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Chapter 24 Problems: The Quantum Mechanics of Rotation and Vibration  
 

1.  (a). How many nodes are in the  = 3 wave function for the harmonic oscillator? (b). How 
many angular nodes are in the l = 3, ml = 2 wave function for the rigid rotor? (c). How many of 
the angular nodes for the l = 3, ml = 2 rigid rotor include the z-axis? (d). Why are the nodes 
important? 
 
 
Answer:  (a). The lowest energy state for the harmonic oscillator is for  = 0, which has no 
nodes. The number of nodes is therefore given by . For  = 3 there are three nodes. Reference 
to Figure 24.2.3b verifies the assignment. 
(b). The total number of angular nodes for the rigid rotor is given by l and the number of nodes 
that include the z-axis is ml. For l = 3 there are 3 total nodes. 
(c). For ml = 2, there are 2 nodes that include the z-axis. The spherical harmonics for this wave 
function have the same angular distribution as an atomic f-orbital. 
(d). Nodes are important because they are a measure of the curvature of the wave function, which 
in turn determines the kinetic energy. The nodes that include the z-axis also determine the 
orientation of the angular momentum vector. For ml = l, all the nodes include the z-axis and the 
angular momentum vector has its maximum projection on the z-axis. For m l = 0, the angular 
momentum vector is perpendicular to the z-axis. The number of nodes that include the z-axis 
determines the spatial quantization. 
 
 
2.  Multiply the harmonic oscillator ground state wave function, Figure P24.1a, by the 
polynomial, Figure P24.1b, to give the excited state wave function. Sketch the excited state wave 
function. What is the quantum number for this wave function? 
 

     
 (a).       (b). 

 

Figure P24.1: (a) The ground state for the harmonic oscillator. (b). The polynomial used to 
generate an excited state of the harmonic oscillator. The polynomial is a Hermite polynomial. 

 
 
Answer:  The plan is to note that the excited state is the product of the ground state wave 
function and a polynomial. Also, note that v for the ground state is zero and there are no nodes 
for the ground state. 
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   The ground state wave function determines the asymptotic form for the wave function at large 
r. The number of zeros for the polynomial determines the number of nodes for the excited state 
wave function. The number of nodes is equal to the quantum number, nodes = v. For this 
example, there are four nodes giving v = 4. 
 

   
 
3.  (a).  The fundamental vibration frequency for 1H79Br is 2649.67 cm-1. Calculate the force 
constant. Calculate the energy for the transition in kJ mol-1. (b). The force constant for the 
vibration in 1H35Cl is 515.90 N m-1. Calculate the vibration frequency in cm-1. Calculate the 
energy for the transition in kJ mol-1. (c). Which has a stronger bond, and why? 
 
Answer:  The plan is to note that the fundamental vibration frequency is given by: 

 = (1/2) k/ with  = [M1M2/(M1 + M2)](1/NA)(1 kg/1000 g). The units for the force 
constant are N m-1 and the reduced mass kg molecule-1, or officially just kg. 

(a).  The wavenumber is converted to m-1 by ~ = 2649.67 cm-1(100 cm/1 m). The frequency-
wavenumber conversion is given by solving  = c: 
 

 ~ = 
1
 = 


c  and  = ~c = 264967. m-1(2.99792458x108m s-1) 

       = 7.943511x1013 s-1 
 

The reduced mass is given using isotope specific atomic masses: 
 

  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

 = 
1.0078250 g mol-1(78.918337 g mol-1)
1.0078250 g mol-1 + 78.918337 g mol-1 



1

6.0221367x1023 mol-1  (1 kg/1000 g) 

 = 1.652432x10-27kg 
 

The force constant and energy change for the transition are: 
 

 k = 422 = 42(7.943511x1013 s-1)2(1.652432x10-27kg) = 411.631 N m-1 

 

 E = h(NA)(1 kJ/1000 J) = hc~ NA (1 kJ/1000 J) 
        = 6.626076x10-34 J s(2.997925x108m s-1)(264967. m-1)(6.0221367x1023 mol-1)(1 kJ/1000 J) 
        = 31.6971 kJ mol-1 
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(b).  The calculations are summarized in the table, below. 
 

Molecule  (cm-1) M1 (g mol-1) M2 (g mol-1)  (kg) k (N m-1) E (J) E (kJ mol-1) 
1H79Br 2649.67 1.0078250 78.918337 1.6524x10-27 411.631 5.263x10-20 31.6971 
1H35Cl 2989.74 1.0078250 34.9688527 1.6267x10-27 515.90 5.939x10-20 35.765 

 
(c).  Because HCl has the larger force constant, HCl has the stronger bond. The reason is often 
ascribed to the larger atomic radius for Br atoms compared to Cl, which gives a longer bond for 
HBr. 
 
 

4.  Normalize the wave function for the ground state of the harmonic oscillator, o = N e–½ 2x2
 

(without using Eq. 24.2.22). 
 
 

Answer:  The plan is to use the normalization integral, - * dx = 1, to find the normalization 
constant N. 
   Remember that (ex)2 = e2x. Substitution of the wave function into the normalization integral 
gives: 
 

 N2 - e–2x2
 dx = 1   with   2 = mo/h- 

 

This integrand is even about x = 0. Using the table in the Appendix:  0  e–ax2
 dx = ½ (/a)½: 

 

 N2 2 0  e–2x2
 dx = N2 (/2)½ = 1 

 

Solving for the normalization constant gives:  N = 






2



¼
= 






mo

h-

¼
 

The complete wave function is then:  o = 






2



¼
 e–½ 2x2

  =  






mo

h-

¼
 e– 

mo

2h̄  x2

 

 
 
5.  Find the expectation values for the position and momentum of the ground state of the 
harmonic oscillator. 
 
 
Answer:  The plan is to note that the position operator is just “multiply by x”, x^  = x, and the 
momentum operator is p^  = h-/i (d/dx). The expectation values are then: 
 

 <x> = 
- *

o x o dx

- *
o o dx

  and <p> = 
- *

o 
h-

i  



d 

dx  o dx

- *
o o dx

 

 

   Since the harmonic oscillator wave functions are real, * = . We will use the normalized 

form of the wave function, N = (2/)¼, giving - 2
o dx = 1. 

   The expectation value of the position, using a normalized wave function, is: 
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 <x> = - *
o x o dx = N2 


-

 
 e–½ 2x2

 x e–½ 2x2
 dx 

 

The integrand is a product of functions, so the order is immaterial: 
 

 <x> = N2 


-

 
   x   e–2x2

 dx 

         
            odd  even 
 

The integrand is the product of an odd and an even function over all space, which gives an 
integral of zero: <x> = 0. 
   The expectation value of the momentum, using a normalized wave function, is: 
 

 <p> = - *
o 

h-

i  



d 

dx  o dx = 
h-

i  N2 


-

 
 e–½ 2x2

 



d 

dx  e–½ 2x2
 dx 

 

The derivative is: 

 



d 

dx  e–½ 2x2
 = – 2x e–½ 2x2

 

Substitution of the derivative into the integral gives: 
 

 <p> = – 
h-

i  N22 


-

 
 x e–2x2

 dx 

 

Once again, the integrand is the product of an odd and an even function over all space, which 
gives an integral of zero: <p> = 0. 
 
 
6.  Find the expectation value of the potential energy for the ground state of the harmonic 
oscillator. 
 
 
Answer:  The plan is to note that we must find the expectation value of the potential energy 
operator, V^  = ½ kx2. Since the harmonic oscillator wave functions are real, * = . We will use 
the normalized form of the wave function, N = (2/)¼, giving - 2

o dx = 1. 
   The expectation value of the potential energy is: 
 

 <V> = - *
o ½ kx2 o dx = ½ k N2 


-

 
 e–½ 2x2

 x2 e–½ 2x2
 dx 

 

The integrand is a product of functions, so the order is immaterial. Noting that the integrand is an 
even function of x gives: 
 

 <V> = ½ k N2 2 0

 x2 e–2x2
 dx 

 

Using the integral table in the Appendix:  0  x2e–ax2
 dx = (1/4a) (/a)½: 

 

 <V> = ½ k N2 2 




1

42 







2

½
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Substitution of the normalization constant, N = (2/)¼, into the last equation gives: 
 

 <V> = ½ k 






2



½
 2 




1

42 







2

½
 = k 





1

42   
 

The force constant and 2 are related through Eq. 24.2.11; with 2 = (mk)½/h̄: 
 

 <V> = 
k
4 

h̄
(mk)½ = 

h̄
4 



k

m

½
 = 

h̄o

4  
 

where o = (k/m)½. The total energy of the harmonic oscillator in the ground state is E = h̄o/2. 
The average potential energy is, then, one-half of the total energy: <Ek> = ½ E. Since 
E = <Ek> + <V>, the average potential and kinetic energies are equal, <Ek> = <V>. This result is 
a specific example of the Virial Theorem. If the potential is in the form of a power law, 
V(x) = k xn, then the average potential and kinetic energy are related by: 
 

 2 <Ek> = n <V> 
 

For the harmonic oscillator, n = 2, which gives <Ek> = <V> by the Virial Theorem, as shown by 
this problem. 
 
 
7.  Find the expectation value of the kinetic energy for the ground state of the harmonic 
oscillator. 
 
 
Answer:  The plan is to note that we must find the expectation value of the kinetic energy 
operator, E^ k = – (h-2/2m) d2/dx2. Since the harmonic oscillator wave functions are real, * = . 
We will use the normalized form of the wave function, N = (2/)¼, giving - 2

o dx = 1. 
   The expectation value of the kinetic energy is: 
 

 <Ek> = - *
o 







– 
h-2

2m 



d2 

dx2  o dx = – 
h-2

2m N2 


-

 
 e–½ 2x2

 



d2 

dx2  e–½ 2x2
 dx 

 

with:  



d 

dx  e–½ 2x2
 = – 2x e–½ 2x2

  and 



d2 

dx2  e–½ 2x2
 = (4x2 – 2) e–½ 2x2

 
 

Substituting in the second derivative gives: 
 

 <Ek> = – 
h-2

2m N2 


-

 
 (4x2 – 2) e–2x2

 dx 

 

Separating the integral into two terms and noting that the integrand for each integral is even 
gives: 
 

 <Ek> = – 
h-2

2m N2 2 




4

0

 x2 e–2x2
 dx – 2

0

 e–2x2
 dx  

 

Using the table in the Appendix:  0  e–ax2
 dx = ½ (/a)½  and 0  x2e–ax2

 dx = (1/4a) (/a)½: 
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 <Ek> = – 
h-2

2m N2 2 








4





1

42 







2

½
 – 2




1

2 







2

½
 = – 

h-2

2m N2 22









2

½
 








1

4  –


1

2  
 

Substitution of the normalization constant, N = (2/)¼, Eq. 24.2.13, into the last equation gives: 
 

 <Ek> = – 
h-2

2m 






2



½
 22









2

½
 



– 

1
4  = 

1
2 





h-22

2m  
 

The total energy of the harmonic oscillator in the ground state is E = h-22/2m. The average 
kinetic energy is, then, one-half of the total energy: <Ek> = ½ E. Since E = <Ek> + <V>, the 
potential and kinetic energies are equal, <Ek> = <V>. This result is a specific example of the 
Virial Theorem. If the potential is in the form of a power law, V(x) = k xn, then the average 
potential and kinetic energy are related by: 
 

 2 <Ek> = n <V> 
 

For the harmonic oscillator, n = 2, which gives <Ek> = <V>, as shown by this problem. 
 
 
8.  Show that the ground state of the harmonic oscillator is consistent with the Heisenberg 
uncertainty principle. [Hint: Calculate the standard deviations of the position and momentum. 
However, you don’t need to prove that <x> = 0 and <p> = 0, which are established by 
symmetry.] 
 
 
Answer:  The plan is to note that since <x> = 0 and <p> = 0, then x = (<x2> – <x>2)½ 
= (<x2>)½ and p = (<p2> – <p>2)½ = (<p2>)½. Note that the momentum operator is p^  = h-/i (d/dx). 
   Since the harmonic oscillator wave functions are real, * = . We will use the normalized 

form of the wave function, N = (2/)¼, giving - 2
o dx = 1.The expectation value of x2 is then 

(see also Problem 6): 
 

 <x2> = - *
o x2 o dx = N2 


-

 
 e–½ 2x2

 x2 e–½ 2x2
 dx 

 

The integrand is a product of functions, so the order is immaterial. Noting that the integrand is an 
even function of x gives: 
 

 <x2> = N2 2 0

 x2 e–2x2
 dx 

 

Using the integral table in the Appendix:  0  x2e–ax2
 dx = (1/4a) (/a)½: 

 

 <x2> = N2 2 




1

42 







2

½
 

 

Substitution of the normalization constant, N = (2/)¼, into the last equation gives: 
 

 <x2> = 






2



½
 2 




1

42 







2

½
 = 




1

22  
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   The operator, p̂2 = p̂ p̂ = –  h- 2 (d2/dx2), involves a derivative, so the order of operation is 
important, giving for the expectation value of p̂2 (see also Problem 7): 
 

 <p2> = - *
o 



– h- 2 d2 

dx2  o dx = –  h- 2 N2 


-

 
 e–½ 2x2

 



d2 

dx2  e–½ 2x2
 dx 

 

with:  



d 

dx  e–½ 2x2
 = – 2x e–½ 2x2

  and 



d2 

dx2  e–½ 2x2
 = (4x2 – 2) e–½ 2x2

 
 

Substituting in the second derivative gives: 
 

 < p2> =–  h- 2 N2 


-

 
 (4x2 – 2) e–2x2

 dx 
 

Separating the integral into two terms and noting that the integrand for each integral is even 
gives: 
 

 < p2> = –  h- 2 N2 2 




4

0

 x2 e–2x2
 dx – 2

0

 e–2x2
 dx  

 

Using the table in the Appendix:  0  e–ax2
 dx = ½ (/a)½  and 0  x2e–ax2

 dx = (1/4a) (/a)½: 
 

 < p2> = –  h- 2 N2 2 








4





1

42 







2

½
 – 2




1

2 







2

½
 = –  h- 2 N2 22









2

½
 








1

4  –


1

2  
 

Substitution of the normalization constant, N = (2/)¼, into the last equation gives: 
 

 < p2> = –  h- 2 






2



½
 22









2

½
 



– 

1
4  = 

1
2 h-22 

The product of the variances is then:  2
x 2

p = 




1

22 



1

2 h-22  = 
h-2

4  

which is consistent with the Heisenberg uncertainty principle, x p  h-/2. 
 
 
9.  Use the recursion relationship for Hermite polynomials to generate the first four excited state 
wave functions for the harmonic oscillator (H1 to H4). 
 
 
Answer:  The ground state and the general form for the wave functions of the harmonic oscillator 
are: 
 

 o = 






2



¼
e–½ 2x2

  v = Nv Hv e–½ 2x2

 
 

The recursion relationship is: Hv+1 = 2y Hv – 2v Hv-1, and the first Hermite polynomial, upon 
which all the others are based is Ho = 1. Building up from Ho gives: 
 

 H1 = 2y Ho = 2y 
 H2 = 2y H1 – 2(1) Ho = 2y (2y) – 2(1)(1) = 4y2 – 2 
 H3 = 2y H2 – 2(2) H1 = 2y(4y2 – 2) – 2(2)(2y) = 8y3 – 12y 
 H4 = 2y H3 – 2(3) H2 = 2y(8y3 – 12y) – 2(3)(4y2 – 2) = 16y4 – 48y2 + 12 
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The normalization integral, using the change in variables y = x, dy/dx = , and dx = dy/, 
gives: 
 

 N2
v (1/) -Hv e–½ y2

 Hv e–½ y2

 dy = 1 
 

The standard form of the integral, using Eq. 24.2.99% with v' = v, is: 
 

 -Hv e–½ y2

 Hv e–½ y2

 dy = ½ 2vv!  giving  N2
v (1/)(½ 2vv!) = 1 

 

The normalization constant is then Nv = (/½ 2vv!))½. Explicitly, the normalization for the first 
four excited state levels is: 
 

 N1 = 








½ 211!

½
 = 






2

4

¼
   N2 = 









½ 222!

½
 = 

1
2 






2

4

¼
 

 N3 = 








½ 233!

½
 = 

1
2 






2

144

¼
   N4 = 









½ 244!

½
 = 

1
8 






2

36

¼
 

 

The final wavefunctions are: 
 

 1 = 






2

4

¼
 (2αx) e–½ 2x2

 

 2 = 
1
2 






2

4

¼
 (4α2x2 – 2) e–½ 2x2

 

 3 = 
1
2 






2

144

¼
 (8α3x3 – 12αx) e–½ 2x2

 

 4 = 
1
8 






2

36

¼
 (16α4x4 – 48α2x2 + 12) e–½ 2x2

 

 
 
10.  Confirm that wavefunctions for a 2D-rigid rotor (particle-in-a-ring) are orthogonal. [Hint: 
the wave functions are () = a ei ml  with different ml.] 
 
 

Answer:  The plan is to show that 0  *
ml 'ml d = 0 with ml '  ml. 

   The integral to test for orthogonality is: 
 

 0  *
ml 'ml d = a2 0  e–i ml '  ei ml  d = a2 0  ei (ml – ml ') d 

 

with ml '  ml. Using the Euler identity for the complex exponential gives: 
 

 0  *
ml 'ml d = a2 0  cos[(ml – ml ')] d + i a2 0  sin[(ml – ml ')] d 

 

However, (ml – ml ') is an integer. Let n = (ml – ml ') with n  0, which gives: 
 

 0  cos n d = sin n|20  = 0   and     0  sin n d = – cos n|20  = – [1 – 1] = 0 
 

Substitution of these standard integrals into the orthogonality integral gives 0  *
ml 'ml d = 0. 



Chapter 24: The Quantum Mechanics of Rotation and Vibration 9 

 
 
11.  Show that the wave function () = a eiml is an eigenfunction of the Hamiltonian for the 

rigid-rotor in the x-y plane, where H^  = – h-2/2I (d2/d2). What is the energy for this wavefunction? 
 
 
Answer:  The plan is to note that the Hamiltonian for the 2D-rigid rotor is a function of the 
azimuthal angle  through H^  = – h-2/2I (d2/d2). 
   The derivatives are: 
 

 
d eiml

d  = i ml eiml and  
d2eiml

d2  = (i ml)2 eiml = – m2
 l eiml 

 

The Schrödinger equation is then: H^   = – 
h-2

2I 
d2 a eiml

d2  = 
h-2m2

 l

2I  a eiml = 
h-2m2

 l

2I   

This final result shows that the wave function is an eigenfunction of the Hamiltonian. The 
eigenvalue corresponding to the Hamiltonian is the energy: 
 

 E = 
h-2m2

 l

2I  

 
 
12.  Show that = cos  is an eigenfunction of the square of the total angular momentum 
operator, where: (total angular momentum operator)2 = L̂2 = – h-2 2. 
 
 

Answer:  The plan is to show that – h-2 2 c , with c a constant. For multi-step derivatives, 
order is important; remember to work from right to left. We can anticipate that since cos is the 

spherical harmonic Y1,0 without normalization, the constant will be |L|2 = h-2 l(l + 1), with l = 1. 

   The first step is to note that: 2 = 
1

sin2 






2 

2  + 




1

sin   






 

 sin  
 
  

The wave function is not a function of , so (2cos/2) = 0. The remaining derivatives are: 
 

 2 cos = 




1

sin   






 

 sin  
 
  cos 

  




1

sin   






 

 (– sin2  

  = – 




1

sin   ( )2 sin  cos   

  = – 2 cos  
 

The square of the total angular momentum operating on the wave function is then: 
 

 – h-2 2 cos = 2h-2 cos  
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This last result shows that cos  is an eigenfunction. The eigenvalue for the total angular 
momentum operator squared is then |L|2 = 2h-2. This result agrees with Eq. 24.5.34 since l = 1 for 
Y1,0 and then |L|2 = h-2 l(l + 1) = 2h-2. 
 
 
13.  Normalize Y1,0 = N cos . 
 
 
Answer:  The plan is to note that normalization requires  * d = 1, where the integral is over 
all space and the volume element is d = sin d d for the rigid-rotor. 
   Note that Y1,0 is real, so that Y*

1,0 = Y1,0. The normalization integral is given by: 
 

 020  Y2
1,0 sin  d d  = N2 20  d 0 cos2 sin  d = 1 

 

Integral tables give:  0 cos2(ax) sin(ax) dx = – (1/3a) cos3(ax). In this case a = 1: 
 

 0 cos2 sin  d = – (1/3) cos3()|0 = – (1/3) [cos3() – cos3(0)] = 2/3 
 

The integral over the azimuthal angle is 20  d = 2: 
 

 N2 20  d 0 cos2 sin  d = N2 (2)(2/3) = 1  and  N = 




3

4
½

 
 

The normalized spherical harmonic is then Y1,0 = (3/4)½ cos . 
 
 
14.  Show that the rigid-rotor wave functions Y0,0 and Y1,0 are orthogonal. 
 
 
Answer:  The plan is to note that Y0,0 = (1/4)½ and Y1,0 = (3/4)½ cos . Orthogonality requires 
 * d = 0, where the integral is over all space and the volume element is d = sin  d d for 
the rigid-rotor. 
   Note that these particular spherical harmonics are real, so that Y*

0,0 = Y0,0. The orthogonality 
integral is given by: 
 

 020  Y0,0 Y1,0 sin  d d  = (1/4)½ (3/4)½ 20  d 0 cos  sin  d = 0 
 

because integral tables give 0 cos(ax) sin(ax) dx = (1/2a) sin2(ax)|0 = 0. 
 
 
15.  Show that the rigid-rotor wave functions Y1,0 and Y1,1 are orthogonal. 
 
 
Answer:  The plan is to note that Y1,0 = (3/4)½ cos  and Y1,1 = (3/8)½ sin  ei. Orthogonality 
requires  * d = 0, where the integral is over all space and the volume element is 
d = sin  d d for the rigid-rotor. 
   Note that Y1,0 is real, so that Y*

1,0 = Y1,0. The orthogonality integral is given by: 
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 020  Y1,0 Y1,0 sin  d d  = (3/4)½ (3/8)½ 20  ei d 0 cos  sin2 d = 0 
 

because integral tables give 0 cos(ax) sin2(ax) dx = (1/3a) sin3(ax)|0 = 0. 
 
 
16.  Give the magnitude of the total angular momentum and the z-axis projection of the angular 
momentum for an l = 2, ml = 1 state of a rigid rotor. Give your answers in multiples of h-. 
 
 

Answer:  For l = 2 the magnitude of the angular momentum is: |L| = h- l(l + 1)¯¯¯¯¯ = 6̄ h- 
The z-axis projection of the angular momentum is: Lz = ml h- = h-. 
 
 
17.  Give the transition energy, in wave numbers, for the J = 0 to J = 1 transition in carbon 
monoxide. Find the transition frequency in GHz. Use the most abundant isotopes, 12C16O, with 
the bond length 1.1282 Å. 
 
 
Answer:  The plan is to use Eq. 24.5.43 converted to wave numbers, with J as the quantum 
number for the lower state: E/hc = ~ = 2 B

~
 (J + 1). 

The reduced mass is given using isotope specific atomic masses: 
 

  = 






M1M2

M1 + M2
 

1
NA

 (1 kg/1000 g) 

 = 
12.000000 g mol-1(15.994915 g mol-1)
12.000000 g mol-1 + 15.994915 g mol-1 



1

6.0221367x1023 mol-1  (1 kg/1000 g) 

 = 1.1385010x10-26 kg 
 

Note that 1 Å = 1x10-10 m. The moment of inertia and rotational constant are: 
 

 I = r2 = 1.138501x10-26 kg(1.1282x10-10 m)2 = 1.44912x10-46 kg m2 

 B
~

 = 
ħ

4Ic
 = 

1.054573x10-34 J s
4(1.44912x10-46 kg m2)(2.997925x108 m s-1)

 = 193.170 m-1 

 B
~

 = 193.170 m-1 (1 m/100 cm) =1.93170 cm-1 
 

The transition energy using Eq. 24.5.43 is: E/hc = ~ = 2 B
~

 (J + 1) = 2B
~

 = 3.86341 cm-1 

 

The transition frequency is given by: 
 

  = c/ = ~c = 3.86341 cm-1(2.997925x108 m s-1)(100 cm/1m) = 1.15822x1011 s-1 
  = 1.15822x1011 s-1 (1 GHz/1x109s-1) = 115.82 GHz 
 

This transition is one of the prominent lines observed in interstellar space using radio telescopes. 
 
 
18.  Show that [L^ x, L

^
y] = iħ L^ z. This problem is best done using the operators expressed in 

Cartesian coordinates. 
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Answer:  The plan is to note that [A^ ,B^ ] = A^ B^  – B^ A^ , Eq. 23. 7.10. The operators are given by Eqs. 
24.5.19. Note that the partial derivative with respect to x is taken with y and z constant. In 
addition using the Euler criterion, mixed partials are equal, Eq. 9.1.6. So for example: 
 

 

x

 z 

y

 = z 

x

 

y

  and 

y

 

x

 = 

x

 

y

 
 

Note also that multiplicative operators commute, yx = xy. The commutator is then: 
 

  [L^ x, L
^

y] = L^ xL
^

y – L
^

yL
^

x 

    = – h-2

















y 

z

 – z 

y 








z 

x

 – x 

z

 – 








z 

x

 – x 

z 








y 

z

 – z 

y

 

    = – h-2 

















y 

z

 z 

x

 – xy 
2

z2 – z2 

x

 

y

 + xz 

y

 

z

 – 








yz 

x

 

z

 – z2 

x

 

y

 – xy 
2

z2 + x 

z

 z 

y

 
 

Canceling the common factors, in xy and z2, and using the product rule for the z-derivative gives: 
 

    = – h-2 

















yz 

z

 

x

 + y 

x

 
z
z

 + xz 

y

 

z

 – 








yz 

x

 

z

 + xz 

z

 

y

 + x 

y

 
z
z

 
 

Then (z/z) = 1 and canceling common factors gives: 
 

 [L^ x, L
^

y] = h-2 








x 

y

 – y 

x

 = iħ L^ z 
 

The x and y components of the angular momentum cannot both be determined simultaneously 
with arbitrary precision. 
 
 
19.  Show that [L^ 2,L^ z] = 0. This problem is best done using the operators expressed in spherical 
polar coordinates. 
 
 
Answer:  The plan is to note that [A^ ,B^ ] = A^ B^  – B^ A^ , Eq. 23. 7.10. The operators are given by Eqs. 
24.5.20-24.5.21. Note that the partial derivative with respect to  is taken with  constant. 
   From [L^ 2,L^ z] = L^ 2 L^ z – L^ z L

^ 2, consider the first term and second term separately. Note that the 
 derivative is done with  held constant. The terms in  are constants for the  derivative and 
can factor in and out, for example: 
 

 

 







1

sin 
 
 









sin  
 
   = 

1
sin  

 
 









sin  
 
  


    1 

 

The first term in the commutator is: 
 

 L^ 2 L^ z = – 
h-3

i  






1

sin2 
2 
2 + 

1
sin  

 
 









sin  
 
  







 

     2 
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         = – 
h-3

i  






1

sin2 
3 
3 + 

1
sin  

 
 









sin  
 
  

 
     3 

 

The second term in the commutator has the opposite order for the operators: 
 

 L^ z L
^ 2 = – 

h-3

i  






 

  






1

sin2 
2 
2 + 

1
sin  

 
 









sin  
 
     4 

 

Using Eq. 1 gives: 
 

 L^ z L
^ 2 =– 

h-3

i  






1

sin2 
3 
3 +  

1
sin  

 
 









sin  
 
  

 
     5 

 

Note that Eqs. 3 and 5 are identical, so that [L^ 2,L^ z] = L^ 2 L^ z – L^ z L
^ 2 = 0. 

 
 
20. Why is [L^ 2,L^ z] = 0 significant? 
 
 
Answer:  The energy of the system is given by El = L2/2I. The eigenvalue of L^ 2 is L2 = h-2 l(l + 1) , 
which upon taking the square root gives the magnitude of the total angular momentum, |L|. The 
eigenvalue of L^ z is lz = h-ml, which determines the orientation of the angular momentum vector. 
The vanishing commutator means that both L2 and lz can be specified simultaneously to arbitrary 
precision. The total energy, the magnitude of the angular momentum, and the orientation with 
respect to the z-axis can all be specified exactly at the same time. The energy, angular 
momentum, and spatial orientation are all quantized. However, the spherical harmonics are not 
eigenfunctions of the two remaining projections, L^ x and L^ y. Instead, these components give zero 
expectation values and the uncertainties span the range of . 
 
 
21.  Draw the angular momentum vector diagrams for l = 2 angular momentum states. 
 
 

Answer:  The magnitude of the angular momentum for l = 2 is |L| = 6̄ h- = 2.45 h-, Problem 16. 
For l = 2 the magnetic quantum number can be ml = -2, -1, 0, 1, 2, giving five precession cones: 
 
 
 
 
 
 
 
 
 
 
 
22.  Draw the angular momentum vector diagram for a single electron or proton, s = ½. 

z 

x 

y 

ml = +2 

 

ml = 0 

 

ml = –2 

 

ml = –1 

 

ml = +1 

 

l = 2 z 

0 

+2 ħ 

–2 ħ 

2.45 ħ 

ml = +2 

ml =0 

ml = –2 

ml = +1 

ml = –1 

+1 ħ 

–1 ħ 
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Answer:  The magnitude of the angular momentum for s = ½ is |S| =  ¾̄̄  h- = 0.866 h-. For s = ½ 
the magnetic quantum number can be ml = -½, ½, giving two precession cones: 
 
 
 
 
 
 
 
 
 
 
23.  The spins of the protons and neutrons combine to give the overall spin of a nucleus. The 
details depend on the quantum structure of the nucleus and can result in half-integer or integer 
overall spin. The nucleus of 35Cl has a spin of I = 3/2. Give the possible values for the quantum 
number for the z-axis projection of the angular momentum. 
 
 
Answer:  The quantum number for the z-axis projection of the angular momentum is the 
magnetic quantum number, which for nuclei is called mI. Starting from mI = -3/2 in unit steps 
gives four mI states: mI = (-3/2, -1/2, +

1/2, +3/2). The angular momentum vector diagram has four 
precession cones. 
 
24.  The nucleus of 105Pd has a spin of I = 5/2. Give the possible values for the quantum number 
for the z-axis projection of the angular momentum. (The NMR resonance frequency for 105Pd is 
22.9 MHz on a 500 MHz NMR.) 
 
 
Answer:  The quantum number for the z-axis projection of the angular momentum is the 
magnetic quantum number, which for nuclei is called mI. Starting from mI = -5/2 in unit steps 
gives six mI states: mI = (-5/2, -3/2, -1/2, +

1/2, +3/2, +5/2). The angular momentum vector diagram has 
six precession cones. 
 
 

25.  Show that the operator H^  – = 



y + 

d 

dy  is a lowering operator for the z-axis projection angular 

momentum quantum states. 
 
 
Answer:  The plan is to follow Example 24.7.2. We need to show that [A^ ,A^ –] = k A^ –, Eq. 24.7.1. 
   The harmonic oscillator Hamiltonian is given by eq. 24.7.14:  H^  = H^  –H^  + – 1. The commutator 
is then: 
 

 [H^ ,H^  –] = (H^  –H^  + – 1) H^  – – H^  –(H^  –H^  + – 1) 

z 

x y 

ml = –½ 

 

ml = +½ 
s = ½ z 

0 

0.866 ħ 

ml = +½ 

ml = –½ 

+½ ħ 

–½ ħ 
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   = H^  –H^  + H^  –– H^  – – H^  –H^  –H^  + + H^  – 
 

Canceling the terms in just H^  – and factoring out the common term in –H^  – from the left gives: 
 

      = – H^  – (H^  –H^  + – H^  +H^  –)= – H^  – [H^  –,H^  +] 
 

Substituting for the commutator from Eq. 24.7.13 gives: 
 

 [H^ ,H^  –] = -2 H^  –         24.7.14 
 

The final result corresponds to k = -2, so H^  – is a lowering operator. 
 
 

26.  Use the raising operator for the harmonic oscillator to find 3 from 2 = (4y2 – 2) e–y2/2. 
 
 
Answer:  The plan is to operate on 2 with H^  +, which defined by Eq. 24.7.12. See Example 
24.7.3. 
   The next excited state is determined by: 

 H^  +2 = 



y – 

d 

dy  (4y2 – 2) e–y2/2 = 4y3 e–y2/2 – 2y e–y2/2 – 
d 

dy 4y2 e–y2/2 + 2
d 

dy e–y2/2 
 

Using the product rule: 

 H^  +2 = 4y3 e–y2/2 – 2y e–y2/2 – 4y2 d
 

dy e–y2/2 – e–y2/2 
d 

dy 4y2+ 2(–y) e–y2/2 

           = 4y3 e–y2/2 – 2y e–y2/2 – 4y2(–y) e–y2/2 – 8 y e–y2/2 + 2(–y) e–y2/2 

           = (8y3 – 12y) e–y2/2 
 

The result is as expected from Table 24.1.1. Even though ladder operators are more abstract than 
directly solving the Hermite equation, ladder operators are computationally much simpler to use. 
 
 
27.  The lowering operator acting on the lowest energy state gives zero. For the harmonic 
oscillator H^  – o = 0, since there is no state with lower energy. Integrate H^  – o = 0 to show that 
the un-normalized ground state wave function of the harmonic oscillator is o = e– y2/2. 
 
 
Answer:  The plan is to substitute in the lowering operator, Eq. 24.7.11, separate variables, and 
complete the integral, just as we did for chemical kinetics problems. This process is straight 
forward because the lowering operator involves only a first derivative. 
   Substituting in the definition of the lowering operator gives: 
 

 H^  – o = 



y – 

d 

dy o = 0 
 

Adding yo to both sides of the last equation and then multiplying by -1 gives: 
 

 
d 

dy o = – y o 



16 
 

Separating variables gives:  
1
o

 do = – y dy 

The integrals give:   1
o

 do = –  y dy or   ln o = – 
y2

2  

Exponentiation of both sides of the last equation gives:  o = e– y2/2 
The result agrees with un-normalized form of Eq. 24.2.18. 
 
 
28.  Show that the z-projection angular momentum raising operator acting on Y1,-1 gives Y1,0. 
Use the un-normalized form of the wave functions, Y1,-1 = sin  e-i and Y1,0 = cos . Do this 
problem in the following steps. 

(a). Show that:   L^ + Y1,-1 = (L^ x + i L^ y) sin  e-i 

(b). Using cot  = cos /sin , show that:      L^ x sin  e-i = h- cos  (cos  + i sin ) e-i 

(c). Using the Euler Identity, ei = ( )cos  + i sin  , show that:   L^ x sin  e-i = h- cos  

(d). Show that:   i L^ y sin  e-i = h- cos  (cos  + i sin ) e-i = h- cos  
(e). Finally show that:   L^ + Y1,-1 = (L^ x + i L^ y) sin  e-i = 2ħ cos  = 2ħ Y1,0 

 
 
Answer:  The plan is to note that L^ +, L^ x, and L^ y are given by Eqs. 24.5.20 and 24.7.18. 
(a).  Making the substitutions in spherical polar coordinates without normalization: 
 

 L^ + Y1,-1 = (L^ x + i L^ y) sin  e-i       1 
 

(b).  We consider the two terms separately to decrease confusion. Using Eqs. 24.5.20 for L^ x: 
 

 L^ x sin  e-i = 
h-

i  








– sin  
 
 – cot  cos  

 
  sin  e-i   2 

         = 
h-

i  ( )– sin  cos  – cot  sin  cos  (-i)  e-i   3 
 

However, cot  = cos /sin  giving: 
 

 L^ x sin  e-i = 
h-

i  (– sin  cos  + i cos  cos ) e-i    4 

         = h- cos  (cos  + i sin ) e-i     5 
 

(c).  The Euler Identity gives ei = ( )cos  + i sin   and ei e-i = 1: 
 

 L^ x sin  e-i = h- cos         6 
 

(d).  Now for the second term in Eq. 1 for the raising operator: 
 

 i L^ y sin  e-i = i 
h-

i  








cos  
 
 – cot  sin  

 
  sin  e-i   7 

 i L^ y sin  e-i = h- (cos  cos  – cot  sin  sin  (-i)) e-i   8 
 

Once again, cot  = cos /sin , ei = , and ei e-i = 1, giving: 
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 i L^ y sin  e-i = h- (cos  cos  – cos  sin  (-i)) e-i    9 

           = h- cos  (cos  + i sin ) e-i     10 

           = h- cos         11 
 

(e).  The sum of the two terms, Eqs. 6 and 11, gives the final result: 
 

 (L^ x + i L^ y) sin  e-i = 2h- cos       12 
 

where Y1,0 = cos , without the normalization: 
 

 (L^ x + i L^ y) sin  e-i = 2h- Y1,0       13 
 

The raising operator raises Y1,1 to Y1,0, multiplied by a constant. The constant is resolved by 
normalization to give the final form for Y1,0.  
 
 

29.  Show that L^ –L^ + = L^ 2
x + L^ 2

y + i[L^ x, L
^

y] = L^ 2 – L^ 2
z – h-L^ z. (This expression is used in the next 

problem to find the eigenvalue for the total angular momentum.) 
 
 
Answer:  From the defintitions of the lowering and raising operators: 
 

 L^ –L^ + = (L^ x – i L^ y)( L^ x + i L^ y) = L^ 2
x + iL^ x L^ y – i L^  y L^  x + L^ 2

y 
 

which, with the defintition of the commutator, rearranges to give: 
 

 L^ –L^ + = L^ 2
x + L^ 2

y + i[L^ x, L
^

y] 
 

Using Eqs. 24.6.1 for the commutator gives the final result:  L^ –L^ + = L^ 2 – L^ 2
z – h-L^ z 

 
 

30.  Given L^ zml = mlh- ml , prove that L^ 2 ml = h-2 l(l + 1) ml, using the following steps. 
(a).  Since the z-axis projection of the angular momentum can’t be larger than the total angular 
momentum, there must be a maximum value of m l for a given total angular momentum. Let that 
value be mmax. The result for the raising operator acting on mmax is zero, since there is no state 
with higher ml: 
 

 L^ + mmax = 0 
 

The subsequent application of the lowering operator must also give zero: 
 

 L^ –L^ + mmax = 0 
 

Given that L^ –L^ + = L^ 2 – L^ 2
z – h-L^ z, which was proved in the last problem, solve for L^ 2 mmax. 

(b).  Compare with the general eigenvalue equation L^ 2 mmax = L2 mmax  to find the eigenvalue L2 
and the magnitude of the angular momentum |L|, in terms of mmax. 
(c).  Notice that the total angular momentum is not a function of m l, but only the maximum value 
mmax. In other words, the total angular momentum is completely determined by mmax. Show that 
renaming mmax = l gives the final result: 
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 L^ 2 ml = h-2 l(l + 1) ml 
 
 

Answer:  (a).  Substituting L^ –L^ + = L^ 2 – L^ 2
z – h-L^ z  into L^ –L^ + mmax = 0 gives: 

 

 L^ –L^ + mmax = (L^ 2 – L^ 2
z – h-L^ z) mmax = 0 

 

Rearranging the last relationship gives the square of the angular momentum as: 
 

 L^ 2 mmax = L^ 2
z mmax + h-L^ z mmax 

 

Given that L^ z ml = mlh- ml : 
 

 L^ 2 mmax = (ml h-)2 mmax + h-( mlh-) mmax 

 L^ 2 mmax = h-2 (m2
max + mmax) mmax = h-2 mmax(mmax + 1) mmax 

 

(b).  Comparison with the general eigenvalue equation L^ 2 mmax = L2 mmax gives: 
 

 L2 = h-2 mmax(mmax + 1) and   |L| = h-  mmax(mmax + 1)¯¯¯¯¯¯¯¯¯¯¯¯¯ 
 

(c).  We showed in Eq. 24.7.27 that ml increases in unit steps until the z-axis projection is bigger 

than the magnitude of the angular momentum, so that m lh- < h-  mmax(mmax + 1)¯¯¯¯¯¯¯¯¯¯¯¯¯. The total 
angular momentum is completely determined by mmax, while ml = 0, ±1, …, ± mmax. Renaming 
mmax = l gives the final result: 
 

 L^ 2 mmax = h-2 l(l + 1) mmax    ml = 0, ±1, …, ± l 
 

Since the raising operator doesn’t change the magnitude of the angular momentum, Eq. 24.7.21, 
the preceding equation must then hold for all values of m l: 
 

 L^ 2 ml = h-2 l(l + 1) ml 


