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Chapter 25 Problems: Atomic Structure  
 
1.  Use node counting rules to argue that l cannot be greater than n–1 and ml cannot be greater 
than l for the atomic orbitals of the hydrogen atom. 
 
 
Answer:  The plan is to note that the total number of nodes for an atomic orbital is n – 1. The 
number of angular nodes is l. The number of angular nodes that include the z-axis is |m l|. For 
positive values of ml the motion is clockwise around the z-axis and for negative values of m l the 
motion is counterclockwise around the z-axis. 
   The number of angular nodes cannot be greater than the total number of nodes, so l  n – 1. The 
corresponding range for the angular momentum quantum number is: l = 0,…, n – 1. The number 
of angular nodes that include the z-axis cannot be greater than the number of angular nodes, so 
|ml|  l. The corresponding range for the magnetic quantum number is: m l = -l,…., 0,…,+l. 
 
 
2.  Give the degeneracy, the total number of nodes, the number of radial nodes, the number of 
angular nodes, and the number of angular nodes that include the z-axis for the following sets of 
orbitals: (a). 2p, (b). 3p, (c). 3d, (d). 4d, (e). 4f, (f). 5s. 
 
 
Answer: The plan is to note that the total number of nodes for an atomic orbital is n – 1. The 
number of angular nodes is l: with allowed values l = 0,…, n – 1. The number of angular nodes 
that include the z-axis is |ml|: with allowed values ml = -l,…., 0,…,+l. For positive values of ml 
the motion is clockwise around the z-axis and for negative values of m l the motion is 
counterclockwise around the z-axis. 
   The number of radial nodes is equal to the difference of total number of nodes and the number 
of angular nodes: radial nodes = n – 1 – l. The degeneracy of the sub-level is gl = 2 l + 1 since 
ml = -l,…., 0,…,+l. 
 

   number of nodes 
sub-level l degeneracy 

gl = 2 l + 1 
total 

= n – 1 
radial 

= n – 1 – l 
angular 

= l 
angular||z-axis 

= |ml| 
2p 1 3 1 0 1 0, 1 
3p 1 3 2 1 1 0, 1 
3d 2 5 2 0 2 0, 1, 2 
4d 2 5 3 1 2 0, 1, 2 
4f 3 7 3 0 3 0, 1, 2, 3 
5s 0 1 4 4 0 0 

 
 
3. Show that R = A e–r is a solution to the ground state radial wave equation for the hydrogen 
atom, including solving for the value of : 
 

 – 
h-2

2m 



1

r 
d2

dr2  r R – 
Z e2

4πor
 R =E R 
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Answer:  Substituting in R = A e–r into the ground state radial wave equation gives: 
 

 – 
h-2

2m 



1

r 
d2

dr2  r A e–r – 
Z e2

4πor
 A e–r =E A e–r     1 

 

Note that r e–r is a product of two functions, first (r) and second (e–r). The derivatives using the 
product rule are: 
 

 
d (r e–r)

dr  = r(–)e–r + e–r        2 

 
d2 (r e–r)

dr2  = 
d (r(–)e–r)

dr  + 
d e–r

dr  = r2 e–r – e–r – e–r    3 

                 = 2r e–r – 2e–r        4 
 

Gathering terms and substituting back in the definition of the wave function, R = A e–r, into this 
last equation gives: 
 

 



1

r 
d2

dr2  r A e–r = 2 Ae–r – 
2
r  Ae–r = 2R – 

2
r R     5 

 

Substitution into Eq. 1 gives the ground state radial wave equation as: 
 

 – 
h-2

2m 



2 R – 

2
r  R  – 

Z e2

4or
 R = E R       6 

 

The derivatives having been completed, only functions remain in the equation. Common factors 
cancel giving: 
 

 – 
h-22

2m  + 
h-22
2mr  – 

Z e2

4or
 = E        7 

 

Since the total energy is a constant, the terms in 1/r must cancel giving: 
 

 E = – 
h-22

2m   and   
h-2
mr  – 

Z e2

4or
 =     

 

Solving for  gives: 
 

  = 
Z e2

4o
 
m
h2          9 

 

We can simplify this last equation using the definition of the Bohr radius, ao: 

 ao = 
4o h-2

me2   giving   = 
Z
ao

      10 

 
 

4. The ground state of the hydrogen atom is: (r) = R(r) = 
1


 



Z

ao

3/2

e–Zr/ao = 
1


 3/2 e–r. 
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(a). Calculate the expectation value of the kinetic energy for the ground state of the hydrogen 
atom. 
(b) From your answer in (a), show that <Ek> = – E1, where E1 is the total energy of the ground 
state of the hydrogen atom. 
 
 
Answer:  The wave function is real and normalized. The expectation value then reduces to: 
 

 <Ek> = 
oo2o  *

1 E
^

k 1 r2 sin dr dd
oo2o  *

1 1 r2 sin dr dd
 = oo2o  1 E

^
k 1 r2 sin dr dd 

 

Since the wave function only depends on r, (r) = R(r), the angular integrals give 4: 
 

 <Ek> = 4 o  R(r) E
^

k R(r) r2 dr 

The kinetic energy operator is: E
^

k = – 
h-2

2m 



1

r 
d2

dr2  r 
 

The result of the operation of the kinetic energy operator is given using Eq. 5 from the last 
problem: 
 

 E
^

k R(r) = – 
h-2

2m 



1

r 
d2

dr2  r R(r) = – 
h-2

2m 



2 R – 

2
r  R  

 

with  = Z/ao. Substitution of this last result into the integral for the expectation value gives: 
 

 <Ek> = – 4 
h-2

2m 



1

 3 




0

 2 r2 e–2r dr – 0

 2r e–2r dr  
 

The integral table gives: 0


 xn e–ax dx = (n!/an+1): 

 

 <Ek> =  – 4 
h-2

2m 



1

 3 






22

83 – 
2
42  = – 4 

h-2

2m 



1

 3 




 – 

1
4  

    = 
h-2

2m 2 = 
h-2

2m 



Z

ao

2
 

 

The total energy for the ground state of the hydrogen atom is E1 = – 
Z2h-2

2mao
2 = – <Ek>. 

Since E = <Ek> + <V>, then <V> = – 2 <Ek> for the hydrogen atom. This result is a specific 
example of the Virial Theorem. If the potential is in the form of a power law, V(x) = k xn, then 
the average potential and kinetic energy are related by: 
 

 2 <Ek> = n <V> 
 

For the hydrogen atom, n = -1 with x = r, which gives <Ek> = – ½ <V> by the Virial Theorem, as 
shown by this problem. 
 
 

5. The ground state of the hydrogen atom is: (r) = R(r) = 
1


 



Z

ao

3/2

e–Zr/ao. 
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(a). Calculate the expectation value of the potential energy for the ground state of the hydrogen 
atom. 

(b) In your final answer in (a), use the fact that e2/4o = h-2/mao to show that <V> = 2E1, where 
E1 is the total energy of the ground state of the hydrogen atom. 
 
 
Answer:  The plan is to determine the expectation value of V^ (r) = – Ze2/(4o r). 
The wave function is real and normalized. The potential energy operator does not involve a 
derivative, so the integrand for the expectation value is a product of functions of r. The order of 
the functions is immaterial. The expectation value then reduces to: 
 

 <V> = 
oo2o  *

1 V
^

 1 r2 sin dr dd
oo2o  *

1 1 r2 sin dr dd
 = – 

Ze2

4o
 oo2o  

1
r 2

1 r2 sin dr dd  1 

 

Since the wave function only depends on r, (r) = R(r), the angular integrals give 4: 
 

 <V> = – 4 
Ze2

4o
 N2 o  e–2Zr/ao r dr       with normalization, N = 1/̄ (Z/ao)

3/2 2 
 

The integral table gives: 0


 xn e–ax dx = (n!/an+1) for n = 1: 

 

 <V> =  – 4 
Ze2

4o
 N2 



ao

2Z

2
        3 

 

Substituting in the normalization constant gives: 
 

 <V> = – 
Ze2

o
 



1

 



Z

ao

3





ao

2Z

2

 = – 



Z2

ao
 

e2

4o
      4 

 

(b). From the definition of ao: ao = 
4oh-2

me2   or 
e2

4o
 = 

h-2

mao
    5 

 

Substitution of Eq. 5 into Eq. 4 gives: 
 

 <V> = – 
Z2h-2

ma2
o
          6 

 

The total energy for the ground state of the hydrogen atom is E1 = – 
Z2h-2

2mao
2 = ½ <V>. 

Since E = <Ek> + <V>, then <Ek> = –½ <V> for the hydrogen atom. This result is a specific 
example of the Virial Theorem. If the potential is in the form of a power law, V(x) = k xn, then 
the average potential and kinetic energy are related by: 
 

 2 <Ek> = n <V> 
 

For the hydrogen atom, n = -1 with x = r, which gives <Ek> = – ½ <V> by the Virial Theorem, as 
shown by this problem. 
 
 
6.  Find the average radius of an electron in a hydrogen atom in a 2s orbital. 
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Answer:  The normalized 2s orbital is given by: 
 

 2s = 
1

4 2
 



Z

ao

3/2





2 – 

Zr
ao

 e–Zr/2ao 

 

The average radius is given by the expectation value of r: 
 

 <r> = 
oo2o  *

2s r 2s r2 sin dr dd
oo2o  *

2s 2s r2 sin dr dd
 = oo2o  r 2

2s r2 sin dr dd 

                average r             volume element 
 

The integral involves only functions, so the order is immaterial. Since the wave function only 
depends on r, (r) = R(r), the angular integrals give 4: 
 

 <r> = 4 o  r3 2
2s dr = 4 

1
32 



Z

ao

3
 



0


 r3




2 – 

Zr
ao

2

 e–Zr/ao dr 

 

 <r> = 4 
1

32 



Z

ao

3
 



0


 r3




4 – 

4Zr
ao

 + 
Z2r2

a2
o

 e–Zr/ao dr 

 

Splitting the integral gives: 
 

 <r> = 4 
1

32 



Z

ao

3
 






4 


0

 r3 e–Zr/ao dr – 
4Z
ao

 


0

 r4 e–Zr/ao dr + 
Z2

a2
o
 


0

 r5 e–Zr/ao dr  

 

Integral tables give: 0


 xn e–ax dx = (n!/an+1) with n = 3, 4 and 5: 

 

 <r> = 
1
8 



Z

ao

3











24 a4

o

Z4  – 



96 a4

o

Z4  + 



120 a4

o

Z4  = 
48
8  

ao

Z = 6 
ao

Z 
 

The average radius for a 2pz orbital is 5ao/Z, which is smaller than the 2s, as shown in the next 
problem. 
 
 
7.  Find the average radius of an electron in a hydrogen atom in a 2pz orbital. 
   The normalized 2pz orbital is given by: 
 

 2pz = 
1

4 2
 



Z

ao

3/2Zr
ao

 e–Zr/2ao cos  

 
 
Answer:  The average radius is given by the expectation value of r: 
 

 <r> = 
oo2o  *

2pz r 2pz  r2 sin dr dd
oo2o  *

2pz 2pz r2 sin dr dd
 = oo2o  r 2

2pz r2 sin dr dd 

                 average r                       volume element 
 

The integral involves only functions, so the order is immaterial. Substituting the wave function 
into the integral gives: 
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 <r> =  
1

32 



Z

ao

3
 


0

 



Z

ao

2

 r5 e–Zr/ao dr 


0

 cos2 sin  d 


0

2 d 

 

The integral over  is 2. Integral tables give:   


0

 cos2 sin  d = – 
cos3

3



0
 = 

1
3 – 



– 

1
3  = 

2
3 

The expectation value of r reduces to: 
 

 <r> = 
1

32 



Z

ao

3
 


2

3  (2) 


0

 



Z

ao

2

 r5 e–Zr/ao dr 

 

Integral tables give: 0


 xn e–ax dx = (n!/an+1) with n = 5: 

 

 <r> = 
1

24 



Z

ao

5





120 a6

o

Z6  = 5 
ao

Z 
 

The average radius for a 2s orbital is 6ao/Z, as shown in the previous problem, which is larger 
than the 2pz, 
 
 
8.  Find the radius of the 90% contour surface for a 1s orbital in the H-atom. Use the following 
steps. 

   (a). Integral tables give   xn e–ax dx = – 
xn e–ax

a  + 
n
a  xn–1 e–ax dx.   Prove that: 

 

  x2 e–ax dx = – 
x2 e–ax

a  – 
2x e–ax

a2  – 
2 e–ax

a3  
 

   (b). Show that for a given value of the contour radius, rc, that: 
 

 


0

rc r2 e–2Zr/ao dr = 



– 

ao r2
c

2Z  – 
a2

o rc

2Z2  – 
a3

o

4Z3  e–2Zrc/ao + 
a3

o

4Z3 

 

   (c). Show the radius that gives the 90% contour surface is given by: 
 

 0.90 = 



– 2 

Z2 r2
c

a2
o  – 2 

Z rc

ao  – 1  e–2Zrc/ao + 1 
 

   (d). Let  = Zrc/ao. Show that the last equation reduces to:   (–22 – 2 – 1) e–2 + 1 = 0.90. 
Solve this equation for  numerically, to three significant figures, to find the 90% contour radius. 
 
 
Answer:  The plan is to note that the normalized 1s orbital is given by: 
 

 1s = 
1


 



Z

ao

3/2

 e–Zr/ao         1 

 

The 90% contour radius, rc, corresponds to an integrated probability of 0.90: 
 

 0.90 = rc
o o2o  2

1s r2 sin dr dd       2 
 
         volume element 
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Since the wave function only depends on r, the angular integrals give 4: 
 

 0.90 = 4 rco  2
1s r2 dr = 4



Z

ao

3
 


0

rc r2 e–2Zr/ao dr     3 

 

(a).  Integral tables give   xn e–ax dx = – 
xn e–ax

a  + 
n
a  xn–1 e–ax dx.  The integral with n = 2 is then: 

 

  x2 e–ax dx = – 
x2 e–ax

a  + 
2
a  x e–ax dx 

        = – 
x2 e–ax

a  – 
2x e–ax

a2  – 
2
a2  e–ax dx 

        = – 
x2 e–ax

a  – 
2x e–ax

a2  – 
2 e–ax

a3  

(b). Noting that e–ax| 0
xo = e–axo – 1, the definite integral from 0 to xo is: 

 

 


0

xo x2 e–ax dx = – 
x2

o e–axo

a  – 
2xo e–axo

a2  – 
2 e–axo

a3  + 
2
a3 

 

With x = r, a = Zr/ao, and the integral limit xo = rc, the needed integral over r2 is: 
 

 


0

rc r2 e–2Zr/ao dr = 



– 

ao r2
c

2Z  – 
a2

o rc

2Z2  – 
a3

o

4Z3  e–2Zrc/ao + 
a3

o

4Z3 

 

(c). Substituting this last result for the integral into Eq. 3 gives: 
 

 0.90 = 4 



Z

ao

3





– 

ao r2
c

2Z  – 
a2

o rc

2Z2  – 
a3

o

4Z3  e–2Zrc/ao + 4 



Z

ao

3
 

a3
o

4Z3 
 

 0.90 = 



– 2 

Z2 r2
c

a2
o  – 2 

Z rc

ao  – 1  e–2Zrc/ao + 1 
 

(d). Letting  = Zrc/ao, the last equation reduces to:   (–22 – 2 – 1) e–2 + 1 = 0.90. 
Solving for  is easily accomplished using a spreadsheet. A quick and efficient search algorithm 
is to find two values of  that bracket the desired result and then “split the difference.” That is, 
divide each interval that brackets the desired value by 2. Using the initial guesses of  = 2 and  
= 3, the next value to try is  = 2.5. The second column calculates (–22 – 2 – 1) e–2 + 1 for the 
guessed value of  in the first column: 
 

= Zr/ao 42 r2 dr 
2 0.7619 
3 0.9380 

2.5 0.8753 
2.75 0.9116 

2.625 0.8949 
2.6875 0.9036 

2.656 0.8993 
 

The final result is   2.66 or rc = 2.66 ao/Z. In comparison, the average radius for a 1s orbital is 
<r> = 1.5 ao/Z. 
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9.  Show that the 1s and 2s orbitals of the hydrogen atom are orthogonal. 
 
 
Answer:  The plan is to show that the orthogonality integral is equal to zero:  *

n m d = 0. The 
volume element for a spherical atom is d = r2 sin dr d d. 
   The 1s and 2s orbitals are: 
 

 s(r) = 
1


 



Z

ao

3/2

e–Zr/ao and 2s(r) = 
1

4 2
 



Z

ao

3/2





2 – 

Zr
ao

 e–Zr/2ao 

 

For simplicity, let the normalization constants be N1s and N2s, respectively. The wave functions 
are spherical, so they are independent of  and . The angular integrations then give 4. The 
orthogonality integral is then: 

 o o2o  *
1s 2s r2 sin dr dd = 4 N1s N2s 


0

 e–Zr/ao 



2 – 

Zr
ao

 e–Zr/2ao r2dr 

         volume element 

 = 4 N1s N2s 






2


0

 r2 e–3Zr/2ao dr – 
Z
ao

 


0

 r3 e–3Zr/2ao dr  

 

Integral tables give: 0


 xn e–ax dx = (n!/an+1) with n = 2 and 3: 

 

   *
1s 2s d = 4 N1s N2s 





4 



2ao

3Z
3
 – 



Z

ao
 6 



2ao

3Z
4

 

          = 4 N1s N2s 



ao

Z
3
 





4 



8

27  – 6 



16

81  = 0 

 
 
10.  Determine n, l, and |ml| for the following orbitals. Give the orbital designations (e.g. 2px, 
3dxy, etc.). 
 
 
 
 
 
 
 
 
  (a).       (b). 
 
 
Answer:  The plan is to find the number of radial nodes, angular nodes, and angular nodes that 
include the z-axis. Angular nodes are planes that pass through the nucleus. A radial node is a 
spherical node that is centered on the nucleus. 
   The node counting is: 
 
 
 

x 

z 

+ 

+ 

– 

– 

x 

z 

+ 

+ 

+ 

+ 

– 

– 

– 

– 
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 (a).       (b). 
 total nodes = n – 1 = 2     total nodes = n – 1 = 3 
 angular nodes = l = 1     angular nodes = l = 2 
 radial nodes = n – 1 – l = 1    radial nodes = n – 1 – l = 1 
 z-axis angular nodes = |ml| = 0   z-axis angular nodes = |ml| = 1 
 

The nodes are shown in the diagrams below. The angular, planar nodes are perpendicular to the 
plane of the paper. 
 
 
 
 
 
 
 
 
 
 
(a). Since (n – 1) = 2, l = 1, and ml = 0, the principle quantum number is 3 giving a 3pz orbital. 
(b). One of the angular nodes is in the y-z plane, which includes the z-axis. One of the angular 
nodes is in the x-y plane, so that node does not include the z-axis. Overall then |m l| = 1. Since 
(n – 1) = 3 and l = 2, the principle quantum number is 4 giving a 4d- orbital. Since the lobes of 
the orbital point between the x- and z- axis, the orbital is a 4dxz orbital. 
 
 
11.  Sketch the 4dxy orbital. Include the phase for each region. 
 
 
Answer:  The plan is to find the number of radial nodes for the 4dxy orbital and to note that the 
orbital points between the x- and y- axes. Angular nodes are planes that pass through the nucleus. 
A radial node is a spherical node that is centered on the nucleus. 
   The node counting is: 
 total nodes = n – 1 = 3 
 angular nodes = l = 2  (a “d”-orbital) 
 radial nodes = n – 1 – l = 1 
 

The angular, planar nodes are perpendicular to the plane of the paper. Since the lobes of the 
orbital point between the x- and y- axis, both angular nodes include the z-axis, |m l| = 2. 
 
 
 
 
 
 
 
 
 4dxy     4dxy with nodes labeled 

x 

y 

+ 

+ 

+ 

+ 

– 

– 

– 

– 

x 

y 

+ 

+ 

+ 

+ 

– 

– 

– 

– 

planar 

planar 

radial 

x 

z 

+ 

+ 

+ 

+ 

– 

– 

– 

– 

planar 

planar 

radial 
radial 

planar 

x 

z 

+ 

+ 

– 

– 
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12. The normalized angular portions of the oriented d-orbitals are: 
 

 dxz = 




5

4

½
3̄ sin  cos  cos  

 dyz = 




5

4

½
3̄ sin  cos  sin  

 dxy =  




5

4

½
3̄ sin2 cos  sin  

 dx2–y2 = 




5

4

½
 
3̄
2  sin2  (cos2 – sin2) 

 d3z2–r2 = 




5

4

½
 
1
2 (3cos2 – 1) 

 

Show that d2
xz + d2

yz + d2
xy + d2

x2-y2 + d2
3z2–r2 = constant (Eq. 25.2.10). The following trigonometric 

identities are useful: 
 

 cos2x + sin2x = 1 and correspondingly (cos2x + sin2x)2 = 1 
 cos2x – sin2x = 2 cos2x – 1 
 
 
Answer:  The plan is to work on the  portions first, then the  portions. The final results must be 
independent of both  and . In addition, expanding (cos2x + sin2x)2 = 1 gives: 
 

 (cos2x + sin2x)2 = cos4x + 2 cos2x sin2x + sin4x = 1     1 
 

   Let N = (5/4)½ for convenience. First note that: 
 

 d2
xz + d2

yz = 3N2 sin2  cos2  (cos2 + sin2) = 3N2 sin2  cos2    2 
 

which is independent of . Next, note that: 
 

 d2
xy + d2

x2-y2 = ¾ N2 sin4 [4 cos2 sin2 + (cos2 – sin2)2] 
        = ¾ N2 sin4 [4 cos2 sin2 + cos4 – 2cos2 sin2 + sin4] 
        = ¾ N2 sin4 [cos4 + 2cos2 sin2 + sin4]    3 
 

Using identity Eq. 1 gives: d2
xy + d2

x2-y2 = ¾ N2 sin4     4 
 

We can split 3 cos2 – 1 into two terms: 
 

  (3cos2 – 1) = cos2 + 2 cos2 – 1      5 
 

Then using the identity, cos2x – sin2x = 2 cos2x – 1, gives: 
 

 (3cos2 – 1) = cos2 + cos2 – sin2 = 2 cos2 – sin2    6 
 

 d2
3z2–r2 = ¼ N2 (2 cos2 – sin2)2 = ¼ N2(4 cos4 – 4 cos2 sin2 + sin4) 

  = N2(cos4 –cos2 sin2 + ¼ sin4)      7 
 

Combining Eqs. 2, 4, and 6 gives: 
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 d2
xz + d2

yz + d2
xy + d2

x2-y2 + d2
3z2–r2 =  

 = 3N2 sin2  cos2  + ¾ N2 sin4 + N2(cos4 – cos2 sin2 + ¼ sin4) 
 = N2(cos4 + 2 cos2 sin2 + sin4)       8 
 

Using the identity Eq. 1 gives the result independent of both  and : 
 

 d2
xz + d2

yz + d2
xy + d2

x2-y2 + d2
3z2–r2 = N2       9 

 

This result is the d-orbital version of Unsöld’s Theorem, and explains why the d3z2–r2 has the 
unique functional form. The problem can also be done using the identities sin 2x = cos x sin x 
and cos 2x = cos2x – sin2x.  
 
 
13.  Normalize the angular portion of the orbital: dyz = N sin  cos  sin . Note that: 
 

 0

 sin3x cos2x dx = 4/15 

 
 
Answer:  The plan is to note that the normalization integral is over all  and  with 
d = sin  d d. 
   The normalization integral is: 
 

 0

 0

2 d2
yz sin  d d = N2 0

 0

2 sin3 cos2 sin2 d d = 1 
 

The result is the product of one-dimensional integrals: 
 

 N2 0

 sin3 cos2 d 0

2 sin2 d = 1 
 

As given in the problem statement: 0

 sin3x cos2x dx = 4/15. 

Integral tables list:   0

/2
 sin2x dx = /4. Since the integrand is always positive, the integral over 

the full interval is:   0

2
 sin2x dx = . The normalization integral is then: 

 

 N2 0

 sin3 cos2 d 0

2 sin2 d = N2 



4

15 () = 1 
 

Giving N = 




15

4

½
 

 

as listed in the last problem. You may wonder how to do the tricky integral.  sin3x cos2x dx is 
integrated by parts. Integral tables give the indefinite form as: 
 

  sin3x cos2x dx = 
cos x sin4x

5  + 
1
5  sin3x dx 

 

Integral tables give  sin3x dx = – 1/3 cos x (sin2x + 2): 
 

 0 sin3x dx = – 1/3[cos x (sin2x + 2)|0 = – 1/3 [(-1)(0 + 2) – (1)(0 + 2)] = 4/3 
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For the definite integral then:  0 sin3x cos2x dx = [cos x sin4x
5 |0 + 

4
15 

The first term is zero at both end points giving:  0 sin3x cos2x dx = 
4

15 

 
 
14.  The oriented forms of the d-orbitals are given as products of the Cartesian coordinates, e.g. 
dxz. Give the functional form of the 3dxz orbital using Cartesian coordinates for the angular 
portion (e.g. Eqs. 25.2.8) and using spherical polar coordinates (e.g. Eqs. 25.2.6). Just leave the 
normalization constant as N. Describe the orientation of the lobes of the orbital. 
 
 
Answer:  The plan is to compare to the form of the 2p-orbitals, Eqs. 25.2.6 and 25.2.8. The 
coordinate transformations are given by Eqs. 24.5.14 resulting in Eqs. 25.2.9. 
   The asymptotic form has the functional dependence e–Zr/nao, in this case n = 3, giving: 
 

 3dxz =  N e–Zr/3ao (Z/ao)2 xz 
 

The spherical polar form is given from the transformations in Eqs. 24.5.14: 
 

 3dxz =  N e–Zr/3ao (Z/ao)2 (r sin  cos ) (r cos ) 
           =  N e–Zr/3ao (Zr/ao)2 sin  cos  cos  
 

The factor of (Z/ao)3 appears because the wave function is overall unitless, so r always appears as 
Zr/ao to cancel the units and adjust for contraction caused by the charge on the nucleus. The 
“rulers” in the atomic world are marked in multiples of Zr/ao. The lobes of the orbital point 
between the x- and z-axes. No lobes lie along an axis. 
 
 
15.  The oriented forms of the f-orbitals are given as triple products of the Cartesian coordinates, 
e.g. fxyz. Give the functional form of the 4fxyz orbital using Cartesian coordinates for the angular 
portion (e.g. Eqs. 25.2.8) and using spherical polar coordinates (e.g. Eqs. 25.2.6). Just leave the 
normalization constant as N. Describe the orientation of the lobes of the orbital. 
 
 
Answer:  The plan is to compare to the form of the p-orbitals, Eqs. 25.2.6 and 25.2.8. The 
coordinate transformations are given by Eqs. 24.5.14. 
   The asymptotic form has the functional dependence e–Zr/nao, in this case n = 4, giving: 
 

 4fxyz =  N e–Zr/4ao (Z/ao)3 xyz 
 

The spherical polar form is given from the transformations in Eqs. 24.5.14: 
 

 4fxyz =  N e–Zr/4ao (Z/ao)3 (r sin  cos )(r sin  sin )(r cos ) 
           =  N e–Zr/4ao (Zr/ao)3 sin2  cos  cos  sin  
 

The factor of (Z/ao)3 appears because the wave function is overall unitless, so r always appears as 
Zr/ao to cancel the units and adjust for contraction caused by the charge on the nucleus. The 
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“rulers” in the atomic world are marked in multiples of Zr/ao. The lobes of the orbital point 
between the x-, y-, and z-axes. No lobes lie along an axis. 
 
 
16.  Hooke's Law is only an approximation of the true vibrational potential energy of a molecule. 
There are many other possible forms for the potential energy function of a chemical bond. Use 
perturbation theory to calculate the small change in energy for the harmonic oscillator ground 
state that is perturbed by the addition of a term = b x4 to the potential energy function: 
 

 V(x) = ½ k x2 + b x4 

[Hint: Remember that the wave function is (x) = 






2



¼
 e–½ 2x2

 where 2 = 






mo

h-
. Just leave 

2 as a parameter until the last step and then substitute in at the last for 2 to find that the change 

in energy is  
3b
4  





h-

mo

2
] 

 
 
Answer:  The plan is to note that the perturbation is V' = b x4. 
   The first order perturbation correction to the energy is the expectation value of the perturbation 
using the zeroth-order wave functions, which for the ground state are for v = 0: 
 

 E(1) = 


-


 0

* (b x4) 0 dx = b 






2



½
 


-


 x4 e–2x2

 dx 

 

Integral tables give:  0  x4e–ax2
 dx = (3/8a2) (/a)½, giving: 

 

 E(1) = 2b 






2



½
 




3

84  








2
½

 = 
6b
84 = 

3b
4  





h-

mo

2
 

 
 

17.  Using the Aufbau Principle predict the ground state electron configuration for: (a). Si, 
(b). Ti, (c). Ti2+, (d). Cr, (e). Cr2+, and (f). Ag. Show both the condensed configuration (e.g. 
[Ne] 3s2) and the orbital diagram (e.g. 3s:  ). For which species is the Aufbau prediction 
expected to differ from the experimental configuration? 
 
 

Answers: 
(a). Si:    [Ne] 3s2 3p2     3s:   3p:          
(b). Ti:    [Ar] 3d2 4s2           3d:                   4s:   
(c). Ti2+: [Ar] 3d2 4s0           3d:                   4s:      
(d). Cr:   [Ar] 3d4 4s2           3d:               4s:   (Aufbau) 
However, Cr needs only one-electron more to complete a half-filled d sub-orbital, so the 
experimental configuration is expected to deviate from the Aufbau prediction to give: 
       Cr:   [Ar] 3d5 4s1           3d:             4s:    (experimental) 
(e). Cr2+: [Ar] 3d4 4s0           3d:               4s:      
(f). Ag:   [Kr] 4d9 5s2           4d:         5s:   (Aufbau) 
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However, Ag needs only one-electron more to complete the d sub-orbital, so the experimental 
configuration is expected to deviate from the Aufbau prediction to give: 
      Ag:   [Kr] 4d10 5s1           4d:        5s:    (experimental) 
 

The completed d sub-shell for Ag is reflected in the lack of reactivity for Ag. Ag is one of the 
“coinage” metals along with Cu and Au. 
 
 
18.  The following problem explores the Pauli Exclusion Principle and wave function symmetry.1 
Let 1 and 2 be the functions for a particle in a one-dimensional particle in a box with n = 1 
and n = 2, respectively. If one electron were in each of these orbitals, the space part of the triplet 
and singlet wave functions would be: 
 

A = 
1
2

 [1(1) 2(2) – 2(1) 1(2)] and S = 
1
2

 [1(1) 2(2) + 2(1) 1(2)]


respectively. Suppose that electron 1 is in a small element of length dx at x = 0.250 a and 
electron 2 is in a small element of length dx at x = 0.255 a. The quantity a is the length of the 
box. Show that A has a very small value under these conditions while S is large. What 
happens to A if both electrons are at x = 0.250 a? This problem shows how an anti-symmetric 
spatial wave function keeps the electrons apart.1 

   A note on nomenclature: for example, (2) means wave function 1 (with n = 1) is used for 
electron 2. Since this wave function is for electron 2 it should be evaluated at x = 0.255 a. 
 
 
Answer:  The single particle wave functions are: 
 

 1(x) = 


2

a

½
 sin(x/a) 2(x) = 



2

a

½
 sin(2x/a) 

 

The values for the single particle wave functions are given in the following table. 
 

electron   x sin(nx/a) 
    n = 1   n = 2 
electron 1 0.25 a 0.707107 1 
electron 2 0.255 a 0.718126 0.999507 

 

Then the anti-symmetric and symmetric two- electron wave function are: 
 

 A = 
1
2

 [1(1) 2(2) – 2(1) 1(2)] 

      = 





2

a  [(0.707107)(0.999507) – (0.718126)(1.00000)] = -0.01608/a 

 S = 





2

a  [(0.707107)(0.999507) + (0.718126)(1.00000)] = 2.015091/a 
 

A has a very small value under these conditions while S is large, by comparison. The anti-
symmetric spatial wave function gives a much smaller probability, 2

A, of the particles being 
close together than the symmetric combination. If both electrons are at x = 0.250 a then A = 0. 
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There is no probability that both electrons are in the same spot. The anti-symmetric combination 
keeps the particles at larger distance from each other on average, minimizing electron-electron 
repulsion between the particles. 
 
 
19.  Two possible wave functions for the ground state of the helium atom are: 
 

 s = 1/2̄ 1s(1) 1s(2) [(1) (2) + (1) (2)]   (25.4.14) 

 a = 1/2̄ 1s(1) 1s(2) [(1) (2) – (1) (2)]   (25.4.15) 
 

Show that both transform to give back the original wave function upon exchange of spin labels: 
2

s  2
s and 2

a  2
a. 

 
 
Answer:  In this case, the transformation properties under exchange of spin labels depend only 
upon the spin parts. For convenience, we will just look at the spin parts to simplify the 
nomenclature. The wave functions are one electron functions; (1) and (1) are only functions of 
electron 1 while (2) and (2) are only functions of electron 2. For this reason wave functions 
with different spin labels commute, for example (1) (2) = (2) (1). Taking the square of s 
gives: 
 

 [(1) (2) + (1) (2)]2 = (1) 2(2) + 2 (1) (1) (2) (2) + (1) 2(2)   1 
 

Exchange of spin labels transforms the probability to: 
 

 [(2) (1) + (2) (1)]2 = (2) 2(1) + 2 (2) (2) (1) (1) + (2) 2(1)   2 
 

Eqs. 1 and 2 are identical, showing 2
s  2

s upon exchange of spin labels. 
   Taking the square of a gives: 
 

 [(1) (2) – (1) (2)]2 = (1) 2(2) – 2 (1) (1) (2) (2) + (1) 2(2)   3 
 

Exchange of spin labels transforms the probability to: 
 

 [(2) (1) – (2) (1)]2 = (2) 2(1) – 2 (2) (2) (1) (1) + (2) 2(1)   4 
 

Eqs. 3 and 4 are identical, showing 2
a  2

a upon exchange of spin labels. An underlying 
principle in quantum mechanics, in specific, and the theory of differential equations, in general, 
is that all possible solutions to a given problem must be considered. The Pauli principle shows 
that only the antisymmetric case is a valid solution for spin ½ particles. 
 
 
20.  Give the spatial and spin parts for the singlet excited state of helium atom that has the 
configuration, He: 1s1 2p1. 
 
 
Answer:  The plan is to note that the singlet wave function is similar to the first excited state, He: 
1s1 2s1, covered in the chapter. 
   A singlet spin part is antisymmetric, so the spatial part must be symmetric: 
  = 1/ 2  (1s(1) 2px(2)  + 1s(2) 2px(1)) [] 
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21.  Give the determinantal wavefunction for the ground state of the beryllium atom 
(configuration 1s22s2). 
 
 
Answer:   

Be:  1s   2s     a = 1/ 4! 







1s(1) 1s(1) 2s(1) 2s(1)
1s(2) 1s(2) 2s(2) 2s(2)
1s(3) 1s(3) 2s(3) 2s(3)
1s(4) 1s(4) 2s(4) 2s(4)

 

 
22. Determine the spin multiplicity of the vanadium ground state. 
 
 
Answer:  The vanadium ground state configuration is: V                    
         4s           3d 
Giving three unpaired electrons: 

 S = ( )mS max = 3/2  and    gS = (2S + 1) = 2 (3/2) + 1 = 4 
 
 
23. Determine the spin multiplicity of the manganese ground state. 
 
 

Answer: The manganese ground state configuration is: Mn              
          4s  3d 
Giving five unpaired electrons: 

 S = ( )mS max = 5/2  and    gS = (2S + 1) = 2 (5/2) + 1 = 6 
 
 
24. Determine the expectation value for the total spin angular momentum squared, that is <S2> 
for a triplet state. 
 
 
Answer:  For a triplet state, S = 1. The total spin angular momentum squared is then: 

 S(S+1) h- 2 = 1(1+1) h-2 = 2 h- 2 
 
 
25. Give the expectation value for the total spin angular momentum squared, that is <S2> for a 
quartet state. For example:                  
            4s        3d 
 
 
Answer:  For a quartet, S = 3/2. The total spin angular momentum squared is then: 
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 S(S+1) h- 2 = 3/2(3/2+1) h-2 = 3.75 h- 2 
 
 

26.  (a). Show that the spin-orbit coupling operator, l
̂
 s
̂

, for a single unpaired electron is: 
 

  l
̂
 s
̂

 = ½ ( j
^2 – l^2 – s^ 2 ) 

(b). Show that l
̂
 s
̂

 has the eigenvalue: 
 

 | l

 s


 | = ½ h–2 [ j(j+1) – l(l+1) – s(s+1)] 
 

Assume that the interaction is weak enough to be treated as a perturbation, which allows l and s 
to remain separately good quantum numbers. Accordingly, to a good level of approximation, the 
total angular momentum wave function is the product of orbital and spin angular momentum 
eigenfunctions: j,mj = l,ml s,ms. 
 
 

Answer:  (a). Note that j
̂

 = l
̂

+ s
̂

 and following Eq. 25.6.29: 
 

 j^2 = j
̂
 j
̂

 = ( l
̂

+ s
̂

)( l
̂

+ s
̂

) = l
̂
 l
̂

+ s
̂
 s
̂

 + 2 l
̂
 s
̂

 = l^2 + s^ 2 + 2 l
̂
 s
̂

 
 

Solving this last equation for l
̂
 s
̂

: 
 

 l
̂
 s
̂

 = ½ ( j
^2 –  l^2 – s^ 2 )        1 

 

(b).  The general problem for angular momentum has the form: – h-2 2 Yl,ml = h–2 l(l+1) Yl,ml . 
Assuming that the interaction is weak enough to be treated as a perturbation allows l and s to 
remain separately good quantum numbers. The problem is then separable in orbital and spin 
angular momentum and then the general form applies to j^2, l^2, and s^ 2 separately to give: 
 

 j
^2 j,mj = h-2 j(j+1) j,mj        2 

 l^2 l,ml  = h-2 l(l+1) l,ml         3 

 s^ 2 s,ms = h-2 s(s+1) s,ms        4 
 

where j,mj, l,ml, and s,ms are the angular momentum wave functions for the total angular 
momentum, orbital angular momentum, and spin angular momentum, respectively. The explicit 
functional forms for j,mj, l,ml, and s,ms are not needed. The total angular momentum wave 
function is then, to a good level of approximation, the product of the orbital and spin angular 
momentum eigenfunctions: 
 

 j,mj = l,ml s,ms         5 
 

The orbital angular momentum operator has no effect on the spin wave function and the spin 
angular momentum operator has no effect on the orbital angular momentum if the problem is 
separable: 
 

 l^2 l,ml s,ms = s,ms l^2 l,ml   and     s^ 2l,ml s,ms = l,ml s
^ 2 s,ms    6 
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Substituting Eqs. 2-6 into Eq. 1 gives: 
 

 ( l
̂
 s
̂

) j,mj = ½ (j
^2j,mj – l^2 l,ml s,ms – s^ 2l,ml s,ms)     7 

 ( l
̂
 s
̂

) j,mj = ½ h-2 [ j(j+1) j,mj – s,ms l(l+1) l,ml – l,ml s(s+1) s,ms]  8 

 ( l
̂
 s
̂

) j,mj = ½ h-2 [ j(j+1) j,mj –l(l+1) j,mj – s(s+1) j,mj]    9 

 ( l
̂
 s
̂

) j,mj = ½ h-2 [ j(j+1) –l(l+1) – s(s+1)] j,mj     10 
 

with the eigenvalue: 
 

 | l

 s


 | = ½ h-2 [ j(j+1) – l(l+1) – s(s+1)]      11 
 
 
27. Find the spin-orbit splitting of the 2D5/2 and 2D3/2 terms for the yttrium ground state. 
 
 
Answer:  The plan is to note that L = 1, S= ½, and J is 5/2 or 3/2. 
   For the d1 configuration of the group 3 transition metals, the energy of the terms is split by: 
 

 Eso (J = 5/2) = ½ Ahc [5/2(5/2 + 1) – 2(2+1) – ½(½+1)] = ½ Ahc [35/4 – 24/4 – 3/4] = Ahc 
 

 Eso (J = 3/2) = ½ Ahc [3/2(3/2 + 1) – 2(2+1) – ½(½+1)] = ½ Ahc [15/4 – 24/4 – 3/4] = –3/2 Ahc 
 

giving Eso = 5/2 Ahc. Yttrium is used in high power yttrium aluminum garnet, or YAG, lasers 
and in liquid nitrogen temperature super conductors. 
 
 
28.  Determine the atomic terms that correspond to a d2 configuration. Specify the total orbital 
angular momentum and the spin multiplicity. Use the following steps: 

(a). Draw all the possible explicit singlet states. For example, two of the explicit singlet states 
are: 

                    and                  

(b). Calculate ML for each of the states. 
(c). Find L = |ML|max. Remove the ML states from the list from part (b) corresponding to this L. 
(d). Find L = |ML|max for the remaining states. Remove the ML states from the list 

corresponding to this L. 
(e). Repeat part (d) until all the ML states are accounted for. Write the term symbols for each 

of the different L values that you have found (for example, 1D or 3P). 
(f). Repeat steps (a) through (e) for all possible explicit triplet states. For example one of the 

explicit triplet states is: 
                   

(g). Verify that the Clebsch-Gordon series applied to the total orbital angular momentum gives 
the same results. 

 
 
Answer:  (a). All the possible singlet arrangements are, in no particular order: 
 



Chapter 25: Atomic Structure  19 

             ML   ML     ML       ML 
        2     1    0    -1   -2            2     1    0    -1   -2                2     1    0    -1   -2                 2     1    0    -1   -2  

                       4                         2                         0                        -4 

                      3                        1                       -1 

                      2                        0                       -2 

                      1                       -1                        -2 

                      0                              -3 
 

(b).  The full list is then: 
 

 ML = {4,3,2,2,1,1,0,0,0,-1,-1,-2,-2,-3,-4} 
 

(c).  With L = |ML|max = 4, the first term is a G term based on the definitions of the term symbols: 
 

L: 0 1 2 3 4 
Term: S P D F G 

 

Removing ML = {4,3,2,1,0, -1,-2,-3,-4} from the full list leaves: 
 

 ML = {2,1,0,0,-1,-2} 
 

(d).  Repeating the process, L = |ML|max = 2 and the second term is a D term. Removing 
ML = {2,1,0, -1,-2} leaves: ML = {0}. 
(e).  The last term is an S term. The final singlet terms are 1G, 1D, 1S. 
(f).  All the possible triplet arrangements are, in no particular order: 
 

   ML       ML           ML 
        2     1    0    -1   -2    2     1    0    -1   -2                  2     1    0    -1   -2 

                      3                     1                       -1 

                      2                     0                       -2 

                      1                    -1                       -3 

                      0 
 

The full list is then: ML = {3,2,1,1,0,0,-1,-1,-2,-3} 
 

With L = |ML|max = 3, the first term is an F term. Removing ML = {3,2,1,0,-1,-2,-3} leaves: 
 

 ML = {1,0,-1} 
 

Repeating the process, L = |ML|max = 1 and the second term is a P term, which corresponds to 
ML = {1,0,-1}. In summary, the resulting triplet terms are then 3F, 3P. 
 

(g).  Using the Clebsch-Gordon series for the total orbital angular momentum for a d2 
configuration corresponds to l1 = 2 and l2 = 2 so that: 
 

 L = l1 + l2, l1 + l2 – 1, ..., | l1 – l2| = 4, 3, 2, 1, 0 
 

giving G, F, D, P, and S terms as listed above. 
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29.  Use the Clebsch-Gordon series and the Russell-Saunders coupling scheme to find the 
possible total angular momentum J states for the terms that result from the d2 configuration. See 
the previous problem for the terms. 
 
 

Answer:  The plan is to use the Clebsch-Gordon series for J


 = L


 + S


 giving: 
J = L + S, L + S – 1,...., |L – S|. In the previous problem, the Clebsch-Gordon series was applied 
to the coupling of the orbital angular momenta of the different electrons for the given 
configuration. In this problem, the Clebsch-Gordon series is applied to the coupling of the total 
orbital angular momentum and the total spin angular momentum. 
   Since the total spin quantum number for the singlet states is 0, then J = L and the full singlet 
terms are 1G4, 1D2, 1S0. Next consider the triplet terms. Applying the Clebsch-Gordon series for 
the total angular momentum results in the J values: 
 

 3F:  L = 3, S = 1:    J = 3 + 1, ...., |3 – 1| = 4, 3, 2 giving 3F4, 3F3, 3F2 
 3P:  L = 1, S = 1:    J = 1 + 1, ...., |1 – 1| = 2, 1, 0 giving 3P2, 3P1, 3P0 
 
 
30.  Use the Clebsch-Gordon series and the Russell-Saunders coupling scheme to find the 
possible total angular momentum J states for a 3P term. 
 
 
Answer:  The plan is to note that a 3P term corresponds to L = 1 and S = 1. 
   The Clebsch-Gordon series for L = 1 and S = 1 gives: 
 

 J = L + S, L + S – 1, ..., | L – S| = {2, 1, 0}.  
 

The final terms are 3P2, 3P1, and 3P0. 
 
 
31.  The previous problem uses the Clebsch-Gordon series to find the possible values for the total 
angular momentum for a 3P term. This problem takes a graphical approach to reach the same 
conclusion. (a). Draw all the angular momentum diagrams to show the possible total angular 
momentum MJ states for a 3P term. (b). Find MJ for each explicit configuration. (c). Determine 
the possible values for J. Consider only the projections on the z-axis. One example, for ML = 1 
and MS = 0 giving MJ = 1, is: 
 
    MJ = 1: 
 
 
 
 
 
 
 
Answer:  (a)-(b). The plan is to note that a 3P term corresponds to L = 1 with ML = {-1,0,1} and S 
= 1 with MS = {-1,0,1}. The Clebsch-Gordon series for L = 1 and S = 1 gives J = {2, 1, 0}. 
   The complete set of explicit states are diagrammed below. 

z-component of the orbital angular momentum, ML 
z-component of the spin angular momentum, Ms 
z-component of the total angular momentum, MJ 

Legend: 

z 

MS = 0 

ML = 1h- 
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   MJ = 2      MJ = 1      MJ = 0 
 
 
 
 
 
 
 
 
   MJ = 1      MJ = 0      MJ = -1 
 
 
 
 
 
 
 
 
 
   MJ = 0      MJ = -1       MJ = -2 
 
(c). The complete set of MJ values is: 
 

 MJ = {2,1,1,0,0,0,-1,-1,-2} 
 

Using J = |MJ|max to extract the first J value gives J = 2. The corresponding degenerate MJ states 
associated with J = 2 are MJ = {2,1,0,-1,-2}, which leaves: 
 

 MJ  = {1,0,0,-1} 
 

Using J = |MJ|max to extract the next J value gives J = 1. The corresponding degenerate MJ states 
associated with J = 1 are MJ = {1,0,-1}, which leaves {0}. The final J is J = 0. The final terms are 
3P2, 3P1, and 3P0, just as we determined in the last problem using the Clebsch-Gordon series. 
 
 
32.  (a). Use the Clebsch-Gordon series and the Russell-Saunders coupling scheme to find the 
possible total angular momentum J states for a 3D term. (b). Determine the complete set of 
explicit MJ states for a 3D term. Determine the possible total angular momentum J states from the 
complete set of MJ values. Compare your results with part (a). For example, two explicit MJ 
states are tabulated below: 
 

z 

ML = 0 

MS = -1h- 

z 

ML = 0 

MS = 1h- 

z 

MS = 0 ML = 0 

z 

MS = 0 

ML = -1h- 

z 

ML = -1h- 

MS = 1h- 

MS = -1h- 
ML = -1h- 

z 

z 

MS = -1h- 

ML = 1h- 

z 

MS = 1h- 
ML = 1h- 

z 

MS = 0 

ML = 1h- 
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ML MS MJ 

2 1 3 
2 0 2 

 
 
Answer:  The plan is to note that a 3D term corresponds to L = 2 with ML = {-2,-1,0,1,2} and 
S = 1 with MS = {-1,0,1}. 
(a).  The Clebsch-Gordon series for L = 2 and S = 1 gives: 
 

 J = L + S, L + S – 1, ..., | L – S| = {3,2,1}. 
 

The final terms are 3D3, 3D2, and 3D1. 
(b).  The complete set, in no particular order, is: 
 

ML MS MJ  ML MS MJ  ML MS MJ 

2  1 3    0  1  1  -2  1 -1 
2  0 2    0  0  0  -2  0 -2 
2 -1 1    0 -1 -1  -2 -1 -3 
1  1 2  -1  1  0     
1  0 1  -1  0 -1     
1 -1 0  -1 -1 -2     

 

The complete set of MJ values are: 
 

 MJ = {3,2,2,1,1,1,0,0,0,-1,-1,-1,-2,-2,-3} 
 

Using J = |MJ|max to extract the first J value gives J = 3. The corresponding degenerate MJ states 
associated with J = 3 are MJ = {3,2,1,0,-1,-2,-3}, which leaves: 
 

 MJ  = {2,1,1,0,0,-1,-1,-2} 
 

Using J = |MJ|max to extract the next J value gives J = 2. The corresponding degenerate MJ states 
associated with J = 2 are MJ = {2,1,0,-1,-2}, which leaves: 
 

 MJ  = {1,0,-1} 
 

The final J is J = 1. The final terms are 3D3, 3D2, and 3D1, just as we determined using the 
Clebsch-Gordon series. [The previous problem provides a graphical interpretation for 
determining all the possible MJ states, if you are interested.] 
 
 
33.  Using the complete enumeration of explicit configurations, show that the O atom 
configuration 2s2 2p4 gives rise to 1D, 3P, and 1S terms (just like C: 2s2 2p2). Also verify that the 
Clebsch-Gordon series based on the holes gives the same terms. The holes are the empty orbitals 
in the partially filled subshell. 
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Answer: The configuration is O:  2p4. The explicit configurations are: 
 

 ML =  ml   ML =  ml   ML =  ml 
             

+1      0    -1 

       2    +1     0    -1 

     1         1    +1     0    -1 

     0         0           0 

    -1        -1 

      -2 
 

      1D           3P             1S 
 
For the first set of singlet configurations, the maximum ML is 2, giving a 1D term. For the triplet 
configurations, the maximum ML is 1, for a 3P term. For the remaining singlet configuration, the 
maximum ML is 0, giving a 

1S term: 
 

       L 0 1 2 3 4 5 
  Term S P D F G H 
 

The Clebsch Gordon series can also be used to find the total orbital angular momentum with the 
holes in the p4 configuration. The holes are both in the p-subshell giving l1 = 1 and  l2 = 1: 
 

Clebsch-Gordan Series: L = l1 + l2, l1 + l2 – 1, …, |l1 – l2|   L = |ML| max 
 

2p4:  1 + 1, …, |1 – 1| = 2, 1, 0 
2p4:  D, P, S 
 
 
34.  A p2 configuration gives 1S, 1D, 3P terms. Give the terms for a p4 configuration. 
 
 
Answer:  The singlet terms have S = 0, so J = L. The J values for a 3P term are given by the 
Clebsch-Gordon series with S = 1 and L = 1: 
 

For 1D, S = 0 and L = 2 so 1D2. 
For 3P, S = 1 and L = 1 with  J = L + S, L + S – 1, …, |L – S| = 1 + 1,….,|1 – 1| = 2, 1, 0 
 or  3P2, 3P1, 3Po. 
For  1S, S = 0 and L = 0 so 1So. 
 
 
35.  A p2 configuration gives 1S, 1D, 3P terms. Give the terms for a p4 configuration. Give the 
lowest energy term for ground state p2 and p4 configurations. 
 
 
Answer:  The plan is to note that the p-subshell can hold 6 electrons, so a p2 and a p4 
configuration are complementary, that is for the p2 case n = 6, m = 2, and n – m = 4. The energy 
order of the terms is given by Hund’s three rules, Sec. 25.5. 
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   A p2 and p4 configuration give the same terms. In other words, the “holes” in the p4 
configuration have the same explicit configurations as the electrons in the p2 configuration. The 
triplet terms are lowest in energy by Hund’s first rule. The J values for a 3P term are given by the 
Clebsch-Gordon series with S = 1 and L = 1: J = L + S, …. |L – S| = 2, 1, 0. For a p2 
configuration, the p-subshell is less than half-full, so the term with lowest J is lowest, giving the 
lowest energy term as 3Po. For the p4 state, the p-subshell is over half-filled giving the lowest 
energy term as 3P2. Carbon and oxygen are examples, Figure 25.6.3. 
 
 
36.  A d3 configuration gives 2P, 2D, 2D, 2F, 2G,2H, 4P, 4F terms. Give the terms for a d7 
configuration. Give the lowest energy term for ground state d3 and d7 configurations. 
 
 
Answer:  The plan is to note that the d-subshell can hold 10 electrons, so a d3 and a d7 
configuration are complementary, that is for the d3 case n = 10, m = 3, and n – m = 7. The energy 
order of the terms is given by Hund’s three rules, Sec. 25.5. 
   A d3 and d7 configuration give the same terms. In other words, the “holes” in the d7 
configuration have the same explicit configurations as the electrons in the d3 configuration. The 
quartet terms are lowest in energy by Hund’s first rule. The F terms are the lowest quartet terms 
by Hund’s second rule. The J values for a 4F term are given by the Clebsch-Gordon series with S 
= 3/2 and L = 3: J = L + S, …. |L – S| = 9/2, 7/2, 5/2, 3/2. For a d3 configuration, the d-subshell is less 
than half-full, so the term with lowest J is lowest, giving the lowest energy term as 4F3/2. For the 
d7 state, the d-subshell is over half-filled giving the lowest energy term as 4F9/2. Vanadium and 
cobalt are examples, Figure 25.6.3. 
 
 
37.  Write a spreadsheet to plot the 3-21G Gaussian orbital for a 2px orbital on carbon, along the 
x-axis. 
 
 
Answer:  The plan is to note that restricting the plot to the x-axis gives x = r. The plot then is of 
the wave function amplitude versus x. In other words, along the x-axis  = 90, = 0, and the 
conversion from spherical polar coordinates to Cartesian coordinates is x = r sin cos = r 
   The wave function is given by the equations on the handout: 
 

 2px = 0.55646 2px(inner) + 0.58708 2px(outer) 
 

with: 2px(inner) = 0.2365 gx(3.665,r) + 0.8606 gx(0.771,r) 
         = 0.2365 gx(3.665,r) + 0.8606 gx(0.771,r) 

        = 0.2365 



128(3.665)5

π3

¼
 x e–3.665r2 + 0.8606 



128(0.771)5

π3

¼
 x e–0.771r2 

and: 2px(outer) = 1.000 gx(0.196,r) 

         = 1.000 



2(0.196)

π

¼
 x e–0.196r2 

 

The first rows of the spreadsheet are given below. The basis set constants are reprinted at left. 
The normalization constants for each of the Gaussian primitives is listed at the top of each 
column for the three primitives. Primitives 1 and 2 are for the inner component of the split 
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valence shell. Primitive 3 is for the outer component. The inner and outer portions are calculated 
separately so that the plot can show the importance of the two components of the split-valence 
shell. 
 

A1 2 3 4 5 6 7 8 9   11 12 13 14 15 

2 3-21G px orbital 

3 Primitives: scaled: 

4 C Normalization: 7.2282 1.0291 0.1857 0.5565 0.5871 

5 S 3 1 r gx1 gx2 gx3 
2px 
inner 

2px 
outer 

2px 
inner 

2px 
outer 

2px 
total 

6 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

7 172.3 0.0618 0.1 0.6968 0.1021 0.0185 0.2526 0.0185 0.1406 0.0109 0.1515 

8 25.91 0.3588 0.2 1.2485 0.1996 0.0369 0.4670 0.0369 0.2599 0.0216 0.2815 

9 5.533 0.7007 0.3 1.5592 0.2880 0.0547 0.6166 0.0547 0.3431 0.0321 0.3752 

10 SP 2 1 0.4 1.6085 0.3639 0.0720 0.6935 0.0720 0.3859 0.0423 0.4282 

11 3.665 -0.396 0.2365 0.5 1.4457 0.4244 0.0884 0.7071 0.0884 0.3935 0.0519 0.4454 

12 0.771 1.2158 0.8606 0.6 1.1592 0.4679 0.1038 0.6768 0.1038 0.3766 0.0610 0.4376 

13 SP 0.7 0.8399 0.4938 0.1181 0.6236 0.1181 0.3470 0.0693 0.4163 

14 0.196 1 1 0.8 0.5539 0.5028 0.1311 0.5637 0.1311 0.3137 0.0770 0.3906 

15 0.9 0.3342 0.4962 0.1426 0.5060 0.1426 0.2816 0.0837 0.3653 

16 1 0.1851 0.4762 0.1527 0.4536 0.1527 0.2524 0.0896 0.3420 

 
The plot is shown below. 
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38.  In the integral for the expectation value of the electron-electron repulsion in the helium 
atom, we used the Law of Cosines, r12 = (r2

1 + r2
2 – 2 r1r2 cos )½. Prove this relationship using the 

following steps. 
(a).  The distance between the two electrons is the magnitude of the vector difference: 
r12 = | r1 – r2|, where r1 is the vector pointing to electron 1 and r2 is the vector pointing to 

electron 2. The length of r1 is r1 and of r2 is r2. The angle between the two vectors is . The 

distance between the two electrons does not dependent on how the coordinate system is oriented, 
only the difference is important. We orient the coordinate system with r1 pointing along the z-

axis and r2 parallel to the x-axis. The x, y, and z coordinates are then conveniently expressed in 

terms of r, , and . Show that the coordinates of the two electrons are given as: 
 
 r1 = (0, 0, r1) 

 r2 = (r2 sin , 0, r2 cos) 

 
 
 
 
(b).  From the position vectors in part (a), find r12 = | r1 – r2|. Remember that sin2 + cos2 = 1. 

 
 
Answer:  (a).  The transformation between Cartesian and spherical polar coordinates is given by 
Eqs. 24.5.14. With electron 1 lying on the z-axis,  = 0, giving x = 0, y = 0, and z = r1 cos  = r1. 
For electron 2, the electron lies in the x-z plane giving  = 0. Then x = r2 sin  cos  = r2 sin . 
The value of z is z = r2 cos . 
(b). The vector difference is: 
 

 r1 – r2 = (0 – r2 sin ) i


 + (0 – 0) j


 + (r1 – r2 cos ) k


 
 

were i


, j


, and k


 are the orthogonal unit vectors define the orientations of the x, y, and z-axes, 
respectively. The magnitude is the square root of the sum of squares: 
 

 r2
12 = (– r2 sin )2 + (r1 – r2 cos )2 = r2

2 sin2 + r2
1 – 2 r1r2 cos  + r2

2 cos2 
 

Substituting sin2 + cos2 = 1 into this last equation gives:   r2
12 = r2

1 + r2
2 – 2 r1r2 cos  

Taking the square root of both sides gives the Law of Cosines: 
 

 r12 = (r2
1 + r2

2 – 2 r1r2 cos )½ 
 

The next problem continues the determination of the expectation value of the electron-electron 
repulsion energy. 
 
 
39.  Using the substitution q = cos , show that (Eq. 25.7.5): 
 

 


0
 

1
(r2

1
 + r2

2
 – 2 r1r2 cos )½  sin  d = 

2
r1

 for r1 > r2  or   = 
2
r2

   for r1 < r2 

++ 

– 

– 

r12 r1 

r2 

 

z 

x 
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Answer:  The substitution q = cos  gives  dq/d = – sin   so that dq = – sin  d. The integral 
limits of 0 to  change to cos 0 to cos , or 1 to – 1. Substitution into the integral gives: 
 

 


0
 

1
(r2

1
 + r2

2
 – 2 r1r2 cos )½  sin  d = – 

-1

1
 

1
(r2

1
 + r2

2
 – 2 r1r2 q)½ dq = 

1

–1
 

1
(r2

1
 + r2

2
 – 2 r1r2 q)½ dq 

 

Switching the integral limits reverses the sign of the integral. The integral is in the form: 
 

  1
(a + bx)½ dx = 2 

 (a + bx)½

b  
 

which can be verified by taking the derivative of the right side. Substitution of the general form 
into the first equation gives: 
 

  = 2 
1

–2 r1r2
 [(r2

1
 + r2

2
 – 2 r1r2 q)½|

 1
-1 = – 

1
r1r2

 [(r2
1
 + r2

2
 – 2 r1r2)½ – (r2

1
 + r2

2
 + 2 r1r2)½] 

 

Note that (r2
1
 + r2

2
 – 2 r1r2) = (r1 – r2)2 and (r2

1
 + r2

2
 + 2 r1r2) = (r1 + r2)2. The square roots each have 

two roots, one positive and one negative: 
 

  = – 
1

r1r2
 {[(r1 – r2)] – [(r1 + r2)]} 

 

There are four possibilities for the signs: 
 

 [+,+]   = – 
1

r1r2
 [r1 – r2 – r1 – r2)] = 2/r1 

 [+,–]   = – 
1

r1r2
 [r1 – r2 + r1 + r2)] = – 2/r2 

 [–,+]   = – 
1

r1r2
 [– r1 + r2 – r1 – r2)] = 2/r2 

 [–,–]   = – 
1

r1r2
 [– r1 + r2 + r1 + r2)] = – 2/r1 

 

The electron-electron repulsion is overall positive, so only the [+,+] roots and the [–,+] roots are 
valid. However, the integral can only have one result for a given set of circumstances. Both 
individual contributions at the integral limits of  1-1 should give positive results for the electron-
electron repulsion energy. The (r1 – r2) term results from the evaluation at the upper limit. If 
r1 > r2 then (r1 – r2) is positive and the [+,+] roots gives an overall positive contribution for the 
upper limit for the integral and a final integral value that is also positive. If r1< r2 then (r1 – r2) is 
negative and then the [–,+] roots give an overall positive contribution for the upper limit. The 
two valid results are then: 
 

 


0
 

1
(r2

1
 + r2

2
 – 2 r1r2 cos )½  sin  d = 

2
r1

  for r1 > r2 

         = 
2
r2

  for r1 < r2 
 



28 
 

The next problem continues the determination of the expectation value of the electron-electron 
repulsion energy. 
 
 
40.  Evaluate the following integrals, verifying Eqs. 25.7.8 and 25.7.9: 

 


r1
 e–2Zr2/ao r2 dr2 and 

r1

0
e–2Zr2/ao r2

2 dr2 

 
 
Answer: The r2 integrals are derived from the tabulated indefinite integrals: 
 

  e–ax x dx = – 
e–ax

a2  (ax + 1) and  e–ax x2 dx = – 
e–ax

a3  (a2x2 + 2ax + 2) 
 

Note that limx e–ax(ax) = 0 using L'Hospital’s Rule. The definite integrals are then: 
 

 


xo
 e–ax x dx = 

e–axo

a2  (axo + 1) = 
xo

a  e–axo  + 
1
a2 e–axo 

 
xo

0  e–ax x2 dx = – 
e–axo

a3  (a2x2
o + 2axo + 2) + 

2
a3 = – 

x2
o

a  e–axo – 
2xo

a2  e–axo – 
2
a3 e–axo + 

2
a3 

 

Setting a = 2Z/ao, x = r2, and xo = r1 gives the definite integrals as: 
 

 


r1
 e–2Zr2/ao r2 dr2 = 

1
2 



ao

Z  r1 e–2Zr1/ao + 
1
22 



ao

Z
2
 e–2Zr1/ao    (25.7.8) 

 
r1

0
e–2Zr2/ao r2

2 dr2 = – 
1
2 



ao

Z  r2
1 e–2Zr1/ao – 

1
2 



ao

Z
2
 r1 e–2Zr1/ao – 

1
22 



ao

Z
3
 e–2Zr1/ao + 

1
22 



ao

Z
3
 

           (25.7.9) 
 

The next problem continues the determination of the expectation value of the electron-electron 
repulsion energy. 
 
 
41.  (a). Verify Eq. 25.7.11 starting from Eq. 25.7.10. (b). Verify Eq. 25.7.12 starting from Eqs. 
25.7.7 and 25.7.8. 
 
 

Answer: Integral tabulations list 0  x e–ax dx = 1/a2, 0  x2 e–ax dx = 2/a3, and 0  x3 e–ax dx = 6/a4. 
(a).  Substituting a = 4Z/ao for the first three integrals or a = 2Z/ao into the fourth integral in 
Eq. 25.7.10 results in: 
 

 


0
e–2Zr1/ao r1 (

r1

0
e–2Zr2/ao r2

2 dr2) dr = 

  = – 
1
2 



ao

Z  6 



ao

4Z

4

– 
1
2



ao

Z
2
2 



ao

4Z

3

 – 
1
22 



ao

4Z
2
 + 

1
22 



ao

Z
3





ao

2Z
2
 

  = – 
6
29 



ao

Z
5
 – 

1
26 



ao

Z

5

 – 
1
26 



ao

Z

5

+ 
1
24 



ao

Z

5

 
 

(b).  Substitution of Eq. 25.7.8 into the second integral in Eq. 25.7.7 gives: 
 



Chapter 25: Atomic Structure  29 

 


0
 e–2Zr1/ao r2

1 (


r1
 e–2Zr2/ao r2 dr2) dr = 

  = 
1
2 



ao

Z  


0
 r3

1 e–4Zr1/ao dr + 
1
22 



ao

Z
2



0
 r2

1 e
–4Zr1/ao dr

 

Using the tabulated integrals and substituting a = 4Z/ao into the last equation gives: 
 

  = 
1
2 



ao

Z  6 



ao

4Z

4

 + 
1
22 



ao

Z
2
2 



ao

4Z

3

 

  = 
6
29 



ao

Z
5
 + 

1
27 



ao

Z

5

 
 

The next problem continues the determination of the expectation value of the electron-electron 
repulsion energy. 
 
 
42.  Using Eqs. 25.7.7, 25.7.11, and 25.7.12, verify Eq. 25.7.14. 
 
 
Answer:  Adding Eqs. 25.7.11 and 25.7.12 gives: 
 

 


0
e–2Zr1/ao r1 (

r1

0
e–2Zr2/ao r2

2 dr2) dr + 


0
 e–2Zr1/ao r2

1 (


r1
 e–2Zr2/ao r2 dr2) dr = 

 

  = – 
6
29 



ao

Z
5
 – 

1
26 



ao

Z

5

 – 
1
26 



ao

Z

5

+ 
1
24 



ao

Z

5

 + 
6
29 



ao

Z
5
 + 

1
27 



ao

Z

5

 

  = 



– 

1
26 – 

1
26 + 

1
24 + 

1
27  



ao

Z

5

 = 



– 

2
27 – 

2
27 + 

8
27 + 

1
27  



ao

Z

5

 = 
5
27 



ao

Z

5

 
 

Substituting this last result into Eq. 25.7.7 gives Eq. 25.7.13: 
 

 E(1)
gs = 16 



Z

ao

6

 
e2

4πo
 
5
27 



ao

Z

5

 = 24 



Z

ao

6

 
e2

4πo
 
5
27 



ao

Z

5

 = = 
5Z
8  





e2

4o ao
 

 

The term in parentheses in the last equation is equal to one Hartree, 1H = 27.2116 eV. The full 
nuclear charge for helium is Z = 2, giving E(1)

gs = 34.01 eV. 
 
 
Literature Cited: 
 
1. M. W. Hanna, Quantum Mechanics in Chemistry, 3rd. ed., Benjamin-Cummings, Menlo Park, 
CA, 1981. Exercise 6-45, p. 176. 


