Chapter 23 Foundations of Quantum Mechanics

Chapter 23: Foundations of Quantum Mechanics Problems

1. A typical mid-infrared spectrophotometer for studying molecular vibrations has a
wavenumber range from 4000. cm™! to 400. cm™. (NaCl cell windows have a 460 cm™ long-
wavelength cutoff and KBr has a 345 cm™! cutoff.) Calculate the frequency and energy range for
the mid-IR. Express the energy units in J, eV, and kJ mol ™.

Answer: The conversions are given by vA = ¢ and v = 1/A with the energy as:

E =hv =hc/A =hcv inJ
E =hv/e = hcv/e ineV 1 eV =96.485 kJ mol! = 8065.5 cm™
E =Na hv (1 kJ/10007J) in kJ mol! 1 ecm! =11.962 J mol™

Wavenumbers can be converted into m™! to match the units of ¢c=2.9979x10% m s’
vV =4000 cm™ corresponds to v =4000 cm™(100 cm/1 m) = 4.000x10° m™:
v=c/A=2.998x10* m s (4.000x10° m™) = 1.199x10'* s™!

Alternatively, the wavenumber may be kept in cm™ and then ¢ =2.9979x10'" cm s7!:

E =hcV =6.6261x107 J 5 (2.9979x10' cm s7)(4000 cm™") = 7.946x102° J
E = hcv/e = 7.946x10° J/1.6022x107” C = 0.4959 eV
E = Na hv (1 kJ/1000J) = 6.0221x10* mol™'(7.946x10%" J )(1 kJ/1000J) = 47.85 kJ mol!

Alternatively, the conversion factors that are listed above may be used.
At 400. cm™! the values are just a factor of ten different:

v =c/A=2.998x10° m s (4.000x10* m™') = 1.20x10"* 5!
E =7.946x102' J = 0.0496 eV = 4.79 kJ mol!

These energies are not sufficient to break typical covalent bonds. However, if a sample absorbs
the infrared light, the energies give the heat effect for the sample.

2. Complete the following table. For the region, choose from radiowave, microwave, infrared,
visible, and ultraviolet.

A A A \% E E E v
(cm) (um) (nm) (sH ) (eV) (kJmol) (cm')  region
100 MHz
10 GHz microwave
1
10
1000
2
200
500
350
190

100,000




Answer: The conversions are given by vA = ¢ and vV = 1/A with:

E =hv =hc/A =hcVv
E =hv/e =hcV/e

E =Na hv (1 kJ/1000J)

inlJ
ineV

in kJ mol™!

The following spreadsheet was developed:

1 eV =96.485 kJ mol™ = 8065.5 cm’!
lecm™ =11.962 J mol™!

A (cm) A (um) A (nM) v (s E (J) E (eV) E (kJ/mol) v (cm™) region
299.79  3.00E+06  3.00E+09  1.00E+08 6.63E-26 4.14E-07 3.99E-05 0.0033 radiowave
2.9979 29979  3.00E+07  1.00E+10 6.63E-24 4.14E-05 3.99E-03 0.3336  microwave

1 10000 10000000  3.00E+10 1.99E-23 1.24E-04 1.20E-02 1 farIR
1.00E-03 10 10000  3.00E+13 1.99E-20 0.124 11.96 1000 mid-IR
1.00E-04 1 1000 3.00E+14 1.99E-19 1.240 119.63 10000 near-IR
6.20E-05 0.620 619.92  4.84E+14 3.20E-19 2.000 192.97 16131  red
5.98E-05 0.598 598.13 5.01E+14 3.32E-19 2.073 200.00 16719 red
5.00E-05 0.5 500 6.00E+14 3.97E-19 2.480 239.25 20000 blue-green
3.50E-05 0.35 350 8.57E+14 5.68E-19 3.542 341.79 28571 violet
1.90E-05 0.19 190 1.58E+15 1.05E-18 6.525 629.61 52632 UV
1.00E-05 0.1 100  3.00E+15 1.99E-18 12.398 1196.27 100000  vacuum-UV

The choices have the following correspondences:
100 MHz is a typical NMR frequency ('*C)

10 GHz is a typical frequency for microwave-rotational spectroscopy

1000 cm™ is a typical mid-infrared wavenumber (mid-IR range: 4000 cm™ — 400 cm™')

2 eV and 200 kJ mol™! are typical of enthalpies for chemical reactions

500 nm is blue-green visible light

350 nm is the cut-off for glass cuvettes; UV work requires quartz cuvettes

190 nm is the wavelength cut-off for typical UV-Visible spectrophotometers and the

approximate beginning of the vacuum UV range.

3. All else being equal, the wavelength of the light in a photoelectric effect experiment is halved.

Describe the effect on the photoelectron current and the kinetic energy of the photoelectrons.

Answer: From vA = ¢ and E = hv = hc/A, halving the wavelength doubles the frequency and
energy of the exciting light. The photoelectron current remains unchanged, because the number
of photons per second remains unchanged. The kinetic energy of the photoelectrons increases,

because the energy of the exciting light exceeds the work function by a greater amount:

E=hv=%mu>+®

0

0

cst.

4. Calculate the kinetic energy of a photoelectron emitted by sodium metal when light of
wavelength 400.0 nm is incident on it. The work function of sodium is 2.28 eV.
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Answer: The energy of the exciting light is:
E =hv =hc/A = 6.6261x1073* J 5(2.9979x10° m s7)/400.0x10” m = 4.966x10"° J
The Einstein photoelectric effect relationship with the work function in eV is:

E=Y%mu?+ell
4.966x10717 J =¥ mu? + 1.6022x107"° C(2.28 V)
Vv, mu?=1.31x101"°7]

or 26% of the excitation energy is released as kinetic energy of the photoelectrons. Alternatively,
the problem may be worked in electron-volts with 1 J=1C V:

E = hv/e = 4.966x107° J/1.6022x10"° C = 3.100 eV
and the photoelectric effect formula becomes:

3.100 eV ="%muv’>+2.28 eV and Y% muv>=3.100eV—-2.28eV=0.820¢eV

5. The work function for cesium metal is 2.10 eV. Cesium is used as a coating for photodetector
tubes in some older spectrophotometers. Calculate the long wavelength limit for photoelectron
production for a cesium coated phototube.

Answer: The plan is to note that the low wavelength cutoff corresponds to the minimum energy
necessary to eject a photoelectron from cesium.
The Einstein photoelectric effect relationship with the work function in eV is:

E=%mu?+el

With no kinetic energy, this last equation gives the minimum energy for photoelectron
production:

Emin = e[" = 1.6022x107" C(2.10 V) =3.365x107"" J
The corresponding wavelength using E = hc/A is:

L =hc/E =6.6261x1073*J 5(2.9979x10% m s71)/ 3.365x101° J
A =5.904x107 m = 590. nm

6. Rephrase the four experimental observations for the photoelectric effect assuming light is
only wave-like (not particle-like) and the electrons in atoms are harmonically bound.

Answer: Think of a harmonically bound electron as a pendulum. Energy is coupled to a pendulum from
a periodic excitation only if the frequency of the excitation matches the frequency of the pendulum. The
energy imparted to a pendulum is proportional to the (amplitude)? of the excitation and builds
gradually over time:



1. “Current flows only if light has greater than a minimum frequency” becomes:
1. Current flows only if light has a specific frequency.

2. “Current is finite and instantaneous even if the light intensity is small” becomes:
2. Current increases with time up to a steady-state.

3. “Kinetic energy of ejected electrons is not a function of the intensity” becomes:
3. Kinetic energy of ejected electrons increases with intensity.

4. “Current is proportional to intensity = (amplitude)?,” remains valid in the steady-state.

7. Electron microscopes can be used to determine the electron diffraction pattern of crystalline
materials, in a similar fashion to X-ray diffraction. (a). Calculate the de Broglie wavelength for
electrons that are accelerated to 10.0 keV. (b). Calculate the wavelength for 8.046 keV X-rays
from a Cu X-ray tube. The effective wavelength for the electrons or X-rays determines the
limiting spatial resolution for the diffraction study.

Answer: (a). The momentum is given from Ex = p?/2m by rearrangement and
1J=1VC=1kgm?s?

p =+2mE = [2(9.109x107! kg)(10,000 V)(1.602x10" C)]”* = 5.402x10* kg m s™!
The de Broglie relationship, p = h/A, gives the effective wavelength:
AL =h/p=06.6261x10*J5/5.402x103 kgm s =1.227x10"' m=0.123 A

which is a small fraction, ~ 1/50, of the expected lattice spacing for simple crystalline
substances.
(b). The wavelength for the 8.046 keV X-rays from a Cu X-ray tube is given using the units
identities:

1J=1VC=1kgm?s? and 1eV=1.6022x10"T=e(1V)

where e is the charge of the electron.

E = 8.046x10° eV(1.6022x107°J/1 eV) = 1.2891x10715 J
A =hc/E =6.6261x10* J 5(2.9979x108 m s7)/1.2891x107° J = 1.541x10"" m= 1.541 A

8. Why don’t we normally notice the wave behavior of particles in the macroscopic world that
we directly experience? (a). Calculate the de Broglie wavelength of a 58.0 g tennis ball traveling
at 80.0 km hr! and a 70.0 kg human traveling at 2 km hr!. (b). Calculate the de Broglie
wavelength of an O, molecule based on the overall translational energy at room temperature. The
average speed (rms) of an Oz molecule at room temperature is 482. m s

Answer: (a). The momentum of the tennis ball is:

p =mv = 58.0x107 kg(80.0x10* m hr'')(1 hr/3600 s) = 1.289 kg m s!
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The de Broglie relationship, p = h/A, gives the effective wavelength:
A=h/p=16.6261x10>*Js/1.280 kgm s! =5.14x10** m

which is too small to give wave-like interactions. A 70.0 kg human gives an even smaller
wavelength:

p=70.0 kg(2.0x10° m hr'")(1 hr/3600 s) = 38.89 kg m s™!
A =h/p=16.6261x10>*J s/38.80 kgm s = 1.70x103 m

(b). The momentum and de Broglie wavelength of the Oz molecule is:

p=mv =32.0 g mol!(1 mole/6.022x10% mol')(1 kg/1000 g)(482. m s™)
p=2.561x10> kgm s
A=h/p=16.6261x10>*J 5/2.561x10 2 kg m s' =2.59x10'"' m = 0.259 A

9. Calculate the photon energy, in electron volts and wavenumbers, and the wavelength for the
hydrogen atomic emission lines for the transitions: (a)n=3ton=2, (b).n=3ton=1.
However, before you do the numerical calculations predict the transition that is “bluer.”

Answer: The transitions are shown in the energy level diagram below. Then=3 —->n=1hasa
larger energy difference, longer arrow, and is then “bluer.” The n=3 — n =2 is part of the
Balmer series, which is in the visible region of the spectrum. The energies are given as

En = -13.606 eV(Z*/n?), where Z is the charge on the nucleus of a one-electron atom or ion.

A
Ot -zzo--- n=3" O -z----- n=3"
R T + 1 .2
E. (eV) =3 sn=2 En (eV) A i
_ 1 \/
-13.6 n=1 -13.6 T — n=1

10. (a). Calculate the energy and wavelength for the lowest energy absorption transition for
ground state atomic hydrogen. (b). Calculate the ionization potential and the corresponding
wavelength of the transition that ionizes ground state hydrogen atoms. Report the energies in eV
and wavenumbers. Report the wavelengths in nm. In what region of the electromagnetic
spectrum are these two transitions?

Answer: The plan is to note that the lowest energy absorption transition is fromn =1 to n =2.
The ionization potential corresponds to the onset of the dissociation continuum, which is for the
transition fromn =1 ton = co.

(a). The Bohr formula for the energies of the different quantum levels of the hydrogen atom is
En = -13.606 eV(Z*/n?). For the lowest energy absorption, n =1 to n =2:

AE =E; — E; =-13.606 eV(1/2* - 1/1*)=10.20 eV



=10.20 eV(8065.5 cm™'/1 eV) = =82,304. cm™

and the corresponding wavelength is:

A =1/~ =1/[82,304. cm(100 cm/1 m)] = 1.215x107 m = 121.5 nm

This transition is in the vacuum ultraviolet, and corresponds to the Lyman-o emission line.
(b). The ionization potential and the wavelength of the transition that ionizes ground state
hydrogen atoms is for the transition from n =1 to n = o and corresponds to — E;:

AE =E«x—E1=0-E1=13.606 ¢V
=13.606 eV(8065.5 cm™'/1 eV) = =109,740. cm™!

which is in the vacuum ultraviolet. The corresponding wavelength is:

A =1/~ =1/[109,740. cm™'(100 cm/1 m)] =9.1125x10¥*m =91.1 nm

which corresponds to the convergence limit of the Lyman emission series.

11. Li*" is a one-electron ion, which is well described using the Bohr formula. Compare the
wavelength of the n = 3 to n = 2 emission lines for H-atoms and Li**. Before you do the
numerical calculation, determine qualitatively which transition is “bluer.”

Answer: The plan is to note the Bohr formula for the hydrogen atom or any one-electron atomic
ion is En = -13.606 eV(Z*n?), where Z is the nuclear charge.

The lowest energy Balmer transition is at 656.3 nm, in the red region of the spectrum. The
factor of Z? in the energy will increase the transition energy for Li?*, making the corresponding
transition for Li** bluer. For Li*", Z = 3 giving:

AE = E3 — E> =-13.606 eV(32)(1/22 - 1/3%)=17.01 eV
=17.01 eV(1.6022x107'°J/1 eV) =2.725x107'8 J

Then since E = hc/A:
A =6.6261x10"*J 5(2.9979x10% m s71)/2.725x107® J = 7.290x10® m = 72.90 nm
in the vacuum UV. Of course, we could have just divided 656.3 nm by 9 to get the final result.

12. The spectrum of the sun incident on the earth is shown in the table below and Figure P23.1.2
Gases in the atmosphere absorb infrared light through vibrational transitions and ultraviolet light
through electronic transitions. Gas molecular absorption and scattering by atmospheric
particulates reduce the solar intensity at sea level compared to outside the atmosphere. Using the
data in the following table, show that the solar irradiance outside the earth’s atmosphere is well
modeled by the Planck blackbody expression at 5800 K:

21th¢? 1
HR) =735 (ehc/ka_ J
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where k is Boltzmann’s constant, k = R/Na = 1.3807x10"* J K'!. The irradiance is the energy
flux per unit wavelength interval; that is, the energy emitted from a unit area per unit time per
unit wavelength interval. A square meter cross section of the earth captures a tiny fraction of the
total energy output of the sun, so a small scale factor must applied to match the overall intensity
to the experimental data.

A (nm) 250. 375. 460. 500. 625. 750. 1000. 1250. 1500. 1750.
H. (W m2 nm™") 0.034 1.193 2.032 1.929 1.667 1279 0.742 0.445 0.263 0.166

2.5

UV | Visible | Infrared —

Outside atmosphere

N
[

Blackbody curve

ks

At sea level

Solar Irradiance
(W/ m%/ nm)

0.5

HO co, HO

250 500 750 1000 1250 1500 1750 2000 2250 2500
Wavelength  (nm)

Figure P23.1: The solar irradiance incident on the earth at the top of the atmosphere and at
sea level. The irradiance is given in watts for a one-meter surface placed perpendicular to the
incident angle of the sun for a 1 nm range in wavelength, A to A+dA, given in nm.

Answer: The wavelengths must be converted to meters to match the units of h, k, and c. For
example, A =250 nm (1x10° m/1 nm) = 2.50x10”7 m. Using the Planck blackbody expression
and multiplying by a scale factor to get the best fit gives the following spreadsheet:

T (K)= 5800 -
Experimental scale = 2.18E-14 ’
A(m) | H,Wm2nm™) | v(sT) H(A) W m?2nm™) 5 .
250 0.034 0.410 4.14E-01 =
375 1.193 1.478 1.49E+00 £
460 2.032 1.81 1.83E+00 & 157
500 1.929 1.844 1.86E+00 E
625 1.667 1.649 1.66E+00 ; 14
750 1.279 1.308 1.32E+00 i
1000 0.742 0.746 7.52E-01 0.5 A
1250 0.445 0.427 4.30E 01
1500 0.263 0.255 2.57E-01 0 * T T T )
1750 0.166 0.159 1.60E-01 0 500 1000 1500 2000

Wavelength (nm)

The scale factor of 2.18x107!* can be treated as arbitrary and chosen to fit the long-wavelength
portion of the experimental curve. However, the distance of the earth from the sun is 93.x10°
miles, giving the surface area of a sphere at that radius of 2.79x10%* m?. The surface area of the



sun is 6.09x10'® m?. The energy falling on a unit area at the top of the earth’s atmosphere per
unit time per nm wavelength interval is given as:

flux (area of emitter) (fraction absorbed) (convert wavelength interval)

solar insolation(A) = H(A) (6.09x10' m?)(1 m?/2.79x10* m?)(1x10° m/1 nm)
=2.18x107* H(%)

giving an exact value for the scale factor from first principles.

13. The Planck blackbody expression in terms of frequency is:

_ 2mhv’ 1
V) =" {enir _

Show that the total flux radiated by a blackbody is J = ¢ T#, where 6 = 5.6704x10* W m? K*
(see Section 11.2 and Eq. 11.2.16). [Hint: [ & (x*/(e* — 1)) dx = ©%/15]

Answer: The plan is to integrate the Planck expression over all wavelengths of the emitted
radiation.
The total energy per unit area per unit time is given by:

2nth (= V3
I="2 J vt _ 1 9V
0

Using the substitution x = hv/kT gives dx/dv = h/kT, dv = (kT/h) dx, and v = kTx/h. The
integration limits remain 0 to co:

2mh (KT (= x° 2k ), .. 2 k?
=7 (n) | o1& swe) T evingo =552

- 275(1.380662x 102 J K-1)*
© = 15(6.6261x103% 7 $)3(2.9979x 105 m s°1)

5 =5.6704x10% J s m2 K*

with 1 W =1 J s’l. Radiative energy transfer is a very strong function of temperature. The
fundamental constant, o, is called the Stefan-Boltzmann constant. See Section 11.2 for
applications of this result to solar energy production.

14. The Planck blackbody expression in terms of frequency is given in the last problem. This
expression gives the intensity of radiation in an interval of frequency from v to v+dv:

2mhv? 1
I(v)dv = 2 (ehv T lj dv
Apply a change in variables to show that the distribution in terms of wavelength is given by:

271the? 1
I(A) dih = 5 (ehc T 1) da




Chapter 23 Foundations of Quantum Mechanics 9

Answer: The plan is to do the normal procedure for the change in variable for an integration
using v = ¢/A.

Using the change in variable v = c¢/A gives dv/dA = — ¢/A%, dv = — ¢/A? dA. The integral limits
when this distribution is used change from |3 over v to |2 =— [ over A, since v increases while
A decreases. The negative signs cancel giving:

2mthc? 1 —c 21the? 1
1) dh =~ 23 (ehcmx _ J (F) dr =775 (ehcmx _ J da

15. The total flux radiated by a blackbody is J = ¢ T*, where 6 = 5.6704x10®* W m™ K* (see
Section 11.2 and Eq. 11.2.16). This flux is the energy emitted per unit area of the emitter per unit
time. The solar constant is the energy from the sun falling on the top of earth’s atmosphere per
unit area per unit time. The solar constant is 1.37 kW m™2. The surface area of the sun is
6.09x10'® m?. A square meter cross section of the earth captures a tiny fraction of the total
energy output of the sun. The average distance of the earth from the sun is 93.x10° miles, giving
the surface area of a sphere at that radius of 2.79x10* m?. Calculate the effective blackbody
temperature of the surface of the sun.

Answer: The emitted power is the flux multiplied by the surface area of the sun, J 4. The Stefan-
Boltzmann equation, ] = ¢ T*, gives the flux at the top of earth’s atmosphere as:

1370 W m™ = (5.6704x10 W m™ K*) T* (6.09x10'® m?)(1 m?/2.79x10% m?)
Solving for T gives 5768. K or 5800 K.

16. (This problem expands on material in Chapter 12, using the partition function for vibration.)
Planck’s treatment of blackbody radiation and Einstein’s treatment of the heat capacity of a solid
are based on the assumption of quantized energy levels. Assume the energy levels for the
electrons in a metal or for the vibration of atoms in a solid are equally spaced with g =j hv,
where v is a fundamental vibration frequency for the motion and j is an integer. The probability
of an electron or atom having energy &; is given by the Boltzmann distribution, nj/N = e-Bei/q,
where 3 = 1/kT. The average energy is given by Eq. 12.2.6:

o0
> g eba

i=0 . .. . -
<g>=—" where q is the partition function: q= ) e-Bs;
j=0

(a). Show that the average energy can also be expressed as:

1 Qq)
<g>=_-—
¢ Q(GBV
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.. . 1
(b). Show that the partition function reduces to: q = l—e‘ﬁh"
e . < 1
Note that the infinite power series can be summed as: Y. a = 1 +a+a’+a*+ .. = 1_a
ji=0
. .. . . hv
(c). Using the partition function, show that the average energy is: <e¢>= m

Answer: (a). Starting with the partition function in general form, q = £ €-B&, the derivative with
respect to 3 at constant volume is:

a o0
(- S

Dividing this result by —1/q gives the average energy

D gebe
oL (@) iz
q\Bv q

(b). Equally spaced energy levels with energies g = j hv gives the partition function as:

q=2 e

i=0
— aph N - 24 .3 _

Leta=e P thenq= > a = I+ata’+a’+. .. =7

i=0
Substituting back in for a gives the partition function for equally spaced levels as:

1
q= 1 _efﬁhv

(c). The derivative of the partition function with respect to 3 is:

ch) _ ; —Bhv
(aB v (1 _ e—ﬁhv)Z (hV S )
Finally, the average energy is then:

1 89) ~1 hv e P hv
¢ q (@B v (1 € ) (1 B e—ﬁhv)z (hV c ) (1 - e—Bhv) (eﬁhv _ 1)

This final result was central in understanding blackbody radiation and the heat capacity of solids.

17. The Wein relationship for the spectral distribution of blackbody radiation is:
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2mv?
I(v)= :2 <g>

where v is the frequency of the light emitted, and <e> is the average energy of an electron
oscillator in the walls of the cavity of the solid. The radiation in the cavity is assumed to be in
thermodynamic equilibrium with the electron oscillators in the cavity walls. Using the
equipartition theorem for the average energy of an electron oscillator gives <¢> = RT. However,
classical result is found to vastly overestimate the blackbody intensity in the ultraviolet. Show
that the assumption of quantized oscillators and the corresponding average energy derived in the
previous problem gives the Planck distribution function, which was given in Problems 13 and 14.

Answer: Note that f = 1/kT. Simply substituting the average energy of a quantized oscillator
from the previous problem into I(v) = (2rv*/c?) <e> gives the Planck blackbody formula:

2mhv? 1
I ="2a (ehv/kT_ 1)

18. The heat capacity of an oscillator can be determined from the derivative of the average
energy versus temperature: Cy = (0U/0OT)y = Na(0<e>/0T)y. The average energy of a one-
dimensional quantized oscillator was derived in Problem 16:

hv

<e>S=—""""
T (v o1y

Einstein estimated that the heat capacity of a simple solid is Cy = 3Na(0<e>/0T)y, where the
factor of three results since the atoms in a solid can oscillate in the x, y, and z directions. Derive
the Einstein relationship for the heat capacity of an atomic solid. Plot the relationship versus
temperature for v =100. cm™..

1
a(
Answer: Cy =3 NA(—S) =3Nahv|— =] =3Nahv ( V)
%

oT oT v (ehvkT — 12|\ kT?
hv)2  ehvkT
=3Nak (ij (VAT _ 1)2

hv)z ehv/kT

Remember that Nak = R, giving: Cy=3R (ﬁ (ehvkT _ 1)?

The units are converted to kelvins from wavenumbers using:

hev/k = 6.6261x107347 5(2.9979x10' cm s7)(100. cm™)/1.3807x10% J K!
=143.88 K

The plot was done using a spreadsheet:
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V= 100 | cm-t 30 1
hev/k = 143.88 | K 25 3R ...
T(K) | e™ D C. (J K mol) 20 -
2 1.748E+31 0.000 £
5| 3.141E+12 0.000 T 151
10 | 1.772E+06 0.003 < 10 J
15 |  1.484E+04 0.157 ©
20 1.331E+03 0.971 5
30 1.210E+02 4.820
50 1.777E+01 13.050 0 - - - -
75 6.810E+00 18.520 0 50 100 150 200
100 | 4.216E+00 21.052 T (K)
125 |  3.161E+00 22.363
150 | 2.610E+00 23.116
200 | 2.053E+00 23.895

The heat capacity has a limiting high temperature value of 3R, which is the equipartition
prediction.

19. (a). Assume the uncertainty for the one-dimensional linear position of an electron is 1.00 A.
Calculate the uncertainty of the momentum using ox dpx > hi/2. (b). The average momentum for
a confined particle, such as the particle in a box, is zero: <p> = 0. The uncertainty in the
momentum, as measured by the standard deviation, then reduces to just the root-mean-squared
momentum, Gpx = (<p>> — <p>2)”* = (<p”>)"* = prmsx. The root-mean-squared momentum can be
used to estimate the kinetic energy of the particle, Exx = (prmsx)>/2m. Estimate the kinetic energy
of a confined electron with a positional uncertainty of 1 A. (c). The kinetic energy of a particle
confined in a cubical box is determined by adding the kinetic energy in each direction,

Ex = Exx + Exy + Ex, = 3 Ekx, for a cubical box. The diameter of an atom is about 1 A (the Bohr
radius of the H atom is 0.529 A). Assume the hydrogen atom is approximated by a 1 A cubical
box. Use the kinetic energy from part (b) to estimate an approximate kinetic energy of the
ground state of the H atom in eV and kJ mol™!. Is this resulting energy chemically significant? In
other words, is the magnitude comparable to or greater than typical enthalpy changes for
chemical reactions?

Answer: The plan is to use the Heisenberg uncertainty principle in the form ox opx > /2 and
then Ex = 3 (prms.x)*/2m to estimate the ground state energy of the H atom.
(a). Using the Heisenberg uncertainty relationship and 1 A = 1x107'% m gives:

Spx > h/(28x) = 1.0546x10°* J 5/2/1.00x10'" m = 5.273x10 kg m s™!
(b). The corresponding kinetic energy is:

Ekx = (Prmsx)?/2m = (5.273x10 % kg m s71)%/2/9.109x103! kg = 1.526x107'°J
Exx~ 1.526x10"°J (1 eV/1.6022x107"° J) = 0.953 eV
Ekx ~ 1.526x107" T (6.022x10% mol™)(1 kJ/1000 J) = 91.9 kJ mol"!
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(). The result for a cubical, 1 A box is then Ex = 3 Exx =2.86 ¢V = 275. kJ mol"!

The experimental kinetic energy for the ground-state of the H-atom is 13.6 eV; this problem is a
rough estimate. An atom is spherical, instead of a cubical box, and has a strong attractive
potential energy. However, the kinetic energy corresponding to Spx > 5.273x10 kg m s™! is
definitely chemically significant. Typical enthalpy changes for chemical reactions are on the
order of 200 kJ mol™'. Chemical phenomena are most certainly governed by the Heisenberg
uncertainty relationship.

20. (a). The momentum of a 10.0 eV electron is known to 10%. Calculate the minimum
uncertainty in the position of the electron. (b). The speed of a 58.0 g tennis ball traveling at 80.0
km hr! is known to 10%. Calculate the uncertainty in the position of the tennis ball. Does this
uncertainty contribute to the difficulty in returning an 80.0 km hr™! tennis serve?

Answer: The plan is to use Ex = p*2m or p = mv to find the momentum of each particle. The
Heisenberg uncertainty relationship is then used to find the uncertainty in the position.
(a). The momentum of the electron is:

px =A[2mEx =/2(9.109x 10" kg)(10.0 eV)(1.6022x 10 J/TeV) = 1.709x 10> kg m s
Apx=0.10 (1.709x102* kg m s') = 1.709x10% kg m s!

Rearranging the Heisenberg uncertainty relationship, 6x dpx > /2, gives:

8x > h/(28py) = 1.0546x10°4 T §/2/1.709x10> kg m s =3.08x10"° m = 3.1 A

which is a significant uncertainty for the position, on the order of the size of a small molecule.
(b). The momentum of the tennis ball is (see Problem 8):

p =mv = 58.0x107 kg(80.0x10* m hr'')(1 hr/3600 s) = 1.289 kg m s!
Spx=0.10(1.280 kgm s') =0.1289 kg m 57!
8x > h/(28px) = 1.0546x10734 1 5/2/0.1289 kg m s = 4.09x103* m

Unfortunately, you cannot blame the Heisenberg uncertainty when you fail to return a tennis
serve (or strike out).

21. (a). What are the quantum numbers for the energy levels that are involved in the lowest
energy electronic transition for the molecule, H-C=CH-CH=CH-CH=CH-CH=CH»? Base your
answer on the particle in a box model. (b). Calculate the wavelength of the light absorbed in nm.
Calculate the energy change for the transition in wavenumbers, cm™'. The average bond length
for a conjugated double bond is 1.39 A. Lengthen the box by one-half of a bond beyond each
terminal C atom to take into account that the © orbital doesn’t end exactly at the nucleus of the
terminal C atoms.
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Answer: The plan is two note that in the conjugated-n system, there are 2(4) electrons, since
there are four double bonds and accordingly eight sp? hybridized C atoms.

(a). Placing two electrons in each particle in a box orbital gives the highest occupied molecular
orbital, the HOMO, as n = 4. The lowest unoccupied molecular orbital, or LUMO, is n = 5. The
absorption transition is fromn=4ton=>5:

A

25— ' n=5 LUMO
20— n=4-—->n=>5
Eq s 4+ n=4 HOMO
h?/8ma?
10 AL n=3
5 —4— n=2
0 L =H—. n=1

2

(b). The energy of a particle in a box orbital with box length a is: E, = ‘mal n’.

The transition energy between initial state n; and final state nr is then:
h 2 2
AE = Ef—E; = 3ma’ (nf —1n;)
The mass of the electron is 9.109x 107! kg. There are seven conjugated bonds and adding ¥ of a
bond at each terminus gives the box length as 8(1.39 A)=11.12 A = 1.112x10 m:

I (6.626x1034 ] 5)? N
AE=gma? O~ 4) =8(9.109x 10" kg )(1.112x10° my ) = 48710771 (9)
—4385x107]

Giving the wavelength as : A = hc/AE = 6.626x10734 J 5 (2.998x10% m s7)/4.385x101° J
=4.530x107 m (1 nm/1x10® m) = 453. nm

and energy in cm™ as: V=1/A = 1/4.530x10 cm = 22,100 cm’!

If we don’t add half a bond length on each end of the box, the transition is predicted to occur at
28,900 cm.

22. Two restrictions are placed on the solutions to the Schrodinger equation that take the
form of integrals. Name the two restrictions, the two integrals, and the values that define these
restrictions.

Answer: The solutions to the Schrodinger equation should be orthogonal and normalized, or so
called orthonormal solutions. For two quantum states, n and m, orthogonality and normalization
are respectively:

Orthogonality: | W5 Wmdt=0 Normalization: | Ws Wadt=1
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23. Show that the n = 2 and n = 3 wave functions for the particle in the box are orthogonal.
Show that the n = 2 wave function is normalized.

Answer: The plan is to show that [ ¥ W3 dx =0 and [ ¥ P2 dx = 1.
The particle in the box wave functions for quantum number n and box length a are
Y(x) = (2/a)”* sin(nmx/a). Forn=2 and n = 3:

[ W5 ¥; dx = (2/a) f ‘ sin(2mx/a) sin(3nx/a) dx
0

Changing variables to y = nx/a, giving dy/dx = n/a or dx = a/n dy, and the range y = 0 to m:

[ W5 ¥; dx = (2/a)(a/T) fn sin(2y) sin(3y) dy
0
Integral tables give this integral equal to zero:' fﬂ sin(ax) sin(bx) dx =0 for a # b:
0

¥ ¥3dx=0

The solutions are orthogonal. The integral can also be done visually, Figure P23.2. The n =2
wave function is odd with reference to the center of the box, while the n = 3 wave function is
even, so the result over the full interval is zero. Centering the integration range, X' = x — a/2,
gives:

[ W5 5 dx = (2/a) fa/j sin[2n(x'+ a/2)/a] sin[3n(x'+ a/2)/a] dx' =0
-al2
T odd T even

0.5 -
0.4 A N\ /7 N\
034 / \ / \
02 4,
0.1

¥ 0 . y
0.1 \
0.2 - \
0.3
0.4 \
0.5

0 5 X(A)

-5 0 x(A) 5

Figure P23.2: Particle in the box wave functions forn=2 (=) andn=3 (- - -).

For the normalization, use the substitution y = 2nx/a, giving dy/dx = 27/a or solving for dx,
dx = a/(2n) dy, and the range y = 0 to 27:

[ W5 ¥, dx = (2/a) f 0 sin’(2nx/a) dx = (2/a)(a/(21)) f sin’(y) dy
0

15
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Integral tables give this integral as:' [ sin?(x) dx =— % cos X sin x + % x:
[ W5 %, dx = (1/m) [~ Y (cos ysiny |o" + 4y o ]
= (1/m) [- Y2 (cos 2w sin 2 7w — cos 0 sin 0) + Y5 27|
However, sin 0 = 0 and sin 27t = 0, giving that ¥ is normalized:

[ W, dx = (1/n) [%2n] =1

24. The harmonic oscillator ground state has a Gaussian wave function of the form
¥(x) =N eX/40%  Normalize the wave function over -0 < x < o0,

Answer: The normalization integral for a real function is | W2 dx = 1. Substituting in the wave
function and using the fact that the integrand is even gives:

N2[7 ex/20 dx =2 N2 [, e /20 dx = |
- 1 ;
Integral tables give: | o €X20% dx = 3 (2n) %oy :

. 1 ,
N[ ex¥20% dx =2 N25 (2m)oy = N2 (2m) o = 1

1

Solving for the normalization constant: N = 2n)" o}

This result is used in Example 23.4.4.

25. What is the probability that a particle is in the left side of the particle in a box, for a box of
length a and quantum number n?

Answer: The probability is given by the integral:
a 2\ (a2 .
f %2 dx = (—) f ? sin%(nmx/a) dx
0 a/Jo

Applying the change in variables y = nnx/a gives dy/dx = nm/a or solving for dx,
dx = a/(nm) dy, and the range y = 0 to n7n/2:

22 1 4o 2)(1) 2 .
. Wi dx (a - fo sin“(y) dy

Integral tables give this integral as:' [ sin?(x) dx =— % cos X sin x + % x:

/2 nm/2
0o J

Wi dx = (2/nm) [~ % (cos y sin y |IOW2 +%y|
0

= (2/nm) [~ Y2 (cos(nm/2) sin(nm/2) — cos 0 sin 0) + Y2 n7/2]

However, cos(nm/2) = 0 and sin 0 = 0, giving:
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"% W2 dx = @/nm) [ 2] = %
0

As expected, the probability of being found on the left half of the box is 50%.

26. Show that <x*> for a particle in a box of length a and quantum number n is:

1 1
x> = az(g B 2n2n2j

Answer: The plan is to note that we must find the expectation value of the displacement squared.
Since the particle in a box wave functions are real, " = ¥. We will use the normalized form of
the wave function, giving |3 W3 dx = 1. The operator, x?, is a multiplicative function, so the order
of operation is not important, giving:

— [a g2 g2
W . dx fox ¥ dx 1

<x?>=
Substituting in the general form of the wave function gives:
2 2) (2 22
X>=|" f X sin“(nmx/a) dx 2
ajJo

Applying the change in variables y = nnx/a gives dy/dx = nmn/a or solving for dx,
dx = a/(nm) dy, x = a/(nm) y, and the range y = 0 to nm:

N(a) rm
o _[2) [ T2 i
<x™> (a) (nn) fo y* sin“(y) dy 3

Integral tables give this integral as:'

3 2 1 )
I sinc() d = (5§ sin 2x - 2B )

Note that sin 2x = sin(2nmw) = 0 at the upper limit and sin 0 = 0 at the lower limit. Similarly,
cos 2x = cos(2nm) = 1 at the upper limit:

0 o XX (x2 1. X cos 2X " (nm)® nm
fo X" sin(x) dx = [z—(z—gjsmb(— 4 }0 6 4 5

Substituting Eq. 5 into Eq. 3 gives:
- ) )
a/lar) L6 " 4)7 3 2

27. Using the result from the last problem, find the uncertainty in the position of the particle in
box, for box length a and quantum number n. Express the result as the standard deviation,
ox = (<x>> — <x>?%)".
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Answer: The expectation value of the position for a particle in a box is <x> = a/2, giving:
2t o2 (1 1 j @ a8 a’ (nzn2 j
RTINS o) T 4T 127 20°0 42\ 3
a_(n’m? )/2
GX_2mr(3 -2

28. Find the average momentum for a particle in a box, with box length a and quantum
number n.

Answer: The plan is to note that we must find the expectation value of the momentum operator.
Since the particle in a box wave functions are real, ¥* = ¥. We will use the normalized form of

the wave function, giving [ W2 dx = 1. The operator, px = (fi/i)(d/dx), involves a derivative, so
the order of operation is important, giving:

[3 W5 px Wndx ( j
<ps> = T W P, dx f‘Pn. WY, dx

The derivative is:

d 2\ d 2\
ax —— V.= ( ) Ix sin(nmx/a) = (gj (%) cos(nmx/a)

Substituting in the general form of the wave function gives:
h(2) . d .
<px> =7 (aj fo sin(nmx/a) ax sin(n7mx/a) dx

= % @) (%) f sin(nmx/a) cos(nmx/a) dx

Applying the change in variables y = nnx/a gives dy/dx = nm/a or solving for dx,
dx = a/(nm) dy, x = a/(nm) y, and the range y = 0 to nm:

<p>= ? @ (nf) (ﬁ)ﬁ“ sin(y) cos(y) dy

This integral is equal to zero, giving <p> = 0. This result is concordant with the classical idea
that the particle in a box wave function is the superposition of a wave traveling forward and a
wave traveling backward, the net result giving a standing wave confined in the box. The average
momentum is then zero.

29. Show that <p2> for a particle in a box of length a and quantum number n is:
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2
nmn
<p>=h’ (?j

Answer: The plan is to note that we must find the expectation value of the momentum operator
squared. Since the particle in a box wave functions are real, ¥" = ¥. We will use the normalized

form of the wave function, giving J3 W2 dx = 1. The operator, p*> =p p =— h? (d*/dx?), involves a
derivative, so the order of operation is important, giving:

a gt A2 2
2 :.[0 Yn W dX:_ 2 (2 d_
Py NS, e P

The second derivative is:

& 2\ ¢ 2\ d 2)\"%(nm)?
) Y= (g) e sin(nmx/a) = (gj (%) ix cos(nmx/a) = — (gj (%) sin(n7mx/a)

Substituting in the general form of the wave function gives:
2\ . & 2\ (nm)? e
<pP>=- hz(g) fo sin (nmx/a) e sin(nmx/a) dx = hz(g) (%) fo sin(nmx/a) dx

However, (;)fa sin’(nmx/a) dx = 1, since this integral is the normalization integral, giving:
0

2
<pt>=h’ (%j

30. Using the results of Problems 28 and 29, find the standard deviation of the momentum for a
particle in a box:

oy = (<p2> - <pedy =1 (2]

Rationalize the results on the basis of the Heisenberg uncertainty principle.

Answer: (a). The standard deviation of the momentum for a particle in a box is, using Problems
28 and 29:

2 Y2
Gpx = (<p%> - <px>2)‘/2 = (hz (%) - ) =h (%)

As the box length increases, the uncertainty in position of the particle increases and the
uncertainty in momentum decreases, which is expected on the basis of the Heisenberg
uncertainty principle.
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31. Using the results of Problems 27 and 30, show that 6x 6, > h/2 for a particle in a box, in
concordance with the Heisenberg uncertainty principle.

Answer: Using Problem 27 for ox and Problem 30 for opx:

a (n’m? )1/2 (nn) (nzrc2 )l/zh
"X"p"_znn(3 -2) b )73 72 2

The numeric factor multiplying h/2 is greater than 1. For example, forn = 1:

h

Cx Op = 1.1365

which is greater than h/2 as required by the Heisenberg uncertainty relationship. The numerical
factor is greater for greater quantum numbers.

32. Determine the standard deviation of the position, (<x*>— <x>2)”, for the Gaussian wave
function:

1 2
= T T —X /46)2( -00 < < o0
Y(x) 2n)" o} € over -0 <x <

Answer: The given Gaussian wave function is normalized, IZ Y2 dx = 1, and real, V'Y = V2.
The normalization constant is N = 1/[(21)"c%]. The average position is zero for a symmetrical
distribution because x is odd and W? is even and the integral is taken over all space:

o0 o0 o0
<> = I_OO Y x ¥ dx = ,[_Oo x W2 dx = N? ,[_oo X e X/20% dx = ()
normalized real odd even

The expectation value for the squared position is:
<x*> = IO; Y x2 WY dx = IO; x> P2 dx = N? ,[Z x2 e X/26% dx

The integrand is even so that [ =2 I°§ giving:  <x*>=2N? J°§ x? e X203 dx

o0

Integral tables give f

203 s
2 ex20% dx = e (2n) oy
0

5 1 262
(2n)"ox 4

2o _ 2 20% Yoo _ Yoo —
<x>=2N 4 (2m)"ox = (2m)”ox = o2

Finally (<x*> — <x>?)"= oy, as expected. This result is used in Example 23.4.4.
33. Consider a particle in a box of length a with a potential that goes to infinity at —&/ and +3/5.

The general form of the wave function is given by Eq. 23.4.5 also applies for -8/ < x < +2/5.
Apply the boundary conditions to determine the wave function for the particle.
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Answer: The plan is to follow the procedure used in Eqgs. 23.4.5-23.4.8, but at the new end
points. We also need to consider ¥ at the center of the box, x = 0.

At x = 0, in the center of the box: W¥(0) = A sin(0) + B cos(0) =B
If B = 0 then each wave function will have a node in the center of the box and only half the
possible wave functions will be represented. The conclusion is B # 0.

At x =—2/5 the wave function is: Y (—%/9) = A sin(—ka/2) + B cos(—ka/2) =0 or
Y(—4/9) =—A sin(ka/2) + B cos(ka/2) =0
At x =+ &/5 the wave function is: ¥(2/p) = A sin(ka/2) + B cos(ka/2) =0
Consulting Figure 23.4.2a, if B is non-zero then at the boundary, cos(ka/2) = 0 gives ka/2 = nn/2
or k = nm/a. However, then sin kx = sin(nn/2) = 1, which gives that A = 0. The combined result is

then W(x) = B cos(nnx/a). To verify our conclusions note that:
Y(—4/9) =B cos(nm/2) =0 Y(0)=B cos(0) =B Y(4/9) =B cos(nn/2) =0

34. Give the wave function and energy for a 3D-particle in a box with quantum numbers (1,1,2)
and side lengths a, b, and ¢ for a particle of mass m.

Answer: The wave function and energy using Eqs. 23.6.15 and 23.6.16 are:

” _(Lj/ mx o omy . 2nz E_h_z(i+i+i)
(X.Y,2) =Gpg) SIn75 Sy sin— “8ml\a’ ' b? ' ¢?

35. Why does a confined particle have quantized energy levels?

Answer: The particle in a box is an excellent example of a confined particle. The solution to the
Schrodinger equation for a particle in a box is identical to a free particle until the boundary
conditions are applied. Then sin kx is restricted to sin(nmx/a). The boundary conditions force the
wave function to approach zero for small and large x. The wave function must then have an
integer number of half-cycles to fulfill the required asymptotic behavior.

36. Find the average penetration depth of a particle of mass m and energy E into an infinite
barrier of constant potential V. Assume the total energy is less than the potential energy, Figure
23.5.1a. Given the amplitude of the incident wave, a, show that the average penetration depth is:

(weE
7+ 2 42
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Answer: The plan is to use Egs. 23.5.3 with 23.5.6 to find the expectation value for the position
of the particle inside the barrier with X = x.

Inside the barrier 0 < x < oo and the average or expectation value of the position for the
tunneling particle is:

<x>=f°0‘1’*X‘I’dxzc*cﬁoxe’z‘<X dx withkzl@ and \2m(V —E)
0

K
0 h h
using Eqs. 23.3.6 and 23.5.2 for the constants k and «.

Integral tables give the integral as: ﬁ‘; X e ™ dx = 1/a%:

<x> = ¢*¢/4K?

. _(—Zik)(Zik) 2_( 4K> ) 2_( 4k2) ,
WIETC ™ ik — ) ik — )~ Gk —x)(ik—x)) &~ U+ i) ®

Substitution of ¢"c back into the integral gives:

N SAWwS
> Tl 4

37. Find the tunneling probability for a 1.00 eV electron into a 2.00 eV potential energy barrier
of thickness 10.0 A.

Answer: The plan is to follow Example 23.5.1.
The ratio of the energy to the barrier height is € = 1.00/2.00 = 0.500. Using Eq. 23.5.2 gives «;
for an electron me = 9.109x10! kg:

_A2m(V—E)  1/2(9.109x107' kg)(2.00 eV — 1.00 eV)(1.602x10"° J/1 V)
K= h - 1.055x10734 J 571

Kk =5.121x10° m™
giving for L=10.0 A = 10.0x10"" m:
L_ okl

e <l = ¢-5.121x10°(10.0x10™%) = 0,005970 and ge_—4L =7.014x10°

The tunneling probability is given by Eq. 23.5.7:

- -1 3 -1
[t ety } _[ 7.014x10 } ) .

38. Show that ¥ = N e is an eigenfunction of the operator d*/dx?. What is the eigenvalue?
Normalize the wave function for x > 0.

Answer: The plan is to show that 6% = o'V, with o a constant.
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Applying the operator to the wave function gives:

d2 d2
Y=g Ne”=N o? X
d2
Substituting back in the wave function, ¥ = N € **, gives: ) ¥Y=0a¥

The operator applied to the wave function gives back a constant multiplied by the same wave
function. W is an eigenfunction of d*/dx* with eigenvalue o®. The normalization is given by:

f:‘{’*‘de=N2f:e‘2°‘xdx=l

—1 o —1 N?
= 2| — _2GX = 2| — —00 __ 0 = || =
N (2&) e =N (2&) (€*-¢) (20() !
giving N = 2a)”

39. (a). Show that ¥(x) = €7** is an eigenfunction of the momentum and kinetic energy
operators, but not an eigenfunction of the position operator, for motion in one-dimension. (b).
Will repeated measurements of the position, momentum, and kinetic energy give the same result
or different results?

Answer: The plan is to note that by Postulates III and IV, if the wave function is an
eigenfunction of the operator representing the given observable, then repeated measurements will
give identical results. The operator for position is just “multiply by x”: X = x. The operator for
momentum is Px = ( 1/i)(d/dx). The operator for kinetic energy in the x-direction is
Ex = — (h%/2m)(d¥/dx?).

If 6 = oV, with o a constant, then ¥ is an eigenfunction. For the momentum:

hd . ,
A — = — aikx — —ikx —
px ¥ T dx © hk € hk ¥
The wave function is an eigenfunction of the momentum operator, so every observation of the

momentum will give the same result, — hk.
For the kinetic energy:

h? d? h2k? i h’k?
E@Tz 2m c = 2m

B =— p

The wave function is an eigenfunction of the kinetic operator, so every observation of the kinetic
energy will give the same result, h’k*/2m.
The wave function is not an eigenfunction of the position operator:
XY =xeikx

Repeated observations of the position of the particle will give different results, over the full
range allowed for x: —o0 < x < o0,
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40. What are the restrictions on the wave functions that may represent physical systems? Can
the following be valid wave functions? (a). ¥(x) =N In x for 0 <x < oo, (b). ¥(x) = N e2¥’
for —oo < x < o0, and (c). Y(x) =N x € * with a > 0 and the range 0 < x < o0,

Answer: By the Born interpretation, y'(x) w(x) dx is the probability of finding the particle in
the interval x to x + dx. To be interpreted as a probability, y"(x) w(x) must be real, non-negative,
single-valued, and normalizable. To be normalizable, the function must be square integrable; the
product must remain finite across the allowed range.
(a). Considering W(x) =N In x for 0 < x < co: note that In x — —0 as x — 0, so In x is not
finite over the given range and is therefore not a valid wave function.
(b). Considering W(x) = N e2** for —0 < x < oo: if a is positive the exponential diverges to
infinity for x — =+ co. Therefore, for a > 0 the function is not acceptable. However, for a < 0 the
function is finite over the full range, approaches zero asymptotically for £x, and defining b =—a
(see standard integral tables or the back cover over-leaf):!

o, - ) 1({ )"

[ W) w(x) dx =2 N2 [§ e-2bx* dx = 2 N? 5 (%) (b > 0)
and so is normalizable.
(c). Considering ¥(x) =Nx e * for(0<x<o:asx — 0thene ™ — 1 and x €*— 0, which
is acceptable. As x — o then € * — 0 but x — co. However, as a test, evaluating x € * fora =1
and x = 100 gives x € ® = 4x10"*2. The function asymptotically approaches zero.

The official method to find the asymptotic behavior of x e™* is to use L’Hospital’s rule.
Consider the function as the ratio x/e*; both numerator and denominator diverge to infinity. The
ratio of the derivatives is 1/(ae**) and lim(1/(ae**)) as x — oo gives 0. The function asymptotically
approaches zero for large x.

The function is also square integrable; the integral is available in standard tables as:

21

Iy W00 w(x) dx = N2 J} x2e 2 d =N 5

The function would not be acceptable for x < 0, because the function would diverge to —oo.

41. Show that a linear combination of two eigenfunctions of the momentum that have the same
momentum is also an eigenfunction of the momentum.

Answer: Let two eigenfunctions, Wa and W, have the same momentum, p:
p¥a=p ¥a and p¥s=p Vs 1

A linear combination of the two separate solutions is ¥ =a Wa + b W, for a and b constants.
The momentum is a linear operator. Applying the momentum operator to the linear combination:

p¥ =p(a Wa+b¥s)=ap¥a+bp¥s
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However, using Eq. 1 for the individual terms gives:
f)‘P=ap‘PA+bp‘PB

Distributing out the common factor of p gives:
pY=p@¥a+bW¥s)=p¥

which shows that the linear combination is also a valid eigenfunction of the momentum. This
result shows that degenerate solutions are not unique; any linear combination of degenerate
solutions is also a solution.

42. Determine the value for the commutation relationship between the observation time and total
energy of a particle, [t,E]. [Hint: apply the commutator as an operator for an arbitrary function,

f(t)]

Answer: The plan is to note that [t,E] = (t E — E t). The operator for time is just “multiply by t”:
t = t. The operator for total energy is E = ih (d/dt).
With {{(t) as an arbitrary function of't:

[f,E]fZ(tE—Et)fztEf—Etfzih(tg—tf_%t;f)—j

Using the product rule for the last derivative:

PR O/ - g\ N
[t,E]f—1h(tat—tat—fat)——1hf

Dividing both sides of this expression by f gives the final result:
[t,E]=—1ih

This result holds for any wave function. Since the commutator for time and energy does not
vanish, the two observables are governed by the Heisenberg uncertainty principle. Observation
time and energy cannot both be defined to high precision, AE At >h/2.

43. Consider a two-dimensional problem, such as the two-dimensional particle in a box.
Determine the value for the commutation relationship between the position in the x-direction and
the momentum in the y-direction, [X,py]. [Hint: apply the commutator as an operator for an
arbitrary function, f(x,y)]

Answer: The plan is to note that [X,py] = (X Py — Py X). The operator for the x-position is just
“multiply by x”: X = x. The operator for the momentum in the y-direction is py = ( h/i)(0 /0y)x.
With {(x,y) as an arbitrary function of x and y:
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A A A A AA A A A A ) af a X
[X,py] f= (X py —py X) f=X py f—pyX f=(h/Q) (X (5_14 _( gyﬂD

For the last derivative, x is a constant and factors through the derivative with respect to y:

[R,y] £ = (W) (x %}x x (S—QJ o

In general, the commutator vanishes and both the x-position and the y-momentum can be
simultaneously precisely defined.

44. Determine the value for the commutation relationship between the momentum and kinetic

energy of a particle in one-dimension, [px, E\]. [Hint: apply the commutator as an operator for an
arbitrary function, f(x)]

Answer: The plan is to note that [px,Ex] = (px Ex — Ex px). The operator for momentum is
Px = (h/i)(d/dx). The operator for kinetic energy in the x-direction is Ex = — (h*2m)(d¥dx?).
With {(x) as an arbitrary function of x:

dar o
dx dx? ~ dx*dx)

[Px,Ex] = (Px Ex — Bk px) £=px Ex £— Bi px £=— (h3/2mi) (

Both terms result in the third derivative, and are then identical. In general, the commutator
vanishes and both the momentum and kinetic energy for motion in the x-direction can be
simultaneously precisely defined.

45. Find the absolute values for the following:
(a). 2416, (b). e7i@¥’, (c). cos(nmx/a) + i sin(nmx/a), (d). einm™aand (e). —h/i.

Answer: Note that since i-i = -1. For a complex number, |z| = (z'z)", giving:

(@). 2 +i6 | =[(2-16)( 2 +i6)]” =[4 —i12 + 112 + 36]" = [40]"

(b). |e—iax2 | = [eiaxz e—iox? ]'/2 = [60]‘/2 =1

(c). |cos(nmx/a) + i sin(nmx/a)| = [ (cos(nmx/a) — i sin(nmx/a)) (cos(nmx/a) + i sin(nnx/a))
= [ cos’(nmx/a) + i cos(nmx/a) sin(nnx/a) — i sin(nmx/a) cos(nmx/a) + sin’(nmx/a)]”
=[ cos’(nnx/a) + sin’(nnx/a)]” = 1

(d). |e-inmv/a| = [ginmx/a g-inmx/a]”: = [e0]% = |

(e). -h/i|=[(+h/i)(-Wi)]?=h

Note that parts (c) and (d) are equivalent, so they should give the same answer:

g-inx/a = cos(nnx/a) + i sin(nnx/a)
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46. Using explicit summations, show that 67 = <(x — <x>)>> is equivalent to 6% = <x*> — <x>2,
Use the trial data set x = {2,3,3,4,1,2,2}.

Answer: The following spreadsheet was developed to do the necessary averages.

Al B C D E

2

3 X (x-<x>)?2 x2

4 2 | 0.1836735 4
5 3 | 0.3265306 9
6 3 | 0.3265306 9
7 4 | 2.4693878 16
8 1 | 2.0408163 1
9 2 | 0.1836735

10 2 | 0.1836735 4
11 <> <(x-<x>)2> | <x2>

12 | average= 2.428571 | 0.8163265 | 6.714286
13

14 <x2>-<x>?= | 0.816327

The formula in D4 is: “=(C4-$C$12)*2”. The average of each column is in row 12. The final
result verifies that 6x = <(x — <x>)*> = <x*> — <x>2,

47. Prove that ox = <(x — X)>" = (<x®> — <x>?)" (Eq. 23.4.36).

Answer: The multiplication gives:
(x—X)P?=x>-2xx +x

The averages are: <(x — X)*>=<x*> -2 <x>x + x>

However, since <x> = X, the second and third terms combine to give:
<(x —X)> = <x®> — <x>?

and taking the square root: 6x = <(x — X)*>" = (<x*> — <x>?)”

48. The moments of a probability distribution characterize the distribution. The first moment is
the mean, <x> = X. The second central moment is the standard deviation, ox = [<(x — X)*>>]".
Central moments are evaluated using the deviations from the mean (x — x). The third central
moment is defined as [<(x —X)*>>]"3. The third central moment is a measure of the asymmetry
about the mean for the distribution. For example, for a Gaussian distribution the third central
moment is zero. (a). Prove that the third central moment can be calculated using:

<(x-xX)>=<x>-3x<x>+2%°

(b). Verify the formula using explicit summations with the trial data set listed in the previous
problem.
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Answer: The plan is to parallel the derivation for Problem 47 with <(x —X)*>.
(a). The multiplications are:

x-XP=x-2xx+x)E-x)=x-3xX+3xx*-X%°

The averages are: <(x —X)*>= <x*>-3 <x»>Xx +3 <x>x*-%°
However, since <x> = x, the third and fourth terms combine to give:

<(x-x)>=<x>-3x<x>+2%°

(b). The following spreadsheet was developed to do the necessary averages to verify the equality.

X (x-<x>)3 X X2

2 -0.07872 8 4
3 0.186589 27 9
3 0.186589 27 9
4 3.880466 64 16
1 -2.91545 1 1
2 -0.07872 8 4
2 -0.07872 8 4

<> <(x-<x>)*> <x3> <x2>
2.428571 0.157434 20.42857 | 6.714286
3> 3x<x®> +2x3 = 0.157434

49. Use Eq. 23.7.35 to determine the product of the uncertainty in the position and momentum
for a one-dimensional particle in a box of length a for n = 2.

Answer: The plan is to note that [x,px] =— (h/1).
The particle in the box wave function is W2(x) = (2/a)”* sin 27tx/a. The product of the
uncertainty in the position and momentum, using Eq. 23.7.35, is:

ox Gp = ¥ | [§ W5 [x,px] W2 dx | = (1/a) | [§ sin(2nx/a) (- /i) sin(2nx/a) dx |
oxGp > Y5 |-Wi| (2/a) [§ sin®(2nx/a) dx

For a complex number, |z| = (z'z)"”, giving |- 1/i | = [(+ b/i )(- h/i )]”* = h. The particle in a box
wave function is normalized so that:

[5 ¥ ¥ dx = (2/a) [§ sin’(2nx/a) dx = 1
Using this normalization:
Cx Gp = h/2

which corresponds to the Heisenberg uncertainty relationship.
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50. Show that the commutator for the position and kinetic energy of a particle, in one-
dimension, is:
[%,Ex] = - (ib/m) p

Can position and kinetic energy be simultaneously defined to high precision? [Hint: find the
result of the commutator operating on an arbitrary function f(x).]

Answer: The plan is to find [)Ai,}AEk]f(x) = (ﬁﬁk — ﬁkfc)f(x). The operator for position is just
"multiply by x," X = x. The kinetic energy operator in one linear-dimension is
Ex = — (h%2m) d¥dx%

Expanding the commutator and applying the operators to f(x) gives:

AN AR AA AR AA d2f
[X,Ex]f = (XEx — Exx)f = XExf — Exxf = — (h%/2m) ( = %}(ﬁ)

Using the product rule, twice, for the last derivative gives:

d, (d(x@j_ i( df fdx) &f dfde df &f o df
dxUdx ) ax X dx Tlax) " X¥ad T dxdx Tdx X dx2 dx

Substituting this last result back into the commutation relationship gives:

dzf &f _d

[%,Ei]f = — (h%/2m) ( ~x32-2 df) 2 (h2/2m) d

Note that the momentum operator is p = h/i d/dx, which upon substitution into the commutation
relationship gives:

A A d2f d’f  _df
[x,Ex]f = — (h%/2m) ( X2 dx) =—(iA/m)pf
The final result is: [ﬁ,ﬁk] = — (ih/m) p. The position and kinetic energy of a particle cannot be
simultaneously specified precisely.

51. Is the operator 6 = (d/dx) Hermitian? [Hint: use integration by parts: Ju dv=uv -] v du ]

Answer: The plan is to follow Example 23.7.4. The goal is to show that:

ITJ( )‘Pldx I'{a[ )‘{’de 1

Starting with the left hand integral:
P o gy
j-oo Y; (&) Yidx = I_w Y d¥i

Integration by parts, with u = ¥ and dv = d¥, gives:
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.[_o; LPT d¥i= \IIJTI J.OO Wi d\PJ 2

The product WjW; goes to zero at each endpoint. Substituting this last equation back into Eq. 1
gives:

% (dxj Yidx=—]" ¥ d¥i=-]" ¥ (dx) ¥ dx 3
Finally, (d/dx)” = (d/dx) so that the last equation reduces to:

oo d d .

% (dxj ¥idx=—]" ¥ (dx) ¥ dx 4

which shows that (d/dx) is not Hermitian. The “i” in the definition, p = — ik (d/dx), is necessary
for the momentum operator to be Hermitian.

52. (Challenge Problem) Show that the operator (d*/dx?) is Hermitian. Is the kinetic energy
operator also Hermitian? Do the problem using the following intermediate steps. (a). Show that:
[Hint: use integration by parts, J u dv=uv — | v du.]

% (éi ) Yodx=—]" (‘h\i) dyr=—[" (%j (%) dx

(b). Show that: [Hint: use integration by parts again.]

[ @ ((‘112 ) Widx =" W (:11 )(dg) dx

(c). Finally show that (d*/dx?) is Hermitian by proving that:

ITJ( )‘Pldx I'{a[ ZJTde

(d). Is the kinetic energy operator also Hermitian?

Answer: The plan is to follow Example 23.7.4. The goal is to show that:

J\Pj(d )‘Pldx J‘I’l(zj‘lﬁdx 1

(a). Starting with the left hand integral:

o0 £ i _ 00 £ d d\II 00 d\Ill
(2w (Gapwax=1owi (GG ax= L2 v o G

Integration by parts, with u = ¥j and dv = d(d¥i/dx), gives:

88 (28 1z (e :

w
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The wave function P'; and (d¥i/dx) go to zero at each endpoint, because the wave functions
approach zero asymptotically for large distances. Substituting this last equation back into Eq. 1:

% ((‘112 ) Pdx=—[* (‘h\i) e =] (%j (%) dx 3

(b). However, the two derivatives in this last expression are functions and can switch places,
since the derivatives are completed and the resulting functions commute:

J oW Gl—;) Widx=- > (%)(ﬁf:l) dx=-]" (dd\PX ) d¥i 4

This last integral can also be integrated by parts, with u = (d¥j/dx) and dv = d\¥;, giving:
[ @ G—;j Widx = (df )‘Plxw [Zwid (d;{:) 5

The first term again goes to zero at the extremes in x. The last integral expands back giving:
I2 ¥ G; ) Widx =] W (gx)(di ) dx 6

(c). Finally, (d¥/dx?)" = (d%/dx?) so that the last equation reduces to Eq. 1, which shows that
0 = (d*/dx?) is Hermitian.

(d). Since the kinetic energy operator is the second derivative multiplied by a constant,

Ex = — (h%/2m)(d?/dx?), the kinetic energy operator is also Hermitian.
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