
 

Answer:  The plan is to use the three observed fundamentals and the expected number of IR 
active normal modes for a linear diatomic, symmetric or asymmetric, to determine the symmetry. 
   A linear triatomic has 3N – 5 = 3(3) – 5 = 4 normal modes. In order of expected decreasing 
wave number, the normal modes are an asymmetric stretch, a symmetric stretch, and a 
degenerate bend. For a symmetric linear triatomic, such as CO2, the symmetric stretch is IR 
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forbidden, giving two distinct fundamental frequencies. For an asymmetric linear triatomic, such 
as H–CN, the symmetric stretch gives a changing dipole moment, resulting in three distinct 
fundamental frequencies. Since N2O has three observed frequencies, the molecule must be 
asymmetric, arranged as NNO. 
 
 

32.  The experimental fundamental vibration frequencies in infrared absorption for BCl3 are 
985 cm-1, 462 cm-1, and 243 cm-1. The experimental Raman frequencies are 985 cm-1, 471 cm-1, 
and 243 cm-1. With reference to Table 27.7.1, determine if BCl3 is planar or trigonal pyramidal. 
Assign the observed frequencies to the distinct frequencies, 1 - 4.4,5 

 
 

Answer:  The plan is to count the number of distinct vibration frequencies that are expected for 
the two different geometries, based on Table 27.7.1. 
   The asymmetric stretches and asymmetric bends are doubly degenerate in both planar and 
trigonal pyramidal XY3 molecules. Doubly degenerate normal modes have the same vibration 
frequency. For a planar XY3 molecule, there are three distinct IR vibration frequencies and three 
distinct Raman frequencies. For a trigonal pyramidal XY3 molecule, all modes are IR and Raman 
active giving four distinct IR and four distinct Raman frequencies. Given the three observed IR 
and three observed Raman frequencies in BCl3, the molecule must be planar. 
   We can take the analysis a step further to confirm our conclusion. Assuming the asymmetric 
stretches occur at higher wave number than the symmetric stretches and the asymmetric bends 
occur at higher wave number than the symmetric bends, using the IR and Raman activities listed 
in Table 27.7.1 gives the following schematic appearance in the spectra. The sticks are the 
predictions using symmetry arguments and the experimental wave numbers are then assigned to 
the expected pattern based on IR or Raman activity: 
 

   |    |  | 
 IR  |    |  |     ~  
 mode  3  1  4  2 
 mode        asymm str           symm str        asymm bend          symm bend 
 exp.  985    462  243  cm-1 

 

   |  |  |   
 Raman  |  |  |       ~  
 mode  3  1  4  2 
 mode        asymm str         symm str       asymm bend        symm bend 
 exp.  985  471  243   

The two repeated transitions didn’t match up as expected. However, the pattern of three present 
and one missing is apparent. Consider the following assignments, which give consistent results 
for the two repeated frequencies: 
 

   |    |  | 
 IR  |    |  |     ~  
 mode  3  1  2  4 
 mode        asymm str           symm str           symm bend          asymm bend 
 exp.  985    462  243  cm-1 

 

   |  |    | 
 Raman  |  |    |     ~  
 mode  3  1  2  4 
 mode        asymm str         symm str          symm bend        asymm bend 
 exp.  985  471    243 
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The similar wave number of the symmetric stretch and symmetric bend is surprising. Molecular 
orbital calculations at the Hartree-Fock and B3LYP levels with a 6-311+G(2d,p) basis set give 
~11.5 cm-1 difference between these two modes. The difference at HF/6-31G* and HF/6-311G* 
is ~14 cm-1. The agreement between theory and experiment helps to validate the assignment. 
 
 
33.  The carbonyl stretch for ketones is active in both IR and Raman spectroscopy. Assume a 
carbonyl stretch occurs at 1800. cm-1. Calculate the wave lengths of the Stokes and anti-Stokes 
transitions in the Raman spectrum assuming laser excitation using a helium-neon laser at 
632.8 nm. 
 
 
Answer:  The plan is to convert to wave numbers to find the transitions and then finally to 
convert back to wave lengths. 

   The laser excitation is at:   ~ = 1/ = 
1

632.8 nm (1x10-9 m/1nm)(100 cm/1 m) = 15803. cm-1 
 

The Stokes transition is at 15803. cm-1 – 1800. cm-1 = 14003 cm-1 
Converting to meters and then inverting gives the wave length of the transition: 
 

  = 1/~ = 
1

14003 cm-1(100 cm/1 m) = 7.141x10 -9 m = 714.1 nm  (Stokes) 
 

The anti-Stokes transition is at 15803. cm-1 + 1800. cm-1 = 17603 cm-1 
Converting to meters and then inverting gives the wave length of the transition: 
 

  = 1/~ = 
1

17603 cm-1(100 cm/1 m) = 5.6808x10-9 m = 568.1 nm  (anti-Stokes) 

 
 
34.  Name three advantages of Raman spectroscopy over infrared absorption. Name a 
disadvantage. 
 
 
Answer: (1). Raman spectra occur in the near-infrared or visible region, depending on the laser 
used for excitation, which allows the use of glass or plastic cell windows. Raman spectra can be 
acquired through the containers of personal care products. Mid-infrared cell windows are usually 
hygroscopic and fragile. Expensive NaCl and KBr salt crystals are typically used for infrared cell 
windows. (2). Water is a poor Raman scatterer, so Raman spectra in aqueous solvents is 
common. Special techniques are required for aqueous infrared spectra, such as attenuated total 
reflection, ATR. (3). Raman is complementary to IR, which allows the determination of normal 
modes that are forbidden in the infrared. (4). Raman spectrometers can be easily configured as 
battery powered hand held devices. (5). Raman microscopes are more easily designed with 
higher spatial resolution than infrared microscopes, since the wave length for Raman scattering is 
bluer making the optics easier and giving a smaller diffraction limit. 
   The main disadvantage of Raman is poor sensitivity compared to infrared absorption. 
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35.  Identifying the point group of a molecule is done using Table 27.8.1 or using a flow chart 
such as Figure P27.1. 

 
 

Figure P27. 1: Flow chart to identify the point group of a molecule. * If there are three mutually 
perpendicular axes, choose the principal axis perpendicular to the axis that passes through the 
most atoms or the heaviest atoms. ** There are n perpendicular C2 axes, but they may not be 
obvious.6 

 

Determine the point group for the following species: (a) SO2; (b) CO2
3

–; (c) C2H4, ethylene; (d) 
trans-1,2-C2H2Cl2, trans-1,2-dichloroethylene; (e) cis-1,2-C2H2Cl2, cis-1,2-dichloroethylene; (f) 
ClF3 (T-shaped); (g) NH3; and (h) C2H6, staggered ethane. 
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Answers: The plan is to note that for nonlinear molecules the first step is to find the highest-fold 
rotational axis. If the highest-fold rotational axis is unique, then that axis is the principal axis, 
which gives the value of n, for example in Cnv or Dnh. 
   In displaying the symmetry elements of molecules, several standard symbols are used. 
Reflection planes are depicted as dotted lines or shaded planes and rotational axes are depicted as 
listed below. Solid symbols depict Cn axes and hollow symbols are for Sn axes. For molecules 
with higher symmetry, finding all the symmetry elements is usually not necessary. Instead, the 
characteristic symmetry operations as listed in Table 27.8.1 are sufficient.  
 

 
 

(a). SO2 is bent: The highest-fold axis is the C2 axis, with no perpendicular C2 axes, no collinear 
S2n [see Part (h) for an example], no h (which would be perpendicular to the principal axis), but 
with two v planes: giving C2v. 

(b). CO2
3

– is trigonal planar: The highest-fold axis is the C3 axis perpendicular to the plane of the 
atoms, with three perpendicular C2 axes, and a h: giving D3h. Note that atoms are not required to 
lie above and below the h plane; all atoms can lie in the h plane. 

(c) C2H4, ethylene is planar: The highest-fold axis is a C2 axis, with two perpendicular C2 axes, 
and a h: giving D2h. Since there are three mutually perpendicular C2 axes, the principal axis is 
chosen as the C2 that is perpendicular to the C2 axis that includes the C-atoms. However, there 
are two such C2-axes; the C2 that is perpendicular to the plane that contains the most atoms is 
chosen as the principal axis. 

(d) trans-1,2-C2H2Cl2 is planar: The highest-fold axis is the C2 axis, with no perpendicular C2 
axes, no collinear S2n, but with a h: giving C2h. 

(e) cis-1,2-C2H2Cl2 is planar: The highest-fold axis is the C2 axis, with no perpendicular C2 axes, 
no collinear S2n, no h, but with two v planes: giving C2v. 

(f) ClF3 is T-shaped: The highest-fold axis is the C2 axis, with no perpendicular C2 axes, no 
collinear S2n, no h, but with two v planes: giving C2v. 

(g). NH3 is trigonal pyramidal: The highest-fold axis is the C3 axis, with no perpendicular C2 
axes, no S2n , no h, but with three v planes: giving C3v. 

(h). Staggered C2H6 has two tetrahedral centers:  The drawing, above, is a Newman projection 
looking down the C-C axis. A hand-held model is really useful for this discussion. The S6 
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improper axis requires some explanation. Rotation about the C–C bond by 360/6 = 60 brings a 
H-atom on the front face of the molecule above a H-atom on the back face. These front-face and 
back-face atoms are related by a reflection across a plane perpendicular to the S6 axis. Next 
considering the vertical planes, the vertical reflection planes bisect the C2 axes, so they are 
officially d-dihedral planes. Following the chart then, the highest-fold pure rotational axis is the 
C3 axis, with three perpendicular C2 axes, an S6 improper axis, and three vertical d-planes: 
giving D3d. The perspective drawing, below, shows another view of the C2-axes. 
 

 
 
 
36. Determine the point group for the following species: (a) PtCl2

4
– (square planar); (b) PF5 

(trigonal bipyramidal). 
 
 
Answer: The plan is to follow Table 27.8.1 or the flow chart, Figure P27.1. 
 

 
 

(a). PtCl2
4

–: The highest-fold axis is the C4 axis perpendicular to the plane of the atoms, with four 

perpendicular C2 axes, and a h-plane: giving D4h. 

(b) PF5: The highest-fold axis is the C3 axis perpendicular to the trigonal-plane of atoms, with 
three perpendicular C2 axes, and a h-plane: giving D4h. 
 
 
37.  Determine the irreducible representations for the x, y, and z-components of the transition 
electric dipole moment in the point group whose character table is given below. The symmetry 
operations are three mutually perpendicular C2-axes, which are aligned along the x, y, and z-
axes. 
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 E C2(z) C2(y) C2(z) 
A 1  1  1  1 
B1 1  1 -1 -1 
B2 1 -1  1 -1 
B3 1 -1 -1  1 

 
Answer:  The plan is to use atomic px, py, and pz orbitals as a visual expedient for determining the 
symmetry relationships for the three C2-rotations. The components of the transition dipole 
transform in the same ways as the corresponding atomic orbitals. 
   The pz, py, and px atomic orbitals are shown below aligned along the z, y, and x-axes, which 
correspond to the rotational axes in this point group. The identity operation, E, is included for 
completeness. If the orbital changes phase the “character under rotation” is listed as “–“. For no 
change in phase the listing is “+”. 
 

 
 

 pz py px 

E + + + 
C2(z) + – – 
C2(y) – + – 
C2(x) – – + 
 B1 B2 B3 

 
Reading down the columns of the table reproduces the characters (read across) for the 
corresponding irreducible representation. The pz-orbital and the z-component of the transition 
electric dipole moment transform as B1. The py-orbital and the y-component of the transition 
electric dipole moment transform as B2. The px-orbital and the x-component of the transition 
electric dipole moment transform as B3. Any normal mode that transforms according to B1, B2, 
or B3 is allowed in infrared absorption. As a check, notice that the given character table is for the 
D2 point group, data section Table 27.8.2. 
 
 

38.  (a). Determine the symmetry species, which is the irreducible representation, of the 
following normal modes of ethylene, C2H4. (b). Determine the IR and Raman activity of each 
mode. 
 

y H          H  H           H   H          H  H          H–  
                                 \      /         \      / 
 x     C=C    C=C       C=C         C=C 
                                 /      \         /      \ 
 H          H  H          H   H          H  – H          H 
    stretch      stretch        bend            twist 
 

 (a).   (b).   (c).   (d). 
 

The transformation properties of out-of-plane motions might require some clarification. The 
progress of the C2(x) rotation, viewed from the top and along the C=C bond is shown below. 
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Answer:  The plan is to determine the symmetric or anti-symmetric behavior of the normal 
modes under the symmetry operations of the point group for ethylene, D2h. 
   The D2h character table is given below. 
 

D2h E C2(z) C2(y) C2(x)  i v(xy) v(xz) v(yz)  
Ag 1  1  1   1  1  1  1  1 x2, y2, z2 

B1g 1  1 -1 -1  1  1 -1 -1 xy 
B2g 1 -1  1 -1  1 -1  1 -1 xz 
B3g 1 -1 -1  1  1 -1 -1  1 yz 
Au 1  1  1  1 -1 -1 -1 -1  
B1u 1  1 -1 -1 -1 -1  1  1 z 
B2u 1 -1  1 -1 -1  1 -1  1 y 
B3u 1 -1 -1  1 -1  1  1 -1 x 

 

The symmetry under the operations of the point group and the corresponding irreducible 
representations are: 
 

D2h E C2(z) C2(y) C2(x) i v(xy) v(xz) v(yz)  activity 

(a) 1  1  1   1  1  1  1  1 ag R 
(b) 1 -1 -1  1 -1  1  1 -1 b3u IR  
(c) 1  1  1  1  1  1  1  1 ag R 
(d) 1  1  1  1 -1 -1 -1 -1 au  

 

   The character table lists the IR active modes as transforming according to the B1u, B2u, and B3u 
point groups. As a result only mode-b is IR allowed. The character table lists the Raman active 
modes as transforming according to the Ag, B1g, B2g, and B3g point groups. As a result mode-a 
and mode-c are Raman allowed. The Exclusion Rule applies because the group includes the 
inversion operation; as a result no mode is active in both in IR absorption and Raman scattering. 
Note that mode-d is not active in either form of vibrational spectroscopy. However, this mode is 
observable in electronic absorption and emission, since there are no symmetry restrictions on 
vibrational modes in electronic spectroscopy. 
 
 

39.  (a). Use group theory to determine the symmetry species of the normal modes of H2O, using 
the corresponding approach to the all-mode vibrational analysis in Figure 27.8.10. The symmetry 
species are the irreducible representations of the normal modes. (b). Determine which irreducible 
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representations correspond to stretches and which to bending vibrations. (c). Determine the 
modes that are IR and Raman active. 
 
 

Answer:  The plan is to use the C2v character table to decompose the reducible representation of 
the normal modes. We will find 3N – 6 = 3 normal modes and expect two stretching vibrations, 
since there are two bonds. 
   The geometry and character table for C2v are shown below. The v-plane is perpendicular to 
the plane of the paper; see also Figure 27.8.7. The characters of the representations of the 
translations, trans = x+y+z = A1+B1+B2, and the rotations, rot = A2+B1+B2, are appended to 
the end of the character table. 
 

 
 

C2v E C2 v v' h = 4  
A1 1  1  1  1 z, z2, x2,y2  

A2 1  1 -1 -1 xy Rz 

B1 1 -1  1 -1 y, yz Rx 
B2 1 -1 -1  1 x, xz Ry 
trans 3 -1  1  1 trans = A1+B1+B2  
rot 3 -1 -1 -1 rot = A2+B1+B2  

 
(a). The number of stationary atoms is multiplied by the corresponding character of the 
translations and then the characters of the translations and rotations are subtracted to give the 
total reducible representation of the vibrations. The complete decomposition is shown below. 
 

C2v   E C2 v v'            ai 

station. atoms 3  1 1  3   
trans 3 -1 1  1 product  
tot 9 -1  1  3   
trans 3 -1  1  1 subtract  
rot 3 -1 -1 -1 subtract  
vib 3  1 1  3 tot-trans-rot  
A1 1  1  1  1  1/h(vibA1) = 8/4  2A1 
A2 1  1 -1 -1  1/h(vibA2) = 0 
B1 1 -1  1 -1  1/h(vibB1) = 0 

B2 1 -1 -1  1  1/h(vibB2) = 4/4  B2 
 

For example, the decomposition for the A1 irreducible representation is based on Eq. 27.8.2: 

 a1 = 1/h 
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     = 8/4  giving that A1 appears twice in vib 
 

The decomposition for the A2 irreducible representation is: 
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 a2 = ¼ [3(1)(1) + 1(1)(1) + 1(-1)(1) + 3(1)(-1)] 
     = 0  giving that A2 does not appear in vib 
 

The normal modes decompose as vib = 2A1 + B2, giving three modes with three distinct 
vibration frequencies (no degeneracies). All the normal modes are both IR and Raman active, 
which confirms Table 27.1.1. The next step is to determine the stretching modes. The bending 
modes are then obtained by difference with the overall total. 
(b).  The molecule is redrawn with double-headed arrows replacing each bond. The number of 
arrows that are stationary under the transformation operations of the classes of the point group 
are determined. The stretching analysis for H2O is listed below. 

 

 
 

D3h   E C2 v v'      ai 

stationary arrows: str 2  0  0  2  
A1 1  1  1  1 1/h(strA1) = 4/4  A1 
A2 1  1 -1 -1 1/h(strA2) = 0 
B1 1 -1  1 -1 1/h(strB1) = 0 
B2 1 -1 -1  1 1/h(strB2) = 4/4  B2 

 

The decomposition for the A1 irreducible representation is: 

   a1 = 1/h 
4
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j = 1
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j
tri
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j = ¼ [2(1)(1) + 0(1)(1) + 0(1)(1) + 2(1)(1)] 

        = 4/4  giving that A1 appears once in str 
 

The stretching normal modes are str = A1 + B2, giving two stretching modes with two distinct 
vibration frequencies. Since all the modes include vib = 2A1 + B2, the remaining is a bending 
mode of A1 symmetry. These results agree with Figure 27.8.7. 
(c). Referring to the C2v character table, the x, y, and z-components of the transition dipole 
moment transform as B2, B1, and A1, respectively. The quadratic products, such as z2 and xy, 
cover all four irreducible representations, giving all the normal modes as possibly Raman active. 
As consequence, all the normal modes are both IR and Raman active, which confirms Table 
27.1.1. 
 
 
40.  Use group theory to determine the symmetry species of the normal modes of BF3, using the 
corresponding approach to the all-mode vibrational analysis in Figure 27.8.10. The symmetry 
species are the irreducible representations of the normal modes. Determine which irreducible 
representations correspond to stretches and which to bending vibrations. [Hint: for determining 
the symmetry of a trigonal planar molecule, the S3 improper rotations act just like C3 proper 
rotations, since all atoms lie in the h-plane.] 
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Answer:  The plan is to use the D3h character table to decompose the reducible representation of 
the normal modes. We will find 3N – 6 = 6 normal and expect three stretching vibrations, since 
there are three bonds. 
   The geometry and character table for D3h are shown below. The characters of the 
representations of the translations, trans = x+y+z = A2"+E', and the rotations, rot = A2'+E", 
are appended to the end of the character table. 
 

 
 

D3h E 2C3 3C2 h 2S3 3v h = 12  
A1' 1 1  1  1 1  1 x2+y2, z2  

A2' 1 1 -1  1 1 -1  Rz 

E' 2 -1  0  2 -1  0 (x, y),(xy, x2–y2)  
A1" 1 1  1 -1 -1 -1   
A2" 1 1 -1 -1 -1  1 z  
E" 2 -1  0 -2  1  0 (xz, yz) (Rx,Ry) 
trans 3 0 -1  1 -2  1 trans = A2"+E'  
rot 3 0 -1 -1  2 -1 rot = A2'+E"  

 

The number of stationary atoms is multiplied by the corresponding character of the translations 
and then the characters of the translations and rotations are subtracted to give the total reducible 
representation of the vibrations. The complete decomposition is shown below. Note that once 
you reach six total modes, you can stop. So the decomposition for E" is not necessary, but we 
included it for practice. 
 

D3h   E 2C3 3C2 h 2S3 3v            ai 

station. atoms 4  1  2 4  1  2   
trans 3  0 -1 1 -2  1 product  
tot 12  0 -2  4 -2  2   
trans 3  0 -1  1 -2  1 subtract  
rot 3  0 -1 -1  2 -1 subtract  
vib 6  0 -4 4 -2  2 tot-trans-rot  
A1' 1  1  1  1  1  1  1/h(vibA'1) = 12/12  A'1 
A2' 1  1 -1  1  1 -1  1/h(vibA'2) = 0 
E' 2 -1  0  2 -1  0  1/h(vibE')  = 24/12  2E' 
A1" 1  1  1 -1 -1 -1  1/h(vibA"1) = 0 
A2" 1  1 -1 -1 -1  1  1/h(vibA"2) = 12/12  A"2 
E" 2 -1  0 -2  1  0  1/h(vibE") = 0 

 
For example, the decomposition for the A1' irreducible representation is based on Eq. 27.8.2: 
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   a1 = 1/h 
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j = 1/12 [6(1)(1) + 0(1)(2) + (-4)(1)(3) + 4(1)(1) + (-2)(1)(2) + 2(1)(3)] 

        = 12/12  giving that A1' appears once in vib 
 

The decomposition for the A2' irreducible representation is: 
 

   a2 =  1/12 [6(1)(1) + 0(1)(2) + (-4)(-1)(3) + 4(1)(1) + (-2)(1)(2) + 2(-1)(3)] 

        = 0  giving that A2' does not appear in vib 
 

The normal modes decompose as vib = A1' + 2E' + A2", giving six modes with four vibration 
frequencies, as listed in Table 27.7.1. Because E normal modes are doubly degenerate, the two 
different A1-modes and the two different sets of E'-modes give six total normal modes as 
expected from the 3N-6 rule. The A1' mode is Raman active, the E' modes are both IR and 
Raman active, and the A2" mode is IR active. The next step is to determine the stretching modes. 
The bending modes are then obtained by difference with the overall total. 
   The molecule is redrawn with double-headed arrows replacing each bond. The number of 
arrows that are stationary under the transformation operations of the classes of the point group 
are determined. The stretching analysis for BF3 is listed below. 

 

 
 

D3h   E 2C3 3C2 h 2S3 3v      ai 

stationary arrows: str 3  0  1 3  0  1  
A1' 1  1  1  1  1  1 1/h(strA'1) = 12/12  A'1 
A2' 1  1 -1  1  1 -1 1/h(strA'2) = 0 
E' 2 -1  0  2 -1  0 1/h(strE')  = 12/12  E' 
A1" 1  1  1 -1 -1 -1 1/h(strA"1) = 0 
A2" 1  1 -1 -1 -1  1 1/h(strA"2) = 0 
E" 2 -1  0 -2  1  0 1/h(strE") = 0 

 
The decomposition for the A1' irreducible representation is: 

   a1 = 1/h 
6


j = 1

 s
j
tri
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i
r
,
r
j = 1/12 [3(1)(1) + 0(1)(2) + (1)(1)(3) + 3(1)(1) + (0)(1)(2) + 1(1)(3)] 

        = 12/12  giving that A1' appears once in str 
 

The stretching normal modes are str = A1' + E', giving three stretching modes with two vibration 
frequencies. Since all the modes include vib = A1' + 2E' + A2", the remaining bending modes are  
E' + A2". This result verifies the listing in Table 27.7.1. 
 
 

v F F 
v 

v 
F 

h 

B 



Chapter 27: Rotational and Vibrational Spectroscopy 35 
 

41.  (a). Use group theory to determine the symmetry species of the normal modes of T-shaped 
ClF3, using the corresponding approach to the all-mode vibrational analysis in Figure 27.8.10. 
The symmetry species are the irreducible representations of the normal modes. (b). Determine 
which irreducible representations correspond to stretches and which to bending vibrations. (c). 
Can the number of IR and Raman active bands distinguish between trigonal-planar and T-shaped 
geometries for ClF3? [Hint: Use Table 27.7.1 for the symmetry species of a trigonal planar XY3 
moleucle.] 
 
 
Answer:  The plan is to use the C2v character table to decompose the reducible representation of 
the normal modes. We will find 3N – 6 = 6 normal and expect three stretching vibrations, since 
there are three bonds. 
   The geometry and character table for C2v are shown below. The characters of the 
representations of the translations, trans = x+y+z = A1+B1+B2, and the rotations rot = 
A2+B1+B2, are appended to the end of the character table. 
 

 
 

C2v E C2 v v' h = 4  
A1 1  1  1  1 z, z2, x2,y2  

A2 1  1 -1 -1 xy Rz 

B1 1 -1  1 -1 y, yz Rx 
B2 1 -1 -1  1 x, xz Ry 
trans 3 -1  1  1 trans = A1+B1+B2  
rot 3 -1 -1 -1 rot = A2+B1+B2  

 
(a). The number of stationary atoms is multiplied by the corresponding character of the 
translations and then the characters of the translations and rotations are subtracted to give the 
total reducible representation of the vibrations. The complete decomposition is shown below. 
 

C2v   E C2 v v'            ai 

stationary atoms 4  2 2  4   
trans 3 -1 1  1 product  
tot 12 -2  2  4   
trans 3 -1  1  1 subtract  
rot 3 -1 -1 -1 subtract  
vib 6 0 4  2 tot-trans-rot  
A1 1  1  1  1  1/h(vibA1) = 12/4  3A1 
A2 1  1 -1 -1  1/h(vibA2) = 0 
B1 1 -1  1 -1  1/h(vibB1) = 8/4  2B1 

B2 1 -1 -1  1  1/h(vibB2) = 4/4  B2 
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For example, the decomposition for the A1 irreducible representation is based on Eq. 27.8.2: 

 a1 = 1/h 
4
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j = 1/4[6(1)(1) + 0(1)(1) + 4(1)(1) + 2(1)(1)] 

     = 12/4  giving that A1 appears three times in vib 
 

The decomposition for the A2 irreducible representation is: 
 

 a2 = 1/4[6(1)(1) + 0(1)(1) + 4(-1)(1) + 2(1)(-1)] 

     = 0  giving that A2 does not appear in vib 
 

The normal modes decompose as vib = 3A1 + 2B1 + B2, giving six modes with six vibration 
frequencies. All the normal modes are both IR and Raman active. The next step is to determine 
the stretching modes. The bending modes are then obtained by difference with the overall total. 
(b).  The molecule is redrawn with double-headed arrows replacing each bond. The number of 
arrows that are stationary under the transformation operations of the classes of the point group 
are determined. The stretching analysis for ClF3 is listed below. 

 

 
 

C2v   E C2 v v'      ai 

stationary arrows: str 3  1 1  3  
A1 1  1  1  1 1/h(strA1) = 8/4  2A1 
A2 1  1 -1 -1 1/h(strA2) = 0 
B1 1 -1  1 -1 1/h(strB1) = 0 
B2 1 -1 -1  1 1/h(strB2) = 4/4  B2 

 

The decomposition for the A1 irreducible representation is: 

   a1 = 1/h 
4
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j = 1/4[3(1)(1) + 1(1)(1) + 1(1)(1) + 3(1)(1)] 

        = 8/4  giving that A1 appears twice in str 
 

The stretching normal modes are str = 2A1 + B2, giving three stretching modes with three 
vibration frequencies. Since all the modes include vib = 3A1 + 2B1 + B2, the remaining bending 
modes are A1 + B1 + B2. Note that formaldehyde, CH2=O, is also planar tetra-atomic C2v and 
therefore gives the same normal mode results. 
(c). Referring to the C2v character table, the x, y, and z-components of the transition dipole 
moment transform as B2, B1, and A1, respectively. The quadratic products, such as z2 and xy, 
cover all four irreducible representations, giving all normal modes as possibly Raman active. As 
a consequence, all the normal modes are both IR and Raman active. 
   Yes, the number of IR and Raman active bands does distinguish between trigonal-planar and 
T-shaped geometries for ClF3. From Table 27.7.1, for trigonal-planar D3h XY3 molecules there 
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are three IR and three Raman transitions. From the analysis above, all normal modes of C2v XY3 
molecules are both IR and Raman active. 
 
 
42.  (a). Use group theory to determine the symmetry species of the normal modes of square-
planar XeF4, using the corresponding approach to the all-mode vibrational analysis in Figure 
27.8.10. The symmetry species are the irreducible representations of the normal modes. (b). 
Determine which irreducible representations correspond to stretches and which to bending 
vibrations. (c). Determine the IR and Raman activity of the modes. The projection of the 
symmetry operations of the D4h point group upon XeF4 is shown below. [Hints: There are two C4 
axes, one for clockwise and one for counterclockwise rotation. The C2 axis is coincident with the 
C4 axis, while the C2' and C2" are perpendicular to the C4 axes. The C2 axis is required for 
mathematical completeness and is equivalent to two successive C4 rotations in the same 
direction. For determining the symmetry of a square-planar molecule, the S4 improper rotations 
act just like C4 proper rotations, since all atoms lie in the h-plane.] 
 

 
 
 
Answer:  The plan is to use the D4h character table to decompose the reducible representation of 
the normal modes. We will find 3N – 6 = 9 normal modes and expect four stretching vibrations, 
since there are four bonds. 
(a).  The character table for D4h is shown below. The characters of the representations of the 
translations, trans = x+y+z = A2u+Eu, and the rotations, rot = A2g+Eg, are appended to the end 
of the character table. 
 

D4h E 2C4 C2 2C2' 2C2" i 2S4 h 2v 2d h = 16  
A1g 1  1  1  1  1  1  1  1  1  1 x2+y2, z2  

A2g 1  1  1 -1 -1  1  1  1 -1 -1  Rz 

B1g 1 -1  1  1 -1  1 -1  1  1 -1 (x2–y2)  
B2g 1 -1  1 -1  1  1 -1  1 -1  1 xy  
Eg 2  0 -2  0  0  2  0 -2  0  0 (xz, yz) (Rx,Ry) 
A1u 1  1  1  1  1 -1 -1 -1 -1 -1   
A2u 1  1  1 -1 -1 -1 -1 -1  1  1 z  
B1u 1 -1  1  1 -1 -1  1 -1 -1  1   
B2u 1 -1  1 -1  1 -1  1 -1  1 -1   
Eu 2  0 -2  0  0 -2  0  2  0  0 (x,y)  
trans 3  1 -1 -1 -1 -3 -1  1  1  1 trans = A2u+Eu  
rot 3  1 -1 -1 -1  3  1 -1 -1 -1 rot = A2g+Eg  
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The number of stationary atoms is multiplied by the corresponding character of the translations 
and then the characters of the translations and rotations are subtracted to give the total reducible 
representation of the vibrations. The complete decomposition is shown below. 
 

D4h E 2C4 C2 2C2' 2C2" i 2S4 h 2v 2d      ai 

stat. atms 5  1  1  3  1  1  1  5  3  1  
trans 3  1 -1 -1 -1 -3 -1  1  1  1 product 
tot 15  1 -1 -3 -1 -3 -1  5  3  1  
trans  3  1 -1 -1 -1 -3 -1  1  1  1 subtract 
rot  3  1 -1 -1 -1  3  1 -1 -1 -1 subtract 
vib  9 -1  1 -1  1 -3 -1  5  3  1  
A1g  1  1  1  1  1  1  1  1  1  1 1/h(vibA1g) = 16/16  A1g 
A2g  1  1  1 -1 -1  1  1  1 -1 -1 1/h(vibA2g) = 0 
B1g  1 -1  1  1 -1  1 -1  1  1 -1 1/h(vibB1g) = 16/16  B1g 
B2g  1 -1  1 -1  1  1 -1  1 -1  1 1/h(vibB2g) = 16/16  B2g 
Eg  2  0 -2  0  0  2  0 -2  0  0 1/h(vibEg) = 0 
A1u  1  1  1  1  1 -1 -1 -1 -1 -1 1/h(vibA1u) = 0 
A2u  1  1  1 -1 -1 -1 -1 -1  1  1 1/h(vibA2u) = 16/16  A2u 
B1u  1 -1  1  1 -1 -1  1 -1 -1  1 1/h(vibB1u) = 0 
B2u  1 -1  1 -1  1 -1  1 -1  1 -1 1/h(vibB2u) = 16/16  B2u 
Eu  2  0 -2  0  0 -2  0  2  0  0 1/h(vibEu) = 32/16  2Eu 

 
For example, the decomposition for the A1g irreducible representation is based on Eq. 27.8.2: 
 

 a1 = 1/h 
10


j = 1

 v
j
ibi

i
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,
r
j Ci

i
r
,
r
j  

     = 1/16 [9(1)(1) + (-1)(1)(2) + 1(1)(1) + (-1)(1)(2) + 1(1)(2) + (-3)(1)(1) + (-1)(1)(2) +  
               5(1)(1) + 3(1)(2) +1(1)(2)] 
    = 16/16  giving that A1g appears once in vib 
 

The decomposition for the A2g irreducible representation is: 
 

 a2 = 1/16 [9(1)(1) + (-1)(1)(2) + 1(1)(1) + (-1)(-1)(2) + 1(-1)(2) + (-3)(1)(1) + (-1)(1)(2) + 
     5(1)(1) + 3(-1)(2) +1(-1)(2)] 
    = 0   giving that A2g does not appear in vib 
 

The normal modes decompose as vib = A1g + B1g + B2g + A2u + B2u + 2Eu, giving nine vibration 
frequencies. Because the Eu normal modes are doubly degenerate, the two different sets of Eu-
modes give nine total normal modes as expected from the 3N-6 rule. The next step is to 
determine the stretching modes. The bending modes are then obtained by difference with the 
overall total. 
(b).  The molecule is redrawn with double-headed arrows replacing each bond. The number of 
arrows that are stationary under the transformation operations of the classes of the point group 
are determined. The stretching analysis for XeF4 is listed below. 
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D4h E 2C4 C2 2C2' 2C2" i 2S4 h 2v 2d      ai 

stationary 
arrows 

4  0  0  2  0  0  0  4  2  0  str 

A1g  1  1  1  1  1  1  1  1  1  1 1/h(vibA1g) = 16/16  A1g 
A2g  1  1  1 -1 -1  1  1  1 -1 -1 1/h(vibA2g) = 0 
B1g  1 -1  1  1 -1  1 -1  1  1 -1 1/h(vibB1g) = 16/16  B1g 
B2g  1 -1  1 -1  1  1 -1  1 -1  1 1/h(vibB2g) = 0 
Eg  2  0 -2  0  0  2  0 -2  0  0 1/h(vibEg) = 0 
A1u  1  1  1  1  1 -1 -1 -1 -1 -1 1/h(vibA1u) = 0 
A2u  1  1  1 -1 -1 -1 -1 -1  1  1 1/h(vibA2u) = 0 
B1u  1 -1  1  1 -1 -1  1 -1 -1  1 1/h(vibB1u) = 0 
B2u  1 -1  1 -1  1 -1  1 -1  1 -1 1/h(vibB2u) = 0 
Eu  2  0 -2  0  0 -2  0  2  0  0 1/h(vibEu) = 16/16  Eu 

 

The decomposition for the A1g irreducible representation is: 
 

 a1 = 1/h 
10


j = 1

 s
j
tri

i
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j Ci

i
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,
r
j = 1/16 [4(1)(1) + 0(1)(2) + 0(1)(1) + 2(1)(2) + 0(1)(2) + 0(1)(1) +  

       0(1)(2) + 4(1)(1) + 2(1)(2) + 0(1)(2)] 
     = 16/16  giving that A1u appears once in str 
 

The stretching normal modes are str = A1g + B1g + Eu, giving four stretching modes with three 
vibration frequencies. Since all the modes include vib = A1g + B1g + B2g + A2u + B2u + 2Eu, the 
remaining bending modes are B2g + A2u + B2u + Eu. 
 
(c).  The x, y, and z-components of the transition dipole moment transform as Eu, Eu, and A2u 
respectively. The quadratic products, such as z2 and (x2 – y2), transform as A1g, B1g, B2g, and Eg. 
Note that for a molecule with a center of symmetry, the x, y, z-components of the transition 
dipole all transform as “u” irreducible representations while the polarizability components 
transform as “g” irreducible representations, verifying the Exclusion rule. As a consequence, the 
A2u and both Eu normal modes are possibly infrared active, while the A1g, B1g, and B2g are 
possibly Raman active. The B2u is forbidden in both infrared absorption and Raman scattering. 
 
 
43.  The normal mode vibrations of a square-planar XY4 molecule transform as vib = A1g + B1g 
+ B2g + A2u + B2u + 2Eu. The normal mode vibrations of a tetrahedral XY4 transform as vib = A1 
+ E + 2T2. For molecules such as CH4 or XeF4, are square-planar XY4 and tetrahedral XY4 
geometries distinguishable on the basis of the number of IR and Raman active modes? 
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Answer:  The plan is to use the D4h and Td character tables, Table 27.8.2 in the data section, to 
determine if each normal mode is IR or Raman active. This decision is based on the 
transformation properties of alternatively: the x, y, z-components of the electric transition dipole 
moment for IR and the quadratic components of the polarizability for the Raman transitions. 
   Note that E-modes are doubly degenerate, while T-modes are triply degenerate. Each mode 
within the degenerate set have the same transition frequency. 
   For square-planar D4h molecules, the x, y, and z-components of the transition dipole moment 
transform as Eu, Eu, and A2u respectively. The quadratic products, such as z2 and (x2 – y2), 
transform as A1g, B1g, B2g, and Eg. With overall vib = A1g + B1g + B2g + A2u + B2u + 2Eu, the A2u 
and both doubly-degenerate Eu normal modes are possibly infrared active, while the A1g, B1g, 
and B2g are possibly Raman active. The B2u is forbidden in both infrared absorption and Raman 
scattering. 
   For tetrahedral Td molecules, the x, y, and z-components of the transition dipole moment 
transform as T2. The quadratic products, such as xy and (x2 – y2), transform as A1, E, and T2. 
With overall vib = A1 + E + 2T2, both triply-degenerate T2 normal modes are possibly infrared 
active, while all nine modes are possibly Raman active. The B2u is forbidden in both infrared 
absorption and Raman scattering. 
   The results for a square-planar XY4 and a tetrahedral XY4 are distinguishable on the basis of 
the number of IR and Raman active modes and the corresponding distinct frequencies: 
 

Geometry 
XY4 

IR active 
(possibly) 

Raman active 
(possibly) 

IR & Raman 
forbidden 

square-planar 5 modes / 3 ~s 3 modes / 3 ~s 1 

tetrahedral 6 modes / 2 ~s 9 modes / 4 ~s 0 
 

Since square-planar molecules have a center of symmetry, no normal mode is both IR and 
Raman active, the transition frequencies are mutually exclusive. However, for tetrahedral 
molecules the T2-modes are both IR and Raman active. For tetrahedral molecules two different 
frequencies can possibly occur in both the IR and Raman. 
 
 
44.  Challenge Problem:  Determine the equilibrium bond length Re, dissociation energy D

~
e, 

Morse a-parameter, fundamental vibration frequency ~e, and anharmonicity for HF using 
molecular structure calculations at the CCSD(T)/cc-pVTZ level. Assume the potential energy 
surface is in the Morse form with Eq. 27.5.7 giving the fundamental vibration frequency and Eq. 
27.5.19 giving the anharmonicity. Calculate the dissociation energy, D

~
e, using separate 

calculations of the atomic energies of H- and F-atoms. Compare the theoretical spectroscopic 
constants with experimental literature values. [Hint: you will need to do calculations for HF at 
the geometry optimized bond length and two other values of the internuclear separation, use Re – 
0.10 Å and Re + 0.15 Å. Then fit your three data points to a Morse potential in a spreadsheet.] 
 
 
Answer: The plan to note that the bond dissociation energy is for the process 
HF  H (2S) + F(2P) with the D

~
e calculated as the difference in energy of the products and 

reactants. 
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   The minimized bond length for HF was 0.917 Å with the energy -100.3383563 H. The values 
for the two additional bond lengths and the H- and F-atoms are listed in the spreadsheet, below. 
The spreadsheet was developed to compare the electronic structure energy values to Morse 
potential values based on the calculated D

~
e, Re, and a guessed value for the Morse a-parameter. 

The Morse a-parameter, cell G3, is varied to minimize the sum of squared residuals, cell H11, 
between the electronic structure calculation data points, cells F7:F9, and the fit Morse curve, 
cells G7:G9. Goal search can be used, but because of convergence problems, we had to finish by 
hand to achieve four significant figures in a. The final fit curve is shown in the plot below. The 
electronic structure values are the solid black triangles and the Morse curve values are in hollow 
squares. The derived fit is not perfect because the potential energy curve is not exactly a Morse 
potential. 
 

A1 B C D E F G H I J 
2  Atoms E (H)  De 9.51E-19 J 5.937132 eV 
3  H -0.499809811  a 2.2804 Å -1 2.280E+10 m-1 
4  F -99.62036076  Re 0.917 Å   
5  Molecule        
6  HF R (Å) E (H) E-Emin (H) E-Emin (J) Morse (J) residual2   
7  0.817 -100.323722 0.01463 6.38E-20 6.24E-20 1.95E-42   
8  0.917 -100.3383563 0 0.00E+00 0 0   
9  1.067 -100.3203793 0.01798 7.84E-20 7.98E-20 2.12E-42   

10          
11      ssr*1E40 = 0.040649   

 
 

12     
13  M1 1.007825 g mol-1 
14  M2 18.998403 g mol-1 
15   1.59E-27 kg 
16  e 1.26E+14 s-1 
17  e 4187.455392 cm-1 
18  k 989.3258205 N m-1 
19  ee 91.57056 cm-1 
20     
21  1H = 2625.4974 kJ mol-1 
22  NA= 6.02E+23  
23  c= 3.00E+10 cm s-1 
24  h= 6.63E-34 J s 

 
 
 

 

 
 

Cell G2 for the dissociation energy is: “=(D3+D4-D8)*D21/D22*1000” 
Cell G7 for the Morse curve is: “=$G$2*(1-EXP(-$G$3*(C7-$G$4)))^2” 
Cell H7 for the first squared residual is: “=(F7-G7)^2” 
Cell H11 sums the squared residuals and multiplies by a fixed factor of 1040 to provide a 
convenient scale for the fit evaluation: “=SUM(H7:H10)*1E40” 
Cell G3 is adjusted to minimize cell H11, which at the same time provides a better fit in the plot. 
   Once the Morse a-parameter is obtained by manual curve fitting the remaining spectroscopic 
parameters are calculated. The reduced mass for HF is: 
 

 HF = 
(1.007825)(18.998403)
1.007825+18.998403  (g mol-1) 

1
NA

 (1kg/1000 g) = 1.589229x10-27 kg 

With Eq. 27.5.7, a must be converted to m-1 from Å-1 to match joule units for De: 
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 rearranging a = e





2De

½
  gives: 

 e = 
a

2 




2De



½
= 

2.2804x1010 m-1

2  



2(9.51234x10-19J)

 1.589229x10-27 kg

½
 = 1.25573x1014 s-1 

 ~e = e/c = 4187.5 cm-1 
With Eq. 27.5.18, rearranging gives: 
 

 e~e = 
a2h

82c
 = 

(2.2804x1010 m-1)2 6.6260755x10-34 J s
82(1.589229x10-27 kg)(2.99879246x1010 cm s-1)

 = 91.571 cm-1 

 

Comparison with the experimental literature values shows gratifying agreement. Using Eq. 
27.5.12, in the form D

~
o = D

~
e – ½ ~e + ¼ e~e, to put the calculated and experimental dissociation 

energies on the same basis: 
 

Parameter CCSD(T)/cc-pVTZ Experimental 
Re 0.917 Å 0.91681 Å 
Do 5.680 eV 5.86 eV 

~e 4187.5 cm-1 4138.385 cm-1 

e~e 91.571 cm-1 89.943 cm-1 

 
 
45.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a). Doppler line broadening for UV transitions is greater than for microwave transitions. 
(b). As molecules increase in size, rotational constants decrease. 
(c). The wave number for vibrational transitions increases with temperature. 
(d). In Raman scattering, the anti-Stokes lines are more intense than the Stokes lines. 
(e). Two states with the same energy always mix and transitions to the two states can share 

intensity even if otherwise forbidden. 
 
 
Answers: 
(a). True: The Doppler broadening in wave numbers or frequency is given as a fraction of the 
transition frequency, Eq. 27.2.2. 
(b). True: For example, for a diatomic molecule the B

~
 value is inversely proportional to the bond 

length. In general the moment of inertia increases with increasing size, which decreases the 
rotational constant. 
(c). False: Vibrational frequencies depend only on the quantum spacing of the energy levels, 
which does not depend on temperature. The Boltzmann population of excited states increases 
with temperature giving a change in transition intensity. As a result hot bands are more intense 
with increasing temperature. Doppler and collisional broadening increase with temperature. 
(d). False: Anti-Stokes lines originate in an excited vibrational state, which by the Boltzmann 
distribution have a much smaller population than the ground state. 
(e). Not quite true: To interact the two states must have the same symmetry. For example, anti-
symmetric stretches can only interact with overtones or combinations that are also anti-
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symmetric. As a consequence Fermi resonances aren’t as common as they would be without the 
symmetry restriction. However, the remainder of the statement is correct; with an interaction, 
transitions to the two states can share intensity even if otherwise forbidden. 
 
 
46.  The selection rule  =  1 for harmonic vibrations can also be motivated by using the odd 
or even symmetry of the integrand in the transition dipole moment integrals, Eqs. 27.9.13. Note 
that the harmonic oscillator wave functions alternate between even or odd for increasing , Table 
24.1.1 and Figure 24.2.3b. (a). Assume " for the lower level is even, use the overall even/odd 
symmetry of the integrand to note if the transition dipole vanishes for  = –2, –1, 0, +1, +2. (b). 
Assume " for the lower level is odd, use the overall even/odd symmetry of the integrand to note 
if the transition dipole vanishes for  = –2, –1, 0, +1, +2. 
 
 
Answer:  The plan is to note that the harmonic oscillator wave functions are purely odd or even, 
while the x, y, or z-component of the extension operator is odd. 
   The harmonic oscillator wave functions alternate between even and odd for increasing . The 
transition electric dipole moment is proportional to the integral given by Eqs. 27.9.13: 
 

  ' (R – Re) "  dR  
 

The integrand factors into three functions: the final harmonic oscillator wave function, the 
extension operator (R – Re), and the initial harmonic oscillator wave function. The extension 
operator is purely odd around the equilibrium position. 
 
(a). With " even, the final state is ' as given by the following table: 
 

' parity integrand overall parity transition dipole 
"– 2 even even odd even odd forbidden 
"– 1 odd odd odd even even allowed 
" even even odd even odd forbidden 
" +1 odd odd odd even even  allowed 
" +2 even even odd even odd forbidden 

 

(b). With " odd, the final state is ' as given by the following table: 
 

' parity integrand overall parity transition dipole 
"– 2 odd odd odd odd odd forbidden 
"– 1 even even odd odd even allowed 
" odd odd odd odd odd forbidden 
" +1 even even odd odd even  allowed 
" +2 odd odd odd odd odd forbidden 

 

This method doesn’t work for odd  greater than +3 or less than –3. The general integral result 
in Eq. 27.9.15 resolves those cases. 
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47.  The “ABC Rotational Constant Calculator” applet determines the moments of inertia, 
spectroscopic rotational constants, symmetry point group, and the contributions of rotation to the 
entropy and Gibbs energy of a molecule. The applet is available on the textbook Web site or on 
the companion CD. Extensive collections of molecular coordinates are available on-line and 
from molecular mechanics or electronic structure calculations. While many electronic structure 
packages determine the point group of an input molecule, the “ABC” applet has an adjustable 
tolerance that allows the point group to be determined in cases where other programs fail. Use 
the following coordinates to determine the point group and rotational constants for ethane: 
 

8 
ethane 
C -0.7704  0.0003 -0.0010 
C  0.7707 -0.0002 -0.0001 
H -1.1734  1.0280 -0.0004 
H -1.1725 -0.5129 -0.8919 
H -1.1740 -0.5148  0.8883 
H  1.1736 -1.0279 -0.0013 
H  1.1742  0.5154 -0.8891 
H  1.1728  0.5124 0.8911 

 

The list is in xyz-format. The first line is the atom count. The second line is a comment. The 
subsequent lines list the atom and the coordinates. 
 
 
Answer: The given coordinates are from a density functional minimized structure with the cc-
pTZP basis set. The above data was entered into the “ABC” applet (you need to know your 
ABC’s, afterall). The output appears as shown below. 
 

Moments of Inertia 
Ix =   25.7705 g mol-1 Ang2  or 0.42793e-45 kg m2 
Iy =   25.7693 g mol-1 Ang2  or 0.42791e-45 kg m2 
Iz =    6.3882 g mol-1 Ang2  or 0.10608e-45 kg m2 
___________________________________________ 
 Rotational constants 
Ae = 0.65414 cm-1 or 19.611 GHz or 0.94117 K 
Be = 0.65418 cm-1 or 19.612 GHz or 0.94121 K 
Ce = 2.6389 cm-1 or 79.111 GHz or 3.7968 K 
Point group D3d 
___________________________________________ 
 Thermodynamics 
qr=829.26 with sigma=6 
Rotational Entropy=68.35 J mol-1 K-1 
Translational Entropy=151.2944 J mol-1 K-1 
Trans+Rotation Gibbs Free Energy=-55.571 kJ mol-1 
============================================= 
 
 Coordinates in Principal Coordinates Frame 
___________________________________________ 
8 
ethane (pBP/TZVP in pcf 
C     0.0000    0.0000   -0.7705 
C     0.0000   -0.0000    0.7705 
H     0.5134    0.8902   -1.1738 
H    -1.0279   -0.0004   -1.1730 
H     0.5139   -0.8902   -1.1734 
H    -0.5138   -0.8898    1.1737 
H    -0.5133    0.8905    1.1734 
H     1.0279   -0.0001    1.1730 
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The point group is correctly recognized as D3d with the default tolerance; see Problem 35h. The 
moment of inertia calculations are presented in Problem 14. We will have much more to say 
about the thermodynamic values, which are for an ideal gas, in the statistical mechanics chapter. 
Translation and rotation make a significant contribution to the Gibbs energy of formation of a 
molecule. 
 
 
48.  Bending vibrations are characterized as one of four basic types of movements, Figure P27.2.  
 

 
 

Figure P27.2: Bending vibrations of methylene. Typical frequencies for small hydrocarbons 
of normal modes dominated by the given type of bend are given. 
 
 

Determine the normal modes of formaldehyde using an electronic structure calculation at the 
HF/6-31G* level (or equivalently HF/6-31G(d)). Display the “raw” numerical output files to find 
the symmetry designations. The experimental frequencies are given in Table P27.1.7 
Formaldehyde has C2v symmetry, the symmetry properties for which are given in Figure 26.6.4. 
The totally symmetric group, a1, contains the most symmetrical vibrations. The b1 and b2-groups 
are less symmetrical in the atom movements, b1 is symmetrical with respect to reflection across 
the vertical plane that runs through the C=O bond. The b1 and b2 designations may be switched 
in the calculation listing; some authors switch the symmetry labels. Compare the calculated and 
experimental frequencies, Table P27.1. Animate the normal modes to help compare the modes. 
Frequencies from ab initio calculations are normally multiplied by 0.9 to compare with 
experimental frequencies. This factor adjusts for anharmonicity. Multiply your frequencies by 
0.9; does the scaling improve the agreement with the experimental values? 
 

Table P27.1. Experimental Frequencies of the Normal Modes of Formaldehyde.7 
 

Symmetry of mode Type of mode Frequency (cm-1) 
a1 CH2 symmetric stretch 2783 strong 
 CO stretch 1746 very strong 
 CH2 scissor 1500 strong 
b1 CH2 wag 1167 strong 
b2 CH2 asymmetric stretch 2843 very strong 
 CH2 rock 1249 strong 

 
 
Answer:  The Spartan results are given below. The b1 and b2 symmetry labels are switched from 
the given data. The output also lists the thermodynamic parameters from the calculation. We will 
discuss these thermodynamic calculations in the statistical mechanics chapter. 

C 

H 

H 

Scissor 
~1450 cm-1 

C 

H  

H  
Wag 
~1250 cm-1 

C 

H  

H  

Twist 
~1250 cm

-1 

C 

H 

H 

Rock 
~720 cm

-1 
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Standard Thermodynamic quantities at 298.15 K and 1.00 atm 
 
             Term      ZPE     Enthalpy   Entropy     Cv      % in  
               cm-1    kJ/mol    kJ/mol   J/mol.K   J/mol.K  Ground IR Int. 
    --   ----------   -------   -------   -------      ---- 
  1  B2    1335.821    7.9900    0.0254    0.0984    0.5498   99.84   0.37 
  2  B1    1383.128    8.2729    0.0209    0.0807    0.4689   99.87  23.15 
  3  A1    1679.553   10.0460    0.0061    0.0229    0.1651   99.97   8.67 
  4  A1    2027.134   12.1250    0.0014    0.0051    0.0449   99.99 150.10 
  5  A1    3159.409   18.8975    0.0000    0.0000    0.0005  100.00  49.69 
  6  B1    3230.997   19.3257    0.0000    0.0000    0.0003  100.00 135.93 
    --   ----------   -------   -------   -------      ---- 
   Total Vibrations   76.6569    0.0538    0.2070    1.2295 
 
          Ideal Gas              2.4789                     
        Translation              3.7184  151.1751   12.4716 
           Rotation              3.7184   66.6145   12.4716 
         ----------             -------   -------   ------- 
             Totals             86.6265  217.9967   26.1727 
 
 Vibrational(v) Corrections: 
    Temp. Correction    Hv      86.6265   
  Entropy Correction (Hv-TSv)   21.6308   

    

The results from the full Gaussian output are shown below. The normal mode displacements are 
listed below each normal mode. These displacements are the basis of the normal mode 
animation, see Sec. . The IR and Raman relative intensities and the extent of Raman polarization 
are also listed. Notice that the non-totally symmetric normal modes are depolarized. 
 

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering 
 activities (A**4/AMU), depolarization ratios for plane and unpolarized 
 incident light, reduced masses (AMU), force constants (mDyne/A), 
 and normal coordinates: 
                     1                      2                      3 
                    B1                     B2                     A1 
 Frequencies --  1335.9812              1383.2798              1679.6943 
 Red. masses --     1.3690                 1.3442                 1.1042 
 Frc consts  --     1.4396                 1.5154                 1.8355 
 IR Inten    --     0.3667                23.1572                 8.6538 
 Raman Activ --     0.7661                 4.5093                12.8713 
 Depolar (P) --     0.7500                 0.7500                 0.5902 
 Depolar (U) --     0.8571                 0.8571                 0.7423 
 Atom AN      X      Y      Z        X      Y      Z        X      Y      Z 
   1   6     0.17   0.00   0.00     0.00   0.15   0.00     0.00   0.00   0.00 
   2   8    -0.04   0.00   0.00     0.00  -0.08   0.00     0.00   0.00   0.08 
   3   1    -0.70   0.00   0.00     0.00  -0.25  -0.65     0.00  -0.35  -0.61 
   4   1    -0.70   0.00   0.00     0.00  -0.25   0.65     0.00   0.35  -0.61 
                     4                      5                      6 
                    A1                     A1                     B2 
 Frequencies --  2027.9363              3160.0193              3231.6842 
 Red. masses --     7.2382                 1.0491                 1.1206 
 Frc consts  --    17.5385                 6.1721                 6.8951 
 IR Inten    --   150.1652                49.7347               135.9693 
 Raman Activ --     8.0997               137.6328                58.3200 
 Depolar (P) --     0.3279                 0.1828                 0.7500 
 Depolar (U) --     0.4938                 0.3090                 0.8571 
 Atom AN      X      Y      Z        X      Y      Z        X      Y      Z 
   1   6     0.00   0.00   0.58     0.00   0.00   0.06     0.00   0.10   0.00 
   2   8     0.00   0.00  -0.41     0.00   0.00   0.00     0.00   0.00   0.00 
   3   1     0.00  -0.46  -0.19     0.00   0.61  -0.35     0.00  -0.60   0.37 
   4   1     0.00   0.46  -0.19     0.00  -0.61  -0.35     0.00  -0.60  -0.37 

 
The frequencies as wave numbers are compared with and without scaling by 0.9 below: 
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Symm. Type Experiment (cm-1) HF/6-31G* 0.9*HF/6-31G* % difference 

a1 CH2 symm. Str. 2783 3160.0 2844.0 2.2 

 CO stretch 1746 2027.9 1825.1 4.5 

 CH2 scissor 1500 1679.7 1511.7 0.8 

b1 CH2 wag 1167 1336.0 1202.4 3.0 

b2 CH2 asymm. Str. 2843 3231.7 2908.5 2.3 

 CH2 rock 1249 1383.3 1245.0 -0.3 
 

The factor of 0.9 scaling, which takes into account anharmonicity, improves the agreement. 
More precise scaling factors are available for specific ab initio levels. If you have covered the 
group theory section, notice that all the modes are both IR and Raman active as expected from 
the C2v symmetry. However, the predicted intensity of the 1167 cm-1 wag is smaller than 
expected compared to the experimental spectrum. 
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