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Chapter 27: Rotational and Vibrational Spectroscopy 
 
Calculate the equilibrium bond length and force constant for H35Cl using infrared absorption. 
 
   Light absorption, emission, and scattering are the primary tools for molecular structure 
determination. Spectroscopically determined structure parameters include equilibrium bond 
lengths, angles, force constants, and bond dissociation energies. Spectroscopy and molecular 
structure calculations are complimentary tools for molecular structure determination. Molecular 
structure methods are compared and validated based on agreement with experimentally 
determined structure and bond strength measures; for examples see Tables 26.2.1 and 26.4.2. In 
addition, spectroscopic constants are used for the statistical mechanical calculation of 
thermodynamic parameters, which include internal energy, enthalpy, entropy, Gibbs energy, and 
equilibrium constants. For ideal-gas reactions, equilibrium constants are calculated more 
accurately from spectroscopic constants than possible using concentration measurements in the 
laboratory. Spectroscopic methods are also important tools for the determination of the 
concentration and distribution of chemical substances in the atmosphere, surface waters, marine 
environments, and interstellar space. The use of spectroscopic techniques for molecular structure 
determination is covered in the next three chapters. A subsequent chapter then discusses the use 
of spectroscopic constants to determine thermodynamic parameters. 
   We begin with an overview of spectroscopy, followed by a detailed discussion of rotational 
and vibrational techniques. A photon is a powerful probe of nature. 
 
27.1 Spectroscopy in General: The Intensity of Spectroscopic Transitions 
 

   A spectrum is a plot of the light absorption or emission as a function of wave length, wave 
number, or frequency. The characteristic features of a light absorption or emission spectrum 
include the band positions, widths, and intensities. The band positions correspond to transitions 
between allowed quantum states of the system: 
 

 E = h = hc/ = hc~  ~ = E/hc   = ~c           (8.10.2, 23.2.7)  27.1.1 
 

The quantum states can be for rotation alone, for rotation and vibration, or for rotation, vibration, 
and electronic degrees of freedom (please review Section 2.4). In magnetic resonance 
spectroscopy, the quantum states involve intrinsic nuclear or electron spin transitions. The 
transition wave lengths or wave numbers are a “map” of the quantum states of the system. The 
widths of the transitions are determined by molecular motion and the intrinsic line width, Eq. 
23.4.47. The intensity of the transitions is determined by the concentration, the population of the 
states involved in the transition, and the intrinsic absorption probability. Consider first the 
intensity a transition. 
   The absorbance of a sample is proportional to the concentration through the Beer-Lambert 
Law, Eq. 2.4.8: A = l[c]. The molar absorption coefficient, , is a function of temperature and a 
strong function of frequency or wave length, which is explicitly expressed as () or (). The 
molar absorption coefficient varies from zero to a maximum at the frequency or wave length of 
maximum absorption, max or max. The molar absorption coefficient is an intrinsic measure of 
the ability of a molecule to absorb light, independent of concentration, which is our focus in the 
following discussion. 
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   Three processes are active in light absorption. Consider a two-level system with the number of 
molecules in the lower state No at energy o and the number of molecules in the upper state N1 at 
energy 1, Figure 27.7.1. The absorption frequency and emission frequencies are given by E = 
h = 1 – o. The absorption of a photon promotes a molecule in the lower state into the upper 
state by a second-order kinetic process. The rate of absorption is proportional to the number of 
molecules in the lower state, the Einstein absorption coefficient B10, and the radiation energy 
density (): rate = B10 () No. The absorption coefficient B10 is the probability of light 
absorption per molecule. Analogous to chemical kinetics, B10 is the rate constant for 
absorption. The radiation energy density, (), plays the role of the concentration of the light 
energy in a narrow band of frequencies near . The radiation energy density is proportional to the 
square of the electric field strength and has units of joule seconds per unit volume, J s m-3. The 
upper state loses population through stimulated emission and spontaneous emission. In 
stimulated emission, the incident light interacts with the excited molecule and causes the 
emission of an additional photon, returning the molecule to the lower state. The incident light is 
not absorbed. The rate of stimulated emission is proportional to the number of molecules in the 
upper state, the Einstein stimulated emission coefficient B10, and the radiation energy density 
(): rate = B10 () N1. Spontaneous emission occurs in the presence and absence of incident 
light and depopulates the excited state with the emission of a photon. Fluorescence and 
phosphorescence are examples of spontaneous emission. The rate of spontaneous emission is 
inversely proportional to the spontaneous emission lifetime, sp. The rate of spontaneous 
emission is proportional to the number of molecules in the upper state and the Einstein 
spontaneous emission coefficient, A10 = 1/sp. The net absorption rate is given by the net 
change in population of the excited state, balancing the three coupled kinetic processes: 
 

 
dN1

dt  = B10 () No   –  B10 () N1   –  A10 N1     27.1.2 

   absorption        stimulated emission     spontaneous emission 
 
 
 
 
 
 
 
 
 
 (a). absorption        (b). stimulated emission  (c). spontaneous emission 
 

Figure 27.1.1:  Light absorption, stimulated emission, and spontaneous emission are first-
order kinetic processes. The rate of energy absorption is the net effect of the three processes. 

 
 

By convention, an absorption transition is given as upperlower, while an emission transition is 
given as upperlower. We will show in the Section 27.9 that the Einstein coefficients for 
absorption and stimulated emission are equal: B10 = B10. For many experiments the rate of 
spontaneous emission is small compared to the rate of stimulated emission, giving the net rate of 
absorption as proportional to the population difference, from Eq. 27.1.2: 
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  net rate = 
dN1

dt   B10 () [No – N1]  (spontaneous<<stimulated) 27.1.3 
 

In other words, light causes transitions in both directions. Absorption and spontaneous emission 
are always in competition, with the net result determined by the population difference. At 
equilibrium, the populations are given by the Boltzmann distribution at ambient temperature T. 
At the start of an experiment, the population is at thermal equilibrium and the absorption 
intensity is maximal. After the external light source, with sufficient intensity, has been on for a 
long period, the population of the two-levels equalizes, N1 = No. No net absorption results. The 
state with equal populations and vanishing absorption is said to be saturated. 
   The molar absorption coefficient, () at the absorption frequency , is proportional to the rate 
of energy absorption and correspondingly, the population difference of the initial and final states 
of the transition, Eq. 27.1.3. The population difference, at equilibrium, is given by the Boltzmann 
distribution, Eqs. 8.10-4-8.10.8. For convenience, the energy scale is shifted so that the initial 
level is defined as zero energy and the final state is at energy  = 1 – o = h: 
 

 ()  No – N1  po – p1  
N
q  ( )e–0/kT – e–/kT   1 – e–/kT   (equilibrium)  27.1.4 

 

where po and p1 are the probabilities of occupation of the two levels, N is the total number of 
molecules, q is the probability-normalization constant (partition function), k is Boltzmann’s 
constant, T is the absolute temperature, and kT is the available thermal kinetic energy per 
molecule. At room temperature, kT = 207.2 cm-1 or RT  2.5 kJ mol-1. Transitions with larger  
compared to kT have greater intensity. Nuclear magnetic resonance transitions are in the radio-
frequency region near 100 MHz or ~0.0033 cm-1. Rotational transitions occur over a broad range 
in the microwave region near 10 GHz or ~0.33 cm-1.  Fundamental vibrational transitions are in 
the mid- and far-infrared region, 4000-30 cm-1. Electronic transitions are in the UV-visible 
region, roughly from 900-100 nm, with 300 nm corresponding to 33,000 cm-1. As a consequence 
the population differences are greatest in the UV-visible and smallest for NMR, Figure 27.1.2. 
NMR is an insensitive technique requiring high concentrations, typically in the ~0.1 M range, 
while typical concentrations for UV-visible spectroscopy are in the 10-5 M range. 
 
 

 
Figure 27.1.2: Spectroscopic transitions with large energy differences have large population 
differences and give intense absorption bands. Probability differences, po – p1, are given at 
room temperature, kT = 207.2 cm-1. The NMR population difference is only 15 in 1 million. 
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Selection Rules Predict the Occurrence of Transitions: After having accounted for concentration 
and population differences, the intrinsic probability of photon absorption by a transition between 
quantum states is related to the ability of a molecule to interact with the electric field of light. 
The interaction is represented by the B10 () and B10 () factors in Eq. 27.1.2. For the 
oscillating electric field of light to interact with the molecule, the molecule must present an 
oscillating electric field resulting from the motion under study. When the frequency of the 
oscillating electric field of the light is equal to the frequency of the oscillating electric field 
caused by the molecule, energy can be exchanged between light field and the molecule. Consider 
the absorption of a photon by a rotating molecule. To present an oscillating electric field upon 
rotation, a molecule must have a permanent dipole moment. Molecules such as HCl, CO, and 
CHCl3 give rotational absorption spectra, while symmetrical molecules such as O2, N2, and CCl4 
do not. The permanent dipole moment of a molecule is given by the expectation value of the 
electric dipole moment operator: 
 

 ̂ = ̂el + ̂nuclei =  – 
i=1

n

 e r
̂

i + 
j=1

m

 qj r
̂

j       27.1.5 

          electrons   nuclei 
 

where the sums are taken over the coordinates of each of the n-electrons, r


i, and each of the m-
nuclei, r


j. The charge on each nucleus j is qj = Zje. The permanent dipole moment is then: 

 

 <̂> =  *
el (

̂
el + ̂nuclei) el d       27.1.6 

 

where el is the electronic wave function of the molecule. The requirement of a dipole moment 
for rotational absorption spectroscopy is an example of a selection rule. Each form of 
spectroscopy has a corresponding selection rule. 
 
The Transition Dipole Moment Involves the Initial and Final States: The intensity of an 
absorption or emission transition from the initial state i to the final state j is proportional to 
the square of the transition dipole moment. The transition dipole moment, tr, is: 
 

 tr = <> =  *
j  
̂

 i d      (ji)  27.1.7 
 

Using the Born-Oppenheimer approximation, the wave functions are the products of the 
molecular orbital, vibrational, and rotational wave functions: i = el,i vib,i rot,i. Specifically 
for a diatomic molecule, the vibrational wave functions in the harmonic approximation are given 
by Eq. 24.2.18, (R) = NHe–½2(R–Ro)2.  The rotational wave functions in the rigid-rotor 
approximation are given by the spherical harmonics, YJ,mJ

(,), Table 24.5.1, giving: 
 

 tr = <> =  [el,j '(R)YJ',mJ'(,)]* ̂ el,i "(R)YJ",mJ"(,) d   27.1.8 
 

where the initial quantum numbers for vibration and rotation are " and J" and the final quantum 
numbers are ' and J'. Transitions with a non-zero transition dipole moment are called allowed 
transitions. A vanishing transition dipole moment gives a forbidden transition. Selection rules 
allow us to determine if the transition dipole moment is non-zero. 
   For rotational spectroscopy, the initial and final electronic and vibrational states are identical, 
el,j = el,i and ' = ". The requirement of a non-vanishing transition dipole moment reduces to 
the restriction of a non-zero permanent dipole moment, Eq. 27.1.6. The selection rule based on 
the presentation of an oscillating electric field is called the gross selection rule. Eq. 27.1.7 also 
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gives rise to specific selection rules, which are based on the conservation of angular momentum. 
Photons carry unit angular momentum with projection mS = 1. To conserve angular momentum 
upon absorption of a photon, the angular momentum of the molecule must change in 
compensation. The specific selection rule for rotational spectroscopy is J = 1. Different forms 
of spectroscopy have different selection rules. 
   For vibrational spectroscopy, the initial and final electronic states are identical, el,j = el,i. For 
a diatomic molecule, the integral in Eq. 27.1.7 involves integration over the internuclear 
distance, R. However, the electronic and vibrational wave functions both depend on the 
internuclear separation. To complete the integral, we expand the dipole moment in a power series 
around the equilibrium internuclear bond length, Re: 
 

  = (Re) + 

d

dR Re

(R – Re) + 
1
2 


d2

dR2
Re

(R – Re)2 + … (vibration,diatomic) 27.1.9 

 

The derivatives are evaluated at the equilibrium internuclear distance. The first term is the dipole 
moment at the equilibrium internuclear positions. The transition dipole moment then separates 
into a corresponding series of terms: 
 

 tr = (Re)  ' "  dR + 

d

dR Re

 ' (R – Re) "  dR + … (vibration,diatomic) 27.1.10 

 

The first term is zero because the vibrational wave functions are orthogonal. The first derivative 
of  gives the dominant contribution to the transition intensity. The final result is that for 
absorption of a photon the dipole moment of the molecule must change with changing 
internuclear separation: 
 

 

d

dR Re

 0      (vibration,dipole allowed) 27.1.11 
 

Vibrational absorption-transitions occur in the infrared region of the spectrum. Homonuclear 
diatomics, such as O2, N2, and Cl2, cannot have a changing dipole moment and are transparent in 
the infrared. Heteronuclear diatomics, such as CO and NO, have a dipole allowed stretching 
transition and are correspondingly IR-active, allowed. In polyatomic molecules, some vibration 
normal modes fulfill the gross selection rule and some do not. For polyatomics, the R is Eqs. 
27.1.9-27.1.11 is replaced by the progress of the normal mode, Eq. 8.11.32. For symmetric, 
linear triatomics, such as CO2, the asymmetric stretch and the two degenerate bends have a 
changing dipole moment and are IR-active. However, the symmetric stretch of symmetrical 
linear molecules is IR-inactive, forbidden, Figure 27.1.3a. The albedo of the earth is increased 
by the absorption and reemission of infrared light by the asymmetric stretch and bending 
vibrations of CO2 in the atmosphere. For bent triatomics, all normal modes are infrared active, 
Figure 27.1.3b. Water is also a greenhouse gas. 
   Evaluation of the integral  ' (R – Re) " dR, in Eq. 27.1.10, gives that for purely harmonic 
potentials only transitions between adjacent vibrational levels are allowed,  = 1. As for the 
specific selection rule, most molecules have singlet ground states with no net angular 
momentum, for which the rule remains the same as for rotational spectroscopy, J = 1. In other 
words, to conserve angular momentum the rotational state must change along with the 
vibrational state. For molecules with a coupled state that has net angular momentum, e.g. 2, the 
specific selection rule is J = 0, 1. 
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   For electronic spectroscopy, the transition dipole moment requires that the dipole moment of 
the molecule must change in the electronic transition between the initial state i and the 
final state f. For electronic spectra the transition dipole moment places no restrictions on the 
vibrational or rotational transitions, except that the specific selection rule requires the 
conservation of angular momentum. For a common case of transitions between singlet electronic 
states with no net orbital angular momentum, J = 1. For transitions that involve non-zero total 
angular momentum, then J = 0, 1. We investigate electronic spectroscopy in detail in the next 
chapter. 
 
 
 
 
 
  (a). Symmetric stretch Asymmetric stretch       Bend     Bend 
    IR-inactive        IR-active     IR-active  IR-active 
 
 
 
 
 
 
  (b).  Symmetric stretch   Asymmetric stretch   Bend 
       IR-active          IR-active   IR-active 
 

Figure 27.1.3: The gross selection rule for vibrational absorption is a changing dipole 
moment with internuclear separation. (a). The symmetric stretch for CO2 is IR-inactive. (b). 
All normal modes of bent triatomics are IR-active; for example H2O, SO2, and NO2. 

 
 
In summary, the presence or absence of spectroscopic transitions is a probe of molecular 
symmetry. On the other hand, the width of spectroscopic transitions is a sensitive probe of 
molecular motion. 
 
27.2 The Width of Spectroscopic Transitions 
 

    Intrinsic Lifetime Broadening is Determined from the Heisenberg Uncertainty:  Intrinsic 
lifetime broadening is always active in spectroscopic transitions, Eqs. 23.4.45-23.4.48. The 
lifetime of the stationary state of the molecule is determined by the interaction of the isolated 
molecule with the surrounding light field. The shorter the lifetime, the broader the transition, as 
dictated by the Heisenberg Uncertainty Principle, Et  ħ/2. However, broadening caused by 
molecular motion usually dominates the line width. 
 

Motion Contributes to the Width of Spectral Transitions:  In low pressure gases, the Doppler 
effect is the principal broadening mechanism. The Doppler effect is familiar as the change in 
pitch of a train whistle upon passing the listener, Figure 27.2.1. As a train approaches, the sound 
waves reach the listener with higher frequency and the pitch is higher than the stationary source. 
Each successive portion of the wave is produced closer to the listener and requires less time to 
reach the listener, compared to previous portions of the wave. As the train recedes, the sound 
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waves reach the listener with lower frequency and the pitch is lower. The shift in frequency is 
determined by the ratio of the source velocity, vsource, to the wave propagation velocity, v : 
 

 obs = ( 1  vsource/v ) o  (+ for approaching, – for receding)  27.2.1 

 
 
 
 
 
 
 

Figure 27.2.1: A sound source moving towards the observer has a higher pitch than the 
stationary source. 

 
 
In a gas, the molecules move with a distribution of molecular velocities. The observed line-width 
is the average over the motions of the molecules along the direction of wave propagation. The 
direction of propagation is assigned to the x-direction for convenience. The appropriate average 
is the root-mean-square speed in the x-direction, v–x,rms. The rms speed and the full-width at half-
maximum of a transition caused by the Doppler effect, D, are: 
 

 v–x,rms = 
kT
m   D = 2 



o

c
2kT ln(2)

m      27.2.2 
 

where o is the frequency of the stationary source, c is the speed of light, T is the absolute 
temperature, and m is the molecular mass in kg molecule-1. High temperatures increase spectral 
broadening. 
 
              

Exercise 27.2.1: Doppler Broadening 
Calculate the Doppler line width of the vibrational transition of CO2 for the asymmetric stretch at 
2565 cm-1 at room temperature. 
 
 
Answer:  The mass of CO2 is m = (44.0 g mol-1/NA)(1 kg/1000 g) = 7.307x10-26 kg. The line 
width from Eq. 27.2.2 is converted to cm-1 with ~ = /c. The square-root factor is proportional to 
the rms speed in m s-1 so the units of c in Eq. 27.2.2 are in m s-1: 
 

 ~D = 2 





~o

c  
2kT ln(2)

m  = 2 



2565 cm-1

2.998x108 m s-1  
2(1.381x10-23 J K-1)(298.2 K) ln(2)

7.307x10-26 kg  

         = 0.00478 cm-1 

 

Doppler broadening is a limiting factor for very high resolution rotational and vibrational 
spectroscopy, but not normal laboratory applications. Several techniques have been developed to 
acquire spectra with minimal Doppler broadening. 
 
              

 
 

Amtrak 212 
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   For medium and high pressure gases and for liquids, molecular collisions are the principal 
broadening mechanism. Collisions shorten the lifetime of the excited state. The relationship of 
transition width to the excited state lifetime is once again governed by the Heisenberg 
Uncertainty Principle, Et  ħ/2. The higher the pressure of a gas, the more frequent the 
collisions, the shorter the lifetime of the states, and the broader the transition. Assuming a gas-
phase two-state system, the full width at half maximum for the transition is approximately C = 
1/(T2), where T2 is the average time between collisions. The average time between collisions is 
inversely proportional to the pressure, P, giving the transition width caused by collisions as: 
 

 C  b P        (two-states) 27.2.3 
 

where b is the pressure-broadening coefficient, which is often roughly approximated as 10 MHz 
torr-1 or equivalently 0.25 cm-1 bar-1. In other words, working at ambient pressure limits the 
spectroscopic resolution to about ¼-wave number. Because collisions in liquids and solutions are 
much more frequent than gases, transitions in liquids and solutions are much broader than the gas 
phase. As a consequence most high resolution spectroscopic structure determination is done with 
low pressure gases. High resolution spectroscopy is also commonly based on Fourier transform 
techniques, rather than instruments with a scanned grating or a scanned frequency source. 
Fourier methods are generally the most efficient means of acquiring high resolution spectra. 
 
27.3 Fourier Transform Methods 
 

Fourier Transform Based Spectroscopy Gives a Multiplex Advantage:  Single detector 
spectrophotometers that generate spectra by rotating a grating or moving a slit are potentially 
high resolution, but the scanning process is usually quite slow, Figure 2.4.1. Instead, a Fourier 
transform based method is usually used to acquire spectra, typically in less time than is possible 
in high resolution scanning instruments. Fourier transform, FT, instruments maintain high 
resolution and have excellent absolute wave number and frequency accuracy. The speed of FT 
based instruments allows multiple spectra to be averaged to improve the signal-to-noise ratio. 
The signal-to-noise ratio in a spectrum improves as the square root of the number of scans that 
are averaged: s/n  Nscans. The time advantage results because FT methods acquire data on all 
frequency components in the spectrum simultaneously, instead of one frequency at a time. This 
favorable attribute is called the multiplex advantage. Instruments based on mechanically 
scanning a monochromator or frequency source are called continuous wave, or cw, instruments. 
FT methods are used in pulsed and interferometer based instruments. Pulsed FT-measurements 
are used in NMR, ESR, microwave, and ultra-fast IR and UV/Visible spectroscopy. 
Interferometer based instruments are widely used in infrared, Raman, and UV/Visible 
measurements. To simplify our discussion, we first discuss pulsed spectroscopy. 
   Pulsed measurements can be easily demonstrated. Simply bang your fist on the table at which 
you are sitting (not that you have ever thought of doing so while studying PChem). The response 
of the table is to ring and buzz; the response contains all the component resonant frequencies of 
the parts of the table and anything lying on the table. Your ear converts the sound waves into 
signals to your brain that give the pitch and amplitude of all the frequency components of the 
sound. You hear all the resonant frequencies of the table simultaneously. Fourier transforms 
allow absorption and emission measurements to emulate the same process. Joseph Fourier (1768-
1830) proved that any function of time, f(t), can be approximated arbitrarily well by a series of 
cosines and sines of a range of frequencies. 
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   We first consider a periodic function. The lowest possible frequency component of a periodic 
function is o = 1/L, where L is the period, Figure 27.3.1a. The function is then decomposed as a 
Fourier series with frequency components that are integer multiples of the lowest frequency no: 
 

 f(t) = 
n=0



 An cos(2not) + 
n=0



 Bn sin(2not)   o = 1/L  27.3.1 

 

The amount or amplitude of each frequency component, no, is given by the Fourier 
coefficients, An and Bn. The cosine terms are used for functions that have large amplitude at time 
zero, and the sine terms are used for functions that have zero amplitude at time zero. The Fourier 
coefficients are calculated as integrals over one period of the function: 
 

 An = 2 L0 f(t) cos(2not) dt  Bn = 2 L0 f(t) sin(2not) dt   27.3.2 
 

An example function f(t) with period L is shown at the bottom of Figure 27.3.1a. The function is 
a possible combination of three different frequency components at 1, 2, and 3 kHz. The 
spectrum of the function corresponds to the plot of the Fourier coefficients as a function of the 
frequency. The spectra of several examples are shown in Figure 27.3.1b as histograms. In 
laboratory applications, the frequency components are closely spaced and so numerous that the 
corresponding spectrum is drawn as a series of points that are connected by a smooth curve; you 
don’t normally notice that the spectrum is not continuous. In our example, we only have three 
possible frequencies, but in NMR the number of frequencies is often 16,384 or as many as 
65,536, so the spectrum appears as a smooth curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (a).  The function f(t) with unknown    (b). Example Fourier transforms assuming three 
          frequency components (bottom)           possible frequency components. 

 

Figure 27.3.1: An arbitrary function can be decomposed into a sum of sine and cosine waves. 
(a). The function f(t) is a sum of possible components at 1, 2, and 3 kHz. (b). Example 
Fourier transforms of three component frequencies. A typical NMR spectrum has 16,384 
possible component frequencies, which taken together are shown as a continuous plot, 
instead of a histogram. 
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   FT techniques are so important that we should carefully discuss how Eqs. 27.3.2 work. 
Consider the unknown example function f(t) at the bottom of Figure 27.3.1a; what are the 
component frequencies and amplitudes? The unknown function and the three possible 
component frequencies are superimposed in Figure 27.3.2a. Since the function begins at zero 
amplitude, only sine-transform terms are needed. Next f(t) and each possible sine wave are 
multiplied together, point-by-point across the time interval of one period, Figure 27.3.2b. The 
Fourier coefficients are the integrals of the product across one period of the function, Figure 
27.3.2c. You can visualize the integrals by finding the successive sum of all the data points from 
time zero to time L. In this example the integrals for the components at 1 kHz and 2 kHz are 
large, but the integral at 3 kHz is zero. In other words, there are two lines in the spectrum of f(t), 
one line at 1 kHz and one line at 2 kHz. Our examples so far have used discrete Fourier 
transforms; that is, transforms evaluated at regularly spaced intervals, no. Laboratory 
instruments use discrete Fourier transforms. Analytical evaluation of Fourier transforms is often 
easier on a continuous range of frequencies. 
 

 
     (a).  f(t) and sin(2not)  (b).  f(t) sin(2not)  (c).  L

0
f(t) sin(2not) dt 

 

Figure 27.3.2: Formation of Fourier integrals. (a). The function to be transformed, f(t), and 
pure sine waves are superimposed. (b). The function and the sine wave for each component 
frequency are multiplied, time-point-by-time-point. (c). The Fourier integral is the successive 
sum of the product data points. The Fourier coefficients at 1 kHz and 2 kHz are large, while 
the coefficient at 3 kHz is zero. The original function has two component frequencies. 

 
 
   To do a Fourier transform over a continuous range of frequencies, we relax the restriction of 
having a periodic function. Let the period of the function to be transformed go to infinity, L  
. The lowest possible frequency then approaches zero: o = 1/L  0. Then the frequencies that 
appear in the Fourier sums become a continuous variable : 2not  2t. The Fourier sums 
and coefficients become continuous functions of the frequency: 
 

 f(t) = 


0
 A() cos(2t) d + 



0
 B() sin(2t) d     27.3.3 
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 A() = 2 0  f(t) cos(2t) dt  B() = 2 0  f(t) sin(2t) dt   27.3.4 
 

A simple example is useful at this point. Consider a short impulse, like banging your fist on the 
table. How can a short pulse excite all the resonant frequencies in the table? The impulse is 
modeled as a rectangular pulse of length tp, Figure 27.3.3. For a rectangular pulse, the function is 
constant over the short time interval: f(t) = 1 for t = 0 to tp and f(t) = 0 thereafter. Because the 
function is zero for t > tp the integration limits can be shortened and with f(t) = 1 for short times: 
 

 A() = 2 tp

0 cos(2t) dt  B() = 2 tp

0 sin(2t) dt     (impulse) 27.3.5 
 

The definite integrals are evaluated at the beginning and end of the pulse: 
 

 A() = 2 


sin(2t)

2

tp

 
0

   B() =2 


–cos(2t)

2

tp

 
0

    27.3.6 
 

 A() = 2 
sin(2tp)

2    B() =2 
1 – cos(2tp)

2    27.3.7 
 

The full-width of the frequency response to the first zeros, Figure 27.3.3, is the inverse of the 
pulse width: 1/tp. This relationship is a reflection of the Uncertainty Principle, Section 27.2. The 
pulse is composed of a wide range of frequencies; the shorter the pulse, the broader is the range 
of frequencies. These frequency components are able to excite corresponding resonances in the 
table. In general if the function to be transformed is real and starts at a maximum, the cosine-
transform A() coefficients correspond to the absorption or emission spectrum of the 
transformed function. The sine-transform B() coefficients then correspond to the dispersion 
spectrum. Spectroscopic experiments always have two corresponding responses, absorption and 
dispersion. The dispersive response is related to the index of refraction. A plot of the index of 
refraction of a sample as a function of frequency is proportional to the dispersive response, B(). 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 27.3.3: A short impulse has a wide frequency range. The Fourier transform of a 
rectangular pulse of width  gives a sin(2)/2 absorptive line shape with width to the 
first nulls of 1/. The cosine transform gives the absorption spectrum A(), while the sine 
transform gives the dispersive spectrum B(). 

 
 

In some experiments we focus on the absorption or emission spectrum, in others we focus on the 
dispersive response, such as optical rotatory dispersion. In pulsed NMR, ESR, and microwave 
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experiments both the absorptive and dispersive responses are always determined; however, only 
the absorptive response is typically displayed. For such cases the Euler Identity is conveniently 
used to combine the cosine and sine-transforms: ei2t = cos(2t) + i sin(2t). The Fourier 
expansion of the function to be transformed is then a single integral that includes both the sine 
and cosine terms: 
 

 f(t) =  
– g() ei2t d         27.3.8 

 

where g() takes the role of the discrete Fourier coefficients, which is given by the transform: 
 

 g() = 2 0  f(t) e–i2t dt        27.3.9 
 

The Fourier transform g() is a complex function with: 
 

 Absorption or Emission = Re[g()]  Dispersion = Im[g()]   27.3.10 
 

 
 
 
 
 
 
(a). 
 
 
 
 
 
 
(b). 
 
 
 
 
 
 
(c). 
 
 
 
 
 
 
(d). 
 

Figure 27.3.4: (a). A continuous sine wave has a very narrow frequency distribution. (b). 
Multiplication by e–t/T2 gives a Lorentzian line with FWHH = 1/T2

. (c). A shorter T2 gives a 
broader line. (d). Multiplication by a rectangular function gives a sin(2tp)/2 line shape. 
Each example wave is centered at o = 2000 Hz. 
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   An intuitive understanding of Fourier transforms is helpful, since Fourier methods occur so 
often in theoretical and experimental practice. In our examples, the function to be transformed is 
in the time-domain. The Fourier transform gives the absorption or emission spectrum, which is 
in the frequency-domain. The units invert upon Fourier transformation: in this case from 
seconds to seconds-1. A continuous cosine at frequency o gives a sharp, single-frequency 
Fourier transform, Figure 27.3.4a. Multiplication of the cosine wave by an exponentially 
decreasing function of time e–t/T2 gives a transient response with lifetime of T2. The FT of an 
exponentially damped cosine gives a Lorentzian line shape centered on o, Figure 27.3.4b: 
 

 f(t) = e–t/T2 cos(2ot)    A() = Re[g()] = 
1
 






T2

1 + 42T2
2( – o)2   27.3.11 

 

The full-width at half-maximum is given by FWHM = 1/T2
. As the lifetime T2 decreases, the 

transient becomes shorter, and the line width increases, Figure 27.3.4c. The relationship between 
the lifetime and lineshape is a quantitative expression of the Uncertainty Principle, as discussed 
in Section 27.2. Lorentzian line shapes are commonly encountered in spectroscopy, especially 
solution NMR. Finally, consider a single-frequency cosine that has been multiplied by a 
rectangular function of width tp. The Fourier transform of the rectangular impulse in Figure 
27.3.3 is translated so that the line is centered about the center-frequency o instead of  = 0, 
Figure 27.3.4d. 
   Fourier transforms are widely used outside of chemistry and physics, including time-series 
analysis of the price fluctuations of stock-markets, population fluctuations of species in a given 
ecological setting, and frequency analysis of earth quakes and musical instruments. Having 
completed our general survey of the attributes of all forms of spectroscopy, we begin our 
discussion of molecular structure determination with rotational spectroscopy in low pressure 
gases. As we encounter new types of spectroscopy, we will usually discuss diatomic molecules 
in some detail and then discuss the additional attributes of the spectra of polyatomic molecules. 
 
27.4 Rotational spectroscopy 
 

Selection Rules Require a Permanent Dipole Moment:  In rotational spectroscopy, interaction 
with light causes the angular momentum of the molecule to increase or decrease. The classical 
analogy is that molecules rotate faster after absorption of light. The principle interaction in 
microwave cooking is the excitation of molecular rotation of water molecules in the food. 
However, low-pressure gas phase spectroscopy is required to achieve sufficiently narrow 
transition widths to resolve molecular information. Selection rules require a permanent dipole 
moment for the appearance of a rotational absorption spectrum. The change in rotational 
quantum number is restricted to J = 1 in absorption or emission, respectively. We begin with 
diatomic molecules. 
 

The Rotational Constant Gives the Bond Length:  The energies of the rotational states of a 
diatomic molecule in the rigid-rotor approximation are given by Eqs. 24.5.40-24.5.43, in joules 
and cm-1 respectively: 

 EJ =B
~

ohc J(J + 1)  F
~

J = 
EJ

hc = B
~

o J(J + 1)       (24.5.41-24.5.42)  27.4.1 
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where B
~

o is the rotational constant in terms of the observed equilibrium bond length Ro, I is the 
moment of inertia, and  is the reduced mass in kg: 
 

 B
~

o = 
ħ

4Ic
   I = 

i = 1

n

 mi r2
i = R2

o       = 
m1m2

m1 + m2
       (24.4.3,24.4.10)  27.4.2 

 

A distinction between Re and Ro must be made. The equilibrium bond length Re is the bond 
length at the minimum of the potential energy curve, Figure 26.1.1. The observed equilibrium 
bond length Ro is the vibrationally averaged bond length in the  = 0 vibrational state. For 
anharmonic potentials, the vibrational wave function has a higher probability at the outer turning 
point compared to the inner turning point; classically speaking, the molecule spends “more time” 
at the outer turning point than the inner turning point. As a result Ro > Re; however, the 
difference between the two is small, especially for low lying vibrations. Eqs. 27.4.2 are 
applicable to both types of bond lengths; Re is evaluated from B

~
e, without vibrational averaging, 

and is directly comparable to molecular structure calculations. Ro is evaluated from B
~

o and is the 
value determined experimentally using rotational spectroscopy. The “o” subscript indicates the 
constant is determined in the  = 0 vibrational level. To be precise, the vibrational averaging for 
B
~

o is proportional to the expectation value <1/R2>, since B
~

 = ħ/4mR2c. 
   The energy level in wave numbers is called the rotational term, F

~
J, Figure 27.4.1. The 

connection between rotational spectroscopy and molecular structure is the dependence on 
equilibrium bond length. Given the angular momentum quantum number J, the allowed 
projections of the angular momentum on the z-axis are mJ = 0, 1, …, J, with a degeneracy of 
gJ = 2J + 1. 
 
 
 
 
 
 
 
 
 
 
 
 

(a).           (b). 
 

Figure 27.4.1:  (a). Energy levels for the rigid rotor diverge with increasing J. (b). The 
rotational absorption spectrum has equally spaced lines. 

 
 
By convention the upper level in a transition is listed as J' and the lower level as J", giving the 
transition as J'J" for absorption and J'J" for emission. Given the quantum number of the 
lower state J", the upper state quantum number is J' = J"+1 and the energy difference between 
adjacent energy levels in absorption is: 
 

 E = EJ"+1 – EJ" = B
~

hc[(J"+1)(J"+1 + 1) – J"(J"+1)] = 2B
~

hc(J"+ 1)          (24.5.43) 
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 F
~
 = F

~
J"+1 – F

~
J" = B

~
[(J"+1)(J"+1 + 1) – J"(J"+1)] = 2B

~
(J"+ 1) (J":lower level) 27.4.3 

 

in joules and wave numbers, respectively. Equivalently, given the quantum number of the upper 
state J', the quantum number for the lower state is J" = J'–1 and the energy difference between 
adjacent energy levels is: 
 

 E = EJ' – EJ'–1 = B
~

hc[J'(J'+1) – (J'–1)(J'–1 + 1)] = 2B
~

hcJ'   (24.5.43) 
 

 F
~
 = F

~
J' – F

~
J'–1 = B

~
[J'(J' + 1) – (J'–1)(J'–1 + 1)] = 2B

~
J'  (J':upper level) 27.4.4 

 

The resulting spectrum is a series of equally spaced lines, Figure 27.4.1b. The spacing between 
adjacent transitions is 2B

~
. Rotational spectroscopy for low-lying J transitions occurs in the 

microwave and terahertz region of the electromagnetic spectrum. Direct digital frequency 
synthesis in the microwave region allows transition frequencies to be determined with up to 12 
significant figures, making microwave spectroscopy the most accurate method of molecular 
structure determination. The precision of microwave spectroscopy allows the confident detection 
of chemical species in interstellar space, making microwave spectroscopy an important tool in 
astronomy, Table 27.4.1. 
 
 

Table 27.4.1:  Molecules Detected in Interstellar and Circumstellar Space.1 

              

Number of Atoms  Examples         
2   CH  CH+  C2  CN  CO  CP  CS  CSi  H2  HCl  AlCl  AlF  KCl  NO  NS  NaCl  OH  PN  SO  SO+ SiO SiS 

3   HCN  HNC  HCO  HCO+  HCS+  C2H  OCS  C2O  C2S  SiC2  H3
+  NH2  H2O  H2S  N2H+  HNO  CO2  N2O  SO2 

4   HCNH+  HNCO  HNCS  HOCO+  HC2N  H2CN  H2CO  H2CS  HC2H  C3H  C3N  C3O  C3S  NH3  H3O+  SiC3 

5   HCOOH  H2CNH  H2NCN  CH4  CH2CN  H2C2O  HC3N  C3H2  C4H C4Si SiH4  CHO2H  H2C3  C5  H3CO+ 

6   HCONH2  CH3OH  CH3SH  CH3CN CH3NC  C2H4  H2C4  C5H  C5N  HC3HO  HC3NH+ 

7-8   NH2CH3  HCOCH3  CH2CHCN  CH3C2H  HC5N  C6H  HCOOCH3  CH3CO2H  CH3C3N  C7H  H2C6 

9-13   CH3CH2OH  (CH3)2O  CH3CH2CN  CH3C4H  HC7N  HC4CH3  CH3C5N  (CH3)2CO  HC9N  C6H6  HC11N 
              

 
 
In low-pressure gases, the resolution is routinely sufficient to resolve different series of peaks for 
molecules with different specific isotopes. Molecules with identical formulas but different 
isotopic substitution are called isotopomers. For example, the rotational constants for H35Cl and 
H37Cl are 10.440 cm-1 and 10.424 cm-1, respectively. The microwave spectrum of HCl appears as 
a series of doublets, with the intensities of the peaks for H35Cl and H37Cl in the ratio of the 
isotopic abundances, roughly 2:1 for H35Cl:H37Cl (see the HCl IR vibrational spectrum for an 
example of isotope splitting). Assuming that the bond length is identical for molecules with 
different isotopic substitution is an excellent assumption. The reduced masses then determine the 
difference in rotational constants using Eq. 27.4.2 for isotopomer 1 and isotopomer 2: 
 

 
B
~

2

B
~

1

 = 

ħ
42R2

oc
ħ

41R2
oc

 = 
1

2
         27.4.5 

 

For example, for H35Cl and H37Cl, the reduced masses are: 
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 H35Cl = 
(1.007825)( 34.968853)

1.007825+34.968853  (g mol-1) 
1

NA
 (1kg/1000 g) = 1.62665x10-27 kg 

 

 H37Cl = 
(1.007825)(36.965903)
1.007825+36.965903  (g mol-1) 

1
NA

 (1kg/1000 g) = 1.62912x10-27 kg 27.4.6 
 

giving the ratio of the rotational constants: 

 B
~

H37Cl/B
~

H35Cl =  H35Cl/H37Cl = 1.62665x10-27 kg/1.62912x10-27 kg = 0.99849 27.4.7 
 

The agreement with the experimental ratio of 0.99847 validates the assumption of equal bond 
lengths for H35Cl and H37Cl. 
 
              

Example 27.4.1: Molecular Structure and Rotational spectroscopy 
The spacing between rotational transitions for H35Cl is 20.880 cm-1. Determine the equilibrium 
bond length, Ro. 
 
Answer:  The rotational constant is B

~
 = 20.880 cm-1/2 = 10.440 cm-1. The reduced mass for 

H35Cl is given in Eqs. 27.4.6. For units, the B
~

 value can be converted to m-1 and then c = 
2.99792x108 m s-1: 

 B
~

 = 10.440 cm-1 (100 cm/1 m) = 1044.0 m-1 
 

with Eq. 27.4.2:  I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(1044.0 m-1)(2.997925x108 m s-1)] 
           = 2.68135x10-47 kg m2 

Alternatively, keeping B
~

 in cm-1 and the speed of light in cm s-1 for the B
~

c product: 

with Eq. 27.4.2:    I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(10.440 cm-1)(2.997925x1010 cm s-1)] 
           = 2.68135x10-47 kg m2 
with Eq. 27.4.2:    Ro = (I/)½ = 1.28389x10-10 m = 1.2840 Å 
 
              

 
 
Centrifugal Distortion Decreases the Energy Level Spacing: Upon closer inspection, the spacing 
decreases by a small amount between adjacent transitions in rotational spectra. The cause is 
centrifugal distortion. Centrifugal distortion results in the breakdown of the rigid rotor 
approximation. The classical analogy is as the molecule rotates faster, the bond stretches slightly, 
which decreases the effective rotational constant. The bond between two atoms acts more like a 
spring than a rigid rod. To account for centrifugal distortion, the rotational energy is expanded in 
a power series in J(J+1): 

 F
~

J = B
~

e J(J+1) – D
~

e[J(J+1)]2        27.4.8 
 

where D
~

e is the centrifugal distortion constant, which you should be careful to avoid confusing 
with the bond dissociation energies D

~
e or D

~
o , which are much larger in magnitude. The sign in 

Eq. 27.4.8 is given as a negative so that D
~

e can be tabulated as a positive number. For H35Cl the 
centrifugal distortion constant is quite small D

~
e = 0.00053 cm-1. A model has been developed to 

give an estimate of the centrifugal distortion: 
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 D
~

e = 
4B

~3
e

~2
o

          (centrifugal distortion) 27.4.9 

where ~o is the fundamental vibration frequency. As the vibration frequency increases, the bond 
becomes stronger and more difficult to stretch, decreasing centrifugal distortion. For example, 
for H35Cl, ~o =2886 cm-1 and the model estimate is quite good, D

~
e = 4(10.44 cm-1)3/(2886 cm-1)2 

= 0.00055 cm-1. The effects of centrifugal distortion are well within the resolution of current 
instruments but are often neglected under practical circumstances. Now that we understand 
rotational spectroscopy of diatomic molecules, we next discuss the changes in the theory 
necessary to study polyatomic molecules. 
   The rotational spectra of linear polyatomics are identical to diatomics and follow Eqs. 27.4.4 or 
27.4.8 depending on the desired accuracy. The moment of inertia just includes more atoms. 
However, the rotational spectra for a linear polyatomic only gives one experimental value, B

~
e. 

How can rotational spectroscopy find the structure of linear polyatomics, which have more than 
one bond length? Consider O=C=S as an example. The moment of inertia of a linear triatomic 
with atom masses m1, m2 and m3, and bond lengths R12 and R23, is: 
 

 m1 R12m2 R23m3   I = 



m1m3

m (R12 + R23)2 + 



m2

m (m1R 2
12 + m3R 2

23)  27.4.10 
 

The rotational constants of molecules with different isotopic substitution are determined and the 
unique masses and rotational constants are used to write two simultaneous equations in two 
unknowns. The two unknowns are the bond lengths R12 and R23. The rotational constant for 
16O=12C=32S is B

~
e = 0.202864 cm-1 and for 16O=12C=34S is B

~
e = 0.197910 cm-1. The two 

simultaneous equations are solved using successive approximations to give RCO  = 1.165 Å and 
RCS = 1.558 Å. For more complex molecules, multiple isotopomers must be studied to unravel 
the complete molecular structure. For this example, the rotational constants for 16O=13C=32S  and 
16O=13C=34S are also known. For extension to non-linear polyatomics, we first need to separate 
types of molecules by symmetry to discuss the appearance of the rotational spectra. 
 
Non-Linear Polyatomic Molecules Have Three Moments of Inertia:  Non-linear polyatomic 
molecules can be classified into three classes based on their symmetry. We consider the 
moments of inertia about three orthogonal axes, Ixx, Iyy, and Izz. The formula that was introduced 
for linear molecules, Eq. 24.4.3, must be extended. For example, the moment of inertia around 
the z-axis is determined by the square of the perpendicular distance of the atomic positions from 
the z-axis, r2

z,i = (x2
i  + y2

i), Figure 27.4.2. The moments of inertia are given as a symmetric matrix 
with components given by the sums over all atoms, using Eq. 24.5.18: 
 

 Ixx =  mi(y2
i + z2

i)   Ixy =  mixiyi 

 Iyy =  mi(x2
i + z2

i)   Ixz =  mixizi 

 Izz =  mi(x2
i + y2

i)   Iyz =  miyizi     27.4.11 
 

The distances are with respect to the center of mass. The Ixy, Ixz, and Iyz components are reduced 
to zero by rotating the coordinate axis to a special set of axes, the principal axes. In the principal 
coordinates frame of reference, the moment of inertia of a molecule is completely represented by 
Ixx, Iyy, and Izz. The principal axes usually correspond to axes with highest rotational symmetry. 
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Mathematically, the coordinate rotation is accomplished by matrix diagonalization; Ixx , Iyy, and 
Izz are the eigenvalues of the moment of inertia matrix. 
 
 
 
 
 
 
 
 
 
 

Figure 27.4.2:  The moments of inertia are based on the perpendicular distance of the atom 
from the x, y, and z-axes. Illustrated are rotations about the z- and x-axes of a planar 
molecule that is oriented in the x-z plane (e.g. formaldehyde, CH2=O). The distances 
simplify since all yi = 0; then r2

z,i = (x2
i + y2

i) gives rz,i = xi . 

 
 

Molecules are categorized on the basis of their three moments of inertia. 
 

 1.  Spherical tops: A spherical top has identical moments of inertia about three orthogonal 
axes, Ixx = Iyy = Izz. Examples of symmetric tops include methane, carbon tetrachloride, and SF6. 
For example, methane has three equivalent, mutually perpendicular two-fold rotation axes, 
Figures 26.7.3 and 27.4.3. Spherical tops cannot have a dipole moment, so they are invisible to 
the absorption of light in rotational spectroscopy. However, rotational transitions for spherical 
tops are observed in vibration-rotation and electronic spectroscopy, Section 27.6. 
 2.  Symmetric tops: Symmetric tops have two equal moments of inertia. Examples 
include methyl chloride, chloroform, ammonia, phosphene, benzene, and cyclohexane. By 
convention, we align the molecule-fixed z-axis with the figure axis, which gives the principal 
coordinates frame. The figure-axis is the rotational axis of highest symmetry. For example, the 
figure axis for methylchloride is collinear with the C–Cl bond, which is a three-fold rotation axis, 
Figure 27.4.3. With this convention, for a symmetric top the moments of inertia about the x- and 
y-axis are identical and denoted I, since the x- and y-axes are perpendicular to the figure-axis. 
The moment of inertia around the z-axis is unique and denoted I||, since the z-axis is chosen 
parallel to the figure-axis: 
 

 Iyy = Ixx = I  Izz = I||       (symmetric top) 27.4.12 
 

The two moments of inertia give two experimentally determined rotational constants, expressed 
in wave numbers as: 
 

 B
~

 = 
ħ

4πIc
  A

~
 = 

ħ
4πI||c

      (symmetric top) 27.4.13 
 

The B
~

 constant is for rotation perpendicular to the z-axis and is analogous to the rotational 
constant of diatomic molecules. The A

~
 constant is for rotation around the z-axis. 

 3.  Asymmetric tops: The moments of inertia are each unique for an asymmetric top: 
Ixx  Iyy  Izz. Of course, there are many examples of asymmetric tops including such simple 
molecules as dichloromethane, ethylene, and formaldehyde. 
 

z 

rz,1 = 0 m1 

z 

rx,1= z1 
x 

Izz 

m1 

x    

rz,2 = 0 
rx,2= z2 Ixx 

m2 
rx,4 = z4 rx,3= z3 

m2 

m3 m4 

rz,4 = x4 
m3 m4 

rz,3 = x3 
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     Spherical top: Ixx = Iyy = Izz       Symmetric top: Ixx = Iyy  Izz Asymmetric top: Ixx  Iyy  Izz 
 

  Examples:  CH4, CCl4, SF6     CH3Cl, CCl3H, NH3, PH3, C6H6 CCl2H2, H2C=CH2, CH2=O 
 

Figure 27.4.3: Polyatomic molecules are categorized as spherical tops, symmetric tops, and 
asymmetric tops. Symmetric tops have two equal moments of inertia. The z-axis, or figure 
axis, is the rotational axis of highest symmetry. See Figure 26.7.3 to clarify the axes choices. 

 
 
The three moments of inertia give three experimentally determined rotational constants: 
 

 A
~

 = 
ħ

4πIzzc
      B

~
 = 

ħ
4πIxxc

  C
~

 = 
ħ

4πIyyc
     (asymmetric top) 27.4.14 

 

The spectra for asymmetric tops are quite complicated and are beyond the scope of this text. 
Fortunately, the spectra for symmetric tops are essentially the same as for diatomic molecules. 
We next discuss symmetric tops in detail. 
   We first develop the classical model for a rotating molecule, and then substitute quantum 
mechanical results for the classical angular momenta. In general the energy of a rotating 
molecule is the sum of the rotational energy about the x-, y-, and z-axes: 
 

 E = 
J2

x

2Ixx
 + 

J2
y

2Iyy
 + 

J2
z

2Izz
         27.4.15 

 

The square of the total angular momentum is the sum of the components: J2 = J2
x + J2

y + J2
z. For a 

spherical top, Ixx = Iyy = Izz = I, and Eq. 27.4.15 reduces to the same form as a diatomic molecule: 
 

 E = 
J2

2I              (spherical top) 27.4.16 
 

The square of the total angular momentum is determined by the quantum number J, and the 
projection of the total angular momentum on a laboratory-fixed axis is also quantized with 
quantum number mJ: 
 

 J2 = ħ2 J(J+1)  Jz = mJ ħ mJ = 0, ±1, ±2,..., ±J       (spherical top) 27.4.17 
 

The rotational transitions are a set of equally or nearly equally spaced lines, as given by Eqs. 
27.4.4 or 27.4.8, respectively. However, because of the lack of a dipole moment, spherical tops 
give no pure rotational spectra. 
 

Symmetric Tops and Diatomics Have Analogous Spectra:  For a symmetric top, using Eqs. 
27.4.13 and 27.4.12, the classical rotational energy of a symmetric top is: 
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 E = 
1

2I
 (J2

x + J2
y) + 

1
2I

 J2
z        (symmetric top) 27.4.18 

 

This equation can also be recast into terms involving the total angular momentum. We first add 
1/(2I) J2

z to the right side and then subtract the same term to maintain the equality: 
 

 E = 
1

2I
(J2

x + J2
y) + 

1
2I

 J2
z + 

1
2I

 J2
z – 

1
2I

 J2
z       (symmetric top) 27.4.19 

 

The first three terms add to give the total angular momentum squared, with J2 = J2
x + J2

y + J2
z: 

 

 E = 
J2

2I
 + 




1

2I||
 – 

1
2I

  J2
z         (symmetric top) 27.4.20 

 

Now we are ready to substitute the quantum mechanical results. The square of the total angular 
momentum is again determined by the quantum number J. The projection of the angular 
momentum on the molecule-fixed z-axis is also quantized according to the new quantum number 
K. The value of K is restricted to integer values with absolute value less than or equal to J: 
 

 J2 = ħ2 J(J+1)  Jz = K ħ K = 0, ±1, ±2,..., ±J      (symmetric top) 27.4.21 
 

The value of K describes the type of rotation. For J = K, the molecule is spinning around the 
figure-axis, Figure 27.4.4a. With J = K, the projection of the angular momentum on the z-axis is 
maximal. For K = 0, the molecule is tumbling around the x- or y-axis, Figure 27.4.4b. A figure 
skater routinely executes spins of the type J = K. However, a K = 0 rotation is a jump that takes 
the skater head-over-heels. Substitution of the quantum results into Eq. 27.4.21 and using the 
rotational constants defined in Eqs. 27.4.13 gives the rotational term value as: 

 F
~

JK = B
~

J(J+1) + (A
~

 – B
~

)K2       (symmetric top) 27.4.22 
 
 
 
 
 
 
 
 
 
 
 
 (a).   J = K         (b).   K = 0 
 

Figure 27.4.4:  The projection of the angular momentum J


 on the figure-axis is quantized as 
K = 0, 1, …, J. (a). For J = K, the molecule is spinning around the figure-axis; the 
projection of the angular momentum on the figure-axis is maximal. (b). For K = 0, the 
molecule is tumbling around the x- or y-axis. 

 
 

Rotation around the z-axis does not present an oscillating electric field, since the dipole moment 
is parallel to the z-axis and remains stationary. Therefore, light absorption cannot change the 
angular momentum around the z-axis. The selection rules for light absorption are then: 

J

 

Cl 

H H H 
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J

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
 J


 

no change in electric 
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 K = 0  J = 1       (symmetric top) 27.4.23 
 

A dipole-allowed transition ending in the level with quantum number J' and beginning in level 
J" = J' – 1 is at wave number: 
 

 ~J = F
~

J',K – F
~

J'-1,K = B
~

J(J+1) – B
~

(J–1)(J–1+1) 

     = 2B
~

J'          (J':upper level,symmetric top) 27.4.24 
 

The terms in A
~

 cancel because K cannot change. The allowed absorption transitions for 
symmetric tops are the same as for diatomics, Eq. 27.4.4. 
  The K and mJ quantum numbers should be distinguished. The K quantum number determines 
the type of rotation, spinning or tumbling. The mJ quantum number determines the projection of 
the total angular momentum on a laboratory-fixed axis. Consider a spinning molecule with unit 
angular momentum, which is one with J = K = 1. In Figure 27.4.5, the lab z-axis is labeled Z to 
distinguish the lab-fixed axis from the molecule-fixed figure-axis z. The lab-fixed Z-axis is 
established by an external electric field oriented in the Z-direction. As mJ changes, the 
orientation of the rotation axis changes, but the molecule continues to spin around the figure-axis 
in the same way. For J = 1, the possible projections of the angular momentum have quantum 
numbers mJ = –1, 0, +1. For J = K and mJ = +1, a figure skater is spinning on their skate blades. 
For mJ = 0, a figure skater is rolling on the ice. For mJ = –1 a figure skater is spinning on their 
head. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27.4.5: The K-quantum number determines the type of rotation, spinning or tumbling. 
The mJ quantum number determines the orientation of the rotation relative to a fixed 
laboratory axis. The example shown is for J = K = 1 and mJ = –1, 0, and +1. The molecule is 
spinning about the figure-axis in each case. 

 
 

Pulsed Microwave Spectroscopy Uses the Multiplex Advantage:  Rotational spectra cover a 
broad frequency range in the microwave and terahertz regions of the electromagnetic spectrum, 
depending on the moments of inertia of the molecule and the J" of the initial state. The most 
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efficient method for acquisition of microwave spectra is by pulsed spectroscopy. Unlike NMR 
spectroscopy, the bandwidth of a short microwave pulse is not sufficient to cover a significant 
fraction of the necessary frequency range, as in Figure 27.3.4d. To circumvent the bandwidth 
limitations, the frequency is very rapidly scanned during the pulse, instead of using a constant 
frequency. Such pulses are called chirped pulses, and are formed using very rapid direct digital 
synthesis techniques, Figure 27.4.6. Other than the need for chirped excitation pulses, NMR and 
microwave spectroscopy are analogous; the response of the system after the excitation pulse is 
Fourier transformed to obtain the absorption spectrum. 
 
 
 
 
 
 
 
 
 

Figure 27.4.6: A chirped excitation pulse is used to achieve broad excitation bandwidth in 
Fourier transform microwave spectroscopy. 

 
              

Example 27.4.2:  Molecular Structure from Rotational spectroscopy 
The rotational constant about the z-axis in formaldehyde is 9.41004 cm-1 (282.106 GHz). 
Calculate the H-C-H bond angle in formaldehyde. Assume a typical C-H bond length of 1.07 Å. 
 
 

Answer:  Reference to Figure 27.4.2 shows that x4 = –x3 = RCH sin(/2), where  is the H-C-H 
bond angle and RCH is the C–H bond length. The C- and O-atoms do not contribute to the 
moment of inertia, because they lie on the z-axis. Since all the yi coordinates are zero, the 
moment of inertia of formaldehyde about the z-axis is then: 
 

 Izz =  mi(x2
i + y2

i) =  mi x2
i = 2 mH [RCH sin(/2)]2     27.4.25 

 

The mass of the H-atom is 1.67353x10-27 kg. The moment of inertia is given by Eq. 27.4.2: 

 Izz = ħ/(4A
~

c) = 1.05457266x10-34 J s/[4(9.41004 cm-1)(2.997925x1010 cm s-1)] 
 Izz = 2.97478x10-47 kg m2 = 2 mH [RCH sin(/2)]2 

        = 2(1.67353x10–27 kg)[1.07x10–10 m sin(/2)]2 

 

Solving for the bond angle gives sin(/2) = 0.881071 or 123.5. 
 

              

 
 
27.5 Vibrational Absorption Spectroscopy 
 

IR Selection Rules Require a Changing Dipole Moment:  Infrared absorption spectroscopy 
requires that the dipole moment of the molecule change as a function of the internuclear distance 
for stretching vibrations or bond angle for bending vibrations. Homonuclear diatomics are the 
only molecules that do not have an infrared active vibrational mode. For polyatomic molecules 
some normal modes are infrared active and some are not, depending on the symmetry of the 

t  

f(t) 
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molecule. Infrared absorption spectroscopy is a rich source of information on molecule structure 
and the strengths of chemical bonds. 
 
 
 
 
 
 
 
 
 
 

Figure 27.5.1: For a harmonic oscillator, only transitions between adjacent levels are 
allowed,  = 1. Small numbers of molecules have excited initial vibrational quantum 
numbers, which result in “hot band” transitions. 

 
 
Diatomic Molecules:  Vibrations of molecules can be approximated as harmonic oscillators, Eqs. 
24.2.15-24.3.16. In the harmonic approximation, the vibrational energy of a diatomic molecule 
or the vibrational energy of a normal mode of a polyatomic molecule is a linear function of the 
vibrational quantum number, : 
 

 E = ho( + ½) = ħo( + ½)    (harmonic)  (24.2.15) 27.5.1 
 

where o is the observed fundamental vibration frequency in cycles per second and o in radians 
per second. The spectroscopic absorption occurs in the infrared region of the spectrum, where 
wave numbers in cm-1 are the convenient energy units. The energy in wave numbers is called the 
vibrational term, G

~
: 

 G
~
 = E/hc  ~o ( + ½)       ~o = 

o

c          in cm-1  (harmonic) 27.5.2 

For a harmonic oscillator, only transitions between adjacent levels are allowed,  = 1: 

 E = E+1 – E = ho  G
~

 = G
~
+1 – G

~
 = ~o  (harmonic)  (24.2.16) 27.5.3 

 

Transitions beginning in different initial  states occur at the same frequency: 
 

 o = 
1

2 k/       o = 2o = k/  ~o = 
1

2c
 k/   27.5.4 

 

with k the force constant of the bond or normal mode and  the reduced mass, Eq. 27.4.2. The 
harmonic potential is V = ½k(R – Ro)2. For careful work in the laboratory a more realistic 
vibrational potential energy function is required. 
 

Anharmonicity Decreases the Energy Level Spacing:  The experimentally determined energy 
levels for molecules show that the vibrational energy levels are not equally spaced. In real 
molecules, vibrational energy differences decrease with increasing . The energy difference 
between adjacent states approaches zero at the dissociation limit, Figure 27.5.2a. The deviation 

R

 = 0 

 = 1 

 = 2 

E 

Re 

hot bands 

fundamental 
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of the potential energy function from purely harmonic form is called anharmonicity. To account 
for anharmonicity, the energy of the vibrating molecule is expressed in a power series expansion: 
 

 E = he( + ½) – hee( + ½)2 + hYee(+ ½)3 +...     27.5.5 
 

where e is the fundamental vibration frequency for small displacements about the equilibrium 
bond length, e is the anharmonicity, and Ye is the second anharmonicity constant, Table 
27.6.1. One effect of anharmonicity is appearance of overtones. Overtones are weak  = ±2,  
= ±3, and higher quantum number transitions. The intensity of each progressive overtone 
decreases by a factor of 10-20. Higher overtones are usually difficult to observe. If the potential 
is purely harmonic, the overtones occur at integer multiples of the fundamental vibration 
frequency,  e. Anharmonicity causes the overtones to fall at wave numbers less than integer 
multiples, because adjacent energy levels are not equally spaced, Figure 27.5.2b. For example, 
for H35Cl the first overtone occurs at 5668.0 cm-1 instead of 2(2885.9) = 5771.8 cm-1. 
   The anharmonicity is a useful experimental parameter that characterizes the shape of the 
vibrational potential. The full anharmonic potential is accurately determined in the Born-
Oppenheimer approximation using advanced, correlated molecular structure methods for a series 
of fixed bond lengths, R. The anharmonicity of the theoretical potential energy curve, determined 
by curve fitting, can be compared to the experimental anharmonicity. However, for practical 
applications, a simple closed-form analytical function that approximates the vibrational potential 
energy function is useful. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27.5.2: (a). For anharmonic potentials, the spacing between vibrational energy levels 
approaches zero at the dissociation limit. The equilibrium dissociation energy, De, is the 
energy at the dissociation limit with respect to the bottom of the potential energy well. The 
experimentally determined dissociation energy, Do, is referenced to the zero point energy. 
(b). Anharmonic potentials produce overtones in vibrational spectra. 

 
 

   The harmonic potential is a poor representation of the vibrational potential energy of a 
molecule, especially for large displacements (see also Eq. 8.8.20). Harmonic potentials don’t 
allow for molecular dissociation; a purely harmonic bond cannot break. The Morse Potential is 
one commonly used functional form that approximates the vibrational potential energy in real 
molecules: 
 

 V = De [1 – e–a(R-Re)]2            (Morse) 27.5.6 
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where De is the dissociation energy from the bottom of the potential well, Re is the equilibrium 
bond length, and a is a constant that determines the steepness of the potential energy well: 
 

 a = e





2De

½
               (Morse) 27.5.7 

 

One important advantage of the Morse potential is that, rigorously, only the first two terms in Eq. 
27.5.5 are required to give the exact energy of each vibrational level: 
 

 E = he( + ½) – hee( + ½)2    or  G
~
 = ~e( + ½) – e~e (+ ½)2      (Morse) 27.5.8 

 

The first equation is in joules and the second in wave number, cm-1, units. The transition energy 
for adjacent levels, with the initial, lower vibrational quantum number  is: 
 

         E+1 – E = he(+1+½) – hee(+1+½)2 – he(+½) + hee(+½)2        (+1) 27.5.9 
 

In algebraic manipulations, it is helpful to rearrange (+1+½) to give ((+½)+1), so that 
((+½)+1)2 = (+½)2 + 2(+½) + 1. Cancellation of terms in Eq. 27.5.9 then gives: 
 

 E = he – hee 2(+1) or         G
~
 = ~e – e~e 2(+1)              (+1) 27.5.10 

 

By comparision of Eqs. 27.5.10 with Eqs. 27.5.1-27.5.3, the observed fundamental vibration 
frequency, 10, is for  = 0: 
 

 o = Eo/h = e – 2ee or ~o = ~e – 2e ~e       (Morse) 27.5.11 
 

Even the fundamental vibration frequency is decreased by anharmonicity. The zero point 
energies are given by Eqs. 27.5.8 with  = 0. The dissociation energies are then related by: 
 

 De = Do + ½ he – ¼ e he   or D
~

e = D
~

o + ½ ~e – ¼ ~e e              (Morse) 27.5.12 
 

   The relationship between e and D
~

e is determined by finding the vibrational quantum number 
at the convergence limit, cl. This quantum number corresponds to the value for which the 
energy level spacing between adjacent vibrational energy states is zero, from Eq. 27.5.10: 
 

 E = he – hee 2(cl + 1) = 0   or G
~
 = ~e – e~e 2(cl+1) = 0       (Morse) 27.5.13 

 

Cancelling the common factor of he and rearranging gives e 2(cl + 1) = 1. Solving for the 
convergence limit: 
 

 cl + 1 = 
1

2e
    for the upper level or cl = 

1
2e

 – 1    for the lower level 27.5.14 
 

Substitution of the last equation into Eq. 27.5.8 gives the dissociation energy as equal to the 
vibrational energy at the convergence limit: 
 

 D
~

e = G
~
cl +1 = ~e [(cl+1) + ½] – e ~e[(cl +1) + ½]2   (Morse) 27.5.15 

 

Substitution of Eq. 27.5.14 for cl+1 gives: 
 

 D
~

e = 
~e

2e
 + 
~e

2  – 
e~e

4  (e + 1)2 = 
~e

2e
 + 
~e

2  – 
e~e

4  








e
2 + 

2
e

 + 1  (Morse) 27.5.16 
 

Cancelling factors simplifies the previous expression to give: 
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 D
~

e = 
~e

2e
 + 
~e

2  – 






~e

e
 + 
~e

  + 
e~e

4  = 
~e

e
 – 
e~e

4   
~e

e
   (Morse) 27.5.17 

 

The final approximation is valid since the anharmonicity, e, is usually a small fraction of the 
vibration frequency. This last expression allows the estimation of the bond dissociation energy 
for the molecule from the anharmonicity. The bond dissociation energy is, of course, one of the 
most fundamental measures of bond strength. Solving the last expression for the anharmonicity 
and using Eq. 27.5.7 also gives the relationship of the Morse a-coefficient to the anharmonicity: 
 

 e~e = 
~2

e

D
~

e

    and e~e = 
a2h

82c
   (Morse) 27.5.18 

 

   These relationships among the anharmonicity, bond dissociation energy, and Morse a-
parameter are central in the determination of bond energies and potential energy surfaces. The 
application of these relationships require an accurate method for the experimental determination 
of the anharmonicity. Consider the adjacent differences in the wave numbers of the transitions in 
Figure 27.5.2 as shown in Figure 27.5.3. The difference ~1 = ~(20) – ~(10) is between the 
first overtone and the fundamental, while ~2 = ~(30) – ~(20) is between the second 
overtone and the first overtone. For example, the adjacent difference for the first overtone ~1 is 
equivalent to direct transition 21, and the adjacent difference for the second overtone ~2 is 
equivalent to direct transition 32. The general result is: ~ = G

~
. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 27.5.3:  Adjacent wave number differences between transitions. 
 
 

The wave numbers of the direct transitions are given by Eq. 27.5.10 resulting in the adjacent 
differences: 
 

 ~ = G
~
 = ~e – e~e 2(+1) = (~e – 2e~e) – 2e~e   (Morse, :overtone) 27.5.19 

 

Substitution of the fundamental transition, Eq. 27.5.11, for the term in parentheses gives: 
 

 ~ = ~o – 2e~e        (Morse, :overtone) 27.5.20 
 

A plot of the adjacent wave number differences is a linear function of the vibrational quantum 
number of the lower overtone state with slope, – 2e~e. The intercept is the observed 
fundamental vibration frequency. A plot based on Eq. 27.5.20 is called a Birge-Sponer plot, 
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Figure 27.5.4. The dissociation energy is then given by Eqs. 27.5.18. Alternatively, if only the 
first overtone is known a rough estimate of the anharmonicity can be made from: 
 

 ~1 = ~o – 2e~e giving   e~e = (~o – ~1)/2        (Morse)  27.5.21 
 

 
              

Example 27.5.1: Anharmonicity 
Determine ~e, the force constant, anharmonicity, zero point energy, and the bond dissociation 
energies, D

~
e and D

~
o, for H35Cl. The fundamental and overtones for H35Cl are 2885.98, 5667.98, 

8346.78, 10922.83, and 13396.32 cm-1. 
 
 

Answer:  A spreadsheet to calculate the adjacent wave number differences and corresponding 
Birge-Sponer plot are shown below: 
 

 ~0 (cm-1) ~ (cm-1) 
1 2885.98 2782.00 
2 5667.98 2678.80 
3 8346.78 2576.05 
4 10922.83 2473.49 
5 13396.32  

 
slope -102.828 2884.655 intercept 
± 0.102849 0.281665 ± 
r2 0.999998 0.229978 s(y) 
F 999583.8 2 df 
ssreg 52867.99 0.10578 ssresid 

 
Figure 27.5.4: Birge-Sponer plot for H35Cl with slope = –2e~e. 

 
 

The curve fit gives the anharmonicity as e~e = 51.41  0.05 cm-1. The difference between the 
intercept and the experimental fundamental of 2885.98 cm-1 is caused by deviations from the 
Morse potential form and experimental error. Many researchers include the fundamental in the 
curve fit for  = 0 to improve the agreement. The final spectroscopic constants are: 
 

with Eq. 27.5.11:   ~e = ~o+ 2e~e = 2885.98 cm-1 + 2(51.41) cm-1 = 2988.81 cm-1 

with Eq. 27.5.4:     k = 42c2~e
2 = 42(2.99792x1010 cm s-1)2(2988.81 cm-1)2(1.62668x10-27 kg) 

         k = 515.6 N m-1 

with Eq. 27.5.8:     ZPE = G
~
 = ½ ~e – ¼ ~e e = ½(2988.81 cm-1) – ¼(51.41 cm-1) = 1481.55 cm-1 

with Eq. 27.5.18:   D
~

e = ~2
ee~e = (2988.81 cm-1)2/(4(51.41 cm-1)) 

         D
~

e = 43,436 cm-1 = 5.385 eV = 519.6 kJ mol-1 

with Eq. 27.5.12:   D
~

o = D
~

e – ZPE = 43,436 cm-1 – 1481.55 cm-1 = 41955. cm-1 

         D
~

o = 5.202 eV = 501.9 kJ mol-1 

 

 

 

 

 

y = -102.83 x + 2884.66 
   R2 = 1.000 
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   The literature values are ~e = 2990.925 cm-1, e~e = 52.800 cm-1 and D
~

o = 4.430 eV = 
427.4 kJ mol-1, Table 27.6.1. The literature values include the second anharmonicity correction 
giving greater accuracy. 
 

              

 
 

Normal Modes Describe Vibrations for Polyatomic Molecules:  Except for low frequency 
torsions, the normal modes of polyatomic molecules are adequately approximated by harmonic 
potentials. Instead of a single bond length or angle, a normal mode vibration progresses as a 
function of the normal coordinate of the mode, which includes multiple bond lengths and angles, 
Eq. 8.11.32. The derivative in Eq. 27.1.10 is with respect to the normal mode displacement. 
 

Anharmonicity Causes Vibrational Modes to Interact:  The most important effect of 
anharmonicity for polyatomic molecules is the appearance of overtones and sum and difference 
bands. For two normal mode fundamental vibrations, ~1 and ~2, the sum transition occurs at ~1 + 
~2 and the difference band at |~1 – ~2|. If they occur, overtone, sum, and difference transitions are 
usually much less intense than dipole allowed fundamentals. Sum and difference bands, taken 
together are called combination bands or just combinations. 
   Rotation and vibration transitions occur simultaneously. In the gas phase, fundamental, 
overtone, sum, and difference bands all display rotational fine structure. While microwave 
spectrometers are not common, rotational information is available from vibrational spectra. 
 
27.6  Rotational-Vibrational Spectroscopy 
 

Rotational Constants Are Available from Vibrational Spectra:  The selection rules for vibrational 
spectroscopy of diatomics in singlet electronic states with no net orbital angular momentum are 
 = 1 and J = 1. The result is that vibration and rotation transitions occur simultaneously in 
gas phase spectroscopy. Vibrational transitions are a series of closely spaced lines instead of a 
single transition, Figures 27.6.1, 27.6.2. The set of lines differ in the change in rotation of the 
molecule and are called the rotational fine-structure. 
 

 
Figure 27.6.1: Rotation-vibration spectrum of HBr gas. 

 
 

   Consider a transition from an initial vibration-rotationstate given by the quantum numbers ", 
J" to a final rotation-vibration state ', J', giving the transition ',J'",J", Figure 27.5.3. The 
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fundamental vibration transition is from the " to' levels. Most molecules are found in 
their lowest energy vibration state, "


 
Figure 27.6.2: Rotation-vibration levels in a diatomic molecule. The spacing between the 
rotational levels is exaggerated for clarity. 

 

 
 

Figure 27.6.3: Rotation-vibration transitions for a diatomic molecule. J = 0 is forbidden for 
a diatomic with a singlet ground electronic state and no net orbital angular momentum. 

 
 

   Consider a transition from an initial vibration-rotationstate given by the quantum numbers ", 
J" to a final rotation-vibration state ', J', giving the transition ',J'",J", Figure 27.5.3. The 
fundamental vibration transition is from the " to' levels. Most molecules are found in 
their lowest energy vibration state, " However, the Boltzmann distribution of molecules 
among the rotational levels produces a wide range of initial rotational states. Therefore, the 
fundamental vibration of a molecule consists of a series of closely spaced lines that correspond 
to the  = 0 to 1 vibrational transition and wide range of rotational transitions, ,J',J". The 
selection rule for rotational transitions is J = 1. For example, ,1,0 , ,2,1 , and 
,3,2 have J = +1, and are said to be part of the R-branch. Also, ,0,1 , ,1,2 , 
,2,3 have J = –1, and are part of the P-branch. The J = 0 transition is forbidden for a 
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singlet ground state and no net orbital angular momentum and is therefore absent, which would 
otherwise give the Q branch. 
The energy change for the transitions, neglecting anharmonicity and centrifugal distortion, are: 
 

 ∆E',J'",J" = E',J'  – E",J" = ho (' – ") + B
~

' hc J'(J'+ 1) – B
~

" hc J"(J" +1)  27.6.1 
 

If the bond length of the molecule doesn’t change much on going to the higher vibrational state 
then B

~
' = B

~
" = B

~
. For  = +1 and R-branch J = +1 transitions, setting J' = J"+1 and 

simplifying Eq. 27.6.1 gives: 
 

 ∆E"+1,J"+1",J" = ho + 2B
~

hc (J"+1)    (J": lower level) 27.6.2 
 

For  = +1 and P-branch J = –1 transitions, setting J' = J"–1 and simplifying Eq. 27.6.1 gives: 
 

 ∆E"+1,J"-1",J" = ho – 2B
~

hc J"    (J": lower level) 27.6.3 
 

This simplification gives the spectrum as a series of equally spaced lines with the spacing 
between adjacent lines 2B

~
hc, Figure 27.6.4. For example for adjacent P-branch lines: 

 

 ∆E"+1,J"+2",J"+1 – ∆E"+1,J"+1",J" = –2B
~

hc (J"+1+1) + 2B
~

 hc (J"+1) 

       = –2B
~

hc     27.6.4 
 
 
 
 
 
 
 
 

Figure 27.6.4: Rotation-vibration transitions with equal bond length in the upper and lower 
vibrational state, giving B

~
' = B

~
" and the spacing between transitions is constant. 

 
 

Often, however, the bond length does change significantly, so that Eq. 27.6.1 must be used. As 
discussed in Sec. 27.4, the observed B

~
-value is averaged over the motion of the nuclei in the 

corresponding vibrational state. For anharmonic potentials the averaged bond length increases 
with vibrational quantum number, because the wave function amplitude increases at the outer 
turning point. As the bond length increases the B

~
-value decreases, B

~
' < B

~
". The dependence of 

the rotational constant on the vibration level can be expressed as a Taylor series expansion in 
( + ½). Keeping only the linear term gives: 

 B
~
 = B

~
e – ~e( + ½)         27.6.5 

 

where B
~

e is the rotational constant evaluated at the equilibrium internuclear separation and ~e is 
the vibration-rotation interaction constant in cm-1, Table 27.6.1. Eq. 27.6.1 can be expressed 
entirely in wave numbers by dividing by hc: 

 ~ = ∆E',J'",J"/hc = ~o (' – ") + B
~

' J'(J'+1) – B
~

" J"(J"+1)       (J": lower level) 27.6.6 
 

R P 

  
~ 

2B~ 
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where ~ is the wave number of the transition and ~o is the fundamental vibration frequency, in 
cm-1. Substituting Eq. 27.6.4 into Eq. 27.6.5 and taking '– "gives: 

 ~ =  ~o + (B
~

e – ~e( + ½)) J'(J'+1) – B
~

o J"(J"+1)     27.6.7 
 

For the R-branch, where J = +1 and J' = J"+1, Eq. 27.6.7 simplifies to: 

 ~R =  ~o + (2B
~

e – 3~e) + (2B
~

o – 4~e) J" – ~e J"2     (J": lower level) 27.6.8 
 

For the P-branch, where J = –1 giving J' = J"–1, Eq. 25.5.7 simplifies to: 

 ~P =  ~o – (2B
~

e – 2~e) J" – ~e J"2       (J": lower level) 27.6.9 
 

With B
~

' < B
~

", each line moves to lower wave number in proportion to the J"2 value. In other 
words, lines further away from ~o move more than lines closer to ~o. The R-branch lines move 
closer together and the P-branch lines move further apart, Figure 27.6.5. Eqs. 27.6.8 and 27.6.9 
can be combined by defining a new variable m, where m = J"+1 for the R-branch and m = –J" for 
the P-branch, Figure 27.6.5: 

 ~m = ~o + (2B
~

e – 2~e) m – ~e m2       27.6.10 
 

Using Eq. 27.6.10, transition wave numbers are fit to a second order polynomial in m to extract 
the spectroscopic constants. 
 
 

 
 

Figure 27.6.5: Vibration-rotation spectrum for 7LiH (schematic). Line indexing for Eq. 27.6.9 
with m = J"+1 for the R- and m = –J" for the P-branch. 

 
 
              

Example 27.6.1: Molecular Structure and Vibration-Rotational spectroscopy 
Use the peak positions in Figure 27.6.5 to determine the equilibrium bond length Re, the 
fundamental vibration frequency ~o, the force constant, and the vibration-rotation interaction 
coefficient for 7LiH. 
 
 
Answer:  WWW   The wave numbers from the figure are fit to a quadratic polynomial in m using 

Eq. 27.6.10 and the “Non-Linear Least Squares” applet on the text Web site or companion CD. 
The polynomial coefficients are related to the parameters in Eq.27.6.10 as: 
 

 y = am2 + bm +   c    with     a = –~e  b = (2B
~

e – 2~e) c = ~o  27.6.11 
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J'J" 56 45 34 23 12 01 10 21 32 43 54 65 
m -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 

~ (cm-1)  1264.41   1281.29   1298.00   1313.94   1329.75  1344.81   1374.20    1388.07   1401.51   1414.69   1427.26   1439.62 
              

 

   
=======   Results   ====== 
 a= -0.2151 +- 0.00192 
 b= 14.59676 +- 0.006 
 c= 1359.7249 +- 0.037 

                                                                                            ~ (cm-1) 
sum of squared residuals= 0.05908 
 stand. dev. y values= 0.08102 
 correlation between a & b= 0 
 correlation between b & c= 0 
 correlation between a & c= -0.7789 
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Figure 27.6.6: Quadratic curve fitting to the peak positions for 7LiH using m = J+1 for the R-
branch and m= –J for the P-branch. 

 
 
The reduced mass for 7LiH is: 
 

  = 
m1m2

m1+m2
 = 

(7.016004)(1.007825)
7.016004+1.007825  (g mol-1) 

1
NA

 (1kg/1000 g) = 1.46333136x10-27 kg 
 

Using the fit coefficients: ~o = 1359.72 cm-1  and ~e = 0.2151 cm-1 

with Eq. 27.6.11:  B
~

e = (b + 2~e)/2 = (14.5967 + 2(0.2151))/2 cm-1 = 7.5135  0.0036 cm-1 

with Eq. 27.4.2:     I =  ħ/(4B
~

c) = 1.05457266x10-34 J s/[4(7.5135 cm-1)(2.997925x1010 cm s-1)] 
           = (3.72567  0.0018)x10-47 kg m2  
with Eq. 27.4.2:    Re = (I/)½ = (1.59563  0.00038)x10-10 m = 1.59563  0.00038 Å 

with Eq. 27.5.4:     k = 42c2~o
2 = 42(2.99792x1010 cm s-1)2(1359.72 cm-1)2(1.463331x10-27 kg) 

         k = 95.99 N m-1 
 

LiH has a comparatively large vibration-rotation interaction constant, which means that the bond 
length change with vibrational state is significant, which in turn suggests a comparatively 
anharmonic vibrational potential. For a harmonic potential, the equilibrium bond length is 
constant with vibrational level. 
              

 
 
   The intensity of the lines is determined by the Boltzmann distribution of molecules in 
rotational states J, Figure 27.6.7. The population of each individual state decreases with 
increasing J. However, the degeneracy of the rotational states, gJ = 2J + 1, gives a maximum 
population in energy levels greater than J = 0. As a consequence, the intensity of the rotational 
fine-structure lines starts at intermediate intensity for J = 0 and passes through a maximum for 
successively higher J states. 
 



267 
 

Table 27.6.1(DS): Ground State (GS) Spectroscopic Properties of Diatomic Molecules.2-7 
 

Molecule ~e(cm-1) ~ee(cm-1) B
~

e(cm-1) ~e(cm-1) D
~

e(cm-1) Re(Å) Do(eV) GS 
1H1H 4401.21 121.34 60.853 3.062 0.0471 0.7414 4.4776 1g

+ 

7Li1H 1405.498  23.168 7.51373 0.21639 8.617x10-4 1.5957 2.429 1g
+ 

12C1H 2860.75   64.44 14.460 0.536 14.5x10-4 1.1199 3.46 2II 
14N1H 3282.7   79.0 16.6679 0.6504 17.1x10-4 1.0362 3.69 3– 

1H19F 4138.385 89.943 20.9537 0.7934 21.51x10-4 0.91681 5.86 1g
+ 

1H35Cl 2990.925 52.800 10.5933 0.3070 5.32x10-4 1.27455 4.432 1g
+ 

7Li7Li  351.407   2.583 0.67253 0.00705 9.87x10-6 2.6729 1.06 1g
+ 

12C16O 2169.756 13.288 1.93160 0.01751 6.121x10-6 1.1283 11.108 1g
+ 

14N14N 2358.6 14.324 1.99824 0.01732 5.8x10-6 1.0977 9.756 1g
+ 

14N16O 1904.135 14.088 1.70489 0.01754 0.54x10-6 1.15077 6.497 2II 
16O16O 1580.16 11.9513 1.4456 0.01593 4.839x10-6 1.20752 5.126 3g

– 
35Cl35Cl  559.75   2.6943 0.2442 0.00152 0.186x10-6 1.988 2.476 1g

+ 
 
 
   Spectroscopic parameters are a sensitive measure of molecular structure, giving bond lengths, 
angles, and dissociation energies. However, gross selection rules limit the molecules that can be 
studied by absorption techniques to those with permanent dipole moments for rotational 
absorption spectroscopy and to normal modes with a changing dipole moment for vibrational 
absorption spectroscopy. These restrictions leave out many interesting molecules and normal 
modes. Assigning the normal modes for polyatomic molecules is difficult if some of the normal 
modes are not observable because of symmetry. Raman spectroscopy, which is a light scattering 
technique, fills in the gaps left by absorption spectroscopy and has additional advantages as well. 
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Figure 27.6.7: Relative population of rotational states for H35Cl at room temperature, with 
B
~

o = 10.59 cm-1. 
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27.7 Raman Spectroscopy 
 

  The intensity and frequency of light scattered by molecules is an important probe of molecular 
structure and motion. In a scattering experiment, monochromatic radiation, usually from a laser, 
is incident on a sample at frequency o, Figure 27.7.1. The scattered light is focused through a 
lens into a monochromator or interferometer producing a spectrum of the scattered intensity.  
 

 
 
 
 
 
 
 
 
 
 

Figure 27.7.1: Raman Spectroscopy. A monochromatic laser is incident on the sample. The 
light is scattered over a wide range of angles. A spectrum of the scattered light is determined. 
The sample cell for gases is a Wood’s horn (shown). Liquid sample cells include glass 
cuvettes and capillary tubes. The Rayleigh line is truncated. 

 
 

The vast majority of the scattered light is at the incident frequency, which is called elastic or 
Rayleigh scattering, Figure 27.7.2a. The line width of the Rayleigh scattering is a measure of 
molecular motion. A small fraction of the scattered intensity is shifted from the incident 
frequency by interaction with rotations or vibrations of the molecule. Such interactions give rise 
to inelastic or Raman scattering, Figure 27.7.2bc. To conserve energy, the wave number 
difference between the scattered and incident light gives the energy of the molecular transition: 
 

 ~  = ~o – ~scattered   E = hc|~ |     27.7.1 
 

If the final rotational or vibrational state is higher in energy than the initial state, the scattered 
light is lower in energy than the incident light. This light is “redder” than the incident light and is 
called a Stokes transition, Figures 27.7.1 and 27.7.2b. Alternately, if the final rotational or 
vibrational state is lower in energy than the initial state, the scattered light is higher in energy 
than the incident light. This light is “bluer” than the incident light and is called an anti-Stokes 
transition, Figure 27.7.2c. The anti-Stokes peak positions mirror the Stokes lines. The energy 
differences are small compared to the energy of the incident irradiation. For example a helium-
neon laser operating in the red at 632.8 nm corresponds to 15,800 cm-1, while rotational 
transitions are typically less than 10 cm-1 and vibrational transitions are typically in the ~30- 
4000 cm-1 range. The difference between fluorescence and Raman scattering is that fluorescence 
requires that the molecule have an excited state with an absorbance band at the incident 
frequency. For Raman scattering the light is not absorbed. Rather, the molecule interacts with the 
incident photon for a very short period of time, ~10-15 s. Scattering can be thought of as a 
transient increase of the energy of the molecule into a virtual state with the prompt reemission 
of the photon at or very near the same frequency, in one concerted step. The energy of the virtual 
state is determined by the energy of the incident photon and does not necessarily correspond to a 

Laser 
Sample Cell 

Lens 

Monochromator, 
Spectrograph, 
or Interferometer 

 (cm-1)  In
te

ns
ity

 
 

Laser Notch-filter 

~ o 

 (cm-1)  

In
te

ns
ity

 

~ o 

Stokes anti-Stokes 

Rayleigh 



269 
 

molecular excited state. Subject to selection rules, all molecules give Raman spectra using a wide 
range of incident laser frequencies. Typical lasers for Raman spectroscopy range from near-
infrared solid-state diode lasers operating at 1064 nm, green diode-pumped solid-state lasers at 
514.5 nm, blue optically-pumped solid-state lasers at 488 nm, or ultraviolet helium-cadmium 
lasers at 325 nm. 
 
 
 
 
 
 
 
 
 
 
 
 (a). Rayleigh or elastic    (b). Raman Stokes  (c). Raman anti-Stokes 
 

Figure 27.7.2: (a). Rayleigh scattering is at the irradiation frequency, o. (b). Raman 
scattering conserves energy with changes in the rotational or vibrational state of the molecule 
by inelastic scattering of the radiation. Stokes scattering is redder than the incident 
frequency. (c). Anti-Stokes scattering is bluer than the incident frequency. Vibrational levels 
are shown for illustration purposes.  

 
 

   The resulting Raman spectra have similar appearance to the corresponding rotational or 
vibrational absorption spectra, especially if only the Stokes bands are displayed, Figures 27.7.3 
and 27.3.4. A major difference is the appearance of the intense, unshifted Rayleigh band at the 
incident laser wavelength, Figure 27.7.3. A notch-filter is usually placed in front of the 
monochromator to decrease the intensity of the Rayleigh band, allowing the Raman bands to be 
more easily displayed. A notch filter absorbs in a narrow band of frequencies centered on the 
incident laser frequency, while allowing redder or bluer light to pass unattenuated. Given that 
Raman spectra appear to be so similar to microwave or infrared absorption spectra, what is the 
need for Raman spectroscopy? 
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Figure 27.7.3:  Rotational Raman spectrum of CO gas. 

E 

~ scatter = ~ o ~ o 

3 
2 
1 
o 

virtual state E 

~ scatter < ~ o ~ o 

3 
2 
1 
o 

virtual state E 

~ scatter > ~ o ~ o 

3 
2 
1 
o 

virtual state 

Stokes 
J = +2 

anti-Stokes 
J = –2 

4B
~

 



270 
 

3008001300180023002800
 

 

Figure 27.7.4:  Vibrational infrared absorption and Raman spectra of liquid cyclohexane. 
Some transitions occur only in the infrared and some occur only in the Raman. The Rayleigh 
line is off-scale to the right. 

 
 

Selection Rules are Different for Light Scattering:  In rotational absorption spectroscopy, the 
intensity of a transition is proportional to the permanent dipole moment. In rotational Raman 
scattering, the intensity of the transition is proportional to the induced dipole moment. The 
interaction of the electric field of light with a molecule produces an induced dipole moment. 
The induced dipole moment is proportional to the polarizability of the molecule and the strength 
of the electric field of the incident light, E


. For a spherical molecule, such as CH4, the induced 

dipole moment  is given as: 
 

 ind = E


       (spherical top)  27.7.2 
 

where  is the polarizability. Molecules with no permanent dipole moment still have an induced 
dipole upon interaction with light. The polarizability of a molecule is the ease of distortion of the 
electronic distribution. 
   Polarizable molecules are “squishier” than non-polarizable molecules. In general, polarizability 
increases with increasing number of electrons. For example, polarizability increases in the order 
HF < HCl < HBr or C2H2 < C3H6 < C6H6. Polarizability decreases as electrons are more tightly 
held. For example, polarizability decreases across the isoelectronic series Cl– > Ar > K+. As the 
nuclear charge increases across the isoelectronic series, the electrons are more tightly held, and 
the atomic or ionic volume decreases. The result is that for a given number of electrons, the 
larger the volume of an ion or molecule the more easily the electron distribution is distorted. 
   The polarizability of non-spherical molecules depends on the orientation of the molecule with 
respect to the direction of the electric vector of the incident light. For example, the polarizability 
of CO2 is larger along the internuclear axis than perpendicular to the internuclear axis. The 
induced dipole moment is: 
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where 


 is the symmetric square matrix of polarizability components. Completing the matrix 

multiplication gives: 
 

  x,ind = xx Ex + xy Ey + xz Ez 
 y,ind = yx Ex + yy Ey + yz Ez       27.7.4 
  z,ind = zx Ex + zy Ey + zz Ez 
 

A matrix that expresses the directionality of an atomic or molecular property is called a tensor. 
Polarizability, moments of inertia, and NMR chemical shifts are tensor properties. The 
directionality of the polarizability is expressed in an analogous fashion to the moment of inertia, 
Section 27.4, and like the moment of inertia a principal coordinates frame can be found by 
reorienting the molecule about the axes to give zeros for the off-diagonal components. In the 
principle coordinates frame, the molecule is visualized as an ellipse, with polarizability 
components xx, yy, and zz, Figure 27.7.5. 
   Spherical tops are said to have an isotropic polarizability, with xx = yy = zz. Non-spherical 
molecules have an anisotropic polarizability, with either zz  xx = yy for symmetric tops or 
zz  xx  yy for asymmetric tops. In light scattering experiments the electric field of light 
interacts with the induced dipole moment. For a rotating molecule to present an oscillating 
induced dipole moment, the molecule must have an anisotropic polarizability. As a result, 
symmetrical tetrahedral and octahedral molecules do not give either rotational absorption or 
rotational Raman spectra; CH4 and SF6 do not give rotational Raman spectra. However, 
homonuclear diatomics and symmetric linear molecules, while lacking a permanent dipole, do 
give Raman spectra. For example, pure rotational Raman spectra are observable for O2, N2, Cl2, 
CO2, and HCCH. 
 
 
 
 
 
 
 
 
 

Figure 27.7.5: Molecular polarizability is visualized as an ellipse with dimensions xx, yy, 
and zz in the principle coordinates frame. The selection rule for rotational Raman is that the 
molecule must have an anisotropic polarizability. 

 
 

Rotational Raman:  Rotational Raman spectroscopy is analogous to rotational absorption 
spectroscopy, subject to the selection rule requiring an anisotropic polarizability. A Wood’s horn 
is used as a sample cell for low pressure gases to decrease the intensity of stray light at the 
incident frequency. This cell has a conical end that is painted black to absorb the transmitted 
light. Another difference is that the specific selection rule is J = 2 (J = 0 gives Rayleigh 
scattering). The change in angular momentum quantum number of two results because two 
photons are involved, the incident and scattered photons.  Using Eq. 27.7.1, the Stokes Raman 
shift for a transition from initial state J" to final state J' = J"+2 occurs at: 
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 ~ = F
~

J"+2 – F
~

J" = B
~

[(J"+2)(J"+2 + 1) – J"(J"+1)] = 2B
~

(2J" + 3) (J":lower level) 27.7.5 
 

for J" = 0, 1, 2, … The Stokes shifts are to lower wave number, relative to the incident laser. The 
anti-Stokes shift for a transition from initial state J" to final state J' = J"–2 occurs at: 
 

 ~ = F
~

J"–2 – F
~

J" = B
~

[(J"–2)(J"–2 + 1) – J"(J"+1)] = –2B
~

(2J" – 1) (J":lower level) 27.7.6 
 

for J" = 2, 3, 4, … The negative sign relates that the anti-Stokes shifts are to higher wave 
number, relative to the incident laser. The spacing between adjacent transitions is 4B

~
. Our 

treatment is valid for molecules lacking symmetry, for example heteronuclear diatomics and 
unsymmetrical linear molecules such as N2O. We will discuss the case of homonuclear diatomics 
and symmetrical linear triatomics, such as CO2, in the chapter on statistical mechanics. 
Rotational Raman is complementary to microwave absorption because of the change in selection 
rule. The selection rules for vibrational absorption and Raman scattering also differ. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27.7.6:  Symmetric and asymmetric stretch of CO2. The equilibrium positions are at 
the dotted vertical line. The symmetric stretch gives no dipole moment; the symmetric stretch 
is infrared inactive and Raman active. The derivative of the polarizability for the asymmetric 
stretch of CO2 vanishes; the asymmetric stretch is infrared active and Raman inactive.8 

 
 

Vibrational Raman and Absorption Spectroscopy are Complimentary:  The selection rule for 
vibrational Raman spectroscopy is that an element of the polarizability must change during the 
vibration. For a diatomic molecule, the selection rule is that at least one derivative of the 
polarizability with respect to the bond length cannot vanish: 
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 



dij

dR Ro

  0 with ij = xx, yy, zz, xy, xz, yz      27.7.7 

 

where R is the bond length. For a polyatomic, the derivative is with respect to the normal 
coordinate of the vibration. The derivative is evaluated at the equilibrium bond length. 
Homonuclear diatomics are inactive in infrared absorption but are active in Raman scattering. 
For example, O2, N2, Cl2 are infrared inactive and Raman active. Heteronuclear diatomics are 
both infrared and Raman active. 
   For polyatomic molecules, the change in dipole moment and polarizability during each normal 
mode must be determined. We can use the volume of the molecule as an indicator of the 
polarizability. For example, the symmetric stretch of CO2 gives no dipole moment. However, the 
symmetric stretch changes the polarizability, because the normal mode changes the volume of 
the molecule, Figure 27.7.6. The symmetric stretch of CO2 is infrared inactive and Raman active. 
For the asymmetric stretch, the dipole moment changes. However, the volume of the molecule is 
the same at the positive and negative extremes of the vibration. As a consequence the 
polarizability has a zero derivative at the equilibrium geometry. The asymmetric stretch and 
bends of CO2 are infrared active and Raman inactive. 
   Transitions that are weak or missing in the infrared are often present in the Raman spectra or 
vice versa. In this sense, vibrational infrared absorption and Raman scattering are 
complimentary. However, a normal mode can be neither infrared nor Raman active. For a 
molecule with a center of symmetry, vibrational modes are either infrared active or Raman 
active, but not both. This restriction is called the Exclusion rule. Molecules with a center of 
symmetry have an inversion center. For example, O2, N2, CO2, HCCH, C6H6, PtCl4

2–, and SF6 
have an inversion center, are therefore centrosymmetric, and the exclusion rule applies. 
However, N2O, H2O, SO2, SO3, CO3

2–, NH3, CH4, and H2C=CH2 do not have a center of 
symmetry, are not centrosymmetric, and are both infrared and Raman active. The selection rules 
for the normal modes for several types of small molecules are shown in Table 27.7.1. The point 
group and symmetry species (e.g. g

+, a1', a2") come from group theory and can be thought of as 
convenient descriptive names of the normal modes. The application of group theory to rotational 
and vibrational spectroscopy is covered in the next section. 
 

Raman Transitions of Totally Symmetric Normal Modes are Polarized:  Assigning normal modes 
is aided by collecting Raman spectra with specific polarization, Figure 27.7.7. The Raman 
spectrum is determined with the direction of polarization of the detected light either parallel, I||, 
or perpendicular, I, to the incident laser radiation. Totally symmetric normal modes maintain 
the full symmetry of the molecule. For example, the symmetric stretch of CO2 maintains the 
equal bond lengths and linear shape of the equilibrium geometry. The symmetric stretch of CO2 
is a totally symmetric vibration. The asymmetric stretch removes the mirror plane and the 
bending vibrations remove the linear geometry and are therefore not totally symmetric. The 
depolarization ratio, , is defined as: 
 

   
I
I||

           27.7.8 
 

The depolarization ratio is determined by the change in components of the polarizability with the 
normal mode coordinates, Eq. 27.7.3. The depolarization ratio is  = ¾ for vibrations that are not 
totally symmetric and   ¾ for totally symmetric vibrations. 
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Table 27.7.1: Selection Rules for Representative XY2, XY3, and XY4 Molecules or Ions. 
             

Species Point group   Normal Modes*     
 

   Y–X–Y Dh 
 

  linear  1 symm stretch 2  bend  3 stretch 

    g
+ (Rp)  u (IR)  u

+ (IR) 
 
  C2v 
 
  bent 
 

    1 symm stretch 2 bend  3 stretch 

    a1 (IR, Rp) a1 (IR, Rp) b2 (IR, Rd) 
 

 
  D3h 

 
       trigonal planar 

 
    1 symm stretch 2 symm bend 3 stretch  4 bend 
    a1' (Rp)  a2" (IR)  e' (IR, Rd) e' (IR, Rd) 
 

 
  C3v 

 
       trigonal pyramidal 
 

    1 symm stretch 2 symm bend 3 stretch  4 bend 
    a1 (IR, Rp) a1 (IR, Rp) e (IR, Rp) e (IR, Rd) 
 

 
  Td 
 
 

          tetrahedral 
 
 

    1 symm stretch 2 bend  3 stretch  4 bend 
    a1 (Rp)  e (Rd)  t2 (IR, Rd) t2 (IR, Rd) 
             

* IR is infrared active,  R is Raman active, p is polarized, and d is depolarized, 
e modes are doubly degenerate, t modes are triply degenerate. 

 

 
 
 
 
 
 
 
 
 

 

Figure 27.7.7:  Depolarization ratios help identify Raman transitions. The spectrum is 
determined with the plane of polarization parallel and perpendicular to the incident 
polarization (depolarized I determination illustrated). Strongly polarized bands have   0. 
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   Transitions with depolarization ratios < ¾ are said to be polarized. The symmetric stretch of 
CO2 is polarized, and the asymmetric stretch and bend are depolarized. The depolarization ratio 
can be near zero for totally symmetric vibrations of molecules with high symmetry, such as CO2, 
SF6, and CCl4. The normal mode polarization is included in Table 27.7.1. 
 

Forbidden Transitions Can Borrow Intensity from Allowed Combinations and Overtones:  
Complications sometimes arise in infrared and Raman spectra. A formally forbidden transition 
may appear, or the intensity of a weak transition may be larger than expected, or a transition that 
is expected to be a single line may appear as a doublet. These deviations from expected behavior 
occur through a Fermi resonance of degenerate transitions. For example, in the Raman 
spectrum of CO2, the fundamental symmetric stretch is strong and the fundamental bending 
vibration is absent, as expected. However, a peak for the first overtone of the bending vibration 
appears as strongly as the symmetric stretch. In general, overtones are expected to be much less 
intense than the corresponding fundamentals. The symmetric stretch is at 1388 cm-1 in the 
Raman and the bend is at 667 cm-1 in the infrared. The first overtone of the bend at 2(667 cm-1) = 
1334 cm-1 is nearly degenerate with the symmetric stretch. The first overtone of the bend 
borrows, or steals, intensity from the Raman allowed symmetric stretch. The interaction results 
in a small shift of the Raman allowed symmetric stretch to 1389 cm-1 and the appearance of the 
bend first overtone at 1285 cm-1, Figure 27.7.8. The interaction of two nearly degenerate 
transitions of the same symmetry commonly produces a closely spaced doublet. The first 
transition takes on some of the character of the second, and the second takes on some of the 
character of the first; the two states mix. The mixing of degenerate or nearly degenerate states is 
a general result that occurs in a wide variety of circumstances. For example, if the two wave 
functions are 1 and 2, perturbation theory predicts that two new orthogonal states result: 
+ = a 1  + b 2  and – = b 1 – a 2. Anharmonicity is the perturbation that causes a Fermi 
resonance. 
 

 
 (a).       (b). 
 

Figure 27.7.8: (a). Fermi Resonance in CO2. Nearly degenerate transitions of the same 
symmetry can borrow intensity to give peaks that are not expected. (b). Raman spectrum of 
super-critical CO2. The smaller side peaks are hot bands.9 

 
 

    In Raman spectra of CCl4 and benzene, closely spaced doublets appear that are Fermi 
resonances between a fundamental stretch and a combination band. In some ketones, the stretch 
near 1800 cm-1 is a doublet that is caused by a Fermi resonance with an HCH-bend overtone. 
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Raman Spectroscopy Works Well in Water and is Enhanced On Some Surfaces:  One advantage 
of Raman spectroscopy is that water is an ideal solvent. In infrared absorption, water is 
problematic because water has high infrared absorption over broad regions of the spectrum. 
Water is a weak Raman scatterer. Studies of inorganic species, water soluble polymers, and 
surfactants are facilitated by the ideal qualities of water as a solvent for Raman spectroscopy. 
Glass, quartz, and plastics have high absorption in the mid-infrared. As a result, cell windows for 
infrared studies are often formed from water soluble salts, such as NaCl and KBr. However, 
glass sample cells work well for Raman, since the spectra are taken in the visible or near 
infrared. Glass cuvettes, NMR tubes, and melting point capillaries are commonly used sample 
cells. Raman is employed for explosives screening in airports using hand-held spectrometers. 
Raman spectra can be acquired directly through plastic containers of personal care products, such 
as shampoo and mouth-wash bottles. The biggest disadvantage of Raman spectroscopy is the 
poor sensitivity. Approximately only one in 109 photons is scattered in Raman processes. 
   Numerous methods have been devised to enhance Raman scattering. In surface-enhanced 
Raman spectroscopy, SERS, a roughened metal surface greatly enhances Raman scattering of 
surface absorbed molecules. Silver and gold nano-particles are also commonly used for SERS. 
Silver particles support collective surface excitations upon visible light irradiation that enhance 
the local electric field strength at the surface. Raman spectra of surface absorbed species on 
roughened or nano-particle silver are attainable with orders of magnitude enhancement over 
comparable homogeneous solutions. The collective surface excitations, which are called surface 
plasmons, result from collective motion of the electrons near the surface of the metal. The effect 
is to create electron density waves that propagate along the surface. A useful analogy is to 
compare the motion of the electrons to the propagation of sound waves. For sound the energy of 
the wave is propagated by oscillating regions of high and low molecule density. For surface 
plasmons the energy of the wave is propagated by oscillating regions of high and low electron 
density at the surface. The effect of the plasmon is to create a strong oscillating electric field near 
the surface, which is called the evanescent wave. This electric field is greater than would have 
been produced by a single photon. The evanescent wave enhances the induced dipole moment, 
Eq. 27.7.3. Surface plasmons are discussed, in conjunction with SPR kinetics, in Section 5.4. 
One caution is that SERS can have a different pattern of transition intensities compared to pure 
Raman spectra, because molecules can change symmetry upon absorption to the metal surface. 
We next consider the effect of molecular symmetry on rotational and vibrational spectra. 
 
27.8 The Effects of Molecular Symmetry: Group Theory 
 

   Group theory provides a succinct description of the shape of a molecule and the effect the 
shape has on molecular properties. The goal of the spectroscopic applications of group theory is 
to predict if a given transition is allowed or forbidden. For IR absorption, if the transition electric 
dipole moment is non-zero,  *

j  ̂ i d  0, the transition is allowed, Eqs. 27.1.6-27.1.10. If the 
transition electric dipole moment vanishes,  *

j ̂ i d = 0, the transition is forbidden. 
Determining the number of forbidden transitions provides useful information and can be the key 
to determining the shape of a molecule from spectra. Group theory is a mathematically elegant 
theory. However, a discussion of the mathematical principles is beyond the scope of this text. 
Rather, we will take a practical approach and explore the relationship of molecular symmetry to 
spectroscopic properties through examples. We first describe how to characterize the symmetry 
of a molecule by a point group and the corresponding symmetry of the vibrational normal modes. 
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Then we use the point group symmetry to determine the normal modes that cause a transition 
dipole to vanish. 
 

The Symmetry of a Molecule Is Described by a Point Group:  The symmetry of a molecule is 
determined upon rotation, reflection, and inversion. Consider first rotation symmetry. 
Formaldehyde has a two-fold rotation axis, CHCl3 and BF3 have a three-fold rotation axis, and 
benzene has a six-fold rotation axis, Figure 27.8.1. Symbolically, the proper rotation axes are 
listed as Cn, where n is the order of the rotation; CHCl3 has a C3 axis and benzene has a C6 axis. 
Symmetrical molecules can have more than one rotation axis. For example, BF3 and benzene 
have three unique C2-axes, Figure 27.8.1cd. The lower order rotation axes are often implied by 
the higher-order symmetry. The highest order rotation axis is called the principle axis and is 
assigned as the z-direction by convention. 
 

 
 
 
 
 
 
 
 
 
 (a). C2, formaldehyde    (b). C3, chloroform       (c) C3, 3C2; BF3        (d). C6, 3C2; benzene 
 

Figure 27.8.1:  n-Fold proper rotation axes, Cn. 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (a). 2v, formaldehyde  (b). 3v, chloroform   (c). 3v, benzene 
 

Figure 27.8.2:  Vertical reflection planes, v. (a). Formaldehyde perspective illustration (top) 
and the projection along the C2-axis (bottom). (b).Only one of the three v planes is shown in 
the chloroform perspective illustration, for simplicity (left). All three v-planes are shown in 
the projection along the C3-axis (right) (c). Benzene projection along the C6-axis. 

 
 

   Next consider reflection symmetry. For example, reflection across a plane that includes the x- 
and z- axes, xz, inverts the coordinate perpendicular to the symmetry plane: (x,y,z) (x,–y,z). 
Two types of reflection planes are found in objects. A vertical reflection plane, v, includes the 
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principle axis. For example, formaldehyde has two v-planes, one in the plane of the nuclei and 
one perpendicular to the plane of the nuclei, Figure 27.8.2a. Chloroform and BF3 have three v-
planes. Benzene has six v-planes, three pass through the nuclei and three between the nuclei, 
Figure 28.8.2c. In highly symmetrical molecules, like benzene, a distinction is made between 
two types of v-planes. Dihedral-reflection planes, labeled d, bisect two C2-axes that are 
perpendicular to the principal axis. In general, the v-planes are the set that pass through the 
maximum number of nuclei and the d-planes are the set that pass through the fewest nuclei. 
   The second type of reflection plane is a horizontal reflection plane, h. A horizontal 
reflection plane is perpendicular to the principle axis. Benzene and BF3 have a h-plane, while 
formaldehyde and chloroform do not, Figure 27.8.3. 
 
 
 
 
 
 
 
 
 

Figure 27.8.3:  Horizontal reflection planes, h. 
 
 
   Next consider inversion. We introduced the inversion operation in the molecular structure 
chapter for the characterization of the molecular orbitals of diatomic molecules. The inversion 
operation, i, inverts all the coordinates across the center of mass: (x,y,z) (–x,–y,–z). 
Homonuclear diatomic molecules have an inversion center. Benzene has an inversion center, 
while formaldehyde, chloroform, and BF3 do not. 
   One additional type of symmetry operation is required to completely characterize all 
molecules. An improper rotation, Sn, is an n-fold rotation followed by a horizontal reflection. 
Methane has an S4-axis and ethane has an S6 axis, Figure 27.8.4. An S2 is equivalent to 
inversion: C2h = i. 
 

 
 
 
 
 
 
 
 
 

 
 (a). CH4: S4-axis          (b). CH3–CH3: S6-axis 
 

Figure 27.8.4: Improper rotation axes, Sn, combine a rotation by 360/n and a horizontal 
reflection. Methane has an S4-axis and ethane has an S6 axis. 
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   Methane has C3 and C2-axes in addition to three S4-axes, Figure 27.8.5a. The three C2-axes are 
collinear with the S4-axes. Because there are multiple C3 axes, tetrahedral molecules don’t have a 
distinct principle axis. Methane has three d-planes, Figure 27.8.5b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (a).     (b). 
 

Figure 27.8.5:  (a). C3 and C2 axes for CH4. Only one of the three C3-axes is shown. (b). 
Dihedral reflection planes, d. For the perspective view, only one dihedral reflection plane is 
shown. For the view down the C2-axis, only two of the dihedral planes are shown. 

 
 
   A molecule is assigned to a point group on the basis of its symmetry operations. The point 
group summarizes all the geometric relationships of the molecule. A listing of the symmetry 
operations that define the various point groups is given in Table 27.8.1. The order of the group, 
h, is the total number of symmetry operations of the group. For mathematical completeness, the 
unity operator, E, is defined. The effect of the unity operator is to leave everything unchanged. 
The unity operator takes the place of multiplication by one in simple arithmetic: 1(x) = x. Every 
molecule has E as one of its symmetry operations. The sequential application of related 
symmetry operations gives the unity operator. For example, three successive C3 rotations leaves 
the molecule unchanged: C3C3C3 = E. Two successive inversions leaves the molecule 
unchanged, i i = E. 
   Completely unsymmetrical molecules only have the unity operation and are in point group C1. 
If a molecule has only the unity operation and inversion, the point group is Ci. Water has a C2-
axis and two vertical mirror planes, giving the point group as C2v, Figure 26.6.4. BF3 has a C3-
axis and a h-plane giving D3h. Benzene has a C6-axis and a h giving the D6h point group. 
Rotation by any angle about the internuclear axis leaves a linear molecule unchanged, giving a 
C-axis. Heteronuclear diatomics and unsymmetrically substituted linear triatomics, such as 
N2O, are in point group Cv. Homonuclear diatomics and Y–X–Y linear triatomics, such as CO2, 
have a h-plane giving Dh. Methane is in the Td point group. The complete listings of all the 
symmetry operations of each point group are given in the first row of the group’s character 
table, Table 27.8.2, and Figure 27.8.6. 
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Table 27.8.1:  Point Group Operations with the Order of the Principle axis, n.10 

 

Point Group Important Symmetry Operations Example h 
C1 E HCFClBr 1 
Ci i C2H2F2Cl2 2 
Cs  O=CHCl, CH2ClBr 2 
Cn Cn H2O2, B(OH)3 n 
Sn (note*) Sn S4N4F4 n 
Cnv Cn, v H2O, O3, NH3 2n 
Cnh Cn, h trans-CH2F2 2n 
Dn Cn, C2 Co(en)3

3+ 2n 
Dnd Cn, C2, d C3H2, C2H6 4n 
Dnh Cn, C2, h C2H4, BF3, C6H6 4n 
Cv linear molecules with no center of inversion HCl, N2O  
Dh linear molecules with a center of inversion O2, CO2  
Td tetrahedral symmetry (C3, C2, S4, d) CH4, CCl4 24 
Th tetrahedral symmetry, h Cu(NO2)6

4– 24 
Oh octahedral symmetry (C4, C3, C2, S6, S4, h, d) SF6 48 
Ih icosahedral symmetry C60, B12H12

2– 120 
* For Sn, n must be even, otherwise, Sn = Cnh 
 
 
Table 27.8.2(DS):  Character Tables for Common Point Groups C2v, C3v, D3h, Td.. 
 

C2v E C2 v v' h = 4  
A1 1  1  1  1 z, z2, x2, y2  
A2 1  1 -1 -1 xy Rz 

B1 1 -1  1 -1 y, yz Rx 

B2 1 -1 -1  1 x, xz Ry 

 

C3v E 2C3 3v h = 6  
A1 1  1  1 z, z2, x2+y2  
A2 1  1 -1  Rz 

E 2 -1  0 (x,y),( x2–y2,xy),(xz,yz) (Rx,Ry) 
 

D3h E h 2C3 2S3 3C2' 3v h = 12  
A1' 1  1 1 1  1  1 z2, x2+y2  

A2' 1  1 1 1 -1 -1  Rz 

A1" 1 -1 1 -1  1 -1   
A2" 1 -1 1 -1 -1  1 z  
E' 2  2 -1 -1  0  0 (x, y),(xy, x2–y2)  
E" 2 -2 -1  1  0  0 (xz, yz) (Rx,Ry) 

 

Td E 8C3 3C2 6d 6S4 h = 24  
A1 1  1  1  1  1 x2+y2+z2  
A2 1  1  1 -1 -1   
E 2 -1  2  0  0 (3z2–r2, x2–y2)  
T1 3  0 -1 -1  1  (Rx,Ry,Rz) 
T2 3  0 -1  1 -1 (x, y, z),(xy, xz, yz)  
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Vibrations Behave Differently Under Transformations of the Point Group:  The next step in 
determining the selection rules of normal mode vibrations is to determine how each normal mode 
transforms according to the symmetry operations of the point group. Character tables are the key 
to this determination. Consider a symmetrical, bent triatomic like H2O, which is in the C2v point 
group. The normal modes are the 1-symmetric stretch, 2-bend, and 3-asymmetric stretch, 
Figure 27.8.7. All the normal mode displacements are in-plane for C2v. The transformation 
properties of the normal mode displacements determine the corresponding symmetry species that 
represents the normal mode. The symmetry species are the irreducible representations of the 
group. In the character table for C2v, the rows labeled A1, A2, B1, and B2 are the irreducible 
representations of the group. 
   Each irreducible representation describes a unique set of symmetry properties for an object, 
Figure 27.8.6. The types of objects include molecular translations, molecular rotations, normal 
modes, and molecular orbitals. We used these representations in assigning the symmetry 
properties of the molecular orbitals for bent triatomics; a rotation by 180 corresponds to a C2-
rotation, Figure 26.6.4. Comparing Table 27.8.2 for C2v and the orbital symmetry properties 
listed in Figure 26.6.4, note that the symmetric and antisymmetric behavior under C2-rotations 
and v-reflections is taken from the rows of the character table; a character of 1 corresponds to 
symmetric and a -1 to antisymmetric. Lobes of molecular orbitals are characterized by their 
phase. The normal modes are drawn with vectors representing the atoms displacements. For 
normal modes, if the phases of the displacement vectors in expansion or contraction are 
unchanged by the symmetry transformation, the result is symmetric. If the direction vectors 
change direction, for example from expansions to contractions, the mode is antisymmetric. 
 
 

   Point Group  Classes of symmetry operations 
 

    Number of operations 
    in each class  Order of group (total operations) 
 

C3v E 2 C3 3 v h = 6   
 

A1 1   1 
   

  1 z (and Tz) z2, x2+y2  
A2 1   1 -1   Rz 

E 2  -1   0 (x,y) (and Tx,Ty) ( x2–y2,xy),(xz,yz) (Rx,Ry) 
 
Irreducible representations           Characters  IR activity and  Raman  Molecular 
of the group-symmetry species    of the irreducible molecular  activity  Rotations 
for objects            representations translations, T 
 

Figure 27.8.6:  Character tables give the transformation properties of the normal modes or 
molecular orbitals for a molecule with the point group symmetry.11 Operations of the same 
type are grouped in classes. Functions in parenthesis are degenerate and transform together. 

 
 

   Normal modes are either symmetric or antisymmetric with respect to the transformations of the 
point group. In Figure 27.8.7, for the 1-symmetric stretch, a rotation about the principle axis or a 
reflection across the v-plane converts the displacement vector for the hydrogen on the left into 
the displacement vector for the hydrogen on the right; 1 is symmetric with respect to C2 and v 
giving a1-symmetry. The same symmetric transformations result for the 2-bend, giving the bend 
also as a1. For the 3-symmetric stretch, a rotation about the principle axis or a reflection across 
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the v-plane inverts the displacement vector for the hydrogen on the left compared the 
displacement vector for the hydrogen on the right; 3 is antisymmetric with respect to C2 and v 
giving b2-symmetry. 
 

   C2v 
 
 
          a1   a1   b2 

symmetry C2 reflect across v 
symmetric a 1 

antisymmetric b 2 

 
 
 
 

      1-symm stretch          2-bend          3-asymm stretch 
 

Figure 27.8.7: Symmetry properties of the normal modes of a symmetrical, bent triatomic, 
point group C2v. The symmetry of the normal mode is given by the irreducible 
representation. (Out of plane motions correspond to rotations for a bent triatomic.) 

 
 

The Transition Dipole Has a Corresponding Symmetry:  The transition electric dipole moment of 
a molecule is given by the integrals of the vector components of the electric dipole, Eq. 27.1.7: 
 

  tr,x  –e  '(x – xe)" dq          tr,y  –e  '(y – ye)" dq        tr,z  –e  '(z – ze)" dq 
            27.8.1 
 

where dq represents the progress of the normal coordinates of the vibration. To determine if the 
components of the transition dipole vanish, we need to determine the symmetry properties of the 
x, y, and z-components of the electric dipole moment operator. As a convenient visual device, 
the px, py, and pz-atomic orbitals have the same functional form as the dipole moment 
components with respect to the functions x, y, and z, Eq. 25.2.8 and Figure 27.8.8. The atomic 
orbitals are easier to visualize. 
 
 
 
 
 
 
 
 

 pz px py dxy dxz 
C2: + – – + – 
v: + – + – – 
v': + + – – + 
 a1 b2 b1 a2 b2 

 

Figure 27.8.8: Transformation of atomic p- and two d-orbitals under point group C2v. 
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The pz-orbital retains the same sign under all transformations; the pz-orbital and the z-component 
of the dipole moment operator transform according to the totally-symmetric representation of the 
point group, a1. The px-orbital changes sign upon rotation about the C2-axis and upon reflection 
across the v-plane, but retains the same sign upon reflection across the v'-plane; accordingly, 
the px-orbital and the x-component of the dipole moment operator transform according to the b2-
representation. The py-orbital changes sign upon rotation about the C2-axis and upon reflection 
across the v'-plane, but retains the same sign upon reflection across the v-plane; the y-
component of the dipole moment operator and the py-orbital transform according to the b1-
representation. 
 

Normal Mode Symmetry Determines IR and Raman Activity:   For an interaction to occur 
between light and a vibrational normal mode, the normal mode must present an oscillating dipole 
moment. The derivative of the electric dipole moment with respect to the motion of the normal 
mode must be non-zero, Eq. 27.1.11. By the Born-Oppenheimer approximation in this dipole 
moment derivative, the electronic portion of the integral is separable from the integral over the 
nuclear coordinates. The electronic integral can be represented as partial charges on each of the i-
atoms, ei. Starting with Eq. 27.1.5, the resulting electric dipole moment operator for vibrations 
reduces to a function of just the nuclear coordinates and the partial charge on each atom:13,14 
 

 x =  ei xi        y =  ei yi        z =  ei zi (nuclear coordinates)  27.8.2 
 

The transition dipole moment components in the x, y, and z-directions interact with the electric 
field of light in the x, y, and z-directions, respectively. The following selection rule results in 
infrared absorption: 
 

In absorption, the transition dipole moment vanishes unless the normal mode transforms 
according to the same representation as the x, y, or z-component of the dipole moment. 

 

Any one of the x, y, or z-components of the dipole moment suffice. In the gas or liquid phases, 
molecules rapidly tumble allowing each component of the transition dipole to align with the 
electric vector of the light. For example with XY2 C2v molecules, the 1-symmetric stretch and 
the 2-bend have the same a1-symmetry as the z-component of the dipole moment. As a 
consequence the 1-symmetric stretch and 2-bend give allowed transitions in absorption. The 
3-asymmetric stretch, which has the same b2-symmetry as the x-component of the dipole 
moment, also gives an allowed transition. All normal modes of C2v-molecules are possibly 
infrared-active, as summarized in Table 27.7.1. The normal modes are described as possibly 
active, because while not forbidden by symmetry, the transition dipole moment may give a result 
of zero for reasons other than symmetry. Now, what about Raman transitions? 
   The components of the polarizability transform according to the functions, z2, x2, y2, xy, xz, 
and yz for C2v molecules, Eq. 27.7.3. Once again we can determine the representation of the 
symmetry of these operators by comparison to the symmetry of the corresponding atomic 
orbitals. Compared to the polarizability components, the d-orbitals have the appropriate 
functional form. Figure 27.8.8 shows that under C2v the dxy-orbital, with lobes between the x- 
and y-axes, retains the same sign upon rotation by 180 about the z-axis; the dxy-orbital and the 
xy component of the polarizability transform as a2. The dxz-orbital, with lobes between the x- and 
z- axes, transforms as b2. The z2-, x2-, and y2-components are always positive and so transform 
according to the totally symmetric representation, a1. The following selection rule results in 
Raman scattering: 
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In Raman scattering, the transition moment vanishes unless the normal mode transforms 
according to the same representation as a component of the polarizability. 

 

For C2v, the polarizability components taken together include all the irreducible representations 
of the point group; as a consequence all normal modes are possibly Raman active, as listed in 
Table 27.7.1. 
 

Symmetry Relationships are Summarized in a Character Table:  The irreducible representations 
of a point group are given symbols A, B, E, and T, except for groups with a C-axis. Often lower 
case is used for the symmetry of specific objects, while upper case is used for the corresponding 
irreducible representation listed in the character table. The A-representations are symmetric with 
respect to rotation of the highest-fold Cn-axis, while the B-representations are asymmetric. E-
representations are two-dimensional, which for vibrations corresponds to doubly degenerate 
normal modes. T-representations are for triply degenerate normal modes. For groups without an 
inversion center, the 1, 2, and 3-subscripts differentiate the transformation properties within each 
type of representation. For groups with an inversion center, the subscript is either g or u; g for 
gerade, even, symmetric and u for ungerade, uneven, antisymmetric. Unfortunately, the 1, 2, and 
3-subscripts are arbitrary; different authors and molecular structure programs switch these 
designations. The E-representation is not related to the identity operator, E. The double use of the 
E-symbol is not consequential. Some authors use F as a symbol in place of T for triply 
degenerate representations. The transformation properties of the functions that are the basis for 
the electric dipole moment and polarizability, functions like x, y, z, xy, xz, etc., are listed at the 
right in the character tables. The transformation properties of whole-molecule, center-of-mass 
translations along the x-, y-, and z-axes are identical to the functions x, y, and z: x = Tx, y = Ty, 
and z = Tz. The transformation properties of molecular rotations around the x-, y-, and z-axes are 
listed as Rx, Ry, and Rz. Operations of the same type are grouped in classes. The identity element 
is one class and the rotation operators for a given n are separate classes. The vertical-reflections 
and dihedral-reflections are separate classes, and inversion is a class. The number of irreducible 
representations is equal to the number of classes. For example the classes of symmetry 
transformations for D3h are E, h, 2C3, 2S3, 3C2', and 3v giving six irreducible representations. 
All normal modes of D3h molecules transform according to one of these six irreducible 
representations. 
   When determining the symmetry upon transformation of degenerate normal modes, the 
degenerate modes “transform together.” In general, degenerate states with the same symmetry 
mix and cannot be separated.  
 
 
 
 
 
 
          (a). Eu(1): C2 changes all vectors   (b). Eu(2): C2 changes all vectors 
 

Figure 27.8.9: Degenerate modes transform together. The character of the rotation operation 
is the combination of the results for both of the degenerate orbitals. For this example 
asymmetric stretch, the net character is -2 under C2-rotation. 
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For example, consider a square-planar molecule such as XeF4. The transformation of the doubly-
degenerate Eu-normal modes under C2-rotation is shown in Figure 27.8.9. Transformation of 
each degenerate mode inverts all atom coordinates, giving –2 for both taken together. Luckily for 
many small molecules, the assignment of the normal modes corresponding to E- or T-
representations can be done simply on the basis of degeneracy and the careful evaluation of the 
transformation properties can be side-stepped. 
   The example of the C2v-case is easily done visually. However, molecules with higher 
symmetry are more difficult and interesting. A general step-by-step procedure to determine the 
point group transformation properties of normal modes is useful. Ammonia, which is in the C3v-
point group, is used as an example. 
   Ammonia has 3N-6 = 6 normal modes. The number of stretching vibrations is usually equal to 
the number of bonds. We then expect three stretching vibrations and three bending vibrations for 
NH3. The all-mode vibrational analysis is: 
 

The characters of the reducible representation of all atom displacements are first determined: 
   1. The number of atoms that are stationary under transformation by the operations of the 
classes in the point group is determined. Any convenient transformation within the class can be 
used, since all operations within the same class are equivalent. The results for NH3 are listed as 
step-1 in Figure 27.8.10. For C3-rotation only the N-atom is stationary. Two atoms, an N- and H- 
atom, lie on each v-plane. 
 

   2.  The sum of the characters for the irreducible representations of the three-translations, trans, 
is added to the table as step-2. 
 

   3. The characters of the reducible representation of all atom displacements, tot, are the class-
by-class product of the number of stationary atoms and the representation of the translations, 
trans, as listed as step-3. 
 

The characters of the reducible representation of the vibrations are determined: 
   4-5. The atom displacements include the translation of the center-of-mass and whole-molecule 
rotations. The corresponding characters must be subtracted from the total, just as we did when 
deriving the 3N-6 formula for the number of normal modes. The sum of the characters for the 
irreducible representations of the three-translations, trans, and the three-rotations, rot, are added 
up from the character table and listed as steps 4 and 5. For example, the translations Tx, Ty , and 
Tz transform according to A1 + E. The E-irreducible representation is two-dimensional, which 
represents both Tx and Ty. The characters of A1 and E add class-by-class to give 3, 0, and 1. 
   6. The characters for translation and rotation are subtracted from the total giving the reducible 
representation of the normal modes, vib. The results are listed as step-6. 
 

The reducible representation of the vibrations is decomposed into irreducible representations: 
   7-9. The number of times that an irreducible representation of the point group appears in the 
reducible representation of the normal modes is determined by taking the product of vib with the 
characters of each irreducible representation and then dividing by the order of the group: 
 

 ai = 1/h 
q
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j   i = irreducible representation, j = class 27.8.2 
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where i
i
r
,
r
j is the character for irreducible representation i and class j from the character table and 

v
j
ib is the character for the reducible representation of all the vibrations for class j. The sum 

extends over all classes, q. This sum is analogous to the dot product of vectors. For reference the 
characters of the irreducible representations are copied into the table as steps 7-9. The 
decomposition for the A1 irreducible representation is: 
 

    4 
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giving that A1 appears twice in str. The results for the decomposition are listed in the right-most 
column of the table. The six normal modes for NH3 transform according to the irreducible 
representations: 2A1+ 2E. 
 
 
 
 
 
 
 
 

C3v E 2C3 3v h = 6  
A1 1  1  1 z or Tz  
A2 1  1 -1  Rz 

E 2 -1  0 (x,y) or (Tx,Ty) (Rx,Ry) 

 
Step C3v   E 2C3 3v            ni 

1 stationary atoms 4  1  2   
2 trans 3  0  1 product w. trans  
3 tot 12  0  2   
4 trans 3  0  1 subtract A1+E  
5 rot 3  0 –1 subtract A2+E  
6 vib 6  0  2 tot–trans–rot  
7 A1 1  1  1  1/h(vibA1) = 12/6 = 2A1 
8 A2 1  1 –1  1/h(vibA2) = 0 
9 E 2 –1  0  1/h(vibE)  = 12/6 = 2E 

 
Figure 27.8.10: Determination of the irreducible representations for the normal modes of 
XY3 molecules in the C3v- point group. The normal modes transform as 2A1+ 2E, giving six 
modes with four vibration frequencies. 

 
 

   Because the E normal modes are doubly degenerate, the two different A1-modes and the two 
different sets of E-modes give six total normal modes, as expected from the 3N-6 rule. The next 
step is to determine the stretching modes. The bending modes are then obtained by difference 
from the overall total. The irreducible representations of the stretching modes are determined by 
determining the relative symmetry of the bonds in the molecule: 
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The characters of the reducible representation of the stretches are determined: 
   10. The molecule is redrawn with double-headed arrows replacing each bond. In other words 
the direction of the displacement is not important. The number of arrows that are stationary 
under transformation by the operations of the classes in the point group is determined. The result 
is the reducible representation of the stretching vibrations, str. For C3-rotation, no arrow is 
stationary. One arrow lies on each v-plane while the other two arrows are reflected from one 
side to the other. The results for str for NH3 are listed as step-10 in Figure 27.8.11.  
 

The reducible representation of the stretches is decomposed into irreducible representations: 
   11-13. The decomposition of str is done in the same way as for tot, using Eq. 27.8.2. The 
result is listed in the right-most column of the table. The stretching modes for NH3 decompose to 
A1+ E, giving three stretching modes with two vibration frequencies. From steps:7-9 we find that 
all modes for NH3 include 2A1+2E. Subtracting the stretching modes gives the remaining 
bending modes as also A1+E. This result verifies the listing in Table 27.7.1. 
 
 
 
 
 
 
 
 

Step C3v E 2C3 3v      ni 

10 stationary arrows, str 3  0  1  
11 A1 1  1  1 1/h(strA1)  = 6/6 = 1A1 
12 A2 1  1 –1 1/h(strA2)  = 0 
13 E 2 –1  0 1/h(strE)   = 6/6 = 1E 

 
Figure 27.8.11: Determination of the irreducible representations of the stretching vibrations 
of XY3 molecules in the C3v-point group. The stretching modes are A1+ E, giving three 
stretching modes with two vibration frequencies. 

 
 
27.9 A More Intense Discussion of Transition Probabilities 
 

   The interaction of light with matter can be viewed from semi-classical or quantum mechanical 
perspectives. In this section we expand upon our discussions in Section 27.1. We begin with the 
semi-classical perspective developed by Einstein and Planck. The goal is to show that the 
Einstein coefficients for absorption and spontaneous emission are equal, a fact we used in 
deriving Eq. 27.1.2. To relate the Einstein coefficients, we develop a simple model system. 
Consider a molecule interacting with the light produced by a blackbody radiator, Figure 27.9.1. 
Blackbody radiators consist of a cavity with the energy density of the light in thermal 
equilibrium with the walls of the cavity. Light is created by the oscillation of electrons in the hot 
cavity walls at temperature T. The blackbody intensity frequency distribution is shown in Figure 
23.2.1. The Planck blackbody expression gives the intensity of radiation in an interval of 
frequency from  to +d using Eq. 23.2.2 and  = c/: 
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 I() d = 
2h3

c2  






1

eh/kT – 1
 d    (blackbody)  27.9.1 

 
 

The radiation energy density, (), is related to the intensity through I() = ) c/4, with c the 
speed of light. The geometric factor of 4 is for an isotropic distribution of light intensity, which 
is appropriate since the molecule is placed inside the cavity. Using this last relationship, the 
energy density per unit frequency is: 
 

 () = 
8h3

c3  






1

eh/kT – 1
     (isotropic blackbody) 27.9.2 

 

 
 

Figure 27.9.1: The molecule is placed inside a blackbody radiator so that thermal equilibrium 
is established between the walls of the cavity, the radiation energy density inside the cavity, 
and the molecular transition. 

 
 
The molecule absorbs and emits light according to Eq. 27.1.2. If the molecular spectroscopic 
transitions are at equilibrium, the rate of change of the population of each level is zero. Setting 
Eq. 27.1.2 equal to zero gives the rate of absorption equal to the total rate of depopulation of the 
excited state: 
 

 B10 () No   =  B10 () N1  +  A10 N1      27.9.3 
  absorption        stimulated emission     spontaneous emission 
 

At equilibrium the ratio of the populations of the excited and ground states is given by the 
Boltzmann distribution N1/No = e–E/kT with E given by the transition frequency E = 1 – o = 
h, Eq. 8.9.8. Solving for the equilibrium population ratio from Eq. 27.9.3 and setting the result 
equal to the Boltzmann population ratio gives: 
 

 
N1

No
 = 

B10 ()
B10 () + A10

 = e–h/kT       27.9.4 
 

Solving for the radiation energy density from this last equation gives: 
 

 () = 
A10

B10 eh/kT – B10
        27.9.5 

 

At equilibrium the energy density is given by the Planck distribution, Eq. 27.9.2. The two 
equations are consistent only if B10 = B10 giving: 
 

 A10 = 
8h3

c3  B10         27.9.6 
 

T 

() 
C 

O 
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In other words, the Einstein coefficients for stimulated emission and absorption are equal. Light 
has the same effect on absorption and on stimulating the excited state to emit light to return to 
the ground state. As a bonus we also find that the coefficient for spontaneous emission, and 
hence the fluorescence lifetime, is also determined by the absorption coefficient. Using time-
dependent perturbation theory, the Einstein coefficient for absorption is related to the square of 
the transition dipole moment: 
 

 B10 = 
83

3h2 |tr|2         27.9.7 
 

The transition dipole moment, Eq. 27.1.7, is readily calculated knowing the wave functions for 
the two levels coupled in the spectroscopic transition. This last equation is the bridge between 
quantum mechanical structure and spectroscopy. We now need to determine how to calculate this 
important molecular property from experimental data. 
 

Oscillator Strength is Proportional to the Integrated Absorption Coefficient:  The transition 
dipole moment is the quantum mechanical measure of the intensity of an absorption transition, 
Eqs. 27.1.7 and 27.9.7. In this section we determine the quantitative relationship between the 
transition dipole moment and the experimental transition intensity. The Beer-Lambert Law 
relates the measured absorption to the molar absorption coefficient, A = l[c], with l the path 
length and [c] the concentration of the absorbing species. The absorption coefficient, , is the 
intrinsic probability of absorption of a photon, which is related to the molar absorption 
coefficient by  = 2.303, Eq. 2.4.7. The absorbance A, , and  vary across the absorption band: 
A(), (), and (), Figure 27.9.2. A transition occurs over a range of wavelengths, because of 
broadening by motion and rotational and vibrational fine-structure.  
 
 
 
 
 
 
 
 
 
 

Figure 27.9.2: The integrated absorption coefficient, A, can be roughly approximated by 
assuming the transition band is triangular. The concentration of the absorbing species is [c] 
and the path length is l. 

 
 

The intensity of a transition is given by the integrated absorption coefficient, A: 
 

 A =  () d =  (~) c d~        27.9.8 
 

The integral is taken across the full-width of the band. If an experimental numerical integral is 
not available, the integrated absorption coefficient can be roughly approximated by assuming the 
band is triangular in shape with total area: 
 

(~) = 
A(~)
l [c]  

A(~) 

~ 

FWHH 

Amax 
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 A = area = ½(base)(height) = c(FWHH)(2.303 max)     27.9.9 
 

where c is the speed of light and FWHH is the full-width at half-height in cm-1. 
   We need a good comparison to help decide if an experimental transition has a large or small 
intensity. The ideal intensity of an electronic transition is modeled by an electron that is bound in 
a three-dimensional harmonic potential. The harmonic transition frequency, o, is set equal to the 
experimental frequency under comparison. The transition dipole moment in the x-direction for a 
harmonically bound electron is evaluated using harmonic oscillator wave functions with 
quantum number  changing from  = 0 to  = 1, Table 24.1.1:12 

 

 tr,x = 

– *

1 (–ex)o dx = –e(2/)½ – x e–½2x2
(x)e–½2x2

 dx = e(ħ/4meo)
½ 27.9.10 

 

where e and me are the charge and mass of an electron. The y- and z-components are identical to 
the x-component with |tr|2 = (2

tr,x+ 2
tr,y+ 2

t r,z) in Eq. 27.9.7. The ratio of the experimental 
intensity to this ideal case of a harmonically bound electron is called the oscillator strength, f: 
 

 f = 



4meco

NAe2  A = 6.257x10-19 mol s m-2 A      27.9.11 
 

Allowed electronic transitions have molar absorption coefficients on the order of 
  10,000 L mol-1 cm-1 and corresponding oscillator strengths near 1. Molecular structure 
programs commonly list spectroscopic intensities as oscillator strengths. The oscillator strength 
and the transition dipole moment are related by: 
 

 f = 






hme

e2  B10 = 



82

3 



me

he2  |tr|2 = 1.410x1042  |tr|2    27.9.12 
 

where  is the experimental transition frequency at the center of the band. 
 
 
              

Example 27.9.1:   Integrated Absorption Coefficient, Oscillator Strength, and Transition Dipole 
The maximum absorbance at 255 nm of 1.00x10-3 M benzene in ethanol is 0.16 with a path 
length of 1.00 cm. The band shows poorly resolved vibrational fine-structure; the full-width at 
half-height, FWHH, is roughly 4000 cm-1. Calculate the integrated absorption coefficient, 
oscillator strength, and transition dipole moment. 
 

Answer:  The frequency of the transition is ~ = 1/ = 1/[255.x10–9 m(100 cm/1 m)] = 39,220 cm-1 

or  = c~ = 1.18x1017 s-1. From Amax, the maximum molar absorption coefficient is: 
 

 max = Amax/(l[c])  = 0.16/1.00 cm/1.00x10-3 mol L-1 = 160 L mol-1 cm-1 
 

In SI units, converting the path length to meters and the concentration to mol m-3 gives the molar 
absorption coefficient as: 
 

 max = (160 L mol-1cm-1)(100 cm/1 m)(1 m3/1000 L) = 16. m2 mol-1 

 

The units are now that of a cross section per mole. The band width in m-1 is: FWHH = 
(4000 cm-1)(100 cm/1 m) = 4.0x105 m-1 . The integrated absorption coefficient assuming a 
triangular shape is estimated using Eq. 27.9.9: 
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 A = 2.998x108 m s-1(4.0x105 m-1) (2.303)(16. m2 mol-1) = 4.4x1015 m2 s-1 mol-1 
 

The oscillator strength gives the intensity as the fraction of the strength of a harmonically bound 
electron, Eq. 27.9.11: 
 

 f = 6.257x10-19 mol s m-2 A = 6.259x10-19 mol s m-2(4.4x1015 m2 s-1 mol-1) = 0.0028 
 

The transition dipole moment is then obtained by solving Eq. 27.9.12: 
 

 |tr|2= 
f

1.410x1042  = 
0.0028

1.410x1042(1.18x1017 s-1)   giving     |tr| = 1.29x10-31 C m 
 

The conventional units for dipole moments are debyes with 1 D = 3.336x10-30 C m. The 
transition dipole moment in debyes is: 
 

 |tr| = 1.29x10-31 C m(1 D/3.336x10-30 C m) = 0.039 D 
 

The electronic transition of benzene at 255 nm is a formally forbidden * transition and 
therefore quite weak. For example, strongly absorbing dyes have f  1 and |tr|  1 D. 
 

              

 
 
Harmonic Oscillator Transitions Only Occur Between Adjacent Levels:  Finally, we wish to 
prove that the selection rule for harmonic vibrations is  = 1. The transition dipole moment 
for a vibrational transition is given by Eqs. 27.1.10 and 24.2.18, with the extension x given by 
x = R – Re and dR = dx: 
 

  ' (R – Re) "  dR = N'N"


–
 H' e–½2x2 x H" e–½2x2  dx   27.9.13 

 

The product, x H", is determined by solving the recursion relationship, Eq. 24.2.20, with  = ": 
 

 H"+1 = 2x H" – 2" H"-1      giving x H" = (H"+1+ 2" H"-1)/2  27.9.14 
 

Substitution of this last equation into Eq. 27.9.13 gives two terms for the integral: 
 

 
N'N"

2   


–
 H' e–½2x2 H"+1 e–½2x2 dx + 2"  

–
 H' e–½2x2 H"-1 e–½2x2 dx  27.9.15 

 

The integrals are given by Eq. 24.2.22; the integrals vanish unless the Hermite polynomials are 
the same. The first integral vanishes unless ' = "+1 and the second integral vanishes unless 
' = "–1. Taken together these results require  = ' – " = 1. 
 
27.10 Summary – Looking Ahead 
 

   Rotational and vibrational spectroscopy are critical tools in molecular structure determination. 
The symmetry of a molecule is determined by the appearance or absence of pure rotational 
transitions and the number of vibration frequencies found in infrared absorption and Raman 
scattering spectra. Microwave spectroscopy is the most accurate method for the determination of 
bond lengths and angles. Vibrational spectroscopy provides information on bond strengths 
through force constants and bond dissociation energies. Of transition intensity measures, Einstein 
coefficients are useful because of the direct relationship to the kinetic equations for the 
populations of the coupled levels. Transition dipole moments are the direct link to quantum 
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molecular structure. Oscillator strengths are relative measures of the strengths of transitions in 
comparison to an ideal case of a harmonically bound electron. Oscillator strengths make it easy 
to determine if transition intensities are “large” or “small.” Rotational spectra require a 
permanent dipole moment in absorption or an anisotropic polarizability in Raman scattering. If 
pure rotational transitions are not allowed by selections rules, the same information is available 
from rotational fine-structure in infrared or Raman vibrational transitions. Vibrational 
spectroscopy is often adequately treated in the harmonic approximation. The effects of 
anharmonicity include the appearance of overtone, combination, and difference bands. Fermi 
resonances confound the assignment of the peaks in vibrational spectra. However, Fermi 
resonances are an instructive example of the general phenomena of the mixing of nearly 
degenerate states. The infrared and Raman activity of the normal modes of a molecule are 
predicted using group theory. In absorption, the symmetry species of a normal mode, as given by 
the irreducible representation, must match a component of the electric dipole operator. The 
components of the electric dipole operator are proportional to functions x, y, and z. In Raman 
scattering, the irreducible representation of a normal mode must match a component of the 
polarizability, which are proportional to x2, y2, z2, xy, xz, and yz. 
   We next discuss electronic spectroscopy, which usually occurs in the UV-visible region of the 
electromagnetic spectrum. You probably first encountered spectroscopy through the use of the 
Beer-Lambert Law to determine molecular concentration, based on electronic transitions in the 
UV-visible. Beyond concentration measurements, electronic spectroscopy is a rich source of 
information on the excited states of molecules. At high resolution, rotational and vibrational fine- 
structure occurs along with electronic transitions. For molecules with forbidden transitions in 
infrared or Raman spectra, the equivalent information is available using electronic emission 
transitions in UV-visible spectroscopy. 
 
 
 

Chapter Summary 
 

1. Band positions correspond to transitions between allowed quantum states of the system: 

 E = h = hc/ = hc~   ~ = E/hc   = ~c 

2. The net change in population of two coupled states is: 

  
dN1

dt  = absorb – stimulated emission – spontaneous emission = B10 () No – B10 () N1 – A10 N1 

The Einstein coefficients are B10 for absorption, B10 for stimulated emission, and A10 for 
spontaneous emission, with B10 = B10. The radiation energy density () is the radiation 
energy per unit frequency per unit volume, with units J s m-3. 

3. The Einstein spontaneous emission coefficient is the inverse of the spontaneous emission 
lifetime, A10 = 1/sp. 

4. Absorption and spontaneous emission are always in competition. If the rate of spontaneous 
emission is small the net rate of absorption is proportional to the population difference: 

 net rate = 
dN1

dt   B10 () [No – N1] 

5. The equilibrium Boltzmann population difference is:  No – N1  1 – e–E/kT where 
E = 1 – o, k is Boltzmann’s constant, T is absolute temperature, and kTc = 207.2 cm-1. 
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6. The permanent dipole moment of a molecule is the expectation value of the electric dipole 
moment operator over the electronic wave function of the molecule, el: 

 <̂> =  *
el (

̂
el + ̂nuclei) el d 

7. The electric dipole moment operator is: ̂ = ̂el + ̂nuclei = – 
i=1

n

 e r
̂

i + 
j=1

m

 qj r
̂

j 

summed over the coordinates of the n-electrons, r


i, and the m-nuclei, r


j, of charge qj= Zje. 

8. The intensity of a transition ji is proportional to the square of the transition dipole 
moment. The transition dipole moment, tr, is: 

tr = <> =  *
j  
̂

 i d  giving    B10 = 
83

3h2 |tr|2 

with each i as the product of the electronic, vibrational, and rotational wave functions. 

9. Assuming harmonic oscillator vibrational wave functions vib,i  = (R), with spherical-
harmonic rotational wave functions rot,i = YJ,mJ

(,) and electronic wave functions,el,i: 

 tr = <> =  [el,j '(R)YJ',mJ'(,)]* ̂ el,i "(R)YJ",mJ"(,) d 

where the initial quantum numbers for vibration and rotation are " and J" and the final 
quantum numbers are ' and J'. 

10. Transitions with non-zero transition dipole moments are allowed and with vanishing 
transition dipole moments are forbidden. 

11. For rotational absorption spectroscopy, the gross selection rule requires a permanent electric 
dipole moment. The specific selection rule conserves angular momentum, J = 1. 

12. For vibrational absorption of a diatomic molecule, the transition dipole moment, neglecting 
third-order terms, is the integral over the internuclear separation, R: 

 tr = 

d

dR Re

 ' (R – Re) "  dR  requiring     

d

dR Re

 0 

For a polyatomic the integral is over the progression of the normal mode. The gross selection 
rule is that the dipole moment of the molecule must change during the vibration. For a 
harmonic oscillator, the integral vanishes unless  = 1, requiring adjacent levels. 

13. For electronic spectroscopy, the transition dipole moment requires that the dipole moment of 
the molecule must change in the electronic transition between the initial and the final state. 

14. Lifetime broadening is always present,Et  ħ/2, with t the intrinsic excited state lifetime. 

15. The root-mean-squared speed in the direction of the light propagation and the full-width at 
half-maximum of a transition caused by the Doppler effect, D, are: 

 v–x,rms = 
kT
m    D = 2 



o

c
2kT ln(2)

m  

where o is the wavelength of the stationary source, c is the speed of light, T is the absolute 
temperature, and m is the molecular mass in kg molecule-1. 

16. Assuming a gas-phase two state system, the average time between collisions is inversely 
proportional to the pressure, P, giving the transition width caused by collisions as C  b P, 
where b is the pressure-broadening coefficient, b  10 MHz torr-1  0.25 cm-1 bar-1. 

17. The Fourier decomposition of periodic function f(t) with period L is:  
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 f(t) = 
n=0



 An cos(2not) + 
n=0



 Bn sin(2not)   o = 1/L 

18. The Fourier coefficients are calculated as integrals over one period of the function: 

 An = 2 L0 f(t) cos(2not) dt  Bn = 2 L0 f(t) sin(2not) dt 

19. The Fourier coefficients over a continuous range of frequencies are: 

 A() = 2 0  f(t) cos(2t) dt  B() = 2 0  f(t) sin(2t) dt 

20. The Fourier expansion is written compactly as f(t) =  
– g() e–i2t d with Fourier 

decomposition g() = 2 0 f(t) ei2t dt. The absorptive response is Re[g()] and dispersive 
response is Im[g()]. 

21. The FT of a rectangular pulse of length tp gives the full-width of the frequency response to 
the first zero as the inverse of the pulse width: 1/tp: 

 A() = 2 
sin(2tp)

2    B() =2 
1 – cos(2tp)

2   

22. The FT of an exponentially damped cosine gives a Lorentzian line shape centered on o, with 
full-width at half-maximum FWHM = 1/T2: 

 f(t) = e–t/T2 cos(2ot)    A() = Re[g()] = 
1
 






T2

1 + 42T2
2( – o)2  

23. The equilibrium bond length Re is at the minimum of the vibrational potential energy curve. 
The equilibrium bond length Ro is vibrationally averaged over the  = 0 vibrational state: Ro > 
Re, but the difference is small. 

24. The energies of the rotational states of a diatomic molecule in the rigid-rotor approximation 
in joules and cm-1, respectively, are: 

 EJ =B
~

hc J(J + 1)  F
~

J = 
EJ

hc = B
~

 J(J + 1)  mJ = 0, 1, …, J 

where B
~

 is the rotational constant in terms of the equilibrium bond length: B
~

o(Ro) or B
~

e(Re). I 
is the corresponding moment of inertia, and  is the reduced mass in kg: 

 B
~

 = 
ħ

4Ic
   I = 

i = 1

n

 mi r2
i = R2

o or    I = 
i = 1

n

 mi r2
i = R2

e             = 
m1m2

m1 + m2
 

25. The rotational absorption transition, J'J" with J = 1, in joules and wave numbers, is: 

 E = EJ"+1 – EJ" = 2B
~

hc(J"+ 1) F
~
 = F

~
J"+1 – F

~
J" =  2B

~
(J"+ 1)    (J": lower level) 

or E = EJ' – EJ'–1 = 2B
~

hcJ'  F
~
 = F

~
J' – F

~
J'–1 = 2B

~
J'      (J':upper level) 

26. For isotopomers, the reduced masses determine the difference in rotational constants: 

 
B
~

2

B
~

1

 = 

ħ
42R2

oc
ħ

41R2
oc

 = 
1

2
 

27. For a rigid rotor, adjacent peaks in the absorption spectrum are separated by 2B
~

. Real 
molecules experience a small centrifugal distortion: 

 F
~

J = B
~

J(J+1) – D
~

e[J(J+1)]2  with model prediction    D
~

e  4B
~3/~2

o 
where D

~
e is the centrifugal distortion constant and ~o is the fundamental vibration frequency. 
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28. The moment of inertia of a linear triatomic with atom masses m1, m2 and m3, and bond 
lengths R12 and R23, is: 

 m1 R12m2 R23m3   I = 



m1m3

m (R12 + R23)2 + 



m2

m (m1R 2
12 + m3R 2

23) 

29. A moment of inertia for a polyatomic is a symmetric matrix (tensor) with components: 

 Ixx =  mi(y2
i + z2

i) Iyy =  mi(x2
i + z2

i) Izz =  mi(x2
i + y2

i) 

 Ixy =  mixiy  Ixz =  mixizi  Iyz =  miyizi 
The origin is the center of mass. 

30. In the principal coordinates frame of reference, the moment of inertia of the molecule is a 
diagonal matrix with components Ixx, Iyy, and Izz. 

31. Spherical tops have Ixx = Iyy = Izz, symmetric tops have Iyy = Ixx = I and Izz = I||, and 
asymmetric tops have Ixx  Iyy  Izz. 

32. Symmetric tops have two rotational constants: A
~

 for rotation around the z-axis and B
~

 for 
rotation perpendicular to the z-axis (B

~
 corresponding to diatomics): 

 B
~

 = 
ħ

4πIc
  A

~
 = 

ħ
4πI||c

 

33. Asymmetric tops have three rotational constants: A
~

 = 
ħ

4πIzzc
,  B

~
 = 

ħ
4πIxxc

,  C
~

 = 
ħ

4πIyyc
 

34. For spherical tops, Ixx = Iyy = Izz = I and the rotational transitions are analogous to those for a 
diatomic molecule. Spherical tops are invisible in rotational spectroscopy, but transitions are 
excited by collisions. 

35. The energy levels for a symmetric top are: F
~

JK = B
~

J(J+1) + (A
~

 – B
~

)K2 
with Jz = K ħ,  and  K = 0, ±1, ±2,..., ±J. Quantum number K gives the projection of the angular 
momentum on the molecule-fixed z-axis and describes the type of rotation. 

36. Rotational transitions for a symmetric top require K = 0 and J = 1. For a rigid rotor the 
spectrum is a series of lines separated by 2B

~
, just like a diatomic: 

~J = F
~

J',K – F
~

J'-1,K = 2B
~

J'          (J': upper level) 

37. Vibrational term values, G
~
, are the energy levels in cm-1; allowed transitions are  = 1: 

G
~
 = E/hc  ~o ( + ½)    G

~
 = G

~
+1 – G

~
 = ~o. 

where ~o is the observed fundamental vibration frequency. Transitions beginning in different 
initial  states occur at the same frequency, for a harmonic oscillator. 

38. With an anharmonic vibrational potential, the energy is expressed as a power series: 
 E = he( + ½) – hee( + ½)2 + hYee(+ ½)3 +...  

where e is the fundamental vibration frequency for small displacements about the equilibrium 
bond length, e is the anharmonicity, and Ye is the second anharmonicity constant. 

39. The value of the derived force constant k varies slightly depending on the vibration frequency 
used in: 

 ~ = 
1

2c
 k/  with  ~ =  ~o or ~e:  ~o = ~e – 2e ~e 

If k is determined from ~e, the value corresponds to the second derivative of the vibrational 
potential curve at the equilibrium internuclear separation, k = (d2V/dR2)Re. 
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40. The Morse Potential is: V = De [1 – e–a(R-Re)]2 with De the dissociation energy and a = 

e(2De)½, which determines the steepness of the potential. 

41. For a Morse potential the second and subsequent anhamonicity constants are zero: 

 E = he( + ½) – hee( + ½)2  G
~
 = ~e( + ½) – e~e (+1)2 

giving absorption transitions between adjacent levels  +1 as: 

 E = he – hee 2(+1)  G
~
 = ~e – e~e 2(+1)        (: lower level) 

42. With anharmonicity the different forms of the bond dissociation energies are related by: 

 De = Do + ½ he – ¼ e he  D
~

e = D
~

o + ½ ~e – ¼ ~e e 

43. The bond dissociation energy is given by the anharmonicity. Assuming a Morse potential: 

 D
~

e = 
~e

e
 – 
e~e

4   
~e

e
  and in turn:   e = 

a2h
2e

 = 
a2ħ

2e
 

44. A Birge-Sponer extrapolation with ~ = ~o – 2e~e gives the anharmonicity from the slope, 
where  is the overtone and ~ is the spacing between adjacent transitions. From just the first 
overtone, the anharmonicity is approximately e~e = (~o – ~1)/2. 

45. Anharmonicity causes vibrational modes to interact giving sum and difference bands, which 
are usually much less intense than dipole allowed fundamentals. 

46. The vibration-rotation transition ',J' ",J" is at: 
     ∆E = ho('– ") + B

~
'hc J'(J'+1) – B

~
"hc J"(J"+1)         ~ = ~o('– ") + B

~
'J'(J'+1) – B

~
"J"(J"+1) 

47. In the rigid-rotor approximation, the bond length is constant in the two vibrational levels 
giving B

~
' = B

~
" = B

~
. For  = +1 and R-branch J = +1 transitions: ∆E = ho + 2B

~
hc (J"+1). 

For  = +1 and P-branch J = –1 transitions ∆E = ho – 2B
~

hc J". The spectrum is a series of 
equally spaced lines with the spacing 2B

~
. 

48. The rotational constant for the vibrational level with quantum number  is, to first-order: 
 B

~
 =B

~
e – ~e( + ½) 

where B
~

e is the rotational constant at Re and ~e is the vibration-rotation interaction constant. 

49. For the R-branch, J = +1 and m = J"+1, and for the P-branch, J = –1 and m = –J", with J" 
for the lower level, gives the vibration-rotation transitions as: 

 ~m = ~o + (2B
~

e – 2~e) m – ~e m2 
50. Raman scattering gives the energy of a rotational or vibrational transition as: 
 

 ~  = ~o – ~scattered   E = hc|~ | 
where ~o is the wave number of the incident laser. A Stokes transition (redder) results if the 
final rotational or vibrational state is higher in energy than the initial state. An anti-Stokes 
transition (bluer) results if the final rotational or vibrational state is lower in energy than the 
initial state. 

51. The polarizability of a molecule depends on the orientation of the molecule with respect to 
the direction of the electric vector of the incident light. The induced dipole moment is: 

 

 

ind = 


 E


 








x

y

z ind

 = 








xx xy xz

yx yy yz

zx zy zz

 








Ex

Ey

Ez

 
 x,ind = xx Ex + xy Ey + xz Ez 
y,ind = yx Ex + yy Ey + yz Ez 
 z,ind = zx Ex + zy Ey + zz Ez 
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where 


 is the symmetric square matrix of polarizability components (a tensor). 

52. Polarizability increases with the number of electrons and molecular volume. 

53. Raman selection rules require an anisotropic polarizability for pure rotational transitions and 
a changing polarizability for vibrational transitions. For non-symmetric linear molecules, 
rotational Raman transitions have spacing 4B

~
. 

54. The Exclusion Rule is that for a molecule with a center of symmetry, vibrational modes are 
either infrared active or Raman active, but not both. 

55. Raman transitions of totally symmetric normal modes are polarized:   ¾, otherwise the 
depolarization ratio is  = ¾. 

56. A Fermi resonance results from a perturbation that couples degenerate or nearly degenerate 
transitions of the same symmetry, allowing weak or forbidden transitions to borrow intensity 
from allowed transitions. Coupled transitions can be fundamental, overtone, or combination. 

57. Rotation axes, Cn, are n-fold axes with rotation angle 360/n. The highest order rotation axis is 
the principle axis and is assigned the z-direction by convention. Vertical reflection planes, v, 
include the principle axis. Dihedral-reflection planes, d, are vertical-planes that bisect two C2-
axes that are perpendicular to the principal axis and are chosen to pass through the fewest 
nuclei. A horizontal reflection plane, h, is perpendicular to the principle axis. Inversion, i, 
inverts coordinates across the center of mass. Improper rotation, Sn, is an n-fold rotation 
followed by horizontal reflection. The molecular point group is determined by the symmetry 
elements that describe the shape of the molecule. 

58. The character table for a point group lists all the symmetry operations for the group and the 
transformation properties of the irreducible representations. The irreducible representations are 
the symmetry species for the molecule. Valid molecular orbitals and normal modes transform 
as one of the irreducible representations of the point group. 

59. In absorption, the transition dipole moment vanishes unless the normal mode transforms 
according to the same irreducible representation as a component of the electric dipole operator. 
In Raman scattering, the transition dipole moment vanishes unless the normal mode transforms 
according to the same irreducible representation as a component of the polarizability. 

60. The number of times, ni, that irreducible representation-i appears in a reducible 
representation is determined by the decomposition: 

 ai = 1/h 
q


j = 1

 v
j
ib i

i
r
,
r
j Ci

i
r
,
r
j    i = irreducible representation, j = class 

where i
i
r
,
r
j is the character for irreducible representation i and class j from the character table 

and v
j
ib is the character for the reducible representation of all the vibrations for class j. 

61. The characters of the reducible representation of all atom displacements, tot, are the class-
by-class product of the number of stationary atoms and the representation of the translations, 
trans. The characters for translation and rotation are subtracted from the total giving the 
reducible representation of the normal modes, vib = tot – trans – rot. 

62. The molecule is drawn with double-headed arrows replacing each bond. The characters of the 
reducible representation of the stretching modes are the number of stationary arrows. 

63. The energy density per unit frequency of a black-body is: () = 
8h3

c3  






1

eh/kT – 1
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64. The coefficient for spontaneous emission, the luminescence lifetime A10  = 1/sp, the 
Einstein absorption coefficient, and the transition dipole moment are related by: 

 A10 = 
8h3

c3  B10   B10 = 
83

3h2 |tr|2 

65. Oscillator strength is the transition intensity as a fraction of the idealized intensity of a 
harmonically bound electron with the same transition frequency, : 

  f = 



4meco

NAe2  A = 6.257x10-19 mol s m-2 A = 






hme

e2  B10 = 



82

3 



me

he2  |tr|2 = 1.410x1042  |tr|2 

An oscillator strength near one is an intense transition. 
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Problems: Rotational and Vibrational Spectroscopy 
 

1.  Calculate the ratio, N1/No, of molecules in the  = 1 and  = 0 vibrational states for carbon 
monoxide, CO, at 25.0 C. Assume a harmonic oscillator with ~e = 2169.8 cm-1 [Hint: at 25.0 C, 
kT = 207.2 cm-1] 
 

2.  Calculate the ratio, N1/No, of molecules in the J = 1 and J = 0 rotational levels for carbon 
monoxide, CO, at 25.0 C. Assume a rigid rotor with B

~
e = 1.932 cm-1 [Hint: at 25.0 C, 

kT = 207.2 cm-1] 
 

3.  How does the Doppler width of a transition depend on temperature and the mass of the 
molecule? 
 

4.  Calculate the Doppler line width of the 83305. cm-1 electronic transition of HF at 500.0 K. 
This temperature is on the order of the temperature in the ionosphere. 
 

5.  (a). Draw the Fourier transformed spectrum of the function f(t) in Figure 27.3.2 as a 
histogram, in the same style as the Fourier transforms shown in Figure 27.3.1b for the three 
Fourier coefficients. (b). The period of the function, L, is 1.00x10-3 s. Calculate the lowest 
frequency Fourier component. 
 

6.  Many experiments give a time response that decays exponentially in time: f(t) = e–t/, where  
is the time constant for the decay. (a). Show that the Fourier transform, using Eq. 27.3.9, is: 

 g() = 
2

1 + i2 

(b). The square of the magnitude of a complex function is given using Eq. 23.9.9. Show that: 
 

 g()*g() = 
42

1 + 4222 
 

(c). The result of experiments is often given as a magnitude spectrum, A2() = g()*g(). Do a 
quick plot of the magnitude spectrum assuming  = 1 s. 
 

7.  Which of the following molecules give pure-rotational absorption spectra? N2, O2, NO, CH, 
CO, CO2, N2O, SO2, C2H4, CH4, and H2C=O (formaldehyde). 
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8.  Which of the following molecules give vibrational absorption spectra? N2, O2, NO, CH, CO, 
CO2, N2O, and SO2. 
 

9.  Which of the following molecules give vibrational Raman spectra? N2, O2, NO, CH, CO, 
CO2, N2O, and SO2. 
 

10.  Which of the following normal modes are infrared active and which are Raman active? The 
arrows indicate the movement of the exterior atoms. In the asymmetric stretches, the central 
atoms also move to maintain a fixed center of mass, but that movement is not shown. [Formal 
group theory is not required for this problem.] 
 

 
 

11.  The lowest energy transitions in the rotational spectrum of HF are 41.105 and 82.211 cm-1. 
Calculate the equilibrium bond length of HF, Ro. 
 

12.  Two adjacent lines in the rotational absorption spectrum of 14N1H are at 98.036 and 130.714 
cm-1. Calculate the equilibrium bond length of NH, Ro, and the rotational quantum numbers of 
the lower states of the two transitions. 
 

13.  Calculate the moment of inertia of water about the z-axis, which is the figure axis. The 
rotational constant about the z-axis is A

~
 = 14.512 cm-1. Assume the bond angle is 104.48.1 

Calculate the O–H bond length. 
 

14.  Use Eqs. 27.4.11 to calculate the three moments of inertia of H2O. Use units of g mol-1 for 
the masses and Å for the distances. The coordinates of water, aligned with the O-atom at the 
origin and one O–H bond extending along the x-axis, are: 
 

Atom x y z 
O 0 0 0 
H 0.9728 0 0 
H -0.2623 -0.9369 0 

 

The coordinates of the center of mass are: 
 

 xcm = 1/m  mixi  ycm = 1/m  miyi  zcm = 1/m  mizi 
 

where mi is the isotope specific mass of atom-i, with coordinates xi, yi, zi, and total molecular 
mass m =  mi. First, build a spreadsheet to calculate the moment of inertia matrix with the input 
orientation.2 Second, the eigenvalues of this matrix are the three moments of inertia. To calculate 
the eigenvalues use MatLab, Maple, Mathematica, or the “Eigen” matrix diagonalization applet 
that is on the textbook Web site or on the companion CD. [Hint: The example spreadsheet shown 
below uses the same geometry for water as given above, but the orientation is chosen as already 
aligned with the principal axes. For this aligned example, the off-diagonal elements of the 
moment of inertia matrix should be zero, within round-off error. You should use these values to 

HCCH 
 
 

HCCH 
 

     acetylene 

H           H 
          
     C=C 
          
H          H 
    ethylene 

     H 
      
     Si 
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H   H  H 
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      F 
       
FXeF 
       
      F 
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      F 
       | 
FXeF 
       | 
      F 
  
   XeF4 
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test your spreadsheet. Your final eigenvalues, starting from the orientation listed above, should 
give the same results; the final moments of inertia should not depend on the input orientation. 
The spreadsheet was designed to make the addition of atoms easy for larger molecules.] 
 

A1 B C D E F G H I 
2         
3  original data:      
4 atom mass x y z mx my mz 
5 O 15.9949 0 -0.0657 0 0 -1.050865 0 
6 H 1.0078 0 0.5222 0.775 0 0.5262732 0.781045 
7 H 1.0078 0 0.5222 -0.7752 0 0.5262732 -0.78125 
8 sums 18.0105    0 0.0016814 -0.0002 
9 com  0 9.33561E-05 -1.11912E-05    

10         
11     m(x-xcm)(y-ycm) m(x-xcm)(z-zcm) m(y-ycm)(z-zcm) m(x-xcm)2 m(y-ycm)2 m(z-zcm)2 
12 O 15.9949 0 0 -1.17772E-05 0 0.0692382 2E-09 
13 H 1.0078 0 0 0.407794672 0 0.2747216 0.605327 
14 H 1.0078 0 0 -0.407888131 0 0.2747216 0.605605 
15 sums  0 0 -0.000105236 0 0.6186814 1.210932 
16  Results:      
17 I =  x y z     
18 x 1.82961         
19 y 0 1.210932206       
20 z 0 0.000105236 0.618681357     

 

The input atomic coordinates are placed in cells D5:F7. The calculated center of mass 
coordinates, “com”, are listed in cells D9:F9, which are then used to form the sums for Eqs. 
27.4.11. The resulting moment of inertia matrix is listed in cells C18:E20. The moment of inertia 
matrix is symmetric, so that only the lower triangular matrix need be listed. In the general case, 
the moment of inertia matrix will not be a diagonal matrix. The final moment of inertia elements 
are then input into the “eigen” applet to determine the eigenvalues. 
 

15.  Calculate the bond force constant, k, for H35Cl. The fundamental vibration frequency is 
~e = 2990.9 cm-1. 
 

16.  Does CH or CO have the greater bond strength? Base your answer on the fundamental 

vibration frequency for 12CH, which is ~e = 2860.75 cm-1, and for 12C16O, which is 2169.76 cm-1, 
Table 27.6.1. 
 

17.  The force constant is defined as the second derivative of the vibrational potential function, 
Eq. 8.11.2. For a non-harmonic potential, such as the Morse potential in Eq. 27.5.8, we must add 
the stipulation that the second derivative is evaluated at the equilibrium internuclear distance: 
 

 



d2V

dR2
R = Re

  k 
 

Derive the relationship that determines the Morse a-parameter, Eq. 27.5.8, using the following 
steps: (a). Show that the second derivative of the Morse potential function, Eq. 27.5.7, is: 
 

 
d2V
dR2 = –2a2Dee–a(R – Re) + 4a2De e–2a(R – Re) 

 

(b). Evaluate the second derivative at the equilibrium internuclear distance, R = Re, and use the 
definition of the force constant to give: 
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 a = 



k

2 De

½
 

 

(c). Use the relationship between the fundamental vibration frequency and the force constant, 

e = 2e = k/ , to give Eq. 27.5.8. 
 

18. The bond strength parameters for NF are important in validating bond order-bond strength 
correlations as displayed in Figure 26.4.12. However, the literature bond dissociation energy for 
NF varies widely depending on the experimental method used. The bond energy from 
thermochemical measurements is 29742 kJ mol-1 or 3.080.44 eV.3 Determine ~e, the force 
constant, zero point energy, and bond dissociation energies D

~
e and D

~
o, for 14NF based on the 

fundamental vibration frequency ~o = 1123.4 cm-1 and anharmonicity e~e = 9.0 cm-1. Report the 
bond dissociation energies in cm-1, eV, and kJ mol-1. Compare the spectroscopic bond 
dissociation energy, as Do, with the thermochemical value. What effect does using the 
spectroscopic value have on the bond order-bond strength correlation in Figure 26.4.12? 
 

19. Bond order-bond strength correlations as displayed in Figure 26.4.12 play an important role 
in understanding the chemical bond. Figure 26.4.12 is based on second period elements. Do the 
same quantitative correlations hold for third period elements? Consider NCl as an example. 
Determine ~e, the force constant, zero point energy, and bond dissociation energies D

~
e and D

~
o, 

for 14N35Cl based on the fundamental vibration frequency ~o = 817.358 cm-1 and anharmonicity 
e~e = 5.300 cm-1. Report the bond dissociation energies in cm-1, eV, and kJ mol-1. How well do 
the force constant and bond dissociation energy of NCl agree with the bond order-bond strength 
correlation in Figure 26.4.12? 
 

20.  Determine ~e, the force constant, anharmonicity, zero point energy, and the bond 
dissociation energies D

~
e and D

~
o, for H2. The fundamental and overtones for H2 are listed below. 

 

 1 2 3 4 5 6 7 8 

~0 (cm-1) 4161.14 8087.11 11782.35 15250.36 18491.92 21505.65 24287.83 26830.97 
 

21. The fundamental and first two overtones in the vibrational spectrum of the OH radical are 
3569.8, 6974.6, and 10217.8 cm-1, respectively. Determine ~e, the force constant, anharmonicity, 
zero point energy, and the bond dissociation energies, D

~
e and D

~
o. 

 

22.  Calculate the Morse a-parameter for the diatomic molecule Na2. The fundamental vibration 
frequency is ~e = 159.13 cm-1 and the dissociation energy from the bottom of the potential 
energy well is D

~
e = 5886.54 cm-1. The most useful final units for a are Å-1. [Hint: the units of 

(/(2De))½ are (s m-1), so you will need to convert to Å-1 using 1 Å = 1x10–10 m. Typical values 
of a are in the range of ~ 0.5-3 Å-1.] 
 

23.  Calculate the Morse a-parameter for H35Cl in Å-1. The fundamental vibration frequency is ~e 
= 2990.925 cm-1 and the dissociation energy from the bottom of the potential energy well is D

~
e = 

37270. cm-1. [Hint: The conversion 1 cm-1 = 11.96266 J mol-1 is handy. The units of (/(2De))½ 
are (s m-1), so you will need to convert to Å-1 using 1 Å = 1x10–10 m. Typical values of a are in 
the range of ~ 0.5-3 Å-1.] 
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24.  Plot the vibrational potential energy function for Na2. Assume a Morse potential function. 
The dissociation energy from the bottom of the potential energy well is D

~
e = 5886.54 cm-1, the 

Morse a-parameter is a = 0.8563 Å-1, and the equilibrium bond length is Re = 3.079 Å. [See 
Problem 22 for the calculation of a.] 
 

25.  Plot the Morse and harmonic vibrational potential energy functions for H35Cl. Assume the 
fundamental vibration frequency ~e = 2990.9 cm-1, dissociation energy from the bottom of the 
potential energy well is D

~
e = 37270 cm-1, the Morse a-parameter is a = 1.867 Å-1, and the 

equilibrium bond length is Re = 1.275 Å. [See Problem 23 for the calculation of a.] 
 

26.  Plot the Morse potential energy function for 7LiH. See Table 27.6.1 for the spectroscopic 
constants. Superimpose on the potential energy surface the 15 lowest vibrational energy levels, 
including the effects of anharmonicity. [Hints: See Problem 22 for hints on calculating the Morse 
a-parameter. A few rows of an example spreadsheet for Na2 are given below. The calculation of 
the Morse potential, rows B and C, is independent of the calculation of the vibrational energy 
levels, rows D and E. However, you can use the R values as a dummy variable to superimpose 
the vibrational energy levels on top of the potential energy curve. In other words, use columns B, 
C, and E to construct your scatter plot. Join the potential energy data points with a curve, but 
leave the vibrational levels as dots. The horizontal position of the vibrational level data points 
will be meaningless, but the vertical position gives the vibrational energies. You can draw in the 
horizontal lines representing the vibrational levels by hand.] 
 

 For Na2:      Na2 
 

A1 B C D E 
2 reduced mass  11.495 g mol-1 
3 vibration freq. e 159.125 cm-1 
4 anharmonicity ee 0.725 cm-1 
5 bond length Re 3.079 Å 
6 dissociation E Do 0.720 eV 
7 dissociation E De 5887 cm-1 
8 Morse a a 0.856 Å-1 
9     

10 R (Å) V(R) cm-1   G() cm-1 
11 2.3 5293.9 0 79.4 
12 2.5 2423.6 1 237.1 
13 2.75 622.8 2 393.3 
14 3 28.7 3 548.0 
15 3.25 109.4 4 701.4 
16 3.5 539.6 5 853.2 
17 3.75 1124.8 6 1003.7 
18 4 1752.3 7 1152.6 
19 4.25 2360.0 8 1300.1 
20 4.5 2916.4 9 1446.2 

 

 

 
 

 
27.  The overtone wave numbers are given directly by Eq. 27.5.8 for the transition '0: 

 ~'0 = G
~
' – G

~
 = ~e('+½) – e~e('+½)2 – ~e(+½) + e~e(+½)2 

         = ~e ' – e~e('2 + ' + ¼) + ¼ e~e 

         = – e~e '2 + (~e – e~e)'         (Morse, ':upper) 
 

Rather than plotting adjacent differences in a Birge-Sponer plot, this last equation can be used in 
least squares curve fitting. The result is essentially equivalent, but the process and the associated 
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uncertainties are more direct. Use the data in Example 27.5.1 and a quadratic fit to determine ~e 

and e~e for H35Cl. Compare to the results in the example. 
 

28.  Often only the fundamental and first overtone vibration frequencies are observable in 
infrared spectra. The experimental values for the fundamental and the first overtone are sufficient 
to obtain a rough estimate of the anharmonicity and the bond dissociation energy. We can use 
H35Cl as a good test case. Determine ~e, the force constant, anharmonicity, zero point energy, 
and the bond dissociation energies D

~
e and D

~
o, for H35Cl. The fundamental and first overtone for 

H35Cl are 2885.98 and 5667.98 cm-1. 
 

29.  A schematic rotational-vibrational absorption spectrum of a diatomic molecule is shown 
below. The bond length is assumed to be the same in the two vibrational states. Sketch the 
resulting spectrum if, in the absence of any other changes, (a) the bond length of both vibrational 
states is increased, (b) the bond force constant is increased, (c) the temperature is increased, and 
(d) the bond length of just the upper vibrational state is increased. 
 

 
 

30.  Write a spreadsheet to simulate the rotational-vibrational infrared spectrum of 12CH for the 
1  0 fundamental vibrational transition at 25C. Use the spectroscopic constants in Table 
27.6.1. Include six R-branch and six P-branch transitions. The relative intensity of the transitions 
is proportional to the Boltzmann weighting factors of the initial rotational levels for the  = 0 
vibrational state: p(J")  (2J" + 1) e–B~ " J"(J"+1)/kT. To emphasize the differences caused by 
B
~

' < B
~

", compare the appearance for e equal to zero, the literature value, and three times the 
literature value. [Hints: Display your results as an unconnected scatter plot of relative intensity, 
p(J"), versus the transition wave number. You won’t get a “stick” spectrum as in the previous 
problem, but you can draw lines by hand from each data point to the horizontal axis to sketch the 
spectrum. Remember that kT = 207.2 cm-1 at 25C.] 
 

31.  The experimental fundamental vibration frequencies in infrared absorption for N2O are 
2224 cm-1, 1285 cm-1, and 588 cm-1. Assuming N2O is linear, determine if the bonding 
configuration is NNO or NON. 
 

32.  The experimental fundamental vibration frequencies in infrared absorption for BCl3 are 
985 cm-1, 462 cm-1, and 243 cm-1. The experimental Raman frequencies are 985 cm-1, 471 cm-1, 
and 243 cm-1. With reference to Table 27.7.1, determine if BCl3 is planar or trigonal pyramidal. 
Assign the observed frequencies to the distinct frequencies, 1 - 4.4,5 

 

33.  The carbonyl stretch for ketones is active in both IR and Raman spectroscopy. Assume a 
carbonyl stretch occurs at 1800. cm-1. Calculate the wave lengths of the Stokes and anti-Stokes 
transitions in the Raman spectrum assuming laser excitation using a helium-neon laser at 
632.8 nm. 
 

34.  Name three advantages of Raman spectroscopy over infrared absorption. Name a 
disadvantage. 

~  (cm-1) 

A 
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35.  Identifying the point group of a molecule is done using Table 27.8.1 or using a flow chart 
such as Figure P27.1. 

 
 

Figure P27. 1: Flow chart to identify the point group of a molecule. * If there are three mutually 
perpendicular axes, choose the principal axis perpendicular to the axis that passes through the 
most atoms or the heaviest atoms. ** There are n perpendicular C2 axes, but they may not be 
obvious.6 

 

Determine the point group for the following species: (a) SO2; (b) CO2
3

–; (c) C2H4, ethylene; (d) 
trans-1,2-C2H2Cl2, trans-1,2-dichloroethylene; (e) cis-1,2-C2H2Cl2, cis-1,2-dichloroethylene; (f) 
ClF3 (T-shaped); (g) NH3; and (h) C2H6, staggered ethane. 
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36. Determine the point group for the following species: (a) PtCl2
4

– (square planar); (b) PF5 
(trigonal bipyramidal). 
 

37.  Determine the irreducible representations for the x, y, and z-components of the transition 
electric dipole moment in the point group whose character table is given below. The symmetry 
operations are three mutually perpendicular C2-axes, which are aligned along the x, y, and z-
axes. 
 

 E C2(z) C2(y) C2(z) 
A 1  1  1  1 
B1 1  1 -1 -1 
B2 1 -1  1 -1 
B3 1 -1 -1  1 

 

38.  (a). Determine the symmetry species, which is the irreducible representation, of the 
following normal modes of ethylene, C2H4. (b). Determine the IR and Raman activity of each 
mode. 
 

y H          H  H           H   H          H  H          H–  
                                 \      /         \      / 
 x     C=C    C=C       C=C         C=C 
                                 /      \         /      \ 
 H          H  H          H   H          H  – H          H 
    stretch      stretch        bend            twist 
 

 (a).   (b).   (c).   (d). 
 

The transformation properties of out-of-plane motions might require some clarification. The 
progress of the C2(x) rotation, viewed from the top and along the C=C bond is shown below. 
 

 
 

39.  (a). Use group theory to determine the symmetry species of the normal modes of H2O, using 
the corresponding approach to the all-mode vibrational analysis in Figure 27.8.10. The symmetry 
species are the irreducible representations of the normal modes. (b). Determine which irreducible 
representations correspond to stretches and which to bending vibrations. (c). Determine the 
modes that are IR and Raman active. 
 

40.  Use group theory to determine the symmetry species of the normal modes of BF3, using the 
corresponding approach to the all-mode vibrational analysis in Figure 27.8.10. The symmetry 
species are the irreducible representations of the normal modes. Determine which irreducible 

C H H 

C H H 
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C H H 
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      H–  
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       H 

      H 
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representations correspond to stretches and which to bending vibrations. [Hint: for determining 
the symmetry of a trigonal planar molecule, the S3 improper rotations act just like C3 proper 
rotations, since all atoms lie in the h-plane.] 
 

41.  (a). Use group theory to determine the symmetry species of the normal modes of T-shaped 
ClF3, using the corresponding approach to the all-mode vibrational analysis in Figure 27.8.10. 
The symmetry species are the irreducible representations of the normal modes. (b). Determine 
which irreducible representations correspond to stretches and which to bending vibrations. (c). 
Can the number of IR and Raman active bands distinguish between trigonal-planar and T-shaped 
geometries for ClF3? [Hint: Use Table 27.7.1 for the symmetry species of a trigonal planar XY3 
molecule.] 
 

42.  (a). Use group theory to determine the symmetry species of the normal modes of square-
planar XeF4, using the corresponding approach to the all-mode vibrational analysis in Figure 
27.8.10. The symmetry species are the irreducible representations of the normal modes. (b). 
Determine which irreducible representations correspond to stretches and which to bending 
vibrations. (c). Determine the IR and Raman activity of the modes. The projection of the 
symmetry operations of the D4h point group upon XeF4 is shown below. [Hints: There are two C4 
axes, one for clockwise and one for counterclockwise rotation. The C2 axis is coincident with the 
C4 axis, while the C2' and C2" are perpendicular to the C4 axes. The C2 axis is required for 
mathematical completeness and is equivalent to two successive C4 rotations in the same 
direction. For determining the symmetry of a square-planar molecule, the S4 improper rotations 
act just like C4 proper rotations, since all atoms lie in the h-plane.] 
 

 
 

43.  The normal mode vibrations of a square-planar XY4 molecule transform as vib = A1g + B1g 
+ B2g + A2u + B2u + 2Eu. The normal mode vibrations of a tetrahedral XY4 transform as vib = A1 
+ E + 2T2. For molecules such as CH4 or XeF4, are square-planar XY4 and tetrahedral XY4 
geometries distinguishable on the basis of the number of IR and Raman active modes? 
 

44.  Challenge Problem:  Determine the equilibrium bond length Re, dissociation energy D
~

e, 
Morse a-parameter, fundamental vibration frequency ~e, and anharmonicity for HF using 
molecular structure calculations at the CCSD(T)/cc-pVTZ level. Assume the potential energy 
surface is in the Morse form with Eq. 27.5.7 giving the fundamental vibration frequency and Eq. 
27.5.19 giving the anharmonicity. Calculate the dissociation energy, D

~
e, using separate 

calculations of the atomic energies of H- and F-atoms. Compare the theoretical spectroscopic 
constants with experimental literature values. [Hint: you will need to do calculations for HF at 

v 
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d 
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h 
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the geometry optimized bond length and two other values of the internuclear separation, use Re – 
0.10 Å and Re + 0.15 Å. Then fit your three data points to a Morse potential in a spreadsheet.] 
 

45.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a). Doppler line broadening for UV transitions is greater than for microwave transitions. 
(b). As molecules increase in size, rotational constants decrease. 
(c). The wave number for vibrational transitions increases with temperature. 
(d). In Raman scattering, the anti-Stokes lines are more intense than the Stokes lines. 
(e). Two states with the same energy always mix and transitions to the two states can share 

intensity even if otherwise forbidden. 
 

46.  The “ABC Rotational Constant Calculator” applet determines the moments of inertia, 
spectroscopic rotational constants, symmetry point group, and the contributions of rotation to the 
entropy and Gibbs energy of a molecule. The applet is available on the textbook Web site or on 
the companion CD. Extensive collections of molecular coordinates are available on-line and 
from molecular mechanics or electronic structure calculations. While many electronic structure 
packages determine the point group of an input molecule, the “ABC” applet has an adjustable 
tolerance that allows the point group to be determined in cases where other programs fail. Use 
the following coordinates to determine the point group and rotational constants for ethane: 
 

8 
ethane 
C -0.7704  0.0003 -0.0010 
C  0.7707 -0.0002 -0.0001 
H -1.1734  1.0280 -0.0004 
H -1.1725 -0.5129 -0.8919 
H -1.1740 -0.5148  0.8883 
H  1.1736 -1.0279 -0.0013 
H  1.1742  0.5154 -0.8891 
H  1.1728  0.5124 0.8911 

 

The input file is in xyz-format. The first line is the atom count. The second line is a comment. 
The subsequent lines list the atom and the coordinates. 
 
47.  Bending vibrations are characterized as one of four basic types of movements, Figure P27.2.  
 
 

 
 

Figure P27.2: Bending vibrations of methylene. Typical frequencies for small hydrocarbons 
of normal modes dominated by the given type of bend are given. 
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Determine the normal modes of formaldehyde using an electronic structure calculation at the 
HF/6-31G* level (or equivalently HF/6-31G(d)). Display the “raw” numerical output files to find 
the symmetry designations. The experimental frequencies are given in Table P27.1.7 
Formaldehyde has C2v symmetry, the symmetry properties for which are given in Figure 26.6.4. 
The totally symmetric group, a1, contains the most symmetrical vibrations. The b1 and b2-groups 
are less symmetrical in the atom movements, b1 is symmetrical with respect to reflection across 
the vertical plane that runs through the C=O bond. The b1 and b2 designations may be switched 
in the calculation listing; some authors switch the symmetry labels. Compare the calculated and 
experimental frequencies, Table P27.1. Animate the normal modes to help compare the modes. 
Frequencies from ab initio calculations are normally multiplied by 0.9 to compare with 
experimental frequencies. This factor adjusts for anharmonicity. Multiply your frequencies by 
0.9; does the scaling improve the agreement with the experimental values? 
 

Table P27.1. Experimental Frequencies for the Normal Modes of Formaldehyde.7 

 

Symmetry of mode Type of mode Frequency (cm-1) 
a1 CH2 symmetric stretch 2783 strong 
 CO stretch 1746 very strong 
 CH2 scissor 1500 strong 
b1 CH2 wag 1167 strong 
b2 CH2 asymmetric stretch 2843 very strong 
 CH2 rock 1249 strong 

 
 
48.  The selection rule  =  1 for harmonic vibrations can also be motivated by using the odd 
or even symmetry of the integrand in the transition dipole moment integrals, Eqs. 27.9.13. Note 
that the harmonic oscillator wave functions alternate between even or odd for increasing , Table 
24.1.1 and Figure 24.2.3b. (a). Assume " for the lower level is even, use the overall even/odd 
symmetry of the integrand to note if the transition dipole vanishes for  = –2, –1, 0, +1, +2. (b). 
Assume " for the lower level is odd, use the overall even/odd symmetry of the integrand to note 
if the transition dipole vanishes for  = –2, –1, 0, +1, +2. 
 
49. Time Dependent Perturbation Theory: The next two problems derive the transition 
probability upon light absorption. A system in an eigenstate of the time independent 
Hamiltonian, H, with eigenfunction k and energy Ek is given by the solution of the time 
independent Schrödinger equation: 
 

 Hk = Ekk         P27.49.1 
 

Using Eq. 23.7.22, the full spatial and time dependent Schrödinger equation for the stationary 
state of the system is: 
 

 Hk(t) = iħ 
k(t)

t    
  with     k(t) = k e–iEkt/ħ   P27.49.2 
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A time dependent perturbation H '(t) is applied to the system. For example, the time dependent 
perturbation is often caused by the oscillating electric field of light Ex(t) = Ex cos 2t, where Ex 
is the amplitude of the electric field of the incident light in the x-direction. The time evolution of 
the system with the perturbation present is also given by Eq. 23.7.22, which in terms of the 
unperturbed and perturbation Hamiltonians is: 
 

 H(t) + H '(t) (t) = iħ 
(t)
t    

      P27.49.3 
 

If the perturbation is small compared to H, the resulting time dependent wave function, (t), is 
a linear combination of the time independent, unperturbed wave functions: 8 
 

 (t) =  ak(t) k(t)        P27.49.4 
 

where the time dependent coefficients ak(t) determine the time evolution of the system among 
the unperturbed eigenstates. These coefficients are only functions of time. The sum extends over 
all eigenstates of the unperturbed Hamiltonian. The probability of the system being found in 
eigenstate-n after the perturbation is a*

n(t) an(t). 
 

(a). Consider a single proton in an applied magnetic field. How many eigenstates are available? 
Assume the spin starts in the lowest energy eigenstate at t = 0 and then an rf-field is applied for a 
sufficient time, t, that the spin is transferred to the highest energy state. Give the wave function 
coefficients in Eq. P27.49.4 at t = 0 and at time t. 
 

(b). Show that substitution of Eq. P27.49.4 into Eq. P27.49.3 gives [Hint: Use Eq. P27.49.2]:  8 
 

  ak(t) H '(t) k = iħ  
dak(t)
dt     k(t)      P27.49.5 

 

(c).  Multiply both sides of Eq. P27.49.5 by n(t) and integrate over all spatial coordinates. Note 

that by orthogonality,  n
*(t) k(t) d = 0 if n  k. Show that the result is: 8 

 

 
dan(t)
dt     = 

1
iħ  ak(t)  n*(t) H '(t) k(t) d     P27.49.6 

 

(d).  Consider the transition from eigenstate-m to eigenstate-n. Derive the differential equation 
for the coefficient of eigenstate-n, dan(t)/dt. Correspondingly, assume that at time t = 0 the 
system is in the eigenstate-m. Note that according to Eq. P27.49.2, k(t) = k e–iEk/ħ with k = n 
or m. For convenience define the interaction integral: 
 

 H'nm   n* H '(t) m d       P27.49.7 
 

where n and m are the time independent wave functions. For a short time after t = 0, all the 
terms in the sum in Eq. P27.49.6 may be neglected except for am(t), which is approximately 1. 
Noting that the integral is over only the spatial coordinates, show that the result is: 8 
 

 
dan(t)
dt     = – 

2i
h  H'nm ei(En – Em)t/ħ   (t short, m initial) P27.49.8 

 

The probability of the system being found in eigenstate-n after the perturbation is a*
n an with the 

coefficients evaluated at time t. 
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50.  Time Dependent Perturbation Theory: Absorption of Light: Determine the transition 
probability upon light absorption, based on Eq. P27.49.8. Consider the time dependent 
perturbation of a molecule, initially in eigenstate-m, by the oscillating electric field of light, Ex(t) 
= Ex cos 2t. The interaction between light and the molecule is given by the perturbation 
Hamiltonian: 8 
 

 H '(t) = – Ex(t)x        P27.50.1 
 

where x is the instantaneous dipole moment of the molecule in the x-direction, Eq. 27.1.5: 
 

 x = – 
i=1

n

 e xi         P27.50.2 

 

with the sum taken over the x-coordinates of each of the n-electrons. Correspondingly the 
interaction integral in Eq. P27.49.8 is then over all x. The corresponding expectation value of the 
transition dipole moment between the mth and nth quantum state is then: 
 

 <x>nm =  n
* x m dx       P27.50.3 

 

 (a). Show that the interaction integral is given as: H'nm = – Ex(t) <x>nm, using the definition in 
Eq. P27.49.7 and Eq. P27.50.2. 
 
(b).  Show that the oscillating electric field of the light can be expressed using the Euler formula 

as: Ex(t) = Ex cos 2t = Ex (e2it + e–2it)/2. 
 
(c).  Using Eq. P27.49.8 and the results of (a) and (b), show that: 8 
 

 
dan(t)
dt     = – 

i
h  Ex <x>nm [e2i(En – Em + h)t/h  + e2i(En – Em – h)t/h]  P27.50.4 

 
(d).  Eq. P27.50.4 looks scary but notice that after combing all the constants the right-side of the 
equation is in the form: a(ebt +ect), with a, b, and c as constants. Eq. P27.50.4 assumes that the 
initial state is purely eigenstate-m, so that an(0) = 0. Separate variables in the time and integrate 
to show that:8 
 

 an(t) = ½ Ex <x>nm 






1 – e2i(En – Em + h)t/h

En – Em + h   + 
1 – e2i(En – Em – h)t/h

En – Em – h        P27.50.5 

 
(e).  For an absorption transition, En > Em, and the frequency of the light must match the energy 
level difference between the two states, E = En – Em  h. Show that for an absorption 
transition, with the light frequency near the transition maximum that Eq. P29.50.5 reduces to:8 

 

 an(t) = ½ Ex <x>nm 
1 – e2i(En – Em – h)t/h

En – Em – h    (short t,absorption)   P27.50.6 

 
(f).  Using Eq. P27.50.6, show that the probability that the state has changed to eigenstate-n is:8 
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 a*
n(t) an(t) = Ex2 <x>2

nm 
sin2 (En – Em – h)t/h

(En – Em – h)2   (short t,absorption)   P27.50.7 
 

Note the trigonometric identities: cos x = (eix + e–ix)/2 and sin2 x/2 = ½ – ½ cos x  
 
(g).  Eq. P27.50.7 is the transition probability from initial eigenstate-m to eigenstate-n for light 
absorption at a single frequency. Typical experiments use a range of frequencies instead of a 
narrowly monochromatic excitation source. Assume that the excitation bandwidth is broader than 
the transition width. Correspondingly, integrate Eq. P27.50.7 over a continuous range of 
frequencies. Because the integrand has a significant value only when the denominator is small, 
the integration limits can correspondingly be extended to  ranging from – to +. Show that 
the result is:8 

 

 a*
n(t) an(t) = 

2

h2 Ex2 <x>2
nm t     (short t,absorption)   P27.50.8 

 

Comment on the nature of the time dependence. Note the standard integral:    
–

 
sin2 x

x2  dx =  
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