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Chapter 26: Molecular Structure 
 

Is ozone linear or bent? 
 
   The formation of the chemical bond is the most central issue in chemistry. Chemical bonding 
determines the structure and energetics of molecules. Making and breaking chemical bonds is the 
goal of chemical synthesis. The design and synthesis of chemical compounds is the most direct 
way that chemists have for solving challenges that we face as a society. Chemical bonding is a 
subtle balance between the decrease in potential energy and increase in kinetic energy of the 
electrons, relative to the separated atoms. The Coulomb attractions of the electrons for the nuclei 
act as the “glue” that hold nuclei together. However, understanding the stability of the chemical 
bond requires an understanding of electron-electron repulsion, electron exchange, and electron 
correlation interactions. We begin our discussion with the simplest molecule ion, H+

2. The 
hydrogen molecule ion is to bonding theory as the hydrogen atom is to atomic structure. The 
concept of molecular orbitals emerges from the treatment of H+

2. In turn, molecular orbitals are 
used to build the electronic structure of H2 and more complex multi-electron molecules. The 
orbital approximation is the basis for our understanding of multi-electron molecules. 
 
26.1 Hydrogen Molecular Ion, H2+ 

 

Born-Oppenheimer Approximation:  The complete Schrödinger equation for a molecule includes 
the kinetic energy of the nuclei, the kinetic energy of the electrons, the Coulomb attractions of 
the electrons for the nuclei, the Coulomb repulsions of the electrons for each other, and the 
Coulomb repulsions of the nuclei. Atoms don’t stick together unless the nuclear-nuclear and 
electron-electron repulsions are exceeded by the Coulomb attraction of the electrons for the 
nuclei. The solution of the complete molecular Schrödinger equation is difficult. Because the 
mass of a nucleus is much larger than the mass of an electron, the motion of the electrons is 
much faster than the motion of the nuclei. The Born-Oppenheimer approximation assumes that 
the electronic structure of the molecule adjusts instantaneously to the vibrational motion of the 
nuclei. The motion of the nuclei and the electrons are assumed to be independent. In the Born-
Oppenheimer approximation, the vibrational motion of the nuclei is solved separately from the 
electronic degrees of freedom. Accordingly, the kinetic energy term for the nuclei does not 
appear in the molecular Hamiltonian. The vibrational potential energy is determined by a series 
of calculations of the electronic energy at fixed bond lengths, Figure 26.1.1a. The equilibrium 
bond length, Re, is the distance at minimum electronic energy. The bond dissociation limit is at 
large bond lengths, R  . The bond dissociation energy, De, is the difference of the energy at 
the bond dissociation limit and the minimum energy. 
   The hydrogen molecule ion has a single electron, which simplifies our first bonding example. 
For consistency with multi-electron molecules, we label the electron as electron 1. The 
coordinates for H2

+ include the distances of the electron from nuclei A and B, r1A and r1B, and the 
bond length between the two nuclei, R, Figure 26.1.1b. At fixed bond length R, the Schrödinger 
equation includes the kinetic energy of the electron, the Coulomb attraction of the electron for 
both nuclei, and the Coulomb repulsion of the nuclei: 
 

 – 
ħ2

2m2
1 + 

e2

4o
 



– 

1
r1A

 – 
1

r1B
 + 

1
R  = E       26.1.1 

 



166 
 

The curvature for electron 1, 2
1, only operates on the coordinates of electron 1. 

 
 
 
 
 
 
 
 
 
 
 
       
 (a).       (b).   
 

Figure 26.1.1:  (a). In the Born-Oppenheimer approximation, the potential energy curve for 
vibration is determined by a series of electronic structure calculations at fixed bond lengths, 
R.  (b). Coulomb interactions in H+

2. Nuclei are labeled with letters and electrons with number 
subscripts. Attractions are shown with solid lines (––) and repulsions with dotted lines ().  

 
 
              

Example 26.1.1: Vibrational Potential from the Born-Oppenheimer Approximation 
The total electronic energy of H+

2 as a function of bond length is given in the following table. The 
corresponding equilibrium bond length is Re = 1.319 Å. Calculate the bond force constant in the 
harmonic approximation. 
 

R (Å) 1.1 1.2 1.319 1.4 1.5 
E (eV) -15.1703 -15.3188 -15.3698 -15.3519 -15.2908 

 
Answer: In the harmonic approximation, the potential for vibration is V(R) = ½k(R – Re)2, where 
R is the instantaneous bond length. A table for the bond extension, R – Re, and the electronic 
energy relative to the lowest energy, E – E(Re) in joules, is given in the spreadsheet below. 

WWW  A quadratic non-linear curve fit in powers of the extension, ax2 + bx +c, using the “Non-
linear Least Squares Curve Fitting” applet on the text Web site and companion CD gives a= k = 
54.96 ± 5.32 N/m. The uncertainty results from the anharmonicity in the vibrational potential. 
 

R (Å) E (eV) (R - Re) (m) E-E(Re) (J) 
1.1 -15.1703 -2.19E-11 3.197E-20 
1.2 -15.3188 -1.19E-11 8.177E-21 

1.319 -15.3698 0 6.375E-24 
1.4 -15.3519 8.1E-12 2.874E-21 
1.5 -15.2908 1.81E-11 1.266E-20 

 

=====   Results: Fit ax2 + bx +c   === 
 a= 54.96 +- 5.32 
 b= -2.296e-10 +- 6.6e-11 
 c= -3.600e-22 +- 1.2e-23 
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The Molecular Orbitals are Approximated as a Linear Combination of Atomic Orbitals:   The 
Schrödinger equation for H2

+, Eq. 26.1.1, can be solved exactly, within the Born-Oppenheimer 
approach. However, exact solutions are only possible for one-electron systems. Instead, we 
develop an approximation method that is widely applicable to multi-electron molecules and 
molecular ions. Consider the H2

+ ion as the bond is stretched. The dissociation limit is a 
hydrogen atom and a hydrogen ion, H2

+  H + H+. The wave function upon dissociation is a 1s-
atomic orbital on one of the nuclei. However, both nuclei are equally likely to be at the center of 
the dissociated atom, H2

+  H+ + H. Accordingly, a possibility for the molecular wave function 
is the linear combination of an atomic orbital on nucleus A and an atomic orbital on nucleus B: 
 

 MO = cAA + cBB   ground state: A = 1sA, B = 1sB  26.1.2 
 

The molecular orbital coefficients, cA and cB, are constants that are optimized using the 
Variation Principle. For the ground state of H2

+, both atomic orbitals are 1s-orbitals, one on each 
nucleus. Excited states result from the choice of higher energy atomic orbitals in the linear 
combination. This general approximation is called the linear combination of atomic orbitals- 
molecular orbital approach, or LCAO-MO. LCAO molecular orbitals are the basis for the most 
commonly used electronic structure programs. The orbital coefficients are chosen to minimize 
the expectation value of the Hamiltonian, according to the Variation Theorem: 
 

 E = 
 M

*
O H MO d
  2

MO d
         26.1.3 

 

The integrals are taken over the position of the electron over all space. Substitution of the LCAO 
molecular orbital into the integrals gives: 
 

 E = 
 (cAA + cBB)* H (cAA + cBB) d

 (cAA + cBB)2 d
      26.1.4 

 

 E = 
c2

A  A
*  H A d + c2

B  B
* H B d + 2 cAcB  A

*  H B d

c 2
A   2

A d + c2
B  2

B d + 2 cAcB  AB d
   26.1.5 

 

The expression is simplified using the following definitions: 

 HAA   A
*  H A d   Atomic Integral  EA + 

e2

4oR
 

 HAB   A
*  H B d   Resonance Integral 

 SAA   A
*A d     Atomic Normalization 

 SAB   A
*B d   Overlap Integral    26.1.6 

 

The atomic integral, HAA, involves only the atomic orbital on atom A. At a coarse level of 
approximation, HAA is equal to the atomic energy of the electron on atom A, EA, plus the 
nuclear-nuclear repulsion. The resonance integral, HAB, involves the atomic orbital on both 
atoms. The resonance integral is largely responsible for the energetic stabilization of the bond, 
since the electron interacts with both nuclei. SAA is the familiar atomic normalization integral. 
The overlap integral, SAB, is a measure of the degree to which both atomic orbitals have a 
significant probability in the bonding region between the nuclei, Figure 26.1.2. The overlap 
integral has a maximum of 1, or 100% overlap, and a typical range of 0.2–0.7. The overlap 
integral depends on the atomic orbital extent and the nuclear separation. Corresponding atomic 
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and normalization integrals centered on atom B are HBB and SBB, respectively. At a coarse, but 
useful, level of approximation, the resonance integral is roughly proportional to the overlap 
integral: HAB = K SAB. The proportionality constant, K, is determined from experimental 
ionization energies. In short, better overlap gives a stronger bond. 
 

 
 
 
 
 
 
 
 
 

Figure 26.1.2: The overlap integral is determined by the degree of interpenetration of the 
atomic orbital on each nucleus. Only the region between the two nuclei where both orbitals 
have a significant probability, the bonding region, contributes significantly to the overlap. 

 
 

The definitions of the Hamiltonian and overlap integrals, Eqs. 26.1.6, simplify Eq. 26.1.5 to: 
 

 E = 
c2

AHAA+ c2
BHBB + 2 cAcBHAB

c 2
ASAA + c2

BSBB + 2 cAcBSAB
 = 

N
D       26.1.7 

 

For convenience, we define the numerator in the previous expression as N and the denominator 
as D. The lowest energy gives the best possible wave function. The variation parameters are the 
orbital coefficients, cA and cB. To find the minimum energy, we take the derivatives of the 
energy with respect to cA and cB and set the results equal to zero. Using Eq. 1.5.3, the derivative 
of the ratio N/D to give a minimum is: 
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Completing the derivatives gives: 
 

 






E

cA cB

 =   0 = [2cAHAA + 2cBHAB]D – [2cASAA + 2cBSAB]N    26.1.9 

 

Dividing this equation by 2D and noting that E = N/D gives: 
 

 0 = cAHAA + cBHAB – E [cASAA + cBSAB]      26.1.10 
 

In the same manner, the derivative with respect to cB is: 
 

 






E

cB cA
= 0 = cBHBB + cAHAB – E [cBSBB + AB]     26.1.11 

 

Collecting terms in cA and cB in Eqs. 26.1.10 and 26.1.11 gives a simultaneous set of two 
equations in three unknowns, which are cA, cB, and the electronic energy E: 
 

+ + SAB =  
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 cA(HAA – ESAA) + cB(HAB – ESAB) = 0 
 cA(HAB – ESAB) + cB(HBB – ESBB) = 0      26.1.12 
 

These equations are called the secular equations. A simultaneous set of homogeneous linear 
equations has a non-trivial solution only if the determinant of the coefficients vanishes: 
 

 



HAA – ESAA HAB – ESAB

HAB – ESAB HBB – ESBB
  = 0       26.1.13 

 

You may be more familiar with the set of homogeneous equations and the determinant written in 
the generic form: 
 

 
Ax + By = 0
Cx + Dy = 0     



A B

C D  = AD – BC = 0    26.1.14 
 

For example, a simple set of equations and the determinant of the coefficients is: 
 

 
4x + 8y = 0
2x + 4y = 0   



4 8

2 4  = 4(4) – 2(8) = 0    26.1.15 
 

The vanishing determinant shows the set of equations to have an infinite set of solutions with 
y = –x/2. In our case the x and y variables are the coefficients cA and cB. Eq. 26.1.13 is called the 
secular determinant. Taking the determinant gives: 
 

 (HAA – ESAA)(HBB – ESBB) – (HAB – ESAB)2 = 0     26.1.16 
 

For the ground state of the H2
+ ion, the orbitals on each nucleus are identical with HAA = HBB. In 

addition, we will assume the atomic orbitals are normalized, SAA = SBB = 1. For notational 
simplicity, we then set SAB = S. Solving for the two roots of Eq. 26.1.16 gives: 
 

 (HAA – E)2 – (HAB – ES)2 = 0 or HAA – E = ±(HAB – ES)   26.1.17 
 

Solving for the energy from the two roots gives: 
 

 E+ = 
HAA + HAB

1 + S   E– = 
HAA – HAB

1 – S      26.1.18 
 

The Hamiltonian integrals HAA and HAB are negative, while the overlap integral between two 1s-
orbitals is positive. At long bond lengths, HAA is approximately the atomic orbital energy of the 
isolated atom, EA, and the resonance and overlap integrals are negligible. The first root, E+, is 
then lower in energy than the isolated atom and corresponds to a bonding molecular orbital. The 
second root, E–, is higher in energy and corresponds to an anti-bonding orbital, Figure 26.1.3. 
The orbital diagram is drawn with the molecular orbitals referenced to the atomic orbital energies 
at infinite separation. As the bond length decreases, the atomic orbitals overlap, the electron 
interacts with both nuclei, and the atomic orbitals combine to give a bonding and anti-bonding 
molecular orbital. For H2

+, the 1s-orbital reference energy is -13.6 eV. The energetic stabilization 
of the bonding orbital is given by the resonance integral, HAB. Notice that the anti-bonding 
orbital is destabilized to a greater extent than the bonding orbital is stabilized, because of the 
factor (1–S) in the denominator of E– as opposed to the factor (1+S) in E+. 
   The bonding and anti-bonding roots result algebraically because we combined two atomic 
orbitals in the LCAO to give a two by two secular determinant, which has two roots. The number 
of molecular orbitals is equal to the number of atomic orbitals that are combined. 
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Figure 26.1.3:  The hydrogen atomic orbitals combine in-phase to give a bonding orbital and 
out-of-phase to give an anti-bonding orbital. Computed constant electron density surfaces are 
plotted at right. 

 
 

   The bonding and anti-bonding energies are substituted separately into the secular equations, 
Eqs. 26.1.12, to find the molecular orbital coefficients. For the bonding molecular orbital the 
coefficients are equal and for the anti-bonding orbital the coefficients have opposite signs: 
 

 cA = cB  for E+  and    cA = –cB  for E–       26.1.19 
 

(You will prove these statements in your homework.) For the bonding orbitals, the atomic 
orbitals combine constructively, in-phase. For the anti-bonding orbitals, the atomic orbitals 
combine destructively, out-of-phase, Figure 26.1.3. The anti-bonding orbital has a node between 
the two nuclei. To solve for the numerical values, we apply normalization. First, we rename the 
coefficients as c+ for the bonding orbital and c– for the anti-bonding orbital: 
 

 cA =   cB = c+  + = c+(A + B) 
 cA = –cB = c–   – = c–(A – B)      26.1.20 
 

The normalization integral for the bonding orbital gives: 
 

  2
+ dt = 1 = c2

+ [  2
A d + 2  AB d +  2

B d]     26.1.21 

     1 = c2
+ [     1       +        2 S        +   1       ] 

 

The first integral is the atomic normalization on nucleus A. We assume the atomic orbitals to be 
normalized. The second integral is the overlap integral, S. The third integral is the atomic 
normalization on nucleus B. Solving for the normalization constants gives: 
 

 c+ = 
1

2+2S
  c– = 

1
2–2S

       26.1.22 

 

The normalized bonding and anti-bonding orbitals are: 
 

 + = 
1

2+2S
 (1sA + 1sB)  – = 

1
2–2S

 (1sA – 1sB)   26.1.23 

 

Molecular orbitals are depicted in several ways. In electron density contour plots, the contours 
trace regions with equal values of . The  contours in Figure 26.1.3 are plotted at increasing 
factors of four. The closer the contours are to each other, the more rapid the increase in electron 
density. The isodensity surfaces on the right of the figure correspond to the 3D-surfaces 
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constructed at just one of the contour levels. An isodensity surface at low electron density is 
comparable to a 90% contour surface. Isodensity surfaces are useful in depicting the spatial 
extent of molecular orbitals. The conventional symbol for the + bonding orbital is g(1s). 
Sigma orbitals are cylindrically symmetrical about the internuclear axis. Anti-bonding orbitals 
are symbolized with a * superscript, giving the name of the – anti-bonding orbital as *

u(1s) . 
The g and u subscripts will be explained below. The strength of the chemical bond is determined 
by the degree of interaction of the electron with the two nuclei. 
 

Bonding and Anti-Bonding Orbitals:   The bonding and anti-bonding molecular orbitals for H2
+ 

are plotted as a function of the distance along the internuclear axis in Figure 26.1.4. The z-axis is 
chosen as the internuclear axis. Nucleus A is placed at the origin. The experimental bond length 
is 1.06Å, which gives the placement of nucleus B. The 1s-atomic orbital wave functions are 
shown as dotted lines. The atomic orbitals give the electron distribution that would result from 
two non-interacting atoms. For the bonding molecular orbital, +, electron density increases 
between the nuclei through the constructive interference of the atomic orbitals. The electron in 
the bonding region, along the internuclear axis between the two nuclei, interacts with both 
nuclei giving a favorable decrease in Coulomb potential energy. For comparison, the electron 
density for non-interacting atoms is given by the superposition of the atomic electron densities: 
 

 2
noninteracting = ½ (2

A + 2
B)        26.1.24 

 

The electron density of the bonding molecular orbital is: 
 

 2
+ = 

1
2 + 2S (A+ B)2 = 

1
2 + 2S (2

A+ 2
B + 2AB)     26.1.25 

 

Comparing Eqs. 26.1.24 and 26.1.25, the extra term for the molecular orbital interaction shows 
the increase in electron density in the bonding region caused by the constructive interference of 
the atomic orbitals. The anti-bonding orbital has a node in the bonding region, perpendicular to 
the internuclear axis. The node decreases the electron density between the two nuclei. The 
decrease in electron density destabilizes the anti-bonding orbital: 
 

 2
– = 

1
2 – 2S (A – B)2 = 

1
2 – 2S (2

A+ 2
B – 2AB)    26.1.26 

 
 
 
 
 
 
 
 
 
 
 

Figure 26.1.4:  The bonding molecular orbital, +, increases the electron density in the 
bonding region. The anti-bonding molecular orbital, –, decreases the electron density in the 
bonding region, giving a node. Nucleus A is placed at the origin and B at the experimental 
bond length 1.06 Å. 
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   The quantitative agreement with experiment is poor. At this initial low level of approximation, 
the calculated dissociation energy has a 37% error with experiment, Table 26.2.1. However, the 
general approach is widely applicable to complex molecules. The molecular orbitals for H2

+ can 
now be used to model the electronic structure of the H2 molecule. 
 
26.2 The Hydrogen Molecule 
 

   In the H2 molecule, the Coulomb interactions of the two electrons, 1 and 2, include the four 
electron-nuclear attractions and the electron-electron repulsion, which varies with the distance 
between the two electrons, r12. The nuclear-nuclear repulsion is a function of the bond length, R, 
which is held fixed in accordance with the Born-Oppenheimer approximation, Figure 26.2.1. 
 

 
 
 
 
 
 
 

Figure 26.2.1:  Coulomb interactions in the H2 molecule Attractions are shown with solid 
lines (––) and repulsions are shown with dotted lines (). 

 
 

The Schrödinger equation for H2 is: 
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R  = E     26.2.1 

 

The H2 molecular orbital wave function is a function of the coordinates of electron 1 and electron 
2, which is schematically written as (r1,r2). The electron-nuclear attractions stabilize the atom 
and the electron-electron and nuclear-nuclear repulsions destabilize the atom. The electron-
electron repulsion term correlates the motion of the two electrons; the motion of electron 1 
influences the motion of electron 2. The Schrödinger equation for H2 cannot be solved exactly, 
because of electron-electron repulsion. As a consequence we must use approximation techniques 
to find the molecular orbitals. A first approach is to consider the independent electron 
approximation, just as we did for the He atom. The H2

+ bonding molecular orbital is a good 
starting point for building the molecular orbitals of the H2 molecule. 
 

Molecular Orbitals are Approximated as the Products of One-Electron Orbitals:  In the 
independent electron model, the overall molecule orbital for the H2 molecule is the product of 
one-electron molecular orbitals. Using the LCAO approach, the overall electronic state for the 
ground state of H2 is a product of one-electron molecular orbitals of the form of Eq. 26.1.23: 
 

 MO(r1,r2) = +(r1) +(r2) = 
1

2+2S [1sA(r1) + 1sB(r1)] [1sA(r2) + 1sB(r2)]  26.2.2 
 

If electron-electron repulsion is included, the product wave function is no longer exact. The wave 
function, at this point, has no adjustable parameters. The electronic energy is given by the 
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expectation value of the exact Hamiltonian. Based on this simple LCAO approach, the 
dissociation energy is much too small, at 2.68 eV, and the bond length is too long, at 0.850 Å, 
Table 26.2.1. Even though the quantitative agreement is poor, the general approach is promising, 
especially as we consider larger molecules. However, we need to seek better approximations 
within the LCAO method. 
 
 

Table 26.2.1: Equilibrium bond lengths and dissociation energies, De, for H2
+ and H2, with a 

LCAO basis constructed from hydrogen-like 1s-orbitals, Eq. 26.1.23. 
 

 Source Zeff Re De (eV) De (kJ mol-1) 
H2

+ LCAO 1 1.319 Å 1.763 ev 170.2 kJ mol-1 

 experimental  1.06 Å 2.78 ev 268.2 kJ mol-1 

H2 LCAO 1 0.850 Å 2.68 eV 258.6 kJ mol-1 

 LCAO 1.197 0.732 Å 3.495 eV 334.7 kJ mol-1 

 experimental  0.741 Å 4.748 eV 458.1 kJ mol-1 
 
 

The Variation Method Allows the Calculation of the Effective Nuclear Charge:   Taking our 
inspiration from the Variation treatment of the He-atom, we replace the real nuclear charge on 
each H-atom, Z = 1, with an effective nuclear charge. The minimized energy gives an effective 
nuclear charge of 1.197, which is greater than Z, Table 26.2.1. The effective nuclear charge felt 
by the electrons is greater than the real nuclear charge, because the electrons interact with two 
nuclei instead of one. The increase in effective nuclear charge causes a contraction of the 
molecular orbitals. The bonding molecular orbital, which is the linear combination of 1s-orbitals 
on each atom with Zeff  = 1.197, is smaller than the superposition of two non-interacting 1s-
atomic orbitals with Z = 1. This contraction causes an increase in kinetic energy of the electrons, 
which is unfavorable. The increase in kinetic energy can be understood with reference to the 
particle in a box. Remember that as the box length decreases, the kinetic energy of the particle 
increases. For stable bond formation the decrease in potential energy must be greater than the 
increase in kinetic energy. 
 

Accounting for Electron-Electron Repulsion–Polarization Functions:   The LCAO molecular 
orbitals using only 1s-orbitals on each H-atom corresponds to a minimum basis set. In a 
minimum basis set calculation, the atomic orbitals are only the valence orbitals on each atom. 
For H and He only s-orbitals are included. For main-group elements only s and p-orbitals are 
included. The quantitative agreement of the LCAO molecular orbitals using only 1s-orbitals on 
each H-atom is improved by adding in 2pz-orbitals on each H-atom. The presence of extra nodes 
in the added 2pz-orbitals allows the electron density to rearrange to increase electron density in 
the bonding region and to decrease electron-electron repulsion. Adding in atomic orbitals with 
higher angular momentum than the valence orbitals gives an extended basis set. The added 
orbitals are called polarization functions, Table 26.2.2. For moderately sized basis sets, the 
polarization functions on H and He are p-orbitals, for the main group elements polarization 
functions are d-orbitals, and for transition elements polarization functions are f-orbitals. 
Polarization functions are listed in parentheses after the orbital designation, with the designation 
for H-atoms listed last. Commonly used basis sets with polarization functions on both main 
group elements and H are 3-21G(d,p) and 6-311G(d,p). Some programs signify polarization 
functions for main group elements with a “*” and on both main group and hydrogen as “**”; for 
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example 3-21G(d) is 3-21G* and 3-21G(d,p) is 3-21G**. Adding in 2pz character for the H2 
molecule using the 6-311G(d,p) basis set gives better agreement with experiment than the 
minimum basis set, Figure 26.2.2: 
 

 g) = 0.186 1sA(inner) + 0.288 1sA(middle) + 0.133 1sA(outer) + 0.023 2pZA 
            + 0.186 1sB(inner) + 0.288 1sB(middle) + 0.133 1sB(outer) – 0.023 2pZB 26.2.3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26.2.2:  Electronic energy of the H2 molecule relative to the dissociated atoms using 
increasingly complete basis sets and electron correlation. 

 
 

Table 26.2.2: Atomic Orbital Terms in Gaussian Basis Sets (number of Gaussian primitives). 
 

Atoms: Hydrogen 2nd and 3rd period1 2nd 3rd 
Orbital: 1s 1s' 1s" 2p s s' s" p p' p" 3d 3d 
STO-3G 3    3   3     
3-21G(*) 2 1   2 1  2 1   1 
3-21G* 2 1   2 1  2 1  1 1 
6-31G* 3 1   3 1  3 1  1 1 
6-31G** 3 1  1 3 1  3 1  1 1 
6-311G** 3 1 1 1 3 1 1 3 1 1 1 1 
cc-pVTZ 7 1 1 2p1d 7 1 1 3 1 1 2d1f 2d1f 

(1). cc-pVTZ gaussian coefficients () different for valence s(7-711) and p(7-311) orbitals. 
 
 

Polarization functions are represented by one primitive in the Gaussian type orbitals, e.g. 6-31G* 
and 6-311G**. A 6-31G* or 6-31G** orbital on a main-group element uses 6 total primitives for 
a core orbital and 5 total primitives for the valence orbitals. Adding polarization functions is 
necessary for accurate calculations. However, the results in Figure 26.2.2 show that considerable 
error still remains at HF/6-311G(d,p). Electron correlation must be taken into account. 
 

-308.4   HF/STO-3G 
 
-322.8   HF/3-21G(d)              1s 1s' 
 

-332.9   HF/6-31G(d)              1s 1s' 
-344.9   HF/6-31G(d,p)           1s 1s' p 
-347.7   HF/6-311G(d,p)         1s 1s' 1s" p 

 
-368.0   MP2/3-21G(d)           1s 1s' 
 
 
 
-420.6   MP2/6-311G(d,p)      1s 1s' 1s" p 
 
 
 
-442.0   CISD/6-311G(d,p)     1s 1s' 1s" p 
-450.9   MP4/cc-pVTZ            1s 1s' 1s" p p' 
-452.5   CISD/cc-pVTZ          1s 1s' 1s" p p' 
-458.1   experimental 

E 
 (kJ mol-1) 

-300 
 
-320 
 
-340 
 
-360 
 
-380 
 
-400 
 
-420 
 
-440 
 
-460 
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The Motion of the Electrons is Correlated–Configuration Interaction:   When one electron 
moves in a molecule, the positions of the other electrons adjust to decrease electron-electron 
repulsion. The motions of the electrons are not independent; the motion of the electrons is 
correlated. The current best method for adjusting the molecular wave functions for electron 
correlation is configuration interaction, CI. CI calculations allow the ground state to mix with 
excited states of the molecule. The advantage of mixing in excited state character to the ground 
state is that excited states have nodes between the nuclei, which help the electrons avoid each 
other and minimize electron-electron repulsion. For example for the H2 molecule, the ground 
state configuration and several excited states are diagrammed in Figure 26.2.3. 
 
 
 
 
 
 
 
  Ground State       Single Excitation  Double Excitation 

      g(1s)2       g(1s)1*
u(1s)1        *

u(1s)2 
 

Figure 26.2.3: The configurations of the ground state and two low-lying excited states of H2. 
 
 

The mixing of the ground state wave function and excited state wave functions can be done 
variationally. The mixing coefficients for each excited configuration are adjusted to give the 
minimum ground state energy during the SCF process. However, the predominant character 
remains the ground state configuration. This variational-SCF approach leads to techniques called 
CISD or CISDT. CISD includes single and double excitations. CISDT includes single, double, 
and triple excitations. For H2, the single excitation makes a strong contribution in CISD 
calculations, Figure 26.2.2. 
   An easier approach is to use perturbation theory. The Møller-Plesset, MP2, method uses 
second order perturbation theory to calculate the mixing of the configurations. The MP2 
calculation is based on Eq. 25.3.20. That is, the new ground state wave function is mixed in 
combination with all the excited state wave functions that have the proper symmetry. The wave 
functions that are closest in energy to the ground state are most important. For the H2 molecule, 
MP2 mixes in a small contribution from the *

u(1s)2 doubly excited configuration: 
 

 

 gs = 0.9987*                            + 0.0518*                          (MP2) 26.2.4 
 
 
In MP2 calculations, single excitations don't contribute; only double and higher excitations 
contribute. Of course, for H2 only single and double excitations are allowed since H2 has only 
two electrons. The correlated MP2 and CISD results provide significant improvement in 
quantitative accuracy. The accuracy of correlated molecular structure calculations is sufficient to 
explore the contributing factors that determine the strength of the chemical bond. 
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Why Do Atoms Stick Together? The total electronic energy, the average kinetic energy, and the 
average potential energy for the H2 molecule are plotted as a function of bond length in Figure 
26.2.4a. The total electronic energy of the molecule is a balance of large opposing kinetic and 
potential energy contributions. The bond strength is a small fraction of the total potential and 
kinetic energies of the molecule. 
   To highlight changes in energy, the three energy curves are replotted relative to the energy of 
the separated atoms in Figure 26.2.4b. Consider two non-interacting H-atoms at large R. As the 
bond length decreases the kinetic energy first decreases. This initial decrease in kinetic energy 
results from delocalization, the ability of the electrons to occupy atomic orbitals on both atoms. 
The effective “box length” is larger than a single atom, giving a decrease in kinetic energy. 
However, as the bond length is further decreased, the effective nuclear charge increases as the 
electrons interact with both nuclei. The orbitals contract giving less room for the electrons, 
increasing the kinetic energy. Now consider the potential energy. As the two atoms approach 
each other, the first effect is an increase in electron-electron repulsion. As the bond length 
decreases further, the electrons interact with both nuclei, increasing the electron density in the 
bonding region, increasing the effective nuclear charge. The increase in effective nuclear charge 
decreases the potential energy, which is favorable. However, the contraction also increases 
electron-electron repulsion, which is unfavorable. At the equilibrium bond length, the electron-
nuclear attraction exceeds the electron-electron repulsion and the nuclear-nuclear repulsion. 
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Figure 26.2.4:  (a). Electronic energy, E, average kinetic energy, <Ek>, and average potential 
energy, <V>, as a function of bond length for H2. The electronic energy is a balance of large 
opposing kinetic and potential energy contributions. (b). The same data plotted relative to the 
separated atoms to highlight changes in energy. 

 
 

   The electron-nuclear attractions are favored by the increase of electron density in the bonding 
region between the nuclei. However, as electron density is increased in the bonding region, 
electron density is necessarily decreased in areas remote to the internuclear region. The density 
changes in the bonding and remote regions counter each other. The density must rearrange to 
increase the favorable interactions while decreasing the unfavorable effects that are remote to the 



177 
 

internuclear region. One important contribution is that the increase in electron-electron repulsion 
in the bonding region is countered by a decrease in electron-electron repulsion elsewhere. 
   The attraction of the electrons for more than one nucleus stabilizes the chemical bond. In 
addition, correlation effects and the exchange interaction are important for bond stability by 
decreasing electron-electron repulsion. Calculated bond strengths are too small without inclusion 
of electron correlation and exchange interactions. The influence of electron correlation and 
exchange makes the interpretation of the bond strength based only on the Coulomb attraction of 
the electrons for the nuclei incomplete and oversimplified. The statement that the electrons are 
“the glue that holds the nuclei together” is a gross oversimplification. An alternative statement is: 
the chemical bond is favored by the moderation of the increase in kinetic energy and electron-
electron repulsion that result from the contraction of the molecular orbitals. 
   The delicate balance of subtle factors is chemically significant. Were the chemical bond more 
energetically favorable, then bond breaking processes would be more difficult. Chemical 
synthesis would be possible only at significantly higher energies. The ease of breaking and 
making chemical bonds near ambient temperatures is an important requirement of chemical 
synthesis and the development of life. 
 

26.3 Heteronuclear Diatomic Molecules 
 

Wanted: Good Orbital Overlap and Energy Matching!   In homonuclear diatomics, the atomic 
orbitals on each atom are equivalent. What changes need to be made to consider heteronuclear 
diatomics? Assume that the atomic orbital on atom B is higher in energy than the atomic orbital 
on atom A giving HBB > HAA. Combining the orbital on atom A and the orbital on atom B gives 
the secular determinant with differing HAA and HBB, Eq. 26.1.16: 
 

 (HAA – E)(HBB – E) – (HAB – ES)2 = 0             (26.1.16) 
 

 (1 – S2)E2 – (HAA + HBB – 2HABS)E + (HAA HBB – HAB
2) = 0   26.3.1 

 

Neglecting the factor of S2compared to 1, using the quadratic formula, and using the 
approximation 1+x = 1 + x/2 gives the bonding and anti-bonding energies as: 
 

 E+ = HAA – 
(HAB – HAAS)2

HBB – HAA
      E– = HBB + 

(HAB – HBBS)2

HBB – HAA
    26.3.2 

 

The atomic integrals are roughly approximated by the separated atom energies, HAA  EA and 
HBB  EB, especially at large R. In this approximation, the molecular orbital energies are 
referenced to the separated atom energies: 
 

 E+  EA – 
(HAB – EAS)2

EB – EA
      E–  EB + 

(HAB – EBS)2

EB – EA
     (R ) 26.3.3 

 

The degree of interaction is scaled by the atomic orbital energy difference in the denominators of 
these expressions. Atomic orbitals with similar energies interact more strongly than atomic 
orbitals with dissimilar energies, Figure 26.3.1a. Orbital overlap continues to play an important 
role. The resonance integral is approximately proportional to the overlap integral. The bonding 
orbital is stabilized and the anti-bonding orbital is destabilized by the resonance interaction. We 
can summarize the two dependencies as: 
 

 Strong bonds require good atomic overlap and energy matching. 
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       (a).       (b). 
 

Figure 26.3.1: (a). Energetic stabilization is greatest for interaction of atomic orbitals with 
similar energy. (b). Molecular orbital model for LiH. The atomic orbital drawings are scaled 
relative to the contribution of the orbital (bigger MO coefficient-bigger orbital). 

 
 

   In the resulting bonding molecular orbital, the MO coefficient for the lower energy A-orbital is 
larger than for the B-orbital: MO = CAA + cBB, with CA > cB. The bonding molecular orbital 
has a larger component from the lower energy atomic orbital in the LCAO. The energy of the 
bonding MO is similar to the atomic orbital on A. Conversely, in the anti-bonding molecular 
orbital, the MO coefficient for the higher energy B-orbital is larger than for the A-orbital; 
 *

MO = cAA + CBB, with CB > cA. The energy of the anti-bonding MO is similar to the atomic 
orbital on B. The resulting asymmetry gives partial ionic character to the bond. The fraction 
ionic character of the bond between atoms A and B is calculated from the MO coefficients: 
 

 fraction ionic = 
(A coefficients)2 – (B coefficients)2

 (A coefficients)2 + (B coefficients)2     26.3.4 
 

The sums extend over all filled molecular orbitals on the given atom. 
   The simplest stable diatomic is LiH. We first develop a qualitative, diagrammatic model to 
build our intuition on chemical bonding. The 1s-orbital on Li is much lower in energy than the 1s 
on H. The energy mismatch is too large for a significant interaction with the H-atom. The 1s-
orbital of Li is a non-interacting core orbital. Given the 2s-electron on Li has a principle quantum 
number of 2, the 2s-orbital on Li is higher in energy than the 1s-orbital on H. The outer radial 
lobe of the 2s-orbital forms a bonding and anti-bonding pair of molecular orbitals in combination 
with the H(1s)-orbital, Figure 26.3.1b. The single valence electron on Li and the single electron 
on H combine to fill the bonding -orbital. We don’t know the degree of ionic character for LiH, 
however we can anticipate that the bonding MO has greater H(1s) character, while the anti-
bonding orbital has greater Li(2s) character. We can express the result as a combination of two 
resonance structures, Li–H for the covalent contribution and Li+H– for the ionic contribution. As 
an initial rough guess, assume that the normalized bonding MO is  = 0.5(2sLi) + 0.866(1sH). 
Applying Eq. 26.3.4 to the one filled molecular orbital gives the ionic character of the bond as: 
 

 fraction ionic = 
 (0.866)2 – (0.5)2

 (0.866)2 + (0.5)2 = 
 0.75 – 0.25
 0.75 + 0.25 = 0.50    26.3.5 

 

Our rough guess gives a 50% ionic interaction. We now turn to a molecular structure calculation 
for LiH to verify and amplify our qualitative model. 
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Lithium Hydride has Partial Ionic Character:   The molecular structure calculation is at the 
CNDO semi-empirical level of approximation. CNDO is a low level of approximation. However, 
the format of the CNDO output is essentially the same as more sophisticated methods. 

WWW    The CNDO program is available as a Web applet on the text Web site. The input to a 
molecular structure calculation is simply the overall charge, multiplicity, and x,y,z coordinates 
and atomic number of each atom. No information on the bonding is given; the purpose of the 
calculation is to determine the distribution and strength of the bonds. In this calculation, the Li 
and H atoms are specified to lie on the x-axis. The output at the CNDO level is given in Figure 
26.3.2. The details of CNDO calculations are discussed in Section 26.5. CNDO calculations are 
semi-empirical calculations, which only consider valence electrons. As in our diagrammatic 
model, the 1s-orbital on Li is a non-interacting core orbital. The first output section lists the 
distance between each pair of atoms and the contributions to the nuclear-nuclear repulsion. The 
units are atomic units; the distances are in multiples of the Bohr radius, ao = 0.529 Å, and 
energies are in hartrees, 1 au = 1 H = 27.211 eV. Next follows the overlap matrix. Off-diagonal 
matrix elements list the overlap integral for each pair of orbitals. The overlap of the Li(2px) – 
H(1s) orbitals is greater than the Li(2s) – H(1s) overlap, because the 2px orbital is directed along 
the internuclear axis, Figure 26.3.3. The Li(2pz) and Li(2py)-orbitals, which are perpendicular to 
the internuclear axis, give no net overlap with the 1s-orbital. The next output matrix lists the 
molecular orbital coefficients, which are the eigenvectors of the Hamiltonian. The molecular 
orbitals are listed in columns. We are combining five atomic orbitals, so five molecular orbitals 
are generated. The energy of the MO is listed at the top of each column. For example, the two 
lowest energy molecular orbitals, which are cylindrically symmetric -orbitals, are: 
 

 1 = 0.424 2s(Li) + 0.429 2px(Li) + 0.798 1s(H) E1 = -0.4818 H 
 2 = 0.823 2s(Li) – 0.551 2px(Li) – 0.141 1s(H) E2 =  0.0322 H   26.3.6 
 

The lowest energy orbital, which is anticipated in Figure 26.3.1, also has significant Li(2px)-
character. Even though the energy match between the Li(2px) and the H(1s) is not as good as the 
Li(2s)-H(1s), the large overlap between the Li(2px) and H(1s)-orbitals results in a large 
contribution to the molecular orbital. The second MO also results from the overlap of the Li(2s) 
and Li(2px) orbitals with the H(1s). The energy is very close to the energy of an isolated Li(2p)-
orbital, giving a net non-bonding orbital, Figure 26.3.4. The net non-bonding character results 
because the Li(2s)-H(1s) interaction is anti-bonding (opposite signs on the s-coefficients) while 
the Li(2px)-H(1s) interaction is bonding. The next two orbitals are the non-bonding atomic 
Li(2py) and Li(2pz). These orbitals are perpendicular to the internuclear axis giving no net 
overlap with the H(1s); no interaction is possible by symmetry. The highest energy molecular 
orbital, *

5, is the anti-bonding complement to 1 for the Li(2px) – H(1s) interaction. 
   In summary, given that the Li(2py) and Li(2pz) are non-interacting; only three atomic orbitals 
remain to form molecular orbitals: the Li(2s), Li(2px) and H(1s). These three orbitals combine to 
give a bonding, non-bonding, and anti-bonding set. Combining an odd number of atomic orbitals 
to give a bonding, non-bonding, and anti-bonding set is a commonly observed pattern. Given a 
total of two valence electrons, only the lowest energy orbital is filled, Figure 26.3.4. Applying 
Eq. 26.3.4 to the single filled molecular orbital gives the ionic character of the bond as: 
 

 fraction ionic = 
(0.798)2 – (0.424)2 – (0.429)2

(0.798)2 + (0.424)2 + (0.429)2 = 0.272    26.3.7 
 

The CNDO calculation gives 27.2% ionic character from the Li+H– resonance form. 



180 
 

 
        Coulombic repulsion integrals (bottom triangle)(a.u.) 
   ______ and internuclear distances (top triangle)(a.u.)_________ 
   Atoms:  1  Li      2  H 
   1  Li   0.2361    3.0425      R = 3.043*0.529Å = 1.61Å 
   2  H    0.254    0.75 
 

    ________________Overlap Matrix_________________ 
 1 Li2s 1 Li2px 1 Li2py 1 Li2pz 2 H1s 
1 Li2s 1.0  0.0 0.0 0.0 0.392 
1 Li2px 0.0 1.0 0.0 0.0 0.505 
1 Li2py 0.0 0.0 1.0 0.0 0.0 
1 Li2pz 0.0 0.0 0.0 1.0 0.0 
2 H1s 0.392 0.505 0.0 0.0 1.0 

 

            SCF eigenvalues (a.u.) and eigenvectors 
     _____(eigenvectors listed in columns)_____ 

E(i) -0.4818 0.0322 0.0767 0.0767 0.2186 
vector 1 2 3 4 5 
1 Li2s  0.424 0.823 0.0 0.0 0.379 
1 Li2px 0.429 -0.551 0.0 0.0 0.716 
1 Li2py 0.0 0.0 0.0 1.000 0.0 
1 Li2pz 0.0 0.0 1.000 0.0 0. 0 
2 H1s 0.798 -0.141 0.0 0.0 -0.587 

 

____________SCF Population matrix___________ 
 1 Li2s 1 Li2px 1 Li2py 1 Li2pz 2  H1s 1 Li2s 1 Li2px 1 Li2py 1 Li2pz 2  H1s 
1 Li2s 0.360 0.364 0.0 0.0 0.676 2cLi2s

2 2cLi2s cLi2px   2cLi2s cH1s 
1 Li2px 0.364 0.368 0.0 0.0 0.684 2cLi2px 

cLi2s 
2cLi2px

2   2cLi2px cH1s 

1 Li2py 0.0 0.0 0.0 0.0 0.0      
1 Li2pz 0.0 0.0 0.0 0.0 0.0      
2  H1s 0.676 0.684 0.0 0.0 1.272 2cH1s cLi2s 2cH1s cLi2px   2cH1s

2 
 

_______Total Bond Order (Mulliken overlap population)_______ 
Atoms:    1 Li  
 2  H      1.221 

 

Electronic energy =    -1.4162 a.u.    in Hartrees 
Total energy  =    -1.0875 a.u.     in Hartrees with nuclear repulsion 
  =   -29.5923 eV 
  =  -2855.203 kJ/mol 
  (the total energy includes nuclear-nuclear repulsion) 
Total bond dissociation energy, Do =  9.0279 eV =  871.059 kJ/mol  
 

__Total atom electron densities and atomic charges__ 
atom    density    charge     sum of diagonal entries in bond order matrix: 
1 Li       0.728       0.272     electron density = 2(cLi2s

2 + cLi2px
2) 

 2 H       1.272     -0.272     electron density =c1s,H
2*2  

       net negative charge on H on –0.272 

 Dipole from atom densities 
       x   y   z 
   -2.11 0.0 0.0 
 

 Complete dipole (including atomic polarization) 
       x   y   z 
   -6.21 0.0 0.0 

 
 

Figure 26.3.2: Molecular structure output for LiH: CNDO level at 1.61 Å bond length. 
Annotations in italics are not part of the original output. 
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Figure 26.3.3: The overlap of the Li(2px) – H(1s) orbitals is greater than the Li(2s) – H(1s) 
overlap, because the 2px orbital is directed along the internuclear axis. The Li(2pz) and 
Li(2py)-orbitals, which are perpendicular to the internuclear axis, give no net overlap with the 
1s-orbital. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26.3.4: Molecular orbitals and energy level diagram for LiH. The atomic orbital sizes 
are scaled to show the relative contribution to the MO. Non-bonding molecular orbitals are 
labeled with a “” superscript. 

 
 

Population Analysis Determines the Atomic Electron Density and Bond Order:   The calculation 
of the ionic character of the Li–H bond is an example of population analysis. The analysis is 
based on the molecular orbital coefficients. The coefficient cij is for molecular orbital i and 
atomic orbital j. For example, from the list of eigenvectors for molecular orbital 1, the coefficient 
for atomic orbital 2, Li(2px), is c12 = 0.429. The electron density resulting from the overlap of 
two atomic orbitals is ni(cia a + cib b)2 = ni(cia

2a
2 + 2ciacib ab + cib

2b
2). The first and third 

terms give the atom electron densities, while the cross-term gives the overlap population between 
atoms A and B in molecular orbital i. The “SCF Population matrix” has entries, pjk: 

 pjk = 
i=1

m

 ni cij cik         26.3.8 

The sum is over all molecular orbitals i with atomic orbitals j and k. The population matrix is 
also called the density matrix. The population matrix shows the atomic orbital terms that 
contribute to the atom density and overlap population calculations. The atom electron density 
for atom-a is calculated as the sum over all atomic orbitals j on atom-a and the sum over all 
molecular orbitals i: 
 

 da = 
j on a

   
i=1

m

 nicij
2 = 

j on a

  pjj
2   j = all atomic orbitals on atom a  26.3.9 
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The number of electrons in MO-i is called the occupancy of the molecular orbital, ni. There are 
m atomic and correspondingly m molecular orbitals. The atom electron density on Li is 0.728, 
Figure 26.3.2. Since Li has one valence electron, the net charge on Li is 1 – 0.728 = +0.272. The 
atom electron density on H is 1.272, giving the net charge on H as 1 – 1.272 = -0.272. The net 
negative charge agrees with the ionic character of 27.2%, Eq. 26.3.7. 
   The bond order between atom-a and -b is approximated by the Mulliken overlap population, 
Pab. The overlap population is the sum over all atomic orbitals j on atom-a and atomic orbitals k 
on atom-b and the sum over all molecular orbitals i with occupancy ni:1 

 Pab = 
j on a

 

    
k on b

 

    
i=1

m

 ni 2 cij cik Sjk  for atoms a and b and MO i with ni electrons 

      j = all atomic orbitals on atom-a   26.3.10 
      k = all atomic orbitals on atom-b 
 

Unoccupied orbitals are called virtual orbitals. Because ni is zero for any virtual orbital, the 
population sums are effectively over all occupied molecular orbitals. The calculated bond order 
is 1.221, Figure 26.3.2. 
   The final section of the output estimates the molecular dipole moment, based on the nuclear 
charges and the atom electron densities. The dipole moment operator for the electrons is: 
 

 ̂ = – 
i=1

n

 e r
̂

i          26.3.11 

where the sum is taken over the coordinates of each electron, r


i. The operator is a measure of the 
skewing of the electron density that results from the formation of polar bonds. In linear 
molecules the dipole is directed along the internuclear axis, so the dipole moment has only one 
component, which is along the internuclear axis. The internuclear axis is the x-axis for this 
calculation. The electronic contribution to the molecular dipole moment is the expectation value 
of the dipole moment operator. For a linear molecule, the contribution to the dipole moment of 
the electrons is: 
 

 <x> = – 
i=1

n

 e   *
MO xi MO d    (linear along x-axis) 26.3.12 

 

The SI units are C m; however for historical reasons the dipole is usually given in debyes with: 
 

 1 D = 3.336x10-30 C m        26.3.13 
 

The CNDO level dipole moment is 6.21 D, but the experimental value is 5.56 D. The 
discrepancy suggests that the CNDO calculation may overestimate the ionic character of LiH. 
 
              

Example 26.3.1: Population Analysis 
Calculate the atom electron density on Li and the bond order in LiH at the CNDO level. 
 
 

Answer:  The atomic orbitals on Li in MO 1 are the 2s and 2px. Using Eq. 26.3.8, the orbital 
coefficients in Figure 26.3.2, and noting that there is only one occupied molecular orbital gives: 
 

 dLi = 
j on Li

  n1c1j
2 = 2(0.424)2  +  2(0.429)2 = 0.728 

                                 

        n1 (c1,Li(2s))2
  +  n1 (c1,Li(2px))2 
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Alternately, the atom electron density on Li is the sum of the diagonal population matrix 
elements for Li: dLi = 0.360 + 0.368 = 0.728. 
   The overlap population is given by Eq. 26.3.10: 

 PLiH = 
j on Li

 
   

k on H

 
  n1 2c1j c1k Sjk  = 4(0.424)(0.798) SLi(2s)H(1s) + 4(0.429)(0.798) SLi(2px)H(1s) 

                                                          

       2 n1 c1,Li(2s)  c1,H1(1s) + 2 n1 c1,Li(2px)  c1,H(1s) 
 

         = 1.3534(0.392) + 1.3694(0.505) = 1.221 
 

Alternately, multiplying the off-diagonal elements of the population matrix in the column for H(1s) with 
the corresponding 2Sjk and summing the results also gives the last equation. 
 

              

 
 
Electronegativity Differences Cause Deviations from Equal Sharing:   The ionic character of LiH 
results because the electrons are not shared equally. The H(1s)-orbital is lower in energy than the 
Li(2s) giving larger H(1s)-character in the bonding orbital. Conversely, in homonuclear 
molecules, the electrons are equally shared between the two atoms. The deviation from equal 
sharing is the basis for the definition of the electronegativity of the elements. The purpose of the 
electronegativity scale is to predict the ionic character of chemical bonds. Linus Pauling defined 
the difference in electronegativity between two elements A and B using the bond dissociation 
energy of the heteronuclear molecule, Do(A–B), in comparison with the bond dissociation 
energies of the homonuclear molecules, Do(A–A) and Do(B–B). Pauling’s definition predicts that 
the bond dissociation energy for A–B, assuming equal sharing, is the geometric mean of the 
homonuclear dissociation energies: [Do(A–A) Do(B–B)]½. The deviation of the experimental 
bond energy from the equal-sharing prediction reflects the difference of the electronegativities: 
 

 (A – B)2 = Do(A–B) – [Do(A–A) Do(B–B)]½     26.3.14 
 

where A and B are the Pauling electronegativities of the two elements, with the bond energies 
in eV.5 Pauling chose the value of 4.0 for F to give an overall range of 0–4, Table 26.3.1. 
   An alternative definition of the electronegativity by Robert Mulliken is based on the element’s 
first ionization potential, I1, and electron affinity, EA. At large separation, the energy to form the 
ions A + B  A+ + B–  is I1A + EAB. The energy to form the ions A + B  A– + B+  is EAA + I1B. 
If the electrons are shared equally, then the energies to form the alternate ion pairs are equal: 
 

 I1A + EAB = EAA + I1B  or rearranging:   I1A – EAA = I1B – EAB  26.3.15 
 

For equal sharing, the electronegativites of the two elements must be equal. Defining the 
Mulliken electronegativity, xA, as the arithmetic average of the first ionization potential and the 
negative of the electron affinity satisfies the requirements applied to equal sharing in Eq. 
26.3.14: 
 

 xA = 
I1A + (-EAA)

2      The two scales are related by: A = 0.336(xA – 0.615) 26.3.16 

               Pauling          Mulliken 
 

The electron affinity is a negative value for most elements. For agreement with the Pauling scale, 
the ionization energy and electron affinity must be for the valence state of the atom when 
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participating in the chemical bond. For example for C in methane, the valence state is 5S with the 
configuration 2s12p3 instead of the 3P ground state with the configuration 2s22p2. Both 
definitions give similar values for the electronegativity of the elements after the scaling in 
Eq. 26.3.15. The electronegativity of an atom is useful for predicting the relative valence orbital 
energies of the atoms in drawing qualitative molecular orbital diagrams. The electronegativity of 
H is greater than Li, so the H(1s) orbitals are drawn lower in energy than the Li-orbitals, Figure 
26.3.1b. We have developed a firm foundation for our understanding of the chemical bond. We 
can now apply these insights to more complex systems. 
 
 

Table 26.3.1: Revised values of the Pauling Electronegativities of the Elements.2,3 

 

H  2.2       He 
Li 0.98 Be 1.57 B  2.04 C  2.55 N  3.04 O 3.44 F  3.98 Ne 
Na 0.93 Mg 1.31 Al 1.61 Si 1.90 P  2.19 S  2.58 Cl 3.16 Ar 
K   0.82 Ca 1.00 Ga 1.81 Ge 2.01 As 2.18 Se 2.55 Br 2.96 Kr 3.0 
Rb 0.82 Sr 0.95 In 1.78 Sn 1.96 Sb 2.05 Te 2.10 I   2.66 Xe 2.6 
Cs 0.79 Ba 0.89 Tl 2.04 Pb 2.33 Bi 2.02    

 
              

Example 26.3.2: Electronegativity 
Determine the Pauling electronegativity of Cl. The experimental bond dissociation energies are 
Do(H–H) = 4.75 eV, Do(Cl–Cl) = 2.48 eV, and Do(H–Cl) = 4.43 eV. The electronegativity of the 
H-atom is 2.2. 
 

Answer:  Using Eq. 26.3.14 gives: (Cl – H)2 = (4.43 – [(4.75)(2.48)]½) eV = 1.00 

Solving for the electronegativity of Cl, using the positive root: Cl = 2.2 + 1.00 = 3.2 
The positive root is chosen based on the direction of the dipole moment in HCl and the position 
of the elements in the periodic table. 
              

 
 

26.4 Second-Period Homonuclear Diatomic Molecules 
 

   The bonding in the second-period homonuclear diatomics provides a useful series of examples 
to build upon the principles that we have established. Our goal is to develop a diagrammatic 
method for predicting the shape and energetics of molecular orbitals. At the same time we use 
careful molecular structure calculations. The qualitative, diagrammatic development builds our 
insight into bonding and the careful calculations validate our qualitative ideas. 
   The low energy atomic orbitals for Li2 are the 1s and 2s-orbitals on each atom. The large 
difference in energy between the 1s and 2s orbitals on Li minimizes the interaction between the 
1s on nucleus A and the 2s on nucleus B. The overlap of the 1s-orbitals gives a bonding and anti-
bonding (1s) pair and the overlap of the 2s orbitals on each atom gives a bonding and anti-
bonding (2s) pair, Figure 26.4.1. With six total electrons, the HOMO for Li2 is the g(2s) 
orbital. An approximate measure of the bond strength is obtained by defining the qualitative 
bond order, BO: 
 

 BO = ½ (bonding electrons – anti-bonding electrons)    26.4.1 
 

The qualitative bond order of Li2 is one. 
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   Li2             Be2 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26.4.1: Molecular orbital diagrams for Li2 and Be2. Be2 is predicted to be unstable, 
since the qualitative bond order is zero. The g and u subscripts are described in the next 
section. 

 
 

The bond order calculated using population analysis is more accurate and useful, but the 
qualitative bond order is a good first estimate. The same molecular orbital diagram applies to 
Be2. Be2 has two additional electrons giving the qualitative bond order of zero. Be2 is predicted 
to be unstable, which is experimentally observed. 
 
         Li2          Be2 

 
 
 
 
 
 
 
 
 
 

 

Figure 26.4.2: Quantitative molecular orbital diagrams for Li2 and Be2. The splitting between 
g (1s) and *

u(1s) is small; the 1s-orbitals are weakly interacting. The bond length in Li2 is 
2.67 Å, giving poor overlap of the 1s-orbitals. The broken axes represent large energy gaps. 

 
 

   Molecular structure calculations agree with our simple diagrammatic approach and provide 
some additional useful information. Calculated molecular orbital energies are included in Figure 
26.4.2. First, the 1s-atomic and (1s) molecular orbitals are much lower in energy than the 2s- 
atomic and (2s) molecular orbitals. This difference in energy is so large that it is difficult to 
accurately draw the energy axes with sufficiently small scale to show the energy gap between the 
bonding and anti-bonding orbitals. In addition, notice in Figure 26.4.2 that the difference in 
energy between the g(1s) and *

u(1s) bonding-anti-bonding pair is quite small. The bond length 
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in H2, where the 1s-orbitals interact significantly, is 0.74 Å. The bond length in Li2 is 2.67 Å, so 
that the overlap of the 1s-orbitals is much diminished. In addition, the 1s-orbitals in Li are 
contracted compared to the H-atom because of the increased nuclear charge. The bond length in 
Li2 optimizes the interaction of the 2s-orbitals. Because of decreased overlap, we can consider 
the MOs derived from the 1s-orbitals as essentially non-bonding core orbitals. In subsequent MO 
diagrams, we will omit the 1s-orbitals for convenience and focus only on the valence orbitals. 
The net contribution to the bonding is minimal for the core orbitals. Notice also in the figure that 
the valence orbitals of Be2 are significantly lower in energy than Li2. Be is more electronegative 
than Li, shifting all the Be-orbitals to lower energy. In MO diagrams, we usually diminish these 
energy shifts to simplify the visual depiction of the molecular orbital interactions. In addition, for 
depictions of molecular orbitals based on 2s-overlap, we often omit the opposite-phase inner lobe 
of the 2s-atomic orbitals. To continue with the remainder of the second-period homonuclear 
diatomics, we must consider the overlap of 2p-orbitals on each atom. We begin with O2. 
 
O2 Molecular Orbitals: The LCAO Approach:   There are two types of p-orbitals on an atom, one 
pointing along the internuclear axis and two perpendicular to the internuclear axis. The choice of 
the internuclear axis is arbitrary, however, choosing the z-axis as the internuclear axis is 
common. Consider the overlap of the pz-orbitals on each atom, Figure 26.4.3. The pz-orbitals 
combine to give a bonding and anti-bonding (2pz) pair. The 2px-orbitals are perpendicular to 
the internuclear axis and combine to form a bonding and anti-bonding (2px) pair. The 
interaction of the pz-orbitals is greater than the 2px-orbitals because the 2pz-orbitals are oriented 
favorably for good overlap. As a consequence, (2p) orbitals are usually stronger than (2p) 
orbitals. Better overlap results in stronger bonding. The 2py-orbitals are also perpendicular to the 
internuclear axis and combine to form a bonding and anti-bonding (2py) pair. The (2px) and 
(2py) pairs are degenerate and differ only in orientation. For bonding overlap, the (2pz)-orbital 
coefficient signs must be opposite, g = 1/ 2 (2pz,A – 2pz,B), since by convention the positive lobe 
of a positive pz orbital points along the positive x-axis. The 2 is required to maintain 
normalization. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 26.4.3: Interaction of 2p-orbitals give  type (left) and -type (right) molecular 
orbitals in bonding and anti-bonding pairs. The g and u subscripts are explained below. 

 
 

The complete MO diagram for O2 consists of the bonding and anti-bonding (2s) pair and the six 
MOs constructed from the 2p-orbitals, Figure 26.4.4. The 1s-non-bonding core orbitals are not 
shown. The total of 12 valence electrons gives half-filled *g orbitals. A singly-occupied highest-
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occupied molecular orbital is called a SOMO instead of a HOMO. The two parallel electron 
spins give a triplet ground state. A triplet state is paramagnetic. Paramagnetic substances are 
attracted into an inhomogeneous magnetic field. Diamagnetic substances are weakly repelled 
from an inhomogeneous magnetic field. The Lewis dot structure for O2  is 

··
··
O=

··
··
O , which is all 

spin-paired and diamagnetic. The correct prediction of the paramagnetism of ground state O2 was 
the first convincing accomplishment of molecular orbital theory. Next we need to discuss how 
each molecular orbital is given a unique identifying symbol to make discussions easier. 
 
 

                   

                

                 

                    
 

                     

             
 
 

Figure 26.4.4: Molecular orbitals for O2. Computed isodensity MO plots shown at right. 
 
 
Molecular Orbitals Are Described by Their Symmetry:  The designation of a molecular orbital is 
determined by its symmetry. The symmetry of a molecular orbital is specified by the symmetry 
under rotation, reflection, and inversion. The highest symmetry axis for a linear molecule is 
along the internuclear axis. If rotation around the symmetry axis for a MO leaves the sign of the 
orbital unchanged for any angle, then the orbital is a -orbital. If the sign changes upon rotation 
by 180, then the orbital is a -orbtial. If the sign changes upon rotation by 90, then the orbital 
is a -orbital (a delta-orbital), Figure 26.4.5. For example, consider the g(2pz)-orbital. Upon 
observation down the internuclear axis, the g(2pz)-orbital has the same sign for any rotation. 
The *

g(2px)-orbital on the other hand, changes sign by rotation of 180; hence the designation as 
a -orbital. Consider the overlap of d-orbitals, Figure 26.4.6. The overlap along the z-axis of two 
dz2 orbitals gives a (3dz2) bonding orbital. The side-to-side overlap of two dyz orbitals gives a 
(3dyz) orbital. The face-to-face overlap of two dxy orbitals gives a (3dxy) orbital. 
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Figure 26.4.5: The symbol assigned to a molecular orbital is determined by the symmetry 
under rotation, reflection, and inversion. The change in sign upon rotation is observed by 
looking down the internuclear axis, which is the z-axis in this case. 

 

 
 

Figure 26.4.6: The overlap of d-orbitals gives , , and  orbitals (only bonding shown). 
 

 
 

Figure 26.4.7: Bonding orbitals are symmetric with respect to reflection across a plane 
between the two nuclei, perpendicular to the internuclear axis. Gerade, or even, orbitals are 
symmetric with respect to inversion through the center of mass. The center of mass () is the 
inversion center. 

 
 

   The second symmetry operation is the reflection across a plane between the nuclei and 
perpendicular to the internuclear axis. Assuming the internuclear axis is the z-axis, the reflection 
operation compares a point (x,y,z) with the point (x,y,-z). If the orbital is the same sign, the 
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orbital is symmetric with respect to reflection, giving a bonding orbital, Figure 26.4.7. Anti-
symmetric orbitals change sign upon reflection and are anti-bonding. 
   The third symmetry operation is inversion through the center of mass. The center of mass is the 
inversion center. The inversion operation compares a point (x,y,z) with the point (-x,-y,-z). If 
the orbital is the same sign, the orbital is symmetric with respect to inversion, giving a gerade 
orbital, Figure 26.4.9. Gerade is German for “even.” Anti-symmetric orbitals change sign upon 
inversion and are ungerade. The inversion character is called the parity. The parity is indicated 
with a g or u subscript. The symmetry symbols for the diatomic molecular orbitals are listed in 
Figures 26.4.2-26.4.9. Rotation and reflection symmetry are also applied to orbital phase 
relationships of heteronuclear diatomic molecules, but inversion does not formally apply. With 
convenient orbital designations in hand, we can now continue with the second-period diatomics. 
 

N2 Has the Strongest Bond of the Second-Period Homonuclear Diatomics:  The diagram in 
Figure 26.4.4 also applies to F2 and Ne2. However, as we discuss below, the ordering for B2, C2, 
and N2 has the g (2pz) above the u(2px) and u(2py). The resulting configurations for the 
second-period homonuclear diatomic molecules are shown in Figure 26.4.8.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26.4.8: Predicted configurations of second-period homonuclear diatomic molecules.  
 
 

Note that molecular orbital theory predicts that B2 is also paramagnetic, which is experimentally 
observed. N2 is predicted to have the strongest bond of the second-period homonuclear 
diatomics, since the qualitative bond order is 3. The LCAO approach provides an accurate 
description of the bonding in diatomics. The third-period also follows the same trend, with the 
MO ordering the same as O2. The predicted electronic configuration of diatomic molecules is 
specified by the orbital filling. The core, net non-bonding 1s-orbitals are written either as 
g(1s)2*u(1s)2 or [KK] in condensed format: 
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 B2: [KK]g (2s)2*u(2s)2u(2p)2 
 C2: [KK]g (2s)2*u(2s)2u(2p)4 
 N2: [KK]g (2s)2*u(2s)2u(2p)4g(2pz)2 
 O2: [KK]g (2s)2*u(2s)2g(2pz)2u(2p)4*g(2p)2 
 F2: [KK]g (2s)2*u(2s)2g(2pz)2u(2p)4*g(2p)4     26.4.2 
 

Why is the Orbital Ordering Different for O2 and N2? Energy Matching:   In building the 
molecular orbitals from the overlap of p-orbitals, we neglected any interaction between the 2p-
orbitals on one atom with the 2s-orbitals on the other. The energy gap between the 2s and 2p-
orbitals increases across the period, Figure 26.4.9. For O-atoms and beyond, the 2s-2p gap is 
large and there is little interaction. However, for B through N, the gap between the 2s and 2p-
orbitals is sufficiently small that the 2s and 2p orbitals on opposite atoms interact, Figure 
26.4.10a. The result is that the g(2s) and *

u(2s) are stabilized, while the g(2pz) orbital is 
destabilized, Figure 26.4.10b. The g(2pz) energy is greater than the u(2p) orbitals for B2, C2, 
and N2. Two criteria are important for strong bond formation, good overlap and energy 
matching. The energy matching is favorable between 2s and 2p-orbitals for B2, C2, and N2. 
 

 
 

Figure 26.4.9: Valence atomic orbital energies of the second-period elements. 
(B3LYP/cc-pVTZ for the neutral hydride, BH3, CH4, NH3, H2O, HF, Ne, extrapolated to long bond lengths) 

 
 

The molecular structure calculation output for the N2 molecule shows significant contribution of 
the 2pz orbital in the g (2s) orbital, Table 26.4.1: 
 

 g (2s) = – 0.621(2sA) – 0.338(2pz,A) – 0.621(2s,B) + 0.338(2pz,B)   26.4.3 
 

The relative contribution of the s and p-orbitals to the molecular orbital is depicted by the size of 
the orbitals in Figure 26.4.10, giving larger 2s and smaller 2pz orbitals. The p-orbital character in 
the molecular orbital is determined using population analysis on a chosen atom: 
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where the sums are taken over the orbital coefficients on the chosen atom, Table 26.4.1. For O2 
and beyond in the periodic table, the g(2s) and *

u(2s) are primarily s in character, while the 
g(2pz) is primarily p in character. For N2, the p-orbital contributes strongly to the g(2s) and 

-3000

-2500

-2000

-1500

-1000

-500

5 6 7 8 9 10

En
er

gy
 (k

J m
ol

-1
)

Z
B C N O F

2s

2p

Ne



191 
 

*
u(2s), leaving less p-character for the g(2pz). The shift in orbital order is also evident in the 

shape of the molecular orbitals, Figure 26.4.11. The center lobe of the g(2pz) for N2 is smaller 
than for O2, because of the decreased p-character. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a).     (b). 
 

Figure 26.4.10: (a). The interaction of the 2s-orbital on one atom with the 2pz-oribtal on the 
opposite atom is significant for B2, C2, and N2. (b). Compared to O2, the g(2s) and *

u(2s) are 
stabilized, while the g(2pz) orbital is destabilized. 

 

 
Table 26.4.1: N2 Occupied Molecular Orbitals. Calculated at the 1.094 Å experimental bond 
length using the semi-empirical AM1 method. Orbital 1 is the g(2s) bonding orbital. 

 

MO: 1 2 3 4 5 
Eigenvalues:(eV) -41.3927 -21.4303 -16.1919 -16.1919 -14.3230 

 g(2s) *
u(2s) u(2py) u(2px) g(2pz) 

1 N 1 S -0.6210 -0.6496  0.0000  0.0000 -0.3382 
2 N 1 PX  0.0000  0.0000  0.0189  0.7068  0.0000 
3 N 1 PY  0.0000  0.0000  0.7068 -0.0189  0.0000 
4 N 1 PZ -0.3382  0.2792  0.0000  0.0000  0.6210 
5 N 2 S -0.6210  0.6496  0.0000  0.0000 -0.3382 
6 N 2 PX  0.0000  0.0000  0.0189  0.7068  0.0000 
7 N 2 PY  0.0000  0.0000  0.7068 -0.0189  0.0000 
8 N 2 PZ  0.3382  0.2792  0.0000  0.0000 -0.6210 

% p character 22.8% 15.6% 100% 100% 77.1% 
 
     N2 g(2pz)        O2 g(2pz) 

                
 

Figure 26.4.11: The decreased 2pz character in the g(2pz) orbital for N2 results in a smaller 
central lobe. The calculation is at the HF/6-31G(d) level. 
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The interaction of the 2s and 2p-orbitals on adjacent atoms in B2, C2, and N2 introduces an 
important principle. The requirements of good overlap and energy matching are prescriptive and 
determinative for the interaction of atomic orbitals in a molecular orbital. Orbitals that can 
overlap, will. In forming a molecular orbital, we must include all possible overlaps between 
atomic orbitals with similar energy. 
 

Does Molecular Orbital Theory Really Work? Experimental Bond Strength Measures:   The 
molecular orbital theory predictions of the qualitative bond order can be validated using 
experimental information. The experimental bond dissociation energy, Do, the experimental bond 
length, ro, and the bond force constant, k, are determined using UV-visible, infrared, and 
vibrational spectroscopy. Strong bonds have large bond dissociation energies, small equilibrium 
bond lengths, and large force constants. The zero point vibrational energy is Eo = ½ ho, where 
o is the fundamental vibration frequency. The minimum of the electronic potential curve is at 
the bond length re, Figure 26.1.1. The bond dissociation energy, De, is related to the experimental 
bond dissociation energy after adjusting for the zero point vibrational energy: 
 

 Do = De – ½ ho         26.4.5 
 

The experimental bond length, ro, is the vibrationally averaged bond length in the zero-point 
vibrational state. The difference between the experimental ro and re is small. For a harmonic 
potential the bond force constant, k, is given by the Hooke’s Law potential, 
V= ½ k (r-ro)2. For anharmonic potentials the bond force constant is determined by the curvature 
of the electronic potential energy at the equilibrium bond length: 
 

 k = 



∂2V

∂r2
r = re

          26.4.6 

 

Experimental bond strength measures for second-period diatomics show an excellent correlation 
with the qualitative bond order predicted from MO theory, Table 26.4.2 and Figure 26.4.12.4,5 

 
 
Table 26.4.2: Bond Strength Measures for 2nd Period Diatomic Molecules.4,5 

 

 H2 Li2 LiH B2 C2 N2 O2 F2 CN CO NO 
Do (kJ/mol) 435 105 243 289 602 941 494 151 787 1070 632 
ro (Å) 0.76 2.68 1.61 1.59 1.24 1.10 1.21 1.44 1.18 1.13 1.15 
k (N/m) 510 25 96 350 930 2240 1140 450 1580 1860 1550 
Bond Order   1   1   1   1   2   3   2   1   2½   3   2½ 

 
 
These bond strength correlations and the triplet character of the ground state of oxygen validate 
the molecular orbital approach. Based on the success of the LCAO-MO method, efficient 
computational techniques must be developed to extend the approach to larger molecules. The 
self-consistent field, SCF, method in combination with careful consideration of electron 
indistinguishability are the basis for a variety of useful computational methods. 
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Figure 26.4.12: Experimental measures of bond strength correlate with molecular orbital 
predictions for the qualitative bond order. The plots are with respect to the total number of 
valence electrons in the diatomic molecule.4,5 

 
 

26.5 Self-Consistent Field Hartree-Fock Theory 
 

   Self-consistent field Hartree-Fock theory is readily applied to molecular structure 
determination. One common approach is given by the Roothaan equations. We will focus on the 
results, rather than derive these important equations. 
 

LCAO+Slater Determinants+One-Electron Products = Roothaan Equations:   The Roothaan 
equations are derived under the Born-Oppenheimer and orbital approximations, using the SCF-
LCAO approach.6 A one-electron molecular orbital, a, is approximated as the linear 
combination of atomic orbitals, i: 
 

 a = 
i=1

N

 cia i          26.5.1 

 

 where the cia orbital coefficients are optimized as variational parameters. The linear combination 
extends over the N total atomic orbitals, including all orbitals on each atom in the molecule. The 
atomic orbitals are usually in Slater or Gaussian form. The one-electron MOs are labeled with 
subscripts as a, b, c, etc. For example, for a diatomic molecule, a is the 1s orbital, b is the 
1

*
s, and c is 2s, etc. The complete multi-electron molecular orbital for the molecule is . 

To be consistent with the Pauli Exclusion Principle, , for n total electrons, is a Slater 
determinant of the one-electron MOs: 
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  = 1/ n! 







a(1) a(1) b(1) b(1)  
a(2) a(2) b(2) b(2)  
a(3) a(3) b(3) b(3)  

 :  :  :  :  

  26.5.2 

 

In the following, the equations are solved for both the  and  spins; signifies either  or : 
(1) = (1) or (1). 
   The Variation Theorem is used to find the orbital coefficients, cia. We assume a closed shell 
molecule with n electrons, which gives paired electrons in n/2 filled orbitals. The one-electron 
molecular orbital energies are determined using the Hartree-Fock equations: 
 

 f1 a(1)(1) = aa(1)(1)        26.5.3 
 

where a is the one-electron orbital energy for molecular orbital a. Parallel equations are written 
for molecular orbitals b, c, …. The one-electron Fock operator for electron 1, f1, is given by: 
 

 f1 = h1 + 
j=1

n/2
 {2Jj(1) – Kj(1)}     (closed shell)  26.5.4 

 

where the sum extends over all j filled orbitals excluding the orbital that electron 1 occupies. As 
expressed by the Slater determinant, all electrons in the molecule are equivalent; no one electron 
belongs to a given MO. Correspondingly, the last equation holds for each electron, 1, 2, 3, … 
The core Hamiltonian, h1, is the sum of the kinetic energy of electron 1 and the electron-nuclear 
attraction of electron 1 with each nucleus k in the molecule: 
 

 h1 = – 
ħ2

2m 2
1 – 

k=1

m

 
Zke2

4πork1
        26.5.5 

 

where the nuclear charge of atom k is Zk and the distance of electron 1 from nucleus k is rk1, 
Figure 26.5.1a. The sum is over all m nuclei in the molecule. 
 

 
 
 
 
 
 (a). Core Hamiltonian, h1  (b). Coulomb operator, J2(1) 
 

Figure 26.5.1: Interaction terms in the Fock operator: (a) the core Hamiltonian, h1, includes 
the electron-nuclear attractions for electron 1. (b). The coulomb operator, J2(1), determines 
the average electron-electron repulsion between electron 1 and 2. 

 
 
Electron-electron repulsion is evaluated using the coulomb and exchange operators. The 
coulomb operator between electron 1 in molecular orbital a and electron 2 in molecular orbital j 
is, Figure 26.5.1b: 
 

rA1 rB1 
r12 
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 Jj(1) a(1) = 










j*(2) 

e2

4πor12
 j(2) d2  a(1)      26.5.6 

 

Summed over all one-electron molecular orbitals, this term gives the average effective electron-
electron repulsion between electrons 1 and 2, as discussed in Eq. 25.4.1. The exchange operator 
is an exact representation of the cross terms in the Slater determinant necessary to guarantee 
electron indistinguishablity: 
 

 Kj(1) a(1) = 










j*(2) 

e2

4πor12
 a(2) d2  j(1)      26.5.7 

 

The exchange operator is the source of the quantum mechanical avoidance of parallel electrons 
that is summarized by Hund’s Rule, Sec. 25.4. 
   The Hartee-Fock equations are recast into matrix form to provide efficient algorithms for 
molecular structure calculations. For a closed shell molecule, there are no unpaired electrons and 
the  and  spin-orbitals are equivalent for each MO. Substituting the LCAO sum from Eq. 
26.5.1 for a(1) in Eq. 26.5.3 and multiplying from the left by atomic orbital j(1) gives: 
 

 
i=1

N

 cia j(1) f1i(1) = a
i=1

N

 cia j(1)i(1)     (closed shell) 26.5.8 

 

Integrating both sides of the equation over the coordinates of electron 1 gives: 
 

 
i=1

N

 cia  j(1) f1i(1) d1 = a
i=1

N

 cia  j(1)i(1) d1    (closed shell) 26.5.9 

 

Each integral in each sum is now a constant. The choices for atomic orbitals i and j include all 
atomic orbitals in the molecule. The complete set of equations with each pair of atomic orbitals 
in the integrals gives an NxN matrix equation: 
 

 F

 c

~a = a S  c
~a        (closed shell) 26.5.10 

 

The eigenvectors of the Fock equation, c
~a, are the molecular orbital coefficients. The Fock 

matrix elements, Fji, are the integrals over the Fock operator in Eq. 26.5.9, and the overlap 
matrix elements, Sji, are the overlap integrals: 
 

 Fji =  j(1) f1i(1)d1   Sji =  j(1)i(1) d1  (closed shell) 26.5.11 
 

For example in the matrix equation, Eq. 26.5.10, row j is for atomic orbital j: 
 

 
i=1

N

 cia Fji = a
i=1

N

ciaSji       (row j, closed shell) 26.5.12 

 

The Roothaan Equations, in matrix form, are the basis of most commonly used molecular 
structure programs, e.g. CNDO, MOPAC, Spartan, and Gaussian. However, the coulomb and 
exchange integrals are difficult and time consuming to calculate. For ab initio calculations all the 
integrals in the Fock matrix are calculated for all electrons. Choosing Gaussian basis sets 
facilitates the determination of the integrals. However, for efficient approximate calculations, 
some integrals can be neglected. 
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Semi-Empirical Molecular Orbital Theory: CNDO, MNDO, AM1, PM3:   Semi-empirical 
molecular orbital methods were developed concurrently with ab initio methods to provide very 
quick approximate calculations for large molecules. Semi-empirical calculations only consider 
the valence electrons. The core electrons are included in the nuclear core. The basis sets are 
simplified to include only a minimum basis set. A minimum basis set contains only occupied 
atomic orbitals with no polarization functions. For example, for carbon only 2s and 2p functions 
are included. For silicon, phosphorus, sulfur and chlorine, only 3s and 3p atomic orbitals are 
included; no d-orbitals are used in MNDO, AM1, or PM3 calculations. Semi-empirical methods 
use Slater-type orbitals or the corresponding Gaussian STO-3G equivalents. Many of the 
coulomb and exchange integrals are obtained by fitting the results of trial calculations on well 
characterized molecules to experimental data or ab initio calculations. The set of molecules that 
is used to extract integral parameters is called the training set. The dependence on empirical 
parameters, which are based on a selected training set, gives a training set dependence that limits 
the applicability of semi-empirical calculations. In addition, many two-electron integrals are 
neglected. The general form of a coulomb or exchange integral for atomic orbitals i, j, k, and l is: 
 

 

i(1) j(1) 

e2

4πor12
 k(2) l(2) d1 d2       26.5.13 

 

where the four orbitals may be on the same atom or different atoms. To help simplify 
consideration of these integrals, we represent each atomic orbital by a capital letter and each 
electron by a number:  
 

 

A(1) B(1) 

e2

4πor12
 C(2) D(2) d1 d2       26.5.14 

 

Semi-empirical methods differ as to the types of integrals that are neglected. The oldest semi-
empirical method in common use, and the most approximate is CNDO. CNDO is an acronym for 
complete neglect of differential overlap. In the CNDO method an integral is assumed to be zero 
unless orbitals A and B are identical on the first atom and orbitals C and D are identical on the 
second atom. Such integrals are called two-center integrals, Figure 26.5.2a. For example, 
orbitals A and B can both be 2s orbitals or both can be 2p orbitals on the same atom. 
 
 
      CNDO:  integral zero unless:      MNDO:  integral zero unless: 
 

              A, B on       C, D on  
  A=B         C=D        same atom      same atom 
 
 
 
 

         two-center integrals only 
 
 

 (a). complete neglect of differential overlap  (b). neglect of diatomic differential overlap 
 

Figure 26.5.2: Semi-empirical methods neglect some types of integrals. (a). CNDO includes 
only integrals with the same orbitals on the first and the same orbitals on the second atom. 
(b). MNDO methods include integrals with different orbitals on the same atom. 

 

B D 
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   In methods with modified neglect of differential overlap, or MNDO methods, orbitals A and B 
can be different, but on the first atom, while orbitals C and D can also be different, but on the 
second atom, Figure 26.5.2b. The AM1 and PM3 methods use MNDO approximations, but the 
training sets of molecules that are used to determine the parameters are expanded to include a 
wider diversity. The AM1 training set includes primarily molecules containing C, H, N, and O. 
The PM3 training set is expanded to include many molecules with Si, P, S, and halogens. PM3 
calculations are also useful for calculations involving hydrogen-bonding. ZINDO is 
parameterized to reproduce electronic spectra of simple organics. No d-orbitals are used unless 
the method has been specifically expanded, as in MNDO/d, which includes d orbitals for 3rd 
period representative elements. PM3/TM includes d-orbitals for transition metals. 
   Semi-empirical calculations on moderate size molecules require at most a few seconds of 
computer time. However, the training-set dependence and lack of d-orbitals in most semi-
empirical methods limits the applicability. Much caution is warranted: 
 

 If your molecule is similar to the training set, then the results may be very good. 
 If your molecule is significantly different from the training set, the results may be very poor. 
 The bonding description can be useful in aggregate. Howevernote that: 
 Semi-empirical molecular orbital energies can be in the wrong order. 
 Results are not useful for transition states, unstable molecules, and unstable ions. 

 

Semi-empirical methods are not as sensitive to training set bias as molecular mechanics. In 
general, semi-empirical methods are useful for molecular geometry determinations of stable 
molecules and ions. However, correlated ab initio methods are necessary for excited state, 
transition state, and thermochemical determinations. Electron-electron correlation plays an 
important role in the electronic structure of molecules and atoms and is not represented well in 
semi-empirical calculations. 
 
Density Functional Theory: DFT:  The effects of electron correlation are not included in basic 
Hartree-Fock theory. Configuration interaction approaches are used within the Hartree-Fock 
framework to include electron correlation (review Section 26.2). However, full CI calculations 
are time consuming. An alternate approach called Density Functional Theory, or DFT, has 
been developed that includes exchange and correlation effects directly.7 In density functional 
theory, the electronic energy is given as the sum of the kinetic energy of the electrons, the 
potential energy of attraction of the electrons for the nuclei, the Coulomb repulsion of the 
electrons for each other, and finally the exchange-correlation energy: 
 

 E =    ET   +        EV       +             EJ              +            Exc    26.5.15 
          kinetic + e-n attraction + Coulomb e-e repulsion +exchange-correlation energy 
 

The kinetic, electron nuclear attraction, and electron-electron repulsion terms are essentially the 
same as Hartree-Fock theory. In DFT theory, however, the exchange and electron correlation 
terms are included in the exchange-correlation energy, Exc. In DFT, the one-electron Fock 
operator is given as: 
 

 f1 = h1 + 
j=1

n/2

 {2Jj(1) – VXC
j (1)}         26.5.16 
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where VX
j

C(1) is the potential energy that results from both the exchange and correlation 
interactions. In this way, electron correlation is included as an inherent and central part of the 
molecular orbital energy. EJ, EXC, and VX

j
C(1) are taken as a function of the electron density: 

 

 (r) = 2 
i=1

n/2
 |i(r)|2         26.5.17 

 

The sum is taken over all occupied molecular orbitals. Assuming the functional dependence on 
the electron density rather than the wave function itself results in some computational 
simplifications. The electron density is a point-to-point measure of the probability of finding the 
electron. The electron-nuclear Coulomb interaction is essentially equivalent between Hartree-
Fock and DFT methods. Formally, the exchange-correlation potential is the derivative of the 
exchange-correlation energy with respect to the electron density: 
 

 VX
j

C(1) = 
EXC[(r)]
 (r)

         26.5.18 
 

The derivative of a function with respect to another function is called a functional derivative. The 
change in the exchange-correlation energy as the density of the electrons in the molecular 
orbitals changes gives the exchange-correlation potential energy. The electron density cannot be 
determined exactly, just as in Hartree-Fock theory. DFT theory is similar to Hartree-Fock theory 
in many respects. However, the DFT approach gives a different point of departure for 
approximation methods. 
   One specific problem that has been treated to a very high level of approximation is the 
uniform electron gas (using quantum Monte Carlo simulations). A uniform electron gas is an 
infinitely large container filled with electrons that interact with a completely delocalized and 
uniform equal positive charge. The gas is electrically neutral, but the positive charge is “smeared 
out” instead of being localized in multiple nuclei. The results describe the response of the 
electron gas when the electron density is changed at some particular spot, r. For example, if the 
electron density is decreased at r, then electron-electron repulsions are decreased at that spot and 
the electron density relaxes about r, Figure 26.5.3. In other words, a change in electron density at 
one spot causes a correlated motion of all the other electrons as the gas adjusts to the change. 
One approach to density functional calculations is to “wrap” this correlation around the nuclei of 
the molecule under study. 
 
 
 
 
 
 
 
 
 

Figure 26.5.3: The response of the electron density of the uniform electron gas as the electron 
density at a point r is changed. The electron motion is correlated; the change in electron 
density at one point is reflected in changes in electron density remote to the change. 

 

difference density 
. 

change the electron density at one point, r 
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   Using the uniform electron gas as a model for electron correlation results in the “local” density 
approaches that are the basis for LSDA/VWN level approximations (LSDA is an acronym for 
local spin density approximation). Many more accurate extensions have also been implemented, 
Table 26.5.1. In most discrete molecule DFT methods, the initial approximation of the electron 
density is calculated using a Hartree-Fock calculation. Then the exchange-correlation potential is 
calculated at some level of approximation and an improved electron density distribution is 
determined. However, this approach gives an approximation of both the exchange and 
correlation energies. One advantage of the Hartree-Fock approach is that the exchange energy is 
exact, assuming that the exact wave function is known. Several “hybrid” methods are commonly 
used that combine the “exact” exchange energy from the Hartree-Fock calculation with the 
exchange-correlation energy from the DFT calculation. One of the most commonly used DFT 
methods is such a hybrid functional, B3LYP. The B3 results from the use of three empirical 
parameters that are used to combine the Hartree-Fock exchange term with the DFT exchange-
correlation interaction. 
 

Table 26.5.1: Source of the Coulomb, Exchange, and Correlation terms in DFT methods. 
 

Functional Source of Coulomb and Exchange Energies 
“Pure”: LSDA/VWN, BP, BLYP, EDF:  HF Coulomb,    DFT exchange-correlation 
“Hybrid”: B3LYP, MO6, APFD:  HF Coulomb and exchange,   DFT 

correlation 
 
 

The world of molecular structure methods can be a daunting welter of acronyms, however the 
point is to appreciate the strengths and weaknesses of the general method types. Density 
functional methods are in general more accurate than Hartree-Fock methods, because DFT 
methods include electron correlation in addition to exchange. Hartree-Fock methods give exact 
exchange, assuming the exact wave function is known. Hybrid functionals are commonly used to 
take the best advantage of a melding of Hartree-Fock exchange with density functional 
exchange-correlation. However, advanced correlated methods, such as CISD and CISDT, are 
generally considered to be superior to B3LYP, though slower. Coupled cluster methods, CCSD, 
CCSD(T), and CCSDT, use the same philosophy as the corresponding CI method, but have been 
optimized for computational efficiency.6 CCSD(T) is commonly used, which makes a strategic 
choice of a subset of all possible triple excitations. CCSD(T) is faster than CCSDT. With 
appropriate computational models in hand, we are now ready to study polyatomic molecules. 
 
26.6 Bonding in Polyatomic Molecules 
 

Linear BeH2, triplet CH2, NH2, and H2O: An Initial Model:   The bonding in polyatomics is an 
extension of the techniques we have discussed so far. A valid set of molecular orbitals is based 
on the following principles: 
 

1. LCAO approach 
2. Combination of AOs with good overlap and similar energy (orbitals that can overlap, will) 
3. Number of AOs = number of MOs 
4. MOs must have the same symmetry as the molecule 

 

The second-period triatomic hydrides are a good first example. We begin with the linear 
geometry, Figure 26.6.1. The linear geometry applies to BeH2, triplet CH2 (methylene triplet 
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radical), and linear models for NH2 and H2O. The 1s-orbital on the central atom is a low energy 
core orbital and is not shown on the MO diagram. We consider only the valence orbitals on the 
central atom. Counting the 2s, 2px, 2py, and 2pz on the central atom and the 1s on each H, there 
are six valence atomic orbitals. We correspondingly need to find six molecular orbitals. We 
choose the internuclear axis as the x-axis, for convenience. The lowest energy molecular orbital 
combines the in-phase combination of the s-orbitals on each atom. The MO is cylindrically 
symmetrical about the internuclear axis, giving a -bonding orbital: 1 = 1sH + 2sA + 1sH.  
 

 

 
 
 

Figure 26.6.1: Linear models for 2nd-period hydrides: BeH2, triplet CH2, NH2, and H2O. 
Computed orbital isodensity surfaces are shown on the right. The orbital filling is for BeH2. 

 
 

   Two procedures are helpful for the diagrammatic development of a complete set of molecular 
orbitals. The first is to consider changing the sign of the central atomic orbital. The second is to 
consider changing the sign of one of the outer orbitals. For example, changing the sign of the 
central 2s-orbital in 1 gives the anti-bonding complement, *

4 = 1sH – 2sA + 1sH. Changing the 
sign of one of the outer 1s-orbitals gives an antisymmetric combination that has the proper 
phases to combine with a p-orbital on the central atom. By convention, a positive p-orbital has 
the positive-phase lobe pointing in the positive x-direction, Figure 26.6.2a. The combination of 
the H-atom 1s-orbitals with a p-orbital on the central atom gives the second -bonding orbital: 
2 = –1sH + 2px,A + 1sH. 
   The antisymmetric combination of the outer 1s-orbitals cannot combine with the central 2s-
orbital, because the linear combination is anti-bonding on the left and bonding on the right. The 
second-period hydrides are symmetric, the left and right bonds are equivalent. Therefore, the 
proper molecular orbitals must also have equivalent character, left and right. A valid molecular 
orbital must be bonding left and right or anti-bonding left and right, Figure 26.6.2a. 
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 (a).      (b). 
 

Figure 26.6.2: (a). Molecular orbitals must have the same symmetry as the molecule. Since 
BeH2 has equivalent bonds, the valid molecular orbitals must have the same character left 
and right. (b). Out-of-plane p-orbitals give no net overlap with the 1s-orbitals. 

 
 

   For further discussion, it is helpful if the orbitals are given unique symbols, Figure 26.6.3. 
Rotation and inversion symmetry are applied as for diatomics. However, the bonding and anti-
bonding character is specified with respect to the overall number of pairwise bonding and anti-
bonding interactions, rather than reflection symmetry. The orbitals are numbered sequentially 
within each symmetry class, starting with the core orbitals. The lowest energy orbital is the 1s-
core orbital on the central atom, which transforms as g. This 1s-core orbital is designated 1g, 
giving the g-bonding orbital resulting from overlap with the 2s-orbital as 2g. The non-bonding 
orbitals have -symmetry because they are perpendicular to the internuclear axis. 
   With two valence electrons on Be and one each on H, the electron configuration fills 1u. 
Assuming a linear geometry, the configurations for some additional second-period triatomic 
hydrides are given in Figure 26.6.3. The total bond order of BeH2, CH2 and H2O is each two, 
giving an equivalent single-bond on each side of the molecules. The non-bonding electrons don’t 
contribute to the bond order, because they are non-interacting. Methylene, CH2, has two parallel 
electrons in the singly occupied non-bonding orbitals, which results in triplet spin multiplicity. 
The experimental structures for BH2, CH2, NH2, and of course H2O are all bent. Our linear 
models are a good point of comparison with the bent models that we now construct. 
 
 
 
 
 
 
 
 
        BeH2          triplet CH2          H2O 
 

Figure 26.6.3: Linear models for the second period triatomic hydrides. The experimental 
bond angles are: BeH2 (180), triplet CH2 (133.840.05), and H2O (104.5). 
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   Using the same principles that we developed for linear AH2, the molecular orbitals for a 90 
bond angle are shown on the right in Figure 26.6.4. The molecular orbitals for linear AH2 are 
redrawn on the left for comparison. Each molecular orbital must involve both of the 2p-orbitals 
that are in the bonding plane to maintain the symmetry of the molecule; the bonding plane is the 
plane of the paper. The molecular orbitals must be three-center orbitals. To have the same 
symmetry as the molecule, valid molecular orbitals must be either symmetric or antisymmetric 
with respect to each of the symmetries of the molecule. 
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Figure 26.6.4: Walsh diagram for triatomic hydrides. Orbitals of the same symmetry 
correlate. The symmetry is determined by rotation about the two-fold axis by 180 and 
reflection across the vertical plane that bisects the bond angle, v. (See Figure 26.4.5a.) 

 
 

The symmetry in bent molecules is determined by rotation about the two-fold axis by 180 and 
reflection across the vertical plane, v, that bisects the bond angle. The symmetry axis lies in the 
bonding plane and bisects the bond angle, Figure 26.6.4. If the orbital phase is unchanged upon 
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rotation, then the orbital is symmetric with respect to the rotation and is an “a” orbital. 
Antisymmetric orbitals with respect to rotation are designated “b”. Orbitals that are symmetric 
with respect to reflection are designated with a “1” subscript. Antisymmetric orbitals with 
respect to reflection are designated with a “2” subscript. The lowest energy orbital is the 1s-core 
orbital on the central atom, which transforms as a1. This 1s-core orbital is 1a1, giving the bonding 
orbital resulting from overlap with the 2s-orbital as 2a1. 
 

Walsh Diagrams Predict the Equilibrium Bond Angle:   The changes in orbital energies 
determine the lowest energy structure and the corresponding equilibrium bond angle. Figure 
26.6.4 is an example of a Walsh diagram.8 Molecular orbital energies are plotted as a function 
of bond angle for pairs of correlated orbitals. Correlated orbitals are matched by symmetry. That 
is, if the linear orbitals are reclassified according to the symmetry operations of the bent 
molecule, then the orbitals occur in pairs with the same symmetry, Figure 26.6.5a. This 
reclassification is listed in parentheses in Figure 26.6.4. The energies change smoothly as the 
bond is bent. Upon bending, orbitals of a2 or b2 symmetry have a node that decreases electron 
density between the H-atoms and destabilizes the orbital. Orbitals with a1 or b1 symmetry give 
constructive overlap that increases the electron density between the H-atoms and stabilizes the 
orbital, Figure 26.6.5b. 
   In establishing the correlated orbital pairs, some ambiguity can result. For example, the 2g – 

2a1 and 1u – 3a1 pairs have the same a1 symmetry. How do we know that the correlation is not 
2g – 3a1 and 1u – 2a1? Calculations at small angle increments allow the energies of the orbitals 
to be followed in detail, which results in the non-crossing rule. Orbital energies of the same 
symmetry do not cross. This rule allows ambiguities to be resolved. The pairings 2g – 3a1 and 
1u – 2a1 are not valid because the energy curves cross upon bending. In summary: 
 

1. Orbital energies vary smoothly with bond angle. 
2. Orbitals of the same symmetry correlate. 
3. Orbital energies of the same symmetry do not cross (non-crossing rule). 
4. Orbitals with a node between the two outer atoms increase in energy upon bending. 

 
 
 
 
 
 
 
 
 (a). Orbital correlation     (b). Energy changes 
 

Figure 26.6.5: Orbital correlations for the 1u–1b2 pair. (a). The symmetry of the linear 1u 
orbital transforms as b2 with respect to rotation about the symmetry axis and reflection across 
the v plane that bisects the bond angle. (b). Upon bending, the energy of a2 and b2 orbitals 
increase, while the energy of a1 and b1 orbitals decrease. 

 
 

   The Walsh diagram allows the equilibrium bond angles of the second-period hydrides to be 
predicted. With four valence electrons, BeH2 fills the molecular orbitals up to 1u, Figure 26.6.3. 
As the bond angle is bent, the 2g(a1) orbital drops in energy and the 1u(b2) orbital increases in 
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energy, giving no net energy change. BeH2 is then predicted to be linear. For methylene, CH2, 
the linear model gives a triplet state, Figure 26.6.3. As the bond is bent, the 1u(b1) orbital 
remains essentially an atomic 2p-orbital with little change in energy. The 1u(a1) orbital drops in 
energy upon bending. The net decrease in energy of the 1u–3a1 pair causes the equilibrium bond 
angle to bend, but not so much that the electrons are forced to spin-pair in the 3a1 orbital to give 
a singlet state, Figure 26.6.6a. 
 

 
 
 
 
 
 
 
 
 
 (a). Triplet and singlet CH2   (b). H2O 
 

Figure 26.6.6: Comparison of linear and bent models for CH2 and H2O. Triplet-CH2 is 
stabilized by the exchange interaction, while H2O is stabilized by bending. 

 
 

The half-filled orbitals are maintained so that electron-electron repulsion is minimized with a 
bond angle slightly less than 180. The experimental bond angle for the triplet state is 133.1. 
The minimum energy bond angle is 137.8 at B3LYP/6-311G**. The singlet state is an excited 
state, and because both electrons are in the 3a1 orbital, the bond angle is predicted to be close to 
90. The experimental bond angle for the excited singlet state is 101.5 and the singlet state is 
0.42 eV, 41 kJ mol-1, higher in energy than the triplet state. 
 

H2O is Bent:   Water has eight valence electrons, which fill through the non-bonding 1b1 state. 
With no energy penalty for spin pairing, as in triplet-CH2, the overall energy is decreased by 
bending the bond to small angles. Three of the occupied orbitals decrease in energy on bending, 
while only the 1b2 energy increases. The HOMO is a non-bonding, essentially atomic 2p orbital. 
The Lewis dot structure for H2O suggests two equivalent non-bonding pairs, H2Ö... However, the 
MO diagram shows the non-bonding electrons to be a core 1s-orbital on O and the HOMO, 
which is an atomic 2p orbital. The MO energy ordering predicted by molecular orbital theory is 
significantly different than the Lewis dot prediction. Building on the success of the MO 
description of the triatomic hydrides, we next consider non-hydrogen triatomics. 
 

CO2 has 3-Center -Orbitals:   The molecular orbitals for CO2 are built using the same 
guidelines. The 1s-orbitals on each atom give a low energy set of molecular orbitals: a bonding, 
non-bonding, and anti-bonding set: ○○○ (1g), ○–● (1u), and ○●○ (2*

g). In combination, these 
three orbitals have no net effect on the bonding. As a consequence, the 1s-orbitals are considered 
to be a filled set of low-energy core orbitals. The 12 valence atomic-orbitals then combine to 
give 12 molecular orbitals, Figure 26.6.7a. The O(2s) atomic orbitals are much lower in energy 
than the C(2s) and have minimal interactions. We assign the in-phase 3g and out-of-phase 2u 
combinations of the O(2s)-orbitals as core non-bonding orbitals. The x-axis is assigned as the 
internuclear axis for convenience. The lowest energy bonding orbital in CO2 is the in-phase 
combination of the O(2px) orbitals and the central C(2s) orbital, 4g = px,O + sC – px,O. 
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Changing the phase of the central orbital gives the anti-bonding complement, 5*
g. The next 

bonding orbital is the in-phase combination of the O(2px) and C(2px) orbitals, 3u = – px,O + px,C 
– px,O. Changing the phase of the central px-orbital gives the anti-bonding complement, 4*

u. We 
next consider the p-orbitals that are perpendicular to the internuclear axis, which combine to give 
doubly degenerate bonding and anti-bonding pairs 1u(2py), 1u(2pz), and 2*

u(2py), 2*
u(2pz). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (a) linear      (b). bent 
 

Figure 26.6.7:  Molecular orbitals for linear and bent XY2. The electron filling is shown for 
linear CO2 and bent O3. Net non-bonding core-orbitals are shown on the gray background. 

 
 

   The molecular orbitals are three-center orbitals. Neither the  nor -orbitals are localized 
between only two atoms. At this point, we have found only ten molecular orbitals. The two 
remaining orbitals are obtained by changing the sign of one of the outer orbitals in the -set. The 
result has no possible orbital on the central atom that gives net overlap with a bonding pattern 
that is symmetrical left and right. These two remaining orbitals are then degenerate non-bonding 
orbitals with -symmetry, 1g(2py) and 1g(2pz). CO2 has 16 valence electrons that fill through 
the non-bonding -orbitals. The molecular orbital result is consistent with the Lewis dot 
structure, a net total qualitative bond order of four with four non-bonding pairs, ..Ö=C=Ö... The 
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diagram also applies in general to XY2 triatomics, where X and Y are non-hydrogen elements. 
Ozone, for example, has two additional valence electrons, which extends the filling to give two 
unpaired electrons in the degenerate 2*

u anti-bonding levels. Linear ozone is then predicted to 
have triplet spin multiplicity. We next consider the bent model for XY2. 
 

Is Ozone Linear or Bent?   Now consider bent ozone. The 2s-orbitals on each O-atom in ozone 
are, of course, the same energy. Compared to CO2, the central O(2s) orbital joins the 2s-orbitals 
on the outer atoms to give a bonding 3a1, non-bonding 2b2, anti-bonding 4a*

1 set, which together 
give no net contribution to the bonding. We can consider these three 2s-based molecular orbitals 
as core orbitals, Figure 26.6.7b. The remaining molecular orbitals are constructed using the same 
principles as for bent AH2. The symmetry of the molecular orbitals is also designated using the 
same labeling rules as for bent AH2, Figure 26.6.4. Correspondingly, the general trend is for a1 
and b1 orbitals to decrease in energy upon bending and for a2 and b2 orbitals to increase in energy 
upon bending. We can now consider if O3 is linear or bent, Figure 26.6.8. 
 
 

 
 

 
 

 
 

Figure 26.6.8: Walsh diagram for XY2 molecules. The 2s-based orbitals are not included for 
simplicity. The symmetry of the linear orbitals, using the symmetry transformations of the 
bent molecule, are given in parenthesis. For example, the 3u orbital is antisymmetric with 
respect to both two-fold rotation and reflection across the v plane, which corresponds to b2. 
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   The Walsh diagram for linear and bent ozone shows the biggest change in energy for the in-
plane 2*

u – 6a1 correlation.9 The 6a1 orbital is a -non-bonding orbital with all p character. In the 
extreme 90 structure, the 6a1 orbital has some bonding character that corresponds to the cyclic 
Lewis resonance structure: 

 

This additional overlap makes the 6a1 orbital the lowest energy non-bonding orbital. Upon 
bending, four occupied orbitals decrease and three occupied orbitals increase in energy, which 
favors the bent structure. In addition, the decrease in energy of the 6a1 orbital is so favorable that 
the electrons pair to give double occupancy of the 6a1 orbital and a corresponding singlet state. A 
doubly occupied 6a1 favors the bent molecule. 
   The O3 Walsh diagram is also applicable to other XY2 molecules and ions. Predictions for the 
geometry of the triatomics are summarized by Walsh’s Rules, which are based on the occupancy 
of the non-bonding and anti-bonding orbitals in the XY2 Walsh diagram, Figure 26.6.9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26.6.9:  Walsh’s Rule Predictions: The number of valence electrons determines the 
correlated MO pairs that have the predominant influence. Up to 16 electrons gives a linear 
molecule. For 17-21 electrons, the 2*

u – 6a1 pair gives preference for bent molecules. For 22 
electrons, the 5*

g increases rapidly with bending, giving a linear molecule. 
 
 
   The Walsh diagrams that we have presented are schematic. The diagrams seek to generalize the 
behavior of many different molecules in a single diagram. However, the details differ with spin 
multiplicity. CH2 and O3 are triplets when linear and singlets when bent. For molecules that 
change multiplicity upon bending, two sets of curves are necessary, one for the triplet state and 
one for the singlet state. The generalized curves we have presented are averages over both 
multiplicities. On the other hand, linear and bent H2O and OF2 are singlets, giving a single set of 
curves for each symmetry pair. Careful calculations, including configuration interaction, are 
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necessary to find the equilibrium bond angle of each specific case. However, the generalized 
Walsh diagrams provide a point of reference for the interpretation of individual cases. The Walsh 
diagrams also demonstrate the influence of atomic orbital overlap on molecular structure. 
 
26.7 Hybridization 
 

Hybridization Combines Atomic Orbitals to Maximize Overlap:   Determining the molecular 
orbitals of complex molecules is straightforward. However, the -bond framework of stable 
molecules and ions is sufficiently pro forma that careful molecular orbital descriptions are often 
not required. Instead, the concept of hybridization has been developed to provide an adequate 
description of the bonding in simple systems. The results are sufficiently equivalent to a full MO 
approach in many regards and are considerably easier to visualize. The concept was developed 
by Linus Pauling. As a first step, atomic orbitals on each central atom are combined to give a set 
of hybrid atomic orbitals that are equivalent in energy and shape. The hybrid atomic orbitals 
are geometrically disposed to maximize overlap with adjacent atoms. The overlap of the hybrid 
atomic orbitals on adjacent atoms creates bonding and anti-bonding pairs of localized molecular 
orbitals that form the -framework of the molecule. The concept is summarized as: 
 

Bonds form in the direction of maximum overlap. 
 

   Consider BeH2 as an example. First focus on the central atom, Be. The low lying orbitals are 
2s, 2px, 2py, and 2pz. The x-axis is assigned as the internuclear axis. The 2px-orbital is oriented 
favorably for overlap with the H-atoms. The two hybrid atomic orbitals that combine the 2s and 
2px-orbitals with equal weight are called sp-hybrids: 
 

 sp,a = 1/ 2 (s + px)   sp,b = 1/ 2 (s – px)    26.7.1 
 

The positive lobes of the 2s and 2px orbital add to increase the wave function amplitude to the 
right for sp,a and to the left for sp,b, compared to the 2s or 2px alone, Figure 26.7.1a. The 2 
maintains normalization. 
 
 
 
 
 
 
 
 
 
 
 
 
       (a).        (b). 
 

Figure 26.7.1:  (a). sp-Hybridized atomic orbitals are linear. (b). The orientation of the 
hybrids maximizes overlap with adjacent atomic orbitals to form bonding and anti-bonding 
pairs of localized molecular orbitals. The non-bonding Be(2py) and Be(2pz) are not shown. 
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The two sp-hybrids are the same size, shape, and energy. The two differ only in orientation, with 
the hybrids disposed for optimal overlap with a bond angle of 180°. The energy of the hybrids is 
the average of the 2s and 2p-orbitals. Four localized molecular orbitals are constructed from the 
in-phase and out-of-phase overlap of the hybrids with 1s-orbitals on the adjacent H-atoms, 
Figure 26.7.1b. Comparison with the molecular orbital diagram in Figure 26.6.1 shows an 
equivalent net overlap, bond order, and overall energy. However, the true molecular orbitals are 
not degenerate. Hybridization is not useful for determining the energetic details of molecular 
orbitals. In addition, the true -bonds in BeH2 are three-center bonds. The -electrons are not 
localized between atom pairs. In summary, the hybridization scheme is deficient in several 
important respects, but the ease of visualization of the orbitals is a compensating factor. 
   The radial portion of an sp-hybrid along the internuclear axis is shown in Figure 26.7.2. The 
negative lobe is only 25-30% smaller than the positive lobe. General Chemistry texts often 
overemphasize the difference in extent of the two lobes. Notice also that the nucleus is in the 
negative lobe; the nucleus is at r = 0. The nucleus does not sit on the node. The hybrid orbitals 
are atomic orbitals; as such they must be orthogonal and normalized. Taking the square of sp,a, 
Eq. 26.7.1, and integrating gives the normalization integral as: 
 

  2
sp,a d = ½  (s2 + 2 spx + p2

x) d = ½[ s2 d+ 2  spx d+   p2
x d ] = 1  26.7.2 

                              
                 1  0       1 
 

The first and last integrals are atomic normalization integrals; the original atomic orbitals are 
assumed to be normalized. The middle integral is zero because of orthogonality; the s and px 
orbitals are on the same nucleus. The sp-atomic hybrids are normalized. The orthogonality 
integral between the two sp-hybrids is zero: 
 

  ab d = ½ (s + px)(s – px) d = ½ (s2 – p2
x) d = ½[  s2 d –  p2

x d] = 0 26.7.3 
                        
                    1  1 
 

given that the s and px orbitals are normalized. The sp-hybrids are 50% s-character and 50% p-
character, giving linear electron domain geometry, Figure 26.7.3a. 
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Figure 26.7.2:  The radial portion of the sp hybrid, sp,a = 1/ 2 (2s + 2px), along the x-axis. 
The 2s-orbital is shown with the central lobe with negative phase. (2s-orbital – – –, 2px ----, 
sp-hybrid –––). 
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Different Hybrids Give Different Bond Angles:   Mixing M atomic orbitals gives M orthonormal 
hybrid atomic orbitals. The sp2-hybrid atomic orbitals have 66.7% p-character. Once the 
orientation of the first hybrid is chosen, the remaining hybrids are fixed by orthogonality. The 
first sp2-hybrid is arbitrarily chosen to lie along the x-axis: 
 

   sp2: sp2,a = 
1
3
 s + 

2
3
 px 

 sp2,b = 
1
3
 s – 

1

6
 px + 

1
2
 py 

 sp2,c = 
1
3
 s – 

1
6 px – 

1
2
 py        26.7.4 

 

The squares of the s and p-coefficients give 33.3% s and 66.7% p-character. All three hybrids lie 
in the x-y plane. The orientation of the hybrids is determined by the coefficients of the p-orbitals, 
Figure 26.7.3b. The vector representing sp2,a  is of length 2/ 3  in the x-direction. The vector 
representing sp2,b has a component of -1/ 6, along the x-axis and 1/ 2 along the y-axis. The vector 
representing sp2,c has a component of -1/ 6 along the x-axis and -1/ 2 along the y-axis. The 
resulting angle between the hybrids is 120°. Bonding or non-bonding electrons may occupy 
hybrid atomic orbitals. Ozone may be thought of as sp2 hybridized, O=Ö–O  O–Ö=O. Other 
substances adopting sp2 hybridization include BF3, NO2, CO2

3
–, NO–

2, and H2C=O. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a).  sp-hybrids      (b). sp2-hybrids       (c). sp3-hybrids 
 

Figure 26.7.3:  The orientation of a hybrid is given by the direction-vectors based on the p-
orbital coefficients. 

 
 
   The sp3-hybrid atomic orbitals have 75% p-character. The first sp3-hybrid is arbitrarily chosen 
to point to the corner of a cube at (x,y,z) = (+½, +½, +½): 
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   sp3: sp3,a = ½ (s + px + py + pz) 
 sp3,b = ½ (s – px + py – pz) 
 sp3,c = ½ (s + px – py – pz) 
 sp3,d = ½ (s – px – py + pz)         26.7.5 
 

The squares of the s and p-coefficients give 25% s and 75% p-character. The direction vectors 
representing the hybrids point to the corners of the cube shown in Figure 26.7.3c. The resulting 
shape is a tetrahedron with the well known tetrahedral bond angles of 109.5° (109°28"). 
Substances adopting sp3 hybridization include CH4, NH3, H2O, PO3

4
–, SO2

4
–, ClO–

4. 
   Hybridization applies primarily to second-period elements, because of small atomic radius. 
Elements from the third and higher periods are much less likely to hybridize. For example, the 
bond angles in PH3 and H2S are near 90°, Table 26.7.1. The molecule orbitals in PH3 and H2S 
result from the direct overlap of the px, py, and pz orbitals on the central atom with H(1s)-orbitals. 
Third period atoms are much bigger than the second period elements, which decreases electron 
crowding and electron-electron repulsion. The designation p3 is used to describe bonding that is 
close to 100% p-character on the central atom. In other words, p3 indicates that the central atom 
is not hybridized. 
   The sp, sp2, and sp3 hybrids are idealized. Intermediate hybridizations are routine. Valence 
shell electron pair repulsion theory, VSEPR, predicts that non-bonding pairs of electrons have 
a larger extent than bonding pairs. For a bonding pair, a positively charged nucleus is situated at 
each end of the bond. For a non-bonding pair, a nucleus is at only one end of the hybrid atomic 
orbital. Electrons in bonding orbitals feel a large effective nuclear charge, which contracts the 
bonding orbital. The larger extent for non-bonding electrons increases electron repulsion with 
electrons in other hybrid orbitals on the same nucleus. For example, for ..NH3 the electron 
domain geometry is tetrahedral with sp3 hybridization. However, one of the hybrids is occupied 
with a non-bonding pair, which forces the resulting bond angle, 107°, to be less than the ideal 
tetrahedral angle, Table 26.7.1. According to VSEPR, the resulting hybridization on the N-atom 
has greater p-character than sp3. The molecular shape is trigonal pyramidal. Water, H2Ö.., has 
two non-bonding pairs, which create repulsions that decrease the bond angle even further, to 
104.5°. The molecular shape is bent. 
 
 

Table 26.7.1: Bond Angles in Binary Compounds. 
 

bond angle: 90 109.5 120 180 
hybridization: p3 sp3 sp2 sp 
examples:  PH3 (93) CH4 (109.5) BF3 (120) BeH2 (180) 
  H2S (92)   NH3 (107) CO2

3
-
(120) HCCH (180) 

  H2O (104.5) O3 (116.8) :CH2 (137.8) 
 
 
   For third and higher period elements, one can also consider mixing in d-character to form 
hybrid orbitals. For example, sd3 hybridization is tetrahedral, sp3d hybridization is trigonal 
bipyramidal, and sp3d2 hybridization is octahedral. In sp3d2 hybrids, the dx2-y2 and dz2-orbitals, 
which lie along the x, y, and z-axes, form the hybrids. However, hybrids based on d-orbitals 
almost always over-estimate the contribution of the d-orbitals. Hybridization is a commonly 
used, but artificial, construct that is not directly experimentally observable. Equations for 
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hybridized orbitals can be generated with any arbitrary bond angle by adjusting the amount of p 
or d-character in the hybrids. However, given the arbitrary nature of the hybridization concept, a 
better approach is to project from careful molecular orbital calculations the effective 
hybridization that results for each central atom. Several methods are available to generate these 
projections, including the sigma-pi decomposition that is available in some semi empirical 
programs and natural bond order analysis that is available in many ab initio packages. 
 
 
              

Example 26.7.1:  Hybridization Angles 
Calculate the bond angle in sp2 hybridization. 
 
 
Answer:  The dot-product of two vectors is related to the angle between the two vectors by: 
u  v = |u| |v| cos . The direction-vectors representing sp2,a  and sp2,b  are ( 2/ 3 ,0,0) and 
(-1/ 6,

1/ 2,0), respectively. The lengths are equal:  | 2/ 3 ,0,0| = |-1/ 6,
1/ 2,0| = 0.8165, and the dot-

product is: 
 

 ( 2/ 3 ,0,0)  (-1/ 6,
1/ 2,0) = |0.8165| |0.8165| cos  

 -0.3333 = 0.6667 cos  
 

giving: cos  = -0.5 or 120. 
 
              

 
Hybridization also provides a basis for a simplified approach to delocalized -systems. 
 
26.8  Hückel Molecular Orbital Theory 
 

Conjugated Double Bonds are Extensively Delocalized:  Semi-empirical and ab initio molecular 
orbital calculations require significant computational resources. Hückel Molecular Orbital 
Theory provides an approximate method that can be done using pencil and paper that helps build 
insight into delocalized -systems. The Hückel approach also gives a glimpse into the inner 
workings of more rigorous methods, while allowing us to complete all the calculations ourselves. 
As a first example, consider ethylene, H2C=CH2. We assume that the -bonding framework is 
well described using sp2-hybrid orbitals on each C-atom, in overlap with each other and 1s-
orbitals on the H-atoms, Figure 26.8.1a. The ethylene -bonds are placed in the x,y-plane. In 
turn we can then focus on the -molecular orbitals, which are described as linear combinations of 
the 2pz-orbitals on the C-atoms, Figure 26.8.1b: 
 

 i = ciA pzA + ciB pzB    i = 1, 2     26.8.1 
 

We anticipate that the linear combination of two atomic orbitals will give two molecular orbitals, 
one bonding, +, and one anti-bonding, –, Figures 26.8.1b and c. The secular equations formed 
using the ethylene LCAO in Eq. 26.8.1 have the same form as Eq. 26.1.12. One simplification is 
that the -system in ethylene is homonuclear, giving HAA = HBB. To remind us that we are 
describing just the -system, with a -bond framework that is handled separately, we denote the 
atomic integrals HAA and HBB as  and the resonance integral HAB as : 
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 ( – ESAA) ciA + ( – ESAB) ciB = 0 
 ( – ESAB) ciA + ( – ESBB) ciB = 0       26.8.2 
 

  =  pz
*
A H^ eff pzA dt   Coulomb Integral 

  =  pz
*
A

 H^ eff pzB dt   Resonance Integral 

 SAB =  pz
*
A

 pzB dt = 0   Overlap Integral 
 
 
 
 
 
 
 
 
 
 

(a). sp2-framework   (b). LCAO-MO -orbitals  (c). -orbital energies 
 

Figure 26.8.1: Hückel approach for ethylene assumes an (a) sp2-hybridized -framework 
with (b) -molecular orbitals constructed from a LCAO of the 2pz-orbitals on each C-atom. 
(c). The -bonding orbital is filled with two electrons, one for each sp2-hybridized C-atom. 

 
 

The effective Hamiltonian, H^ eff, includes the averaged electron-electron repulsion of the core and 
-electrons for the -electrons. We usually use normalized atomic orbitals; SAA = SBB = 1. The 
overlap integral is small between two pz orbitals, so that to a rough approximation we set SAB = 0 
to give the simplified secular equations: 
 

         ( – E)cA + cB = 0   or in matrix form: 
         cA + ( – E)cB = 0 



 – E 

  – E  



cA

cB
 = 0           (SAB  0)   26.8.3 

 

Solutions to the secular equations are obtained by setting the determinant of the coefficient 
matrix equal to zero. Two roots result, one for the bonding and one for the anti-bonding -
orbitals: 
 

 



 – E 

  – E  = 0  E+ =  +  E– =  –     26.8.4 
 

The total -bond energy for ethylene is E = 2E+ = 2 + 2. The -molecular orbitals correspond 
to the molecular orbitals for H+

2, but constructed with 2pz-atomic orbitals: 
 

 + = 
1
2
 (pzA + pzB)  – = 

1
2
 (pzA – pzB)     26.8.5 

 

The -bond order is based Eq. 26.3.10; however, we set 2Sjk to one for this purpose. There is 
only one pz orbital on each atom leaving just the sum over each molecular orbital: 
 

 P
jk = 

i=1

m

 ni cij cik       (Hückel) 26.8.6 
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The -bond order in ethylene, with doubly occupied +, is P
AB = 2(1/ 2)(1/ 2) = 1. Similarly, 

the -electron density on atom j from Eq. 26.3.8 simplifies to: 
 

 dj  = 
i=1

m

 nicij
2        (Hückel) 26.8.7 

 

   The -density on each C-atom is one. Now consider 1,3-butadiene, which has the Lewis dot 
structure with two isolated double bonds: H2C=CH–CH=CH2. We assume that the -bonding 
framework is well described using sp2-hybrid orbitals on each C-atom, Figure 26.8.2a. The 
ethylene -bonds are placed in the x,y-plane. The -molecular orbitals are described as linear 
combinations of the 2pz-orbitals on the C-atoms, Figure 26.8.2b: 
 

 i = ciA pzA + ciB pzB + ciC pzC + ciD pzD  i = 1 ... 4   26.8.8 
 
 
 
 
 
 
 
 
 
 
 

(a). sp2-framework   (b). LCAO-MO -orbitals  (c). -orbital energies 
 

Figure 26.8.2: Hückel approach for butadiene assumes an (a) sp2-hybridized -framework 
with (b) -molecular orbitals constructed from a LCAO of the 2pz-orbitals on each C-atom. 
(c). The -bonding orbitals are filled with four electrons, one for each sp2-hybridized C-atom. 

 
 

We anticipate that the linear combination of four atomic orbitals will give four molecular 
orbitals, two net bonding and two net anti-bonding, Figures 26.8.1b and c. The most bonding -
orbital results from the constructive all-in-phase overlap of the pz orbitals, ○●○●○●○●. The most anti-
bonding -orbital results from alternating phases of the pz orbitals, ○●●○○●●○. The secular equations 
are constructed analogously to the ethylene case using the approximations: 
 

 Hückel Approximations: 
 1. All atomic integrals, , are equal. 
 2. All resonance integrals for adjacent atoms, , are equal. 
 3. All resonance integrals for non-adjacent atoms are zero. 
 4. All overlap integrals in the secular equations are set to zero. 
 

These approximations are extreme, but result in algebraically tractable expressions. The Hückel 
secular equations and determinant are easy to construct, by simply noting adjacent atoms. For 
butadiene, A and B are adjacent, B and C are adjacent, but A and C are not adjacent: 
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





 – Ei  0 0
  – Ei  0
0   – Ei 
0 0   – Ei

 







ciA

ciB

ciC

ciD

 = 0  







 – Ei  0 0
  – Ei  0
0   – Ei 
0 0   – Ei

 = 0 26.8.9 

 

To simplify these expressions to allow for “back of the envelope” calculations, we divide each 
term by : 
 

    









 – Ei

 1 0 0


 – Ei

  0

0 
 – Ei

 

0 0 
 – Ei



 







ciA

ciB

ciC

ciD

 = 0 or  









 – Ei

  0 0


 – Ei

  0

0   
 – Ei

 

0 0 
 – Ei



 = 0  26.8.10 

 

We simplify the diagonal elements by defining xi as: 
 

 xi = 
Ei – 
   which gives the energy as  Ei =  + xi    26.8.11 

 

Substituting xi into the diagonal elements gives: 
 

 







–xi 1 0 0

1 –xi 1 0
0 1 –xi 1
0 0 1 –xi

 







ciA

ciB

ciC

ciD

 = 0  or 







–x 1 0 0

1 –x 1 0
0 1 –x 1
0 0 1 –x

 = 0  26.8.12 

 

The calculation of determinants is introduced in the Addendum, Chapter 2.8. The 4x4 secular 
determinant for butadiene gives the fourth-order polynomial: 
 

 x4 – 3x2 + 1 = 0         26.8.13 
 

This polynomial is in “bi-quadratic” form, which is simplified by defining y = x2 so that the 
resulting polynomial can be solved using the quadratic formula: 
 

 y2 – 3y + 1 = 0  with y = 
3 ± 9 – 4

2  = 2.618, 0.382    26.8.14 
 

Solving for x gives four roots, xi = y = ±1.618, ±0.618, which when substituted into the 
formula for the orbital energies in Eqs. 26.8.11 gives the four -orbital energies as: 
 

 Ei =  + xi  =  ± 1.618 or   ± 0.618        
 

These -orbital energies are used to generate the energy level diagram, Figure 26.8.2c. The 
Hamiltonian integrals  and  are both negative, so that E1 =  + 1.618  is the lowest energy, 
most bonding orbital, and E4 =  – 1.618  is the most anti-bonding orbital. With four total -
electrons, the lowest two orbitals are filled. These results, although a bit tedious, can be easily 
completed with paper and pencil. The corresponding molecular orbital coefficients can also be 
generated on the “back of an envelope” using Kramer’s rules. However, if you allow the use of a 
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short, simple general purpose Web applet, MatLab, or Mathematica program, the -molecular 
orbital energies and coefficients are easily generated. 
   The Hückel secular equations can be converted to an eigenvalue equation. Adding the diagonal 
elements to both sides of Eqs. 26.8.12 gives: 
 

 







0 1 0 0

1 0 1 0
0 1 0 1
0 0 1 0

 







ciA

ciB

ciC

ciD

 = xi 







ciA

ciB

ciC

ciD

   Ei =  + xi     26.8.16 

 

The xi values are the eigenvalues and the molecular orbital coefficients are the eigenvectors of 
the Hückel matrix, which has zeros set for the diagonal elements. The eigenvalues for butadiene 
are identical to Eq. 26.8.15. The corresponding eigenvectors give the -orbitals, Figure 26.8.3. 
Our initial qualitative expectations are realized. The most bonding orbital is the all-in-phase 
linear combination and the most anti-bonding orbital has alternating phases. 
 
 
     E4 =  – 1.618 4 = 0.372pA – 0.602pB + 0.602pC – 0.372pD 
 
 
 
     E3 =  – 0.618 3 = 0.602pA – 0.372pB – 0.372pC + 0.602pD 
 
 
 
     E2 =  + 0.618 2 = 0.602pA + 0.372pB – 0.372pC – 0.602pD 
 
 
 
 

     E1 =  + 1.618 1 = 0.372pA + 0.602pB + 0.602pC + 0.372pD 

 
 

Figure 26.8.3: -molecular orbitals for butadiene. Higher energy requires higher curvature, 
which requires more nodes. 

 
 

   The -orbitals are four-center orbitals. The electrons are delocalized across all four C-atoms. 
The extra stability resulting from the delocalization is quantitatively determined by the -
delocalization energy, which is the difference between the total -bond energy of the molecule 
and the equivalent number of localized double bonds. The equivalent number of localized double 
bonds is given by the Lewis dot structure. For butadiene, the comparison is to the -energy of 
two isolated ethylenes: 
 

          E         = 4  + 4.472  

  –{ 2 E
ethylene = 4  + 4       

     -delocalization energy = 0.472         

+ 

– 

 
+ 

– 
 

+ 

– 

 
+ 

– 
 

+ 

– 
 

– 

– + 

+ 

   
+ 

– 

+ 

– 

 
+ 

– 
   

+ + 

– – 

+ 

– 

 
+ 

– 

 
+ 

– + 

– 

  



217 
 
 

The -bond order of each bond is given by Eq. 26.8.6. Consider the -bond between A and B. 
The first term in the sum is for molecular orbital i = 1 which has an occupation of two electrons 
giving ni = 2. The molecular orbital coefficients for atoms A and B in molecular orbital 1 match 
up as follows: 
 

 P
AB =    ni  ciA          ciB 

                
         1 =    c1A   pA +  c1B   pB +   c1C   pC +   c1D   pD 
         1 = 0.372 pA + 0.602 pB + 0.602 pC + 0.372 pD    (first term) 26.8.18 
 

Completing the sums over all the molecular orbitals gives the -bond order between atom pairs 
A-B and B-C as: 
 

 P
AB = 2(0.372)(0.602) + 2(0.602)(0.372) = 0.89 

 P
BC = 2(0.602)(0.602) + 2(0.372)(-0.372) = 0.45     26.8.19 

 

P
BC shows the effect of delocalization. P

AB = P
CD by symmetry. The total -bond order for 

butadiene is then 0.89 + 0.45 + 0.89 = 2.23, which is 0.23 larger than expected from the Lewis 
dot structure. The molecular orbitals of benzene are also extensively delocalized. 
 
 
              

Example 26.8.1: -Molecular Orbitals for Benzene 
Use the Hückel molecular orbital approach to find the -bond order and -delocalization energy 
of benzene. 
 
Answer:  The secular matrix for the atom lettering shown is given below, Figure 26.8.4. 

WWW   The “eigen” applet on the text Web site or companion CD is a general matrix 

diagonalization application, which finds the eigenvectors and eigenvalues of a real symmetric 
matrix. The secular matrix is entered into the “eigen” applet as shown at right, below: 
 
              A   B   C   D   E   F 
 

    

A
B
C
D
E
F

   











-x 1 0 0 0 1
1 -x 1 0 0 0
0 1 -x 1 0 0
0 0 1 -x 1 0
0 0 0 1 -x 1
1 0 0 0 1 -x

 

 

(a). atom lettering  (b) Hückel secular matrix  (c) “eigen” applet input 
 

Figure 26.8.4: Hückel molecular orbital input matrix for benzene. (a). The atom lettering is 
arbitrary. (b). The secular matrix with Ei =  + xi . (c). “eigen” Web applet input. 

 
 

Only the lower triangular portion of the matrix need be input, since the matrix is symmetric. 
Zeros are entered along the diagonal, as required by Eq. 26.8.16. The output is given in Figure 
26.8.5 with depictions of the -orbitals as viewed from above the plane of the molecule. 
 

        A 
 

F               B 
 
E              C 
 

        D 

0 

1 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 1 
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Figure 26.8.5: Hückel -orbitals for benzene and the molecular orbital energy diagram. 
 
 

The orbital energies are calculated using Eq. 26.8.11. The molecular orbital energy diagram is 
filled with six electrons, one for each sp2-hybridized C. The small coefficients in eigenvectors 3 
and 4 are zero to within the accuracy of the applet. If the coefficient is zero at an atom, the atom 
sits on a nodal plane. The degenerate pairs of orbitals have the same number of nodal planes. 
    Each bond in benzene is equivalent, so we need only calculate the bond order of one atom 
pair. The -bond order between atoms A and B is given by Eq. 26.8.6, with three doubly 
occupied orbitals: 
 

 PAB = 2(0.408248)(0.408248) + 2(-0.577282)( -0.28095) + 2(0)( -0.504381) 
        = 0.66 = 2/3 
 

The average qualitative -bond order predicted by the Lewis dot representation is ½, which 
shows that delocalization results in stronger bonding than isolated double bonds. The -
delocalization energy is obtained by comparison with three isolated double bonds, the equivalent 
of three isolated ethylenes: 
 

 -DE = [2( + 2) + 4( + )] – [3(2 + 2)] = 2 
            benzene     –  3(ethylene) 
 

The -system in benzene is significantly lower in energy than three isolated double bonds. 
 
              
 
 

   The enthalpy of hydrogenation of benzene is used to determine the experimental -
delocalization energy of benzene. A good comparison to benzene for a localized double bond is 
cyclohexene. At the time of the development of Hückel theory, the enthalpies of hydrogenation 
of benzene and cyclohexene were reported to be -206.0 kJ mol-1 and -118.4 kJ mol-1, respectively 

Eigenvector 1: Eigenvalue=2 
0.408248 
0.408248 
0.408248 
0.408248 
0.408248 
0.408248                    0 nodes 
------------- 
Eigenvector 2: Eigenvalue=1 
-0.577282 
-0.28095 
0.296332 
0.577282 
0.28095 
-0.296332                  1 node 
------------- 
E Eigenvector 3: Eigenvalue=1 
-0.00888074 
-0.504381 
-0.4955 
0.00888074 
0.504381 
0.4955                  1 node 
------------- 

Eigenvector 4: Eigenvalue=-1 
-0.00752905 
-0.496193 
0.503722 
-0.00752905 
-0.496193 
0.503722                         2 nodes 
------------- 
Eigenvector 5: Eigenvalue=-1 
0.577301 
-0.295171 
-0.28213 
0.577301 
-0.295171 
-0.28213                          2 nodes 
------------- 
Eigenvector 6: Eigenvalue=-2 
-0.408248 
0.408248 
-0.408248 
0.408248 
-0.408248 
0.408248                        3 nodes 
------------- 

E 
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(for the current values, see the Problems). The -delocalization energy of benzene is given by 
comparison to the hydrogenation of three moles of cyclohexene: 
 

 -DE = [-206.0 kJ mol-1] – [3(-118.4 kJ mol-1)] = 149.2 kJ mol-1 = |2|  26.8.20 
            benzene      –  3(cyclohexene) 
 

Setting the experimental -delocalization energy equal to the magnitude of 2 gives an estimate 
of the resonance integral of   -75 kJ mol-1. 
   The approximations used in the Hückel approach are extreme and are justified only by the 
computational simplicity. Extended Hückel theory is an intermediate approach between Hückel 
and ab initio methods that maintains ease of use, while removing some of the most drastic 
approximations. The extended Hückel approach has been supplanted by AM1 and PM3 semi-
empirical techniques for moderate sized molecules. However, the extended Hückel method 
introduces important concepts used in more rigorous electronic structure methods. 
 

The Extended Hückel Method Accommodates All Elements and Orbital Overlap:  Extended 
Hückel theory is applicable to both - and -molecular orbitals and easily incorporates all the 
atoms in the periodic table. While not as rigorous as MNDO, AM1, PM3 or ab initio methods, 
extended Hückel calculations are useful as a rough approximation for polymers, large 
macrocyclic systems, solids, and surfaces.10 The first step is to note that the atomic integrals in 
the secular equations, Hii, are approximately given by valence atomic orbital ionization energies, 
VOIEs, Table 26.8.1. These values are the configuration averaged energy necessary to remove 
an electron from a specific atomic orbital in a given atom. For example, the VOIE for the 2p-
orbital of carbon is the ionization energy for the gas phase process: 
 

 C(1s22s22p2)  C+(1s22s22p1) + 1 e- 
 

  VOIE = E+(1s22s22p1)averaged – E(1s22s22p2)averaged    26.8.21 
 

The energies of the atom and the cation are averaged over all electronic terms with the same 
configuration. For the neutral C-atom, the configurations are 3Po, 3P1, 3P2, 1D2, 1So. The averages 
are weighted by the degeneracy of each term, gJ = 2J + 1. 
 
 

Table 26.8.1(DS): Valence Atomic Orbital Ionization Energies (eV).11,12 
 

Atom 1s 2s 2p 
H 13.60   
He 24.5   
Li  5.45 3.50 
Be  9.30 6.00 
B  14.0 8.30 
C  19.5 10.7 
N  25.5 13.1 
O  32.3 15.9 
F  40.4 18.7 

 (DS) Additional values listed in the Appendix Data Section 
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   The resonance integral is expected to be proportional to the degree of atomic orbital overlap, 
Sij. A rough approximation for the resonance integral between atoms i and j is: 
 

 Hij = KSij 
(Hii + Hjj)

2          26.8.22 
 

where K is often approximated as 1.75. Using VOIEs to approximate the atomic and resonance 
integrals then allows the extended method to be applied to all elements. Another problem with 
the Hückel method is that we had to set the overlap integrals to zero in the secular matrix. 
   The matrix form of the LCAO secular equations with two orbitals, from Eq. 26.1.12 is: 
 

 



HAA – EiSAA HAB – EiSAB

HAB – EiSAB HBB – EiSBB
 



ciA

ciB
 = 0      26.8.23 

 

This equation can be factored and rearranged to give: 
 

 



HAA HAB

HAB HBB
 



ciA

ciB
 – Ei 



SAA SAB

SAB SBB
 



ciA

ciB
 = 0 

 

   and    



HAA HAB

HAB HBB
 



ciA

ciB
 = Ei 



SAA SAB

SAB SBB
 



ciA

ciB
      26.8.24 

 

If we let H  be the matrix of the Hamiltonian integrals, S the overlap matrix, and ci~
 be the vector 

of molecular orbital coefficients for eigenstate i, this matrix equation becomes: 
 

 H  ci~
 = Ei S  ci~

          26.8.25 
 

which is the same form as the Roothaan equations, Eq. 26.5.9. Multiplying from the left by the 
inverse of the overlap matrix and using S

-1S  = 1, gives: 
 

 (S
-1H ) ci~

  = Ei ci~
         26.8.26 

 

The molecular orbitals and energies are then the eigenvectors and eigenvalues of the matrix 
(S

-1H ). Eq. 26.8.26 is easily solved using general matrix methods. Unfortunately, a weakness of 
the method is that the extended Hückel approach does not include the effects of electron spin, so 
electron exchange and correlation interactions are not included. 
 
 
              

Example 26.8.2: Extended Hückel Calculation 
Calculate the bond order for LiH. Assume the molecule is oriented along the x-axis. For a bond 
length of 1.61 Å, the H(1s)- Li(2s) overlap integral is 0.392 and the H(1s)- Li(2px) overlap is 
0.505 (see Figure 26.3.2). 
 
Answer: The valence orbital ionization energies are listed in Table 26.8.1. At this low level of 
approximation, the energies of the Li(2py) and Li(2pz) are unaffected by the electrons in the -
molecular orbitals. Because the 2py and 2pz are non-interacting, we don’t need to include them in 
the secular equations. The resonance integrals are given using Eq. 26.8.22 and K = 1.75 as: 
 

 H(1s)- Li(2s):        H1s,2s = KSij 
(Hii + Hjj)

2  = 1.75(0.392)  
(-5.45 + (-13.6))

2  eV = -6.53 eV 
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 H(1s)- Li(2px):      H1s,2px = 1.75(0.505)  
(-3.50 + (-13.6))

2  eV = -7.56 eV 

WWW  The “Secular” applet available on the text Web site or companion CD was used to solve 

the secular equations, Eq. 26.8.25, with the input set-up as: 
 

  
 

The labels are optional; in this case they are simply used to label the orbitals in the output for 
easier reading. The output of the applet is: 
 

      Eigenvalues and eigenvectors 
____(eigenvectors listed in columns)_____ 
E(i)   -13.7867   -4.7341    5.2162  
vector     1         2         3     
atom: 
   Li2s    0.1336    0.8348    0.4630 
   Li2px   0.0575   -0.5355    0.6737 
    H1s    0.9894   -0.1279   -0.5760 

 

With two valence electrons, only the lowest energy orbital is filled. The Mulliken bond order is 
given by Eq. 26.3.10: 

 PLiH = 
j on Li

 

   
k on H

 

   
i=1

m

 ni 2cij cik Sjk = 4 c1,2sLi c1,1sH S2sLi,1sH + 4 c1,2pxLi c1,1sH S2pxLi,1sH 

       = 4(0.1336)(0.9894)(0.392) + 4(0.0575)(0.9894)(0.505) = 0.322 
 

The extended Hückel bond order of 0.322 is significantly smaller than the CNDO bond order of 
1.22. The CNDO bond order is more realistic, but the extended Hückel result is easy to calculate 
and applicable to elements that are not available in common semi-empirical methods (see the 
Appendix Data section Table 26.8.1). In general, Hückel bond orders are often too small. Note 
that clicking the “Generate H” button in the applet automatically sets up the Hamiltonian matrix, 
based on the atom labels chosen and the corresponding VOIEs. The secular equation is also 
easily solved using MatLab. 
 
              

 
 
26.9 Summary – Looking Ahead 
 

The formation of a chemical bond is a delicate balance of the increase in electron kinetic energy, 
a decrease in the electron-nuclear Coulomb potential energy, and the increase in the Coulomb 
repulsions of the electrons. The strength of the chemical bond is enhanced by the decrease in 
electron-electron repulsion that results from quantum mechanical avoidance, as determined by 
the exchange energy. The correlation of the motion of the electrons, as determined by the 
correlation energy, is a major contributor to the strength of the chemical bond. Chemical bonding 
is a small perturbation on the overall energy of the atoms in the molecule, because balancing of 
large increases in kinetic energy by large decreases in the Coulomb potential energy result in a 



222 
 

bond dissociation energy that is small in comparison with the total atomic energy. Ab initio 
methods are readily available that accurately reflect the delicate balance of the energetics, 
including exchange and correlation interactions. Ab initio methods use no information from 
experimental data on atomic or molecular systems. Semi empirical calculations simplify the 
calculation of molecular orbitals by using experimental values to estimate important integrals 
and by assuming some multi-center integrals are negligible. Semi empirical methods apply only 
to valence electrons. Hückel and extended Hückel methods are important stepping stones in the 
historical development of practical molecular structure methods. Hückel and extended Hückel 
methods are useful as guides to chemical intuition and are still useful for very large systems, 
such as extended solid surfaces. A final molecular orbital example is useful as a summary. 
   Consider the formation of the hydrogen bond between the F– ion and HF molecule. On the 
basis of Lewis dot rules, no strong interaction is expected since F– and HF are both closed shell. 
Experimentally, however, the [F–H–F]– ion has the strongest hydrogen bond known. The 
bonding is symmetrical on either side of the H-atom. The F(1s) and F(2s) orbitals are much 
lower in energy than the H(1s); the F s-orbitals form a non-bonding core set. Combining six 2p-
orbitals and one H(1s) gives seven final MOs. However, only the 2px orbitals and the 1s are 
oriented to give favorable overlap. Molecular orbitals are constructed using the overlap of the 
F(2px) orbitals and the H(1s), Figure 26.9.1.4,5 The orbitals are formed that optimize overlap and 
follow the symmetry of the molecule. In other words, the bonding and anti-bonding character 
must be symmetrical with respect to the plane passing through the H-atom that is perpendicular 
to the internuclear axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26.9.1: Molecular orbitals for the [F–H–F]– hydrogen bonded ion. The -orbitals are 
in a bonding, non-bonding, anti-bonding trio, which are filled through the non-bonding 
orbital. The overall qualitative bond order is one, or ½-order on each side. 

 
 
The overall bond order is one, giving a ½-order bond on each side of the H-atom. This ion is 
considered an electron excess species, because the F– and HF are closed shell. No additional 
sharing of electrons is necessary for stable configurations. The hydrogen bonded ion is stable 
because the excess pair is in a non-bonding orbital. The non-bonding electrons neither help nor 
hinder bonding. If the u did not form, then a pair of electrons would be forced into an anti-
bonding orbital and the hydrogen bond would not be stable. Similar molecular orbital schemes 
can be constructed for the unsymmetrical hydrogen bonds in other systems, such as water. The 
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molecular orbital approach provides useful insight into strong inter-molecular interactions as 
well as covalent bonding. 
   The molecular orbital approach is central to our understanding of all chemical phenomena. Our 
next step is to discuss the experimental methods that are used to determine molecular structure 
and energetics. Then the energetics determined through quantum mechanical calculations or 
directly from experiment are used to predict important thermodynamic properties, including 
equilibrium constants. 
 
 
 

Chapter Summary 
 

1. The Schrödinger equation for H2
+ includes the kinetic energy of the electron, the Coulomb 

attraction of the electron for both nuclei, and the Coulomb repulsion of the nuclei; the 
distances of the electron from nuclei A and B are r1A and r1B and the bond length R: 

 – 
ħ2

2m2
1 + 

e2

4o
 



– 

1
r1A

 – 
1

r1B
 + 

1
R  = E  

2. The Born-Oppenheimer approximation assumes that the electronic structure of the molecule 
adjusts instantaneously to the vibrational motion of the nuclei. The motion of the nuclei and 
the electrons are assumed to be independent. 

3. The secular equations are solved by setting the determinant of the coefficients to zero: 

 



HAA – ESAA HAB – ESAB

HAB – ESAB HBB – ESBB
  = 0 

4. Molecular orbitals are approximated as a linear combination of atomic orbitals. For H2
+ with 

molecular orbital coefficients, cA and cB: MO = cAA + cBB. 

5. The secular equations are expressed in terms of atomic integrals HAA   A
*  H A d, 

resonance integrals HAB   A
*  H B d, atomic normalization SAA   A

*A d , and overlap 

integrals SAB   A
*B d. 

6. The resonance integral is largely responsible for the energetic stabilization of the bond. 

7. The normalized single electron bonding and anti-bonding orbitals for H2
+ and H2 are: 

 + = 
1

2+2S
 (1sA + 1sB)  – = 

1
2–2S

 (1sA – 1sB) 

8. The ground state of H2 is a product of one-electron molecular orbitals (the orbital 
approximation): 

 MO(r1,r2) = +(r1) +(r2) = 
1

2+2S [1sA(r1) + 1sB(r1)] [1sA(r2) + 1sB(r2)] 

9. The increase in effective nuclear charge for H2 to Zeff  = 1.197 causes a contraction of the 
molecular orbital, which causes an increase in kinetic energy of the electrons. 

10. In a minimum basis set calculation, the atomic orbitals are the valence orbitals on each atom. 

11. Adding atomic basis orbitals with higher angular momentum than the valence orbitals gives 
an extended basis set. The added orbitals are polarization functions. 

12. A method to adjust molecular wave functions for electron correlation is configuration 
interaction, CI. CI calculations allow the ground state to mix with excited states of the 
molecule. 
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13. The formation of a chemical bond increases electron kinetic energy, decreases electron-
nuclear Coulomb potential energy, and increases Coulomb repulsions of the electrons. 

14. Correlation and exchange interactions increase bond stability by decreasing electron-electron 
repulsion. 

15. Strong bonds require good atomic overlap and energy matching. 

16. The fraction ionic character of the bond between atoms A and B is calculated from the MO 
coefficients; the sums extend over all filled molecular orbitals on the given atom: 

 fraction ionic = 
(A coefficients)2 – (B coefficients)2

 (A coefficients)2 + (B coefficients)2 

17. The density matrix elements, pjk, are the sums over all molecular orbitals i. The atom electron 
density for a are the sums over all atomic orbitals j on atom-a and molecular orbitals i: 

 pjk = 
i=1

m

 ni cij cik  da = 
j on a

   
i=1

m

 nicij
2 = 

j on a

  pjj
2 

18. The bond order between atom-a and -b is approximated by the Mulliken overlap population, 
Pab, the sum over all atomic orbitals j on atom-a and atomic orbitals k on atom-b and the sum 
over all molecular orbitals i with occupancy ni: 

 Pab = 
j on a

 

    
k on b

 

    
i=1

m

 ni 2cij cik Sjk = 
j on a

 

    
k on b

 

  2 pjk Sjk 

19. Unoccupied orbitals are called virtual orbitals. 

20. The electric dipole moment operator for the electrons is the sum is taken over the coordinates 
of each electron, r


i: 

 ̂ = – 
i=1

n

 e r
̂

i 

21. For a linear molecule along x-axis, the contribution to the dipole moment from the electrons: 

 <x> = – 
i=1

n

 e   *
MO xi MO d        in C m. 

22. The dipole is usually given in debyes with: 1 D = 3.336x10-30 C m. 

23. The Pauling electronegativities of two elements, A and B, are the deviation of the 
experimental bond energy from the equal-sharing prediction, with the bond energies in eV: 

(A – B)2 = Do(A–B) – [Do(A–A) Do(B–B)]½ 

24. The Mulliken electronegativity, xA, is the arithmetic average of the first ionization potential 
and the negative of the electron affinity for the valence state of the atom: 
 xA = [I1A + (-EAA)]/2. The Pauling and Mulliken scales relate by A = 0.336(xA – 0.615). 

25. The qualitative bond order, BO, is:  BO = ½ (bonding electrons – anti-bonding electrons) 

26. Paramagnetic substances are attracted into an inhomogeneous magnetic field. Diamagnetic 
substances are weakly repelled from an inhomogeneous magnetic field. The ground states of 
B2 and O2 are paramagnetic. Odd electron species are paramagnetic, e.g. CN, NO, and OF. 

27. The p-orbital character of a molecular orbital is given by population analysis on the atom: 

 % p character = 
 (p coefficients)2

(s coefficient)2 + p coefficients)2 
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28. Orbitals that can overlap, will. In forming a molecular orbital, include all possible overlaps 
between atomic orbitals of similar energy. 

29. The minimum of the electronic potential curve is at the equilibrium bond length re. The 
experimental bond length, ro, is the vibrationally averaged bond length in the zero-point 
vibrational state. The bond dissociation energy, De, is the experimental bond dissociation 
energy, adjusted for zero point vibration: Do = De – ½ ho . The bond force constant is the 
curvature of the electronic potential energy at the equilibrium bond length: 

 k = 



∂2V

∂r2
r = re

 

30. Experimental bond strength measures for second-period diatomics show an excellent 
correlation with the qualitative bond order predicted from MO theory. 

31. The Roothaan form of the Fock equations are derived under the Born-Oppenheimer and 
orbital approximations using the SCF-LCAO approach. 

32. A one-electron molecular spin orbital, a(1), is a LCAO of N atomic orbitals, i, with 
coefficients, cia, as variational parameters: 

 a = 
i=1

N

 cia i  and (1) = (1) or (1). 

33. The one-electron molecular orbital energies,a, are determined as:  f1 a(1)(1) = aa(1)(1). 
Parallel equations are written for MOs b, c, …. 

34. The one-electron Fock operator for electron 1 is the sum over all ji filled orbitals: 

 f1 = h1 + 
j=1

n/2
 {2Jj(1) – Kj(1)}  h1 = – 

ħ2

2m 2
1 – 

k=1

m

 
Zke2

4πork1
 

The core Hamiltonian, h1, is the sum of the kinetic energy of electron 1 and the electron-
nuclear attraction of electron 1 with each of the m nuclei, k, with nuclear charge Zk: 

35. Electron-electron repulsion is evaluated by the coulomb and exchange operators. The 
coulomb operator between electron 1 in MO a and electron 2 in MO j is summed over all 
one-electron molecular orbitals: 

 Jj(1) a(1) = 










j*(2) 

e2

4πor12
 j(2) d2  a(1) 

36. The exchange operator is an exact representation of the cross terms in the Slater determinant 
necessary to guarantee electron indistinguishability and is the source of “quantum 
avoidance”: 

 Kj(1) a(1) = 










j*(2) 

e2

4πor12
 a(2) d2  j(1) 

37. The Roothaan form of the Fock equations is an NxN matrix equation: F

 c

~a = a S  c
~a . The 

Fock matrix elements. Fji, and the overlap matrix elements Sji are: 

 Fji =  j(1) f1i(1)d1 and Sji =  j(1)i(1) d1. 
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38. DFT includes exchange and correlation directly. The electronic energy is the sum of the 
kinetic energy of the electrons, e-n attraction, e-e repulsion, and the exchange-correlation 
energy: E = ET + EV + EJ + Exc. 

39. In DFT, the one-electron Fock operator includes the exchange-correlation potential VX
j

C(1): 

 f1 = h1 + 
j=1

n/2

 {2Jj(1) – VXC
j (1)} 

40. EJ, EXC, and VX
j

C(1) are functions of the electron density: (r) = 2 
i=1

n/2
 |i(r)|2. 

41. Hybrid functionals (B3LYP) mix Hartree-Fock exchange with DFT exchange-correlation. 

42. A valid set of molecular orbitals: 
 1. use LCAO approach 
 2. combine AOs with good overlap and similar energy (orbitals that can overlap, will) 
 3. give number of AOs = number of MOs 
 4. use MOs that have the same symmetry as the molecule. 

43. The symmetry of molecular orbitals is characterized under rotation (, , ), inversion 
symmetry (g or u), and reflection (bonding or anti-bonding for diatomics). For polyatomics, 
the bonding and anti-bonding character is specified with respect to the overall number of 
pairwise bonding interactions. Orbitals are numbered sequentially within each symmetry 
class, starting with the core orbitals. 

44. Walsh diagrams plot the molecular orbital energies as a function of bond angle for pairs of 
correlated orbitals. Orbital energies vary smoothly with bond angle. Orbitals of the same 
symmetry correlate. Orbital energies of the same symmetry do not cross (non-crossing rule). 
Orbitals with a node between the two outer atoms increase in energy upon bending. 

45. Walsh’s Rules: Valence electrons determine the correlated MO pairs that have the 
predominant influence. Up to 16 electrons give linear, 17-21 electrons give bent, and 22 
electrons give linear AB2 molecules. 

46. Bonds form in the direction of maximum overlap. Hybridization combines atomic orbitals to 
give an orthonormal set of hybridized atomic orbitals, which are equivalent in size, energy, 
and shape. Hybrids are geometrically disposed to maximize overlap with adjacent atoms. 

47. The overlap of the hybrid atomic orbitals on adjacent atoms creates bonding and anti-
bonding pairs of localized molecular orbitals that form the -framework of the molecule. 

48. Valence shell electron pair repulsion theory, VSEPR, predicts that non-bonding pairs of 
electrons have a larger extent than bonding pairs. 

49. Hückel Molecular Orbital theory applies to the -bonding network. The secular equations are 
constructed using the approximations: 

 1. All atomic integrals, , are equal. 
 2. All resonance integrals for adjacent atoms, , are equal (  -75 kJ mol-1). 
 3. All resonance integrals for non-adjacent atoms are zero. 
 4. All overlap integrals in the secular equations are set to zero. 

50. The -bond order and -electron density are sums over molecular orbitals for atoms j and k: 

 P
jk = 

i=1

m

 ni cij cik  dj  = 
i=1

m

 nicij
2 
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51. The -delocalization energy is the difference between the total -bond energy for the 
molecule and the equivalent number of localized double bonds, each at E 

ethylene = 2  + 2 . 

52. Extended Hückel theory is applicable to - and - orbitals. Atomic integrals, Hii, are given 
by valence atomic orbital ionization energies, VOIEs. The resonance integral between atoms 
i and j is Hij = KSij (Hii + Hjj)/2 with K  1.75. With H , the matrix of Hamiltonian integrals, S , 
the overlap matrix, and ci~

 the vector of molecular orbital coefficients: H  ci~
 = Ei S ci~

. 

53. Electron excess molecules or ions are adducts of closed shell atoms, molecules, or ions 
(XeF2, I3

–, [F–H–F]–). 
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Chapter 26: Molecular Structure Problems 
 

1.  Draw the Lewis dot resonance structures for the carbonate ion, CO3
2-. Are the electrons 

delocalized? Give the average bond order for the bonds. The procedure for the determination of 
Lewis dot structures is: 
 (1). Place the nuclei to establish the expected connectivity. In polyatomics, the first listed non-
hydrogen atom is assumed to be the central atom, unless otherwise stated. Alternatively, the 
atom with the smallest electronegativity is often the central atom. (2). Determine the total 
number of valence electrons. (3). Draw single bonds between the bonded pairs of atoms. (4). Fill 
in the remaining electrons as lone pairs without exceeding an octet on each heavy atom, or a duet 
on H or He. (5). If any atoms do not have a completed octet, then move lone pairs to complete 
the octets by forming multiple bonds. (6). If several non-equivalent structures are possible, the 
predicted lowest energy structure is the structure that minimizes the total formal charges. (7). 
The bonding pattern that places the largest negative formal charges on the most electronegative 
atoms is the most important. (8). Use expanded octets on 3rd and 4th period elements only if 
necessary to accommodate the required total number of electrons. (9). Show the overall ionic 
charge in the final structures. 
 

2.  Draw the Lewis dot resonance structures for (a) ozone, (b) sulfur dioxide, and (c) nitrite ion, 
NO2

–. Are the electrons delocalized? Give the average bond order for the bonds. The procedure 
for the determination of Lewis dot structures is summarized in the previous problem. 
 

3.  For the H2
+ ion, show that for the bonding orbital cA = cB using E+ and for the anti-bonding 

orbitals cA = – cB using E- in the secular equations, Eq. 21.1.12. 
 

4.  Show that the atomic integral for the H2
+ molecule, HAA   A

*  H^  A d reduces to: 

 HAA   EA + 
e2

4oR
 

at large internuclear separation, Eq. 26.1.6. Then argue that at large R the atomic integral is 
approximately equal to the atomic energy of the H-atom. The bond dissociation at large R gives 
H2  H + H+. 
 

5.  Determine the Pauling electronegativity of Br. The experimental bond dissociation energies 
are Do(H–H) = 432.0 kJ mol-1, Do(Br–Br) = 190. kJ mol-1, and Do(H–Br) = 363. kJ mol-1. The 
electronegativity of H is 2.2. 
 

6.  Determine the Pauling electronegativity of Ge. The experimental bond dissociation energies 
are Do(Ge-Ge) = 272. kJ mol-1, Do(F-F) = 154.8 kJ mol-1, and Do(Ge-F) = 484. kJ mol-1.1,2 The 
electronegativity of F is 3.98, in current revised scales. 
 

7.  Sketch the qualitative molecular orbital diagram for BeH+. Calculate the qualitative bond 
order. Is the bond completely covalent, partially ionic, or strongly ionic? 
 

8.  Sketch the qualitative molecular orbital diagram for linear H3
+. The H3

+ ion is symmetrical 
about the center H-atom. Show that the odd number of atomic orbitals results in a bonding, non-
bonding, anti-bonding trio of molecular orbitals. Calculate the qualitative bond order. Is the ion 
stable? 
 

9.  Consider the bond between atoms A and B with bonding wave function: 
 1 = 0.800 A + 0.360 B. (a). Calculate the % ionic character. (b). Choose the corresponding 
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molecular energy diagram from below. (c). Find the corresponding anti-bonding orbital. Assume 
the atomic orbitals are normalized and the overlap integral is S = 0.400. 
  

 
 
 
 
 
 
 (a).   (b).   (c). 
 
 

10.  Calculate the bond order and atom charges for BH at the CNDO level at the experimental 
bond length, 1.236 Å. Calculate the charges and bond order using the molecular orbital 
coefficients and the overlap integrals (in effect, verifying the listed bond order in the CNDO 
printout). [Use the online CNDO applet on the textbook Web site.] 
 

11.  Using molecular orbital theory, decide if OF is more likely to form an OF+ ion or an OF- ion. 
 

12. Using molecular orbital theory, which of CN, CN+, or CN- has the strongest bond? 
 

13.  What is the symmetry of the orbital formed from the side-on overlap of two d-orbitals as 
shown below (,, or ; bonding or anti-bonding; g or u). The lobes of both orbitals lie in the 
plane of the paper. The x-axis is the internuclear axis.  
 
 
 
 
 
 

14.  Calculate the bond order in linear BeH2 in the CNDO approximation. Characterize the 
highest occupied molecular orbital ( or , bonding, non-bonding, or anti-bonding). The bond 
length is 1.330 Å. Calculate the Mulliken bond order using the molecular orbital coefficients and 
the overlap integrals (in effect, verifying the listed bond order in the CNDO printout). 
 

15.  Determine the bond order for the O-H bond in H2O assuming a 90 bond angle and an O-H 
bond length of 0.96 Å, in the CNDO approximation. Calculate the bond order using the 
molecular orbital coefficients and the overlap integrals (in effect, verifying the listed bond order 
in the CNDO printout). 
 

16.  Calculate the % ionic character in the lowest energy molecular orbital, for the valence 
electrons, of one of the O-H bonds in H2O assuming a 90 bond angle and an O-H bond length of 
0.96 Å, in the CNDO approximation (the same geometry as the previous problem). 
 

17.  Characterize the highest occupied molecular orbital for H2O as bonding, non-bonding, or 
anti-bonding. Is the orbital  or  type, or is the orbital better characterized as purely atomic? 
Compare this result to the prediction from hybridization theory. You may use semi-empirical or 
HF/STO-3G methods. 
 

18.  Using geometrical considerations, find the Cartesian coordinates for the planar molecule 
BH3. Place the B atom at the origin and use a bond length of 1.19 Å. Orient one of the H atoms 
along the x-axis. Obtain the overlap matrix and the molecular orbital coefficients using the 

E 

 

*
 

E 

 

*
 

EB EA 
EB 

EA 

E 

 

*
 

EA 

EB 

x 
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version of the “cndo” applet that has Cartesian coordinate input, which is on the text book Web 
site and on the companion CD. Example input files are shown at the bottom of the applet. The 
first line of the input file is the number of atoms, the second line is a comment, and the 
remaining lines are the atom and the x, y, z coordinates. (a). Give the molecular orbital energy 
diagram and indicate the electron occupancy. (b). Draw orbital 3. (c). Write orbital 3 in terms of 
the molecular orbital coefficients and the atomic orbitals: 2sB, 2px,B, 2py,B, 2pz,B, 1sH2, 1sH3, and 
1sH4, where the H atoms are atoms 2, 3, and 4. (d). Characterize orbital 3 as bonding, non-
bonding, or anti-bonding. (e). Characterize the LUMO as bonding, non-bonding, or anti-bonding. 
(f). Show the lowest energy electronic transition on the energy level diagram. (g) Referring to the 
H atom along the x-axis, which atomic orbital on the central B atom has better overlap with the 
H atom 1s-atomic orbital? 
 

19.  Consider the B-H bond using the CNDO level calculation for BH3 in the previous problem. 
Focus on the Mulliken overlap population between the B atom and H atom 2, which is along the 
x-axis. Does the 2sB-1sH,2 or the 2px,B-1sH,2 overlap make a stronger contribution to the bond 
strength? 
 

20.  (a). Compare the molecular orbital and hybridization models of methane. (b). Find the C-H 
bond order and  the charge on the C-atom in methane. Obtain the molecular orbital coefficients, 
atom electron distribution and bond order matrices using the version of the “cndo” applet that 
has Cartesian coordinate input, which is on the text book Web site and on the companion CD. 
The atomic coordinates for methane with a C-H bond length of 1.084 Å are: 
 

Atom x y z 
1 C  0.0  0.0  0.0 
2 H  0.62565  0.62565  0.62565 
3 H -0.62565 -0.62565  0.62565 
4 H -0.62565  0.62565 -0.62565 
5 H  0.62565 -0.62565 -0.62565 

 

 
 
 

21.  Acrolein is the unsaturated aldehyde: H2C=CH–CH=O. (a). Characterize the HOMO and 
LUMO of acrolein ( or , bonding, non-bonding, or anti-bonding). (b). Draw the molecular 
orbital energy diagram for the -orbitals, only. (c) Find the charge on the O-atom of acrolein and 
the C-O and C-C bond orders. Base your answers on a molecular orbital calculation at the 
CNDO level. [You need not do any calculations by hand, just interpret the output of the MO 
program.] The input file for the “cndo” Web applet is given below in xyz format. The molecule 
is oriented in the x-y plane with the O-atom at the origin and the C=O bond along the x-axis. 
 

8 
Acrolein 

O 0 0 0 
C 1.230 0 0 
C 2.058 1.229 0 
C 3.404 1.150 0 
H 4.039 2.042 0 
H 3.911 0.175 0 
H 1.521 2.187 0 
H 1.810 -0.961 0 

 

x 

z 

y 

 

H3 

H4 

H5 

C1 

H2 
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22.  Consider the molecular orbital for linear BH2: MO = N(sH1 + px,B2 – sH3) 
with N a normalization constant and the atom numbering H1–– B2 –– H3 x. The internuclear 
axis is the x-axis.  (a). Determine the symmetry designation of the molecular orbital under the 
symmetry operations for a linear molecule (, , g, u, and also overall bonding, non-bonding, 
anti-bonding). (b) Determine the symmetry designation of the molecular orbital under the 
symmetry operations appropriate to a bent molecule (a, b, 1, 2, and also overall bonding, non-
bonding, anti-bonding, Figure 26.6.4). 
 

23.  Consider the molecular orbital for linear BF2: MO = N(–px,F1 + px,B2 – px,F3) 
with N a normalization constant and the atom numbering F1–– B2 –– F3 x. The internuclear 
axis is the x-axis.  (a). Determine the symmetry designation of the molecular orbital under the 
symmetry operations for a linear molecule (, , g, u, and also overall bonding, non-bonding, 
anti-bonding). (b) Determine the symmetry designation of the molecular orbital under the 
symmetry operations appropriate to a bent molecule (a, b, 1, 2, and also overall bonding, non-
bonding, anti-bonding, Figure 26.6.4). 
 

24.  Sketch the qualitative molecular orbital diagram for I3
–. The ion is linear. Assume the 

valence s-orbitals are sufficiently lower in energy than the valence 2-orbitals, so that the valence 
s-orbitals form an inner core set. Combine the valance p-orbitals to give the MO diagram. 
Characterize the orbitals as  or , g or u. Characterize the orbitals as overall bonding, non-
bonding, or anti-bonding. Determine the electron filling and calculate the overall bond order. 
Characterize the bond order of each separate I–I bond. Halogens rarely form double bonds, 
especially as the atom radius increases. Does your MO diagram agree with this expectation. 
Determine the primary MOs that determine the bond order. Compare your MO diagram to the 
MO diagram for [F–H–F]–; explain the stability of I3

– in terms of the pattern of MO formation. 
 

25.  Bent's Rule states that an atom directs hybrids of greater p character toward more 
electronegative atoms.1,2 Consider linear HCN. The C atom sp hybrid that overlaps with the N is 
expected to have higher p character than the C atom hybrid that overlaps with the H. The hybrid 
orbital on C that overlaps with the orbital on N is given by sp,1 = 0.698 sC + 0.716 px,C , which is 
a sp1.05 hybrid. Find the second hybrid orbital on carbon, sp,2, which also forms from the s 
orbital and the px orbital. Is the second hybrid s1.05p? 
 

26.  Give the hybridization, in the form sp, and show that the orbital is normalized for the 
hybrid orbital: 
 

 sp,a = 0.563 s + 0.826 px 
 

27.  Calculate the bond angle in sp3 hybridization. 
 

28.  An sp2 hybrid orbital oriented along the y-axis is given below. Find the two remaining sp2 
hybrids in the x-y plane. [Hint: Represent the hybrids sp2,i = cs,i s + cpx,i px + cpy,i py. Solve for 
the ratio of the coefficients rk,i = ck,i/cs,i using orthogonality and then use normalization to find 
the final values.] 
 

 sp2,1 = 
1
3

 s + 
2
3

 py 
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29. One model for Zn(CN)4 is to use sd3 hybridization. Use VSEPR rules to determine the shape 
of Zn(CN)4. Which d-orbitals on Zn are used to form sd3 hybrids. 
 

30.  (a). Use the enthalpies of vaporization and formation in Tables 8.1.1 and 8.4.2 for benzene 
and cyclohexene to calculate the value of the Hückel C(2pz)–C(2pz) resonance integral, . (b). 
Repeat the calculation with 1,3-butadiene. Compare the two values for . 
 

31. Use Hückel molecular orbital theory to determine the molecular orbitals and energies for  
1,3,5-hexatriene: 
 
 

(a). Give the Hückel determinant in terms of x’s and 1’s: 
(b). Determine the energies and the orbital coefficients using a matrix diagonalization program. 
The “eigen” applet to diagonalize a matrix is available on the text book Web site or companion 
CD. MatLab or Mathematica  are also useful.  
(c). Sketch the orbitals with the appropriate phase for each pz orbital. 
(d). Give the number of nodes in each wave function. Classify each orbital as bonding or anti-
bonding. 
(e). Draw the energy level diagram. Give the electron filling. 
(f). Calculate the -bond order for each unique bond in the molecule (Eq. 26.8.6). 
(g). Calculate the -bond delocalization energy. 
(h). Calculate the -electron density on any two atoms of your choosing (Eq. 26.8.7). 
(i). On the energy levels in part (e), indicate the lowest energy electronic transition with a 
vertical arrow. Label the HOMO and LUMO. 

 

32. Answer the questions listed in Problem 31 for 3-vinyl-1,3-butadiene: 
 
 
33.  Heteroatoms are introduced into the HMO matrix using two parameters, h and k. The 
diagonal element is the Coulomb integral, which for carbon is . The off-diagonal elements are 
the resonance integrals, which for directly bonded carbon atoms are . The diagonal element for 
a heteroatom is changed to  + h  and the off-diagonal element for directly bonded atoms is 
changed to k. A table of h and k is given below. 
 

Table P26.1: Hückel Parameters for Heteroatoms. 
 

Atom Bond Type  electrons for atom h k 
C -C=C- 1 0 1 
N -C=N-   (pyridine) 1 0.5 1.0 
N =C-N<  (pyrrole) 2 1.5 0.8 
N -N=N-  (azo) 1 1.0 1.0 
O -C=O   (carbonyl) 1 1.0 1.0 
O =C-O-  (furan) 2 2.0 0.8 
F =C-F 2 3.0 0.7 
Cl =C-Cl 2 2.0 0.4 
Br =C-Br 2 1.5 0.3 
S =C-S-  (thiophene) 2 1.5 0.8 
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For example, acrolein, CA=CB-CC=OD, has four total -electrons and the lower diagonal elements 
of the Hückel matrix in the form of Eq. 26.8.16 is: 

0      

1   0     

0   1   0    

0   0   1   1   

    
For acrolein: 

(a). Give the Hückel determinant in terms of x’s and 1’s: 
(b). Determine the energies and the orbital coefficients using a matrix diagonalization program. 
The “eigen” applet to diagonalize a matrix is available on the text book Web site or companion 
CD. MatLab or Mathematica  are also useful. 
 (c). Sketch the orbitals with the appropriate phase for each pz orbital. 
(d). Give the number of nodes in each wave function. Classify each orbital as bonding or anti-
bonding. 
(e). Draw the energy level diagram. Give the electron filling. 
(f). Calculate the -bond order for each unique bond in the molecule (Eq. 26.8.6). 
(g). Calculate the -bond delocalization energy. 
(h). Calculate the -electron density on any two atoms of your choosing (Eq. 26.8.7). 
(i). On the energy levels in part (e), indicate the lowest energy electronic transition with a 
vertical arrow. Label the HOMO and LUMO. 

 
34. Use Hückel molecular orbital theory and the parameters in Table P26.1 to determine the 
HOMO for vinyl fluoride, CH2=CH-F. Draw the molecular orbital diagram and show the electron 
filling. Characterize the HOMO as  or , bonding, non-bonding, or anti-bonding. Does the 
HOMO have predominant character on any one particular atom? 
 
35. Characterize the highest occupied molecular orbital in liner BeH2. Use extended Hückel 
theory. Draw the molecular orbital energy diagram and sketch the molecular orbitals. Orient the 
molecule along the x-axis. Number the Be as atom 1 and the two hydrogens as 2 and 3.The bond 
length in BeH2 is 1.330 Å giving the Be(2s)-H(1s) overlap integrals of 0.491 and the Be(2px)-
H(1s)2 overlap as 0.559. Notice the change in sign for the H(1s)3-Be(2px) overlap: 
 
 
 
 
 
 
 
 
36.  Calculate the Be-H bond order in BeH2 using the results in the previous problem, at the 
extended Hückel level of approximation. 
 
 

H2 H3 

Be1 
x 

y 

+ + – + 

2px 

S2px,1s = 0.559 S2px,1s = –0.559 

H2 H3 

x 

y 

+ + 

2s 

S2s,1s = 0.491 S2s,1s = 0.491 

+ 

– 
Be1 
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37.  Use extended Hückel theory to find the molecular orbital energy diagram for water. Number 
the oxygen as atom 1 and the two hydrogens as 2 and 3. Orient the molecule in the x-y plane. 
The overlap integrals for a bond angle and 105 and bond lengths of 0.962 Å are shown below 
(the overlap between the two hydrogens is S1s,1s = 0.2242): 
 
 
 
 
 
 
 
38.  Calculate the O-H bond order in water from the extended Hückel calculation in the previous 
problem. 
 
 

39.  Calculate the charge on the C-atom in methane. Use the extended Hückel method. The 
atomic coordinates for methane with a C-H bond length of 1.084 Å are: 
 

Atom x y z 
1 C  0.0  0.0  0.0 
2 H  0.62565  0.62565  0.62565 
3 H -0.62565 -0.62565  0.62565 
4 H -0.62565  0.62565 -0.62565 
5 H  0.62565 -0.62565 -0.62565 

 

 
For this orientation, the overlap matrix is: 
 

 1  C2s 1  C2px 1  C2py 1  C2pz 2  H1s 3  H1s 4  H1s 5  H1s 
 1  C2s 1.0 0.0 0.0 0.0 0.5224  0.5224  0.5224  0.5224 
 1  C2px 0.0 1.0 0.0 0.0 0.2832 -0.2832 -0.2832  0.2832 
 1  C2py 0.0 0.0 1.0 0.0 0.2832 -0.2832  0.2832 -0.2832 
 1  C2pz 0.0 0.0 0.0 1.0 0.2832  0.2832 -0.2832 -0.2832 
 2  H1s 0.5224  0.2832  0.2832  0.2832 1.0  0.1877  0.1877  0.1877 
 3  H1s 0.5224 -0.2832 -0.2832  0.2832 0.1877 1.0  0.1877  0.1877 
 4  H1s 0.5224 -0.2832  0.2832 -0.2832 0.1877  0.1877 1.0  0.1877 
 5  H1s 0.5224  0.2832 -0.2832 -0.2832 0.1877  0.1877  0.1877 1.0 

 
 
40. Place the following electronic structure methods in order of typical energy accuracy: HF, 
CNDO, MNDO, AM1, PM3, CISD or CCSD, CISDT or CCSDT, CCSD(T), LSDA, B3LYP. 
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