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Chapter 25: Atomic Structure 
 

   Why can only two electrons occupy each atomic orbital? 
 
 
   The electronic structure of an atom or monatomic ion is determined by the energies and spatial 
distribution of the atomic orbitals. The electronic structure of atoms and atomic ions is the 
foundation of chemical bonding theories. Chemical bonding is a small perturbation on the 
structure of an atom. The atoms in chemical bonds maintain much of the electronic structure of 
the corresponding free atom. Our understanding of chemical reactivity is often explained using 
the periodic properties of the elements. The periodic properties of size, ionization energy, 
electron affinity, and electronegativity are the results of the electronic structure of the elements 
and the monoatomic ions. 
    The energies and degeneracies of the atomic orbitals determine the accessible oxidation states 
of the elements. An understanding of the speciation of the different oxidation states of the 
elements is an important aspect of biogeoenvironmental chemistry and inorganic chemistry. For 
example, descriptions of metal ion complexes start with an understanding of the electron 
configuration of the free metal ion. The ease of conversion of the elements among their 
accessible oxidation states influences the fate and transport of compounds in the environment. 
   Angular momentum is an important property of atoms and atomic ions. Electrons move around 
the nucleus and take on quantized amounts of orbital angular momentum. The quantum behavior 
of angular momentum determines the overall shape of the periodic table and the accessible 
oxidation states for the elements. The orbital angular momentum of an electron determines the 
shape of its orbital. The interaction of the intrinsic angular momentum of the electron and orbital 
angular momentum is called spin-orbit coupling. Spin-orbit coupling is an important factor in 
chemical reactivity and atomic spectroscopy, especially of heavy elements. 
   Atomic spectroscopy encompasses a commonly used group of analytical techniques for the 
determination of elemental composition. Atomic spectroscopic techniques include atomic 
absorption and inductively coupled plasma-optical emission, absorption, and fluorescence. X-ray 
based spectroscopies use core level transitions for elemental analysis. Finally, the magnetic 
properties of the elements are critical in diverse areas, including medical diagnostics, the 
magnets used in wind turbine electrical generators, and magnetic media for data storage. 
   In this chapter we study the energies, spatial distribution, and angular momentum interactions 
in atoms and atomic ions. The Schrödinger equation for multi-electron atoms cannot be solved 
exactly. The approximation techniques that are used for atomic structure are also the basis of 
electronic structure methods for molecules. The approximation methods include perturbation 
theory, variation theory, and self-consistent field theory. 
 
25.1 Hydrogen Atom 
 

To determine the electronic structure of atoms, it is best to start with the hydrogen atom, which 
consists of a single proton as the nucleus and a single electron. We will use the hydrogen atom as 
the basis for building-up the electronic structure of multi-electron atoms. In determining the 
electronic structure of the hydrogen atom, we will begin by determining the lowest energy, 
ground state. We used the same approach for the harmonic oscillator. Excited states of the 
hydrogen atom are likewise constructed by multiplying the ground state with a polynomial to 
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introduce nodes. The presence of nodes indicates higher curvature, which in turn indicates higher 
kinetic energy than the ground state. 
 
The Ground State of the Hydrogen Atom:   The Schrödinger equation for the hydrogen atom is in 
the same general form as any quantum mechanical system: 
 

 – 
ħ2

2m 2  + V^  = E         25.1.1 
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Figure 25.1.1: (a). The Coulomb attraction of an electron and nucleus with Z = 1. (b). The 
Coulomb potential is a function only of the radial distance of the electron from the nucleus, r. 




As a first approach, we will assume the nucleus is stationary, and then m is the mass of the 
electron. The wave functions are eigenfunctions of the Hamiltonian and are called atomic 
orbitals. The Coulomb potential governs the attraction of the electron for the nucleus: 
 

 V^ (r) = 
–Z e2

4or
  e = 1.60218x10-19C    o = 8.85419 x 10-12 J-1 c2 m-1 25.1.2 

 

where Z is the charge on the nucleus and r is the radial distance of the electron from the nucleus, 
Figure 25.1.1a. The permittivity of free space, o, determines the strength of electrostatic 
interactions in vacuum. We will leave the nuclear charge as a parameter; Eq. 25.1.2 holds for all 
one-electron atoms and ions. For hydrogen and deuterium, Z = 1. For the one-electron ions, He+ 
has Z = 2, Li2+ has Z = 3, and Be3+ has Z = 4. In much of the following, we will mention only the 
hydrogen atom, but keep in mind the applicability to one-electron ions. Because the Coulomb 
potential is only a function of r, the Schrödinger equation for the hydrogen atom is best 
expressed in spherical polar coordinates: 
 

 – 
ħ2

2m2  + 
–Z e2

4or
  = E         25.1.3 

 

with    2 = 
1
r 



∂2

∂r2  r + 


1

r2 2      (24.5.23)   2 = 
1

sin2 




∂2

∂2  + 




1

sin   




∂ 

∂ sin  
∂ 
∂     (24.5.25) 

 

The angular operator, 2, is the general curvature for 3D-rotation, which in this case describes 
the motion in  and  of the electron about the nucleus. The Schrödinger equation is separable in 
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r, , and . As a result, the full wave function is the product of one-dimensional wave functions, 
 = R(r) () (). The R(r) wave function is called the radial part of the atomic orbital. We 
have already solved the  part of the wave function. The () wave function gives the angular 
momentum of the electron in the x-y plane with eigenvalue m l , Eqs. 24.5.1-24.5.12: 
 

 – 
ħ2

2mr2 
∂2
∂2  = – 

ħ2m2
l  

2mr2   Lz = ħ ml  = 




1

2
½

 eiml    25.1.4 
 

The  and  wave functions, taken together, are the spherical harmonics, () () = Yl,ml , 
Eq. 24.5.32: 
 

  = R(r) () () = R(r) Yl,ml       25.1.5 
 

For full 3D-rotation, the spherical harmonics are the eigenfunctions of the square of the total 
angular momentum, with eigenvalues l and ml: 
 

 – h-22 Yl,ml = h-2 l(l + 1) Yl,ml              (24.5.32)  25.1.6 
 

Substitution of Eqs. 24.5.23, 24.5.25, and 25.1.5 into Eq. 25.1.3 gives the Schrödinger equation 
for the hydrogen atom: 
 

 – 
ħ2

2m 



1

r 
∂2

∂r2 r R(r) Yl,ml
 + 
2

r2  R(r) Yl,ml
 – 

Z e2

4or
 R(r) Yl,ml = E R(r) Yl,ml  25.1.7 

 

The 2 operator only acts on  and , giving: 
 

 2R(r) Yl,ml = R(r) 2Yl,ml        25.1.8 
 

The spherical harmonics are eigenfunctions of 2. Solving Eq. 25.1.6 for 2 Yl,ml and substitution 
into Eq. 25.1.7 gives: 
 

 – 
ħ2

2m 





Yl,ml
 
1
r 

∂2

∂r2 r R(r) – R(r) 
l(l + 1)

r2  Yl,ml
 – 

Z e2

4or
 R(r) Yl,ml = E R(r) Yl,ml  25.1.9 

 

The partial derivative can be replaced by a one-dimensional derivative, because the radial wave 
function is only a function of r. Dividing both sides of the last equation by Y l,ml gives: 
 

 – 
ħ2

2m 



1

r 
d2

dr2 r R – 
l(l + 1)

r2  R  – 
Z e2

4or
 R = E R      25.1.10 

 

The ground state has the lowest possible energy, Egs, which from the last equation requires l = 0. 
The ground state has no angular momentum; the curvature in the wave function is only in the 
radial direction. The result is the radial Schrödinger equation for spherically symmetric orbitals: 
 

 – 
ħ2

2m 



1

r 
d2

dr2 r R  – 
Z e2

4πor
 R = Egs R   (spherically symmetric, l = 0) 25.1.11 

 

The most general approach to solving the radial part of the Schrödinger equation is to assume the 
wave function is in the form of a power series. For our purposes, we will make a guess at the 
form of the solution and then verify that the guess is an eigenfunction of the Hamiltonian. The 
probability of finding the electron should approach zero for large r. An exponential function has 
the appropriate asymptotic form and is a good guess: 
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 R(r) = A e–r          25.1.12 
 

where A is the normalization constant and  is a constant that determines the extent, that is size, 
of the orbital. Using the product rule, the first and second derivatives are: 
 

 
d 
dr r R = r 

dR
dr  + R         25.1.13 

 
d2 
dr2 r R = 

d 
dr



r 

dR
dr  + 

dR
dr  = r 

d2R
dr2  + 

dR
dr  + 

dR
dr  = r 

d2R
dr2  + 2

dR
dr     25.1.14 

 

Substitution of the second derivative into the radial Schrödinger equation, Eq. 25.1.11, gives: 
 

 – 
ħ2

2m 



2 R – 

2
r  R  – 

Z e2

4or
 R = Egs R   (ground state, l = 0) 25.1.15 

 

All the derivatives have been completed, only multiplicative functions remain, so we can divide 
through by the common factors to give: 
 

 – 
ħ22

2m  + 
ħ22
2mr  – 

Z e2

4or
 = Egs     (ground state, l = 0) 25.1.16 

 

The total energy, Egs, is a constant, but terms in r remain on the left side. The guessed wave 
function can only be an eigenfunction if the terms in r cancel to give: 
 


ħ2
mr  – 

Z e2

4or
 =       (ground state, l = 0) 25.1.17

 

The remaining constant term in Eq. 25.1.16 gives the energy as: 
 

 Egs = – 
ħ22

2m        (ground state, l = 0) 25.1.18 
 

This result is promising; the energy is in the same form as a free particle, a particle in a box (Eq. 
23.4.4), and the harmonic oscillator (Eq. 24.2.9). Eq. 25.1.17 determines the value of : 
 

  = 
Z e2

4o
 
m
ħ2          25.1.19 

 

Substituting  back into the equation for the energy, Eq. 25.1.18, gives the final result: 
 

 Egs = – 




Z2e4m

322o
2 ħ2       (ground state, l = 0) 25.1.20 

 

So far we have only considered the ground state. The complete solution to the Schrödinger 
equation, including excited states, gives the energy as: 
 

 En = – 




m e4

322o
2ħ2  

Z2

n2          

 

where n is the principle quantum number. The ground state corresponds to n = 1. The total 
energy is only a function of the principle quantum number and is independent of the angular 
momentum quantum number, l. All atomic orbitals with the same principle quantum number are 
degenerate in single-electron atoms and ions. The combination of fundamental constants in the 
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total energy and in  can be simplified by using the definition of the Bohr radius from 
Eq. 23.2.15: 
 

 ao = 
4o ħ2

me2   giving  En = – 
ħ2

2mao
2 

Z2

n2   = 
Z
ao

   25.1.22 
 

where ao = 0.052918 nm = 52.918 pm = 0.52918 Å. The energy of the hydrogen-like atomic 
orbitals can be expressed in several useful units: 
 

 En = -13.606 eV 
Z2

n2 = -109,678 cm-1 
Z2

n2 = -1312.7 kJ mol-1 
Z2

n2    
 

This result is consistent with the Rydberg formula, Eq. 23.2.10, verifying the quantum 
mechanical approach. For convenience, the Schrödinger equation for hydrogen-like atoms can 
also be expressed in dimensionless form, just as we did for the harmonic oscillator, Eq. 24.3.6. In 
dimensionless form the energy is given as: 
 

 En = – 
H
2 

Z2

n2          25.1.24 
 

where the effective unit of energy is the Hartree, H: 
 

1 H  27.211384 eV = 219,474.6 cm-1 = 2625.4996 kJ mol-1   25.1.25 
 

Hartrees are also commonly called atomic units, au. Many molecular orbital computer programs 
give energies in Hartrees. 
   The constant in Eq. 25.1.23 differs slightly from the empirical Rydberg constant, h = 
109677.5 cm-1. The difference is resolved if the reduced mass of the hydrogen atom is 
substituted for the electron mass in Eq. 25.1.1 and the resulting total energy, Eq. 25.1.19. The 
reduced mass of the hydrogen atom is  = mpme/(mp + me) where mp is the mass of the hydrogen 
nucleus and me the mass of the electron. 
   To complete the solution of the ground state, the wave function must be normalized. Using the 
wave function with  = Z/ao, Eqs. 25.1.12 and 25.1.22, gives the normalization integral as: 
 

 0

 0

 0

2 2 r2 sin dr d d = A2 0

 0

 0

2 e–2Zr/ao r2 sin  dr d d = 1  25.1.26 
 

The ground state wave function is spherically symmetric, so the integral factors into a product of 
one-dimensional integrals. The angular integrals give 4: 
 

 A2 0

2d0

 sin d0

 e–2Zr/ao r2 dr = A2 4 0

 e–2Zr/ao r2 dr = 1   25.1.27 
 

Integral tables list 0


 xn e–ax dx = n!/an+1 giving the normalization constant as: 

 

 A2 4 



2

(2Z/ao)3  = 1         25.1.28 
 

 A = 
1


 



Z

ao

3/2
          25.1.29 

 

The ground state wave function is spherically symmetric, because the wave function is not a 
function of  and . This result is anticipated since the ground state requires l = 0, giving no 
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angular momentum. Since l = 0, then ml must also be zero. The spherically symmetric l = 0 wave 
functions are called s-orbitals (the spectroscopic transitions involving these orbitals are “sharp”). 
The ground state can be labeled with the quantum numbers, n,l,ml = 100, or using spectroscopic 
notation as a 1s-orbital, 1s. Substitution of the normalization constant back into the wave 
function, Eq. 25.1.12, gives the ground state: 
 

 1s(r) = 100(r) = R(r) = 
1


 



Z

ao

3/2
 e–Zr/ao      25.1.30 

 

   For the hydrogen atom, the charge on the nucleus is Z = 1. For the one-electron ions, Z > 1. 
The effect of the increased nuclear charge is to decrease the extent of the orbital, Figure 25.2.1a. 
The decrease in size of an orbital with increasing nuclear charge is called orbital contraction. 
Now that we have the ground state wave function of the hydrogen atom, we can answer some 
important questions about the electronic distribution in the atom. 
 

How Big is an Atom? Expectation Values and Most Probable Values:   The hydrogen atom 1s 
orbital approaches zero amplitude asymptotically. So the size of the atom is somewhat arbitrary. 
There is a finite, though small, probability of the electron being centimeters away from the 
nucleus. There are several useful measures of the size of an atom. The most direct is the average 
radius as determined by the expectation value of r: 
 

 <r> =
  *

1s r 1s d

  *
1s 1s d

 = 0

 0

 0

2 r 2
1s r

2 sin  dr d d    25.1.31 

 

The wave function as given by Eq. 25.1.30 is normalized, giving  *
1s 1s d = 1. The squared 

wave function is spherically symmetric, so the integral over all angles is 4, Eq. 24.5.17: 
 

 <r> = 
1
 



Z

ao

3
(4) 


0


 e–2Zr/ao r3 dr       25.1.32 

 

Integral tables list  0


 xn e–ax dx = n!/an+1 giving the integral as: 

 

 <r> = 
1
 



Z

ao

3
(4) 

6
(2Z/ao)4 = 

3
2 

ao

Z       25.1.33 


Since ao is 0.529 Å, the average “size” of a hydrogen atom corresponds to a diameter of 1.56 Å. 
However, for a specific r, , and , the most probable spot for finding the electron is at r = 0, 
inside the nucleus. The atomic orbital is delocalized, so it is not surprising that the electron can 
be inside the nucleus. Consider throwing two rocks into a pond; the two waves generated pass 
through each other. The electron and the nucleus are both waves, so they should be able to pass 
through each other. However, it is surprising that the most probable spot for the electron is inside 
the nucleus. An equivalent approach based on the radial probability resolves this issue. 
   The radial probability distribution, P(r), is the integral of 2 over all angles  and : 
 

 P(r) dr = 0

 0

2  2 r2 sin  dr d d = 0

 sin  d0

2d 2 r2 dr   25.1.34 
 

The hydrogen 1s-orbital is spherically symmetric, so the angular integral is just 4: 
 

 P(r) dr = 2 4r2 dr     (spherically symmetric) 25.1.35 
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Figure 25.1.2: (a). The probability of finding the electron in a 1s-orbital in a narrow range 
around (r, , ) is proportional to 2. (b). The probability of finding an electron at a radius r, 
irrespective of angles, is given by P(r) dr = 2 4r2 dr. 

 
 

2 is probability of finding the electron at a specific r, , and . P(r) is the probability of finding 
the electron at radius r, irrespective of  and , Figure 25.1.2. The 4r2dr factor is the volume of 
the annular region from r to r + dr, Eq. 24.8.6. The radial probability is then the product of 2, 
which is a decreasing function of r, and 4r2, which is an increasing function of r. The product of 
a decreasing factor with an increasing factor gives a function with a maximum, Figure 25.1.2b. 
Even though the wave function amplitude decreases with distance, the radial probability 
increases to a maximum because more room is available at large r than small r. However, for 
very large r, the small value of 2 forces the radial probability to approach zero. The most 
probable radius, rmp, is a measure of the “size” of an atom. The most probable radius is the 
maximum of the radial probability distribution: 
 

 
dP(r)

dr  = 
d 
dr (4r2

mp 
2) = 4 





r2
mp 

d2

dr  + 2rmp 2  = 0      with 
d2

dr  = 



–2Z

ao
 2 25.1.36 

 
dP(r)

dr  = 4 



r2 

–2Z
ao

 2 + 2r 2  = 0       25.1.37 
 

Dividing by the common factors gives: 
 

 



– 

Zrmp

ao
 + 1  = 0  or   rmp = ao/Z      25.1.38 

 

Based on the most probable radius, the “size” of the hydrogen atom is a diameter of ~ 1 Å. The 
radial probability is particularly useful for spherically symmetric orbitals. 
   The average radius can also be calculated from P(r), by the integral over all r: 
 

 <r> = 


0


 r P(r) dr = 4


0


 2 r3 dr   (spherically symmetric) 25.1.39 

 

This integral is identical to Eq. , we just did the integrals in a different order. Knowing 
that the angular integral for a spherical distribution is 4, to find P(r) we just do the angular 
integrals first and do the r integral later. 
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   Another method for determining the size of an atom is useful for graphical representations of 
orbitals. Orbitals are often drawn as “balloon” type shapes that are based on fixed probability 
contour surfaces (Figure 25.2.2). For example, the 90% contour surface for the hydrogen 1s-
orbital is defined by the radius that encloses 90% of the probability for finding the electron, r90%: 
 

 


0

r90% 0

 0

2 2 r2 sin dr d d  (spherically symmetric) 25.1.40 
 

where the wave function is assumed to be normalized. You will show in the Problems that 
r90% = 2.66 ao/Z. How big is the hydrogen atom? The answer depends on the particular 
experiment that you are doing; <r>, rmp, and r90% are all useful. A ball of cotton candy is a better 
mental image of an atom than is a billiard ball. We are now ready to consider excited state 
atomic orbitals for hydrogen. 
 

25.2  Excited States are Built from the Ground State Wave Function 
 

   In Sec. 24.2, we showed that the excited states of the harmonic oscillator are obtained by 
multiplying the ground state wave function by a polynomial. The ground state acts as the 
asymptotic form that describes how the wave function approaches zero for large distances. The 
excited states for the hydrogen atom are constructed using the same method. The wave functions 
for the l = 0 spherical orbitals with principle quantum numbers n = 2 and 3 are called the 2s- and 
3s-orbitals, Figures 25.2.1: 


2s = 
1

4 2π
 



Z

ao

3/2
 



2 – 

Zr
ao

 e–Zr/2ao         3s = 
1

18 3π
 



Z

ao

3/2
 



6 – 

4Zr
ao

 + 
4Z2r2

9a2
o

 e–Zr/3ao 

        normalization           polynomial    asymptotic          normalization                polynomial                asymptotic 25.2.1 
 

The asymptotic form is taken from Eq. 25.1.30 with the exponential argument given by –Zr/nao. 
The appearance of the principle quantum number in the denominator increases the spatial extent 
for the higher energy orbitals. The average distance of the electron to the nucleus increases with 
n. The polynomial in r introduces radial nodes into the wave function. A radial node 
corresponds to zero wave function amplitude on the surface of a sphere centered on the nucleus. 
The order of the polynomial gives the number of zeros and hence the number of radial nodes. 
The radial node for the 2s-orbital occurs when the 2s-orbital amplitude is zero. Setting 2s = 0 
and dividing both sides of the equation by the multiplicative factors gives: 
 

 



2 – 

Zr
ao

 = 0  or  r = 2 ao/Z   (2s-node) 25.2.2 
 

The 2s-orbital has one radial node at r = 2ao = 1.06 Å. The total number of nodes in general is 
n – 1. For the s-orbitals all the nodes are radial nodes. The 3s-orbital has two radial nodes, Figure 
25.2.1c. The sign of the wave function changes across each node. The sign of the wave function 
is often called the phase. The change in phase across each node is often depicted as a change in 
color or gray value in 3D-graphical models of the orbitals. 
   The radial distribution functions are also plotted in Figure 25.2.1. As the number of radial 
nodes increases, the curvature increases, and the orbital kinetic energy increases. The radial 
nodes are a measure of the “wiggliness” of the wave function as the electron moves radially from 
the nucleus. The orbitals with angular momentum are constructed in an analogous fashion, where 
the polynomials are represented by the spherical harmonics. 
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Figure 25.2.1: Hydrogen atom spherical orbitals. (a). Increased nuclear charge contracts the 
orbitals. (b).-(c). The number of radial nodes is n – 1. 

 
 

   The n = 2 orbitals with angular momentum quantum number l = 1 and ml = -1, 0, +1 are: 
 

2pz = 
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4 2π
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ao
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e–Zr/2ao 

Zr
ao

 sin  ei   ml = +1 Lz = + h- 
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4 2π
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 sin  e–i  ml = -1  Lz = – h-  25.2.3 
 

The spherical harmonics Y1,-1, Y1,0, and Y1,1 used in these equations are taken from Table 24.5.1. 
The spherical harmonics generate a planar node that passes through the nucleus at either  = 90 
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for Y1,0 or  = 0 for Y1,-1 and Y1,1. The angular nodes with  = 0 include the z-axis. The node 
counting is given by: 
 

 total nodes = n – 1 
 total angular nodes = l 
 angular nodes that include the z-axis = ml 
 radial nodes = total nodes – angular nodes = n– 1 – l     25.2.4 
 

The number of radial nodes is simply determined by difference; there are only two types of 
nodes, radial and angular. The angular momentum quantum number, l, may not exceed n – 1, 
since the number of angular nodes may not exceed the total number of nodes. The absolute value 
of the magnetic quantum number, |ml|, may not exceed the angular momentum quantum number, 
since the number of angular nodes that include the z-axis may not exceed the number of angular 
nodes. These restrictions are summarized as: 
 

 n = 0, ….,   l = 0, …, n – 1   ml = – l, …, 0, …, +l  25.2.5 
 

The orbitals with the same principle quantum number form a shell of orbitals that are degenerate 
and have similar average radii. As n increases the average radius of each shell increases. The 
angular momentum quantum number determines the shape. Orbitals with l = 0 are “s-type,” l = 1 
are “p-type,” l = 2 are “d-type,” l = 3 are “f-type,” and alphabetically thereafter skipping the letter 
j. The magnetic quantum number determines the orientation, relative to the z-axis. 
 
 
              

Example 25.2.1: Orbital Degeneracy 
Find the degeneracy of the n = 1, 2, 3, and 4 principal quantum shells. 
 
 

Answer:  For n = 1, l can only be 0 and ml only 0, giving a degeneracy g = 1. The orbitals with 
the same n and l form a subshell. From Eq. 24.5.39, the degeneracy of the subshell is 2 l + 1. For 
the second principle quantum shell, the orbitals can be s- and p- type, l = 0 and 1. The shells are 
listed in Table 25.2.1. The degeneracy is seen to mirror the number of groups in each period of 
the periodic table. The p-block is 23 elements across, the d-block is 25 elements across, and 
the f-block is 27 elements across. 
 
              

 
 
   The form of the p-orbitals given in Eqs. 25.2.3 is for a non-interacting atom in free space. 
These orbitals are symmetric about the z-axis. The probability of finding the electron as a 
function of the  angle is * = e–iml eiml = 1. The electron can be found with equal probability 
at any  around the z-axis. Atoms have no directional preference in free space. When an atom is 
interacting with other atoms in chemical bonds an alternate form is appropriate. The identities in 
Eqs. 23.9.11 show that linear combinations of ei and e–i give the real and imaginary parts of a 
complex number: 
 

 
ei + e–i

2  = 
(cos  + i sin ) + (cos  – i sin )

2  = cos  
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ei – e–i

2i  = 
(cos  + i sin ) – (cos  – i sin )

2i  = sin          (23.9.11) 

 
 
 

Table 25.2.1.  The Orbitals in each Quantum Shell and the Degeneracy. 
 

n l ml type subshell 
degeneracy 

shell 
degeneracy 

1 0 0 s 1 g = 1 
      
2 0 0 s 1  
 1 -1, 0, 1 p 3 g = 4 
      
3 0 0 s 1  
 1 -1, 0, 1 p 3  
 2 -2, -1, 0, 1, 2 d 5 g = 9 
      
4 0 0 s 1  
 1 -1, 0, 1 p 3  
 2 -2, -1, 0, 1, 2 d 5  
 3 -3, -2, -1, 0, 1, 2, 3 f 7 g = 16 

 

 
 
  l = 0 
 
 
 
 
  l = 1 
 
 
 
 
 
  l = 2 
 
 
 
 
 
         |ml| = 2          |ml| = 1         |ml| = 0          |ml| = 1  |ml| = 2 
 

Figure 25.2.2:  Oriented forms of the atomic orbitals rendered as probability contour 
surfaces. The 2s orbital is cut-away to show the radial node. 
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Real wave functions are generated using linear combinations of the “pure angular momentum” 
wave functions 211 and 21-1 using Eqs. 23.9.11. The results are p-orbitals that are oriented 
along the x- and y-axes, Figure 25.2.2: 
 

 2px = 
211 + 21-1

2  =  
1

4 2π
 



Z

ao

3/2
e–Zr/2ao 

Zr
ao

 sin  cos  

 2py = 
211 – 21-1

2i  = 
1

4 2π
 



Z

ao

3/2
e–Zr/2ao 

Zr
ao

 sin  sin     25.2.6 
 

These linear combinations correspond to a superposition of orbitals with the electron rotating 
clockwise and counter-clockwise. These “oriented” forms of the orbitals, along with 2pz, are 
better disposed for constructive overlap with other atoms to form chemical bonds. 2px, 2py, 
and 2pz are the angular forms of the atomic orbitals that are depicted in General and Organic 
Chemistry texts, where the principle goal is to understand chemical bonding. Applications in 
atomic spectroscopy use the “pure angular momentum” forms in Eqs. 25.2.3. The angular 
portion for the “oriented” forms of atomic orbitals are easy to specify. 
 
Spherical Polar Coordinate Transforms Specify the Angular Portion of “Oriented” Atomic 
Orbitals:   The transformations from spherical polar coordinates to Cartesian coordinates are 
specified in Eqs. 24.5.14. Comparing to Eqs. 25.2.3, notice that the angular portion of the 2pz 
orbital is r cos , which is equivalent to the z-coordinate. Comparing transformations, Eqs. 
24.5.14, and orbitals, Eqs. 25.2.6, also shows correspondences between the angular portions of 
the 2px and 2py orbitals and the x- and y-coordinates: 
 

     2pz  r cos  = z      2px  r sin  cos  = x    2py  r sin  sin  = y  25.2.7 
 

We now see why the oriented orbitals are called 2px, 2py, and 2pz. Using the transformations 
defined in Eqs. 24.5.14, we can rewrite the 2p-orbitals as: 
 

 2pz = 
1

4 2π
 



Z

ao

3/2
 e–Zr/2ao 

Z
ao

 z 

 2px =  
1

4 2π
 



Z

ao

3/2
e–Zr/2ao 

Z
ao

 x 

 2py =  
1

4 2π
 



Z

ao

3/2
e–Zr/2ao 

Z
ao

 y       25.2.8 
 

Eqs. 25.2.6 and 25.2.8 can be used interchangeably, as convenience dictates. 
   We can use the same procedure for specifying the angular portions of the oriented forms of the 
d-orbitals. The  portion of the pure angular momentum forms of the d-orbitals are: e–i2, e–i, 1, 
ei, ei2. The oriented forms are given as products of the Cartesian coordinates, Figure 25.2.2: 
 

 dxz  xz = r2 sin  cos  cos  
 

 dyz  yz = r2 sin  sin  cos  
 

 dxy  xy = r2 sin  cos  sin  sin  = r2 sin 2 cos  sin  
 

 dx2-y2  x2 – y2 = r2 (sin2 cos2 – sin2 sin2) 
 

 dz2 = d3z2-r2  r2 (3 cos2 – 1)        25.2.9 
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The dxz, dyz, and dxy orbitals are oriented between the x-z, y-z, and x-y axes, respectively. The 
lobes of the dx2-y2 orbital point along the x and y axis. The dz2 orbital points along the z-axis. The 
dz2 orbital has a unique shape, why? Closed shell atoms are spherical. The functional form of the 
dz2 orbital is needed to make a sphere from the superposition of all the d-orbitals (Unsöld’s 
Theorem1): 
 

 d2
xz + d2

yz + d2
xy + d2

x2-y2 + d2
z2 = constant      25.2.10 

 

Assuming the given forms for dxz, dyz, dxy and dx2-y2, solving for the form of the dz2 angular term 
gives r2 (3 cos2 – 1), as listed in Eqs. 25.2.9. The unique shape of the dz2 orbital is required by 
symmetry. However, the dz2 is degenerate with the other d-orbitals and has the same average 
radius. A better symbol for the dz2 orbital might be dz2-1 or d3z2-r2 to better highlight the geometric 
relationship. 
   The d-orbitals each have 2 angular nodes, since l = 2. Angular nodes are planar nodes passing 
through the nucleus. The angular nodes for the dz2 orbital are often pictured as planes that have 
been folded into cones. The magnetic quantum number for dz2 is ml = 0; no angular nodes include 
the z-axis. The other oriented d-orbitals do not have pure m l quantum numbers; each is a linear 
combination of pure angular momentum orbitals with ml. The absolute value of ml in the 
superposition can be specified and is equal to the number of angular nodes that include the z-
axis. The dxz and dyz orbitals are for |ml| = 1 and have one node that includes the z-axis. The dxy 
and dx2-y2 orbitals are for |ml| = 2 and have two nodes that include the z-axis, which is the 
maximum possible. The nodal relationships reinforce the importance of angular momentum in 
determining the overall properties of the atom. 
 
The Atom can have Orbital Angular Momentum:   The angular momentum of an electron in an 
orbtial is given by Eq. 25.1.6 with magnitude: 
 

 |L| = ħ l(l + 1)             (24.5.34)  25.2.11 
 

Atomic orbitals can correspondingly be depicted using angular momentum vector diagrams. The 
vector diagram for the 2p-orbitals is shown in Figure 24.6.1b. The m l quantum number is called 
the magnetic quantum number because the degeneracy of the m l levels is lifted in the presence of 
a magnetic field. The different ml sub-levels are at different energies in an external magnetic 
field. In summary, the angular momentum quantum numbers have energetic consequences in 
addition to determining the shape and orientation of the orbitals through the disposition of the 
nodes. Table 25.1.1 shows that the shape of the periodic table results from the quantum 
properties of angular momentum. In single-electron atoms and ions, the sub-shells with different 
l values are degenerate. In multi-electron atoms the influence of electron-electron repulsions 
breaks this degeneracy. We now proceed to discuss the rest of the periodic table. 
 
The Intrinsic Angular Momentum of the Electron gives the Fourth Quantum Number:   The 
intrinsic angular momentum quantum number of the electron is s = ½, Sec. 24.5. Accordingly, 
the hydrogen atom has two different types of angular momentum, orbital angular momentum and 
the intrinsic spin of the electron. The complete specification of the electronic state of the 
hydrogen atom requires the specification of the z-axis projection of the intrinsic angular 
momentum of the electron, with ms = ½: 
 

 Sz = ħms          25.2.12 
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In the absence of an external magnetic field, the two spin states for the ground state of the 
hydrogen atom are degenerate. The overall degeneracy of the principle quantum shells is then 2, 
8, 18, and 32 for n = 1, 2, 3, and 4, respectively, Table 25.2.1. In summary, four quantum 
numbers are required to specify the electronic state of the hydrogen atom, one for each spatial 
coordinate and one for the intrinsic spin of the electron. The spin angular momentum of the 
electron and the orbital angular momentum can interact; this coupling is discussed in Sec. 25.6. 
 
25.3  Multi-Electron Atoms 
 

   The next atom in the periodic table is helium, with two protons and two electrons. The 
electronic structure of helium sets the stage for understanding the rest of the periodic table. The 
potential energy function for the helium atom includes the attraction of electron 1 for the 
nucleus, the attraction of electron 2 for the nucleus, and the electron-electron repulsion between 
the two electrons, Figure 25.3.1: 
 

 V^ (r) = 
1

4πo
 



– 

2e2

r1
 – 

2e2

r2
 + 

e2

r12
        25.3.1 

 

where r1 is the distance from electron 1 to the nucleus, r2 is the distance from electron 2 to the 
nucleus, and r12 is the distance between the two electrons. 
 
 
 
 
 
 

Figure 25.3.1: The two electrons in the helium atom experience electron-electron repulsion. 
 
 
The Schrödinger equation for the helium atom is: 
 

 
– ħ2

2m  ( )2
1 + 2

2  + 
1

4πo
 



– 

2e2

r1
 – 

2e2

r2
 + 

e2

r12
   = E     25.3.2



This Schrödinger equation cannot be solved exactly; no three-body problem has yet been solved 
exactly. The electron-electron repulsion term is the cause of the problem. We must develop 
approximation techniques to solve for the electronic structure of multi-electron atoms. We will 
progress from the simplest approximation to the most common approximation techniques used in 
electronic structure methods. The simplest approach is to ignore the electron-electron repulsion. 
The results are not quantitatively useful, but the neglect of electron-electron repulsion acts as the 
basis for more exact approaches. 
 

Independent Electron Approximation:   The neglect of the electron-electron repulsion, the “e–-e–” 
term, allows the approximate Schrödinger equation to be solved exactly to find the atomic 
orbitals for the helium atom. The motion of the two electrons is uncorrelated in the absence of 
the interaction and the two electrons act independently. The result is called the independent 
electron approximation. The Hamiltonian then rearranges into a term only in the coordinates of 
electron 1 and a term only in the coordinates of electron 2:  

 

++ 

-
- -

-

r12 

r1 r2 
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
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– 

ħ2

2m 2
1 – 

2e2

4πor1
  + 



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– 

ħ2

2m 2
2 – 

2e2

4πor2
 (r1,r2) = E(r1,r2)   25.3.3 

 

The term for electron 1 is identical to the Hamiltonian for the hydrogen atom written in terms of 
r1, but with the charge on the nucleus of Z = 2. The term for electron 2 is identical to the 
Hamiltonian for the hydrogen atom written in terms of r2, but with the charge on the nucleus of 
Z = 2. The Schrödinger equation is separable in the coordinates for the two electrons, giving the 
wave function as the product of two one-electron hydrogen-like atomic orbitals: 
 

 (r1,r2) = 1(r1) 2(r2)        25.3.4 
 

The one-electron wave functions are solutions to the one-electron Schrödinger equations: 
 

 




– 

ħ2

2m 2
1 – 

2e2

4πor1
 1(r1) = E11(r1)        25.3.5 

 




– 

ħ2

2m 2
2 – 

2e2

4πor2
 2(r2) = E22(r2)        25.3.6 

 

In the Schrödinger equation, note that 2
1 only operates on the coordinates of electron 1 and 2

2 
only operates on the coordinates of electron 2: 
 

 2
1 1(r1) 2(r2) = 2(r2) 2

1 1(r1) 
 2

2 1(r1) 2(r2) = 1(r1) 2
2 2(r2)       25.3.7 

 

Accordingly, substituting Eq. 25.3.4 for the wave function into Eq. 25.3.3 gives: 
 

 2(r2) 



– 

ħ2

2m 2
1 – 

2e2

4πor1
 1(r1) + 1(r1) 



– 

ħ2

2m 2
2 – 

2e2

4πor2
 2(r2) = E 1(r1)2(r2) 

            25.3.8 
 

Since 1 and 2 are eigenfunctions of the one-electron Hamiltonians, substituting Eqs. 25.3.5 
and 25.3.6 into the last equation gives the sum of two terms: 
 

 2(r2) E1 1(r1) + 1(r1) E2 2(r2) = E 1(r1) 2(r2)     25.3.9 
 

All the derivatives have been completed, only multiplicative functions remain, so we can divide 
through by the common factors to give: 
 

 E = E1 + E2          25.3.10 
 

This equation is an important point. In the independent electron approximation, the wave 
functions for the multi-electron atoms are the products of one-electron wave functions and the 
energies of the one-electron wave functions add to give the total atom energy. 
 

In the independent electron approximation: one-electron orbitals multiply and energies add. 
 

The electronic probability distribution is given by the square of the overall atomic wave function: 
 

 2r1,r2) = 2
1 (r1) 2

2 (r2)         25.3.11 
 

The exact solutions to the one-electron Hamiltonians, Eqs. 25.3.5 and 25.3.6, are the hydrogen-
like one-electron orbitals: 
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with Z = 2 for helium. The one-electron energies add, using Eq. 25.1.23: 
 

 EHe = – 13.6 eV 






Z2

n2
1

 + 
Z2

n2
2

 = -13.6 eV 



22

12 + 
22

12  = -108.8 eV      (Z = 2)  25.3.13 

 

We can now compare to experiment. The ionization energy or ionization potential is the 
energy necessary to remove an electron from an atom or ion. The reference energy zero is for 
n  . The completely separated nucleus and all electrons corresponds to zero energy. Using 
this energy reference, the experimental electronic energy of an atom is determined by the 
negative sum of the sequential ionization energies: 
 

 He  He+ + e–  I1 = 24.58 eV 
 He+  He2+ + e–  I2 = 54.42 eV 
 He2+ + 2 e–  He  EHe,exp = – (I1 + I2) = -79.00 eV   25.3.14 
 

Ionization energies of neutral atoms are positive, I1 > 0, because energy is required to remove an 
electron from an atom. Compared to the zero reference, the electronic energy of the atom is 
negative, giving the negative sign in Eq. 25.3.14. The agreement between the predicted 
electronic energy using the independent electron approximation, -108.8 eV, and the experimental 
value, -79.00 eV, is disappointing. We must conclude that electron-electron repulsion is a 
significant factor in atomic energies, and cannot be neglected. However, the independent 
electron approximation is a good reference point for more exact theories. In particular, most 
theories adopt the form of Eq. 25.3.4. The wave function for a multi-electron atom is 
approximated as the product of one-electron orbitals, which is called the orbital approximation. 
Using the orbital approximation, we now need to find methods that include the effects of 
electron-electron repulsion. 
 
Perturbation Method:   A perturbation is a small change that is imposed upon a system. The 
perturbation method is useful when the Hamiltonian can be split into two parts, a part that can be 
solved exactly and a part that is a small perturbation. Let H ^  (o) be the unperturbed Hamiltonian 
and H ^  ' the perturbation. The strength of the perturbation is scaled by the constant  to allow the 
effect of the perturbation to be investigated from no perturbation for  = 0 to the full effect of the 
perturbation for  = 1: 
 

 H ^  = H ^  (o) +  H ^  '         25.3.15 
 

The  constant is called the perturbation parameter, which can be thought of as the volume 
control on a radio playing music that your roommate dislikes:  ranges from no perturbation to 
full-bore aggravation. The wave functions, (o)

i , are the solutions to the unperturbed Hamiltonian 
for the state of interest, i: 
 

 H ^  (o)

 
(o)
i  = E(o)

i  (o)
i          25.3.16 

 

The perturbation approach is useful if the change in energy caused by the perturbation is small 
compared to the unperturbed energy. The perturbation method is generally useful. For the 
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particular case of the helium atom, we consider the electron-electron repulsion term as a 
perturbation to the orbitals obtained by the independent electron approximation, Figure 25.3.2. 
   The energy of the system is expanded in a power series in  
 

 Ei  E(o)
i  + E(1)

i  + 2 E(2)
i  + …        25.3.17 

 
 

      






e2

4πeor12
  

 

      = 0 1 
 

   E(o)
i      E(o)

i  + E(1)
i  

        unperturbed     perturbed 
 

Figure 25.3.2:  The electron-electron repulsion can be treated as a perturbation on the 
independent electron approximation. 

 
 
For small values of , the expansion can be truncated at the first correction term, E(1)

i . The result 
is called first-order perturbation theory. The first-order correction to the energy is given by 
the expectation value of the perturbation Hamiltonian: 
 

 E(1)
i  = < H ' > =  (o)

i
* H ^  ' (o)

i  d        25.3.18 
 

This integral is evaluated using the unperturbed wave functions, Eq. 25.3.16. Formally,  is the 
basis for the power series expansion. In practical applications, we set  = 1 to find the full 
perturbation correction. Higher order corrections can also be determined. Perturbation 
corrections up to fourth order are not uncommon in electronic structure calculations that include 
the effects of electron-electron correlation. 
   The unperturbed energy for the He atom is given by Eq. 25.3.13 using Z = 2 for the nuclear 
charge, giving E(o)

gs = -108.8 eV. The first order perturbation result, assuming the full perturbation 
with  = 1, adds the expectation value of the electron-electron repulsion. The expectation value 
for the electron-electron repulsion for the ground state of the helium atom is evaluated in 
Addendum 25.7 giving the total electronic energy of the ground state of He as: 
 

 Egs  E1 + E2 +  e2

4πor12
 = -74.0 eV       25.3.19 

 

Compared to the experimental value of -79.0 eV, the perturbation method gives a considerable 
improvement over the independent electron approximation. However, an error of 5 eV is too 
large to be useful for applications in chemical bonding. 
   The wave function can also be corrected for the perturbation. The first-order correction to the 
wave function is: 

 (1)
i   (o)

i  +  
ki

 
H 'ki

E(o)
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 (o)

k        25.3.20 
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The integral H 'ki is taken between the state of interest, i, and all other states k with the 
perturbation Hamiltonian: 
 

 H 'ki =  (o)
i

* H ^  ' (o)
k  d         25.3.21 

 

The corrected wave function, (1)
i , is a combination of all the wave functions for the system for 

which the H 'ki integrals don’t vanish. The denominator in the sum scales each term by the 
difference in energy between the state of interest and the various other states. The wave functions 
that are closest in energy to i are most important. For a diagrammatic example, consider the 
ground state of an electron in a box that is placed in an external electric field, Figure 25.3.3. The 
electron density is skewed towards the positive electrode. This change in the wave function 
shape is obtained by mixing in small amounts of the n = 2 wave function to the ground state. The 
n = 3 wave function does not contribute, because it is symmetrical with respect to the center of 
the box and does not skew the electron density. 
 
 
 
 
 
 
 
 
 
 
 
   unperturbed       perturbed 
 

Figure 25.3.3:  The first order correction mixes excited state character into the unperturbed 
wave function. For a particle in a box in an external electric field, mixing small amounts of 
the n = 2 wave function into the ground state skews the electron distribution in response to 
the perturbation. Low energy excited states contribute more to the correction than high 
energy excited states. 

 
 
   The first-order correction for the ground state of the helium atom provides a big improvement, 
compared to the independent electron approximation. However, for the ground state of the 
helium atom and for atomic and molecular orbital treatments in general, the variation method is 
often preferable. The variation method is not restricted to small perturbations. 
 
Variation Method:   If you guess a solution to the Schrödinger equation, how do you determine 
how good a guess you have made? For example, the Schrödinger equation for the ground state of 
the helium atom can’t be solved exactly, Eq. 25.3.2. However, we can guess that products of 
one-electron hydrogen like orbitals are reasonable approximate solutions. We know that the 
independent electron approximation, where the wave functions use the full nuclear charge of 
Z = 2, is quantitatively poor. However, might we be able to obtain a better approximate solution 
if the full nuclear charge of the nucleus is replaced by an effective nuclear charge, Zeff? With this 
approximation the electron-electron repulsion is modeled as a shielding interaction, where the 
electrons shield each other from the full nuclear attraction. Shielding corresponds to Zeff < Z. 
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   First, consider the general case with an exact Hamiltonian H ^ , for which we have a series of 
approximate wave functions, 1, 2, and 3. These guesses are called trial wave functions. How 
do we determine the best trial wave function? If we had the exact wave functions, they would be 
eigenfunctions of the exact Hamiltonian: 
 

 H
 
^  i = Ei i        (exact)  25.3.22 

 

The approximate wave functions are not eigenfunctions of the Hamiltonian. Expectation values 
must be used to determine the energies that correspond to the trial wave functions. The 
expectation value of the Hamiltonian gives the average total energy. To set the stage, consider 
determining the expectation values of the energy using the exact wave functions from Eqs. 
23.7.11 (Postulate III) and 25.3.22: 
 

 <E> = 
 *

i H
 
^  i d

 *
i  i d

 = 
 *

i Ei i d
 *

i i d
 = Ei    (exact)  25.3.23 

 

The expectation value reduces to the exact energy, since the exact wave functions are 
eigenfunctions of the Hamiltonian: 
 

 Ei = 
 *

i H
 
^  i d

 *
i  i d

       (exact)  25.3.24 

 

If instead, a trial wave function is used in the expectation integrals, the trial energy E results: 
 

 E = 
 *H

 
^   d

 * d
         25.3.25 

 

The exact Hamiltonian is used in the integral. Calculated in this way, the trial energy is 
guaranteed to be greater than or equal to the exact energy by the Variation Theorem: 
 

 E ≥ Ei           25.3.26 
 

The trial wave function that gives the lowest energy is best, Figure 25.3.4. 
   Reflect for a moment on the situation if the Variation Theorem did not hold. If an improved 
trial wave function gave a lower energy than the previous guess, then nothing could be 
concluded. The new trial energy might be significantly lower than the exact energy and a 
correspondingly poorer approximation than the previous guess. 
 
 
 1  guess 
 
 2  better guess 
 
 3  better yet     E ≥ Ei 
 

Figure 25.3.4:  The trial wave function that gives the lowest energy, as calculated from the 
expectation integral of the exact Hamiltonian, is best. 
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For the specific case of the ground state of the helium atom in the orbital approximation, the 
product of the one-electron hydrogen like orbitals with effective nuclear charge Zeff is given as: 
 

 gs = 1s(r1) 1s(r2) = 
1
π 



Zeff

ao

3
 e–Zeff r1/ao e–Zeff r2/ao     25.3.27 

 

Zeff is an example of a variation parameter. The trial energy is evaluated in Addendum 25.7 
giving for the ground state of the He atom: 
 

 E = 
 *

gs H
 
^  gs d

 *
gs gs d

 = 
e2

4o ao
 



Z2

eff – 
27
8  Zeff        25.3.28 

 

The best value for the variation parameter gives the minimum energy. Taking the derivative of 
the trial energy with respect to Zeff and setting the result equal to zero gives: 
 

 
dE

dZeff
 = 0 = 

e2

4o ao
 (2 Zeff – 27/8)       25.3.29 

 

 Zeff = 27/16 = 1.6875         25.3.30 
 

The effective nuclear charge is less than the full nuclear charge. The two electrons in the 1s-
orbital of the helium atom shield each other from the full nuclear charge. This approximation is 
often called the effective charge model of electron-electron repulsion. Substituting Zeff back into 
Eq. 25.3.13 or Eq. 25.3.28 gives the approximate ground state energy of the helium atom as: 
 

 Egs = – 13.6 eV(Z2
eff /n

2
1 + Z2

eff /n
2
2) = -77.5 eV      25.7.31 

 

The experimental energy is -79.0 eV, so the variation approximation gives a greatly improved 
energy as compared to the independent electron approximation or the perturbation approach. 
Unfortunately, an error of 1.5 eV is still too large to be useful for applications in chemical 
bonding. A more accurate approximation method is required. Self-consistent field theory is the 
best approximation technique in common use for electronic structure calculations. The self-
consistent field approach is based on the Variation Theorem. If the Variation Theorem applies to 
an approximation technique, that technique is said to be variational. 
 

25.4 Self-Consistent Field Theory 
 

Shielding of the Nuclear Charge and Electron-Electron Repulsion:   In the self-consistent field 
approach, the Schrödinger equation is solved iteratively for the one-electron effective potential 
energy and wave function for each electron. An initial guess is made for the wave function of 
each electron. For the helium atom, this guess is made within the orbital approximation with the 
full nuclear charge, Z = 2. An effective potential energy function for electron 1 is then 
determined by averaging the electron-electron repulsion of the two electrons over the wave 
function for electron 2 for a series of r1values, Figure 25.4.1 Step 1: 
 

 Veff(r1) = V1(r1) + 

2 

e2

4or12
2 d2      25.4.1 

 

where V1(r1) is the Coulomb attraction of electron 1 for the nucleus. The effective potential is 
then integrated to give an improved wave function for electron 1, (1)

1 . 
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       He: 1s2 

 1 = e–2r1/ao      2 = e–2r2/ao 
 
 
 
 
 
 
 
 

       Step 1: 

 (1)
1        2 = e–2r2/ao

   V1(r1) + 
2 

e2

4or12
 2 d2 

 
 
 
 
 
 
 
       Step 2: 

 (1)
1

       (1)
2

        V2(r2) + 
(1)

1  
e2

4or12
 (1)

1  d1 

 
 
 
 
 
 
 
       Repeat until converged: insignificant changes on subsequent iterations. 
 

Figure 25.4.1:  Self-consistent field calculations are iterative. The expectation value of the 
electron-electron repulsion is averaged over the coordinates of the opposite electron. 

 
 

The improved wave function of electron 1 is then used to calculate the average electron-electron 
repulsion for electron 2 at a series of r2 values, Figure 25.4.1 Step 2: 
 

 Veff(r2) = V2(r2) + 

(1)

1  
e2

4or12
(1)

1  d1      25.4.2 
 

where V2(r2) is the Coulomb attraction of electron 2 for the nucleus. The effective potential for 
electron 2 is then integrated to give an improved wave function for electron 2, (1)

2 . At this point, 
the wave functions for the two electrons are not comparable. The potential for electron 2 is based 
on a better approximation for the effective potential than for electron 1. Steps 1 and 2 are then 
repeated with the new wave functions to improve the solution for both electrons, giving an 
iterative process. The steps are repeated until the energy of the orbitals change by an 
insignificant amount from one iteration to the next. The overall process is variational; we are 
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guaranteed that a minimum energy result gives the best approximation to the final approximate 
wave functions. The iterative approach guarantees that the two electrons are treated equivalently. 
   The self-consistent field, or SCF, approach can be realized in several ways. In Douglas 
Hartree’s original method, the resulting atomic orbitals are numerical tables of the wave function 
amplitude as a function of r1. This numerical integration, while most accurate, is computationally 
demanding. The resulting wave functions are not as easily interpreted as are closed-form 
functions, such as 1 = N e–Zr1/ao. A more common and less demanding approach is to use 
closed-form orbitals based on variational coefficients that are optimized through the SCF 
procedure to give the minimum energy. For example, hydrogen-like orbitals can be used with an 
effective nuclear charge, Zeff. The Hartree-SCF method neglects several important contributions 
to the overall electronic energy of the atom: the exchange energy, correlation energy, and spin-
orbit coupling. We will address each of these deficiencies later in this chapter and the next. 
However, the Hartree method gives several important results. 
 

Electron-Electron Repulsion Breaks the Orbital Degeneracy:   Careful Hartree-SCF calculations 
show that the degeneracy of the orbitals with the same principle quantum number is broken for 
multi-electron atoms, Figure 25.4.2. For a given n, the orbital ordering is s < p < d < f. This 
effect can be explained using the effective charge model. 
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Figure 25.4.2:  Atomic orbital energies from self-consistent field calculations.2 Plotting 
symbols: s-orbitals , p-orbitals - - - , 3d-orbtial–·–. 

 
 
   Consider the 2s and 2p-orbitals, Figure 25.4.3a. The radial node for the s-orbital increases the 
electron density close to the nucleus for the 2s-orbital as compared to the 2p. This effect is called 
orbital penetration. The electrons in a 2s-orbital penetrate closer to the nucleus and feel a 
greater effective nuclear charge. The 1s-electrons are not as efficient in shielding the 2s-electrons 
from the full nuclear charge as compared to the 2p-electrons. The same effect is seen for third 
period elements with 3s, 3p, and 3d valence orbitals, Figure 25.4.3b. The inner core electrons are 
the 1s, 2s, and 2p for the third period. These inner core electrons are effective shielders for the 
valence electrons.  The result is that low l orbitals penetrate closer to the nucleus and feel a 
greater effective nuclear charge than high l orbitals, in the order Zeff,3s > Zeff,3p > Zeff,3d. The 
orbital energies are correspondingly 2s < 2p, 3s < 3p < 3d, and 4s < 4p < 4d < 4f. 
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   (a).     (b). 
 

Figure 25.4.3:  Low l orbitals penetrate closer to the nucleus and feel a greater effective 
nuclear charge than high l orbitals. (a). The 1s-electrons shield the 2s and 2p electrons from 
the full nuclear charge. (b). The 1s, 2s, and 2p-electrons shield the 3s, 3p, and 3d electrons 
from the full nuclear charge. Because of decreasing penetration, Zeff (3s) > Zeff(3p) > Zeff(3d). 

 
 
Reference to Figure 25.4.2 also shows that the inner core orbitals decrease in energy faster than 
outer valence orbitals with increasing Z. The inner core orbitals are closer to the nucleus and are 
less efficiently shielded than valence electrons, which are furthest on average from the nucleus. 
The Zeff of the inner core electrons more closely parallels the full nuclear charge, Z, than the 
outer valence electrons. For the valence electrons, the completed shells of core electrons are 
efficient shielders, thus decreasing the effective nuclear charge of the valence electrons. We are 
now ready to predict the electronic configuration of the elements. 
 
Pauli Exclusion Principle and Electron Spin:   Careful analysis of atomic spectra led Wolfgang 
Pauli in 1925 to propose that no two electrons can have the same set of quantum numbers. The 
result is that the maximum number of electrons in a given orbital is two, one spin up and one 
spin down, with quantum numbers ms = +½ and –½. As a consequence of the Pauli Exclusion 
Principle and the orbital energy ordering, the configurations of the alkali and alkaline earth 
elements have valence s-configurations, while B and Al have a single p-electron: 
 

 Li: 1s22s1  Be: 1s22s2  B : 1s2 2s22p1 

 Na: 1s22s22p63s1 Mg: 1s22s22p63s2 Al: 1s22s22p63s23p1 

 

   For the fourth period, the 4s orbital is lower in energy than the 3d orbital at the beginning of 
the period, Figure 25.4.4. Figure 25.4.2 shows 4s below 3d for K, Ca, Sc, and Ti. As a result, the 
configurations for K and Ca have filled 4s orbitals, but not 3d. After filling the 4s orbitals, 
subsequent electrons fill the 3d sub-shell. The same ordering is seen in subsequent periods: 
 

 K : [Ar] 4s1  Ca: [Ar] 4s2  Sc: [Ar] 4s23d1 Ti: [Ar] 4s23d2 

 Rb: [Kr] 5s1  Sr: [Kr] 5s2  Y : [Kr] 4d15s2 Zr: [Ar] 4d25s2 

 

To simplify configurations, a filled core is indicated by the corresponding noble gas 
configuration, e.g. [Ar]  1s22s22p63s23p6 and [Kr]  1s22s22p63s23p63d104s24p6. For the fourth 
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period starting with V, the orbital energies return to principle quantum number order. These 
energy effects are the result of electron-electron repulsion. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25.4.4:  Relative orbital energies for K (Z = 19) and Ca (Z = 20). The log energy axis 
allows the core and valence orbital energies to be plotted on the same convenient scale. 

 
 
Hund’s First Rule Applies to Degenerate Sub-Shells:   From empirical observation of atomic 
spectra, Friedrich Hund in 1927 proposed the rule: for a degenerate set of orbitals, the electron-
electron repulsion is minimized when the electrons occupy different orbitals and have the same 
spin quantum number. Orbitals in the same subshell have distinctly different spatial distribution, 
as required by orthogonality. Placing electrons in different orbitals in the same subshell increases 
the average distance between the electrons, which in turn minimizes electron-electron repulsion. 
In addition, electrons with the same spin “avoid” each other. The probability of finding two 
electrons with parallel spins at the same spot is zero, which is required by wave function 
symmetry as discussed below. This quantum mechanical avoidance increases the average 
distance between electrons with parallel spins, which in turn minimizes electron-electron 
repulsion. For example, the configuration of carbon has two unpaired electrons: 
 

 C : 1s22s22p2           
       2s       2p 
 

The Aufbau Principle Predicts the Configuration of the Elements:   The ground state 
configurations of the atoms are predicted using the Aufbau Principle. Aufbau is German for 
“building up.” The general rules that we have discussed are summarized as: 
 

A. Electrons fill the orbitals of lowest energy. 
B. Pauli Exclusion Principle: no two electrons can have the same set of quantum numbers. 
C. Hund’s First Rule: For a degenerate set of orbitals, the electron-electron repulsion is 
minimized when the electrons occupy different orbitals and have the same spin quantum 
number. 

 

To determine the orbital energies we make the following observations on the effective nuclear 
charge, which are based on insights from SCF calculations and Hund’s First Rule. 
 

    As Z increases: 
(1).  Inner orbitals decrease in energy faster than outer orbitals. 
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(2). Each successive shell is shielded to a greater extent by previous shells. For increasing 
principle quantum number, Zeff does not increase as quickly as Z.  
 

(3). Given the same principle quantum number, orbitals with low l penetrate closer to the 
nucleus and feel a greater Zeff than orbitals with high l. 
 

(4). Electrons in the same subshell have the same average radius and therefore don't shield 
each other well. Zeff for electrons with the same n and l increase with Z. 
 

(5). Half filled or totally filled subshells have a special stability. (See Be, N, Cr and Cu) 
 

(6). Half filled or totally filled subshells are efficient shielders. (See B and O) 
 

The experimental ground state configurations show several exceptions to the Aufbau predictions, 
Figure 25.4.5. For example, exceptions occur for Cr and Mo, which are predicted by Aufbau 
rules to give d4s2 configurations. Exceptions also occur for Cu, Ag, and Au, which are predicted 
by Aufbau rules to give d9s2: 
 

  Aufbau Prediction     Experimental 
     Cr: [Ar]3d44s2                Cr: [Ar]3d54s1                
                3d          4s           3d    4s 

     Cu: [Ar]3d94s2               Cu: [Ar]3d104s1             
               3d          4s           3d    4s 
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Figure 25.4.5: Experimental ground state configuration of the elements, based on atomic 
absorption and emission spectroscopy. 
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   The enhanced stability of half-filled and completely-filled sublevels can be optimized in 
several ways. The reason for the exceptions to the Aufbau rules is the similarlity of the valence 
atomic orbital energies and the contribution of electron-electron repulsion. The Aufbau rules are 
based on the approximation that the energy of the atom is the sum of one-electron energies. 
However, electron-electron repulsions exist among all the electrons and cannot rigorously be 
separated into one-electron terms. The Aufbau rules only provide a prediction for the most stable 
electronic state. The ground states of Cr and Mo minimize electron-electron repulsion with half-
filled d- and s-subshells and the ground states of Cu, Ag, and Au minimize electron-electron 
repulsion with a completed d-subshell and half-filled s-orbital. In any event, it is easy to predict 
where exceptions to the Aufbau predictions are likely to occur, one element before half-way and 
one element before the d- or f-subshell is complete. 
   The first-ionization energies of the atoms provide an important experimental comparision to 
verify the configuration and ground state energies of the atoms, Figure 25.4.6. The first-
ionization energies are a sensitive measure of the effective nuclear charge felt by the valence 
electrons. To a rough approximation, the first ionization energy of an atom is given by: 
I1  13.6 eV (Zeff

2 /n2) for the highest energy electron. High ionization energies correspond to high 
Zeff; the electron is difficult to remove because of the strong attraction for the nucleus. 
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Figure 25.4.6: First-ionization energies for the elements. 

 
 

Effective nuclear charge rule 2 is exemplified by the drop in ionization energy at the end of each 
period: for example, He to Li and Ne to Na. Rule 3 is exemplified by the drop in ionization 
energy after an s-subshell is complete: for example, from Be to B and Mg to Al. Rule 4 is 
exemplified by the general increase of ionization energy across each period: for example, the 
general increase from Li to Ne and Na to Ar. Place a straight-edge on the data points for Li and 
Ne and again for Na and Ar. Rule 5 is exemplified by the larger ionization energy for Be, N, Mg, 
and P compared to the linear trend across the period: 
 

 Be : 1s22s2   N : 1s22s22p3           
          2s     2p 

 Mg: [Ne] 3s2   P : [Ne] 3s23p3           

          3s     3p 
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By Hund’s First Rule, the half-filled subshells for N and P minimize electron-electron repulsion. 
The decrease in ionization energy from N to O and from P to S results, in part, from the 
disruption of the enhanced stability of a half-filled subshell. The relatively large ionization 
energy for Zn, Cd, and Hg are the result of the special stability of a completed d-subshell. Again, 
consider the linear trend from Li to Ne and Na to Ar. Rule 6 is exemplified by the smaller 
ionization energy for B, Al, and Ga, relative to the linear trend across the period. Ionization of 
these elements is made easier by the efficient shielding of a completed s- or d-core. Rule 6 is also 
exemplified by the small ionization energy for O, S, and Se. Ionization of these elements is made 
easier by the efficient shielding of a half-filled p-subshell. Even though Figure 25.4.6 looks 
chaotic at first glance, the kinks in the trends are readily understandable on the basis of 
considerations of electron-electron repulsion as modeled by the effective nuclear charge model. 
 
The Energy Levels for an Ion Are Different from the Neutral Atom:   The monoatomic ions have 
distinctly different chemical reactivity than the parent elements. The interaction between the 
neutral elements is primarily covalent while the interaction between ions is primarily ionic. This 
difference in chemical reactivity is the result of the distinctly different orbital energy levels for 
the ions as compared to the neutral elements. Because cations have fewer electrons than the 
parent neutral element, electron-electron repulsions are less important. As a consequence, the 
orbital energies for the cations are always in principle quantum number order. The valence 
d-orbital is lower in energy than the valence s-orbital, giving the electron configurations of the 
transition metal cations with maximally filled d-orbitals: 
 

     Ti2+: [Ar]3d2            Cr3+: [Ar]3d3            
             3d          3d 

     Cu2+: [Ar]3d9             Zn2+: [Ar]3d10         
             3d           3d 
 
The Exchange Interaction is the Result of Electron Indistinguishability:   The SCF procedure is 
very powerful. However, basic Hartree-SCF theory is in poor quantitative agreement with 
experimental ionization energies. The deficiencies of Hartree theory can be accounted for, in 
part, by taking electron spin into account. The ground state configuration of helium can be listed 
in two equivalent ways: 
 

 He: 1s2  or equivalently He:  1s       25.4.3 
 

The full ground state wave function is a product of the spatial part of the wave function and the 
spin part: 
 

 He(1,2) = 1s(1) 1s(2) *spin part       25.4.4 
 

The spatial part describes the orbital motion about the nucleus. Using the orbital approximation, 
the spatial part is a product of one-electron wave function in coordinates r, , and  for each 
electron. Using the ground state configuration, both electrons in the helium atom are in 1s-
orbitals, one spin up and one spin down: 
 

 He(1,2) = 1s(1) 1s(2) [(1) (2)]        25.4.5 
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However, the electrons are indistinguishable. The identity of the electrons cannot be 
distinguished by experiment. Therefore, the last wave function is indistinguishable from the case 
with the opposite spin states: 
 

He(1,2) = 1s(1) 1s(2) [(1) (2)]        25.4.6 
 

The spin properties of electrons may be determined formally using a symmetry operation called 
the exchange of spin labels. The symmetry operation changes the label of electron 1 to 2 and the 
label of electron 2 to 1, Figure 25.4.7. 
 
 
 
 

                 
          1 2       1 2 
 (a).      (b). 
 

Figure 25.4.7  (a). Exchange of spin labels. (b). Electron 1 is listed first in box diagrams. 
 
 

   An overriding principle of quantum mechanics is to ensure that quantum mechanical solutions 
to problems can be verified by experiment. We should not state anything that cannot be 
determined in the laboratory. Consequently, we must take linear combinations of Eqs. 25.4.5 and 
25.4.6 with equal weight: 
 

 s = 1/ 2 1s(1) 1s(2) [(1) (2) + (1) (2)]     25.4.7 

 a = 1/ 2 1s(1) 1s(2) [(1) (2) – (1) (2)]     25.4.8 
 

We must take linear combinations with equal weight because both spin assignments are equally 
likely and we cannot tell the difference between the two. The factor of 1/ 2 is required to 
maintain normalization. The probability of occurrence is determined by the square of the wave 
function. There are two possible linear combinations, because upon exchange of spin labels both 
probabilities remain the same: 2

s  2
s and 2

a  2
a. However, the wave functions themselves 

have opposite behavior under exchange of spin labels. For the s possibility, exchange of spin 
labels leaves the wave function unchanged: 
 

      1/ 2 1s(1) 1s(2) [(1) (2) + (1) (2)]      1/ 2 1s(2) 1s(1) [(2) (1) + (2) (1)] 

or s  s          25.4.9 
 

However, for the a possibility, exchange of spin labels changes the sign of the wave function: 
 

      1/ 2 1s(1) 1s(2) [(1) (2) – (1) (2)]      1/ 2 1s(1) 1s(2) [(2) (1) – (2) (1)] 
            25.4.10 
 

The last wave function with the exchanged labels rearranges to give: 
 

 – 1/ 2 1s(1) 1s(2) [(1) (2) – (1) (2)] = – a 

or a  – a          25.4.11 
 

1 2 2 1 
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If a symmetry operation leaves a wave function unchanged, the wave function is said to be 
symmetric. If a symmetry operation changes the sign of a wave function, the wave function is 
said to be antisymmetric. The linear combination with addition is symmetric, Eq. 25.4.9, and 
the linear combination with subtraction is antisymmetric, Eq. 25.4.11, hence the subscripts s 
and a, respectively. The spatial part of the wave function is symmetric in both cases, because 
the electrons are in identical orbitals. In this case, the overall symmetry is determined by the spin 
part, because the electrons have opposite spin states: 
 

 s = 1/ 2  1s(1) 1s(2) [(1) (2) + (1) (2)]      25.4.12 
      spatial part    *        spin part 
       symmetric           symmetric 
 

 a = 1/ 2  1s(1) 1s(2) [(1) (2) – (1) (2)]      25.4.13 
       symmetric          antisymmetric 
 

Which combination is the correct wave function? The Pauli Exclusion Principle results in an 
underlying fundamental symmetry restriction on the overall electronic wave function. 
 

Pauli Exclusion Principle: The wave function is overall antisymmetric with respect to exchange 
of any two electron spin labels. 
 

As a result, only a is a valid wave function for the ground state of the helium atom. The 
antisymmetric wave function, Eq. 25.4.13, can be diagrammed equivalently as: 
 

 a = 1/ 2  (1s   – 1s  )        25.4.14 
 

How does this fundamental statement of the Pauli Exclusion Principle relate to the more familiar 
statement that “no two electrons can have the same set of quantum numbers?” 
   Consider a ground state helium atom with both electrons spin up: 1s(1) 1s(2) [(1) (2)]. 
Now both electrons have quantum numbers n,l,ml,ms = 1,0,0,½. However, exchange of spin 
labels gives an identical result to the original wave function, so the proposed wave function is 
symmetric. However, the result must be antisymmetric to produce a valid solution. The proposed 
wave function cannot be valid. As a consequence, no two electrons can have the same set of 
quantum numbers. Each orbital can then hold at most two electrons, one spin up and one spin 
down, ms = +½ and ms = –½. 
   Using the antisymmetric wave function, Eq. 25.4.14, in self-consistent field calculations for the 
ground state of the helium atom results in much better agreement with experiment. The 
difference in energy with and without the use of the restriction based on electron 
indistinguishability is the exchange energy. Correspondingly, the wave functions for other 
multi-electron atoms must be constructed to guarantee antisymmetry. To guarantee 
antisymmetry, the overall wave function is expressed as a Slater determinant. For the ground 
state of the helium atom, the Slater determinant is given by: 
 

       a = 1/ 2



1s(1)(1) 1s(1)(1)

1s(2)(2) 1s(2)(2)   
   rows: different electrons 
   columns: different wave functions 

            25.4.15 
 

The rows correspond to the different electrons; row one is for electron 1, row two is for electron 
2. The product of a spatial and spin wave function is called a spin-orbital. The columns of a 
Slater determinant correspond to all possible single electron spin-orbitals. Multiplying out the 
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determinant gives Eq. 25.4.13, as required. A general property of determinants is that the sign of 
the determinant changes upon exchange of any two rows or any two columns. The exchange of 
rows corresponds to the exchange of spin labels, thus guaranteeing antisymmetry. The 
underlying fundamental idea is that we can know the orbitals that are occupied in an atom, but 
we cannot determine which electron occupies which orbital. In essence, all of the electrons spend 
time in each possible orbital. No one electron “belongs” to a given orbital. Using Slater 
determinants as the wave functions for Hartree self-consistent-field calculations is called the 
Hartree-Fock self-consistent-field method, HF-SCF, or just HF for short. Some additional 
examples will be instructive at this point. 
 
The Configuration 1s12s1 gives a Singlet and Triplet State:   The lowest energy excited state of 
the helium atom has the configuration1s12s1. However, the box diagram can be drawn in two 
possible ways: 
 

He Excited State: 1s12s1  1s    2s        or 1s    2s      25.4.16 
 

Neither box diagram is valid. We need to take into account electron indistinguishabilty. The 
spatial part of the excited state wave function is the product of a 1s and 2s orbital: ex

He(1,2) = 
1s(1) 2s(2). However, we cannot know which electron is in which orbital. To maintain 
indistinguishabilty we must take equal-weight linear combinations for the spatial part of the 
wave function, since the electrons are in different spatial orbitals: 
 

 ex
He(1,2) = 1/ 2 (1s(1) 2s(2) ± 1s(2) 2s(1))      25.4.17 

 

The spatial part of the wave function can then be either symmetric (+) or antisymmetric (–). 
Because the electrons are in different spatial orbitals, the electron spins can now be parallel. The 
four possible primitive spin wave functions are , , , and . However, the combinations 
 and  distinguish between the two electrons, which we cannot do. We must also take equal-
weight linear combinations of  and . The spin parts of the wave functions are then: 
 

  (1)(2) 
  (1) (2) + (1) (2)  and (1) (2) – (1) (2)    25.4.18 
  (1)(2) 
  symmetric       antisymmetric 
 

The three spin wave functions on the left are all symmetric. The linear combination 
(1) (2) – (1) (2) is antisymmetric. We can now piece together the overall wave function, 
while maintaining antisymmetry. The symmetric spatial part must be paired with the 
antisymmetric spin part to give overall antisymmetry: 
 

     1ex = 1/ 2 (1s(1) 2s(2) + 1s(2) 2s(1)) [(1) (2) – (1) (2)]     (singlet) 25.4.19 
   spatial part               *              spin part 
   symmetric   antisymmetric 
 

This state is called a singlet state because there is only one possible combination of spatial and 
spin parts. The antisymmetric spatial part must be paired with symmetric spin parts, which in this 
case occur in three ways: 
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     3ex = 1/ 2 (1s(1) 2s(2) – 1s(2) 2s(1)) 








(1)(2)

(1)(2) + (1)(2)
(1)(2)

     (triplet) 25.4.20 

   spatial part               *              spin part 
   antisymmetric     symmetric 
 

This state is called a triplet state because there are three possible spin wave functions that result 
in overall antisymmetry. In the absence of an external field (and spin orbit coupling), the three 
spin states are degenerate. Note that the multiplication rules are identical to the multiplication of 
factors of 1 and –1, since the symmetry is determined by the wave function sign: 
 

 (1)(1) = 1  (1)(-1) = -1  (-1)(-1) = 1 
     s s = s       s a = a       a a = s    25.4.21 
 

The spin multiplicity, in this case singlet or triplet, has an important impact on the spectroscopy 
and chemical reactivity of the excited state. 
   Recall the reasoning that we used to predict the effects of electron-electron repulsion using 
Hund’s First Rule. The triplet state is lower in energy than the singlet state, because the electrons 
“avoid” each other since they have parallel spins. This quantum mechanical restriction is seen 
most strikingly by setting the position of the two electrons in the helium triplet state to the same 
value. The spatial term 1s(1) 2s(2) – 1s(2) 2s(1) is zero when the electrons are at the same 
position. The resulting increase in average electron-electron distance decreases electron-electron 
repulsion, lowering the energy of the triplet state relative to the singlet state. The Jablonski 
diagram for the two lowest excited states of the helium atom is shown in Figure 25.4.8. The 
ground state of helium is a singlet, Eq. 25.4.13. Triplet excited states usually have longer 
lifetimes than the corresponding excited singlet states, which can enhance photochemical 
reactivity. 
 
 
 
 
 
 
 
 
 

Figure 25.4.8: Several electronic energy levels of helium. There are many higher energy 
excited states. The first triplet state is 0.8 eV lower than the first excited singlet state. 

 
 
Multiple Slater Determinants are Required for S > 0:   Doublet states are another common spin 
multiplicity, which result from odd electron species. The ground state of the hydrogen atom is a 
doublet since the electron can be either up or down: 
 

 2  1s(1)



(1)

(1)          25.4.22 
 

Odd electron organic free radicals are almost always doublets for the same reason. Species with 
multiplicity higher than one must be represented by multiple Slater determinants. For example, 

E (eV) 

ground state 1S 

1Sex 

3Sex 

-79.0 

-58.4 
-59.2 

1s1s ( – ) 

(1s2s + 2s1s)( – ) 

(1s2s – 2s1s) 
() 

( + ) 
() 
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the doublet ground state of the lithium atom requires two Slater determinants, one for the outer 
electron spin up and one for the outer electron spin down: 
 

 Li:1s2 2s1: 1s   2s    

 a = 1/ 3!








1s(1)(1) 1s(1)(1) 2s(1)(1)

1s(2)(2) 1s(2)(2) 2s(2)(2)
1s(3)(3) 1s(3)(3) 2s(3)(3)

     25.4.23 

 

 Li:1s2 2s1: 1s   2s    

 a = 1/ 3!








1s(1)(1) 1s(1)(1) 2s(1)(1)

1s(2)(2) 1s(2)(2) 2s(2)(2)
1s(3)(3) 1s(3)(3) 2s(3)(3)

     25.4.31 

 

In any event, the lithium ground state is a good example of Slater determinants. In general, the 
normalization of the Slater determinant for N electrons is 1/ N!. Slater determinants are the 
foundation of the Hartree-Fock method. However, the functional form of the hydrogen orbitals is 
not well suited to practical electronic structure methods. 
 
25.5  Representations of Atomic Orbitals 
 

Slater Type Orbitals, STOs, have no Radial Nodes:   The functional forms of the hydrogen 
orbitals, even with an effective nuclear charge, are not the solutions to the Schrödinger equation 
for multi-electron atoms. The hydrogen-like orbitals can be a suitable starting point for multi-
electron atoms, but the functional form of the radial parts are difficult to use in the integrals 
necessary for evaluating electron-electron repulsion. The computational efficiency of the 
functional form is most critical when calculating molecular orbitals. Slater proposed simple 
atomic wave functions that have appropriate large r behavior. The behavior of the wave 
functions at large distances from the nucleus is important, because bond formation involves 
overlap of atomic orbitals at large r. A Slater Type Orbital, STO, is derived from the 
corresponding hydrogen-like orbital using an effective nuclear charge, Eqs. 25.2.1 and 25.2.8, 
but the radial polynomial is replaced by just the leading term in r: 
 

  nl ml(r) = N Yl,ml r(neff – 1) e–Zeff r/neff ao       25.5.1 
 

The resulting orbitals have the same large r dependence, but lack radial nodes. For principle 
quantum shells with n > 3, the principal quantum number is replaced by an effective principal 
quantum number, neff: 
 

n 1 2 3 4 5 6 
neff 1 2 3 3.7 4.0 4.2 

            25.5.2 
 

The effective nuclear charge is optimized using the SCF approach, Table 25.5.1. The effective 
nuclear charge can be approximated as the difference between the full nuclear charge and a 
shielding constant, S: Zeff  = Z – S. The shielding constant accounts for the average electron-
electron repulsion for the electrons. 
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Table 25.5.1: Slater Orbital Parameters3, Zeff. 
 

 1H       2He 
1s 1.0000       1.6875 
         
 3Li 4Be 5B 6C 7N 8O 9F 10Ne 

1s 2.6906 3.6843 4.6795 5.6727 6.6651 7.6579 8.6501 9.6421 
2s 1.2792 1.9120 2.5762 3.2166 3.8474 4.4916 5.1276 5.7584 
2p   2.4214 3.1358 3.8340 4.4532 5.1000 5.7584 

         
 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 

1s 10.6259 11.6089 12.5910 13.5745 14.5578 15.5409 16.5239 17.5075 
2s 6.5714 7.3920 8.2136 9.0200 9.8250 10.6288 11.4304 12.2304 
2p 6.8018 7.8258 8.9634 9.9450 10.9612 11.9770 12.9932 14.0082 
3s 2.5074 3.3075 4.1172 4.9032 5.6418 6.3669 7.0683 7.7568 
3p   4.0656 4.2852 4.8864 5.4819 6.1161 6.7641 

 
 
   Slater’s Rules are used to give approximations to the effective nuclear charge of the valence 
electrons. The shielding efficiency of electrons in the valence shell is 35% of the nuclear charge. 
The shielding efficiency of electrons in the next lowest energy shell is 85%, since those electrons 
are in contracted orbitals at much lower energy than the valence shell. For third and higher 
period elements, the shielding efficiency of the inner core levels is 100%: 
 

 1st period (first element in period Z = 1): Zeff = Z – 0.35 (Z – 1)   25.5.3 
 

 2nd period (2 next shell core electrons, Z > 3): 
        Zeff = Z – 0.85 (2) – 0.35 (Z – 3)    25.5.4 
         next core shell    valence shell 
 

 3rd period (2 inner core electrons, 8 next shell core electrons, Z > 11): 
         Zeff = Z – 1.00 (2) – 0.85 (8) – 0.35 (Z – 11)  25.5.5 
             inner core   next core shell   valence shell 
       100% efficient   85% efficient    35% efficient 
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Figure 25.5.1:  The Zeff approximated using Slater’s rules versus the SCF-optimized values 
from Table 25.5.1, for the highest energy sub-shell. 
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The effective nuclear charges approximated using Slater’s Rules agree well with the SCF-
optimized values, Figure 25.5.1. The shielding efficiencies in Salter’s Rules give a useful insight 
into the ability of electrons in different shells to shield each other from the full nuclear charge. 
Slater-type orbitals are widely used in semi-empirical molecular orbital calculations, including 
CNDO, MNDO, AM1, and PM3 methods. However, STOs are poor approximations to the radial 
electron density in atoms. Gaussian-type orbitals provide greater flexibility in approximating the 
radial electron distribution in multi-electron atoms and ions. 
 

Gaussian Orbitals are Easier to Integrate:   Closed form expressions for the values of integrals 
involving rn are available for wave functions with Gaussian forms. Gaussian orbitals are linear 
combinations of Gaussian Primitives of the form: 
 

 gs(,r) = 



2

π
¾

 e–r2  gx(,r) = 



1285

π3

¼
 x e–r2    25.5.6 

 

where gs(,r) is the Gaussian primitive for s-type orbitals and gx(,r) is the Gaussian primitive 
for px orbitals. Replacing the x factor in Eq. 25.5.6 with y or z gives the Gaussian primitives for 
py and pz orbitals. The Gaussian exponent, , plays the role of the effective nuclear charge. The 
set of atomic orbitals used in an atomic or molecular orbital calculation is called a basis set. The 
atomic orbitals are given by linear combinations of Gaussian primitives: 
 

  = 
i=1

n
 di gi(,r)    = s, x, y, z     25.5.7 

 

where the di are linear coefficients specific to the basis set and  designates the type of orbital. 
The bell-curve shape of a single Gaussian primitive is not a good approximation to the radial 
electron distribution in an atom. However, the linear combination of several primitives provides 
considerable flexibility in the ability of the Gaussian atomic orbital to approximate accurate 
Hartree-Fock self-consistent field atomic orbitals. The larger the number of Gaussian primitives 
in the sum, the larger the number of adjustable coefficients, di. More adjustable coefficients give 
better agreement with the accurate electron density. A sum of three Gaussian primitives is often 
used as a substitute for Slater-type orbitals, giving the STO-3G basis set. Accurate calculations 
require more Gaussian primitives than three. The core orbitals are treated separately from the 
valence orbitals, since the large r dependence of the valence orbitals is critical for applications in 
bonding. 
   In the 3-21G basis set, the core orbitals are taken as a sum of three Gaussian primitives and the 
valence orbitals are split into an inner and outer part. The inner part of the valence shell is taken 
as the sum of two Gaussian primitives and the outer part is given by a single Gaussian primitive, 
Figure 25.5.2. The orbital coefficients, di, are determined to best fit accurate atomic electron 
densities and are held constant in electronic structure calculations. The 3-21G basis sets for 
lithium and carbon are given in Table 24.5.2. 
 
 s-core orbital is sum of 3 Gaussians         valence shell s- and p-orbitals are split: 
                  each inner part is sum of 2 Gaussians 
                  each outer part is 1 Gaussian 
 

               3 - 2 1 G basis set 
 

Figure 25.5.2: A Gaussian basis set with a split valence shell. 
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Table 25.5.2: Lithium and Carbon 3-21G Basis Sets. 
 

 Li   C  
i dsi dxi i dsi dxi 
1s core   1s core   
36.8382 0.0696686  172.256 0.0617669  
5.48172 0.381346  25.9109 0.358794  
1.11327 0.681702  5.53335 0.700713  
2s and 2p inner   2s and 2p inner   
0.540205 -0.263127 0.161546 3.66498 -0.395897 0.23646 
0.102255 1.14339 0.915663 0.770545 1.21584 0.860619 
2s and 2p outer   2s and 2p outer   
0.0285645 1.00000 1.00000 0.195857 1.00000 1.00000 

 
   Using the coefficients in Table 25.5.2, the explicit 1s-wave function for lithium is: 
 

 1s = 0.0697 gs(36.8,r)    + 0.381 gs(5.48,r)          + 0.682 gs(1.11,r) 
 

 1s = 0.0697 



2(36.8)

π

¾
e–36.8r2 + 0.381 



2(5.48)

π

¾
e–5.48r2 + 0.682 



2(1.11)

π

¾
e–1.11r2 

            25.5.8 
 

The explicit 2s- and 2px-wave functions are given as: 
 

2s(inner) = –0.263 gs(0.540,r) + 1.14 gs(0.102,r) 2s(outer) = 1.00 gs(0.0286,r) 
 

2px(inner) = 0.162 gx(0.540,r) + 0.916 gx(0.102,r) 2px(outer) = 1.00 gx(0.0286,r) 
            25.5.9 
 

The outer part has a smaller Gaussian exponent than the inner part, giving a larger spatial extent 
for the outer part of the orbital. The outer part is more diffuse. The split valence shell allows the 
inner and outer part of the valence orbitals to be optimized as part of an SCF procedure. In this 
way, the electron density of the atom adjusts to the environment of the atom: 
 

  2s = a2s(inner) + b2s(outer)        25.5.10 
                          
           optimize variationally 
 

For example, the 2px-coefficients for the carbon atom as an isolated atom and for the carbon 
atom in methane show how the electron density adjusts to bonding interactions: 
 

 C isolated atom: 2px = 0.688 2px(inner) + 0.725 2px(outer) 
 C in CH4:   2px = 0.770 2px(inner) + 0.638 2px(outer)   25.5.11 
 

   The experimental electronic energy of lithium is the negative sum of the successive ionization 
energies: 
 

 E(exp.) = – (I1 + I2 + I3) = -202.42eV  E(Li,3-21G) = -200.78 eV  25.5.12 
 

Using the 3-21G basis set, the calculated energy of the ground state of lithium is almost 2 eV 
higher than the experimental energy. 
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Figure 25.5.3: (a). The 3-21G basis set has a split valence shell with an inner and outer part. 
(b). The 3-21G 2px-orbital compared to the hydrogen-type orbital with Zeff = 1.5. 

 
 

A more accurate ground state energy is obtained with a larger basis set. The 6-311G basis set is 
commonly used for careful calculations, Figure 25.5.4 and Table 24.5.3. The valence shell is 
split into an inner, middle, and outer part to give more flexibility in adjusting the electron density 
to the environment of the atom. 
 
 s-core orbital is sum of 6 gaussians   valence shell s- and p-orbitals are  
        split into three parts: 
        each inner part is sum of 3 gaussians 
        each middle part is 1 gaussian 
        each outer part is 1 gaussian 
 

                6 – 3 1 1  G basis set 
 

Figure 25.5.4: A 6-311G Gaussian basis set uses a triply split valence shell. 
 
 

Table 24.5.3: Lithium 6-311G Basis Set. 
 

i dsi dxi 
1s core   
900.46 0.00228704  
134.433 0.017635  
30.4365 0.0873434  
8.62639 0.280977  
2.48332 0.658741  
0.303179 0.118712  
2s and 2p inner   
4.8689 0.0933293 0.0327661 
0.856924 0.943045 0.159792 
0.243227 -0.00279827 0.885667 
2s and 2p middle   
0.063507 1.00000 1.00000 
2s and 2p outer   
0.0243683 1.00000 1.00000 
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The calculated ground state energy of the lithium atom is much improved with this more 
complete basis set: E(Li,6-311G) = –202.15eV. We will discuss even more complete basis sets in 
the next chapter. In practice, a series of calculations with increasing basis set size is completed 
and the electronic energy is extrapolated to the limit for very large basis sets. This limit is called 
the Hartree-Fock limit. The 6-311G basis set is close to the Hartree-Fock limit and is useful as 
a complement to experimental studies of the electronic absorption and emission spectra of atoms 
and molecules. 
 
25.6 Atomic Spectra 
 

   Angular momentum plays an important role in chemical reactivity and electronic spectroscopy. 
The spin and orbital angular momentum of all the electrons in an atom combine vectorially to 
give an overall angular momentum. The angular momentum of the ground state and excited 
states determine the intensity of the possible spectroscopic transitions. We begin by considering 
the total spin angular momentum and orbital angular momentum separately. We’ve covered 
singlet, doublet, and triplet spin states, but how do you determine higher multiplicities? 
 

Spin Angular Momentum Adds Vectorially:   In multi-electron atoms the intrinsic spin angular 
momentum of the electrons adds vectorially to give the total spin angular momentum vector: 
 

 S


 =  S


i          25.6.1 
 

where S


 is the total spin angular momentum and the S


i are the intrinsic angular momentum 
vectors for each of the electrons in the atom. The magnitude of the total spin angular momentum 
is determined by the total spin quantum number, S, in analogy with Eq. 24.5.34: 
 

 |S| = S(S+1) h-         25.6.2 
 

The projection of the total spin angular momentum on the z-axis is quantized with quantum 
number MS and degeneracy gS: 
 

 Sz = MS h-  MS = –S,…, 0,… +S   and degeneracy gS = 2S + 1  25.6.3 
 

MS is the sum of the individual electron ms quantum numbers, ms,i: 
 

 MS =  ms,i          25.6.4 
 

Since MS varies from –S to +S, the total spin quantum number is given by the maximum of MS: 
 

 S = MS,max          25.6.5 
 

The spin multiplicity is given by the degeneracy, gS. A vector diagram will help to summarize 
these relationships, Figure 25.6.1. The vectorial addition of the individual spin angular momenta 
is complicated. Luckily, Eq. 25.6.4 shows that the z-axis projections of the individual electrons 
add to give the z-axis projection of the total angular momentum. The maximum value of MS then 
allows us to infer the value of S. As a short cut, we only need to draw the box diagram for one 
configuration, the configuration with the electron spins aligned to give the largest MS. 
   For example, for an atom with all spin paired electrons  ms,i = 0, since half the electrons are 
spin up and half are spin down. A singlet state results for all spin paired electrons. For one 
unpaired electron, S = ( ms,i)max = ½, giving gS = (2S + 1) = 2, or a doublet state. The inner 
filled cores of atoms have half up and half down electrons, so the total angular momentum of a 
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filled core is always zero. Effectively, only the valence electrons contribute to the overall angular 
momentum. 
 
 
 
 
 
 
 
 
 
 

Figure 25.6.1: Vector addition for (). The individual angular momentum vectors are equal 
length and lie on the surfaces of cones. However, the cones have a definite z-axis projection. 
The z-axis projections of the individual electrons add algebraically to give the z-axis 
projection of the total angular momentum. The maximum value of MS then gives S. 

 
 

   For example, ground state H, Li, Na, K, Cs, Rb all have doublet spin multiplicity, since there is 
one unpaired electron in the outer-most shell, with a completely filled inner core. For two 
parallel electrons, the sum of the ms values for () is 1, for ( + ) the sum is 0, and for () 
the sum is -1. Since we take the maximum value, the total spin quantum number is 
S = ( ms,i)max = 1, with a degeneracy of gS = (2S + 1) = 3, giving a triplet state, Figure 25.6.2. 
As a short cut, we can represent the triplet state with the configuration with maximum MS, (), 
keeping in mind that electron indistinguishability requires the remaining two degenerate 
configurations. A listing of common multiplicities is given in Table 25.6.1. 
 
 

 1s    2s       MS = +1 

 1s    2s    + 1s   2s     MS = 0 

 1s    2s       MS = –1 
 

Figure 25.6.2: The first excited state of helium represented as () is a triplet state. 
 
 

   Electronic structure calculations of open-shell species are important for studies of energetic 
intermediates in mechanistic organic chemistry and for studies of transition metal complexes. 
The first step in doing an electronic structure calculation is to specify the spin multiplicity. 
Checking the final results to see if the desired multiplicity is maintained is an important step in 
validating the results of molecular orbital calculations. Electronic structure programs list the 
expectation value of the square of the spin angular momentum, rather than the multiplicity. The 
output files often label the expectation value alternately as: 
 

 <Ŝ2> = <S2> = <S*S> = S(S+1)ħ2       25.6.6 
 

The values of the square of the spin angular momentum are listed in Table 25.6.1 in units of ħ2, 
as is listed in common electronic structure program output files. Deviation from the expected 
<S*S> values in molecular orbital calculations shows that some excited state character (of higher 

S = MS,max = 1 

gS = 2S + 1 = 3 

z 

x y 

ms = +½ 

ms = +½ 

ms = +½ 

MS = 3/2 

x y 

s = ½ 
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0 

ms = +½ 
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
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multiplicity) is being mixed into the desired state. This error is called spin contamination. More 
complete atomic basis sets or better-optimized geometries often correct this problem.4 
 
 

Table 25.6.1: Common Multiplicities for Atoms, Ions, and Molecules: gS = (2S + 1). 
 

Spin State Example* S Multiplicity <S*S>/h-2 
  spin paired Most molecules 0 1 0 

 H, Li, B, F, Na, Cu(II) 
organic radicals 
 

½ 2 0.75 

 C, O, Si, S, Ni(II), O2, 
excited triplet states 
 

1 3 2.0 

 N, P, As, V, V(II), 
Cr(III), Co, Co(II) 
 

1½ 4 3.75 

 Cr, Cr(II), Mn(III), Fe, 
Fe(II), Co(III), B2 
 

2 5 6.0 

 Mn, Mn(II), Fe(III) 2½ 6 8.75 

 * Atomic examples are for ground states. 
 
 
Orbital Angular Momenta Add Vectorially:   In multi-electron atoms the orbital angular 
momentum of the electrons adds vectorially to give the total orbital angular momentum vector, 
in an analogous fashion to the spin angular momentum: 
 

 L


 =  L


i          25.6.7 
 

where L


 is the total orbital angular momentum and the L


i are the orbital angular momentum 
vectors for each of the electrons in the atom. The magnitude of the total orbital angular 
momentum is determined by the total orbital angular momentum quantum number, L, in 
analogy with Eq. 24.5.34 and Eqs. 25.6.2-25.6.5: 
 

 |L| = L(L+1) ħ         25.6.8 
 

The projection of the total orbital angular momentum on the z-axis is quantized with quantum 
number ML and degeneracy gL: 
 

 Lz = ML ħ  ML = –L,…, 0,… +L   and degeneracy gL = 2L + 1  25.6.9 
 

ML is the sum of the individual electron magnetic quantum numbers, m l,i: 
 

 ML =  ml,i          25.6.10 
 

Since ML varies from –L to +L, the total orbital quantum number is given by the maximum of 
ML: 
 

 L = ML,max          25.6.11 
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Once again, we don’t need to know the full angular momentum vector, knowing the L quantum 
number is sufficient. The L quantum number is inferred from the maximum of the sum of the m l 
projections of the individual electrons. 
 
Term Symbols are Nicknames for Energy States:   The L value for an electronic state is 
symbolized by a capital letter, which is called the term: 
 

  L 0 1 2 3 4 5 
  Term S P D F G H    25.6.12 
 

The spin multiplicity is added as a superscript before the term to give a quick summary of the 
angular momentum relationships for a given atomic electronic state. Atoms with all closed shells 
give L = 0 and a corresponding 1S term. Examples include the ground states of the inert gases 
(He, Ar, Xe) and the alkaline earths ( Be, Mg, Ca, Sr). Atoms with only one unpaired electron in 
an s-orbital also give L = 0 with a 2S term (H, Li, Na, K, Cu, Ag). Closed shells don’t contribute 
to the angular momentum; for ground state atoms and monatomic ions we only need consider the 
valence electrons. The combined term and multiplicity is called a term symbol. Term symbols 
are nicknames for energy states. 
   A handy shortcut for determining the possible L values for a given configuration is given by a 
Clebsch-Gordan series. For two electrons with orbital angular momentum quantum numbers l1 
and l2 the range of possible total L values is the series: 
 

 L = l1 + l2, l1 + l2 – 1, …, |l1 – l2|       25.6.12 
 

For example, consider a carbon atom, which has the ground state configuration 2p2. The 
individual orbital quantum numbers are l1 = 1 and l2 = 1. There are multiple box diagrams that 
can represent the possible spin configurations, two possibilities are shown: 
 

 C:  2p2        or             25.6.13 
 

The Clebsch-Gordan series gives the possible L values as: 
 

 2p2: 1 + 1, …, |1 – 1| = 2, 1, 0       25.6.14 
 

The possible terms corresponding to a p2 configuration are S, P, and D. How do these terms 
arise? The p sub-shell is triply degenerate with ml = 0, 1. All possible ways of filling the p-
orbitals with two electrons are diagramed below with the corresponding ML values. 
 
   p2: ML =  ml    ML =  ml 
          

 +1      0    -1 

          2     +1     0    -1 

        1            1 

        0            0 

          0           -1 

       -1          3P 

         -2         25.6.15 

   1D + 1S 
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We consider the singlet and triplet terms separately. The singlet () explicit configurations are 
listed on the left and the triplet () on the right. The overall list of singlet configuration ML 
values is: 2, 1, 0, 0, -1, -2. The maximum is ML = 2, giving the L for the first term as L = 2, or a 
1D term. The 1D term has a degeneracy of 5: gL = 2L + 1 = 5. The sublevels that correspond to 
the 1D term are then: 
 

 Singlets: L = |ML|max = 2 for a 1D with ML = 2 , 1, 0, -1, -2    25.6.16 
 

Removing these ML values from the singlet list leaves one remaining configuration with ML = 0, 
which gives a 1S term. We don’t need to worry about which specific configurations are involved. 
But we do need to keep track of all the repeat ML values. Turning to the triplet configurations, 
the maximum ML is ML = 1, which gives a 3P term. The 3P term has a degeneracy of 3: 
gL = 2L + 1 = 3. The sublevels that correspond to the 3P term are then: 
 

 Triplets: L = |ML|max = 1 for a 3P with ML = 1, 0, -1     25.6.17 
 

These configurations exhaust the list of triplet configurations. In summary then, the p2 
configuration gives three terms 1D + 1S + 3P. Experimentally the 3P term corresponds to the 
carbon atom ground state, while the 1D and 1S states are higher energy excited states. Each of 
these states has a different pattern of chemical reactivity. 
   One note of caution is required. The diagrams in Eq. 25.6.15 don’t take into account electron 
indistinguishability. Many of the detailed configurations are incomplete. Schematically for 
example, to satisfy indistinguishablity: 
 

           1/ 2 ( )          –                 25.6.18 
 

In addition, each detailed configuration is represented in calculations by a Slater determinant so 
that all electrons take their turns in px, py, and pz. Finally, all degenerate configurations mix as linear 
combinations (e.g. all the ML = 0 configurations with the same spin multiplicity). However, for 
purposes of determining term symbols, the “short hand” configurations in Eq. 25.6.15 work well. 
Term symbols for some common configurations are given in Table 25.6.2. 
 
 

Table 25.6.2:  Term Symbols for Selected Configurations.5 
              

s1     2S   s2, p6, d10      1S 
s1p1 1,3P   s1d1        1,3D   p1d1  1,3P,D,F 
p1, p5   2P    p2, p4          1S,D; 3P    p3    2P,D; 4S 
 

d1, d9  2D 
d2, d8  1S,D,G; 3P,F 
d3, d7  2P,D,D,F,G,H; 4P,F 
d4, d6  1S,S,D,D,F,G,G,I; 3P,P,D,F,F,G,H; 5D 
d5  2S,P,D,D,D,F,F,G,G,H,I; 4P,D,F,G; 6S 
              

Note: 1,3P,D,F indicates six possible terms: 1P, 1D, 1F, 3P, 3D, 3F 
 
 
              

Example 25.6.1: Total Orbital and Spin Angular Momentum 
Determine the terms for the atomic configuration, d1 p1. 
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Answer:  The orbital angular momentum quantum numbers for the individual electrons are l1 = 2 
and  l2 = 1. The Clebsch-Gordon series gives the terms as: 
 

 L = 2+1,….,|2–1| = 3, 2, 1 or F, D, P 
 

We can explain why these terms arise by constructing the explicit configurations. The explicit 
configurations for d1 p1 are diagrammed below, assuming triplet spin multiplicity. The d-orbital 
configuration at the top of each column is paired with each of the p-orbital configurations in the 
same column to give (5)(3) = 15 explicit configurations: 
 
  +2    +1   0    -1   -2             +2    +1    0    -1   -2        +2  +1   0    -1   -2   +2  +1    0    -1   -2    +2  +1    0   -1   -2 

                                                                                   

 
+1      0    -1     ML =          +1     0    -1 ML =     +1    0    -1    ML = +1      0    -1   ML =  +1     0    -1    ML = 

              3                      2                  1               0               -1 
              2                      1                  0              -1               -2 

              1                      0                 -1              -2               -3 
 
The overall  list of ML values is: 3, 2, 2, 1, 1, 1, 0, 0, 0, -1, -1, -1, -2, -2, -3. 
The maximum ML is L = 3 giving an F term with degeneracy of 7: 
 

 L = |ML|max = 3 for an 3F term with ML = 3, 2, 1, 0, -1, -2, -3 
 

Removing these ML values from the list leaves 2, 1, 1, 0, 0, -1, -1, -2. 
The maximum remaining ML is ML = 2 giving a 3D term with a degeneracy of 5: 
 

 L = |ML|max = 2 for a 3D term with ML = 2, 1, 0, -1, -2 
 

Removing these last five ML values from the list leaves: 1, 0, -1. The maximum remaining ML is 
ML = 1 giving a 3P term with a degeneracy of 3: 
 

L = |ML|max = 1 for a 3P term with ML = 1, 0, -1 
 

These final ML values exhaust the list. The two electrons can also be placed in the same explicit 
configurations, but with paired electron spins (), which give a parallel set of singlet 
configurations: 1F, 1D, 1P. A total of six terms arise from a d1p1 atomic configuration. Once 
again, we note that in the complete representation of the final states, degenerate individual 
configurations combine in the final terms and electron indistinguishability is maintained in the 
final spin-orbitals, through the use of Slater determinants. The exhaustive construction of the 
explicit configurations is, well, exhausting. We created the exhaustive list to show how the F, D, 
and P terms arise, but in general using the Clebsch-Gordon series is sufficient and much easier. 
 
              

 
 
The total spin quantum number, S, and the total orbital angular momentum quantum number, L, 
are separately good descriptions of an electronic state only if the spin and orbital angular 
momenta don’t interact. However, as we progress through the periodic table the spin and orbital 
angular momentum increasingly interact, or couple with each other. For the 5th and 6th period 
elements these interactions are strong and have a significant effect on chemical reactivity as well 
as the atomic spectroscopy. 
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Spin and Orbital Angular Momenta Couple:   The spin and orbital angular momenta combine to 
give the total angular momentum of the electronic state, J


. The angular momentum vectors add 

vectorially: 
 

 J


 = L


 + S


          25.6.19 
 

The total angular momentum behaves like any angular momentum, analogous to Eqs. 25.6.2-
25.6.11: 
 

 J


 =  j


i          25.6.20 
 

where J


 is the total angular momentum and the j


i are the total angular momentum vectors for 
each of the electrons in the atom. The magnitude of the total angular momentum is determined 
by the total angular momentum quantum number, J, in analogy with Eq. 24.5.34 and Eqs. 
25.6.2-25.6.5: 
 

 |J| = J(J+1) ħ          25.6.21 
 

The projection of the total angular momentum on the z-axis is quantized with quantum number 
MJ and degeneracy gJ: 
 

 Jz = MJ ħ  MJ = -J,…, 0, …, J  with degeneracy gJ = 2J + 1  25.6.22 
 

MJ is the sum of the individual electron total quantum numbers, mj,i: 
 

 MJ =  mj,i          25.6.23 
 

Since MJ varies from –J to +J, the total quantum number is given by the maximum of MJ: 
 

 J = MJ,max          25.6.24 
 

The coupling can be determined using Eq. 25.6.19 or Eq. 25.6.20. For light atoms using 
J


 = L


 + S


 is easier and is called the L-S coupling or Russell-Saunders coupling scheme. The 
allowed values of J in the Russell-Saunders coupling scheme are given by the Clebsch-Gordan 
series: 
 

   J = L + S, L + S – 1, …, |L – S|     25.6.25 
 

Once again, we don’t need to know the full angular momentum vector, knowing the J quantum 
number is sufficient. A vector diagram will help to summarize these relationships. Consider a 
single unpaired electron in a p-orbital. For a p1 configuration, L = 1 and S = ½. The Clebsch-
Gordon series gives two terms: 
 

 J = 1 + ½, |1 – ½| = 3/2, 1/2        25.6.26 
 

We can understand the Clebsch-Gordon results by enumerating all possible combinations of ML 
and MS, Figure 25.6.2. The full list is MJ = –3/2, –1/2, –1/2, 1/2, 1/2, +3/2. The J = MJ,max = 3/2 term 
includes MJ = –3/2, –1/2, 1/2, +3/2. The remaining configurations give a J = MJ,max = 1/2 term, which 
includes MJ = –1/2, 1/2. As noted before, we rarely need to enumerate all the possible ML and MS 
combinations. We did so in this case to help visualize the results of the Clebsch-Gordon series. 
 
 
 



142 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25.6.2:  A p1 configuration has L = 1 and S = ½ giving J = 1/2 ,3/2 for two terms: 2P½ 
and 2P3/2.  

 
 
   The total angular momentum quantum number is included in the term symbol as a subscript: 
 

         multiplicity 

         
2S + 1

 L J      25.6.27 
      orbital angular momentum         total angular momentum 
 

The J quantum number must be specified to provide a unique “nickname” for each possible 
electronic state. A good example of the effects of the coupling of angular momenta is the sodium 
atom emission spectrum. The prominent yellow emission line for sodium is a closely spaced 
doublet, because the p1 excited state configuration gives two states, one with J = 3/2 and one with 
J = ½: terms 2P3/2 and 2P½. The ground state configurations of the elements are shown in Figure 
25.6.3. Several generalizations aid the assignment of term symbols for simple cases: 
 

a). S = 0 and L = 0 for filled subshells. Only partially filled subshells contribute to S and L. 
b). For a closed-shell atom the term is 1So. 
c). For a single electron beyond a closed shell core, S = s, L = l, and J = l + ½, l – ½. 
d). For m electrons in a single partially filled subshell that holds n electrons, an lm 
configuration and an ln–m configuration give the same terms. For example, p2 and 
p4configurations give the same terms and d3 and d7 configurations give the same terms. 

 

   We have given examples with only two electrons outside a closed shell. The total angular 
momenta for multiple electrons are determined in stages; first, two electrons are coupled, then 
the results are coupled with the next electron, and those results are coupled with the next 
electron, etc. Accordingly, at each stage the number of possible states increases rapidly. The 
experimental ramification of the large number of electronic states is that atomic spectra contain a 
large number of transitions, even for the lightest atoms. 
 

z 

ML = +1 

MS = +½ 
MJ = +3/2 

z 

ML = 0 

MS = +½ 
MJ = +1/2 

z 

ML = –1 

MS = +½ 

MJ = –½ 

z 

ML = +1 

MS = –½ 

z 

ML = 0 

MS = –½ 
MJ = –½ 

z 
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Figure 25.6.3:  Ground state configurations of the elements.6 

 
 
              

Example 25.6.2: Total Angular Momentum 
Find the terms and total angular momentum states that result from the p2 configuration of the 
carbon atom. 
 
 
Answer:  For the configuration C : p2, the two electrons individually have orbital quantum 
numbers l1 = 1 and l2 = 1. The Clebsch-Gordon series gives the possible terms as L = 2, 1, 0 or D, 
P, and S terms, Eqs. 25.6.14 and 25.6.15. The two electrons individually have spin quantum 
numbers s1 = ½ and s2 = ½. The Clebsch-Gordon series results in total spin states S = 1, 0, giving 
triplet and singlet states. Taking each L state in turn gives the total angular momentum 
determined by the Clebsch-Gordon series as: 
 

Term Quantum Numbers J = L + S, L + S – 1, …, |L – S| Final terms 
1D L = 2, S = 0 J = 2+0, 2–0 = 2 1D2 
3P L = 1, S = 1 J = 1+1, 1+1–1, 1–1 = 2, 1, 0 3P2, 3P1, 3P0 
1S L = 0, S = 0 J = 0 1So 

 
              

 
 
   The L and S quantum numbers are not valid for heavy atoms with strong interactions between 
the orbital and spin angular momenta. For heavy atoms, Z > 40, the total angular momentum is 
calculated using the j-j coupling scheme, which is based on Eq. 25.6.20 (see Further Reading). 
   The strength of the coupling of the orbital and spin angular momentum is minimal for light 
elements and a significant fraction of the electronic energy for heavy elements. The interaction is 
called spin-orbit coupling. Consider a single electron in a p1 configuration. Classically, a 
current flowing through a loop of wire creates a magnetic field. As the electron rotates around 
the nucleus a magnetic field is also generated. The intrinsic angular momentum of the electron in 
combination with the charge on the electron also generates a magnetic field, Figure 25.6.4. 
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Figure 25.6.4:  The magnetic field generated by the orbital motion of the electron and the 
intrinsic magnetic moment of the electron interact like a bar magnet in the magnetic field 
created by electrical current in a loop of wire. 

 
 

The magnetic fields caused by the orbital motion and the intrinsic magnetic moment of the 
electron interact; the energy of the state is lower if the magnetic moments are in opposite 
directions and higher if the magnetic moments are parallel. For light elements, spin-orbit 
coupling may be treated as a perturbation. The Hamiltonian is broken into two terms, H ^

o + H ^  'so, 
where H ^

o corresponds to no interaction and the perturbation, H ^  'so, is the spin-orbit interaction: 

 H ^  'so =  L
̂

S
̂

          25.6.28 
 

The constant  is the spin-orbit coupling constant. L
̂

S
̂

 is related to the total angular momentum, 
J


 = L


 + S


. Taking the square of J


 gives: 
 

 J
^ 2 = J

J = (L
̂

 +S
̂

)(L
̂

 +S
̂

) = L
̂

L
̂

+S
̂

S
̂

 + 2L
̂

S
̂

 = L
^ 2 + S

^ 2 + 2 L
̂

S
̂

   25.6.29 
 

Solving this last equation for L
̂

S
̂

 gives: 
 

 L
̂

S
̂

 = ½ ( J
^ 2 – L

^ 2 – S
^ 2 )        25.6.30 

 

If the perturbation is small, L and S remain separately good quantum numbers. To a good level 
of approximation, the total angular momentum wave function is the product of orbital and spin 
angular momentum eigenfunctions: J,mJ

 = L,mL
 S,mS

. Using Eqs. 25.6.30, 25.6.2, 25.6.8, and 
25.6.21, the interaction operator then has the eigenvalue: 
 

 | L
̂

S
̂

 | = ½ h-2 [J(J+1) – L(L+1) – S(S+1)]      25.6.31 
 

Substitution of this last equation into Eq. 25.6.28 and finding the expectation value gives the 
spin-orbit interaction energy as: 
 

 Eso = ½ Ahc [J(J+1) – L(L+1) – S(S+1)]       25.6.32 
 

where A is the spin-orbit interaction constant, expressed in wave numbers with Ahc = h-2. The 
spin-orbit interaction constant increases with the charge of the nucleus. The successive effects of 
electron-electron repulsion and spin-orbit coupling on the energy of the states for a p2 
configuration are shown in Figure 25.6.5. An external magnetic field further splits the levels. 
 
 
              

Example 25.6.3: Spin Orbit Coupling 
Find the spin-orbit splitting of the 2P3/2 and 2P½ terms for the sodium atom. 
 

   10 A 

 
 

N 
 

S 

L
̂

 

S
̂
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Answer:  For the p1 configuration of the alkali metals, the energy of the 2P3/2 and 2P½ terms are 
split by, respectively: 
 

 Eso (J = 3/2) = ½ Ahc [3/2(3/2 + 1) – 1(1+1) – ½(½+1)] = ½ Ahc [15/4 – 8/4 – 3/4] = ½ Ahc 
 

 Eso (J = ½) = ½ Ahc [½(½ + 1) – 1(1+1) – ½(½+1)] = ½ Ahc [3/4 – 8/4 – 3/4] = –1 Ahc 
 

giving Eso = 3/2 Ahc. This splitting is small, 17 cm-1, since the Z for sodium is small. 
 
              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25.6.5:  A p2 configuration is split into 3P, 1D, and 1S terms by electron-electron 
repulsion. The degeneracy of the resulting terms is split by spin-orbit coupling. The 
degeneracy of the total angular momentum J-states is split by an external magnetic field. 

 
 

   The energy order for the terms arising from a given ground state configuration is predicted by 
Hund’s rules: 
 

1). The terms with maximum S have lowest energy. (Rephrased from Sec. 25.4) 
2). For a given value of S, the term with maximum L has lowest energy. 
3). For a given S and L, if the open subshell is less than half-full then minimum J has lowest 
energy. If the open subshell is more than half-full then maximum J has lowest energy. 

 

For an example, consider the carbon p2 configuration, Figure 25.6.5. Using rule 2, 1D2 is lower in 
energy than 1So. Both states have the same spin multiplicity, but the 1D2 has higher L. Using 
rule 3, the energy order for the 3P terms is 3Po < 3P1 < 3P2, because the p subshell is less than 
half-full. Hund worked out these summary rules from analysis of atomic spectra. However, the 
predictions have now been verified through careful electronic structure calculations. The energy 
order for excited state terms usually follow Hund’s rules, but exceptions occur. 
 

Selection Rules Govern the Intensities of Transitions:   Two conditions are necessary for the 
absorption or emission of light. The frequency of the light must match the transition energy, 
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E = h, and the absorption or emission transition must give rise to a changing dipole moment. 
For absorption, the electric field of light interacts with the oscillating electric dipole moment that 
results from the transition. For example, a transition from an s-orbital to an s-orbital causes no 
skewing of the electron density, so no change in dipole results. A transition from an s-orbital to a 
p-orbital skews the electron distribution and is therefore called a dipole allowed transition. The 
intensity of an absorption or emission transition from the initial state i to the final state j is 
proportional to the transition dipole moment, tr: 
 

 tr = <̂> =  *
j (–e r̂) i d        25.6.33 

 

The dipole moment operator is given by ̂ = – e r̂, where e is the charge on the electron and r̂ is 
the position operator for all the electrons in the atom or molecule. Atoms, of course, have no 
permanent dipole moment, but they can have a changing dipole moment upon interaction with 
light. The requirement for a non-vanishing transition dipole moment is called the gross selection 
rule. In addition, all interactions must conserve angular momentum. The photon has an angular 
momentum quantum number of s = 1, Sec. 24.5. The change in orbital angular momentum for 
the atom must then be 1 upon the absorption or emission of light. The conservation of angular 
momentum is called the specific selection rule. We will discuss selection rules more completely 
in the electronic spectroscopy chapter. For now, we note that the selections rules for atomic 
absorption and emission are: 
 

1.  S = 0  for example singlet to triplet transitions are not allowed 
2.  L = 1  for example S /  S is not allowed, but S  P  or P  D is allowed 
3.  J = 0, 1  except J = 0 /  J = 0 for example 2P½ /  2D5/2 is not allowed 25.6.34 

 

In addition, one n or l must change for one electron (Laporte selection rule). In other words, 
transitions between states with the same configuration are not allowed. For example, the carbon 
p2 configuration gives rise to 3P, 1D, and 1S terms. Transitions among these states from the p2 
configuration are not allowed. The selection rule for spin multiplicity is often violated, especially 
for systems with strong spin-orbit coupling. Phosphorescence violates S = 0. Correspondingly, 
phosphorescence lifetimes are usually significantly longer than fluorescence lifetimes. 
   The ground state of Na is 2S½. The bright yellow sodium doublet is the result of the emission 
transitions 2P3/22S½ and 2P½2S½, for which S = 0, L = -1, and J = 1 or 0. The selection 
rules for atomic spectroscopy are examples of the importance of term symbols and the effect of 
angular momenta on the properties of atoms. The interaction of atoms with magnetic fields are 
another application where angular momentum states play a critical role. 
 
25.7  Magnetic Interactions7,8 
 

   The behavior of systems in magnetic fields is becoming increasingly important, for example 
for magnetic resonance imaging contrast reagents and for use in manipulating nano-systems. 
Determination of the magnetic moment of transition metal complexes is an important 
characterization technique in inorganic chemistry. We consider first the classical expressions for 
the interaction of a magnetic moment with an external magnetic field. We then assume that the 
interaction energy is less than the spin-orbit coupling, so that Russell-Saunders coupling is valid. 
   Motion of a charged particle in a loop creates a magnetic field, Figure 25.6.4. Classically, the 
orbital magnetic moment of an electron generated by orbital angular momentum L


 is given by: 
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 L = – 
e

2me
 L


          25.7.1 
 

The magnitude of the orbital magnetic moment is: 
 

 L = – 
e

2me
 ħ L(L + 1)        25.7.2 

 

The sign is negative because of the negative charge of the electron. The intrinsic spin magnetic 
moment generated by the total spin angular momentum S


 is given by: 

 

 S = – 2 
e

2me
 S


         25.7.3 
 

The magnitude of the spin magnetic moment is: 
 

 S = – 2 
e

2me
 ħ S(S + 1)        25.7.4 

 

The factor of 2 is from the relativistic treatment of the electron. Careful studies of free electrons 
show the constant to be 2.0023, but 2 will be close enough for our purposes. The consequence is 
that the intrinsic electron spin creates twice the magnetic moment of the equivalent orbital 
angular momentum. The orbital and spin magnetic moment add vectorially to give the total 
magnetic moment of the atom: 
 

  = L + S = – 
e

2me
 (L


 + 2S


)       25.7.5 
 

Substituting the total angular momentum, J


 = L


 + S


, into the last expression gives: 
 

  = – 
e

2me
 ( J


 + S


)         25.7.6 
 

The extra factor of two in the spin magnetic moment requires that the total magnetic moment and 
the total angular momentum are not collinear, Figure 25.7.1. The external magnetic field 
determines the direction of quantization, which is assigned as the z-axis. The orientation of L


 

and S


 are quantized along the z-axis. The negative charge of the electron directs the magnetic 
moments in the opposite direction to the angular momenta, Figure 25.7.1a. 
 
 
 
 
 
 
 
 
 
 (a).    (b).    (c). 
 

Figure 25.7.1:  (a). The orbital and spin angular momenta add vectorially. The orbital and 
spin magnetic moments also add vectorially.  (b). The Law of Cosines determines the angles 
relative to the total angular momentum. The effective magnetic moment, J, is collinear with 
J


. (c). The interaction with the external magnetic field is: E = – J  B


 = – J B cos . 
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   The effective magnetic moment, J, is the projection of the total magnetic moment along the 
direction of the total angular momentum, Figure 25.7.1b: 
 

 J = L cos LJ + S cos SJ        25.7.7 
 

The angle LJ is between the total orbital angular momentum, L


, and the total angular 
momentum, J


. The angle SJ is between the spin angular momentum, S


, and the total angular 

momentum, J


. The angles are determined using the Law of Cosines, Figure 25.8.1b. For the SJ 
angle the sides have length |S| and |J| with side opposite the angle L


: 

 

 L(L + 1) ħ2 = S(S + 1) ħ2 + J(J + 1) ħ2 – 2 S(S + 1) J(J + 1) ħ2 cos SJ  25.7.8 
 

In Figure 25.7.1b, the three grey diagonal lines are parallel to J


, which defines LJ. For the LJ 
angle the sides have length |L| and |J| with side opposite S


: 

 

 S(S + 1) ħ2 = L(L + 1) ħ2 + J(J + 1) ħ2 – 2 L(L + 1)¯¯¯¯¯¯¯  J(J + 1)¯¯¯¯¯¯¯ ħ2 cos LJ  25.7.9 
 

Substituting Eqs. 25.7.2, 25.7.4, 25.7.8, and 25.7.9 into Eq. 25.7.7 gives the magnitude of the 
projection of the magnetic moment on J


 as:8,9 

 

 J = – 
e

2me
 ħ [J(J + 1)]½ 



1 + 

J(J + 1) + S(S + 1) – L(L + 1)
2J(J + 1)     25.7.10 

 

The last factor is called the Landé g-factor or the gyromagnetic ratio, g: 
 

 J = – g 
e

2me
 ħ J(J + 1)        25.7.11 

 

The Bohr magneton is the quantum unit for magnetic field strength and is defined as: 
 

 B = 
e

2me
 ħ          25.7.12 

 

The interaction energy of the atom with the external magnetic field is: 
 

 E = – J  B


 = – J B cos         25.7.13 
 

where B is the strength of the magnetic field and  is the angle between the magnetic moment of 
the atom and the external field direction, Figure 25.7.1c. The effective magnetic moment, J, is 
collinear with the total angular momentum. The z-projection of the total angular momentum is 
Jz = MJ ħ. The magnitude of the total angular momentum is |J| = ħ J(J + 1). The angle between 
the total angular momentum vector and the z-axis is then: 
 

 cos  = 
Jz

|J| = 
MJ ħ

[J(J + 1)]½ ħ = 
MJ

[J(J + 1)]½      25.7.14 
 

Substituting Eqs. 25.7.11, 25.7.12, and 25.7.14 into Eq. 25.7.13 gives the interaction energy as: 
 

 E = g B B MJ         25.7.15 
 

The magnetic interaction is called the Zeeman splitting, which is proportional to the external 
magnetic field strength. Each MJ state gives a different energy, Figure 25.6.5. The splitting of the 
degenerate levels for a given J-state into 2J + 1 levels allows the J quantum numbers for a 
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transition to be determined experimentally. Zeeman splitting is also used in background 
subtraction techniques in atomic absorption spectroscopy in elemental analysis. 
 
25.8  Summary – Looking Ahead 
 

   The electronic structure of the hydrogen atom played a central role in the historical 
development of quantum mechanics. However, hydrogen-like orbitals are exact only for one-
electron atoms and ions. Hydrogen-like orbitals may be used as approximations for multi-
electron atoms, however current electronic structure methods often use sums of Gaussian 
primitives to estimate the radial electron distribution in multi-electron systems. The angular 
portion of atomic orbitals is exactly described by spherical harmonics. In the orbital 
approximation, products of one-electron atomic orbitals are used as approximations for the wave 
functions of multi-electron systems. The effective charge model is a descriptive method for 
understanding the effects of electron-electron repulsion. Electron-electron repulsion breaks the 
degeneracy of orbitals in the same principle quantum shell. Hund’s Rules are statements about 
the minimization of electron-electron repulsion through the configuration of the electronic state 
with maximum spin multiplicity. 
   Perturbation and variation theory are generally useful approximation methods. The application 
to the electronic structure of atoms is just one specific example. Both methods play important 
roles in molecular structure calculations. Self-consistent field theory is variational. Hartree-Fock 
theory takes electron indistinguishability into account through the use of orbitals constructed as 
Slater determinants. The exchange energy is the difference in energy between the calculation of 
the energy of an atom, ion, or molecule with and without Slater determinants. The exchange 
energy is an important component in accurate electronic structure methods. Spin-orbit coupling 
is another important contribution to the electronic energy of atoms, especially heavy atoms. In 
spin-orbit coupling, the spin and orbital angular momentum of the atom interact. Taking proper 
account of electron indistinguishability leads to the Pauli Exclusion Principle. 
   The Pauli Exclusion Principle is one of several important fundamental principles in nature 
determined by symmetry. Were it not for the restriction, all the electrons in an atom might be 
found in the 1s-orbital, and then chemistry would occur only in very energetic circumstances. 
Detailed balance, the Gibbs Phase Rule, the Pauli Exclusion Principle, and the fluctuation 
dissipation theorem (Sec. 29.5) have wide-ranging ramifications for chemical interactions. While 
simple in statement, these principles describe the underlying foundations of chemistry. These 
central generalizations describe the interrelationships between different aspects of chemical 
reactivity and delineate the boundaries for possible chemical processes. We are now ready to 
develop the theory of the chemical bond. 
 
25.8  Addendum:  Electron-Electron Repulsion in Helium9 

 

Perturbation Theory: The Expectation Value of the Electron-Electron Repulsion in Helium:  The 
expectation value of the electron-electron repulsion is given by Eq. 25.3.18: 
 

     E(1)
gs =  *

1s(r1) *
1s(r2) 

e2

4πor12
 1s(r1) 1s(r2) dd2           (25.3.18) 

     E(1)
gs = 



0



0


2

0



0



0


2

0
 *

1s(r1) *
1s(r2) 

e2

4πor12
 1s(r1) 1s(r2) r2

1 dr sin 1 d1 d1 r2
2 dr2 sin 2 d2 d2 

            25.8.1 
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The helium atom is spherical, so the integration over the 1 and 1 angles for electron 1 gives 4. 
Again, given the helium atom is spherical, the orientation of the coordinate axis is arbitrary. For 
convenience, we position electron 1 along the z-axis. The position of electron 2 is then given by 
the  angle between the z-axis and the vector pointing to electron 2 and the  angle about the z-
axis, Figure 25.8.1b. Substitution of single-electron 1s hydrogen-like atomic orbitals for the two 
electrons then gives: 
 

 E(1)
gs = 

1
2 



Z

ao

6

 4 


0



0



0


2

0
 e–2Zr1/ao e–2Zr2/ao 

e2

4πor12
  r2

1 r
2
2 sin  drdr2 d d  25.8.2 

 

The distance between the two electrons is given by the Law of Cosines, Figure 25.8.1b: 
 

 r12 = (r2
1 + r2

2 – 2 r1r2 cos )½        25.8.3 

 
 
 
 
 
 
 
 
 
 
 (a).    (b).     (c).  
 

Figure 25.8.1: (a).The Law of Cosines. (b). The electron-electron distance from the Law of 
Cosines. (c). Integration domains for the electron-electron repulsion integral. 

 
 

Using Eqs. 25.8.2 and 25.8.3, the expectation value for the ground state electron-electron 
repulsion is: 
 

     E(1)
gs = 

1
2 



Z

ao

6

 
e2

4πo
 4 



0



0



0


2

0
 e–2Zr1/ao e–2Zr2/ao 

1
(r2

1
 + r2

2
 – 2 r1r2 cos )½ r2

1 r
2
2 sin  drdr2 d d 

            25.8.4 
 

The integrand is independent of  giving the remaining  integral as 2.The radial integrals are 
taken over all values of the distances of both electrons from the nucleus. Unfortunately, these 
integrals do not separate into a product of one-dimensional terms. The integrals must be broken 
into two domains, one for r1 > r2 and one for r1 < r2, Figure 25.8.1c, using: 
 

 


0
 

1
(r2

1
 + r2

2
 – 2 r1r2 cos )½  sin  d = 

2
r1

 for r1 > r2  or   = 
2
r2

   for r1 < r2  25.8.5 

 

Substituting these integrals into Eq. 25.8.4 gives two terms, the first term for r1 > r2 and the 
second term for r1 < r2: 
 

 E(1)
gs = 8 



Z

ao

6

 
e2

4πo
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0

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2 dr dr2 + 


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 
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r1
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       = 16 



Z

ao

6

 
e2

4πo
 [



0

r1

0
e–2Zr1/ao e–2Zr2/ao r1 r2

2 dr dr2 + 


0
 


r1
 e–2Zr1/ao e–2Zr2/ao r2

1 r2 drdr2] 

            25.8.6 
The integrals over r2 are taken first, since they depend on r1: 
 

      E(1)
gs = 16 



Z

ao

6

 
e2

4πo
 [



0
e–2Zr1/ao r1 (

r1

0
e–2Zr2/ao r2

2 dr2) dr + 


0
 e–2Zr1/ao r2

1 (


r1
 e–2Zr2/ao r2 dr2) dr] 

            25.8.7 
The r2 integrals are derived from tabulated integrals: 
 

    


r1
 e–2Zr2/ao r2 dr2 = 

1
2 



ao

Z  r1 e–2Zr1/ao + 
1
22 



ao

Z
2
 e–2Zr1/ao     25.8.8 

    
r1

0
e–2Zr2/ao r2

2 dr2 = – 
1
2 



ao

Z  r2
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1
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
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ao

Z
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1
22 

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ao

Z
3
 e–2Zr1/ao + 

1
22 



ao

Z
3
 25.8.9 

 

Substitution of the last equation into the first integral in Eq. 25.8.7 gives: 
 

    


0
e–2Zr1/ao r1 (

r1

0
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2 dr2) dr = – 
1
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Z
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
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1
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1
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
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ao

Z
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 r1 e–2Zr1/ao dr    25.8.10 
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1
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     25.8.11 
 

Substitution of Eq. 25.8.8 into the second integral in Eq. 25.8.7 gives: 
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1
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Z
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        25.8.12 
 

Substituting Eqs. 25.8.11 and 25.8.12 into Eq. 25.8.6 gives: 
 

 E(1)
gs = 16 



Z

ao

6

 
e2

4πo
 
5
27 



ao

4Z

5

 = 
5Z
8  




e2

4o ao
      25.8.13 

 

The first-order perturbation theory correction is the expectation value of the electron-electron 
repulsion: 
 

 E(1)
gs =  e2

4πeor12
 = 

5Z
8  




e2

4o ao
 = 

5Z
8  






me e4

1622
o h-2

 

       = 
5Z
8  (27.212 eV) = 34.01 eV       25.8.14 

 

The algebraic details for Eqs. 25.8.3-25.8.14 are worked out in Problems 38-42. This integral 
also gives an important contribution in the variation treatment of the helium atom. 
 
Variation Theory: The Expectation Value of the Exact Helium Atom Hamiltonian:   The trial 
energy for the variation treatment of the ground state of the helium atom is given by Eq. 25.3.25 
evaluated with the trial wave function, Eq. 25.3.27. The one-electron wave functions, 1s(r1) and 
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1s(r2), are normalized eigenfunctions of one-electron Hamiltonians with charge Zeff and one-
electron energies E1 and E2: 
 

     






– h-2

2m2
1 – 

Zeff e2

4πor1
 1s(r1) = E1 1s(r1)     







– h-2

2m2
2 – 

Zeff e2

4πor2
 1s(r2) = E2 1s(r2) 

     E1 = –½




e2

4o ao
 Z2

eff = -13.6 eV Z2
eff     E2 = –½





e2

4o ao
 Z2

eff = -13.6 eV Z2
eff 25.8.15 

 

The one-electron orbitals are normalized giving: 
 

        *
1s(r1) 1s(r1) d1 = 1        *

1s(r2) 1s(r2) d2 = 1   25.8.16 
 

The exact Hamiltonian uses the full nuclear charge Z. We can relate the Coulomb portion of the 
exact Hamiltonian to the effective charge using Z = Zeff + (Z – Zeff): 
 

 






– h-2

2m2
1 – 

Ze2

4πor1
 1s(r1) = 







– h-2

2m2
1 – 

Zeff e2

4πor1
 1s(r1) – 

(Z – Zeff) e2

4πor1
 1s(r1) 

 






– h-2

2m2
2 – 

Ze2

4πor2
 1s(r2) = 







– h-2

2m2
2 – 

Zeff e2

4πor2
 1s(r2) – 

(Z – Zeff) e2

4πor2
 1s(r2)  25.8.17 

 

Both electrons are in the same 1s-orbital so these two previous equations give the same energies. 
The electrons are identical, except for spin. To calculate the expectation value of the exact 
Hamiltonian,  *

1s(r1) *
1s(r2) H

 
^  1s(r1) 1s(r2) d, we find H

 
^  1s(r1) 1s(r2) using the last two 

equations and Eqs. 25.8.15: 
 

   H
 
^  gs = 1s(r2) 






– h-2

2m2
1 – 

Ze2

4πor1
 1s(r1) + 1s(r1) 






– h-2

2m2
2 – 

Ze2

4πor2
 1s(r2) + 

e2

4πor12
 1s(r1)1s(r2) 

 

       = – 




e2

4o ao
 Z2

eff 1s(r1) 1s(r2) – 2 
(Z – Zeff) e2

4πor1
 1s(r1)1s(r2) + 

e2

4πor12
 1s(r1)1s(r2) 25.8.18 

 

The variational energy for our guessed wave function is then: 
 

E =  *
1s(r1) *

1s(r2) H
 
^  1s(r1) 1s(r2) d = – 





e2

4o ao
 Z2

eff – 2 (Z – Zeff) e2

4πor1
  +  e2

4πor12
  25.8.19 

 

The first expectation value is the difference in the Coulomb attraction of an electron with a 
nucleus of charge Z and a nucleus of charge Zeff: 
 

 – (Z – Zeff) e2

4πor1
   = – (Z – Zeff)  *

1s(r1) *
1s(r2) 

e2

4o r1
 1s(r1) 1s(r2) dd2  25.8.20 

       = – (Z – Zeff)  *
1s(r2) 1s(r2) d2  *

1s(r1) 
e2

4o r1
 1s(r1) d 25.8.21 

      normalization  V 
 

The first integral is the normalization for electron 2. The second integral is the expectation value 
of the potential energy for a one-electron atom with nuclear charge Zeff, V, see Problem 25.6. 
 

 –  (Z – Zeff) e2

4πor1
  = – (Z – Zeff) 



Zeff e2

4o ao
      25.8.22 
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We evaluated the expectation value of the electron-electron repulsion for our perturbation 
treatment of the helium atom. We only need to substitute Zeff for Z: 
 

  e2

4πor12
  =   *

1s(r1) *
1s(r2) 

e2

4πor12
 1s(r1) 1s(r2) dd2 = 

5Zeff

8  




e2

4o ao
  25.8.23 

 

Setting Z = 2 gives the final result as referenced in Eq. 25.3.28: 
 

 E = 




e2

4o ao
( – Z2

eff – 2 ZZeff + 2 Z2
eff + 

5Zeff

8  )     25.8.24 
 

 E = 
e2

4o ao
 



Z2

eff – 
27
8  Zeff  = 27.211 eV 



Z2

eff – 
27
8  Zeff     25.8.25 

 
 
 

Chapter Summary 
 

1.  The potential energy for the hydrogen atom and one-electron ions is given by the Coulomb 
attraction of the electron for the nucleus with charge Z: 

 – 
h-2

2m 2  + V^  = E  with V^ (r) = 
–Z e2

4or
 

2.  The Schrödinger equation for the hydrogen atom is best expressed in spherical polar 
coordinates with the curvature: 

 2 = 
1
r 



∂2

∂r2  r + 


1

r2 2   L^ 2 = –ħ22 

3.  The hydrogen atom Schrödinger equation is separable in r, , and :  = R(r) () (). R(r) 
is the radial wave function. () gives the angular momentum of the electron in the x-y 
plane, Lz = h- ml . The product of the angular wave functions are the spherical harmonics, 
()() = Yl,ml . 

4. The atomic units of energy and length are the Hartree, H, and Bohr radius, ao, respectively: 

   1 H  27.211384 eV = 219,474.6 cm-1 = 2625.4996 kJ mol-1 ao = 
4o ħ2

me2  = 0.52918 Å 

5.  The wave function for the ground state of the hydrogen atom is R(r) = A e–r , with energy: 

 Egs = – 
ħ22

2m  and    = 
Z e2

4o
 
m
ħ2  = 

Z
ao

  1s(r) = 100(r) = R(r) = 
1


 



Z

ao

3/2
 e–Zr/ao 

6.  The energy of the atomic orbitals of the hydrogen atom and one-electron ions is a function 
only of the principle quantum number, n: 

 En = – 




m e4

322o
2ħ2  

Z2

n2 = – 
ħ2

2mao
2 

Z2

n2 

 En = -13.606 eV 
Z2

n2 = -109,678 cm-1 
Z2

n2 = -1312.7 kJ mol-1 
Z2

n2 = – 
H
2  

Z2

n2 

7.  The most probable radius for the ground state of the hydrogen atom and one electron ions is 
rmp = ao/Z and the average radius is given by the expectation value <r> = 3/2 ao/Z: 
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8.  The volume of the annular ring of thickness dr at distance r from the nucleus is 4r2 dr. The 
probability of finding the electron at radius r, irrespective of  and , is the radial probability 
distribution function: P(r) dr = 2 4r2 dr. 

9.  The 90% contour surface for the normalized hydrogen 1s-orbital is at radius r90% = 2.66 ao/Z: 

 


0

r90% 0

 0

2 2 r2 sin dr d d 

10.  Excited state atomic wave functions are the product of a polynomial and the asymptotic 
form given by the ground state wave function. The 2s- and 3s-orbitals are: 

 2s = 
1

4 2π
 



Z

ao

3/2
 



2 – 

Zr
ao

 e–Zr/2ao         3s = 
1

18 3π
 



Z

ao

3/2
 



6 – 

4Zr
ao

 + 
4Z2r2

9a2
o

 e–Zr/3ao 

11.  The polynomials generating the atomic orbitals with angular momentum are the spherical 
harmonics. The restrictions are: n = 0,…, ;    l = 0,…, n – 1; and    ml = –l,…, 0,…, +l 

12.  The nodes for the atomic orbitals are given by: 
  total nodes = n – 1 
  total angular nodes = l 
  angular nodes that include the z-axis = ml 
  radial nodes = total nodes – angular nodes = n– 1 – l 

13.  The 2p-orbitals with pure angular momentum quantum numbers are: 

 2pz = 
1

4 2π
 



Z

ao

3/2
 e–Zr/2ao 

Zr
ao

 cos    ml = 0  Lz = 0 

 211 =  
1

4 2π
 



Z

ao

3/2
e–Zr/2ao 

Zr
ao

 sin  ei   ml = +1 Lz = +1 

 21-1 =  
1

4 2π
 



Z

ao

3/2
e–Zr/2ao 

Zr
ao

 sin  e–i   ml = -1  Lz = -1 

14.  The oriented 2px and 2py orbitals are linear combinations of the  ml = l pure angular 
momentum orbitals. The oriented orbitals are poised for bonding interactions in molecules: 

 2px = 
211 + 21-1

2  = 
1

4 2π
 



Z

ao

3/2
e–Zr/2ao 

Zr
ao

 sin  cos  = 
1

4 2π
 



Z

ao

3/2
e–Zr/2ao 

Z
ao

 x 

 2py = 
211 – 21-1

2i  = 
1

4 2π
 



Z

ao

3/2
e–Zr/2ao 

Zr
ao

 sin  sin  = 
1

4 2π
 



Z

ao

3/2
e–Zr/2ao 

Z
ao

 y 

15.  The angular portion of the oriented d-orbitals are products of the Cartesian coordinates: 
 dxz  xz = r2 sin  cos  cos  
 dyz  yz = r2 sin  sin  cos  
 dxy  xy = r2 sin  cos  sin  sin  = r2 sin 2 cos  sin  
 dx2-y2  x2 – y2 = r2 (sin2 cos2 – sin2 sin2) 
 dz2 = d3z2-r2  r2 (3 cos2 – 1) 

16.  The orbital angular momentum of an electron in an atom has magnitude: |L| = h- l(l + 1). 

17.  The z-axis projection of the intrinsic angular momentum of the electron is sz = h-ms, with 
ms = ½. In the absence of an external magnetic field, the states are degenerate. 



155 
 

 

18.  The potential energy for the helium atom, Z = 2, includes the attraction of electron 1 for the 
nucleus, the attraction of electron 2 for the nucleus, and the electron-electron repulsion: 

 V^ (r) = 
1

4πo
 



– 

2e2

r1
 – 

2e2

r2
 + 

e2

r12
  

19.  In the independent electron approximation, the electron-electron repulsion term is dropped 
giving the atomic wave function as the product of one-electron atomic orbitals: 
(r1,r2) = 1(r1) 2(r2). Assuming that the orbital for a multi-electron atom or molecule is 
the product of one-electron orbitals is called the orbital approximation. 

20.  In the independent electron approximation: one-electron orbitals multiply and energies add. 
For the helium ground state, Z = 2: 

 EHe = E1 + E2 = – 13.6 eV 






Z2

n2
1

 + 
Z2

n2
2

 = -108.8 eV 

21.  The ionization energy is the energy necessary to remove an electron, M  M+ +e–. The 
separated nucleus and electrons is the zero energy. The electronic energy of an atom is the 
negative sum of the sequential ionization energies: EHe,exp = – (I1 + I2) = -79.00 eV. 

22.  The Perturbation Method: the Hamiltonian is split into a part that can be solved exactly, H ^  (o), 
and a small perturbation H ^  '. The strength of the perturbation is scaled by the perturbation 
parameter,  = 0  1, with the full Hamiltonian, H ^  = H ^  (o) +  H ^  '. The energy of the system 
is expanded in a power series in   Ei  E(o)

i  + E(1)
i  + 2 E(2)

i  + … 

23.  The first-order correction to the energy is the expectation value of the perturbation: 

 E(1)
i  = < H ' > =  (o)

i
* H ^  ' (o)

i  d 

 The (o)
i  are the eigenfunctions of the unperturbed Hamiltonian: H ^  (o)

 
(o)
i  = E(o)

i  (o)
i . 

24.  The first-order correction to the wave function is: 

 (1)
i   (o)

i  +  
ki

 
H 'ki

E(o)
i  – E(o)

k
 (o)

k  

 The integral H 'ki is taken between the state of interest, i, and all other states k with the 

perturbation Hamiltonian, H 'ki =  (o)
i

* H ^  ' (o)
k  d. 

25.  The Variation Method: the trial energy, E, is guaranteed to be greater than or equal to the 
exact energy, Ei, by the Variation Theorem: 

 E = 
 *H

 
^   d

 * d
 ≥ Ei  the trial wave function that gives the lowest energy is best. 

26.  The Effective Charge Model: the ground state of the helium atom is approximated as the 
product of one-electron 1s-orbitals with effective nuclear charge Zeff: 

 gs = 1s(r1) 1s(r2) = 
1
π 



Zeff

ao

3
 e–Zeff r1/ao e–Zeff r2/ao 

 Zeff is a variation parameter. The trial energy for the ground state of the He atom: 

 E = 
 *

gs H
 
^  gs d

 *
gs gs d

 = 
e2

4o ao
 



Z2

eff – 
27
8  Zeff        minimizes  

dE

dZeff
 = 0     to give Zeff = 1.6875 

27.  In the effective charge model, electron-electron repulsion is modeled as a shielding 
interaction, where the electrons shield each other from the full nuclear attraction, Zeff < Z. 
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28.  The Self-Consistent Field method: the Schrödinger equation is solved iteratively for the one-
electron effective potential energy and wave function for each electron. The SCF-method is 
variational. For the helium atom, the effective potential for electron 1 includes the attraction 
for the nucleus, V1(r1), and the average e-–e- repulsion with electron 2: 

 Veff(r1) = V1(r1) + 

2 

e2

4or12
2 d2 

29.  Electron-electron repulsion breaks the orbital degeneracy, s < p < d < f. Radial nodes for the 
s- and p-orbitals increase the electron density close to the nucleus. Low l orbitals penetrate 
closer to the nucleus and feel a greater effective nuclear charge than high l orbitals. 

30.  The Pauli Exclusion Principle: no two electrons can have the same set of quantum numbers. 
The maximum number of electrons in a given orbital is two, with ms = +½ and –½. 

31.  Hund’s First Rule: for a degenerate set of orbitals, electron-electron repulsion is minimized 
when the electrons occupy different orbitals and have the same spin quantum number. 
Quantum mechanical avoidance increases the average distance between electrons with 
parallel spins, which decreases electron-electron repulsion. 

32.  The Aufbau Principle predicts the configuration of the elements: electrons fill the orbitals of 
lowest energy, subject to the Pauli Exclusion Principle and Hund’s First Rule. 

33.  Electrons in the same subshell have the same average radius and don't shield each other well. 
Half filled or totally filled subshells have a special stability and are efficient shielders. 

34.  For the early transition metals, the valence shell s-orbital is lower in energy than the 
previous shell d-orbital. The Aufbau prediction is that the 4s fills before 3d and the 5s fills 
before 4d, in the respective periods. 

35.  The orbital energies for the monatomic cations are in principle quantum number order. 
Cations have fewer electrons than the parent neutral element, decreasing electron-electron 
repulsion and giving a different atomic orbital ordering for the early transition metals. 

36.  The Pauli Exclusion Principle: The wave function is overall antisymmetric with respect to 
exchange of any two electron spin labels. The spin-orbitals are the product of an orbital part 
and a spin part, which must be overall antisymmetric with respect to spin labels. 

37.  To guarantee antisymmetry, the spin-orbital is expressed as a Slater determinant. For the 
ground state of the helium atom, the Slater determinant is: 

a = 1/ 2



1s(1)(1) 1s(1)(1)

1s(2)(2) 1s(2)(2)   
   rows: different electrons 

   columns: different wave functions 

38.  The ground state of helium is a singlet: 1gs = 1/2̄ 1s(1) 1s(2) [(1) (2) – (1) (2)]. 

39.  The lowest energy excited states of helium have the configuration 1s12s1. The singlet excited 
state is: 1ex = 1/2̄ (1s(1) 2s(2) + 1s(2) 2s(1)) [(1) (2) – (1) (2)]. The triplet 
excited state is lower in energy, because of decreased e-–e- repulsion: 

 3ex = 1/ 2 (1s(1) 2s(2) – 1s(2) 2s(1)) 








(1)(2)

(1)(2) + (1)(2)
(1)(2)

 

40.  A separate Slater determinant is required to represent each spin-orbital in a degenerate level 
(i.e. for S > 1). 
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41.  The difference in energy with and without the use of the restriction based on electron 
indistinguishability is the exchange energy. The Hartee-Fock, HF, method is a self-
consistent field calculation with the spin-orbitals as Slater determinants. 

42.  Slater type orbitals, STOs, have the same large r dependence as the corresponding hydrogen-
like orbital, but lack radial nodes. The radial polynomial in the hydrogen-like orbital is 
replaced by just the leading term in r:  nl ml(r) = N Yl,ml r(neff – 1) e–Zeff r/neff ao. 

43.  Zeff is approximated as the difference between the full nuclear charge and a shielding 
constant, S: Zeff  = Z – S. The shielding constant accounts for the average electron-electron 
repulsion for the electrons. 

44.  Slater’s Rules: To approximate the Zeff of the valence electrons, the shielding efficiency of 
electrons in the valence shell is 35%. The shielding efficiency of electrons in the next lower 
energy shell is 85%. For third and higher period elements, the shielding efficiency of 
electrons in the inner core levels is 100%. 

45.  Gaussian orbitals are a convenient functional form when evaluating electron-electron 
repulsion integrals. Gaussian primitives of the form: 

 gs(,r) = 



2

π
¾

 e–r2  gx(,r) = 



1285

π3

¼
 x e–r2 

 are combined in linear combination to approximate the electron distribution in multi-
electron atoms:  =  di gi(,r) with the orbital type  = s, x, y, z and fixed constants di. 
The Gaussian exponent, , plays the role of the effective nuclear charge. 

46.  A split valence shell allows the contribution of the inner and outer part of the valence 
orbitals to adjust to the bonding environment: 2s = a2s(inner) + b2s(outer). The 
constants a and b are optimized in an SCF calculation. 

47.  The total intrinsic spin angular momentum, S


, the total orbital angular momentum, L


, and 
the total angular momentum, J


, are the vector sums of each electron. 

 

Angular Momentum Intrinsic Spin Orbital Total 
individual electron s


i L


i j


i 

total S


 =  si L


 =  L


i J


 =  j


i 
magnitude |S| = S(S+1) h- |L| = L(L+1) h- |J| = J(J+1) h- 
z-axis projection Sz = MS h- Lz = ML h- Jz = MJ h- 
magnetic quantum number MS =  ms,i ML =  ml,i MJ =  mj,i 

MS range MS = –S,…, 0,…+S ML = –L,…, 0,…+L MJ = -J,…, 0, …,+J 
degeneracy gS = 2S + 1 gL = 2L + 1 gJ = 2J + 1 

48.  The possible L values for a given configuration is given by a Clebsch-Gordan series. For 
two electrons with orbital angular momentum quantum numbers l1 and l2 the range of 
possible total L values is the series:  L = l1 + l2, l1 + l2 – 1, …, |l1 – l2| 

49.   The L value for an electronic state is symbolized by a term symbol, the term is determined 
from the following table. The spin multiplicity, gs, is added as a superscript before the term. 
The total angular momentum quantum number, J, is included as a subscript. 

  L 0 1 2 3 4 5 
  Term S P D F G H 
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50.  The total angular momentum is the vector sum of the spin and orbital angular momenta, 
J


 = L


 + S


. In the L-S coupling or Russell-Saunders coupling scheme, the possible total 
angular momentum quantum numbers are given by the Clebsch-Gordan series: 

  J = L + S, L + S – 1, …, |L – S| 

51.  Spin-orbit coupling is the interaction of the total spin and total orbital angular momentum. 
For light elements the spin-orbit coupling is treated as a perturbation: H ^  'so =  L

̂

S
̂

. 

52.  The spin-orbit coupling is: Eso = ½ Ahc [J(J+1) – L(L+1) – S(S+1)] , where A is the spin-
orbit interaction constant, expressed in wave numbers with Ahc = ħ2. 

53.  The dipole moment operator is ̂ = – e r̂, where r̂ specifies the position of all the electrons. 
The intensity of an absorption or emission transition from the initial state i to the final state 
j is proportional to the transition dipole moment, tr = <̂> =  *

j  (–e r̂) i d. 
54.  The selections rules for atomic absorption and emission are: S = 0, L = 1, J = 0, 1,  

except J = 0 /  J = 0. The Laporte selection rule requires that one n or l must change. 

55.   The interaction energy of an atom with an external magnetic field is the Zeeman splitting: 
E = g B B MJ, with B the magnetic field strength, B the Bohr magneton, and g the Landé 
g-factor or gyromagnetic ratio: 

 B = 
e

2me
 ħ  g = 



1 + 

J(J + 1) + S(S + 1) – L(L + 1)
2J(J + 1)  

56.  Zeeman splitting of the degenerate levels of a given J-state gives 2J + 1 energy levels. 
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Atomic Structure Problems 
 
1.  Use node counting rules to argue that l cannot be greater than n–1 and ml cannot be greater 
than l for the atomic orbitals of the hydrogen atom. 
 

2.  Give the degeneracy, the total number of nodes, the number of radial nodes, the number of 
angular nodes, and the number of angular nodes that include the z-axis for the following sets of 
orbitals: (a). 2p, (b). 3p, (c). 3d, (d). 4d, (e). 4f, (f). 5s. 
 

3. Show that R = A e–r is a solution to the ground state radial wave equation for the hydrogen 
atom, including solving for the value of : 
 

 – 
ħ2

2m 



1

r 
d2

dr2  r R – 
Z e2

4πor
 R =E R 

4. The ground state of the hydrogen atom is: (r) = R(r) = 
1


 



Z

ao

3/2

e–Zr/ao = 
1


 3/2 e–r. 

(a). Calculate the expectation value of the kinetic energy for the ground state of the hydrogen 
atom. 
(b) From your answer in (a), show that <Ek> = – E1, where E1 is the total energy of the ground 
state of the hydrogen atom. 

5. The ground state of the hydrogen atom is: (r) = R(r) = 
1


 



Z

ao

3/2

e–Zr/ao. 

(a). Calculate the expectation value of the potential energy for the ground state of the hydrogen 
atom. 
(b) In your final answer in (a), use the fact that e2/4o = ħ2/mao to show that <V> = 2E1, where 
E1 is the total energy of the ground state of the hydrogen atom. 
 
6.  Find the average radius of an electron in a hydrogen atom in a 2s orbital. 
 
7.  Find the average radius of an electron in a hydrogen atom in a 2pz orbital. 
   The normalized 2pz orbital is given by: 
 

 2pz = 
1

4 2
 



Z

ao

3/2

 
Zr
ao

 e–Zr/2ao cos  

 
8.  Find the radius of the 90% contour surface for a 1s orbital in the H-atom. Use the following 
steps. 

   (a). Integral tables give   xn e–ax dx = – 
xn e–ax

a  + 
n
a  xn–1 e–ax dx.   Prove that: 

 

  x2 e–ax dx = – 
x2 e–ax

a  – 
2x e–ax

a2  – 
2 e–ax

a3  
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   (b). Show that for a given value of the contour radius, rc, that: 
 

 


0

rc
 r2 e–2Zr/ao dr = 



– 

ao r2
c

2Z  – 
a2

o rc

2Z2  – 
a3

o

4Z3  e–2Zrc/ao + 
a3

o

4Z3 

 

   (c). Show the radius that gives the 90% contour surface is given by: 
 

 0.90 = 



– 2 

Z2 r2
c

a2
o 

 – 2 
Z rc

ao 
 – 1  e–2Zrc/ao + 1 

 

   (d). Let  = Zrc/ao. Show that the last equation reduces to:   (–22 – 2 – 1) e–2 + 1 = 0.90. 
Solve this equation for  numerically, to three significant figures, to find the 90% contour radius. 
 
9.  Show that the 1s and 2s orbitals of the hydrogen atom are orthogonal. 
 
10.  Determine n, l, and |ml| for the following orbitals. Give the orbital designations (e.g. 2px, 
3dxy, etc.). 
 
 
 
 
 
 
 
 
  (a).       (b). 
 
11.  Sketch the 4dxy orbital. Include the phase for each region. 
 
12. The normalized angular portions of the oriented d-orbitals are: 
 

 dxz = 




5

4

½
3 sin  cos  cos  

 dyz = 




5

4

½
3 sin  cos  sin  

 dxy =  




5

4

½
3 sin2 cos  sin  

 dx2–y2 = 




5

4

½
 

3
2  sin2  (cos2 – sin2) 

 d3z2–r2 = 




5

4

½
 
1
2 (3cos2 – 1) 

 

Show that d2
xz + d2

yz + d2
xy + d2

x2-y2 + d2
3z2–r2 = constant (Eq. 25.2.10). The following trigonometric 

identities are useful: 
 

 cos2x + sin2x = 1 and correspondingly (cos2x + sin2x)2 = 1 
 cos2x – sin2x = 2 cos2x – 1 
 

13.  Normalize the angular portion of the orbital: dyz = N sin  cos  sin . Note that: 

x 

z 

+ 

+ 

– 

– 

x 

z 

+ 

+ 

+ 

+ 

– 

– 

– 

– 
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 0

 sin3x cos2x dx = 4/15 

 
14.  The oriented forms of the d-orbitals are given as products of the Cartesian coordinates, e.g. 
dxz. Give the functional form of the 3dxz orbital using Cartesian coordinates for the angular 
portion (e.g. Eqs. 25.2.8) and using spherical polar coordinates (e.g. Eqs. 25.2.6). Just leave the 
normalization constant as N. Describe the orientation of the lobes of the orbital. 
 
15.  The oriented forms of the f-orbitals are given as triple products of the Cartesian coordinates, 
e.g. fxyz. Give the functional form of the 4fxyz orbital using Cartesian coordinates for the angular 
portion (e.g. Eqs. 25.2.8) and using spherical polar coordinates (e.g. Eqs. 25.2.6). Just leave the 
normalization constant as N. Describe the orientation of the lobes of the orbital. 
 
16.  Hooke's Law is only an approximation of the true vibrational potential energy of a molecule. 
There are many other possible forms for the potential energy function of a chemical bond. Use 
perturbation theory to calculate the small change in energy for the harmonic oscillator ground 
state that is perturbed by the addition of a term = b x4 to the potential energy function: 
 

 V(x) = ½ k x2 + b x4 

[Hint: Remember that the wave function is (x) = 






2



¼
 e–½ 2x2

 where 2 = 



mo

ħ . Just leave 

2 as a parameter until the last step and then substitute in at the last for 2 to find that the change 

in energy is  
3b
4  



ħ

mo

2
] 

 
17.  Using the Aufbau Principle predict the ground state electron configuration for: (a). Si, 
(b). Ti, (c). Ti2+, (d). Cr, (e). Cr2+, and (f). Ag. Show both the condensed configuration (e.g. 
[Ne] 3s2) and the orbital diagram (e.g. 3s:  ). For which species is the Aufbau prediction 
expected to differ from the experimental configuration? 
 
18.  The following problem explores the Pauli Exclusion Principle and wave function 
symmetry.1 Let 1 and 2 be the functions for a particle in a one-dimensional particle in a box 
with n = 1 and n = 2, respectively. If one electron is in each of these orbitals, the space part of the 
triplet and singlet wave functions is: 
 

A = 
1
2
[1(1) 2(2) – 2(1) 1(2)] and S = 

1
2
[1(1) 2(2) + 2(1) 1(2)]



respectively. Suppose that electron 1 is in a small element of length dx at x = 0.250 a and 
electron 2 is in a small element of length dx at x = 0.255 a. The quantity a is the length of the 
box. Show that A has a very small value under these conditions while S is large. What 
happens to A if both electrons are at x = 0.250 a? This problem shows how an anti-symmetric 
spatial wave function keeps the electrons apart, that is “quantum mechanical avoidance.”1 

   A note on nomenclature: for example, y(2) means wave function 1 (with n = 1) is used for 
electron 2. Since this wave function is for electron 2 it should be evaluated at x = 0.255 a. 
 
19.  Two possible wave functions for the ground state of the helium atom are: 
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 s = 1/ 2 1s(1) 1s(2) [(1) (2) + (1) (2)]   (25.4.14) 

 a = 1/ 2 1s(1) 1s(2) [(1) (2) – (1) (2)]   (25.4.15) 
 

Show that the squares of both wave functions transform to give back the original wave function 
upon exchange of spin labels: 2

s  2
s and 2

a  2
a. 

 
20.  Give the spatial and spin parts for the singlet excited state of helium atom that has the 
configuration, He: 1s1 2p1. 
 
21.  Give the determinantal wavefunction for the ground state of the beryllium atom 
(configuration 1s22s2). 
 
22. Determine the spin multiplicity of the vanadium ground state. 
 
23. Determine the spin multiplicity of the manganese ground state. 
 
24. Determine the expectation value for the total spin angular momentum squared, that is <S2> 
for a triplet state. 
 
25. Give the expectation value for the total spin angular momentum squared, that is <S2> for a 
quartet state. For example:                  
            4s        3d 
 

26.  (a). Show that the spin-orbit coupling operator, l
̂
 s
̂

, for a single unpaired electron is: 
 

  l
̂
 s
̂

 = ½ ( j
^2 – l^2 – s^ 2 ) 

(b). Show that l
̂
 s
̂

 has the eigenvalue: 
 

 | l

 s


 | = ½ ħ2 [ j(j+1) – l(l+1) – s(s+1)] 
 

Assume that the interaction is weak enough to be treated as a perturbation, which allows l and s 
to remain separately good quantum numbers. Accordingly, to a good level of approximation, the 
total angular momentum wave function is the product of orbital and spin angular momentum 
eigenfunctions: j,mj = l,ml s,ms. 
 
27. Find the spin-orbit splitting of the 2D5/2 and 2D3/2 terms for the yttrium ground state. 
 
28.  Determine the atomic terms that correspond to a d2 configuration. Specify the total orbital 
angular momentum and the spin multiplicity. Use the following steps: 

(a). Draw all the possible explicit singlet states. For example, two of the explicit singlet states 
are: 

                    and                  

(b). Calculate ML for each of the states. 
(c). Find L = |ML|max. Remove the ML states from the list from part (b) corresponding to this 

L. 
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(d). Find L = |ML|max for the remaining states. Remove the ML states from the list 
corresponding to this L. 

(e). Repeat part (d) until all the ML states are accounted for. Write the term symbols for each 
of the different L values that you have found (for example, 1D or 3P). 

(f). Repeat steps (a) through (e) for all possible explicit triplet states. For example one of the 
explicit triplet states is: 

                   

(g). Verify that the Clebsch-Gordon series applied to the total orbital angular momentum 
gives the same results. 

 
29.  Use the Clebsch-Gordon series and the Russell-Saunders coupling scheme to find the 
possible total angular momentum J states for the terms that result from the d2 configuration. See 
the previous problem for the terms. 
 
30.  Use the Clebsch-Gordon series and the Russell-Saunders coupling scheme to find the 
possible total angular momentum J states for a 3P term. 
 
31.  The previous problem uses the Clebsch-Gordon series to find the possible values for the 
total angular momentum for a 3P term. This problem takes a graphical approach to reach the 
same conclusion. (a). Draw all the angular momentum diagrams to show the possible total 
angular momentum MJ states for a 3P term. (b). Find MJ for each explicit configuration. (c). 
Determine the possible values for J. Consider only the projections on the z-axis. One example, 
for ML = 1 and MS = 0 giving MJ = 1, is: 
 
    MJ = 1: 
 
 
 
 
 
 
 
32.  (a). Use the Clebsch-Gordon series and the Russell-Saunders coupling scheme to find the 
possible total angular momentum J states for a 3D term. (b). Determine the complete set of 
explicit MJ states for a 3D term. Determine the possible total angular momentum J states from the 
complete set of MJ values. Compare your results with part (a). For example, two explicit MJ 
states are tabulated below: 
 

ML MS MJ 

2 1 3 
2 0 2 

 

33.  Using the complete enumeration of explicit configurations, show that the O atom 
configuration 2s2 2p4 gives rise to 1D, 3P, and 1S terms (just like C: 2s2 2p2). Also verify that the 
Clebsch-Gordon series based on the holes gives the same terms. The holes are the empty orbitals 
in the partially filled subshell. 
 

34.  A p2 configuration gives 1S, 1D, 3P terms. Give the terms for a p4 configuration. 

z-component of the orbital angular momentum, ML 
z-component of the spin angular momentum, Ms 
z-component of the total angular momentum, MJ 

Legend: 

z 

MS = 0 

ML = 1h- 
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35.  A p2 configuration gives 1S, 1D, 3P terms. Give the terms for a p4 configuration. Give the 
lowest energy term for ground state p2 and p4 configurations. 
 

36.  A d3 configuration gives 2P, 2D, 2D, 2F, 2G,2H, 4P, 4F terms. Give the terms for a d7 
configuration. Give the lowest energy term for ground state d3 and d7 configurations. 
 

37.  Write a spreadsheet to plot the 3-21G Gaussian orbital for a 2px orbital on carbon, along the 
x-axis. 
 

38.  In the integral for the expectation value of the electron-electron repulsion in the helium 
atom, we used the Law of Cosines, r12 = (r2

1 + r2
2 – 2 r1r2 cos )½. Prove this relationship using the 

following steps. 
(a).  The distance between the two electrons is the magnitude of the vector difference: 
r12 = | r1 – r2|, where r1 is the vector pointing to electron 1 and r2 is the vector pointing to 
electron 2. The length of r1 is r1 and of r2 is r2. The angle between the two vectors is . The 
distance between the two electrons does not dependent on how the coordinate system is oriented, 
only the difference is important. We orient the coordinate system with r1 pointing along the z-
axis and r2 parallel to the x-axis. The x, y, and z coordinates are then conveniently expressed in 
terms of r, , and . Show that the coordinates of the two electrons are given as: 
 

 r1 = (0, 0, r1) 

 r2 = (r2 sin , 0, r2 cos) 

 
 
 
 
(b).  From the position vectors in part (a), find r12 = | r1 – r2|. Remember that sin2 + cos2 = 1. 
 

39.  Using the substitution q = cos , show that (Eq. 25.7.5): 
 

 


0
 

1
(r2

1
 + r2

2
 – 2 r1r2 cos )½  sin  d = 

2
r1

 for r1 > r2  or   = 
2
r2

   for r1 < r2 

 

40.  Evaluate the following integrals, verifying Eqs. 25.7.8 and 25.7.9: 

 


r1
 e–2Zr2/ao r2 dr2 and 

r1

0
e–2Zr2/ao r2

2 dr2 
 

41.  (a). Verify Eq. 25.7.11 starting from Eq. 25.7.10. (b). Verify Eq. 25.7.12 starting from Eqs. 
25.7.7 and 25.7.8. 
 

42.  Using Eqs. 25.7.7, 25.7.11, and 25.7.12, verify Eq. 25.7.14. 
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