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Chapter 24: The Quantum Mechanics of Rotation and Vibration 
 
Do molecular rotation and vibration have zero point energies? What happens to rotational and 
vibrational motions at absolute zero? 
 
The molecular degrees of freedom include translation, rotation, vibration, and electronic 
energies. The particle in a box is a model for the translational degree of freedom. We now 
consider rotation and vibration. The rotational and vibrational energies of molecules are 
quantized. The energies of the quantum levels are determined by molecular structure, through the 
bond lengths, angles, and bond strengths. The energy level spacings are a sensitive measure of 
molecular structure and are experimentally determined using spectroscopy. In this way, light 
absorption and emission are primary tools for experimental determination of molecular structure. 
The harmonic oscillator is a useful model for molecular vibration. The rigid rotor is a useful 
model for molecular rotation. The rigid rotor is a good introduction to the theory of angular 
momentum. The theory of angular momentum is integral to atomic and molecular structure 
theory. The harmonic oscillator and rigid rotor are good examples of the applications of the 
postulates of quantum mechanics. Understanding the quantization of vibration and rotation help 
us learn how to think quantum mechanically. 
   The rotation and low frequency vibrations of molecules contribute to the heat capacity, internal 
energy, enthalpy, Helmholtz energy, and Gibbs energy. The Gibbs energy determines the 
thermodynamic force for chemical change at constant temperature and pressure, 
rG = –RT ln Kp. The conclusion is that rotation and vibration play a role in determining the 
extent of chemical reactions. Therefore, molecular vibration and rotation have an effect on 
structure-function relationships. 
   The harmonic oscillator follows directly from our treatment of the particle in a box, so we 
begin with the harmonic oscillator, after a brief review of the classical treatment of vibration. 
 
24.1 A Brief Review of Classical Mechanics: Vibration 
 

The fundamental vibration frequency of a single mass m suspended by a spring with force 
constant k is o = 1/2 

–––
k/m, Eq. 8.13.11. The fundamental vibration frequency of a diatomic 

molecule is expressible in the same functional form. Consider a diatomic molecule with bond 
length r and atomic masses m1 and m2. The center of mass of a diatomic molecule is the “balance 
point,” Figure 24.1.1, where r1 is the distance from mass m1 to the center of mass and r2 is the 
distance from mass m2 to the center of mass: 
 

 m1r1 = m2r2          24.1.1 
 
 
 
 
 
 
 

  (a). vibration     (b). rotation 
 

Figure 24.1.1: The center of mass of a molecule defines the origin for vibration and rotation. 
The center of mass, cm, is closer to the heavier atom than the lighter atom. 
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Translation describes the motion of the center of mass. The bond length is given by the sum, r = 
r1 + r2. The distances to the center of mass can be related to the bond length. Adding m2r1 to both 
sides of Eq. 24.1.1 gives: 
 

 m1r1 + m2r1 = m2r2 + m2r1        24.1.2 
 

Gathering common factors gives (m1 + m2)r1 = m2(r1 + r2) =  m2r and then solving for r1 gives: 
 

 r1 = 
m2

m1 + m2
 r          24.1.3 

 

Using parallel steps, adding m1r2 to both sides of Eq. 24.1.1 gives for r2: 
 

 r2 = 
m1

m1 + m2
 r          24.1.4 

 

The last two equations show that r1 and r2 are mass weighted fractions of the full bond length. If 
m2 is larger, then r1 is longer to achieve equal leverage. 
   The kinetic energy of a diatomic molecule is given by the sum of the kinetic energies of the 
two atoms, with reference to the center of mass: 
 

 Ek = ½ m1



dr1

dt
2
+ ½ m2



dr2

dt
2
      (diatomic) 24.1.5 

 

However, r1 and r2 are related to the bond length by Eqs. 24.1.3 and 24.1.4: 
 

 Ek = ½ 
m1m2

2

(m1 + m2)2



dr

dt
2
+ ½ 

m2
1m2

(m1 + m2)2



dr

dt
2
    (diatomic) 24.1.6 

 

Collecting terms gives: 
 

 Ek = ½ 
m1m2

2 + m2
1m2

(m1 + m2)2 



dr

dt
2
 = ½ 

m1m2(m2 + m1)
(m1 + m2)2 



dr

dt
2
   (diatomic) 24.1.7 

 

Canceling the common factor in the numerator and denominator gives the kinetic energy for the 
diatomic oscillator as: 
 

 Ek = ½ 
m1m2

m1 + m2



dr

dt
2
 = ½  



dr

dt
2
     (diatomic) 24.1.8 

 

where  is the reduced mass of the diatomic molecule: 
 

   
m1m2

m1 + m2
        (diatomic) 24.1.9 

 

The reduced mass is the effective vibrational mass of the diatomic molecule. The extension is 
defined as the deviation of the bond length from the equilibrium value: x  r – ro. The velocity is 
related to the extension through: 
 

 
dx
dt  = 

d(r – ro)
dt  = 

dr
dt         24.1.10 

 

since the equilibrium bond length is a constant. The kinetic energy of vibration of a diatomic 
molecule then reduces to the same form as for a single mass, with m replaced by : 
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 Ek = ½  



dx

dt
2
        (diatomic) 24.1.11 

 
The Vibrational Restoring Force is Proportional to the Extension: The force for a harmonic 
oscillator is given by Hooke’s Law, F(x) = – kx. The corresponding potential energy is 
V(x) = ½ kx2. The solutions to the classical harmonic oscillator are sinusoidal with frequency o; 
please review Addendum 8.13. The fundamental vibration frequency for a diatomic harmonic 
oscillator is given by Eq. 8.13.11: 
 

 o = 
1

2π k/
–––

  o = 2πo o = k/
–––

   (harmonic) 24.1.12 
 

For larger molecules, normal mode analysis provides the reduced mass and fundamental 
vibration frequency for each normal mode (Section 8.11). 
 
24.2 Vibration 
 

The Harmonic Oscillator is a Model for Molecular Vibrations:   We begin by considering the 
ground state of the harmonic oscillator. Subsequently, we will build the excited states, based on 
the ground state. 
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Figure 24.2.1: (a). A Gaussian wave function has high curvature in the middle of the energy 
well, were the potential energy is at minimum. The wave function asymptotically approaches 
zero more gradually than the particle in a box wave function, tunneling past the classical 
turning points (dotted lines). (b). The energy states for the harmonic oscillator are equally 
spaced with E = ho. 

 
 
The Schrödinger equation for one-dimensional problems always takes the same general form, 
Eq. 23.3.1. The potential energy function for the harmonic oscillator is purely multiplicative, so 
the quantum operator is equivalent to the classical potential, Exercise 23.7.3: 
 

 V
^

(x) = ½ kx2          24.2.1 
 

The Schrödinger equation for the one-dimensional harmonic oscillator is then: 

x 

E = ho 

 = 5 
 
 = 4 
 
 = 3 
 
 = 2 
 
 = 1 
 

 = 0 

11/2 ho 
 
9/2 ho 
 
7/2 ho 
 
5/2 ho 
 
3/2 ho 
 

½ ho 

          0 

E 

E = ho 
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 – 
ħ2

2m 
d2

dx2 + ½ kx2  = E        24.2.2 

 

The parabolic potential is similar to the particle in a box, but the potential energy increases 
gradually at the extremes, Figure 24.2.1. A good guess for a wave function is a form with large 
curvature in the middle of the potential energy well and a gradual approach to zero at the 
extremes. A Gaussian wave function is an appropriate trial wave function for the ground state: 
 

 o(x) = No e–½2x2
         24.2.3 

 

with  as a constant and No the normalization. The first derivative is given by: 
 

 
do

dx  = No(–½ 2)(2x) e–½2x2
 = – No 2x e–½2x2

 = – 2xo   24.2.5 
 

(see General Pattern 5 for an introduction to the Gaussian distribution and its derivatives). 
The second derivative is obtained using the product rule for xo and Eq. 24.2.5: 
 

 
d2o

dx2  = – 2 







x 
do

dx  + o 
dx
dx  

        =  – 2 [x(– 2x )o + o] 
        = 4x2 o – 2 o         24.2.6 

 

Substituting the second derivative into Eq. 24.2.2 gives: 
 

 – 
ħ2

2m( )4x2 o – 2 o  + ½ kx2o = Eo      24.2.7 
 

All the operators have been applied and only functions remain, so we no longer need to worry 
about the order of operations. Dividing both sides of the equation by the wave function gives: 
 

 – 
ħ2

2m 4x2 + 
ħ2

2m 2 + ½kx2 = E       24.2.8 
 

The range for the displacement is –  x  . The only way for the left-side of the last equation 
to always equal a constant is for the terms in x to cancel, giving: 
 

 E = 
ħ22

2m   or    = 
2mE
ħ       24.2.9 

 

(Notice that we used similar reasoning for the 3D-particle in a box, Eq. 23.6.9). The energy is in 
a familiar form; for a free particle and for a particle in a box the energy is E = ħ2k2/2m, Eq. 
23.4.4. This similarity suggests that the Gaussian form is appropriate for the harmonic oscillator. 
However, the terms in x must cancel: 
 

 – 
ħ2

2m 4x2 + ½ kx2 = 0  or  – 
ħ2

m 4 + k = 0     24.2.10 
 

This last equation determines the value of : 
 

 4 = 
mk
ħ2   or 2 = 

mk–––

ħ  = 
m
ħk/m

–––
 = 

mo

ħ     24.2.11 
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In this last equation, we have rearranged to show the relationship of  to the fundamental 
vibration frequency, Eq. 24.1.12. Substituting  back into the energy, Eq. 24.2.9 gives: 
 

 Eo = 
ħ22

2m  = ½ ħo = ½ 
h

2πo = ½ ho      24.2.12 
 

The energy is quantized; the energy of the ground state is a fixed value, which is determined by 
the force constant and mass of the oscillator. The harmonic oscillator has a zero-point energy; the 
ground state energy is non-zero. At absolute zero Kelvin, the molecule still vibrates. The 
classical turning points occur when the total energy is equal to the potential energy, E = V(x). 
However, the quantum mechanical wave function has significant intensity beyond the classical 
turning points, Figure 24.2.1. The wave function tunnels into the barrier at each extreme, beyond 
the classical turning points. The quantum mechanical harmonic oscillator has strikingly different 
behavior than the classical oscillator. However, the fundamental vibration frequency is the same 
for quantum and classical problems. 
   The final wave function must be normalized, -∞

∞ 2(x) dx = 1. We will leave the normalization 
integral as a homework problem. The normalization constant is: 
 

 No = 



2

π

¼
          24.2.13 

 

Using Eq. 24.2.11 for 2 gives the final wave function as: 
 

 (x) = 



mo

ħπ

¼
e

–
mo

2ħ  x2

        24.2.14 
 

We now need to consider excited states of the oscillator. 
 
The Harmonic Oscillator is Quantized:   The energy levels for the harmonic oscillator are 
quantized with quantum number , which ranges from  = 0, 1, 2, …, : 
 

 E = ho( + ½)         24.2.15 
 

This result will be proved in Sec. 24.7. The energy states are equally spaced, which we can 
determine by considering any two adjacent energy levels,  and +1: 
 

 E = E+1 – E = ho( + 1 + ½) – ho( + ½) = ho     24.2.16 
 

The absorption of light results in transitions between adjacent vibrational energy levels, Figure 
24.2.1b. 
 
 
              

Example 24.2.1: Bond Force Constants 
The fundamental vibrational transition in the infrared spectrum of the diatomic molecule 16O19F 
is 1029. cm-1 (Figure 24.2.1a). Calculate the bond force constant. 
 
 

Answer:  Given ~ocm with o = c~o, the reduced mass using mono-isotopic masses is: 
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  = 
(15.9949 g mol-1)(18.9984 g mol-1)
(15.9949 g mol-1+18.9984 g mol-1) (1 mol/6.02214x1023)(1 kg/1000 g) 

    = 1.44199x10-26 kg 
 

Solving Eq. 24.1.12 for the force constant gives:  k = 42~2
oc2 = 541.8 N m-1 

 

This result is typical for a single covalent bond (draw the Lewis dot structure for OF). 
              

 
 
Excited State Wave Functions are Built from the Ground State Wave Function:   The ground 
state, Eq. 24.2.3, has no nodes. Higher energy states have larger curvature, requiring nodes. The 
quantum number  gives the number of nodes, Figure 24.2.2. The nodal properties can be 
introduced into excited state wave functions by multiplying the ground state wave function by a 
polynomial, (x) = (polynomial) o(x). The polynomial is chosen to have the number of zeros 
equal to the number of nodes. For the first excited state,  = 1: 
 

 1(x) = (polynomial) o(x) = (ax + b)o(x)    ( = 1)  24.2.17 
 

where the polynomial, ax + b, has one zero and a and b are constants. A plot of ax + b is a 
straight line, Figure 24.2.2a. The product of the straight line and the ground state is shown in 
Figure 24.2.2b for  = 1. The ground state is said to give the asymptotic form of the wave 
function. The asymptotic form describes the approach of the wave function to zero for large 
magnitude displacements, x  . An excited state wave function is given as the appropriate 
polynomial multiplied by the asymptotic form, which guarantees the proper approach to zero. 
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Figure 24.2.2:  (a). Harmonic oscillator excited states are a product of the ground state wave 
function and a polynomial that has the number of zeros = number of nodes = . A linear 
polynomial is required for one node, ax + b. (b). The ground and first excited state. 

 
 
The polynomials are well known and are called the Hermite polynomials. The order of the 
Hermite polynomial corresponds to the vibrational quantum number, H. The Hermite 
polynomials arise in many different circumstances and are tabulated in reference sources and 
Table 24.1.1. The polynomials are often listed as a function of the dimensionless quantity, 
y = x. The harmonic oscillator wave functions are given as: 
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 (y) = NH(y) e–½ y2
        24.2.18 

 

where N is the normalization constant. The Hermite polynomials are the solutions of the 
Hermite equation: 
 

 
d2H

dy2  – 2y 
dH

dy  + 2 H = 0        24.2.19 
 

In the next section we will show that the Schrödinger equation for the harmonic oscillator 
reduces to the Hermite equation. For now, we will simply use the results. 
 

 
Table 24.1.1:  Hermite Polynomials and Harmonic Oscillator Wave functions, y = x. 

 

 H(y) H(x) (x) 
0 1 1 (/½)½ e–½ 2x2

 
1 2y 2x (/2½)½ (2x) e–½ 2x2

 
2 4y2 – 2 42x2 – 2 (/8½)½ (42x2 – 2)e–½ 2x2

 
3 8y3 – 12y 83x3 – 12x (/48½)½ (83x3 – 12x) e–½ 2x2

 
 
 
The solutions to the Hermite equation are generated using a recursion relationship: 
 

 H+1 = 2y H – 2 H-1        24.2.20 
 

The recursion relationship acts as a generator for all the excited states of the harmonic oscillator. 
The expression is called a recursion relationship because each successive polynomial is 
generated recursively from the polynomials of lower order. For example, the Hermite polynomial 
for  = 2 is a function of H1 and Ho as: 
 

 H2 = 2y H1 – 2 Ho or H2 = 2y(2y) – 2(1) = 4y2 – 2    24.2.21 
 

The second order Hermite polynomial is a quadratic polynomial, which has two nodes, Figure 
24.2.3a. The product of H2 with the ground state gives an excited state wave function with  = 2 
and two nodes, Figure 24.2.3b for  = 2. 
   Another handy result is that the integrals of products involving two Hermite polynomials, with 
quantum numbers ' and , are known: 
 

 -∞

 ∞ H' e–½ y2

 H e–½ y2

 dy = 0  if '   

     = π½ 2 ! if ' =     24.2.22 
 

If '  , the integral corresponds to the orthogonality integral. The integral then guarantees 
orthogonality of the final harmonic oscillator wave functions. If ' = , the integral corresponds 
to the normalization integral. Using the change of variables dy =  dx with -∞

∞ 2(x) dx = 
N2
  -∞

∞  H2
 e–y2

 dy = 1 and Eq. 24.2.22 gives the normalization constant as: 
 

 N = 








π½ 2 !

½
         24.2.23 

 

The result is a complete set of orthonormal solutions to the quantum harmonic oscillator. 
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Figure 24.2.3:  Excited state wave functions are the product of a normalization constant, the 
Hermite polynomial of order , and the ground state asymptotic form. (a). For  = 2, the 
polynomial is quadratic, which has two zeros. (b). The harmonic oscillator wave functions. 

 
 
24.3 The Hermite Equation 
 

The Harmonic Oscillator Schrödinger Equation Reduces to the Hermite Equation:   To show that 
the Schrödinger equation for the harmonic oscillator reduces to the Hermite equation, we first 
multiply the harmonic oscillator Schrödinger equation, Eq. 24.2. 2, by 2m/ħ2: 
 

 – 
d2 
dx2 + 

2mk
2ħ2  x2 = 

2mE

ħ2         24.3.1 
 

The coefficient of second term is 4, Eq. 24.2.11. The energy of the ground state is given by Eq. 
24.2.12, which rearranges to give: 
 

 Eo = 
ħ22

2m   giving  
2m
ħ2  = 

2

Eo
     24.3.2 

 

Substituting this last expression into the right-side of Eq. 24.3.1 and also substituting in 4 from 
Eq. 24.2.11 gives the simplified form: 
 

 – 
d2 
dx2  + 4 x2 = 2     with  = 

E

Eo
   24.3.3 

 

The last expression can be put into more general form using the change of variables: y =  x. 
The derivatives for the change in variables are determined using the chain rule: 
 

 
d 
dx = 

d 
dy 

dy
dx =  

d 
dy    

d2 
dx2 = 2 

d2 
dy2    24.3.4 

 

Substituting Eq. 24.3.4 for d2/dx2 and x2 = y2/2 into Eq. 24.3.3 gives: 
 

 – 2 
d2 
dy2  + 2 y2  = 2         24.3.5 

 

Dividing by 2 gives the general, dimensionless form: 
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 – 
d2 
dy2  + y2  =       (dimensionless) 24.3.6 

 

where the energy is given in multiples of the ground state energy: 
 

  = 
E

Eo
 = 

ho( + ½)
½ ho

 = 2 + 1       24.3.7 
 

Substituting in this last equation, substituting in the wave function from Eq. 24.2.18, and 
dividing both sides of Eq. 24.3.6 by the normalization constant, N, gives: 
 

 
d2 
dy2 H e–y2

/2 – y2 H e–y2
/2 + (2 + 1) H e–y2

/2 = 0     24.3.8 
 

Taking the derivative of the unnormalized wave function, H e–y2
/2, using the product rule gives: 

 

 
d 
dy H e–y2

/2 = H (–y) e–y2
/2 + e–y2

/2 
dH

dy       24.3.9 
 

The second derivative is: 
 

 
d2 
dy2 H e–y2

/2 = H [y2 e–y2
/2 – e–y2

/2] + (–y) e–y2
/2 

dH

dy  + e–y2
/2 

d2H

dy2  + 
dH

dy  (–y) e–y2
/2 

            24.3.10 
and collecting terms gives: 
 

 
d2 
dy2 H e–y2

/2= e–y2
/2 

d2H

dy2  – 2y e–y2
/2 

dH

dy  + H (y2 – 1) e–y2
/2   24.3.11 

 

Substituting the second derivative into Eq. 24.3.8 and dividing both sides of the equation by e–y2/2 
gives: 
 

 
d2H

dy2  – 2y 
dH

dy  + H (y2 – 1) – y2 H + (2 + 1) H = 0    24.3.12 
 

Several terms cancel in the last equation to give the Hermite equation: 
 

 
d2H

dy2  – 2y 
dH

dy  + 2 H = 0        24.3.13 
 

To solve this equation, H is assumed to be a polynomial, which upon substitution into the 
Hermite equation results in the recursion relationship, Eq. 24.2.20. The Hermite equation also 
plays an important role in probability, statistics, and combinatorics. We next consider rotation. 
 
 
24.4 A Brief Review of Classical Mechanics: Rotation and Angular Momentum 
 

Angular Momentum:   A correspondence can be described between linear and angular 
momentum. The linear momentum is p = mv. The angular momentum is often denoted L. 
Consider a mass m rotating around the origin at radius r with tangential velocity v, Figure 
24.4.1a. A quick experiment can determine whether the angular momentum is given by L =

?  mvr 
or L =

?  mv/r. A small object is set spinning on a string. Without any other change, pulling in some 
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string decreases r. The object spins faster, increasing the tangential velocity. As the radius 
decreases, the tangential velocity increases for a constant angular momentum, giving L = mvr as 
the proper relationship. 
   The tangential velocity, dx/dt, is related to the angular velocity, d/dt, Figure 24.4.1b. Consider 
the mass rotating by an infinitesimal angle d. For an infinitesimal angle, the linear distance 
traveled is equal to the arc length subtended by the angle, dx = r d. Taking the derivative with 
respect to time gives the linear velocity as: 
 

 v = 
dx
dt  = r 

d
dt    or   v = r      24.4.1 

 

where the angular velocity is denoted as  = d/dt. 
 
 
 
 
 
 
 
 (a). L = mvr    (b). L = mr2 
 

Figure 24.4.1: (a). Angular momentum is determined by the mass, tangential velocity, and 
distance from the origin, r. (b). The angular velocity is  = d/dt = v/r and then L = mr2. 

 
 
Substituting the last expression into L = mvr gives the angular momentum as L = mr2. Defining 
the moment of inertia as I = mr2 gives the angular momentum as: 
 

 L = I           24.4.2 
 

which shows a useful correspondence with the linear momentum, p = mv. The moment of inertia 
acts as the effective rotational mass. The time derivative of the linear momentum is the force, 
and the time derivative of the angular momentum is the torque. The kinetic energy of a rotating 
mass also corresponds to the linear case and is given by Ek = L2/2I, Table 24.4.1. 
 
 

Table 24.4.1: Linear and Angular Momentum have a Direct Correspondence. 
 

Linear momentum Angular Momentum 
momentum:            p = mv 
 

L = I 

effective mass:       m 
 

I =  mi r2
i 

acceleration:         
dp
dt  = F     force 

dL
dt  = T         torque: twisting force 

kinetic energy:      Ek = 
p2

2m Ek = 
L2

2I 

 

y 

x 

 m r 

v 

 

dx 
d 

 = 
d
dt  = v/r 

       dx = r d 
 
 

v = 
dx
dt  = r 

d
dt  r 

m1 m2  
r1 r2 

cm 
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   For a molecule, the mass of every atom contributes to the moment of inertia. For a linear 
molecule with n atoms: 
 

 I = 
i = 1

n

 mi r2
i        (linear)  24.4.3 

 

where the distances are measured to the center of mass of the molecule. The molecule rotates 
about the center of mass, Figure 24.1.1. Consider again a diatomic molecule with bond length r 
and atomic masses m1 and m2. Eqs. 24.1.3 and 24.1.4 give the distances from the masses to the 
center of mass. Useful relationships are obtained by multiplying Eq. 24.1.1 by r1 or r2, 
respectively: 
 

 m1r2
1 = m2r1r2          24.4.4 

 m1r1r2 = m2r2
2          24.4.5 

 

Reversing Eq. 24.4.4 and adding Eq.24.4.5 gives: 
 

 (m1 + m2) r1r2 = m1r2
1 + m2r2

2        24.4.6 
 

Using Eq. 24.4.3, the moment of inertia of the diatomic molecule is: 
 

 I = 
i=1

n

 mir2
i = m1r2

1 + m2r2
2      (diatomic) 24.4.7 

 

Substituting Eq. 24.4.6 into the last equation gives: 
 

 I = (m1 + m2) r1r2       (diatomic) 24.4.8 
 

Substituting Eqs. 24.1.3 and 24.1.4 for r1 and r2 into Eq. 24.4.8 gives: 
 

 I = 
m1m2

m1 + m2
 r2        (diatomic) 24.4.9 

 

Substituting the definition of the reduced mass, Eq. 24.1.9, into Eq. 24.4.9 results in: 
 

 I = r2         (diatomic) 24.4.10 
 

The reduced mass is the effective rotational mass of the diatomic molecule. The moment of 
inertia for a diatomic molecule reduces to the same form as a single rotating mass, so solutions to 
the equation of motion for a single mass apply equally to diatomic molecules. 
   The theory of angular momentum is the same, regardless of the degree of freedom under study. 
As a consequence, once the wave functions and energy levels for different angular momentum 
states have been determined for one system, the results apply to all angular momentum problems. 
Different symbols are used for different examples of angular momentum: J for rotating 
molecules, L for electronic angular momentum in atoms and molecules, S for angular 
momentum of electrons, and I for angular momentum of nuclei. We will use L for the general 
case, and then specialize according to the particular problem, where all the symbols are 
interchangeable, Table 24.4.2. 
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Table 24.4.2: The Symbols for Angular Momentum are Interchangeable. 
 

Degree of Freedom Conventional Symbol 
Molecular rotation J 
Electronic angular momentum L 
Intrinsic angular momentum of electrons S 
Intrinsic angular momentum of nuclei (NMR) I 
Intrinsic angular momentum of light S 

 
 

24.5 Angular Momentum and Molecular Rotation 
 

The Rigid Rotor is a Model for Molecular Rotation:   A good model for molecular rotation is to 
assume that the bond lengths and angles in the molecule are fixed and independent of the 
rotational state of the molecule. This model is called the rigid rotor approximation. In this 
section we focus on the general case, which is a single mass with fixed distance to the origin, and 
then apply the results to diatomic molecules. We start with rotation in a plane for simplicity, and 
then use the results from rotation in a plane to build the wave functions for rotation on the 
surface of a sphere. 
 

Rotation in a Plane is Quantized:  A mass m rotating about the origin at fixed distance r has 
classical angular momentum L = mr2 = mr2(d/dt) and kinetic energy Ek = L2/2I. Rotation in a 
plane involves one angular dimension, Figure 24.5.1a. The angle between the vector pointing to 
the mass and the x-axis is called the azimuthal angle, , with 0    2. No potential energy acts 
on the particle, V() = 0. The total energy is given by the kinetic energy. 
 
 
 
 
 
 
 
 
 
 (a).    (b). stationary-state  (c). non-stationary 
 

Figure 24.5.1: (a). Rotation in the x-y plane is a function of the azimuthal angle, . (b). The 
wave function must constructively interfere with itself at  + 2: allowed orbitals give 
ml = 0, 1, 2,…  (c). Orbitals that don’t constructively interfere do not give stationary states. 

 
 
The Schrödinger equation for rotation in a plane is: 
 

 – 
ħ2

2I 





2

2  = E      (0    2)  24.5.1 
 

This equation is in the same form as a free particle, except that the distance x has been replaced 
by the angle . The wave function is also in the same form: 
 

lz 

 

m 

x 

y 

z 
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 ml = a eiml          24.5.2 
 

where ml is a constant and a is the normalization constant. To find the energy for rotation, the 
derivatives are given by: 
 

 






ml

  = a iml eiml = imlml  






2ml

2  = – a m2
l  eiml = – m2

l  ml  24.5.3 
 

Substituting the second derivative into the Schrödinger equation, Eq. 24.5.1, gives: 
 

 – 
ħ2

2I (– m2
l  ml) = E ml        24.5.4 

 

Only functions remain, so that dividing both sides of the last equation by ml determines the 
energy as: 
 

 Eml = 
ħ2m2

l

2I           24.5.5 
 

This last equation is in the same general form as for a free particle, the particle in a box, and the 
harmonic oscillator, 24.2.12, with ml the constant. Are there any restrictions on the allowable 
values for ml? The boundary condition for the wave function is that the amplitude of the wave 
function must be the same at a given angle  and +2 to allow for constructive interference on 
subsequent transits around the plane of rotation, Figure 24.5.1b: 
 

 a eiml = a eiml(+2)         24.5.6 
 

Factoring the exponential on the right into two terms gives: 
 

 eiml = eiml eiml 2 or  1 = eiml 2      24.5.7 
 

The Euler identity gives the boundary condition as: 
 

 eiml 2 = cos 2ml + i sin 2ml = 1       24.5.8 
 

which shows that ml must be an integer: 
 

 ml = 0, 1, 2, 3, …         24.5.9 
 

The requirement of constructive overlap gives quantized stationary-states, as we also showed for 
the Bohr atom. The lowest energy state with ml = 0 gives zero energy, Eq. 24.5.5. Rotation does 
not have a zero-point energy. Molecules cease rotation at absolute zero Kelvin. The spacing 
between successive energy states diverges as m2

l . Positive values for ml correspond to counter-
clockwise rotation and negative values clockwise rotation, using the “right-hand rule.” The 
direction of the angular momentum vector is along the z-axis. In direct analogy with linear 
momentum, Eq. 23.4.21, the angular momentum around the z-axis is given by the quantum 
operator: 
 

 L^ z = 
ħ
i  
 
          24.5.10 

 

The rigid rotor wave function is an eigenfunction of the z-component of the angular momentum: 
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 L^ z ml = 
ħ
i  
ml

  = ħmlml        24.5.11 
 

where the eigenvalue is: 
 

 Lz = ħml          24.5.12 
 

Repeated observations of the total energy and the angular momentum around the z-axis always 
give the same results, because the 2D-rigid rotor wave function is an eigenfunction of both H ^ and 
L^ z (Postulate III, Sec. 23.7). The quantum number m l gives the number of planar nodes that 
include the z-axis, Figure 24.5.2. For the m l = 0 wave function, the particle has no angular 
momentum and can then be found with equal probability anywhere around the circumference. 
Increasing number of nodes gives increasing angular curvature, energy, and angular momentum. 
 
 
 
 
 
 
 
  ml = 0         ml = 1      ml = 2 
 

Figure 24.5.2: The azimuthal quantum number ml gives the number of planar nodes that 
include the z-axis. Greater curvature gives greater kinetic energy. The real part of the wave 
function is depicted. The z-axis extends out of the plane of the page. 

 
 
   Building upon our understanding of rotation in a plane we now consider rotation in three 
dimensions. However, first we need to consider the use of spherical polar coordinates to specify 
the position of the particle. 
 

Spherical Polar Coordinates are Used for Spherically Symmetric Systems:   For a spherically 
symmetric system, the spherical polar coordinate system is useful for determining the position of 
a particle as it moves around the origin. The distance of the particle from the origin is r, Figure 
24.5.3a. The polar angle, , is the angle between the z-axis and the vector that points to the 
particle. The azimuthal angle, , is the angle between the x-axis and the projection of the vector 
onto the xy-plane. We considered motion in the xy-plane as a function of  in the last section. 
   To completely cover all space, the ranges for the coordinates are: 
 

 0  r   0     0    2      24.5.13 
 

The projection of the position vector onto the z-axis is r cos . The projection of the position 
vector onto the xy-plane has length r sin , Figure 24.5.3b. The transformation between spherical 
polar coordinates and Cartesian coordinates is then given by: 
 

 r = x2 + y2 + z2 
 x = r sin  cos  
 y = r sin  sin  
 z = r cos           24.5.14 
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 (a).     (b).       (c). 
 

Figure 24.5.3: (a). Spherical polar coordinates, r, , and  completely specify the position of 
the particle. (b). The transformation from r, ,  to x, y, z. (c). The volume element in three-
space. 

 
 
Consider a change in r, , and  from r to r + dr,  to  + d, and  to  + d. The corresponding 
sides of the small volume element that are swept out by these differential changes are dr, r d, 
and r sin  d, Figure 24.5.3c. The volume element in three-space is the product of these sides: 
 

 d = dx dy dz = dr (r d)(r sin  d) = r2sin  dr d d    24.5.15 
 

Please see Addendum 24.8.1 for additional information on integration in multiple dimensions. 
The integrals over all possible  values and over all possible  values are: 
 

 


0


 sin  d = [– cos  |0


 = 1 + 1 = 2  and 


0

2
 d = [  | 0

2
 = 2  24.5.16 

 

The angular portion of the integral over all space is then just 4: 
 

 


0


 


0

2
 sin  d d = 4        24.5.17 

 
Angular Momentum in 3-Dimensions:   Rotation of a mass in a plane has one component of 
angular momentum, perpendicular to the plane, L = mr2. Rotation in three-dimensions gives 
angular momentum components about three orthogonal axes. The definition of the angular 
momentum vector is given by the cross product relationship, L


 r


xp


, where r


 is the position 
vector, which extends from the origin to the particle with components (x, y, z), and p


 is the 

linear momentum of the particle. The cross product can be resolved into the components along 
the i


, j


, and k


 directions by finding the determinant: 
 

 L


 = r


xp


 = 








i


j


k


x y z
px py pz

 = (y pz – z py) i


 – (x pz – z px) j


 + (x py – y px) k


  24.5.18 

 

For rotation in the xy-plane the angular momentum vector is in the “z-direction,” that is along 
the unit vector k


, Figure 24.5.1. The quantum mechanical operators corresponding to the 

components of the angular momentum are: 
 

x y 

z 

 

r 

m 

 

x y 

z 

 

r 
 

dr 

d 

d 
r sin  

rd 

r sin d 

x y 

z 

 

r 

m 

 
r cos  

r sin  

r sin  cos  y = r sin  sin  
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 L^ x = (ŷ p̂z – ẑ p̂y) = 
ħ
i  








y 

z

 – z 

y

 

 L^ y = (ẑ p̂x – x̂ p̂z) = 
ħ
i  








z 

x

 – x 

z

 

 L^ z = (x̂ p̂y – x̂ p̂x) = 
ħ
i  








x 

y

 – y 

x

       24.5.19 
 

Using the coordinate transformations in Eqs. 24.5.14, the angular momentum components in 
spherical polar coordinates are: 
 

 L^ x = 
ħ
i  








– sin  
 
 – cot  cos  

 
  

 L^ y = 
ħ
i  








cos  
 
 – cot  sin  

 
  

 L^ z = 
ħ
i  






 

           24.5.20 
 

The result for the L^ z operator verifies Eq. 24.5.10, which we obtained by analogy with linear 
momentum. The square of the total angular momentum is given by the Pythagorean theorem and 
Eqs. 24.5.20 as: 
 

 L^ 2 = L^ 2
x + L^ 2

y + L^ 2
z = – h-2 







1

sin2 
2 
2 + 

1
sin  

 
 









sin  
 
     24.5.21 

 

   The 3-dimensional Schrödinger equation, Eq. 23.6.3, is: 
 

 – 
ħ2

2m 2  + V^ (x,y,z) = E     with 2 = 
2

x2 + 
2

y2 + 
2

z2            (23.6.3) 24.5.22 
 

The curvature can be recast into spherical polar coordinates to give: 
 

 2 = 
1
r 






2

r2  r + 


1

r2  2        24.5.23 

 

where 2 is related to the square of the total angular momentum operator by: 
 

 L^ 2 = (angular momentum operator)2 = – ħ22      24.5.24 
 

The first term of Eq. 24.5.23 determines the “wiggliness” of the wave function for motion toward 
or away from the origin, which is called the radial direction. The term in 2 determines the 
“wiggliness” of the wave function as it wraps around the origin: 
 

 2 = 
1

sin2 






2

2  + 




1

sin  






 

 sin 
 
       24.5.25 

 

   The Schrödinger equation for the 3D-rigid rotor is most conveniently cast in spherical polar 
coordinates. 
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Example 24.5.1:  Angular Momentum Coordinate Conversion 
Show that L^ z = h-/i ( /). 
 
 

Answer:  The chain rule gives:  






 

  = 






x

 





 

x
 + 






y

 





 

y
 + 






z

 





 

z
 

The derivatives are evaluated using the coordinate transformations given in Eqs. 24.5.14: 
 

 






x

  = – r sin  sin  = – y  






y

  = r sin  cos  = x  






z

  = 0 
 

Substitution of the derivatives into ( /) gives: 
 

 






 

  = – y 






 

x
 + x 







 

y
  and    L^ z = 

h-

i  








x 

y

 – y 

x

 = 
h-

i  






 

  
 

as given in Eqs. 24.5.19 and 24.5.20. The derivations of the remaining Eqs. 24.5.20 are 
algebraically more intricate, but this example gives the general idea of the procedure. 
 
              

 
 
Rotation in 3D Involves Two Angular Dimensions:   The 3-dimensional rigid rotor corresponds to 
the motion of a particle of mass m on the surface of a sphere with fixed radius r. The potential 
energy is zero, V = 0. The Schrödinger equation, Eq. 24.5.17, reduces to: 
 

 – 
ħ2

2m 2  = E          24.5.26 
 

For the rigid rotor, r is constant so the derivative with respect to r in the curvature, Eq. 25.5.23, is 
zero giving: 
 

 – 
ħ2

2mr2 2 = E          24.5.27 
 

The moment of inertia is defined as mr2 for a single mass rotating about the origin: 
 

 – 
ħ2

2I 
2 = E          24.5.28 

 

Since there is no potential energy for rotation, the total energy is entirely kinetic energy. Using 
Eqs. 24.5.24 and 24.5.28, the kinetic energy operator is E^ k = L^ 2/2I, which flows quite naturally 
from the curvature, as anticipated from Table 24.4.1. The curvature involves angles  and . The 
corresponding motions are separable so that the overall wave function is expressed as the product 
of one-dimensional wave functions (see Sec. 23.6 for the equivalent process for the 3D-particle 
in a box): 
 

  = ()()          24.5.29 
 

The  dependent portion is already familiar to us and is given by the wave function for motion in 
the xy-plane, Eq. 24.5.2: 
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 () = 



1

2π
½

eiml  ml = 0, 1, 2, 3, ....     24.5.30 
 

The complete wave function is well known; the solutions are called spherical harmonics, Y l,ml
: 

 

  = Yl,ml
 = ()()        24.5.31 

 

The spherical harmonics are the eigenfunctions of the square of the total angular momentum: 
 

 – ħ2 2Yl,ml
 = ħ2 l (l + 1) Yl,ml

       24.5.32 
 

where l is the angular momentum quantum number and ml is the magnetic quantum 
number. The angular momentum quantum number is restricted to positive integers, 
l = 0, 1, 2, …. The eigenvalue is the square of the total angular momentum: 
 

 L2 = ħ2 l (l + 1)          24.5.33 
 

and the magnitude of the total angular momentum is then the square root of the last expression: 
 

 |L| = ħ l (l + 1)          24.5.34 
 

The spherical harmonics for l = 0, 1, 2 are listed in Table 24.5.1. You are already familiar with 
these functions because they are identical to the angular portions of atomic orbitals, where l = 0 
are “s”-type, l = 1 are “p”-type, and l = 2 are “d”-type orbitals, Figure 24.5.4. The real parts of the 
 dependent portions are depicted in Figure 24.5.2. 
   Dividing Eq. 24.5.32 by 2I gives the rigid rotor Schrödinger equation: 
 

 – 
ħ2

2I 
2Yl,ml

 = El Yl,ml
        24.5.35 

 

Dividing Eq. 24.5.32 by 2I gives the total rotational energy eigenvalue as: 
 

 El = 
ħ2

2I l (l + 1)          24.5.36 
 

The z-axis projection of the angular momentum is given using Eqs. 24.5.11 and 24.5.12 as: 
 

 L^ z Yl,ml
 = 

ħ
i  
Yl,ml

  = ħml Yl,ml
  Lz = ħml    24.5.37 

 

 
Table 24.5.1: Spherical Harmonics 

 

l ml Yl,ml
 

0 
 

  0 (1/4π)½ 

1   0 (3/4π)½ cos   
 

 1 (3/8π)½ sin  e±i 

2   0 (5/16π)½ (3 cos2 – 1) 
 1 (15/8π)½ cos  sin  e±i 
 2 (15/32π)½ sin2 e±i2 
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A useful way to visualize the spherical harmonics is to use node counting. The nodes for 
rotational motion are planes of zero wave function amplitude that pass through the origin. The 
planar nodes are called angular nodes. The total number of angular nodes is equal to the angular 
momentum quantum number, l. The number of angular nodes that include the z-axis is equal to 
ml , Figure 24.5.4. The total energy, Eq. 24.5.36, is dependent only on l. The energy is 
proportional to the curvature. The number of nodes increases as the curvature increases, so the 
total number of angular nodes indicates the total angular momentum and the rotational energy. 
The number of angular nodes that include the z-axis cannot exceed the total number of nodes, so 
the restrictions on the quantum numbers are then: 
 

 l = 0, 1, 2, … and   ml = 0, 1, …, l      24.5.38 
 

This result for ml will be proved in Sec. 24.7. If l = 0, then ml can only be 0, and the lowest 
energy state is non-degenerate. If l = 1, then ml = 0, 1, where positive ml values are for counter-
clockwise rotation and the negative are for clockwise. The l = 1 level is triply degenerate, gl = 3. 
In general, the degeneracy is: 
 

 gl = 2 l + 1          24.5.39 
 
 
 
 
 
 
 
 
 
       l = 1, ml = 0  l = 2, ml = 0      l = 2, ml = 1 
 

Figure 24.5.4: The rigid rotor wave functions are the spherical harmonics Yl,ml
. The real parts 

of the spherical harmonic wave functions are shown. 
 
 
The energy levels diverge for increasing l, Figure 24.5.5. Transitions between adjacent energy 
levels are excited by light absorption in the microwave region of the spectrum or by light 
scattering. For example, microwave ovens operate by exciting rotational transitions in the water 
molecules in your food. 
   For the specific case of a rotating linear molecule, the angular momentum quantum number is 
denoted J and the projection on the z-axis is mJ. For molecular rotation, Eq. 24.5.36 becomes: 
 

 EJ = 
ħ2

2I J(J + 1) J = 0, 1, 2, … and   mJ = 0, 1, …, J  gJ = 2J + 1 24.5.40 
 

In wave numbers, the energy levels are called the rotational term values, F
~

J: 
 

 F
~

J = 
EJ

hc = B
~

 J(J + 1)   with   B
~

 = 
ħ

4Ic
     24.5.41 

 

where B
~

 is the rotational constant, which is dependent on the molecular geometry. 
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Figure 24.5.5:  Energy levels for the rigid rotor diverge with increasing l. The degeneracy is 
gl = 2l + 1. For the specific case of a rotating molecule, l = J and ml = mJ. 

 
 
For a diatomic molecule I = r2, so the value of B

~
 determines the bond length. In joules: 

 

 EJ = B
~

hc J (J + 1)          24.5.42 
 

The energy difference between adjacent energy levels is: 
 

 E = EJ+1 – EJ = B
~

hc[(J +1)(J +1 + 1) – J(J + 1)] = 2B
~

hc(J + 1)   24.5.43 
 

where J is the quantum number for the lower level, Figure 24.5.5. 
 
The Spin States of Electrons and Nuclei Correspond to Different Angular Momentum States:   
Electrons, protons, neutrons, and photons also carry angular momentum. The angular momentum 
of elementary particles is often called intrinsic angular momentum, since the effect is evident 
in a non-interacting, isolated particle. The intrinsic angular momentum of a particle is also called 
its spin.1 The quantized angular momentum states for the electron were observed in 1922 by 
Stern and Gerlach using silver and alkali atoms and in 1927 by Phipps and Taylor using 
hydrogen atoms.2 A stream of hydrogen atoms is deflected into two discrete beams by an 
inhomogeneous magnetic field, Figure 24.5 6. 
 
 
 
 
 
 
 
 
 
 

Figure 24.5.6: (a). The Stern-Gerlach experiment with hydrogen atoms. The projection of the 
electron angular momentum on the external magnetic field axis is restricted to two discrete 
values, ms = ½ h-, giving two spatially separated beams of atoms. The two spin states can be 
modeled as spin up with counter-clockwise rotation and spin down with clockwise rotation. 
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   The hydrogen atom has one electron that can have two projections of its angular momentum 
vector on the external field direction. The external field determines the unique axis, which is 
arbitrarily chosen as the z-axis by convention. The presence of only two spin states suggests that 
the intrinsic angular momentum quantum number of the electron is s = ½ and the corresponding 
projection of the angular momentum on the z-axis can be only ms = ½. The observation is 
called space quantization, since the orientation of the spin angular momentum is an angular, 
spatial dimension. The full relativistic quantum mechanical theory by P. A. M. Dirac in 1928 
provides a rigorous theoretical foundation for the intrinsic angular momentum of the electron. 
The spin quantum numbers of the proton and neutron are also ½. We will provide experimental 
evidence that the spin quantum number of the photon is s = 1. 
   Based on the universal nature of angular momentum, we can represent the allowed spin states 
of the electron by wave functions for ms = +½ and  for ms = –½. The  state is called “spin 
up” and the  state “spin down.” Following Eqs. 24.5.32 and 24.5.37, the spin wave functions,  
and , are eigenfunctions of both the square of the total angular momentum and the z-axis 
projection of the angular momentum: 
 

 S^ 2  = h-2 s(s+1)   Sz  = + ½ h-  

 S^ 2  = h-2 s(s+1)   Sz  = – ½ h-       24.5.44 
 

The magnitude of the angular momentum of the electron is then: 
 

 |S| = h- s(s + 1)
––––––

 = h- ½(½ + 1)
––––––––

 = ¾
––

 h-      24.5.45 
 

A common analogy is to picture the electron as a sphere spinning counter-clockwise for ms = ½ 
and clockwise for ms = –½. In effect, the elementary particle acts like a subatomic gyroscope. 
However, this analogy is not supported by theory, since the existence of any internal structure for 
the electron is currently unknown. The spinning sphere analogy should not be taken literally; the 
effect is purely quantum mechanical. The spin states for the proton and neutron are also 
governed by Eqs. 24.5.44 and 24.5.45. Photons are a special case, however. 
   The intrinsic angular momentum quantum number for a photon is s = 1. Based on our work so 
far, the projection of the angular momentum on the z-axis is expected to be ms =

?  –1, 0, +1. 
However, because a photon is travelling at the speed of light, the relativistic theory gives only 
two projections, ms = –1 and +1. The two ms values correspond to left- and right-circularly 
polarized light. The two allowed ms values for the photon have an important effect on the 
conservation of angular momentum in spectroscopic transitions. 
 
24.6  Angular Momentum Vector Diagrams 
 

   The allowed angular momentum ml states and the effect of the commutation relations for the 
projections of the angular momentum are conveniently illustrated using angular momentum 
vector diagrams. The commutation relationships among the components of the angular 
momentum determine the ability of experiments to determine precise values for the projections 
of the angular momentum. Using Eqs. 24.5.19, the x and y components of the angular 
momentum do not commute and cannot be determined simultaneously to arbitrary precision: 
 

 [L^ x, L
^

y] = L^ xL
^

y – L
^

yL
^

x = h-2 








x 

y

 – y 

x

 = iħ L^ z 
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The full set of commutation relationships is: 
 

 [L^ x, L
^

y] = iħL^ z   [L^ z, L
^

x] = iħL^ y   [L^ y, L
^

z] = iħL^ x  24.6.1 

 [L^ 2, L^ x] = 0   [L^ 2, L^ y] = 0   [L^ 2, L^ z] = 0  24.6.2 
 

The result is that only one component of the angular momentum can be determined 
simultaneously with arbitrary precision along with L^ 2. 
   The angular momentum vector can be drawn as a vector diagram. Consider first l = 1 and 
ml = +1. The length of the vector is given by the magnitude of the total angular momentum, Eq. 
24.5.34, and the projection on the z-axis is given by 24.5.37: 
 

 |L| = ħ l (l + 1) = |L| = ħ 1 (1 + 1) = 2 ħ = 1.414 ħ 
 Lz = ħml = +1 ħ         24.6.3 
 

The projection on the z-axis is less than the length of the vector, so the angular momentum 
vector must be tilted with respect to the z-axis. The angle is given by cos-1(1/ 2) = 45. A single 
observation for each of ml = –1, 0, +1 is shown in Figure 24.6.1a. The angular momentum is 
quantized in space, by a fixed orientation with respect to the z-axis. However, the commutation 
relationships show that two projections of the angular momentum cannot be determined 
simultaneously with arbitrary precision, Eq. 24.6.1. Only L^ 2 and one of the projections can be 
determined precisely simultaneously, Eq. 24.6.2. If L2 and Lz are known precisely from the 
quantum numbers l and ml , then the projections on the x- and y-axes must be uncertain. As a 
consequence repeated observations have different projections on the x- and y-axes and <L^ x> = 
<L^ y> = 0. The subsequent angular momentum vectors lie on a cone with fixed height, ħm l., 
Figure 24.6.1b. 
 
 
 
 
 
 
 
 
 
 (a).     (b).    (c). 
 

Figure 24.6.1: (a). Angular momentum vector diagram for l = 1, for single observations. 
(b). Only the magnitude and the z-axis projection can be determined precisely, so repeated 
observations lie on precession cones with fixed projections on the z-axis. (c). Precession is 
the classical analogy for the x- and y-projection uncertainty. 

 
 
   The classical analogy to the uncertainty in the x- and y- directions is precession. A spinning 
gyroscope that is tilted with respect to the z-axis, as defined by the gravitational field, precesses 
about the z-axis. Electron and nuclear precession are a useful model for understanding magnetic 
resonance spectroscopy. 
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24.7  Ladder Operators Simplify Finding Quantum States 
 

   Solving the harmonic oscillator and rigid rotor Schrödinger equations is a bit complicated. We 
stated above, without proof, that the energy of the harmonic oscillator is E = ho( + ½), with 
the quantum number increasing in unit steps. We also stated that the quantum number for the z-
axis projection of the angular momentum, ml , ranges from –l to +l in unit steps. The restriction of 
unit changes in ml determines the degeneracy of a given l state. In this section, we derive these 
relationships. Ladder operators simplify the process. A ladder operator has the property: 
 

 [A^ ,A^ ] = k A^           24.7.1 
 

where A^  is general operator, k a constant, and A^  is either a raising operator, A^ +, or a lowering 
operator, A^ –. Consider an eigenfunction of the operator A^ : 
 

 A^   =            24.7.2 
 

Because A^  and A^  don’t commute,  cannot be an eigenfunction of A^ . Let the result of the 
action of A^  on  give the new function : 
 

 A^              24.7.3 
 

However, the new function is still an eigenfunction of A^ . To prove that the new function  is an 
eigenfunction of A^ , let A^  act on  and then use the definition of  from Eq. 24.7.3: 
 

 A^   = A^ A^           24.7.4 
 

The commutator, Eq. 24.7.1, can be expanded to solve for A^ A^ , giving: 
 

 [A^ ,A^ ] = A^ A^  – A^ A^  = kA^   or A^ A^  = A^ A^  + kA^    24.7.5 
 

Substituting this last result into Eq. 24.7.4 gives: 
 

 A^   = A^ A^   + kA^          24.7.6 
 

However, using the fact that  is an eigenfunction of A^  from Eq. 24.7.2 gives: 
 

 A^   = A^   + kA^   = ( + k) A^   = ( + k)     24.7.7 
 

where the last substitution uses the definition of  from Eq. 24.7.3. The last expression shows 
that the new function is an eigenfunction of A^  with eigenvalue ( + k). In many applications, the 
operator A^  is the Hamiltonian, H^ . Then if k is positive, the new function A^ +  is the eigen-
function with the next higher energy. If k is negative, A^ –  is the eigenfunction with the next 
lower energy. A^ + raises  to the next highest energy level and A^ – lowers  to the next lower 
energy level. Repeated application of A^ + generates a ladder of quantum states; A^ + moves up a 
rung of the ladder and A^ – moves down a rung. However, the lowering operator acting on the 
lowest energy state gives zero: for example for the harmonic oscillator A^ – o = 0, since there is 
no state with lower energy. The harmonic oscillator is a good example. 
 
Harmonic Oscillator Excited States Can be Generated Using Ladder Operators:   The harmonic 
oscillator Hamiltonian in dimensionless form is given by Eq. 24.3.6. This Hamiltonian can be 
factored into two terms using the relationship: 
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 



y + 

d 

dy 



y – 

d 

dy  = y2 – y 
d 
dy + 

d 
dy y – 

d2 
dy2 = y2 – 

d2 
dy2 + 



d

dy ,y    24.7.8 
 

The commutator is [d/dy, y] = 1. Solving for the harmonic oscillator Hamiltonian gives: 
 

 H^  = – 
d2 
dy2 + y2 = 



y + 

d 

dy 



y – 

d 

dy  –1       24.7.9 
 

Substitution of this last equation into the Schrödinger equation for the Harmonic oscillator, Eq. 
24.3.6, gives: 
 

 



y + 

d 

dy 



y – 

d 

dy   = ( + 1)        24.7.10 
 

The power of this relationship is that the Hamiltonian factors into the product of a lowering and 
raising operator: 
 

 H^  – = 



y + 

d 

dy         (lowering) 24.7.11 
 

 H^  + = 



y – 

d 

dy         (raising) 24.7.12 
 

We can interpret Eq. 24.7.10 in the following way. Starting with , H^  + moves up one energy 
level and then H^  – moves back down to give the original wave function. 
 
 
              

Example 24.7.1: Commutator for H^  – and H^  + 
Find the commutator [H^  –,H^  +]. 
 
 
Answer:  Using Eqs. 24.7.11 and 24.7.12, the commutator expands to give: 
 

 [H^  –,H^  +] = 



y + 

d 

dy 



y – 

d 

dy  – 



y – 

d 

dy 



y + 

d 

dy  

     = y2 – y 
d 
dy + 

d 
dy y – 

d2 
dy2 – y2 – y 

d 
dy + 

d 
dy y + 

d2 
dy2 

 

Canceling terms and using [d/dy, y] = 1 gives; 
 

 [H^  –,H^  +] = 2 



d 

dy y – y 
d 
dy  = 2 



d

dy ,y  = 2      24.7.13 
 
              

Example 24.7.2: Raising Operator for the Harmonic Oscillator 
Show that the operator defined in Eq. 24.7.12 is a raising operator. 
 
 
Answer:  We need to show that [A^ ,A^ +] = k A^ +, Eq. 24.7.1. The harmonic oscillator Hamiltonian 
can be written in terms of the lowering and raising operators by substituting Eqs. 24.7.11 and 
24.7.12 into Eq. 24.7.9 to give: 
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 H^  = H^  –H^  + – 1          24.7.14 
 

The commutator is then: 
 

 [H^ ,H^  +] = (H^  –H^  + – 1) H^  + – H^  +(H^  –H^  + – 1) 
   = H^  –H^  + H^  +– H^  + – H^  +H^  –H^  + + H^  + 
      = (H^  –H^  + – H^  +H^  –) H^  + = [H^  –,H^  +] H^  + 
 

Substituting for the commutator from Eq. 24.7.13 gives: 
 

 [H^ ,H^  +] = 2 H^  +         24.7.15 
 

The final result corresponds to k = 2, so H^  + is a raising operator. A good practice problem is to 
show that H^  – is a lowering operator. 
 
              
 
 

   A ladder of states is generated by repeated action of H^  + on the ground state wave function, o. 
The excited states are given by  1 = H^  + o,  2 = H^  + 1, …. Using Eq. 24.7.7 with the 
Hamiltonian operator and k = 2 from Eq. 24.7.15, the eigenvalues generate the series: 
 

 H^  1 = (o + k) 1 = (o + 2) 1 
 H^  2 = (1 + k) 2 = (o + 2 + 2) 2 

 H^  3 = (2 + k) 3 = (o + 2 + 2 + 2) 3   …. 
 H^   = (-1 + k)  = (o + 2)        24.7.16 
 

The eigenvalues,  = (o + 2), are for the dimensionless Hamiltonian. In dimensionless units, 
the ground state eigenvalue is o = 1. In joules the ground state energy is Eo = ½ ho. Working 
back to the original units by using o = 1, Eqs. 24.3.3 and Eo = ½ ho gives: 
 

 E = Eo  = ½ ho (1 + 2) = ho( + ½)      24.7.17 
 

which proves that the harmonic oscillator quantum number, , increases in unit steps. The 
advantage of using ladder operators is that we didn’t need to solve the full explicit differential 
equation. Ladder operators can also be used to generate the explicit wave functions. 
 
 
              

Exercise 24.7.3: Generating the Hermite polynomials Using Ladder Operators 
The ground state wave function for the harmonic oscillator in unnormalized, dimensionless form 
is o = e–y2/2, Eq. 24.2.18. Use the harmonic oscillator raising operator to find the first two 
excited states of the harmonic oscillator. 
 
 
Answer:  The first excited state is given using Eq. 24.7.12: 
 

 1 = H^  + o = 



y – 

d 

dy  e–y2/2 = y e–y2/2 – (–y) e–y2/2 = 2y e–y2/2 
 

Comparison with Table 24.1.1 with  = 1 shows the same result, H1 = 2y. For the next excited 
state: 
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 2 = H^  + 1 = 



y – 

d 

dy  2y e–y2/2 = 2y2 e–y2/2 – 2 
d 

dy y e–y2/2 
 

Using the product rule for the last term results in: 
 

 2 = H^  + 1 = 



y – 

d 

dy  2y e–y2/2 = 2y2 e–y2/2 – 2y(–y) e–y2/2 – 2 e–y2/2 

      = (4y2 – 2) e–y2/2 
 

Comparison with Table 24.1.1 with  = 2 shows the same result, H1 = 4y2 – 2. 
 
              

 
 
For Angular Momentum, the Values for ml can be Determined Using Ladder Operators:  The 
lowering and raising operators for the z-axis projection of the angular momentum are given by: 
 

 L^ – = L^ x – i L^ y  (lowering) and  L^ + = L^ x + i L^ y  (raising) 24.7.18 
 

The commutation relationships are: 
 

 [L^ z, L^ –] = –h-L^ –  [L^ z, L^ +] = h-L^ +      24.7.19 

 [L^ +, L^ –] = 2h-L^ z         24.7.20 
 [L^ 2,L^ ±] = 0          24.7.21 
 

Eqs. 24.7.19 show that L^ – is a lowering operator for L^ z with k = –h- and L^ + is a raising operator 
with k = h-. Eq. 24.7.21 shows that the raising and lowering operators don’t change the total 
angular momentum; l remains constant. The wave functions are eigenfunctions of L^ z with 
quantum number ml: 
 

 L^ z ml = mlh- ml         24.7.22 
 

For a given ml value, we can find the adjacent state of higher quantum number using the raising 
operator: 
 

 L^ + ml            24.7.23 
 

What is the eigenvalue for this new state? The z-axis projection eigenvalue is given by L^ z acting 
on the new wave function: 
 

 L^ z  = L^ z L^ + ml         24.7.24 
 

Expanding the commutator in Eq. 24.7.19, allows us to solve for L^ zL^ + to give: 
 

 [L^ z, L^ +] = L^ zL^ + – L^ +L^ z = h-L^ + 

 L^ zL^ + = L^ +L^ z + h-L^ +         24.7.25 
 

Substituting this last relationship into Eq. 24.7.24 gives: 
 

 L^ z  = (L^ +L^ z + h-L^ +)ml = L^ +L^ zml + h-L^ + ml     24.7.26 
 



89 
 

However, using the fact that ml is an eigenfunction of L^ z from Eq. 24.7.22, in the first term of 
the last equation, gives: 
 

 L^ z  = L^ + mlh- ml + h-L^ + ml = (mlh- + h-)L^ + ml = (ml + 1)h-   24.7.27 
 

The new wave function has quantum number (ml + 1), proving that ml increases in unit steps. 
Since the projection of the angular momentum on the z-axis cannot exceed the total angular 
momentum, ml must have a minimum and maximum value. For half-integer l, typical series 
include examples (-½,+½) and (-3/2, -½, +½, +3/2), with unit steps. For integer l, typical series 
include examples (-1, 0,+1) and (-2, -1, 0, +1, +2), again with unit steps. In either case the 
degeneracy is 2l + 1. 
   The use of ladder operators allows us to generate the spectrum of the quantum solutions 
without explicitly needing to use Hermite polynomials or spherical harmonics. Reference to Eqs. 
24.7.1 and 24.7.7 shows that commutation relationships allow us to derive the landscape of 
solutions to the Schrödinger equation, in addition to determining uncertainty relationships. 
 
24.8 Summary – Looking Ahead 
 

   The ground state wave function of the harmonic oscillator approaches zero gradually for large 
extension, tunneling beyond the classical turning points. The excited states are a product of a 
Hermite polynomial with the asymptotic form of the ground state. The order of the Hermite 
polynomial is the vibrational quantum number and is equal to the number of nodes in the wave 
function. The Hermite polynomial based harmonic oscillator wave functions are a complete 
orthonormal set that describe the vibrational states of a molecule. In molecules larger than 
diatomics, each normal mode can be modeled as an independent harmonic oscillator. The 
harmonic oscillator has a zero point energy. At absolute zero K, all normal modes have 
vibrational energy. 
   Spherical harmonics describe how waves “wrap” around the origin for spherical motion. 
Spherical harmonics are the normal modes of a sphere. Geologists and atmospheric scientists 
decompose the motions of the earth, the oceans, and the atmosphere into spherical harmonic 
components to discuss the interactions of the geosphere and the atmosphere. Acoustic engineers 
use spherical harmonics to discuss sound patterns. The spherical harmonics are also a complete 
orthonormal set of wave functions that describe angular momentum states. Linear motion can be 
decomposed into a superposition of Hermite polynomial based vibrational states, and angular 
motion can be decomposed into a superposition of spherical harmonics. Angular momentum has 
quantized energies and quantized spatial orientations. Rotation has no zero point energy; at 
absolute zero K all rotational energy is zero. The theory of angular momentum is universally 
applicable to spinning molecules, electrons spinning around the nucleus of atoms, and the 
intrinsic spin of elementary particles and atomic nuclei. 
   In the next two chapters we use the theory of angular momentum to determine the electronic 
states for atoms and molecules. In subsequent chapters we use the rigid rotor and harmonic 
oscillator as models for molecular rotation and vibration spectroscopy. 
   At this point we should take a moment to reflect on the amazing differences between the 
macroscopic and microscopic worlds. The macroscopic world is chaotic and unsymmetrical. The 
macroscopic world presents a seemingly endless array of variety and complexity. The 
microscopic world of individual molecules, on the other hand, is very orderly and described 
remarkably simply. The motion of molecules is governed by a few quantum numbers, which are 
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applicable for all types of molecules, no matter how complex. The quantum numbers are for 
translation (nx, ny¸and nz), for rotation (J and mJ), and vibration ( for each normal mode). The 
wave functions for vibration and rotation have simple symmetries and shapes, which are 
governed by the number of nodes. One of the most interesting questions is how the amazing 
simplicity of the microscopic world of molecules translates into the rich and varied complexity 
that we experience in our lives. 
 
 
24.8 Addendum: Integrals in Multiple Dimensions and Spherical Polar Coordinates 
 

The volume of a rectangular box of side lengths a, b, and c can be determined using the integral 
over x, y, and z: 
 

 V = 0

a
 0

b
 0

c
 dx dy dz        24.8.1 

 

A visual interpretation of this triple integral is that we are adding the infinitesimal volumes, 
dx dy dz, within the box, Figure 24.8.1a. The integrand is “1”, which is independent of x, y, and 
z. The triple integral then factors into the product of the three one-dimensional integrals: 
 

 V = 0

a
 dx 0

b
 dy 0

c
 dz = abc        24.8.2 

 

The volume is then just the product of the side lengths as expected. 
 
 
 
 
 
 
 
 
 
 
 (a).       (b). 
 

Figure 24.8.1: (a). The sum of the infinitesimal volumes, dV = dx dy dz, inside the box gives 
the total volume. (b). The area of a thin annular region from r to r + dr. 

 
 
The infinitesimal, dx dy dz, is the volume of an infinitesimal box, giving the volume element in 
three Cartesian dimensions as: 
 

 d = dx dy dz          24.8.3 
 
 
              

Example 24.8.1: 3D-Integrals in Cartesian Coordinates 

Normalize the 3D-particle in a box wave function:  (x,y,z) = N sin 
nxx

a  sin 
nyy

b  sin 
nzz

c  

 

x 

y 

z 

a 
b 

c 

dV = dx dy dz 

x 
y 

z 

r dr 

dV = 4r2dr 
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Answer:  The normalization integral is: 
 

 0

a
 0

b
 0

c
 N2 sin2 

nxx
a  sin2 

nyy
b  sin2 

nzz
c    dx dy dz   =  1 

 

       2      volume element, d 
 

The integral factors into three one-dimensional terms: 
 

 N2
0

a
 sin2 

nxx
a  dx  0

b
 sin2 

nyy
b  dy  0

c
 sin2 

nzz
c  dz = 1 

 

The one-dimensional integrals are given by Eq. 23.4.15: 
 

 N2 


a

2  


b

2  


c

2  = N2 





abc

8  = 1  or  N = 



8

abc

½
 

 

Luckily, for our purposes in this course, the integrals almost always factor into three one-
dimensional terms. 
 
              

 
 
   The volume element in spherical polar coordinates is given by Eq. 24.5.15. Integrals using 
spherical polar coordinates simplify problems in spherical systems. For example, the total 
surface area of a sphere of radius ro is the integral over all  and  at fixed radius. The integrand 
factors into products of terms of only one variable, so the integral factors into the product of two 
one-dimensional integrals.: 
 

 


0


 


0

2
  ro

2 sin  d d = ro
2 


0


 sin  d 


0

2
 d =  4 ro

2     (ro = constant) 24.8.4 
 

The integrals over  and  are given by Eq. 24.5.16. The total solid angle in a sphere is 4 
radians, Eq. 24.5.17. The volume of a sphere of radius ro is given by the integral over r from 0 to 
ro and over all angles: 
 

 V = 0

ro
 


0


 


0

2
 r2 sin  dr d d = 0

ro
 r2 dr 


0


 sin  d 


0

2
 d = 

4
3 ro

3  24.8.5 
 

The volume of a sphere is difficult to find without spherical polar coordinates. The volume of a 
thin annular region of a sphere from r to r + dr is given by the integral over all angles: 
 

 dV = 


0


 


0

2
 r2 sin  dr d d = 4r2 dr      24.8.6 

 

which is the surface area multiplied by the thickness of the “shell.” This annular area, which is 
like a thin “onion skin,” will be used in finding the size of atoms, Figure 24.8.1b. 
 
 
              

Example 24.8.3: 3D-Integrals in Spherical Polar Coordinates 
Normalize the ground state of the hydrogen atom, which is given by:  (r) = N e–Zr/ao. 
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Answer:  The normalization integral is given by: 
 

 


0


 


0


 


0

2
  N2 e-2Zr/ao   r2 sin  dr d d  = 1 

 

   2 volume element, d 
 

Notice that the volume element d = r2 sin  dr d d is substituted as a “package”, you need the 
full volume element. Once again the integrand factors into a product of one-dimensional terms: 
 

 N2



0


 e-2Zr/ao r2 dr 


0


 sin  d 


0

2
 d = 1 

 

The angular integrals give 4:     4 N2



0


 e–2Zr/ao r2 dr = 1 

Integral tables list 


0


 xn e–ax dx = 

n!
an+1      giving the normalization integral as: 

 4 N2 2
(2Z/ao)3  = 1   or    N = 

1


 



Z

ao

3/2

 

 

as given in Eq. 23.3.16. 
              

 
 

Chapter Summary 
 

1.  The center of mass of a diatomic molecule is determined from m1r1 = m2r2, where r1 is the 
distance from mass m1 to the center of mass, r2 is the distance from mass m2 to the center of 
mass, and the bond length is r = r1 + r2. 

2.  The distances to the center of mass are mass weighted fractions of the full bond length. 

 r1 = 
m2

m1 + m2
 r  and  r2 = 

m1

m1 + m2
 r 

3.  The reduced mass of the diatomic molecule is:    
m1m2

m1 + m2
 

4.  The kinetic energy of a diatomic molecule is:  Ek = ½  



dx

dt
2
 

5.  The fundamental vibration frequency for a diatomic harmonic oscillator is: 

 o = 
1

2π k/  or in radians   o = 2πo   o = k/ 

6.  The potential energy operator and Schrödiner equation for the harmonic oscillator are: 

 V
^

(x) = ½ kx2   – 
ħ2

2m 
d2

dx2 + ½ kx2  = E 

7.  The ground state of the harmonic oscillator is a Gaussian function: o(x) = No e–½2x2
, with: 

 2 = 
mk
ħ  = 

m
ħ  k/m = 

mo

ħ   and normalization   No = 



2

π

¼
 

8.  The energy of the ground state is given by:  Eo = ħ22/2m = ½ ħo = ½ ho 



93 
 

9.  The energy levels for the harmonic oscillator with quantum number  = 0, 1, 2, …,  are: 

 E = ho( + ½) 

10.  The harmonic oscillator energy states are equally spaced:  E = E+1 – E = ho 

11.  The bond force constant with ~o in wave numbers is:  k = 42~2
oc2 

12.  Excited state wave functions are built from the ground state wave function by multiplying 
the ground state wave function by a polynomial, (x) = (polynomial) o(x). The 
polynomial is chosen to have the number of zeros equal to the number of nodes. 

13.  With y = x, the harmonic oscillator wave functions are (y) = NH(y) e–½ y2
, where 

H(y) are the Hermite polynomials of order  = number of nodes. The normalization is: 

 N = 








π½ 2 !

½
 

14.  The H(y) are the solutions of the Hermite equation:  
d2H

dy2  – 2y 
dH

dy  + 2 H = 0 

15.  The H(y) are generated using a recursion relationship:  H+1 = 2y H – 2 H-1 

16.  For orthonormality:  -


 H' e–½ y2

 H e–½ y2

 dy = π½ 2 !  if '      and = 0  if ' = . 

17.  The dimensionless form of the harmonic oscillator Schrödinger equation with y = x is: 

 – 
d2 
dy2  + y2  =    with    = 

E

Eo
 

18.  The angular momentum for rotation is a plane is L = I and the kinetic energy is Ek = L2/2I. 
The angular velocity is  = d/dt. The moment of inertia for a single mass at distance r from 
the origin is I = mr2, for a diatomic molecule is I = r2, and for a linear molecule I =  mi r2

i. 

19.  The rigid rotor approximation assumes that the bond lengths and angles in the molecule are 
fixed and independent of the rotational state of the molecule. 

20.  The Schrödinger equation for rotation in a plane is:  – 
ħ2

2I 





2

2  = Emlml ml = a eiml 

21.  The magnetic quantum number varies in unit steps and gives the number of angular nodes 
that include the z-axis:  ml = 0, 1, 2, 3, … 

22.  ml is also an eigenfunction of the z-component of the angular momentum: 

 L^ z ml = 
ħ
i  
ml

  = ħmlml  with Lz = ħml 

23.  The spherical polar coordinate system is given by the transformations with 0  r  , 
0    , 0    2, and r = x2 + y2 + z2: 

 x = r sin  cos  
 y = r sin  sin  
 z = r cos  

24.  The volume element in spherical polar coordinates is: d = r2sin  dr d d 

25.  The operators for the components of the total angular momentum are: 
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 L^ x = (ŷ p̂z – ẑ p̂y) = 
ħ
i  








y 

z

 – z 

y

   L^ x = 
ħ
i  








– sin  
 
 + cot  cos  

 
  

 L^ y = (ẑ p̂x – x̂ p̂z) = 
h-

i  








z 

x

 – x 

z

   L^ y = 
h-

i  








cos  
 
 – cot  sin  

 
  

 L^ z = (x̂ p̂y – x̂ p̂x) = 
ħ
i  








x 

y

 – y 

x

   L^ z = 
ħ
i  






 

  

26.  The square of the total angular momentum operator is:   L^ 2 = L^ 2
x + L^ 2

y + L^ 2
z = – ħ22    with: 

 2 = 
1

sin2 






2

2  + 




1

sin  






 

 sin 
 
    (curvature in   and ) 

27.  The 3-dimensional Schrödinger equation in spherical polar coordinates is: 

 – 
ħ2

2m 2  + V^ (x,y,z) = E   with the curvature:   2 = 
1
r 






2

r2  r + 


1

r2  2 

28.  The eigenfunctions of the total angular momentum squared are the spherical harmonics: 

 L^ 2 Yl,ml
 = L2 Yl,ml

    – ħ2 2Yl,ml
 = ħ2 l (l + 1) Yl,ml

 

29. The square of the total angular momentum for Yl,ml
 is L2 = ħ2 l (l + 1)  with magnitude: 

 |L| = ħ l (l + 1) 

30.  The rigid rotor corresponds to motion in  and  on the surface of a sphere, with fixed r and 

no potential energy: – 
ħ2

2I 
2 Yl,ml

  = El Yl,ml
   and     El = 

ħ2

2I l (l + 1) 

31.  The Yl,ml
 are also eigenfunctions of the z-axis projection of the angular momentum: 

 L^ z Yl,ml
 = 

ħ
i  
Yl,ml

  = ħml Yl,ml
  Lz = ħml 

32.  The total number of angular nodes is l. The number of angular nodes that include the z-axis 
is ml. The number of angular nodes that include the z-axis cannot exceed the total number of 
nodes, so the restrictions on the quantum numbers are: l = 0, 1, 2, …  and   ml = 0, 1, …, l 

33.  The degeneracy is: gl = 2 l + 1 

34.  For rotating linear molecule: 

 EJ = 
ħ2

2I J(J + 1) J = 0, 1, 2, … and   mJ = 0, 1, …, J  gJ = 2J + 1 

35.  In wave numbers, the energy levels are called the rotational term values, F
~

J, where B
~

 is the 
rotational constant in wave numbers: 

 F
~

J = 
EJ

hc = B
~

 J(J + 1)   with   B
~

 = 
ħ

4Ic
 

36.  In joules, EJ = B
~

hc J (J + 1) and the energy difference between adjacent energy levels is: 

       E = EJ+1 – EJ = B
~

hc[(J +1)(J +1 + 1) – J(J + 1)] = 2B
~

hc(J + 1)       with J for the lower level 

37.  Angular momentum for elementary particles is called intrinsic angular momentum or spin. 
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38.  For a spin ½ particle the wave functions are  for spin up and  for spin down with angular 
momentum magnitude: |S| = ħ s(s + 1)

––––––
 = ħ ½(½ + 1)

––––––––
 and ms = ±½: 

 S^ 2  = ħ2 s(s+1)   Sz  = + ½ ħ  
 S^ 2  = ħ2 s(s+1)   Sz  = – ½ ħ  

39.  The spin quantum numbers of the electron, proton and neutron are s = ½. 

40.  For photons, s = 1. However, since a photon travels at the speed of light, ms = -1, +1 only. 

41.  The x and y components of the angular momentum cannot be determined simultaneously to 
arbitrary precision, because L^ x and L^ y do not commute. The commutation relationships are: 

 [L^ x, L
^

y] = iħ L^ z   [L^ z, L
^

x] = iħ L^ y  [L^ y, L
^

z] = iħL^ x 

 [L^ 2, L^ x] = 0   [L^ 2, L^ y] = 0   [L^ 2, L^ z] = 0 

42.  Angular momentum vectors are drawn as vector diagrams. The projection on the z-axis is 
less than the length, |L| = ħ l (l + 1), so the vector must be tilted with respect to the z-axis. 

43.  Angular momentum is quantized in space, by a fixed orientation with respect to the z-axis. 
The restricted value for the orientation is called spatial quantization. 

44.  Only L^ 2 and one of the projections can be determined precisely simultaneously. If L2 and Lz 
are known precisely from the quantum numbers l and ml , then repeated observations have 

different projections on the x- and y-axes and <L^ x> = <L^ y> = 0. The angular momentum 
vectors lie on a precession cone with fixed height, Lz = ħml. 

45.  A ladder operator has the property: [A^ ,A^ ] = k A^  , where A^  is general operator, k is a 
constant, and A^  is either a raising operator, A^ + , or a lowering operator, A^ –. 

46.  Because A^  and A^  don’t commute,  cannot be an eigenfunction of A^ . 

47.  If k is positive, A^ +  is the eigenfunction with the next higher eigenvalue. If k is negative, 
A^ –  is the eigenfunction with the next lower eigenvalue:  A^ A^   = ( + k) A^   

48.  The lowering and raising operators for the harmonic oscillator are: 

 H^  – = 



y + 

d 

dy   H^  + = 



y – 

d 

dy  

 with    [H^  –,H^  +] = 2  [H^ ,H^  +] = 2 H^  + [H^ ,H^  –] = –2 H^  – 

49.  The lowering and raising operators for the z-axis projection of the angular momentum are: 
L^ – = L^ x – i L^ y  and  L^ + = L^ x + i L^ y. The commutation relationships are: 

 [L^ z, L^ –] = – ħL^ – [L^ z, L^ +] = ħL^ +  [L^ +, L^ –] = 2ħL^ z  [L^ 2,L^ ±] = 0 

50.  The z-projection angular momentum raising and lowering operators don’t change the total 
angular momentum; l remains constant. 
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Problems: The Quantum Mechanics of Rotation and Vibration 
 

1.  (a). How many nodes are in the  = 3 wave function for the harmonic oscillator? (b). How 
many angular nodes are in the l = 3, ml = 2 wave function for the rigid rotor? (c). How many of 
the angular nodes for the l = 3, ml = 2 rigid rotor include the z-axis? (d). Why are the nodes 
important? 
 

2.  Multiply the harmonic oscillator ground state wave function, Figure P24.1a, by the 
polynomial, Figure P24.1b, to give the excited state wave function. Sketch the excited state wave 
function. What is the quantum number for this wave function? 
 

     
 (a).       (b). 

 

Figure P24.1: (a) The ground state for the harmonic oscillator. (b). The polynomial used to 
generate an excited state of the harmonic oscillator. The polynomial is a Hermite polynomial. 

 
3.  (a).  The fundamental vibration frequency for 1H79Br is 2649.67 cm-1. Calculate the force 
constant. Calculate the energy for the transition in kJ mol-1. (b). The force constant for the 
vibration in 1H35Cl is 515.90 N m-1. Calculate the vibration frequency in cm-1. Calculate the 
energy for the transition in kJ mol-1. (c). Which has a stronger bond, and why? 
 

4.  Normalize the wave function for the ground state of the harmonic oscillator, o = N e–½ 2x2
 

 

5.  Find the expectation values for the position and momentum of the ground state of the 
harmonic oscillator. 
 

6.  Find the expectation value of the potential energy for the ground state of the harmonic 
oscillator. 
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7.  Find the expectation value of the kinetic energy for the ground state of the harmonic 
oscillator. 
 

8.  Show that the ground state of the harmonic oscillator is consistent with the Heisenberg 
uncertainty principle. [Hint: Calculate the standard deviations of the position and momentum. 
However, you don’t need to prove that <x> = 0 and <p> = 0, which are given by symmetry.] 
 

9.  Use the recursion relationship for Hermite polynomials to generate the first four excited state 
wave functions for the harmonic oscillator (H1 to H4). 
 

10.  Confirm that wavefunctions for a 2D-rigid rotor (particle-in-a-ring) are orthogonal. [Hint: 
the wave functions are () = a ei ml  with different ml.] 
 

11.  Show that the wave function () = a eiml  is an eigenfunction of the Hamiltonian for the 
rigid-rotor in the x-y plane, where H^  = – ħ2/2I (d2/d2). What is the energy for this wavefunction? 
 

12.  Show that = cos  is an eigenfunction of the square of the total angular momentum 
operator, where: (total angular momentum operator)2 = L̂2 = – ħ2 2. 
 

13.  Normalize Y1,0 = N cos . 
 

14.  Show that the rigid-rotor wave functions Y0,0 and Y1,0 are orthogonal. 
 

15.  Show that the rigid-rotor wave functions Y1,0 and Y1,1 are orthogonal. 
 

16.  Give the magnitude of the total angular momentum and the z-axis projection of the angular 
momentum for an l = 2, ml = 1 state of a rigid rotor. Give your answers in multiples of h-. 
 

17.  Give the transition energy, in wave numbers, for the J = 0 to J = 1 transition in carbon 
monoxide. Find the transition frequency in GHz. Use the most abundant isotopes, 12C16O, with 
the bond length 1.1282 Å. 
 

18.  Show that [L^ x, L
^

y] = iħ L^ z. This problem is best done using the operators expressed in 
Cartesian coordinates. 
 

19.  Show that [L^ 2,L^ z] = 0. This problem is best done using the operators expressed in spherical 
polar coordinates. 
 

20.  Why is [L^ 2,L^ z] = 0 significant? 
 

21.  Draw the angular momentum vector diagrams for l = 2 angular momentum states. 
 

22.  Draw the angular momentum vector diagram for a single electron or proton, s = ½. 
 

23.  The spins of the protons and neutrons combine to give the overall spin of a nucleus. The 
details depend on the quantum structure of the nucleus and can result in half-integer or integer 
overall spin. The nucleus of 35Cl has a spin of I = 3/2. Give the possible values for the quantum 
number for the z-axis projection of the angular momentum. 
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24.  The nucleus of 105Pd has a spin of I = 5/2. Give the possible values for the quantum number 
for the z-axis projection of the angular momentum. (The NMR resonance frequency for 105Pd is 
22.9 MHz on a 500 MHz NMR.) 
 

25.  Show that the operator H^  – = 



y + 

d 

dy  is a lowering operator for the z-axis projection angular 

momentum quantum states. 
 

26.  Use the raising operator for the harmonic oscillator to find 3 from 2 = (4y2 – 2) e–y2/2. 
 

27.  The lowering operator acting on the lowest energy state gives zero. For the harmonic 
oscillator H^  – o = 0, since there is no state with lower energy. Integrate H^  – o = 0 to show that 
the un-normalized ground state wave function of the harmonic oscillator is o = e– y2/2. 
 

28.  Show that the z-projection angular momentum raising operator acting on Y1,-1 gives Y1,0. 
Use the un-normalized form of the wave functions, Y1,-1 = sin  e-i and Y1,0 = cos . Do this 
problem in the following steps. 

(a). Show that:   L^ + Y1,-1 = (L^ x + i L^ y) sin  e-i 
(b). Using cot  = cos /sin , show that:      L^ x sin  e-i = ħ cos  (cos  + i sin ) e-i 
(c). Using the Euler Identity, ei = ( )cos  + i sin  , show that:   L^ x sin  e-i = ħ cos  

(d). Show that:   i L^ y sin  e-i = h- cos  (cos  + i sin ) e-i = ħ cos  
(e). Finally show that:   L^ + Y1,-1 = (L^ x + i L^ y) sin  e-i = 2ħ cos  = 2ħ Y1,0 

 

29.  Show that L^ –L^ + = L^ 2
x + L^ 2

y + i[L^ x, L
^

y] = L^ 2 – L^ 2
z – ħL^ z. (This expression is used in the next 

problem to find the eigenvalue for the total angular momentum.) 
 

30.  Given L^ zml = ml ħ ml , prove that L^ 2 ml = ħ2 l(l + 1) ml, using the following steps. 
(a).  Since the z-axis projection of the angular momentum can’t be larger than the total angular 
momentum, there must be a maximum value of m l for a given total angular momentum. Let 
that value be mmax. The result for the raising operator acting on mmax is zero, since there is no 
state with higher ml: 
 

 L^ + mmax = 0 
 

The subsequent application of the lowering operator must also give zero: 
 

 L^ –L^ + mmax = 0 
 

Given that L^ –L^ + = L^ 2 – L^ 2
z – ħ L^ z, which was proved in the last problem, solve for L^ 2 mmax. 

(b).  Compare with the general eigenvalue equation L^ 2 mmax = L2 mmax  to find the eigenvalue 
L2 and the magnitude of the angular momentum |L|, in terms of mmax. 
(c).  Notice that the total angular momentum is not a function of m l , but only the maximum 
value mmax. In other words, the total angular momentum is completely determined by mmax. 
Show that renaming mmax = l gives the final result: 

 L^ 2 ml = ħ2 l(l + 1) ml 


