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Chapter 23: The Foundations of Quantum Mechanics 
 

Why does a confined particle have quantized energy levels? 
 
   Why do atoms stick together to form chemical bonds? What principles govern the formation of 
the chemical bond? The structure of a molecule is determined by the chemical bonds that hold 
the atoms together. The key to understanding molecular structure is to determine the electronic 
structure of atoms and the bonds that the atoms form. 
   Atomic and molecular structure are aspects of the microscopic world, a world beyond the 
direct reach of our senses. In the microscopic world, light and matter behave in ways that are 
difficult to anticipate based on our daily experience. Light is the principal tool for unraveling the 
intricacies of the microscopic world. What can the interaction of light with matter tell us about 
atomic and molecular structure? Can we control the fate of chemical reactions using light? The 
principle goal of the next chapters is to develop the theory of chemical bonding so that we can 
determine the influence of chemical bonding on the structure and properties of molecules. The 
branch of science that concerns the microscopic structure of matter is quantum mechanics. 
   Structure-function relationships are the primary tools for solving problems using chemistry. 
Thermodynamics shows the interrelationships among thermochemistry, chemical equilibrium, 
and electrochemistry. The laws of thermodynamics govern all chemical phenomena, in a 
completely general way. However, because thermodynamics is model free, we must look beyond 
thermodynamics to further develop structure-function relationships. Atomic and molecular 
structure are aspects of the microscopic world. Reaction equilibria and kinetics are aspects of the 
macroscopic world. To develop practical applications of molecular systems, we need to 
understand the underlying principles of the microscopic world and then bridge the microscopic 
and macroscopic viewpoints of chemical reactivity. Our goal is to understand atomic and 
molecular structure and then predict thermodynamic and kinetic properties. 
   The microscopic behavior of atoms and molecules became evident at the turn of the 19th 
century through a series of experiments that determined that matter has quantized energy levels, 
that light has a particle nature, and that particles have a wave nature. A review of these 
experiments will help us understand the nature of quantization and wave-particle duality. These 
fundamental ideas lead to current theories of chemical bonding. 
 
23.1 A Brief Review of Classical Mechanics 
 

   The classical view of matter and light clearly distinguishes particle-like and wave-like 
behavior. Particles are discrete, localized, and countable. Particles are characterized by their 
mass, charge, momentum, and kinetic energy. Particle properties are measured using collision-
type experiments. At the beginning of the 20th century, electrons, protons, atoms, and molecules 
were considered particles. In contrast, waves are delocalized or “fuzzy.” Waves are characterized 
by their frequency, wavelength, and amplitude. Wave properties are measured using interference 
experiments, including wave length determination using diffraction experiments. 
 

Newton’s Laws of Motion:  The momentum of a particle, p, is given by the mass of the particle, 
m, and the velocity, v. In one-dimension, p = mv and the kinetic energy is given by Ek = ½ mv2 = 
p2/2m. The trajectory of a particle, x(t), is calculated using Newton’s Second Law by 
determining the forces that act on the particle: 
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 p(t) = m 
dx(t)

dt    F = ma = m 
dv(t)

dt  = m 
d2x(t)

dt2  = 
dp(t)

dt     23.1.1 
 

This last equation can be read as: “a force is necessary to change the momentum of the particle.” 
For example, integrating these last equations for a constant force gives: 
 

 p(t) = p(to) + F (t – to)       (F(x) = F) 23.1.2 
 

where p(to) is the initial momentum at time to. A free particle experiences no forces, and 
therefore has a constant momentum and a constant velocity. Integrating p(t) = m (dx/dt) for a 
constant momentum gives: 
 

 x(t) = x(to) + p/m (t–to) = x(to) + v(t–to)    (F(x) = 0) 23.1.3 
 

where x(to) is the initial position at time to. A free particle experiences straight-line motion with 
constant velocity. The force is the negative of the gradient of the potential energy: 
 

 F = – 
dV(x)

dt           23.1.4 
 

where V(x) is the potential energy of the system as a function of position. The equations of 
motion for a classical particle are completely deterministic. If the position of the particle is 
known at some initial time, to, and the potential energy function is known, then the trajectory of 
the particle, x(t), is exactly determined for all future times. Please review the treatment of the 
classical harmonic oscillator, Addendum 8.12, for an important example of integrating Newton’s 
Laws of motion. We will refer to the classical harmonic oscillator repeatedly in this and 
subsequent chapters. Newton’s Laws of motion can also be expressed in a rearranged form that is 
often convenient, giving the classical Hamiltonian. 
 
 
 
 
 
 
 
 
 (a).     (b). 
 

Figure 23.1.1:  (a). A force is necessary to change the momentum of the particle. (b). A force 
is determined by the negative of the gradient of the potential energy function. The slope is 
positive at the chosen point, giving a force in the negative direction. 

 
 

The Classical Hamiltonian is the Sum of the Kinetic and Potential Energy:  The total energy of a 
particle is the sum of the kinetic and potential energies: 
 

         Ek           +   V(x)               = E 
      ½ mv2       +   V(x)               = E 

        p
2
/2m      +   V(x)               = E       23.1.5 

 kinetic energy + potential energy = total energy 
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The total energy of the particle is conserved, is constant, in the absence of external forces. The 
sum of the kinetic energy and the potential energy is called the classical Hamiltonian, 
H = Ek + V. The kinetic energy is often alternately represented in other texts as T and the 
Hamiltonian is then H = T + V. Consider, again, the free particle example. For a free particle, 
V(x) = 0, and then using Eq. 23.1.5: 
 

 p2
/2m = E giving:   p = 2mE     (V(x) = 0) 23.1.6 

 

The momentum is constant. The trajectory of the particle is then given by Eq. 23.1.3, as before. 
The classical Hamiltonian form of the equations of motion is an important foundation for the 
development of quantum mechanics. 
 

Energy is Often Expressed in Electron Volts:  Electron volts are convenient units for expressing 
energies. An electron volt, eV, is the amount of kinetic energy that is gained by an electron that 
is accelerated by a potential difference of one volt. Consider a beam of electrons that is produced 
by a hot filament under vacuum, Figure 23.1.2. A grid placed in the path of the electrons with a 
positive potential attracts the electrons and imparts kinetic energy to the electrons given by the 
product of the charge on the electron and the applied potential, Ek = eV. The kinetic energy 
expressed in electron volts is just equal to the acceleration potential. For example, in an electron 
microscope, electrons are accelerated by a potential of 5,000-400,000 V, giving an electron 
energy of 5,000 eV – 400,000 eV. To convert eV to joules, remember that 1 J = 1 C V, where the 
unit of charge is the coulomb, C. The charge of an electron is -e, with e = 1.60217733x10-19 C. 
The conversion from eV to joules is given by: 
 

 1 eV = e (1V) = 1.60218x10-19 C (1V) = 1.60218x10-19 J    23.1.7 
 

The conversion constant is just the charge on the electron. For a mole of electrons: 
 

 1 eV = 1.60218x10-19 J(6.0221367x1023 mol-1)(1 kJ/1000 J) = 96.485 kJ mol-1 23.1.8 
 
 
 
 
 
 
 
 

Figure 23.1.2:  An electron volt is the kinetic energy of an electron after acceleration across a 
potential of 1V. 

 
 
Waves Show Oscillatory Behavior:  The frequency, , and wave length, , of a wave are related 
by  = v, where v is the propagation velocity of the wave. For light in vacuum the propagation 
velocity is c, giving  = c. The classical formulation of wave-like motion gives the energy 
carried by the wave as proportional to the amplitude of the wave squared, E  A2, as we showed 
for the harmonic oscillator, Eq. 8.13.15. Consider throwing a rock into a pond and then 
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observing the displacement of the surface of the water at some fixed spot, Figure 23.1.3. A plot 
of the displacement, up and down, as a function of time is given by: 
 

 f(t) = A sin 2t or f(t) = A cos 2t     23.1.9 
 

with  the frequency in cycles per second and A the amplitude. The frequency is also often 
expressed in radians per second,  = 2. Both “cycles” and “radians” are unitless; we include 
them only for our convenience. The units of frequency are s-1 for both  and . If the initial 
observation catches the wave with zero displacement, then the sine form of Eq. 23.1.9 is 
appropriate. If the initial observation catches the wave at its maximum displacement, then the 
cosine form is appropriate. The cosine and sine forms differ only by a 90 phase shift. 
 
 
 
 
 
 
 
 
 
 
 

Figure 23.1.3:  Time dependence of the wave displacement at a fixed point. Wave behavior is 
either sinusoidal or cosinusoidal depending on the phase of the wave. 

 
 
 
 
 
 
 
 
 
 

Figure 23.1.4:  Distance dependence of the wave displacement at a fixed time. The frequency 
and wave length are related by  = v, where v is the propagation velocity. 

 
 
Now consider taking a “snap shot” of the wave at a fixed time, Figure 23.1.4. A plot of the 
displacement as a function of distance is given by: 
 

 f(x) = A sin(2 x/) or f(t) = A cos(2 x/)     23.1.10 
 
Waves can be Represented by Complex Waveforms:   The differential equation representing the 
classical harmonic oscillator, for a particle with mass m and force constant k, is: 
 

 m 
d2x(t)

dt2  = –k x(t)        (8.13.1) 
 

x 

f(x) f(t) = A sin 2x/ 

x 

f(x) f(t) = A cos 2x/ x 

t 

f(t) 
f(t) = A sin 2t 

t 

f(t) 
f(t) = A cos 2t x 



5 
 

In Sec. 8.13, we chose the sinusoidal solution for the classical harmonic oscillator, Eq. 8.13.9, 
x(t) = A sin[(k/m)½t]. We should also have considered the cosine based solution for 
completeness: x(t) = A cos[(k/m)½t]. Both the sine and cosine forms are equivalent solutions, 
differing only by a 90 phase shift in the start of observation. Both the sine and cosine forms are 
particular solutions to the differential equation. The general theory of differential equations 
specifies that the general solution to a differential equation is found by taking a linear 
combination of all the particular solutions that have the same energy. The general form of a 
linear combination of two functions f(x) and g(x) is: 
 

 h(x) = a f(x) + b g(x)         23.1.11 
 

with a and b constants. Remembering to find all possible particular solutions for wave-like 
differential equations can be bothersome. For differential equations of the form of Eq. 8.13.1, a 
convenient linear combination that guarantees that both sine and cosine solutions are considered 
with equal weighting is given by: 
 

 f(t) = cos 2t + i sin 2t = ei2t       23.1.12 
 

where i = -1. Eq. 23.1.12 is a specific example of the Euler identity. We can develop a useful 
visual representation of the Euler identity. Consider a vector rotating around the unit circle with 
angle  = 2t radians with respect to the real-axis, Figure 23.1.5. The horizontal axis is the real 
axis and the vertical axis is the imaginary axis. The real projection of the rotating vector is 
maximal at  = 0 and the imaginary projection is maximal at /2, which represents the 90 phase 
shift between the cosine and sine terms. For a review of complex variables, please consult 
Addendum 23.9. In short, i is treated just like any other number, with i2 = -1. The ability of 
complex exponential functions, ei, to keep track of phase relationships will be very useful. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23.1.5: The Euler identity automatically accounts for cosine and sine relationships for 
wave-like behavior. The projection of a vector rotating on the unit circle onto the real axis is 
the cosine component and the projection onto the imaginary axis is the sine component. 

 
 

   Light is an electromagnetic wave, which is composed of an oscillating electric field and, 
perpendicular to the electric field, an oscillating magnetic field, Figure 23.1.6a. Light is produced 
by the oscillatory motion of charged particles. For example, charging a plastic rod with static 
electricity and then waving the rod up and down creates a vertically oscillating electric field and 
the acceleration of the electrons creates an oscillating magnetic field, perpendicular to the plane 
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of vibration, creating light. For many purposes the interaction of the electric field of light with 
matter is orders of magnitude larger than the interaction with the magnetic field, and to a good 
approximation we often need only consider the electric component. Light spans the 
electromagnetic spectrum from radiowaves to -rays, the only difference being the frequency, 
Figure 23.1.6b. Each region of the electromagnetic spectrum has utility in probing molecular 
systems. The corresponding types of spectroscopy are included in the figure. 
 
 

(a). 
 
 
 
(b). 
region:           -ray 
               X-ray 
            visible UV 
         infrared 
         terahertz 
                   microwave 
     radio 
                |    |             |    |             |    |             |    |             |  

 (s-1):106 108       1010  1012        1014  1016        1018  1020       1022 

:  3. m       3. cm 300 m        3m 30 nm        0.3 nm 3 pm  
E (cm-1):         0.333 33.3        3330. 333,000 cm-1 
E (eV):     0.0041        0.414 41.4        4.14 keV 414. keV 
E (kJ mol-1):         0.004  0.4         40  4000        4x105 4x107 kJ mol-1 
spectroscopy: NMR      rotational vibrational electronic atomic   nuclear 
 

Figure 23.1.6: (a). An oscillating charge creates electromagnetic radiation. (b). The 
electromagnetic spectrum. The visible region is from 750 to 390 nm, 4.0x1014 to 7.9x1014 s-1, 
or 1.65-3.18 eV. The ultraviolet, UV, region extends to 10 nm, 3x1016 s-1, or 124 eV. 

 
 

   Experimental methods to determine wave properties are based on interference phenomena. The 
double slit diffraction experiment is an excellent example. Consider a monochromatic, phase 
coherent light source illuminating two slits with spacing d. If the light rays emerging from the 
two slits are in phase, constructive interference results, giving a bright spot on a screen placed 
beyond the double slits, Figure 23.1.7. 
 

 
 
 
 
 
 
 
 
 

Figure 23.1.7: Bragg’s Law of diffraction. Constructive interference results if the path length 
difference is an integer number of wave lengths. 
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   If the exit angle of two beams is , then the requirement for constructive interference is the 
bottom wave must travel an integer number of wave lengths further than the top beam: 
 

 n = d cos           23.1.13 
 

This relationship is called Bragg’s Law. If the difference in path length between the two beams 
is an integer multiple of /2, then destructive interference cancels the intensity of the two 
superimposed beams. The constructive and destructive interference of waves is an important 
phenomenon in describing microscopic behavior. 
 
23.2 Steps Toward Quantum Theory 
 

   In 1897, J. J. Thomson discovered that the electron was a fundamental particle in matter 
carrying a negative charge, -e, and mass, me, which is small relative to the mass of an atom: 
 

 e = 1.60217733x10-19 C 
 me = 9.1093897x10-31 kg 
 

However, the concept of an atom wasn’t widely accepted until the scattering experiments of 
Ernest Rutherford in 1911 showed that matter was composed of atoms with a dense positive 
nuclear core surrounded by electrons. Concurrent with the unraveling of the structure of the 
atom, the nature of the allowed energies states of matter and the nature of light led to a profound 
shift in the understanding of the microscopic world. The discovery of quantized energy levels, 
the particle nature of light, and the wave nature of particles led to the development of quantum 
mechanics by Werner Heisenberg in 1925 and Erwin Schrödinger in 1926. These experiments 
provide a window into the microscopic world and understanding these results helps us to learn 
how to think quantum mechanically.1 

 
Matter Has Quantized Energy Levels:   The first clue that matter has quantized energy levels 
came from the failure of the Equipartition Theorem, Sec. 8.9. A vibration contributes less than 
the expected equipartition value of R to the heat capacity, because molecular vibration energy 
levels are quantized. The emission of light from hot bodies also proved critical in determining 
the quantum nature of microscopic phenomena. 
   All objects emit light. The detailed emission spectrum of an object is dependent on geometry 
and surface characteristics. However, if light emitted from a small cavity in a substance is 
observed, the spectrum is identical for all substances at a given temperature. The emission 
spectrum from a small cavity is called blackbody radiation, Figure 23.2.1. Consider a metal as 
an example. The application of the Equipartition Theorem to the electrons oscillating on the 
surface of the cavity predicts that the emission intensity should increase with decreasing 
wavelength. To resolve the discrepancy with experiment, Max Planck suggested in 1901 that the 
energy levels for the electron oscillators in the walls of the cavity are quantized. Planck’s Law 
gives the energy levels as multiples of h, where  is the frequency of oscillation of the electron 
and h is Planck’s constant: 
 

 En = n h h = 6.6260755x10-34 J s 

 En = n ħ ħ = h/2 = 1.054573x10-34 J s      23.2.1 
 

with the angular frequency  = 2. Planck’s constant divided by 2 often occurs in equations 
and is given a special symbol, ħ, read as “h bar.” The variable n is called a quantum number, 
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because the value is restricted to an integer. Using the Boltzmann distribution, Eq. 8.10.5, to 
determine the number of electron oscillators in a given vibrational energy state gives the 
intensity of the emitted blackbody radiation per unit wavelength increment as: 
 

 I() = 
2hc2

5  






1

ehc/kT – 1
        23.2.2 

 

This distribution is plotted in Figure 23.2.1. Even at 600 K, negligible light is emitted in the 
visible region of the spectrum, < 750 nm. As temperature increases the maximum emission wave 
length shifts to the blue and the intensity increases. The total light flux emitted from the 
blackbody is the integral of Eq. 23.2.2 over the entire spectrum, which gives the Stefan-
Boltzmann equation, J =  T4, Eq. 11.2.16. Subsequent to Planck’s discovery, Einstein applied 
the idea of quantized energy levels and Eq. 23.2.1 to calculate the heat capacity of a solid. The 
discovery of the quantized nature of the energy levels in matter was a critical step in the 
development of quantum mechanics. Even more striking was the discovery that light, which was 
generally recognized as a wave phenomena, can also behave as a particle. 
 

 
Figure 23.2.1: The spectrum for blackbody emission. As temperature increases the maximum 
emission wave length shifts to the blue and the total intensity increases. 

 
 
Light Has a Particle Nature – Photoelectric Effect:  In a photoelectric effect experiment, a metal 
is placed in an evacuated container, Figure 23.2.2. Electrons are ejected from the metal when 
light of sufficient energy shines on the metal surface. The electrons are detected by measuring 
the current flowing through a circuit that includes the metal as the cathode and a collection 
anode. The kinetic energy of the emitted electrons is determined by placing a charged grid 
between the metal surface and the collection anode. The voltage on the grid is increased until the 
photoelectron current drops to zero. At that voltage, which is called the stopping potential, the 
electrons no longer have sufficient kinetic energy to overcome the electrostatic repulsion with 
the grid. Given the charge on the electron, -e, and the stopping potential, Vs, the kinetic energy of 
the photoelectrons is given by: 
 

 Ek = ½ mv2 = eVs         23.2.3 
 

The following observations are made concerning the frequency and intensity of the light source. 
 

1. Current flows only if the light has greater than a minimum frequency, o. 
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2. Current is finite and instantaneous even if the light intensity is small. 
3. Kinetic energy of ejected electrons is not a function of the intensity. 
4. Current is proportional to intensity = A2, where A is the amplitude of the exciting light. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 23.2.2: The photoelectric effect: a monochromatic light source illuminates a metal 
surface in a vacuum. An ammeter measures the photoelectron current between the 
photocathode and anode. The kinetic energy of the ejected electrons is measured by 
determining the potential placed on an intermediate grid that just prevents the flow of 
electrons to the anode. 

 
 
Einstein’s explanation of these observations provides the clearest introduction into the quantum 
nature of the microscopic world. The classical expectation is that the photoelectron current 
should be proportional to the intensity of the light, with the intensity = A2. However, even very 
bright light sources fail to produce photoelectrons if the light frequency is less than a critical 
value, o. Einstein reasoned that the energy of light must be related to the frequency by E = h, 
which is in concordance with the Planck expression for particle energy quantization. For this 
result to be true, Einstein argued that the light must act as a particle, rather than as a wave. The 
particles of light are called photons, and the energy of a photon depends only on the frequency. 
This realization is supported by the second observation. Classically, the results of wave action 
build over time, like the erosion of beach sands during storms. However, the photocurrent is 
instantaneous upon turning on the light source, even for light with low intensity. The 
instantaneous current suggests that a photoelectron is ejected immediately upon absorption of a 
light particle; the action of the light does not need to accumulate over time. The light is not 
acting as a diffuse source of energy; rather the energy is supplied as an impulse as the photon 
collides with the metal surface. Light behaves as a discrete quantum of energy. Observation 3 is 
also consistent with the particle nature of light; the energy arrives in a single quantum packet that 
supplies the energy necessary to remove the electron from the metal. The energy necessary to 
remove an electron from the metal surface is called the work function, . Any residual energy 
from the photon not needed to overcome the work function of the metal is released as kinetic 
energy of the ejected electron, Ek: 
 

 E = h = Ek +  = ½ mev2 +     ( in joules)  23.2.4 
 

The units of the work function are joules. The work function can also be expressed in volts, , 
and then the energy necessary to remove the electron from the metal is given as e: 
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 E = h = ½ mev2 + e      ( in volts)  23.2.5 
 

The minimum frequency corresponds to the photon supplying just enough energy to remove the 
electron from the metal surface with no additional kinetic energy, Emin = ho = . 

   The energy of a photon can also be expressed in eV: 
 

 E = h/e       (E in eV)  23.2.6 
 

We can also directly express the energy of light in terms of the wave length, using  = c/, and 
the wavenumber, defined as ~  1/ (also see Sec. 8.10 and Eq. 8.10.2): 
 

 E = hc/ = hc~          23.2.7 
 

   Einstein’s explanation of the photoelectric effect is in stark contrast to classical expectations 
and is worthy of careful thought as a means of understanding quantized phenomena. Light 
certainly acts as a wave, as it does in diffraction experiments. But, light also acts like a particle, 
as it does in the photoelectric effect. This behavior is called wave-particle duality. In essence, 
the expectations of the experimenter determine the type of behavior. If an experiment is run that 
is designed to measure wave-like properties, then light behaves as a wave. If an experiment is 
run that is designed to measure particle-like properties, then light behaves as a particle. The 
energy of the light is confined to a short particle-like impulse with energy E = h. 
   The intensity of light is determined by the number of photons emitted from the source per unit 
time. The intensity of the light must have some effect on the photocurrent, and observation 4 is 
consistent with classical expectations. However, the quantum explanation is that the intensity of 
the light determines the number of photons striking the surface in a given time interval. A greater 
number of photons per unit time produces a greater number of electrons per unit time, which is 
measured as the current. Einstein’s theory for the photoelectric effect is an important window on 
the quantized nature of the microscopic world. The photoelectric effect also has important 
practical utility. The photoelectric effect using metals such as cesium that have low work 
functions is the basis for sensitive light detectors called phototubes and photomultipliers. If the 
sample is a gas instead of a metal, the experiment is called photoelectron spectroscopy, PES, or 
specifically using light in the ultraviolet region of the spectrum, ultraviolet photoelectron 
spectroscopy, UPS. UPS is an important spectroscopic technique that allows the ionization 
potentials of atoms and molecules to be accurately determined. Fundamentally, however, the 
wave-particle duality of light raises the question if particles can also have wave-like behavior. 
 
 
              

Example 23.2.1: 
Calculate the energy in eV and kJ mol-1 of a 500.0 nm blue-green photon. Calculate the energy in 
kJ mol-1 of a 40.0 keV electron in a scanning electron microscope, SEM. Are these energies 
sufficient to break chemical bonds? 
 
 
Answer:  For the blue-green photon in eV: 
 E = h/e = hc/ (1 eV/1.6022x10-19 J) 
    = 6.626x10-34 J s(2.998x108m s-1)/500.0x10-9 m (1 eV/1.6022x10-19 J) = 2.480 eV 
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and in kJ mol-1: 
 E = NA hc/ 
    = 6.022x1023 mol-1(6.626x10-34 J s)(1 kJ/1000 J)(2.998x108m s-1)/500.0x10-9 m 
    = 239.3 kJ mol-1 
 

This energy is on the low end of typical single chemical bonds. 
For the electrons in a SEM: 
 E = 40.0x103 eV(96.485 kJ mol-1/1 eV) = 3859. kJ mol-1 
 

which suggests that a sample will suffer considerable damage from the electron beam. In a SEM, 
damage increases with acceleration potential, since much of the beam energy is absorbed. 
 
              

 
 
Particles Have a Wave Nature:  If light can act as a particle, then a photon must carry 
momentum and have a corresponding effective mass. Louis de Broglie in 1924 reasoned that if 
the energy of a wave is E = h, then the Einstein relationship for mass and energy equivalence, E 
= mc2, can be used to find the effective mass and momentum of a photon. Setting the two 
equations for the energy equal to each other gives: 
 

 E = h = mc2          23.2.8 
 

Solving for the effective mass of a photon, using  = c/, and calculating the momentum of a 
photon from p = mv = mc gives: 
 

 m = 
h
c2  = 

h
c

  p = 
h
        23.2.9 

 

This last relationship is called the de Broglie relationship. The result shows that light carries 
momentum. As the wave length of light decreases, the frequency increases, and the momentum 
increases. The de Broglie relationship is fundamentally important because it gives the 
relationship between the particle-like property of momentum and the wave-like property of wave 
length. The de Broglie relationship is a direct representation of wave-particle duality. de Broglie, 
most importantly, also reasoned that if light can act as a particle, then particles can also act like 
waves. de Broglie postulated that p = h/ applies equally to light and particles; giving particles a 
corresponding wave-like nature. However, direct experimental confirmation of the wave nature 
of particles is necessary. 
   Clinton Davisson and Lester Germer in 1927, while working on vacuum tube based 
communications technology, discovered the wave-like nature of particles by accident. The 
modern version of their experiment is the determination of electron diffraction patterns using a 
transmission electron microscope. A rough schematic of the experiment is given in Figure 
23.2.3. A hot filament produces a beam of electrons that are accelerated across a set potential to 
give a known kinetic energy. The beam of electrons strikes a thin crystalline sample. The 
predicted scattering pattern based on particle-like behavior is a diffuse pattern with decreasing 
intensity with increasing scattering angle. The experimental scattering pattern, however, is a 
regular array of spots of high intensity that mirror the symmetry of the arrangement of atoms in 
the crystal lattice. The pattern is the result of wave-like interference. Analysis of the spot-to-spot 
spacing as a function of the kinetic energy of the electrons confirms that electrons diffract 
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according to Bragg’s Law with a wave length given by the de Broglie relationship, p = h/. This 
experiment conclusively shows that both light and particles have a wave-particle duality.  
 
 
 
 
 
 
 
            Particle-like  Experimental- 
             prediction     wave-like 
 

Figure 23.2.3: Electron diffraction in a transmission electron microscope. The example 
diffraction pattern is for a face-centered cubic metal with the (111)-face perpendicular to the 
electron beam. Electron diffraction is used to characterize nano-structured materials. 

 
 
Electronic Structure of the Atom:   The emission spectrum of hydrogen atoms, which have been 
excited in a high voltage electric discharge, provides a direct determination of the quantum 
nature of hydrogen-atom energy levels, Figure 23.2.4. The transitions in the visible region of the 
spectrum are called the Balmer series. 
 

 
Figure 23.2.4: Balmer series: the hydrogen atom visible emission spectrum. Log intensity is 
plotted because the transitions have large differences in intensity. 

 
 
The electronic emission and absorption spectra of all atoms in the gas phase consist of series of 
transitions at discrete, well-defined frequencies. The narrow range in wave length of each 
transition directly reflects the quantized energy levels for the electronic states of the atom. The 
absorption and emission spectra of an atom are unique and diagnostic for each element. Many 
elements were discovered through their electronic spectra. The first five emission lines for 
atomic hydrogen in the visible region of the spectrum are 656.3 nm, 486.1 nm, 434.1 nm, 
410.2 nm, and 397.0 nm with additional weak lines ending at the convergence limit at 364.6 nm. 
A series of hydrogen lines also occur in the UV, called the Lyman series, and in the infrared, 
called the Paschen series. Additional series lie further in the infrared. Johannes Rydberg 
empirically determined that the emission lines for the hydrogen atom fit the expression: 
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 ~ = h 






1

n2
f
 – 

1
n2 i

     for hydrogen, 1H,    h = 109677.5 cm-1   23.2.10 

 

For the Lyman series, nf = 1, for the Balmer series, nf = 2, and for the Paschen series, nf = 3. The 
value for ni is also restricted to an integer, which is greater than nf. The variables ni and nf are, 
accordingly, quantum numbers. Rydberg had no theoretical justification for the expression, and 
the first-principles derivation of the Rydberg formula was one of the major goals of early 
quantum theory. 
   Neils Bohr used Planck’s idea of quantized energy levels and the de Broglie relationship to 
develop the first useful model for the hydrogen atom. The nucleus of the hydrogen atom is just a 
proton, Z = 1. The electrostatic attraction of the electron and the nucleus is given by the 
Coulomb potential, Eq. 8.8.18, with the charge on the nucleus Ze and the charge on the electron 
-e, in vacuum: 
 

 V(r) = – 
Ze2

4o r
     with  o = 8.85419x10-12 J-1 C2 m-1    23.2.11 

 

which is plotted in Figure 8.8.7 and where o is the vacuum permittivity. Treating the electron as 
a wave with wave length given by p = h/, Bohr suggested that the electron occupies stable 
orbits only at specific radii. The specific radii allow the constructive overlap of the electron 
waves when placed around the circumference of the orbit, Figure 23.2.5a. Constructive overlap 
gives a fixed energy stationary-state. For constructive overlap, the circumference must be an 
integer multiple of the wave length: 
 

 2r = n          23.2.12 
 

where n is called the principle quantum number, with the range n = 1, 2, 3,…. 
 
 
 
 
 
 
 
 
 
 
          Constructive interference 

   (a).    Stationary-state           Non-stationary  (b). 
 

Figure 23.2.5: (a). Constructive overlap restricts the radius of the orbital to fixed values. 
(b). Energy level diagram for the hydrogen atom: the zero in energy is the atomic 
dissociation limit. Balmer transitions are to nf = 2. The first two Balmer transitions and the 
transition that corresponds to the convergence limit, 2, are shown. 

 
 
The lowest energy state, which is called the ground state, is for n = 1. Using the de Broglie 
relationship in the form =h/mev gives the allowed values of the radius as: 
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 r = 
nh

2mev
  or   mevr = nħ       23.2.13 

 

where v is the velocity of the electron, and mevr is the angular momentum of the electron around 
the nucleus. The requirement of constructive overlap results in the quantization of the angular 
momentum and energy of the electron. The energy of each orbital is given by: 
 

      En = – 
e4me

3222
o ħ2 



Z2

n2  = – 109737.2 cm-1 



Z2

n2  = – 13.606 eV 



Z2

n2  = – 1312.7 kJ mol-1 



Z2

n2  

            23.2.14 
 

where Z = 1 for the hydrogen atom. The radius of the first-Bohr orbit, for the n = 1 ground state, 
is given the symbol ao: 
 

 ao = 
4oħ
mee2  = 0.5291772 Å        23.2.15 

 

Electronic transitions are given by the difference in energy for the initial and final energy levels: 
 

 E = Ef – Ei = – 13.606 eV Z2 






1

n2
f
 – 

1
n2 i

      23.2.16 

 

For absorption, the energy of the photon is absorbed by the atom, Ephoton = h = E. For 
emission, the energy is released from the atom, Ephoton = h = –E. Eq. 23.2.16 matches the 
Rydberg formula and provides an explanation for the narrow emission lines in the Balmer 
spectrum by quantization of the energy states of the atom. Bohr’s theory suffers from several 
fundamental problems and has been replaced by theory based on the Schrödinger equation. 
However, the Bohr approach helped lay the ground work for quantum theory. 
   The wave-like nature of fundamental particles is the key insight into the underlying principles 
of the microscopic world. In particular, the de Broglie relationship applies to electrons in atoms 
and molecules and is the foundation for the Schrödinger equation. The Schrödinger equation is 
the basis of the quantum theory of atomic and molecular structure. 
 
 
              

Example 23.2.2: 
Why don’t we normally observe the wave behavior of particles in our daily experience? 
Calculate the de Broglie wavelength of (a)  a 70.0 kg human traveling at 2.00 km hr-1 and (b)  a 
13.6 eV electron, which is the electron kinetic energy for the ground state of the hydrogen atom. 
 
 
Answer:  (a). The momentum of the human is: 
 

 p = 70.0 kg(2.0x103 m hr-1)(1 hr/3600 s) = 38.89 kg m s-1 
 

The de Broglie relationship, p = h/, gives the effective wavelength: 
 

  = h/p = 6.6261x10-34 J s/38.89 kg m s-1 = 1.70x10-35 m 
 

which is too small to give macroscopically observable wave-like interactions. 
(b).  The momentum and wave length of the 13.6 eV electron is: 
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 p = 2mEk = [2(9.109x10-31 kg)(13.6 eV)(1.6022x10-19 J/1 eV)]½ = 1.992x10-24 kg m s-1 
 

  = h/p = 6.6261x10-34 J s/1.992x10-24 kg m s-1 = 3.33x10-10 m = 3.33 Å 
 

which is on the order of the size of the hydrogen atom. An electron acts as a wave in an atom. 
 
              

 
 
23.3 Free Particle Motion 
 

The Schrödinger Equation:   We begin by considering a one-dimensional system, in the x-
direction, and later we will build to 3-dimensions. Consider a particle, such as an electron, 
moving in the x-direction under the influence of the potential energy, V^  (x). The Schrödinger 
equation provides a fundamental description of the properties of chemical systems given the 
total energy of the system, E, and the wave function, (x). The wave function contains all the 
information necessary to describe the system and is the analytical representation of the particle 
wave. The wave function is the solution to the Schrödinger equation: 
 

   – 
ħ2

2m 
d2(x)

dx2  +  V^ (x) (x)      =  E (x)      23.3.1 
 

 kinetic energy + potential energy = total energy 
 

where m is the mass of the particle. The first term gives the kinetic energy of the particle, the 
second term gives the potential energy, and the sum of the kinetic energy and the potential 
energy gives the total energy of the particle, E. The classical kinetic energy is p2/2m, which bears 
a resemblance to the kinetic energy term in both the division by 2m and the correspondence of 
the square of the momentum with the appearance of a second derivative. The wave function, as a 
solution of the Schrödinger equation, automatically obeys the de Broglie relationship, p = h/. 
Schrödinger postulated the equation rather than deriving the relationship from other principles. 
The validity of the equation is established by applying the equation to many different physical 
systems and showing the results to be consistent with experimental evidence. In the same way, 
our understanding of the equation is best guided by considering a series of simple examples. We 
first consider a free particle. 
   A free particle is a particle that experiences no potential energy, V^ (x) = 0. The Schrödinger 
equation then reduces to: 
 

 – 
ħ2

2m 
d2(x)

dx2  = E (x)       (V(x) = 0) 23.3.2 
 

This equation has the same analytical form as the classical harmonic oscillator, Eq. 8.13.1; the 
second derivative of the function returns the same function, multiplied by a constant. Both cos kx 
and sin kx, with k a constant, satisfy this relationship. The most convenient way to consider both 
forms of the solution is to use the Euler identity (see Eq. 23.1.12): 
 

 (x) = cos kx + i sin kx = eikx        23.3.3 
 

Using this form of the wave function, taking the derivatives gives: 
 

 
d(x)

dx  = ik eikx  and  
d2(x)

dx2  = (ik)2 eikx = – k2 eikx   23.3.4 
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Substitution of the second derivative into the left side of Eq. 23.3.2 and (x) = eikx into the right 
side and subsequently dividing both sides of the equation by eikx gives: 
 

 – 
ħ2

2m (– k2 eikx) = E eikx and then E = 
ħ2 k2

2m   (V(x) = 0) 23.3.5 
 

Eqs. 23.3.5 show that (x) = eikx is a valid solution of the Schrödinger equation for a free 
particle. We next need to explore the physical validity of this analytic result. Is this solution to 
the Schrödinger equation consistent with the de Broglie relationship? The constant k is 
determined by the total energy; solving for k from Eqs. 23.3.5 gives: 
 

 k = 
2mE
ħ           23.3.6 

 

A free particle has no potential energy; the total energy is the kinetic energy, E = Ek = p2/2m, 
giving p = 2mE¯¯¯¯. The numerator of Eq. 23.3.6 is the momentum: 
 

 k = 
p
ħ  or rearranging  p = h-k      23.3.7 

 

The constant k is called the wave vector, because for 3-dimensional problems k is a vector, one 
component for each of the x, y and z directions: p = ħk


 = i


ħkx + j


ħky + k


ħkz. Comparing the 

general form for wave-like behavior from Eq. 23.1.10 with the free-particle wave function, Eq. 
23.3.3, shows the relationship of k to the effective wave length of the particle: 
 

       cos(2/ x)   or   sin(2/ x) 
               giving:   k = 2/   23.3.8 
 (x) = eikx = cos kx      +     i sin kx  
 

Substituting k = 2/ into Eq. 23.3.7 gives the de Broglie relationship: 
 

 p = ħk = ħ
2
  = 

h
2 

2
  = h/        23.3.9 

 

This last result shows that solutions to the Schrödinger equation obey the de Broglie relationship, 
which is necessary for the wave function to be consistent with experiment. 
 
 
              

Example 23.3.1: 
A superposition of two wave functions is given by a linear combination. Show that the 
superpositions 1 = ½ (eikx + e–ikx) and 2 = 1/2i (e

ikx – e–ikx) are real. What are the momenta 
and energies of the two components of the superpositions? 
 
 
Answer:  For eikx, the momentum is in the forward direction, p = ħk. For e–ikx, the momentum is 
in the backward direction, p = –ħk. The given superpositions have equal weight combining a 
wave with forward momentum and a wave with backward momentum: 
 

 1 = ½ (eikx + e–ikx)   2 = ½i (eikx – e–ikx) 
  direction:         direction:        
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The forwards and backwards waves have the same energy; they are degenerate. Using the Euler 
identity for each term and noting the signs (e.g. Eq. 23.9.10) gives: 
 

 1 = ½ (eikx + e–ikx) = ½ [cos(kx) + i sin(kx) + cos(–kx) + i sin(–kx)] 
         =  ½ [cos(kx) + i sin(kx) + cos(kx) – i sin(kx)] = cos kx 
 

and 2 = 1/2i (e
ikx – e–ikx) = 1/2i [cos(kx) + i sin(kx) – cos(–kx) – i sin(–kx)] 

      =  1/2i [cos(kx) + i sin(kx) – cos(kx) + i sin(kx)] = sin kx 
 

The linear combination of two degenerate solutions to the Schrödinger equation is also a 
solution: both cos kx and sin kx satisfy the free-particle Schrödinger equation, Eq. 23.3.2. The 
two superpositions show how to convert complex wave functions to real wave functions. 
              

 
 
Kinetic Energy is Given by the Curvature of the Wave Function:  In the Schrödinger equation, 
the kinetic energy of a particle is determined by the second derivative of the wave function. The 
second derivative is called the curvature. The curvature determines the “wiggliness” of the 
function. As the curvature of the wave function increases, the “wiggliness” of the wave function 
increases, the frequency of the wave function increases, and the kinetic energy increases. 
Combining these observations with Eqs. 23.3.7-23.3.9 also shows that as the curvature increases, 
the momentum increases and the wave vector increases, Figure 23.3.1. 
 
 
 
 
 
 low curvature       high curvature 

 low kinetic energy        Ek = – 
ħ2

2m 
d2(x)

dx2   high kinetic energy 

 low momentum              Ek = p2/2m  high momentum 
 low wave vector               p = ħk   high wave vector 
 large wave length               p = h/   small wave length 
 

Figure 23.3.1: Curvature is a measure of the kinetic energy, momentum, and wave vector. As 
the momentum increases, the wave length of a particle decreases. 

 
 
   The curvature or “wiggliness” of a wave function provides a convenient visual interpretation of 
the Schrödinger equation. Consider a particle that experiences a constant potential V^  (x) = V. 
The Schrödinger equation is: 
 

 – 
ħ2

2m 
d2(x)

dx2  + V (x) = E (x)     (V(x) = V) 23.3.10 
 

Subtracting the potential energy term from both sides of the equation gives: 
 

  – 
ħ2

2m 
d2(x)

dx2  = (E – V) (x)     (V(x) = V) 23.3.11 
 

  
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which is in the same form as the free particle except that k is given by: 
 

 k = 
2m(E – V)

ħ        (V(x) = V) 23.3.12 
 

where (E – V) is the kinetic energy. The wave function for a free particle with energy E is shown 
in Figure 23.3.2a. The kinetic energy of a particle with a positive potential is decreased giving a 
longer wavelength, Figure 23.3.2b. A conventional depiction of wave functions is to 
superimpose the wave function onto a plot of the potential energy function, with the zero for the 
wave function amplitude plotted at the value for the total energy of the particle. 
 

 
 
 
 
 
 
 
 
         (a).    (b).    (c). 
 

Figure 23.3.2: (a). Wave function for a free particle shown superimposed on the energy level 
diagram. (b). Wave function for a particle in a constant positive potential. (c). Wave function 
for a linear potential. 

 
 

   For a potential energy that decreases linearly with distance, the wave function has a long wave 
length in regions of high potential energy and short wave length in regions with low potential 
energy, Figure 23.3.2c. The wave function is more “wiggly” in regions with lower potential 
energy. The harmonic oscillator wave functions show the same dependence of the curvature on 
the potential energy, Figure 23.3.3. 
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Figure 23.3.3: Harmonic oscillator wave functions have high curvature in regions with low 
potential energy. The quantum number for vibration is . 
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The Square of the Wave Function Determines the Probability of Finding a Particle at a Given 
Point:   The wave function is a complete description of the system. The wave function represents 
the particle and determines the energy and spatial extent. However, a more visual interpretation 
of the wave function is often helpful in understanding the solutions to the Schrödinger equation. 
In the Einstein interpretation of the photoelectric effect, the intensity of a light wave determines 
the number of photons emitted from the light source per unit time. The larger the intensity of 
light, the larger is the probability of finding a photon. The intensity of the wave is given by the 
square of the amplitude. Max Born noted the similarity between light and particle waves and 
postulated that the probability of finding a particle in an interval [x, x+dx] is given by the square 
of the wave function: 
 

 P(x) dx = 2
n dx     ( is real valued)  23.3.13 

 

For complex valued wave functions, * must be used, where * is the complex conjugate of 
the wave function: 
 

 P(x) dx = *
nn dx     ( is complex valued)  23.3.14 

 

For a real valued wave function, *
n = n, and Eqs. 23.3.13 and 23.3.14 are equivalent. For 

example, consider the ground state of the harmonic oscillator, Figure 23.3.3a. The square of the 
wave function is maximal at the equilibrium bond length, ro. On successive observations of the 
bond length, the most probable bond length is the equilibrium bond length. Longer or shorter 
bond lengths are also found, but with lower probability, Figure 23.3.4a.  
 
 
 
 
 
 
 
 
 
 
 
 (a). Harmonic oscillator ground state  (b). Hydrogen atom ground state, 1s-orbital. 
 

Figure 23.4.4: (a). “Snap shots” of the harmonic oscillator are superimposed. The most 
probable bond length is the equilibrium bond length, ro. (b). “Snap shots” of the position of 
the electron in the ground state of the hydrogen atom are superimposed. The result is called a 
“dot density” diagram. The electron is most likely near the nucleus. 

 
 
   The probability of finding a free particle at a specified position is given using Eq. 23.3.3 as: 
 

 * = e–ikx eikx dx = dx      (free particle) 23.3.15 
 

The probability of finding the particle is constant for all values of x from – to . The position 
of a free particle is completely unknown. As another example, consider the wave function for the 
ground state of the hydrogen atom, the 1s-orbital: 
 

 ro 

                                          
                             
                          
                                     
                                    
                            

                                          
                             
                                   
                                 
                                  
                             

r 

2(r) 

2(r) = 
1
 

Z
ao

3
 e-2Zr/ao 
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 (r) = 
1


 



Z

ao

3/2

 e-Zr/ao            (H atom) 23.3.16 

 

with Z the charge on the nucleus, ao the Bohr radius, and r is the radial distance between the 
nucleus and the electron, r = x2+ y2 + z2. The wave function decreases exponentially with 
distance from the nucleus, giving a spherical electron distribution. The probability of finding the 
electron in a small interval around the position x, y, and z is given by the wave function squared: 
 

 P(x,y,z) dx dy dz = 2(r) dx dy dz = 
1
 



Z

ao

3

 e-2Zr/ao dx dy dz        (H atom) 23.3.17 
 

The square of the wave function decreases exponentially with increasing distance from the 
nucleus, Figure 23.3.4b. The wave function is fuzzy and delocalized, but the probability is large 
for short distances and small for long distances. The electron in a hydrogen atom can be many 
meters away from the nucleus, however at vanishingly small probability. The electron is most 
likely found near the nucleus of the atom, because of the Coulomb attractions of the positive 
charge of the nucleus and the negative charge of the electron. The interpretation of the square of 
the wave function as the probability of finding the particle is called the Born interpretation. 
Treating the square of the wave function as a probability places several important restrictions on 
the wave function. 
   The integral over the probability of finding the particle over all space is unity, since the total 
probability of finding the particle should be 100%. This requirement is called normalization. In 
one-dimension, the wave function must be normalized by: 
 

 


-


 2

n dx = 1    if n is real    or    


-


 *nn dx = 1 if n is complex 23.3.18 

 

The integral limits are over all the allowable values of the position of the particle, “over all 
space.” The integrals in Eqs. 23.3.18 are called the normalization integrals. To be 
normalizable, the wave function must be: 
 

 (1). Finite 
 (2). Continuous 
 (3). Single-valued 
 (4). Square integrable 
 

In essence, these analytical stipulations require the wave function to be “smooth.” Examples of 
the disallowed behaviors are shown in Figure 23.3.5. 
 
 
 
 
 
 
 
 

 no infinite values         no discontinuities    no multiple values 
 

Figure 23.3.5: The wave function must be finite, continuous, single-valued, and square 
integrable.  

x x x 




 

f(x) f(x) f(x) 
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(1). The wave function must be finite across the allowable range of positions, because a 
probability can’t exceed 1. (2). The wave function must be continuous, because a discontinuity is 
unphysical for wave-like behavior. The probability of a particle being at positions x and (x + 
0.00001 Å) should vary smoothly with x and not make big jumps; wave phenomena are 
smoothly varying. (3). The wave function must be single valued, because the probability can’t 
have more than one value at a given position. The probability of a particle being at x = 1.00 Å 
can’t be both 10% and 80%. (4). The wave function must be square integrable, because the 
normalization integral would otherwise be undefined. This last requirement is the weakest 
analytical stipulation for the “smooth” behavior of the wave function. 
 
 
              

Example 23.3.2: 
Which of the following functions cannot be a valid wave function over the specified range? (a). 
e–kx with 0 x , (b). e–kx with –  x  , (c). eim for m not an integer with 0    2. 
 
Answer:  (a).  = e–kx with 0 x  is acceptable since the function is finite, continuous, and 

square integrable: 0
 2 dx = 0

 e–2kx dx = 1/2k. (b). However, with –  x  ,  = e–k(–) is 

infinite, so it is not acceptable over the wider range. (c). For m non-integer,  = eim is not single 
valued. At  = 0 and 2, for example, the function should have the same value: eim0 = eim2. 
However, eim0 = 1, so eim2 = cos 2m + i sin 2m is equal to one only if m is an integer. 
 
              

 
 
23.4 Confined Particle Motion 
 

   Our next example of the application of the Schrödinger equation is to consider a particle that is 
confined in a potential energy well. This example is important because it introduces all of the 
important concepts that govern quantum phenomena. Confined particle motion helps us to learn 
how to think quantum mechanically.1 The confined particle is a useful model for the electronic 
transitions in conjugated molecules and is a model for the translational degree of freedom of 
atoms and molecules. 
 
The Model for a Confined Particle is the Particle in a Box:   Consider a potential energy function 
that is zero inside a box of length a and infinite at the edges of the box, Figure 23.4.1a.  
 
 
        C=C–C=C–C=C 
        |  a        | 
 
 
 (a).      (b). 
 

Figure 23.4.1: (a). The particle in a box model has a potential energy of zero inside the box 
and infinite at the walls. (b). The -electrons in a conjugated molecule can be modeled as a 
particle in a box, where the length of the molecule is the box length a. 

V(x) 

x 

  

0 a 

m  
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The resulting model is called the particle in a box. The particle may be an electron, an atom, or 
a molecule. One interesting application of the particle in a box is the description of the motion of 
the -electrons in a conjugated molecule, Figure 23.4.1b.    Because the potential energy is 
infinite at the walls of the box, the electron has zero probability of being found outside the box. 
As a consequence the position of the particle is restricted to 0  x  a. Within this range of 
positions the potential energy is zero and the Schrödinger equation reduces to: 
 

 – 
ħ2

2m 
d2

 dx2  = E        (0  x  a) 23.4.1 
 

This equation is equivalent to the free-particle case, and the possible wave functions are A sin kx 
and B cos kx, with k a constant and amplitudes A and B. The derivatives are: 
 

 for A sin kx :   
d
dx  = A k cos kx    

d2
dx2  = – A k2 sin kx   23.4.2 

 

 for B cos kx :   
d
dx  = – B k sin kx    

d2
dx2  = – B k2 cos kx 

 

Taking the sine possibility first, substitution of A sin kx into both sides of Eq. 23.4.1 gives: 
 

 – 
ħ2

2m (– A k2 sin kx ) = E A sin kx     (0  x  a) 23.4.3 
 

Solving for the energy and the constant k gives: 
 

 E = 
ħ2k2

2m   k = 
2mE
ħ      (0  x  a) 23.4.4 

 

Since the potential energy is zero for a particle in a box, the total energy is all kinetic energy. 
Repeating the last three steps with the cosine possibility gives the same result. Since both the 
sine and cosine terms are particular solutions to the Schrödinger equation, the general solution is 
the linear combination: 
 

 (x) = A sin kx + B cos kx      (0  x  a) 23.4.5 
 

Eqs. 23.4.4 are the same as for the free particle, Eqs. 23.3.5 and 23.3.6. The difference for a 
confined particle is that we need to apply boundary conditions at the walls of the box, (0) = 0 
and (a) = 0, since the particle has zero probability of being outside the box. 
   Consider first the boundary condition at the left-hand boundary, (x) = 0. Since the cos(0) = 1, 
the value of B in the general solution must be zero. Only the sine term is a valid solution for the 
problem. At the right-hand boundary, x = a: 
 

 (a) = A sin ka = 0       (0  x  a) 23.4.6 
 

The value of k is restricted to integer multiples of /a as shown in Figure 23.4.2a: 
 

 k = nπ/a        (0  x  a) 23.4.7 
 

where n is a quantum number. The particle in a box wave function is then: 
 

  = A sin



nπx

a        (0  x  a) 23.4.8 
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 (a).      (b). 
 

Figure 23.4.2: (a). The values of cos  and sin  on the unit circle; sin  = 0 at n radians. 
(b). Particle-in-a-box wave functions for the three lowest energy states. The particle-in-a-box 
has a zero point energy, E1 = h2/8ma2. 

 
 
For example, for n = 1 setting x = a gives kx = ka = π so that the wave progresses through one-
half cycle, Figure 23.4.2b. For n = 2 at x = a, kx = ka = 2π, and the wave progresses through one 
full cycle. Substituting Eq. 23.4.7 into the energy expression, Eqs. 23.4.4, gives the allowed 
energy levels for the particle in a box as: 
 

 En = 
ħ2π2 n2

2ma2  = 
h2 n2

8ma2         23.4.9 
 

The energy is quantized with the quantum number n, with n = 1, 2, 3,…, . The quantum 
number is commonly given as a subscript for the energy, En. A useful visual way of judging the 
kinetic energy of a particle is to note the curvature. As the “wiggliness” or curvature of the wave 
function increases, the kinetic energy increases. The curvature can be easily determined by 
counting the number of nodes for the wave function, Figure 23.4.2b. As the number of nodes 
increases, the curvature or the “wiggliness” increases, and the energy of the particle increases. 
For the ground state, with n = 1, there are no nodes in the middle of the box. The number of 
nodes is n–1 for the particle in a box. Notice that the energy levels diverge, become further apart, 
as n  . The energy levels are closer together for larger mass particles or for longer length 
boxes. 
   The quantum number for the particle in a box cannot be zero, because if n is zero, the wave 
function vanishes for all values of x, (x) = A sin(0) = 0. If n = 0, a particle has no kinetic 
energy, the wave function has no curvature, and the wave function vanishes; there is no particle. 
A non-zero ground state energy is called the zero-point energy. The zero-point energy for the 
particle in a box is E1. At zero degrees K, the particle is in the lowest possible energy state. Even 
at absolute zero the system has translational energy. This result is the reason that we describe 
absolute zero as, not the absence of all motion, but rather the absence of all quenchable motion. 
   One remaining step is to determine the constant A. The constant A is called a normalization 
constant and is determined by ensuring the probability of finding the particle over all space is 
unity. The integral limits for the particle in a box can be reduced to 0 to a, since the wave 
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function is zero outside the box. Substituting the Eq. 23.4.8 into the normalization integral, Eq. 
23.3.18, gives: 
 

 


-


 2 dx = A2 




0

a

 sin2





nπx

a  dx = 1     (0  x  a) 23.4.10 

 

This integral can be put into general form using the substitution: 
 

 y = 
nπx

a     and then    
dy
dx = 

nπ
a         23.4.11 

 

Solving these two equations for x and dx gives, respectively: 
 

 x= 
a

nπ y    and    dx = 
a

nπ dy        23.4.12 
 

For the integral limits, when x varies from 0 to a, then y varies from 0 to nπ. Substituting Eqs. 
23.4.12 into Eq. 23.4.10 changes variables to give: 
 

 A2 



a

nπ  0

nπ
 sin2(y) dy = 1        23.4.13 

 

Integral tables give the integral as:   sin2(x) dx = – ½ sin x cos x  + ½ x : 
 

 A2 



a

nπ  (– ½ sin y cos y + ½ y |nπ
0  = 1       23.4.14 

 

Note that sin(0) = 0 and sin(nπ)=0. Evaluating the result at the endpoints gives: 
 

 A2 



a

nπ  



nπ

2  = 1 and then A = 


2

a

½
     23.4.15 

 

Substituting the normalization constant into Eq. 23.4.8, the normalized wave function is: 
 

 n(x) = 


2

a

½
sin



nπx

a          23.4.16 
 

The wave function contains all the information necessary to describe the system. For example, 
what is the most probable position of the particle in a box? The most probable position 
corresponds to the maximum of the squared wave function, d2/dx = 0. For the ground state, the 
most probable position is half-way through the box, xmp = 0.5 a. The particle in a box is an 
excellent example of many of the fundamental issues in quantum mechanics. 
 
The Solutions to the Schrödinger Equation are Orthogonal:   The set of solutions to the 
Schrödinger equation have another important property, they are mutually orthogonal. Two 
solutions of the Schrödinger equation, m and n, are orthogonal if the integral: 
 

 


-


 *

mn dx = 0         23.4.17 

 

is equal to zero. The integral is called the orthogonality integral. Notice the similarity to the 
normalization integral, Eq. 23.3.18. Orthogonality can be interpreted as that the two wave 
functions are as “different as possible” from each other. 
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   An analogy with vectors may be helpful. The orthogonality integral is analogous to the dot 
product for vectors. The dot product for two vectors uv is equal to zero if the vectors are 
perpendicular to each other. In this specific sense, two perpendicular vectors are as different 
from each other as possible. The normalization integral is analogous to the square of the vector 
length, vv. A normalized vector has unit length. A complete set of orthogonal and normalized 
vectors are called a basis set. The unit vectors i


, j


, and k


 are an example of a basis set in three-
Cartesian dimensions. Any general solution to a vector problem may be expressed as a linear 
combination of the basis set. In the same way, any general solution to a quantum mechanical 
problem may be expressed as a linear combination of the orthogonal and normalized solutions to 
the Schrödinger equation. Wave functions that are both orthogonal and normalized are said to be 
orthonormal. The complete set of solutions to the Schrödinger equation for a given problem are 
said to be the orthonormal basis set for the problem. The orthonormal solutions to the 
Schrödinger equation are a complete representation that span the entire range of possible 
solutions. The particle in a box is an excellent example. 
 
 
              

Example 23.4.1 The Particle in a Box Wave functions are Orthogonal 
Show that the particle in a box wave functions are orthogonal. 
 
 

Answer:  Consider two different solutions, m and n. Substituting the wave functions from Eq. 
23.4.16 into the orthogonality integral gives: 
 

 


-


 *

mn dx = 


2

a  0

a
 sin



mπx

a  sin



nπx

a  dx 

 

Using the substitution y = x/a gives dy/dx = /a or dx = a/ dy with the range 0 to : 
 

 


-


 *

mn dx = 


2

a 


a
  0

 sin(my) sin(ny) dy   (m and n = integers) 

 

Tables give this integral as zero. However, a visual inspection is quite instructive. For example, 
consider m = 2 and n = 1, Figure 23.4.3. 2 is odd about the midpoint of the integral and 1 is 
even; the product is odd about the midpoint giving a vanishing integral. 
 
 
 
 
 
 
 

Figure 23.4.3: A pictorial representation of the orthogonality integral for m = 2 and n = 1 
shows the integral vanishes. The product of the two wave functions is taken point-by-point. 
The two solutions are as “different as possible.” 
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   The particle in a box also provides a useful model for the absorption spectra of conjugated 
molecules, which is helpful in learning how to think quantum mechanically. 
 
Confined Particles are a Model for the Spectra of Conjugated Molecules:   Electrons in 
delocalized -electron systems can be modeled as particles in a box. Consider 1,3,5-hexatriene, 
Figure 23.4.4. The length of the box is approximated as the terminal carbon to carbon distance. 
The average C-C bond length in conjugated molecules is roughly 1.39 Å, giving the box length 
as a = 5(1.39 Å) = 6.95x10-10 m. Each sp2 hybridized carbon atom donates one electron to the -
system, for a total of 6 electrons. Remember from General Chemistry that the Pauli Exclusion 
Principle specifies that each orbital can hold two electrons, one spin up and one spin down. 
Three orbitals are then required. The highest occupied molecular orbital, or HOMO, corresponds 
to n = 3 for hexatriene, Figure 23.4.4. The lowest unoccupied molecular orbital, or LUMO, is 
then n = 4. The lowest energy electronic transition is to promote an electron from the HOMO to 
the LUMO. For hexatriene the HOMO to LUMO transition is ni = 3 to nf = 4, which is 
symbolized as 43 for absorption. The energy difference for the transition, using Eq. 23.4.9, 
determines the maximum absorption wave length: 
 

 E = h = hc/ = Ef – Ei = 
h2

8ma2 (nf
2 – ni

2)      23.4.18 

 
 
 
        C=C–C=C–C=C 
        |  a        | 
 
 
 
 
 

Figure 23.4.4:  Particle in a box energy level diagram for the -system in 1,3,5-hexatriene. 
The lowest energy electronic transition in absorption is from the HOMO to the LUMO. 

 
 
              

Example 23.4.2: Absorption Spectra of Conjugated Polyenes 
Determine the energy difference in J, kJ mol-1, cm-1¸ and eV for the lowest energy electronic 
transition in 1,3,5-hexatriene. Determine the maximum absorption wave length. 
 
 
Answer:  The 43, HOMO to LUMO transition for 1,3,5-hexatriene using Eq. 23.4.18 occurs at: 
 

 E = hc/ = E4 – E3 = 
h2

8ma2 (42 – 32) = 
h2

8ma2 (7) 

        = 
(6.626x10-34 J s)2

8(9.109x10-31 kg)(6.95x10-10 m)2 (7) = 8.731x10-19 J 
 

 E NA (1 kJ/1000 J) = 526. kJ mol-1 
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 ~ = E/hc = 
8.731x10-19 J

6.626x10-34 J s(2.998x108 m) (1 m/100 cm) =  44000 cm-1 

 E/e = 5.46 eV 
 

  = hc/E = 6.626x10-34 J s(2.998x108 m s-1)/8.73x10-19 J  (1 nm/1x10-9 m) = 228. nm 
 

This transition is in the UV region of the spectrum. The literature value is significantly redder at 
258 nm, giving a large error for the theoretical model. However, the accuracy of the model 
improves for longer chain lengths. A better prediction often results if the box length is assumed 
to extend ½-bond length beyond the terminal carbons. While the particle in a box model for the 
absorption spectra of conjugated systems is superseded by more advanced theories, the simple 
model provides a good didactic example. 
              

 
 

The Schrödinger Equation is an Eigenvalue Equation:   The left side of the Schrödinger 
equation, Eq. 23.3.1, is the quantum mechanical analog of the classical Hamiltonian. The 
Schrödinger equation in one-dimension is represented in terms of the quantum mechanical 
Hamiltonian, H ^, as: 
 

 H ^ n(x) = En n(x)   with    H ^ = – 
h-2

2m 
d2

 dx2 + V^ (x)    23.4.19 
 

The Hamiltonian acting on the wave function gives the total energy of the particle. The 
Schrödinger equation is in the general form of an eigenvalue equation. The term “eigen” in 
German means “the same.” The action of the Hamiltonian on the wave function returns the same 
wave function multiplied by a constant. The constant is the eigenvalue. The set of solutions to an 
eigenvalue equation are called the eigenvectors, eigenfunctions, or eigenstates of the system. 
The allowed wave functions are the eigenfunctions of the Hamiltonian and the corresponding 
eigenvalues are the energies. The eigenstates of the system are also called stationary states; in 
the absence of an external perturbation, systems in a stationary state remain in that state. 
   The general form of an eigenvalue equation for the observable property o^  is: 
 

 o^       =    o           23.4.20 
      observable        
 

The eigenvalue corresponds to the observed value for the property. For the specific case of the 
Hamiltonian, the observed property is the total energy. The momentum of the particle can also be 
calculated from the wave function. The kinetic energy is given using E^ k  = – (ħ2/2m) d2/dx2. 
Solving for the momentum using p = 2mEk gives: 
 

 p^   = 
ħ
i  

d
dx           23.4.21 

 

For example, the free particle is an eigenfunction of the momentum. The free particle wave 
function is  = eikx; substitution into Eq. 23.4.21 gives: 
 

  p^   = 
ħ
i  

d(eikx)
dx  = ħk eikx        23.4.22 

 

Substituting back in for the wave function  = eikx  simplifies Eq. 23.4.22 to give: 
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  p^   = ħk           23.4.23 
 

Notice the correspondence that is established by the last equation, as based on Eq. 23.4.20: 
 

  p^   = ħk  
    

  p^   =  p             23.4.24 
 

The momentum is a constant, the eigenvalue, with p = ħk. Not only is the free particle wave 
function an eigenfunction of the Hamiltonian, the free particle is also an eigenfunction of the 
momentum. See General Pattern  6, Sec. 6.3, for further information on eigenvalue equations. 
 
Observable Properties are Eigenvalues or Expectation Values:   The wave function provides the 
information necessary to determine all the observable properties of the system. Two possibilities 
arise for the determination of observable properties. For some observable properties, the 
measurements are exactly the same for each repetition. For example, the energy of a particle in a 
box is exactly the same for each measurement, because the energy is the eigenvalue of the 
Hamiltonian. For some properties, each measurement is different and average values must be 
determined. For example, each time the position of a particle in a box is measured, a different 
result is found and the average position must be determined, <x>. Averages in quantum 
mechanical problems are called expectation values. For a given property, o^ , the expectation 
value is defined by the integral over all space: 
 

 <o> = 
-


 * o^   dx

-


 * dx
         23.4.25 

 

The order in the integrand is important for the general case, and will be discussed further in Sec. 
23.6. For a normalized wave function, the denominator is equal to one. For the average position 
of the particle in a box, o^  = x, giving the expectation value as <x> =  * x  dx, for a 
normalized wave function. Substitution of Eq. 23.4.16 into the expectation integral gives the 
average position as: 
 

 <x> = 


-


 


2

a

½
sin



nπx

a  x 


2

a

½
sin



nπx

a  dx      23.4.26 

                 average x             
 

For this example, the integral simplifies to: 
 

 <x> =  


-


  x 



2

a  sin2





nπx

a  dx       23.4.27 

          average x                 2 dx = probability distribution 
 

This last result shows that the expectation value is in the same form as any statistical average, a 
form not specific to quantum mechanics. The probability distribution, for a real wave function, is 
2 dx. The integral in Eq. 23.4.27 is converted to standard form with the same substitution that 
we used for the normalization integral, Eqs. 23.4.12: 
 

 <x> = 


2

a  




a

n

2

 


0

n
 y sin2(y) dy       23.4.28 
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Integral tables give the integral as:   x sin2(x) dx = 
x2

4  – 
x sin 2x

4  – 
cos 2x

8   : 
 

 <x> = 


2

a  




a

n

2

 



y2

4  – 
y sin 2y

4  – 
cos 2y

8  
n

0
      23.4.29 

 

Note that sin(0) = sin(2n) = 0 and cos(0) = cos(2n) = 1. Evaluating the integral at the limits: 
 

 <x> = 




2a

n22  



n22

4  = 
a
2        23.4.30 

 

The average position is half-way through the box, independent of quantum number. In the next 
chapter, we will see that expectation values of the position are useful for determining the size of 
atomic orbitals. For a second example, the momentum of the particle in a box must also be 
determined using expectation values. 
 
 
              

Example 23.4.3: Momentum for the Particle in a Box 
Determine the expectation value of the momentum of the particle in a box. 
 
 
Answer:  Using the normalized wave function gives -

  * dx = 1 and the expectation value of 

the momentum is: 
 

 <p> = 
-


 * p^   dx

-


 * dx
 = 

-


 * 



ħ

i  
d 
dx   dx   (normalized ) 23.4.31 

 

For the particle in a box, Eqs. 23.4.16 and 23.4.21 give: 
 

 p^   = 
ħ
i  

d
dx  = 

ħ
i  


2

a

½
 
d sin(nπx/a)

dx  = 
ħ
i  


2

a

½
 



n

a  cos



nπx

a     23.4.32 
 

Combining Eqs. 23.4.31 and 23.4.32, the expectation value of the momentum is: 
 

 <p> = 
ħ
i  


2

a  



n

a  0

a
 sin



nπx

a  cos



nπx

a  dx      23.4.33 
 

Using the substitution y = nx/a as before gives: 
 

 <p> = 
ħ
i  


2

a  



n

a 



a

n  


0

n
 sin y  cos y dy = 0      23.4.34 

 

because:  0
n sin y cos y dy = [ ½ sin2y | 0

n = 0. The average momentum of the particle is zero. 
              

 
 

   The particle in a box wave functions are analogous to classical standing waves. A standing 
wave is interpreted as the constructive interference of a wave with forward momentum and a 
wave with negative momentum, Example 23.3.1. Because the particle in a box wave function is 
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not an eigenfunction of the momentum, each observation of the momentum gives a different 
result. The average momentum is zero because the wave is moving forwards half the time and 
backwards half the time. However, for a free particle, the wave function is an eigenfunction of 
the momentum. An expectation value is not required to find the momentum of a free particle. 
Repeated observations of the momentum of a free particle give the same exact result, ħk. 
   The distinction between eigenvalues and expectation values has several implications. 
Eigenvalues can be determined exactly, but is there an inherent uncertainty in observations 
represented by expectation values? 
 
Particles are Fuzzy – Position and Momentum Can’t Both be Determined with High Precision:   
Particles act as waves in the microscopic world. Waves by their nature are diffuse, so the 
position of a particle is necessarily uncertain. The uncertainties in the position and momentum of 
a particle are governed by the Heisenberg Uncertainty principle, which for one-dimension is: 
 

 x px  ħ/2  or equivalently    x px  ħ/2     23.4.35 
 

where the standard deviations of the position and the momentum are x and px, or x and px, 
respectively. The average values are given by the expectation values, x̄ = <x> and p̄ = <p>. The 
standard deviations are defined using the expectation values of the squared deviations of the 
position and momentum from their average values: 
 

 x = <(x – x̄)2>½ = (<x2> – <x>2)½   and   px = <(p – p̄)2>½ = (<p2> – <p>2)½ 23.4.36 
 

The expectation values are determined using the integrals in Eq. 23.4.24. 
   Consider the free particle as a first example. The momentum of a free particle is exactly 
known, px = ħk, giving px = 0. The uncertainty in the position must then be infinite, since 
solving Eq. 23.4.35 for the uncertainty in the position gives x  ħ/(2px). The position of a free 
particle cannot be determined, in agreement with Eq. 23.3.15. The free particle is an extreme 
case; most systems have a finite uncertainty for both position and momentum. A Gaussian 
distribution, such as the ground state of the harmonic oscillator, is an example (Figure 23.3.3a). 
 
 
              

Example 23.4.4: Heisenberg Uncertainty for a Gaussian Distribution 
Find px for a Gaussian distribution, Figure 23.4.3. Verify that the Heisenberg uncertainty 
relationship holds for this distribution. A Gaussian wave function with standard deviation x is: 

 (x) = N e–x2/4x
2 with the normalization constant  N = 

1
(2)¼ x

½ 

 
Figure 23.4.3: Gaussian probability distribution, 2(x), with positional uncertainty x. 

 

0

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3


2
(x

)

x

x



31 
 
 

Answer:  Inspection of the shape of the Gaussian distribution shows that the average momentum 
is zero, <p> = 0, because the distribution is symmetrical about zero. The remaining task is to find 
<p2> to substitute into Eq. 23.4.35 for the uncertainty in the momentum. The wave function is 
normalized, giving the expectation value of the squared momentum as: 
 

 <p2> = -


 *p^ 2  dx      ( normalized) 23.4.37 
 

The derivative of the wave function is: 
d
dx  = N 





–2x

4x
2  e–x2/4x

2 = 




–x

2x
2     23.4.38 

(see General Pattern 5 for an introduction to the Gaussian distribution and its derivatives). 
Using Eq. 23.4.21, the first application of p^  on the wave function gives: 
 

 p^   = 
ħ
i  

d
dx  = 





–ħ

2ix
2  x        23.4.39 

 

The second application of p^ , using the product rule and Eq. 23.4.38, then results in: 
 

 p^ 2  = p^p^ = 
ħ
i  

d 
dx



–ħ

2ix
2  x = 





ħ2

2x
2  





x 
d
dx  +  

dx
dx  

                                = 




ħ2

2x
2 



–x2

2x
2 + 1   = – ħ2





x2

4x
2 – 

1
2x

2       23.4.40 
 

Substitution into Eq. 23.4.37 gives:   <p2> = –ħ2 N2




-







x2

4x
4 – 

1
2x

2  e–x2/2x
2 dx  23.4.41 

Luckily the integrals are standard forms and available from integral tables: 
 

 


0


x2 e–x2/2x

2 dx = 
2x

2

4  (2)½x  


0


 e–x2/2x

2 dx = 
1
2 (2)½x   23.4.42 

 

Substitution of the integrals into Eq. 23.4.41 gives: 
 

 <p2> = – 2 ħ2 




1

(2)½ x
 






2x

2

16x
4 (2)½x – 

1
4x

2 (2)½x  = 
ħ2

4x
2   23.4.43 

 

Using <p> = 0, the standard deviation of the momentum is then px = (<p2> – <p>2)½ = ħ/2x. 

The product of the uncertainty of the position and momentum is correspondingly: 
 

 x px = x(ħ/2x) = ħ/2        23.4.44 
 

as required by the Heisenberg uncertainty relationship. This result is the ideal limit; experimental 
measurements give higher uncertainty. For the harmonic oscillator, x is the displacement with 
x = r – ro . Several end of the chapter problems cover the uncertainties for the particle in a box. 
 
              

 
 
   The energy of a given state of an atom or molecule and the lifetime of that state are also 
governed by an uncertainty relationship: 
 

 E t  ħ/2          23.4.45 
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where E is the uncertainty in the energy of the state and t is the lifetime of the state. States 
with a short lifetime have a larger energy uncertainty. The uncertainty in the energy of the state 
determines the width of the corresponding transition in an absorption or emission spectrum, 
Figure 23.4.4. The uncertainty broadening of spectral transitions is called lifetime broadening. 
The line width given by the uncertainty relationship is called the intrinsic spectral width. 
Motion makes additional large contributions to spectral broadening near room temperature. 
 
 
 
 
 
 
 
 
 
 

Figure 23.4.4: A finite lifetime for an electronic state gives a finite line width in the 
absorption or emission spectra. An absorption transition from the ground state, gs, is 
illustrated. 

 
 
              

Example 23.4.5: Heisenberg Uncertainty for Spectroscopic Transitions 
Determine the line width of the fluorescence spectrum for a transition at 253. nm with an excited 
state lifetime of 2.50 ns. Give the spectral width in cm-1 and nm. 
 
 
Answer:   A transition at 253. nm corresponds to ~ = 1/ (1 m/100 cm) = 39,500 cm-1. Using Eq. 
23.4.45, the excited state lifetime of 2.50 ns corresponds to an uncertainty in wave numbers of: 
 

 ~ = E/hc  
ħ

2hct
 = 

1
4ct

 (1 m/100 cm-1)       23.4.46 

       = 
1

4 2.998x108 m s-1(2.50x10-9 s)
 (1 m/100 cm) = 1.062x10-3 cm-1 

 

The spectral line width is a very small fraction of the transition energy. This spectral width 
corresponds to a frequency uncertainty of  = c ~ = 32 MHz. To determine the spectral width 
in nm, consider transitions that are one standard deviation above and below the wave length of 
maximum absorption, + and – , respectively. The spectral width in wavenumbers and in nm are 
related by Eq. 23.2.7: 
 

 E/hc = ~ = 




1

–
 – 

1
+

 = 






+ – –

+–
  








2
max

      23.4.47 
 

The approximation in the denominator, +  –  max, is generally valid because the intrinsic 
line width is a small fraction of the transition energy or wave length. Solving Eq. 23.4.47 for , 
the spectral width in nm is given using Eq. 23.4.46 as: 
 

E 

gs 

excited 
state 

E  ħ/2t 

0 

Eex – Egs = hc~ 
A

 

~  
(c

m
-1

) 
~(cm-1) 

A 
E  ħ/2t 

absorption spectrum 
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  = ~ 2
max (100 cm/1 m)(1 nm/1x10-9m)      23.4.48 

      = 1.062x10-3 cm-1(253.x10-9 m)2 (100 cm/1 m)(1 nm/1x10-9m) = 6.80x10-6 nm 
 

The intrinsic line width makes a small contribution to the experimental spectral width. The 
intrinsic line width is negligible except at temperatures near absolute zero K where motions are 
quenched. 
 
              

 
 
Zero Point Energy is a Result of the Uncertainty Relationship:   The particle in a box has finite 
uncertainties for both position and momentum. The observed momentum is different for each 
replicate measurement with an average of zero. The momentum of the particle cannot always be 
zero, because the momentum would be precisely known. The standard deviation of the 
momentum for the particle in a box is given by px = (<p2>)½. The expectation value of the 
square of the momentum cannot be zero. The energy of the particle in a box is given by 
Ek = <p2>/2m, which is then necessarily non-zero. The result is the energy for the lowest energy 
state is non-zero. The lowest energy is the zero point energy. The occurrence of a zero point 
energy is a direct result of the Heisenberg uncertainty relationship. Another surprising quantum 
mechanical phenomenon related to the uncertainty relationship is the ability of particles to tunnel 
into and through potential energy barriers. 
 
23.5  Tunneling – Particles Can Penetrate Into Barriers 
 

The Tunneling Probability Depends on the Barrier Height and Width:   The continuity 
requirements of the Born interpretation and the uncertainty relationship are manifested in the 
ability of particles to penetrate into regions where the total energy of the particle is less than the 
potential energy. Barrier penetration, with E < V, is not possible in classical theory. Consider a 
particle with total energy E incident from the left on a potential energy barrier of height V, 
Figure 23.5.1a. The position of the boundary is assigned as x = 0. The overall solution is 
composed of three parts, the incident wave with amplitude a, incident, a reflected wave with 
amplitude b, reflected, and a transmitted wave inside the barrier with amplitude c, transmitted.  
 
 
 
 
 
 
 
 
 
 
 (a).             (b). 
 

Figure 23.5.1: (a). The particle probability extends into the region where E < V. In this 
classically forbidden region the wave function is exponentially damped. V = 2 eV and 
E = 1 eV for an electron. (b). For a narrow barrier some probability remains at the second 
boundary. Free particle motion holds in regions I and III with the same wave length. 
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In region I, the incident and reflected waves experience no potential energy. In region I, the 
Schrödinger equation corresponds to a free particle that has an oscillatory wave function with 
wave vector k, from Eq. 23.3.6: 
 

 k = 
2mE
ħ       incident = a eikx      reflected = b e–ikx  (Region I)      (23.3.6) 

 

The wave function for region I is the superposition of the incident and reflected wave: 
 

 I = incident + reflected = a eikx + b e–ikx    (Region I) 23.5.1 
 

In region II, the transmitted wave experiences potential energy V. The potential is constant 
giving a wave vector k', from Eq. 23.3.12: 
 

 k' = 
2m(E – V)

ħ                  (Region II)   (23.3.12) 
 

However, since E < V, the square root is of a negative number. Factoring out -1 gives: 
 

 k' = i 
2m(V – E)

ħ  = i where    = 
2m(V – E)

ħ   (Region II) 23.5.2 
 

In region II inside the barrier, the wave function is then an exponentially decreasing real 
function: 
 

 transmitted = c eik'x = c e–x      (Region II) 23.5.3 
 

Region II is called the classically forbidden region. At the boundary the wave function must be 
continuous and smooth:  
 

    at x = 0:    a eikx + b e–ikx = c e–x       or a + b = c  (continuous) 23.5.4 
 

To be smooth the slopes must match at the boundary:2 

 

          
d 
dx (a eikx + b e–ikx) = 

d 
dx (c e–x)      or iak – ibk = – c (smooth) 23.5.5 

 

Solving Eq. 23.5.4 for b = c – a, substitution into Eq. 23.5.5, and solving for c gives: 
 

 c = 




2ik

ik –   a          23.5.6 
 

The particle has a finite amplitude in the classically forbidden region. The particle can penetrate 
into the potential energy barrier, which is quite unexpected from our everyday experience (you 
can’t insert your hand into a solid wall, for example). Penetration into the barrier results because 
the wave must vary smoothly and the position of the particle is uncertain at the boundary. The 
uncertainty extends into the classically forbidden region. 
   In many practical cases, the potential energy barrier has a finite width. If the width of the 
barrier is sufficiently thin, the transmitted wave has a small but significant amplitude at the end 
of the barrier. The particle can then propagate freely in the potential free region beyond the 
barrier, region III-Figure 23.5.1b. This process is called tunneling, which is a purely quantum 
mechanical phenomenon. Matching of the wave function amplitudes and slopes at both sides of 
the barrier gives the probability of tunneling of the particle through the barrier of thickness L as: 
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 T = 






(eL – e–L)2

16(1 – )  + 1
-1

        23.5.7 
 

where the ratio of the total energy of the particle to the barrier height is  = E/V. The tunneling 
probability increases as the mass of the particle decreases and the energy of the particle 
increases. The probability also increases as the barrier thickness decreases. Tunneling may seem 
bizarre, but the phenomenon is widespread. 
   The copper or aluminum metal in electrical conductors is covered with a thin metal oxide film. 
Metal oxides are good insulators. Electrons can travel from one wire to another by tunneling 
through the insulating oxide barrier. Many enzymes have a metal cofactor that is oxidized or 
reduced in electron transfer reactions. Redox processes in enzymes occur by electron tunneling 
through the insulating layer of amino acids that exist between the solution and the metal center. 
Proton transfer reactions are faster than predicted by classical theories; protons are sufficiently 
light to tunnel through thin potential energy barriers. Deuterium tunneling is slower than proton 
tunneling, because of the larger mass, which is one source of the deuterium isotope effect. The 
hydrogen over-potential at metal electrodes in electrochemical cells is caused by the slow rate of 
electron tunneling from solution to the metal electrode. Electron tunneling is the basis of 
scanning tunneling microscopy, STM, which is capable of imaging individual atoms. 
 
 
              

Example 23.5.1: Tunneling and Internal Rotation 
Methyl groups have a low torsional barrier to internal rotation, Figure 8.8.5c. The barrier to 
internal rotation in ethane is roughly 3.3 kJ mol-1 for a single H atom and the barrier width can be 
estimated as 1.00 Å. Calculate the tunneling probability for a proton across the torsional barrier 
at 298.2 K. The average energy is then E  RT = 2.48 kJ mol-1. 
 
 
Answer:  The ratio of the energy to the barrier height is  = 2.48/3.3 = 0.7515. Using Eq. 23.5.2 
gives ; for a proton mp = 1.673x10-27 kg: 
 

  = 
2m(V – E)

ħ  =  
2(1.673x10-27 kg )(3300 J mol-1 – 2480 J mol-1)(1 mol/6.022x1023)

1.055x10-34 J s-1  

  = 2.023x1010 m-1 
 

giving for L = 1.00 Å = 1.00x10-10 m: 
 

 e–L = e–2.023x1010(1x10-10) = 0.1323 and 
(eL – e–L)2

4  = 13.81 

 

The tunneling probability is given by Eq. 23.5.7: 
 

 T = 






(eL – e–L)2

16(1 – )  + 1
-1

 = 



13.81

4(0.7515)(1 – 0.7515) + 1
-1

 = 0.0513   or   5.13% 

 

The protons in the methyl group tunnel across the rotational barrier with surprisingly high 
probability. Liquid helium temperatures, ~4.5 K, are needed to stop methyl group rotation. 
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Scanning Tunneling Microscopy Can Image Single Atoms:   Microscopy is playing an 
increasingly important role in the characterization of nano-scale materials. In scanning tunneling 
microscopy, STM, an atomically sharp tip is placed near a sample surface so that electrons can 
tunnel from the tip to the sample. The sample is scanned under the tip in an x-y raster pattern, 
Figure 23.5.2. As the sample is moved laterally, the height of the sample in the z-direction is 
adjusted to maintain a constant tunneling current. STM imaging is done in air or under high 
vacuum. The positioning of the sample and the height of the sample tip are controlled using 
piezoelectric actuators. Piezoelectric ceramics, such as barium titanate and lead zirconate 
titanate, change dimensions with an applied voltage. The voltage across a piezoelectric actuator 
is scanned to move the sample in a given direction. The tunneling current is measured by placing 
a small bias voltage across the tip and the sample. The surface of the sample must be conductive 
for STM imaging. The tip does not touch the surface, rather electrons tunnel across the 4-7 Å 
insulating air or vacuum gap between the tip and the surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (a).    (b) 
 

Figure 23.5.2: Scanning Tunneling Microscope. (a). The sample surface is scanned under a 
sharp metallic tip. (b). The tunneling current is monitored in a closed-loop feedback circuit 
that adjusts the sample height to maintain a constant tunneling current. The sample height is 
plotted as a function of position to produce an image. 

 
 
The z-axis sensitivity is 0.1 Å and the lateral resolution approaches 1 Å. The resolution is 
determined by the sharpness of the tip. The tip is usually made by electrochemically etched 
tungsten or platinum-iridium alloy wire that has been mechanically sheared to produce a sharp 
tip. The tunneling current is determined by the tip to sample distance and the local density of 
states of the electronic energy levels. 
   Consider a two-dimensional particle in a box as an analogy for the surface of a metal. The 
allowed quantum states are closely spaced for an extended metal surface. The density of states 
counts the number of quantum states in a given energy range. The larger the number of states, 
the greater is the tunneling probability. An STM image is a plot of the accessibility of electronic 
states on the surface for electrons from the sample tip. The STM image of graphite, Figure 
23.5.3a, shows a hexagonal lattice for the sheets of carbon atoms, however individual atoms 
cannot be resolved. Rather the intensity maxima correspond to roughly pairs of atoms. Single-
walled carbon nano-tubes show the same graphitic hexagonal pattern, Figure 23.5.3b. Individual 
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atoms of iron on a copper surface have been imaged under ultra-high vacuum, Figure 23.5.3c. 
The copper surface inside the rectangle shows the variation of the density of states. The nodal 
patterns are analogous to the two-dimensional particle in a box wave functions. 
 
 

               
 

      (a).          (b).   (c). 
 

Figure 23.5.3: STM images: (a). Graphite, (b). A single-walled carbon nano-tube 
(http://www.ncnr.nist.gov/staff/taner/nanotube/types.html), (c). Iron atoms on copper. 
(http://www.almaden.ibm.com/vis/stm/images/square3.tif) 

 
 
23.6  Particle in a 3-Dimensional Box 
 

For Separable Potentials, (x,y,z) is a Product of One-Dimensional Wave Functions:   So far we 
have focused on one-dimensional problems. Solutions to the Schrödinger equation for several 
dimensions can often be constructed from one-dimensional wave functions. The 3-dimensional 
particle in a box is a case in point. The 3-D particle in a box is the model for the translational 
degree of freedom of atoms and molecules. In three spatial dimensions, the Schrödinger equation 
for a particle of mass m is: 
 

 – 
ħ2

2m 



∂2

∂x2  + 
∂2

∂y2  + 
∂2

∂z2  + V^ (x,y,z) = E     23.6.1
 

The curvature of the wave function is given the symbol 2, which is read as “del-squared”: 
 

 2 = 



∂2

∂x2 + 
∂2

∂y2 + 
∂2

∂z2          23.6.2 
 

The Schrödinger equation is correspondingly written as: 
 

 – 
ħ2

2m2 + V^  (x,y,z) = E        23.6.3 
 

For the 3-dimensional particle in a box with side lengths a, b, and c, the potential energy is zero 
within the box for 0  x  a, 0  y  b, and 0  z  c : 
 

 – 
ħ2

2m 



∂2

∂x2  + 
∂2

∂y2  + 
∂2

∂z2   = E        23.6.4 
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A multi-dimensional wave function can be built up from one dimensional wave functions if the 
potential energy is separable. The problem is separable if the potential energy can be written as 
the sum of terms in x, y, and z alone. This requirement is met for this case with zero potential. 
The 3-dimensional wave function is then the product of one-dimensional wave functions: 
 

 (x,y,z) = x(x)y(y)z(z)        23.6.5 
 

The one-dimensional wave functions are functions of a single variable. The partial derivatives in 
the curvature operate on only one variable, the other variables are held constant. For example, 
the x-derivative gives: 
 

 
∂2

∂x2 (x,y,z) = y(y)z(z) 
d2x(x)

dx2        23.6.6 
 

The final second derivative is a one-dimensional derivative. Completing the derivatives gives: 
 

 – 
ħ2

2m



y(y)z(z) 

d2x(x)

dx2  + x(x)z(z) 
d2y(y)

dy2  + x(x)y(y) 
d2z(z)

dz2   = Ex(x)y(y)z(z) 

            23.6.7 
 

This equation is shown to be separable by dividing each term by the product wave function, 
x(x)y(y)z(z): 
 

 – 
ħ2

2m 






1

x(x)
 
d2x(x)

dx2  + 
1

y(y)
 
d2y(y)

dy2  + 
1

z(z)
 
d2z(z)

dz2   = E    23.6.8 
 

The resulting relationship is the sum of three terms, each a function of only one variable. The 
particle in the box moves independently in each direction and covers the entire range in each 
direction. How can the sum of three independent terms always add to give the same value of E? 
The equation is satisfied over the full range of x, y, and z only if each term is separately equal to 
a constant. The energy in the x, y, and z directions is given as Ex, Ey, and Ez, respectively: 
 

 E = Ex + Ey + Ez         23.6.9 
 

For separable problems, the one-dimensional wave functions multiply and the energies add. This 
result will be used repeatedly as we tackle more complex problems. Eq. 23.6.8 then separates 
into three independent one-dimensional problems: 
 

 – 
ħ2

2m 
1

x(x)
 
d2x(x)

dx2  = Ex      – 
ħ2

2m 
1

y(y)
 
d2y(y)

dy2  = Ey      – 
ħ2

2m 
1

z(z)
 
d2z(z)

dz2  = Ez 23.6.10
 

These equations can be recast into familiar form by multiplying through by the corresponding 
wave function: 
 

 – 
ħ2

2m 
d2x(x)

dx2  = Ex x(x)       – 
ħ2

2m 
d2y(y)

dy2  = Ey y(y)      – 
ħ2

2m 
d2z(z)

dz2  = Ez z(z) 23.6.11 
 

The results are equivalent to the one-dimensional particle in a box, Eq. 23.4.1, but written in 
terms of the x, y, and z coordinates. Using Eqs. 23.4.9 and 23.4.16 in each dimension gives: 
 

 x(x) = 


2

a

½
 sin 

nxx
a   Ex = 

h2

8m 
n2

x

a2      23.6.12
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 y(y) = 


2

b

½
 sin 

nyy
b   Ey = 

h2

8m 
n2

y

b2      23.6.13

 z(z) = 


2

c

½
 sin 

nzz
c   Ez = 

h2

8m 
n2

z

c2      23.6.14 
 

where nx, ny, and nz are the quantum numbers for the corresponding dimensions. The final 3-D 
wave function is the product of the one-dimensional wave functions: 
 

 (x,y,z) = 



8

abc

½
 sin 

nxx
a  sin 

nyy
b  sin 

nzz
c       23.6.15 

 

and the energy is the sum of the one-dimensional energies: 
 

 E = Ex + Ey+ Ez = 
h2

8m 



n2

x

a2 + 
n2

y

b2 + 
n2

z

c2        23.6.16 
 

Each new dimension adds an additional quantum number, compared to the one-dimensional case. 
For the special case of a cubical box, with side length a, the energy is given by: 
 

 E = 
h2

8ma2 (n2
x + n2

y + n2
z)        23.6.17 

 
 
 
 
 
 
 
 
 
 
 (a).             (b).   (c). 
 

Figure 23.6.1: (a). A 3-D cubical box has degenerate energy levels. (b). The (nx,ny,nz) = 
(2,1,1) wave function has one node in the x-direction and no nodes in the y- and z-directions. 
The shaded regions are areas of high probability of finding the particle. (c). The (2,2,1) wave 
function has one node in both the x- and y-directions and no nodes in the z-direction. 

 
 
Many energy levels now have the same energy, Figure 23.6.1. For example, (nx,ny,nz) = (2,1,1), 
(1,2,1), and (1,1,2) have the same energy. States with the same energy are called degenerate and 
the degeneracy is listed as g. Degeneracy is a common feature in many quantum mechanical 
problems. Diagrammatic examples of 3D-wave functions are also shown. 
 
 
              

Example 23.6.1: Boltzmann Distribution of Translational Energy Levels 
Use the particle in a box model to find the translational energy levels for a helium atom confined 
in cubical box, in J, kJ mol-1, and cm-1. The size of the cavity inside a C60 buckyball roughly 
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corresponds to a cube, 5.0 Å on a side. Find the relative Boltzmann populations of the first two 
energy levels for a 5.0 Å side length and a 10.0 cm side length at 298 K. 
 
 
Answer:  For He atoms, m = 4.003 g mol-1(1 mol/6.022x1023)(1 kg/1000 g) = 6.647x10-27 kg. 
Using Eq. 23.6.17 then gives for a = 5.00 Å: 
 

 E = 
(6.626x10-34)2

8(6.647x10-27 kg)(5.0x10-10 m)2 (n2
x + n2

y + n2
z) = 3.303x10-23 J (n2

x + n2
y + n2

z) 

 E NA (1 kJ/1000 J) = 0.01989 kJ mol-1 (n2
x + n2

y + n2
z) 

 E/hc (1 m/100 cm) = 1.663 cm-1 (n2
x + n2

y + n2
z) 

and for 10.0 cm: 
h2

8ma2 = 8.26x10-40 J = 4.97x10-19 kJ mol-1 = 4.16x10-17 cm-1 

The lowest energy level is (1,1,1) with (n2
x + n2

y + n2
z) = 3 and the next energy level is triply 

degenerate with (1,1,2) and (n2
x + n2

y + n2
z) = 6. Room temperature corresponds to kT = 

1.38065x10-23 J K-1(298.2 K) = 4.116x10-21 J = 207.2 cm-1 or RT = 8.3145 J K-1 mol-1(298.2 K) 
= 2.479 kJ mol-1. Using Eq. 8.10.8 and taking into account the degeneracies, the relative 
populations of the lowest two energy levels for a 5 Å box is: 
 

 
n(112)(121)(211)

n(111)
 = 3 e–[3.303x10-23 J (6 – 3)/4.116x10-21 J] = e–[1.663 cm-1(6 – 3)/207.2 cm-1] = 2.93 

 

and for the 10.0 cm box:    
n(112)(121)(211)

n(111)
 = 3 e–[4.16x10-17 cm-1(6 – 3)/207.2 cm-1] = 3.000 

 

Because of degeneracy there are more atoms in the second energy level than the first. The energy 
spacing is so small for the 10.0 cm box that the levels are essentially continuous, and classical 
approximations are excellent. 
 
              

 
 
   Many of the purely mathematical features that we have been discussing were well known to 
mathematicians and physicists before the advent of quantum mechanics. The theory of operators 
and functional analysis provide a rigorous mathematical foundation that we can use as a guide in 
solving quantum mechanical problems. The theory of quantum mechanics can be summarized in 
just a few general postulates. We have illustrated these general principles using the free particle 
and particle in a box as explicit examples. 
 
 
23.7 The Postulates of Quantum Mechanics 
 

   The wave functions for a problem describe the system as completely as possible. The allowed 
wave functions are the eigenfunctions of the Hamiltonian, H ^  n(x) = En n(x), and the 
corresponding eigenvalues are the energies. The Hamiltonian, the kinetic energy, the potential 
energy, and other observables such as the momentum are represented by operators. 
 
Operators Have Properties Independent of the Function They Operate On:   An operator is an 
instruction for action upon a function. As an example, the operator for the derivative of f(x) is to 
“take the derivative:” 
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 with o^  = 
d 
dx  o^  f(x) = 

df(x)
dx        23.7.1 

 

With o^  operating on the function f(x), the result is “take the derivative” of f(x). Operators are 
symbolized with a “^”. The concept of an operator may, at first, seem unnecessary. However, 
operators have properties, apart from the functions that they act upon. The properties greatly 
simplify problem solving. The quantum mechanical Hamiltonian is the operator that corresponds 
to the total energy. The operator corresponding to the momentum in one-dimension is: 
 

 p^  = 
h–

i  



d 

dx  = – ih- 



d 

dx           23.7.2 
 

Multiplication of a function can also be considered as an operator. In determining the expectation 
value for the position of the particle in the particle in a box, Eqs. 23.4.25 and 23.4.26, the 
position operator is “multiply by x”: 
 

 with  x^  = x  x^  (x) = x (x)      23.7.3 
 

Operators have properties independent of the wave function upon which they operate. 
   One important class of operators is linear operators. For functions f(x) and g(x) and constants 
a and b, a linear operator gives: 
 

 o^  (a f(x) + b g(x)) = a o^  f(x) + b o^  g(x)      23.7.4 
 

Taking derivatives and multiplication by a function are linear operators. The position operator is 
a linear operator. A sum of linear operators is also a linear operator. So the Hamiltonian is a 
linear operator. In contrast, absolute value and square root are not linear, |a+b|  |a| + |b| and 
 a + b¯¯¯¯¯  ā + b̄. Linear behavior has important consequences for the operators in quantum 
mechanics. 
 
 
              

Example 23.7.1: The Hamiltonian is a Linear Operator 
Consider two degenerate wave functions as particular solutions to the Schrödinger equation, 
H ^n = En and H ^m = Em. Prove that the linear combination of two degenerate solutions to 
the Schrödinger equation is also a solution. 
 
 

Answer:  This property is guaranteed because the Hamiltonian is a linear operator: 
 

 H ^(an + bm) = aH ^n + bH ^m       23.7.5 
 

Then using the fact that n and m are separately eigenfunctions of the Hamiltonian gives: 
 

 H ^(an + bm) = aH ^n + bH ^m = a En + b Em = E(an + bm)   23.7.6 
 

We used this property in the solution of the free particle and particle in a box problems when we 
stated that the linear combination of the particular solutions is a general solution to the 
Schrödinger equation. The Euler identity is one specific linear combination. 
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The Order of Operations Can Make a Difference:   Operators do not necessarily commute, so the 
order of operations is important. For example, consider the two operators o^ 1 = d/dx and o^ 2 = x 
and the function f(x) = 6x. For the product of two operators, o^ 1 o^ 2 f(x), the right-most operator is 
applied first. Applying the two operators in either order gives different results: 
 

 o^ 1 o^ 2 f(x) = 
d 
dx xf(x) = 

d 
dx 6x2 = 12x 

 o^ 2 o^ 1 f(x) = x
d 
dx f(x) = x

d 
dx 6x = 6x       23.7.7 

 

The derivative operator and multiplication by x do not commute. The lack of commutivity, in 
general, is the reason that the order of operations in the integral for expectations values, Eq. 
23.4.24, is specific. The commutator of two operators is defined as: 
 

 [o^ 1,o^ 2] = o^ 1 o^ 2 – o^ 2 o^ 1         23.7.8 
 

If the commutator is non-zero then the order of operations is important. Commutators can often 
be assigned values that are independent of the functions upon which they operate. 
 
 
              

Example 23.7.2: The Commutation Relationship for Position and Momentum 
Find the commutator for the position and momentum of a particle in one-dimension, [x̂,p̂x]. 
 
 

Answer:  The approach is to apply the commutator as an operator for an arbitrary function, f(x). 
The commutator is [x̂, px] = (x̂ p̂x – p̂x x̂). The operator for position is just “multiply by x”: x̂ = x. 
The operator for momentum is p̂x = (ħ/i)(d/dx). With f(x) as an arbitrary function of x: 
 

 [x̂, p̂x] f = (x p̂x – p̂x x) f = x p̂x f – p̂x x f = (ħ/i) 



x 

df
dx – 

d(xf)
dx  

 

Using the product rule for the last derivative: 
 

 [x̂, p̂x] f = (ħ/i) 



x 

df
dx – x 

df
dx – f 

dx
dx  = –(ħ/i) f 

 

Dividing both sides of this expression by f gives the final result: 
 

 [x̂, p̂x] = – (ħ/i)          23.7.9 
 

This result holds for any wave function, which shows the usefulness of operator relationships. 
 
              

 
 
Quantum mechanical systems are characterized by five postulates, which apply to all quantum 
mechanical problems.3,4 Different problems use different coordinate systems. To make the 
postulates more general, we specify the volume element in general terms, d, and the integrals 
are over all space for each dimension. For example, for one Cartesian dimension d = dx and for 
three-dimensions d = dx dy dz. For rotation in a plane with angle , d = d, with 0    2. 
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I.  The physical state of the system is described by a wave function as completely as possible. 
The wave function is derived from an orthonormal set of eigenfunctions of the Hamiltonian. The 
normalization integral is  *

nn d = 1 and the orthogonality integral is  *
nm d = 0. 

 
II.  Any observable may be represented by a linear operator. The results should be a real number. 
The least restrictive requirement is that the operator must be Hermitian: 
 

  *
j  o^  i d =  i (o^  j)* d =  i o^ * *

j d      23.7.10 
 

   The observable operator is constructed from the following table. 
 

Table 23.7.1:  The Correspondence of Quantum Mechanical Operators with Classical 
Observables. 

 

Classical Quantum Operator 
x x^  
 

p p^  = 
h–

i  






 

x
 = – ih- 







 

x
 

t t^ 
 

E vs. time E^  = ih- 



∂ 

∂t  

 
III.  If the wave function is an eigenfunction of the observable, repeated measurements of the 
observable always give the same result. The repeated result is the eigenvalue; if  o^   = o  then 
each measurement gives the result, o. 
    (See for example the momentum of a free particle, Eq. 23.4.23.) 
 
IV.  If the wave function is not an eigenfunction of the observable, the measurement gives a 
different result each time. The “average” or expectation value is given by: 
 

 <o> = 
- *

n o^  n d

- *
n n d

         (23.4.24)       23.7.11 

 

    (See for example the position and momentum of a particle in a box, Eqs. 23.4.30 and 23.4.34.) 
 
V.  The wave function evolves in time according to: 
 

 H ^ (x,t) = ih- 



∂(x,t)

∂t         23.7.12 

 
 
              

Example 23.7.3: Potential Energy Operator for the Harmonic Oscillator 
Give the quantum mechanical operator for the potential energy of the harmonic oscillator in 
terms of the displacement, x = r – ro, where ro is the equilibrium bond length. 
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Answer:  The classical potential for a harmonic oscillator is V(x) = ½ kx2. Since the classical 
operator involves only multiplications, Table 23.7.1 shows the quantum mechanical operator has 
the same form with x replaced by the operator x̂: V^ (x) = ½ kx̂2. The action of V(x) on a wave 
function is then simply V^ (x) = ½ kx̂2  = ½ kx2 . The potential energy operator is a 
Hermitian, linear operator. All the potential energy operators that we will need for our study of 
atomic and molecular structure and spectroscopy are multiplicative, so the classical and quantum 
operators are equivalent. 
 

              

 
 

The Eigenvalues for Quantum Mechanical Operators are Real:   The Hermitian property 
guarantees that eigenvalues for operators corresponding to quantum mechanical observables are 
real. To prove that the eigenvalues of Hermitian operators are real, consider the Hermitian 
operator o^  and one of its eigenfunctions n: 
 

 o^  n = o n          23.7.13 
 

To show that the eigenvalue is real we need to show that o* = o. Multiplication of Eq. 23.7.13 
from the left by *

n and integration over all space in one-dimension gives: 
 

  *
n o^  n dx =  *

n o n dx = o  *
n n dx      23.7.14 

 

where the eigenvalue factors in front of the integral because it is a constant. Now we need to 
work on o*. The complex conjugate of Eq. 23.7.13 is: 
 

 o^ * *
n = o* *

n          23.7.15 
 

Multiplication of the last equation from the left by n and integration over all space gives: 
 

  n o^ * *
n dx =  n o* *

n dx = o*  n *
n dx     23.7.16 

 

Given that o^  is Hermitian, by Eq. 23.7.10,  *
n o^  n dx =  n o^ * *

n dx. Then Eqs. 23.7.14 and 
23.7.16 are equal: 
 

 o  *
n n dx = o*  n *

n dx        23.7.17 
 

The wave function is just a function, so the order does not matter,  *
n n dx =  n *

n dx. The 
integrals cancel from both sides of Eq 23.7.17 giving o = o*. The eigenvalues of Hermitian 
operators are real, therefore the eigenvalues for quantum mechanical observables are real. 
 
 
              

Example 23.7.4: The Momentum Operator is Hermitian 
Show that the momentum operator is Hermitian. 
[Hint: use integration by parts:  u dv = uv –  v du ] 
 
 

Answer:  The goal is to show that: 
 

 - *
j  



– ih- 

d 
dx  i dx = - i 



– ih- 

d 
dx

*
 *

j dx     23.7.18 
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Starting with the left hand integral: 
 

 - *
j  



– ih- 

d 
dx  i dx = – ih-  - *

j di      23.7.19 
 

Integration by parts, with u = *
j and dv = di, gives:  

 

 – ih-  - *
j di = – ih-[ *

ji|
x = 
x = - – - i d*

j]     23.7.20 
 

For a confined particle, the product *
ji goes to zero at each endpoint, since the wave function 

approaches zero for long distances. Substituting this last equation back into Eq. 23.7.19 gives: 
 

 - *
j  



– ih- 

d 
dx  i dx = ih- - i d*

j  = - i 



ih- 

d 
dx  *

j dx    23.7.21 
 

Finally, (– ih- d/dx)* = (ih- d/dx) so that the last equation reduces to Eq. 23.7.18. The “i” in the 
definition of the momentum is necessary for the momentum operator to be Hermitian. 
 
              

 
 
The Time Dependent Schrödinger Equation is Separable for Time-Independent Potentials:   The 
potential energy operator may change as a function of time. For example, the atoms in a 
chemical reaction follow a trajectory that results in changing Coulomb interactions. The time 
dependent Schrödinger equation is: 
 

 –
ħ2

2m 2 + V^ (x,y,z,t) = i ħ 






(t)

t
       23.7.22

 

On the right side of the equation, the time dependent energy operator is given from Table 23.7.1 
as E^  = iħ (/t). The spatial coordinates are held constant for the partial derivative with 
respect to time. For the determination of the translational, rotational, vibrational, and electronic 
states of isolated atoms or molecules, the potential energy operator is independent of time, 
V^ (x,y,z,t) = V^ (x,y,z). The Schrödinger equation is then separable; the solution with respect to 
time is independent of the spatial coordinates. For the separable case, the wave function is given 
as the product of a spatially dependent wave function multiplied by a time dependent wave 
function: 
 

 (x,y,z,t) = (x,y,z)(t)        23.7.23
 

Review the treatment of the 3D-particle in a box for the procedure in separable cases. The 
curvature operator, 2, is only a function of the spatial coordinates, 2(x,y,z)(t) = 
(t)2(x,y,z). The time dependent energy operator is only a function of the time, 
E^(x,y,z)(t) = (x,y,z) E^(t). Eq. 23.7.22 then simplifies to: 
 

 
1

(x,y,z)
 



– ħ2

2m  2(x,y,z) + V^ (x,y,z)(x,y,z)  = 
1

(t)
 i ħ 







(t)

t
   23.7.24 

 

The terms on the left are only a function of the spatial coordinates. The term on the right is only 
a function of time. The spatial operators comprise the time independent Hamiltonian in 3-
dimensions, Eqs. 23.4.18 and 23.6.1: 
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1

(x,y,z)
 H ^ (x,y,z) = 

1
(t)

 i ħ 






(t)

t
      23.7.25 

 

The only way that the spatial terms and the time dependent term may be equal, for all values of 
the spatial coordinates and for all times, is for each side to separately equal a constant. The 
constant is the total energy. The problem then separates into two equations, one in the spatial 
coordinates and one in time only: 
 

 
1

(x,y,z)
 



– ħ2

2m  2(x,y,z) + V^ (x,y,z)(x,y,z)  = E     23.7.26 
 

 E = 
1

(t)
 i ħ 







(t)

t
         23.7.27

 

Time independent Eq. 23.7.26 is the basis for the previous sections in this chapter, H ^ = E. 
We need to solve the time dependent equation only once. The form of the time dependence 
applies to any problem with a time independent potential energy operator. Multiplying Eq. 
23.7.27 through by the wave function gives: 
 

 iħ 






(t)

t
 = E (t)          23.7.28 

 

We can separate variables in the same fashion as in chemical kinetics by dividing both sides of 
the equation by (t) and multiplying by dt: 
 

 
d(t)
(t)

 = 
E
i ħ dt  or 

d(t)
(t)

 = – 
iE
ħ  dt      23.7.29 

 

Integrating both sides of the last equation gives: 
 

 ln (t) = – 
iE
ħ  t         23.7.30 

 

Exponentiating both sides solves for the wave function: 
 

 (t) = e–iEt/ħ          23.7.31 
 

The complete wave function is the product of the spatial and time dependent parts, Eq. 23.7.23: 
 

 (x,y,z,t) = (x,y,z) e–iEt/ħ        23.7.32 
 

The time dependent wave function is the same for any translational, rotational, vibrational, or 
electronic wave function for any isolated atom or molecule. We can gain further insight into the 
time dependence by expanding the complex exponential using the Euler identity: 
 

 e–iEt/ħ = cos



Et

ħ   – i sin



Et

ħ         23.7.33 

                     
   cos 2t + i sin 2t 
 

Comparing the time dependence to the general form of an oscillating function gives the 
frequency as: 
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  = 
E
ħ or E = h        23.7.34 

 

Of course, E = h is the familiar Planck formula. Eqs. 23.7.22-23.7.34 provide a rigorous 
derivation of the Planck relationship. In subsequent chapters we will work primarily with time 
independent potentials, so we will usually not mention the time dependent part of the complete 
wave function. Mentioned or not, the complete wave function always oscillates in time with the 
frequency given by E = h. For example, for the n = 2 state of the particle in a box, the wave 
function oscillates in time as shown in Figure 23.7.1. 
 
 
 
 
 
 
 
 

Figure 23.7.1: The time dependence for time independent potential energy operators is 
oscillation with the frequency given by E = h. The n = 2 wave function for the particle in a 
box is shown in successive time snap shots. 

 
 
Complementary Observables Obey an Uncertainty Relationship:  To finish our overview of the 
properties of quantum mechanical systems, we need to make one final connection between 
uncertainty relationships and the commutator for two observable properties. Commuting 
observables can be simultaneously specified with arbitrary precision. If the operators for two 
observables do not commute then the observables cannot be simultaneously specified to arbitrary 
precision. A generalized Heisenberg uncertainty relationship is then defined by: 
 

 A B   



1

2i  
*[A^ ,B^ ]  dx         23.7.35 

 

where | | is the absolute value. The uncertainty relationship for position and momentum is a 
special case of the more general principle. The commutator for position and momentum is given 
by Eq. 23.7.9, [x̂, p̂x] = – (ħ/i). Substitution of the commutator into Eq. 23.7.35 for a normalized 
wave function gives x px  ħ/2. At this point you might have the feeling that quantum 
mechanics is very strange. Quantum mechanics is weird, but is it that weird? 
 
Does Quantum Mechanics Work? The Correspondence Principle:   The picture of the 
microscopic world presented by quantum mechanics is often unexpected. However, to be useful 
and meaningful we must require that when quantum solutions are scaled to macroscopic size, 
quantum solutions should agree with classical physics. For example, consider a particle in a box 
in the ground state. The most probable position for a particle in a box, for n = 1, is in the middle 
of the box. Consider a classical ball rolling in a macroscopic box with a fixed kinetic energy. The 
ball rolls between the two walls where collisions occur and the momentum reverses sign upon 
each collision. In the middle of the box the momentum and velocity of the ball are constant, 
giving a uniform probability of finding the ball at any position. For the ground state, the quantum 
and classical views are very different. However, if we take the classical limit of the quantum 


2 

0                x                 a 
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mechanical problem by letting the quantum number approach infinity, then the quantum solution 
should agree with classical expectations. For the particle in a box, the number of nodes increases 
as n  , so that the peaks in the probability distribution merge to give a constant probability in 
agreement with classical expectations, Figure 23.7.2 
 
 
 
 
 
 
 
 
  n = 1           classical          n   
 

Figure 23.7.2: The Correspondence Principle: In the classical limit, n  , quantum 
mechanical expressions should agree with classical expectations. 

 
 
 

23.8 Summary – Looking Ahead 
 

   The view of the microscopic world presented by quantum mechanics is strikingly different 
from our everyday experience. The wave behavior of particles is the central insight in thinking 
quantum mechanically. Consider the n = 2 level of the particle in a box with its central node, 
Figure 23.7.1. The node is a point with zero probability of finding the particle. Students often ask 
how the particle is able to pass from one side of the node to the other. The answer is that the 
particle is on both sides of the node at the same time. The particle doesn’t need to pass through 
the node. The particle acts as a wave and waves are diffuse by nature. An analogy is a wave on a 
pond. A wave on the surface of the water is delocalized over a large area. The wave is at many 
positions at once. 
   The wave nature of particles results in an inherent uncertainty in the observable properties of 
the system. This uncertainty is unavoidable. Better instruments cannot decrease the inherent 
uncertainty given by the Heisenberg uncertainty relationship. The fundamental inability to 
measure a property accurately is perhaps the most important departure from classical mechanics. 
In classical mechanics the trajectory of a particle can be precisely known. The wave behavior of 
particles places fundamental limits on our ability to measure the properties of the system. Even 
so, quantum mechanics gives us an excellent ability to predict the properties of a system within 
those fundamental limits. Consider a schematic experiment that uses light scattering to determine 
the position of a free electron, Figure 23.8.1. Initially the momentum of the free electron is 
precisely given by p = ħk. However, after a collision with a photon the momentum of the particle 
is changed, to conserve momentum. The act of observation changes the properties of the system. 
To localize the particle, the momentum of the particle necessarily becomes uncertain. The 
important insight from quantum mechanics is that the observer is not separated from the 
experiment. We cannot observe the world without changing the properties we are trying to 
measure. Philosophers in the 19th century believed that scientists were dispassionate objective 
observers, separated from nature. We now understand that humans and the environment are 
intricately interrelated. People are inseparable from their surroundings. 
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Figure 23.8.1: The act of observation changes the system. Conservation of momentum 
requires that the momentum of the particle change after the collision with an observing 
photon. Neither the position nor the momentum are then precisely known. 

 
 

   In the next chapter we develop the theory of the quantum mechanical harmonic oscillator and 
the rigid rotor. The harmonic oscillator is a model for molecular vibration and infrared 
spectroscopy. The rigid rotor is a model for molecular rotation and microwave spectroscopy. Our 
focus then shifts to the electronic structure of atoms and molecules, which provides the theory of 
the chemical bond and electronic spectroscopy. The foundations represented by the postulates of 
quantum mechanics are the key to understanding the microscopic world. 
 
 

23.9 Addendum: Complex Variables 
 

   The physical properties of systems are often conveniently represented by complex numbers 
and functions. All laboratory observations must be real quantities; however, complex variables 
allow phase relationships to be easily expressed. A complex number, z = a + ib, has a real and 
imaginary part with i = -1̄̄  and i2 = -1: 
 

 z = a + ib   with Re(z) = a     and     Im(z) = b     23.9.1 
 

Complex variables are conveniently diagramed as a vector with the real part plotted along the 
horizontal axis and the imaginary part plotted along the vertical axis, Figure 23.9.1a. A purely 
real value and a purely complex value are related by a 90 phase difference. 
 
 
 
 
 

          = 
1

2 LC
 

  (a).     (b). 
 

Figure 23.9.1: (a). A complex number is represented as a vector with components along the 
real and imaginary axes. (b). A series inductor and capacitor have a resonance when the 
imaginary parts of the impedances cancel. 

 
For example, the phase difference between the excitation and response in spectroscopy is 90. 
For another example, the resistance and inductive reactance in an electronic circuit differ by 
+90 and the resistance and capacitive reactance differ by –90: 
 

p = ħk 
p' = ħk' 

e– 

E = h 

R1            L               R2         C 

Re 

Im 

a 

b z 
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 resistance and inductance z1 = R1 + i 2L     23.9.2

 resistance and capacitance z2 = R2 – i 
1

2C
     23.9.3 

 

A series inductor and capacitor are in resonance when the combined impedance is purely real: 
 

 z = R1 + i 2L + R2 – i 
1

2C
 = R1+ R2     with  

1
2C

 = 2L   or    = 
1

2 LC
 23.9.4 

 

NMR probes are made from an LC circuit at resonance. The inductor is just a coil of wire. The 
sample sits inside the inductor, which acts as a radio-frequency antenna. 
   The algebra of complex quantities is accomplished by keeping the imaginary terms separate 
from the real terms: 
 

 z1 + z2 = (a1 + i b1) + (a2 + i b2) = (a1 + a2) + i (b1 + b2)     23.9.5 
 z1 z2 = (a1 + i b1)(a2 + i b2) = a1a2 + i a1b2 + i b1a2 + i2b1b2 = (a1a2 – b1b2)+ i(a1b2 + b1a2) 
 

The complex conjugate of a complex number, indicated by a “*”, is obtained by changing the 
sign in front of every i: 
 

 if  z = a + i b    then z* = a – ib  if  z = ei    then   z* = e–i  23.9.6 
 

The “size” or “length” or magnitude or norm of a complex number is given by: 
 

 |z| = z*z          23.9.7 
 

The complex conjugate is necessary to ensure the result is real: 
 

 |z| = z*z = (a – ib)(a + ib) = a2 + b2      23.9.8 
 

as expected from the Pythagorean theorem. For complex functions, the norm is given by 

|| = ( – * dx)½. For a normalized function, the magnitude or norm is equal to one. 
   The Euler identity gives the relationship of the real and imaginary parts of a complex number 
as a phase angle, Figure 23.9.2a: 
 

 ei = cos  + i sin          23.9.9 
 
 
 
 
 
 
 
 
 
 
 (a).      (b). 
 

Figure 23.9.2: (a). The Euler identity expresses the relationship of the real and imaginary 
parts as a phase angle, . The vector lies on the unit circle. (b). The cosine of a negative angle 
is unchanged and the sine of a negative angle changes sign. 
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The complex conjugate of ei occurs often. Note that cos(–) = cos  and that sin(–) = – sin , 
Figure 23.9.2b. The complex conjugate of ei is then: 
 

 (ei)* = e–i = cos(–) + i sin(–) = cos  – i sin      23.9.10 
 

as expected by changing the sign in front of the i in Eq. 23.9.9. The real and imaginary parts of a 
complex exponential wave function are given using Eq. 23.9.10 as: 
 

 real part:   cos  = 
1
2 (ei + e–i) imaginary part:  sin  = 

1
2i (e

i – e–i)  23.9.11 

 
 
              

Example 23.9.1: The Magnitude of ei 

Find the magnitude of ei. 
 
 
Answer:  Using the Euler identity, the square of the magnitude of ei is given using Eq. 23.9.10: 
 

 |ei|2 = (ei)*ei = (cos  – i sin )(cos  + i sin ) = cos2  + sin2  = 1 
 

Alternatively, using the exponential form directly:  |ei|2 = (ei)*ei = e–i ei = e0 = 1. 
For an equivalent point of view, the graphical vector representation of ei shows the vector lying 
on the unit circle, Figure 23.9.2. 
 
              

 
 
The Euler identity may be proved by expanding cos , sin , and ei as Taylor series.  
From Addendum 1.5: 
 

 ei = 1 + i + 
1
2! (i)2 + 

1
3! (i)3 + 

1
4! (i)4 +...+ 

1
n! (i)n    23.9.12 

 

and the trigonometric functions expand as: 

 sin  =   – 
1
3! 

3 + 
1
5! 

5 –...+ (-1)n 
1

(2n+1)! 
2n+1     23.9.13 

 cos  = 1 – 
1
2! 

2 + 
1
4! 

4 –...+ (-1)n 2n      23.9.14 
 

Multiplying the sine expansion by i gives: 
 

 i sin  = i – 
1
3! i

3 + 
1
5! i

5 –...+ (-1)n 
1

(2n+1)! i
2n+1     23.9.15 

 

Noting that i.i = -1 gives: 
 

 i sin  = i + 
1
3! (i)3 + 

1
5! (i)5 +...+ 

1
(2n+1)! (i)2n+1     23.9.16 

 cos  =   1 + 
1
2! (i)2 + 

1
4! (i)4 +...+ 

1
(2n)! (i)2n     23.9.17 
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Combining the cos  and (i sin ) expansions, Eqs. 23.9.16 and 23.9.17, gives: 
 

 cos  + i sin  = 1 + i + 
1
2! (i)2 + 

1
3! (i)3 + 

1
4! (i)4 + 

1
5! (i)5 + ...    23.9.18 

 

which is the same expansion as for ei, Eq. 23.9.12. 
 
 
 

Chapter Summary 
 

1.  Wave-like behavior in time and distance are, respectively: 

 f(t) = A sin 2t + B cos 2t  and f(x) = A sin 2 x/ + B cos 2 x/ 

2.  The Euler identity allows phase relationships to be treated in algebraic equations: 

 ei = cos  + i sin  and ei2t = cos 2t + i sin 2t  where i = -1̄̄  

3.  The Bragg equation for constructive interference and diffraction is n = d cos , for n an 
integer,  the wave length of the diffracted light or particle, d the spacing between diffracting 
centers or slits, and  the diffraction angle. 

4.  Planck postulated the energy levels in matter are quantized in units of h = 6.62608x10-34 J s: 

En = n h or En = n ħ, with angular frequency  = 2 and ħ = h/2 = 1.05457x10-34 J s. 

5.  The blackbody intensity per unit wavelength increment is: I() = 
2hc2

5  






1

ehc/kT – 1
 

6.  The total light flux emitted from the blackbody is the integral over the spectrum: J =  T4. 

7. For incident frequency , metal work function , and ejected kinetic energy Ek= ½ mev2, the 
Einstein photoelectric effect relationship is: 

 E = h = Ek +  = ½ mev2 +  ( in joules) or    = e ( in volts) 

8.  Photon energy, frequency, wave length, and wavenumber are related by: E = h = hc/ = hc~. 

9.  All objects have a wave-particle duality with momentum and wavelength related by the de 
Broglie relationship: p = h/. 

10.  Spectroscopic transitions in one-electron atoms and ions are related by the Rydberg formula: 

 ~ = h 






1

n2
f
 – 

1
n2 i

    for hydrogen, 1H,  h = 109677.5 cm-1 

11.  The Coulomb potential, with nuclear charge Ze and electron charge –e, is: 

 V(r) = – 
Ze2

4o r
     with  o = 8.85419x10-12 J-1 C2 m-1  and Z = 1 for 1H or 2H 

12.  For the Bohr model of the hydrogen atom, the circumference must be an integer multiple of 
the wave length, 2r = n, giving the energy for principle quantum number n as: 

       En = – 
e4me

3222
o ħ2 



Z2

n2  = – 109737.2 cm-1 



Z2

n2  = – 13.606 eV 



Z2

n2  = – 1312.749 kJ mol-1 



Z2

n2  

13.  The radius of the first-Bohr orbit is: ao = 
4oħ
mee2  = 0.5291772 Å. 

14.  Electronic transitions in the Bohr model are given by the initial and final quantum numbers: 
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 E = Ef – Ei = – 13.606 eV Z2 






1

n2
f
 – 

1
n2 i

 matching the Rydberg formula 

 

The Postulates of Quantum Mechanics: 
I.  The physical state of the system is described by a wave function as completely as possible. 

15.  The Hamiltonian is the total energy operator; in one-dimension: H ^ = – 
h-2

2m 
d2

 dx2 + V^ (x) 

16.  A wave function is an eigenfunction of the Hamiltonian: H ^n = Enn. 

17.  The eigenfunctions are orthogonal and normalized, or orthonormal. 

18.  The allowed wave functions are finite, continuous, single-valued, and square integrable. 

19.  The normalization integral is  *
nn d = 1 and the orthogonality,  *

nm d = 0. 

20.  The eigenvectors, eigenfunctions, or eigenstates of the Hamiltonian are stationary states. 

21.  The Born interpretation is that the probability of finding a particle in an interval [x, x+dx] is 
given by the square of the wave function: P(x) dx = *

nn dx. 
 

II.  Any observable may be represented by a linear operator. The results should be a real number; 

the observable operator must be Hermitian:  *
j  o^  i d =  i (o^  j)* d =  i o^ * *

j d 

22. A linear operator gives o^  (a f(x) + b g(x)) = a o^  f(x) + b o^  g(x), for functions f(x) and g(x) and 
constants a and b. 

23.  The observable operator is constructed from the following table. 
 

Classical Quantum Operator 
x x^  
 

p p^  = 
h–

i  






 

x
 = – ih- 







 

x
 

t t^ 
 

E vs. time E^  = ih- 



∂ 

∂t  

24.  The momentum, kinetic, potential, and Hamiltonian operators are linear Hermitian. 

25.  The classical and quantum operator are equivalent for purely multiplicative potentials. 

26.  The eigenvalues for quantum mechanical observables are real. 
 

III.  If the wave function is an eigenfunction of the observable, repeated measurements of the 
observable always give the same result. The repeated result is the eigenvalue of o^   = o . 

 

IV.  If the wave function is not an eigenfunction of the observable, the measurement gives a 
different result each time. The “average” or expectation value is given by: 

 <o> = 
- *

n o^  n d

- *
n n d

 

V.  The wave function evolves in time according to: H ^ (x,t) = ih- 



∂(x,t)

∂t  

27.  For time independent potentials, the wave function factors into a purely spatially dependent 
part and a purely time dependent part: (x,y,z,t) = (x,y,z)(t) with  (t) = e–iEt/ħ having 
oscillation frequency E = h 
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28.  The commutator of two operators is defined as: [o^ 1,o^ 2] = o^ 1 o^ 2 – o^ 2 o^ 1. If the commutator is 
non-zero then the order of operations is important. 

.  Complementary observables obey an uncertainty relationship: A B   



1

2i  
*[A^ ,B^ ]  dx  

30.  For position and momentum, [x̂, p̂x] = – (h-/i) and x px  h-/2. 

31.  The standard deviations are defined by the expectation values: 
 x = <(x – x̄)2>½ = (<x2> – <x>2)½     and     px = <(p – p̄)2>½ = (<p2> – <p>2)½ 

32.  For energy and lifetime:      E t  ħ/2   with  ~ = E/hc  and   ~  /2
max. 

33.  The wave function and energy for a free particle are not quantized; for wave vector k: 

 (x) = eikx p = h-k  and E = 
ħ2 k2

2m  

34.  The kinetic energy is given by the curvature; in one-dimension: Ek = – 
ħ2

2m 
d2(x)

dx2 . 

35.  The wave function and energy for a particle in a box with length a and quantum number n: 

 n(x) = 


2

a

½
sin



nπx

a   and En = 
ħ2π2 n2

2ma2  = 
h2 n2

8ma2 with  n = 1, 2, 3, …,  

36.  The quantum restriction for a particle in a box results from the boundary conditions. 

37.  The transition energy and absorption frequency for a particle in a box are: 

 E = h = hc/ = Ef – Ei = 
h2

8ma2 (nf
2 – ni

2) 

38.  The occurrence of a zero point energy is a direct result of the Heisenberg uncertainty 

relationship. The zero point energy for a particle in a box is for n = 1: E1 = h
2
/8ma2 

39.  A wave with incident amplitude a and energy E in an infinite barrier of potential V is: 

 transmitted = c e–x  with c = 




2ik

ik -   a  and  = 
2m(V – E)

ħ  

40.  The probability of tunneling of a particle through a barrier of thickness L is: 
 

 T = 






(eL – e–L)2

16(1 – )  + 1
-1

 

where the ratio of the total energy of the particle to the barrier height is  = E/V. 

41.  Scanning tunneling microscopy, STM, achieves sub-atomic height sensitivity by monitoring 
the tunneling current from a sharp metallic tip to a conducting surface as the sample is 
rastered. 

42.  For separable potentials, the constituent one-dimensional wave functions multiply and the 
energies add. 

43. For a 3D-particle in a box of side lengths a, b, and c:

 (x,y,z) = 



8

abc

½
 sin 

nxx
a  sin 

nyy
b  sin 

nzz
c      and    E = 

h2

8m 



n2

x

a2 + 
n2

y

b2 + 
n2

z

c2  

44.  For a cubical box, the translational energy levels have a degeneracy of g. 

45.  The translational energy levels for macroscopic scale boxes are closely spaced in energy and 
essentially continuous. 
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46.  The Correspondence principle is that quantum solutions should agree with classical 
expectations in the classical limit, n  . 
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Chapter 23: Foundations of Quantum Mechanics Problems 
 
1.  A typical mid-infrared spectrophotometer for studying molecular vibrations has a 
wavenumber range from 4000. cm-1 to 400. cm-1. (NaCl cell windows have a 460 cm-1 long-
wavelength cutoff and KBr has a 345 cm-1 cutoff.) Calculate the frequency and energy range for 
the mid-IR. Express the energy units in J, eV, and kJ mol-1. 
 
2.  Complete the following table. For the region, choose from radiowave, microwave, infrared, 
visible, and ultraviolet. 
 

 
(cm) 

 
(m) 

 
(nm) 

 
(s-1) 

E 
(J) 

E 
(eV) 

E 
(kJ mol-1) 

~ 
(cm-1) region 

   100 MHz      
   10 GHz     microwave 
       1  
 10        
  1000       
     2    
      200   
  500       
  350       
  190       
       100,000  
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3.  All else being equal, the wavelength of the light in a photoelectric effect experiment is halved. 
Describe the effect on the photoelectron current and the kinetic energy of the photoelectrons. 
 
4. Calculate the kinetic energy of a photoelectron emitted by sodium metal when light of 
wavelength 400.0 nm is incident on it. The work function of sodium is 2.28 eV. 
 
5.  The work function for cesium metal is 2.10 eV. Cesium is used as a coating for photodetector 
tubes in some older spectrophotometers. Calculate the long wavelength limit for photoelectron 
production for a cesium coated phototube. 
 
6.  Rephrase the four experimental observations for the photoelectric effect assuming light is 
only wave-like (not particle-like) and the electrons in atoms are harmonically bound. 
 
7.  Electron microscopes can be used to determine the electron diffraction pattern of crystalline 
materials, in a similar fashion to X-ray diffraction. (a). Calculate the de Broglie wavelength for 
electrons that are accelerated to 10.0 keV. (b). Calculate the wavelength for 8.046 keV X-rays 
from a Cu X-ray tube. The effective wavelength for the electrons or X-rays determines the 
limiting spatial resolution for the diffraction study. 
 
8.  Why don’t we normally notice the wave behavior of particles in the macroscopic world that 
we directly experience? (a). Calculate the de Broglie wavelength of a 58.0 g tennis ball traveling 
at 80.0 km hr-1 and a 70.0 kg human traveling at 2 km hr-1. (b). Calculate the de Broglie 
wavelength of an O2 molecule based on the overall translational energy at room temperature. The 
average speed (rms) of an O2 molecule at room temperature is 482. m s-1. 
 
9.  Calculate the photon energy, in electron volts and wavenumbers, and the wavelength for the 
hydrogen atomic emission lines for the transitions: (a) n = 3 to n = 2, (b). n = 3 to n = 1. 
However, before you do the numerical calculations predict the transition that is “bluer.” 
 
10.  (a).  Calculate the energy and wavelength for the lowest energy absorption transition for 
ground state atomic hydrogen. (b). Calculate the ionization potential and the corresponding 
wavelength of the transition that ionizes ground state hydrogen atoms. Report the energies in eV 
and wavenumbers. Report the wavelengths in nm. In what region of the electromagnetic 
spectrum are these two transitions? 
 
11.  Li2+ is a one-electron ion, which is well described using the Bohr formula. Compare the 
wavelength of the n = 3 to n = 2 emission lines for H-atoms and Li2+. Before you do the 
numerical calculation, determine qualitatively which transition is “bluer.” 
 
12.  The spectrum of the sun incident on the earth is shown in the table below and Figure P23.1.2 
Gases in the atmosphere absorb infrared light through vibrational transitions and ultraviolet light 
through electronic transitions. Gas molecular absorption and scattering by atmospheric 
particulates reduce the solar intensity at sea level compared to outside the atmosphere. Using the 
data in the following table, show that the solar irradiance outside the earth’s atmosphere is well 
modeled by the Planck blackbody expression at 5800 K: 
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 H() = 
2hc2

5  






1

ehc/kT – 1
 

 

where k is Boltzmann’s constant, k = R/NA = 1.3807x10-23 J K-1. The irradiance is the energy 
flux per unit wavelength interval; that is, the energy emitted from a unit area per unit time per 
unit wavelength interval. A square meter cross section of the earth captures a tiny fraction of the 
total energy output of the sun, so a small scale factor must applied to match the overall intensity 
to the experimental data. 
 

 (nm) 250. 375. 460. 500. 625. 750. 1000. 1250. 1500. 1750. 

H (W m-2 nm-1) 0.034 1.193 2.032 1.929 1.667 1.279 0.742 0.445 0.263 0.166 

 

 
Figure P23.1: The solar irradiance incident on the earth at the top of the atmosphere and at 
sea level. The irradiance is given in watts for a one-meter surface placed perpendicular to the 
incident angle of the sun for a 1 nm range in wavelength,  to +d, given in nm. 

 
13.  The Planck blackbody expression in terms of frequency is: 
 

 I() = 
2h3

c2  






1

eh/kT – 1
 

 

Show that the total flux radiated by a blackbody is J =  T4, where  = 5.6704x10-8 W m-2 K-4 

(see Section 11.2 and Eq. 11.2.16). [Hint:  o 
 (x3/(ex – 1)) dx = 4/15] 

 
14.  The Planck blackbody expression in terms of frequency is given in the last problem. This 
expression gives the intensity of radiation in an interval of frequency from  to +d: 
 

 I() d = 
2h3

c2  






1

eh/kT – 1
 d 

 

Apply a change in variables to show that the distribution in terms of wavelength is given by: 
 

 I() d = 
2hc2

5  






1

ehc/kT – 1
 d 
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15.  The total flux radiated by a blackbody is J =  T4, where  = 5.6704x10-8 W m-2 K-4 (see 
Section 11.2 and Eq. 11.2.16). This flux is the energy emitted per unit area of the emitter per unit 
time. The solar constant is the energy from the sun falling on the top of earth’s atmosphere per 
unit area per unit time. The solar constant is 1.37 kW m-2. The surface area of the sun is 
6.09x1018 m2. A square meter cross section of the earth captures a tiny fraction of the total 
energy output of the sun. The average distance of the earth from the sun is 93.x106 miles, giving 
the surface area of a sphere at that radius of 2.79x1023 m2. Calculate the effective blackbody 
temperature of the surface of the sun. 
 
16.  (This problem expands on material in Chapter 12, using the partition function for vibration.) 
Planck’s treatment of blackbody radiation and Einstein’s treatment of the heat capacity of a solid 
are based on the assumption of quantized energy levels. Assume the energy levels for the 
electrons in a metal or for the vibration of atoms in a solid are equally spaced with j = j h, 
where  is a fundamental vibration frequency for the motion and j is an integer. The probability 
of an electron or atom having energy j is given by the Boltzmann distribution, nj/N = e-ji/q, 
where  = 1/kT. The average energy is given by Eq. 12.2.6: 
 

 <> = 


j = 0



 j e-j

q   where q is the partition function:  q = 
j = 0



 e-j 

 

  (a).  Show that the average energy can also be expressed as: 
 

 <> = – 
1
q 






q

 V
 

 

(b).  Show that the partition function reduces to:  q = 
1

1 – e–h 

Note that the infinite power series can be summed as:  
j = 0


 aj  =  1 + a + a2 + a3 + … = 

1
1 – a 

(c).  Using the partition function, show that the average energy is:  <> = 
h

(eh – 1)
 

 
17.  The Wein relationship for the spectral distribution of blackbody radiation is: 
 

 I() = 
22

c2  <> 
 

where  is the frequency of the light emitted, and <> is the average energy of an electron 
oscillator in the walls of the cavity of the solid. The radiation in the cavity is assumed to be in 
thermodynamic equilibrium with the electron oscillators in the cavity walls. Using the 
equipartition theorem for the average energy of an electron oscillator gives <> = RT. However, 
classical result is found to vastly overestimate the blackbody intensity in the ultraviolet. Show 
that the assumption of quantized oscillators and the corresponding average energy derived in the 
previous problem gives the Planck distribution function, which was given in Problems 13 and 14. 
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18.  The heat capacity of an oscillator can be determined from the derivative of the average 
energy versus temperature: Cv = (U/T)v = NA(<>/T)v. The average energy of a one-
dimensional quantized oscillator was derived in Problem 16: 
 

 <> = 
h

(eh – 1)
 

 

Einstein estimated that the heat capacity of a simple solid is Cv = 3NA(<>/T)v, where the 
factor of three results since the atoms in a solid can oscillate in the x, y, and z directions. Derive 
the Einstein relationship for the heat capacity of an atomic solid. Plot the relationship versus 
temperature for ~ = 100. cm-1. 
 
19.  (a). Assume the uncertainty for the one-dimensional linear position of an electron is 1.00 Å. 
Calculate the uncertainty of the momentum using x px  h-/2.  (b). The average momentum for 
a confined particle, such as the particle in a box, is zero: <p> = 0. The uncertainty in the 
momentum, as measured by the standard deviation, then reduces to just the root-mean-squared 
momentum, px = (<p2> – <p>2)½ = (<p2>)½ = prms,x. The root-mean-squared momentum can be 
used to estimate the kinetic energy of the particle, Ek,x  (prms,x)2/2m. Estimate the kinetic energy 
of a confined electron with a positional uncertainty of 1 Å.  (c). The kinetic energy of a particle 
confined in a cubical box is determined by adding the kinetic energy in each direction, 
Ek = Ek,x + Ek,y + Ek,z = 3 Ek,x, for a cubical box. The diameter of an atom is about 1 Å (the Bohr 
radius of the H atom is 0.529 Å). Assume the hydrogen atom is approximated by a 1 Å cubical 
box. Use the kinetic energy from part (b) to estimate an approximate kinetic energy of the 
ground state of the H atom in eV and kJ mol-1. Is this resulting energy chemically significant? In 
other words, is the magnitude comparable to or greater than typical enthalpy changes for 
chemical reactions? 
 
20.  (a). The momentum of a 10.0 eV electron is known to 10%. Calculate the minimum 
uncertainty in the position of the electron. (b).  The speed of a 58.0 g tennis ball traveling at 80.0 
km hr-1 is known to 10%. Calculate the uncertainty in the position of the tennis ball. Does this 
uncertainty contribute to the difficulty in returning an 80.0 km hr-1 tennis serve? 
 
21. (a). What are the quantum numbers for the energy levels that are involved in the lowest 
energy electronic transition for the molecule, H2C=CH–CH=CH–CH=CH–CH=CH2? Base your 
answer on the particle in a box model. (b). Calculate the wavelength of the light absorbed in nm. 
Calculate the energy change for the transition in wavenumbers, cm-1. The average bond length 
for a conjugated double bond is 1.39 Å. Lengthen the box by one-half of a bond beyond each 
terminal C atom to take into account that the  orbital doesn’t end exactly at the nucleus of the 
terminal C atoms. 
 
22.  Two restrictions are placed on the solutions to the Schrödinger equation that take the form of 
integrals. Name the two restrictions, the two integrals, and the values that define these 
restrictions. 
 
23.  Show that the n = 2 and n = 3 wave functions for the particle in the box are orthogonal. 
Show that the n = 2 wave function is normalized. 
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24.  The harmonic oscillator ground state has a Gaussian wave function of the form 
(x) = N e–x2/4x

2 . Normalize the wave function over -  x  . 
 
25.  What is the probability that a particle is in the left side of the particle in a box, for a box of 
length a and quantum number n? 
 
26.  Show that <x2> for a particle in a box of length a and quantum number n is: 
 

 <x2> = a2





1

3 – 
1

2n22  

 
27.  Using the result from the last problem, find the uncertainty in the position of the particle in 
box, for box length a and quantum number n. Express the result as the standard deviation, 
x = (<x2> – <x>2)½. 
 
28.  Find the average momentum for a particle in a box, with box length a and quantum 
number n. 
 
29.  Show that <p2

x> for a particle in a box of length a and quantum number n is: 
 

 <p2
x> = ħ2 



n

a

2
 

 
30.  Using the results of Problems 28 and 29, find the standard deviation of the momentum of a 
particle in a box: 
 

 px = (<p2
x> – <px>2)½ = ħ 



n

a  
 

Rationalize the results on the basis of the Heisenberg uncertainty principle. 
 
31. Using the results of Problems 27 and 30, show that x p  ħ/2 for a particle in a box, in 
concordance with the Heisenberg uncertainty principle. 
 
32.  Determine the standard deviation of the position, (<x2> – <x>2)½, for the Gaussian wave 
function: 

 (x) = 
1

(2)¼ x
½ e–x2/4x

2 over -  x   

 
33.  Consider a particle in a box of length a with a potential that goes to infinity at –a/2 and +a/2. 
The general form of the wave function as given by Eq. 23.4.5 also applies for –a/2  x  +a/2. 
Apply the boundary conditions to determine the wave function for the particle. 
 
34.  Give the wave function and energy for a 3D-particle in a box with quantum numbers (1,1,2) 
and side lengths a, b, and c for a particle of mass m. 
 
35.  Why does a confined particle have quantized energy levels? 
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36.  Find the average penetration depth of a particle of mass m and energy E into an infinite 
barrier of constant potential V. Assume the total energy is less than the potential energy, Figure 
23.5.1a. Given the amplitude of the incident wave, a, show that the average penetration depth is: 
 

 <x> = 




4k2

k2+ 2  
a2

42 

 
37.  Find the tunneling probability for a 1.00 eV electron into a 2.00 eV potential energy barrier 
of thickness 10.0 Å. 
 
38.  Show that  = N e–x is an eigenfunction of the operator d2/dx2. What is the eigenvalue? 
Normalize the wave function for x  0. 
 
39.  (a).  Show that (x) = e–ikx is an eigenfunction of the momentum and kinetic energy 
operators, but not an eigenfunction of the position operator, for motion in one-dimension. (b).  
Will repeated measurements of the position, momentum, and kinetic energy give the same result 
or different results? 
 
40.  What are the restrictions on the wave functions that may represent physical systems? Can 
the following be valid wave functions? (a). (x) = N ln x  for 0  x  , (b). (x) = N eax2 
for –  x  , and (c). (x) = N x e–ax  with a > 0 and the range 0  x  . 
 
41.  Show that a linear combination of two eigenfunctions of the momentum that have the same 
momentum is also an eigenfunction of the momentum. 
 
42.  Determine the value for the commutation relationship between the observation time and total 
energy of a particle, [t̂,Ê]. [Hint: apply the commutator as an operator for an arbitrary function, 
f(t)] 
 
43.  Consider a two-dimensional problem, such as the two-dimensional particle in a box. 
Determine the value for the commutation relationship between the position in the x-direction and 
the momentum in the y-direction, [x̂,p̂y]. [Hint: apply the commutator as an operator for an 
arbitrary function, f(x,y)] 
 
44.  Determine the value for the commutation relationship between the momentum and kinetic 
energy of a particle in one-dimension, [p̂x, E^ k]. [Hint: apply the commutator as an operator for an 
arbitrary function, f(x)] 
 
45.  Find the absolute values for the following: 

 (a). 2 + i6,    (b). e–ix2,    (c). cos(nx/a) + i sin(nx/a), (d). e–i nx/a and    (e).  – h- /i. 
 
46.  Using explicit summations, show that 2

x = <(x – <x>)2> is equivalent to 2
x = <x2> – <x>2. 

Use the trial data set x = {2,3,3,4,1,2,2}. 
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47. Prove that x = <(x – x̄)2>½ = (<x2> – <x>2)½ , Eq. 23.4.36. 
 
48.  The moments of a probability distribution characterize the distribution. The first moment is 
the mean, <x> = x̄. The second central moment is the standard deviation, x = [<(x – x̄)2>]½. 
Central moments are evaluated using the deviations from the mean (x – x̄). The third central 
moment is defined as [<(x – x̄)3>]1/3. The third central moment is a measure of the asymmetry 
about the mean for the distribution. For example, for a Gaussian distribution the third central 
moment is zero. (a). Prove that the third central moment can be calculated using: 
 

 <(x – x̄)3> = <x3> – 3 x̄ <x2> + 2 x̄3 
 

(b). Verify the formula using explicit summations with the trial data set listed in Problem 23.46. 
 
49.  Use Eq. 23.7.35 to determine the product of the uncertainty in the position and momentum 
for a one-dimensional particle in a box of length a for n = 2. 
 
50.  Show that the commutator for the position and kinetic energy of a particle, in one-

dimension, is  [x^ ,E^ k] = – (ih-/m) p^ . 
 

Can position and kinetic energy be simultaneously defined to high precision? [Hint: find the 
result of the commutator operating on an arbitrary function f(x).] 
 
51.  Is the operator o^  = (d/dx) Hermitian? [Hint: use integration by parts:  u dv = uv –  v du ] 
 
52.  (Challenge Problem)  Show that the operator (d2/dx2) is Hermitian. Is the kinetic energy 
operator also Hermitian? Do the problem using the following intermediate steps.  (a). Show that: 
[Hint: use integration by parts,  u dv = uv –  v du.] 
 

 - *
j  



d2 

dx2  i dx = – - 



di

dx  d*
j = – - 



di

dx  



d*

j

dx  dx 
 

(b).  Show that: [Hint: use integration by parts again.] 
 

 - *
j  



d2 

dx2  i dx = - i 



d 

dx 



d*

j

dx  dx  
 

(c).  Finally show that (d2/dx2) is Hermitian by proving that: 
 

  *
j  



d2 

dx2 i dx =  i 



d2 

dx2

*
*

j  dx 
 

(d).  Is the kinetic energy operator also Hermitian? 
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