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Chapter 1 Problems: Chemical Reactivity 

 
1. Consider a bowl of sugar. Sugars are our primary source of energy, so the oxidation of sucrose 
in our body must be thermodynamically favorable. How can a bowl of sugar exist in the open 
atmosphere for very long times? 
 
 
Answer:  A bowl of sugar is an example of meta-stable system. The oxidation of sucrose at room 
temperature is kinetically hindered. The addition of a catalyst or an ignition spark greatly 
accelerates this process. The oxidation of sucrose is thermodynamically favorable but kinetically 
unfavorable. 
 
 
2. Consider a salt shaker balanced on one edge, Figure P.1. This state is often possible if a few 
salt grains are sprinkled on the table. Characterize the state of the system with respect to change 
in position. If the system is not at equilibrium, state the equilibrium position. Describe any 
spontaneous processes that might occur if the salt grains were gently blown away. 
 
 
Answer:  This system is meta-stable. With a small perturbation, in other words a small push, the 
shaker would flop over. The normal vertical position of the shaker is also meta-stable; the 
vertical position is a local minimium. The overall global equilibrium is with the salt shaker on its 
side, flat against the table. After the salt grains are gently blown away, the system is unstable and 
falls to equilibrium. 
   A plot of the potential energy of the system as a function of the x position of the center of mass 
is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Our bodies, at rest, can be considered as being in a steady state. Describe the incoming flows 
that keep us away from equilibrium. What are the outgoing flows? What is the equilibrium state 
for our bodies? 
 
 

 
 

   
 

  

x 

V 
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Answer:  Living systems in general need an energy source, a source of electrons, and a source of 
carbon. The electrons are available from redox reactions involving good reducing agents, which 
as you might remember from your Organic course include compounds rich in hydrogen. In other 
words, we need food as a source of carbon and electrons, and O2 in combination with food as a 
source of energy. Of course, humans also need sources of N, P, S, Na+, K+, Ca2+, Fe3+, and other 
trace elements, which we obtain from food. The outgoing flows are heat, water vapor from 
perspiration, water loss through breathing, CO2, feces, and urine as waste products. 
 
 
4.  Are spontaneous processes always irreversible? Explain. 
 
 
Answer:  Yes: Returning a spontaneous process to its initial state requires energy input from the 
surroundings in the form of heat and work that is different from the heat and work for the 
forward process. The reverse of a spontaneous process is not the exact reverse of the change for 
the original forward process. The forward spontaneous process is irreversible. Equilibrium 
processes are reversible (always). The only way for a process to be reversible is for the system to 
be at equilibrium. 
 
 
5. (a). In what way is a steady state and an equilibrium system similar? (b). In what ways are a 
steady state and an equilibrium system different? 
 
 
Answer: (a). Steady state and equilibrium systems are time invariant. In other words, the 
concentrations of the various chemical species are constant. (b). They are different in that a 
steady state process requires the continual input of energy or matter to remain at steady state. For 
a system at equilibrium, all heat and work transfers are zero. For steady state systems, heat and 
work transfers per unit time are constant and may be non-zero. Heat is evolved at a constant rate 
for a steady-state process. For a steady state system, the forward processes are not the exact 
reverse of all the reverse processes. For an equilibrium system, the forward rates are equal and 
opposite to all the reverse rates. 
 
 
6.  Determine if the following processes are spontaneous, non-spontaneous, or reversible. 
 

  (a).  1 J of heat is transferred from a hot cup of coffee to the table top. 
  (b).  Sugar is added to a cup of coffee and the sugar dissolves. 
  (c).  Water decomposes into H2and O2 from a cup of coffee. 
  (d).  A small amount of ice melts in a cup of iced coffee at 0C. 
  (e).  A small amount of ice melts in a cup of coffee at 5C. 
  (f).  A small amount of water freezes in a cup of iced coffee at 0C 
  (g).  A small amount of water freezes in a cup of coffee that is placed outdoors at -10C. 
  (h).  Too much sugar is added to a cup of coffee producing a super-saturated solution. After 

bumping the cup on the table, some of the sugar crystallizes out of solution. 
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Answers:  (a).  1 J of heat is transferred from a hot cup of coffee to the table top: spontaneous. 
  (b).  Sugar is added to a cup of coffee and the sugar dissolves: spontaneous. 
  (c).  Water decomposes into H2 and O2 from a cup of coffee: non-spontaneous. 
Rather, H2+ ½ O2  H2O (l) is the spontaneous direction; the reverse of a spontaneous process is 
non-spontaneous. 
  (d).  A small amount of ice melts in a cup of iced coffee at 0C: reversible. 
Any amount of ice and water can coexist, without any further changes at 0C. Starting with an 
initial amount of ice at 0C, the system begins at equilibrium. Then, if a small amount of ice 
melts, the final system is also at equilibrium. A reversible process occurs through a sequence of 
equilibrium states. 
  (e).  A small amount of ice melts in a cup of coffee at 5C: spontaneous. 
The melting of ice is reversible only at 0C, the normal melting point. 
  (f).  A small amount of water freezes in a cup of iced coffee at 0C: reversible. 
As in part (d), any amount of ice and water can coexist at the normal melting point, so the system 
remains at equilibrium and can reversed by melting a small amount of ice, without any change in 
the surroundings for the overall forward and reverse process. 
  (g).  A small amount of water freezes in a cup of coffee that is placed outdoors at -10C: 
spontaneous. 
This process is spontaneous in the same way as making ice in a freezer is spontaneous (otherwise 
ice would not exist; the formation of ice must be spontaneous under some circumstances). 
  (h).  Too much sugar is added to a cup of coffee producing a super-saturated solution. After 
bumping the cup on the table, some of the sugar crystallizes out of solution: spontaneous. 
A super-saturated solution is a meta-stable system with a kinetic bottleneck. Bumping provides a 
bubble or a fresh surface that acts as a nucleation center for sugar crystal formation. The sugar 
concentration in a super-saturated solution exceeds the amount the solution can hold at 
equilibrium, at the given temperature. 
 
 
7.  Prove that if the reverse of a spontaneous process is also spontaneous, it is possible to 
construct a perpetual motion machine.1,2 

 
 
Answer:  A cyclic process is a process that begins and ends at the same state of the system. 
Consider a cyclic process that is made from the combined forward process and the reverse 
process, so that the system remains unchanged. Since the forward process is spontaneous and the 
reverse process is spontaneous, the cyclic process is overall spontaneous. The system is 
unchanged by the cyclic process, which can then reoccur, again spontaneously. The net result is 
that the cyclic process can reoccur an infinite number of times, which is an example of perpetual 
motion. Perpetual motion has never been observed, and because of our experience, we never 
expect perpetual motion to occur. 
   In proving a statement we often assume the converse and work through the ramifications until 
we come to an impossibility. Having reached an impossible condition we must conclude the 
original assumption was wrong. In this problem we show that the forward and reverse processes 
cannot both be spontaneous. We therefore conclude: the reverse of a spontaneous process is non-
spontaneous. 
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8. Calculate the molar density, in mol m-3, and the mass density, in kg m-3 and g L-1, for an ideal 
gas at standard pressure, P = 1.00 bar, and 298.15 K. Assume the gas is air with an effective 
molar mass given by Eq. 1.3.17. 
 
 
Answer:  P = 1.00 bar = 1.00x105 Pa. The molar density is: 

 
n
V  =  

P
RT  =  

1.000x105 Pa
8.314 J K-1 mol-1(298.15 K)  =  40.3 mol m-3  

and in mol L-1 

 
n
V  = 40.3 mol m-3 (1 m3/1000 L)  =  0.0403 mol L-1 

The mass density can be calculated from the molar density by 

 d = 
M n

V  = 
M P
RT  = 28.8x10-3 kg mol-1 (40.3 mol m-3) = 1.16 kg m-3 

or d = 28.8 g mol-1 (0.0403 mol L-1) = 1.16 g L-1 
 

Alternatively, directly using R = 0.082058 L atm K-1 mol-1 and 1 bar = 0.9869 atm: 

 d = 
M n

V  = 
M P
RT  = 

28.8x10g mol-1(0.9869 atm)
 0.082058 L atm K-1 mol-1(298.15 K) = 1.16 g L-1 

 
 
9. Calculate the number of moles of an ideal gas in a volume of 1.000 L for a pressure of 1.000 
bar and a temperature of 298.15 K. Do this problem using three different sets of units and the 
corresponding value for R: (a) using L atm, (b) using Pa m3, and (c) using L bar. 
 
 
Answer:  Note that 1 bar = 0.9869 atm , 1 bar = 1.00x105 Pa , 1 m3 = 1000 L. 
(a) using L atm, 

 n = 
PV
RT = 

0.9869 atm (1.000 L)
0.082058 L atm K-1  mol-1(298.15 K)  =  0.04034 mol 

(b) using Pa m3: 

 n = 
PV
RT = 

1.000x105 Pa (1.000x10-3 m3)
8.3145 J K-1  mol-1(298.15 K)  =  0.04034 mol 

(c) using L bar: 

 n = 
PV
RT = 

1.000 bar (1.000 L)
0.083145 L bar K-1 mol-1(298.15 K)  =  0.04034 mol 

 
 
10.  The density of a mixture of H2 and O2 is 0.982 g L-1 at 298.2 K and 1.00 bar pressure. 
Calculate the mole fraction of H2 in the mixture. 
 
 
Answer:  The plan is to calculate the effective molar mass of the sample, using Eq. 1.3.9, and 
then use the weighted average to calculate the original composition, as was done in Eq. 1.3.17. 
   Convenient units for this problem are L and bar, with R = 0.083145 L bar K-1 mol-1. The 
effective molar mass is given from the mass density as: 
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 d = 
M P
RT  

 0.982 g L-1 = 
M (1.00 bar)

0.083145 L bar K-1 mol-1(298.15 K)  or M = 24.34 g mol-1 

 

The effective molar mass is the weighted average of the pure molar masses, as in Eq. 1.3.17: 
 

 M = x (2.02 g mol-1) + (1 – x) 32.00 g mol-1 = 24.34 g mol-1 
 

Solving for x gives x = 0.2555 or 25.5%. We will show in the next chapter that volume and mole 
fractions are equivalent. 
 
 
11.  Two containers, which are separated by a stopcock, are held in a constant temperature bath 
at 298.2 K, Figure P10.1. The first container has a volume of 24.80 L and the second 12.39 L. 
The two containers are filled with 2.00 mol and 1.00 mol of ideal gas, respectively. Calculate the 
intial pressures. After the stopcock is opened, calculate the final volume and pressure. Of P, V, 
and n, in this experiment, which are intensive and which are extensive? 
 
 
 
 
 
 

Figure P10.1: Two closed containers are opened to form a combined system. 
 
 
Answer:  The initial pressures are calculated using the ideal gas law in each separate volume: 
 

 P1 = n1RT/V1 = 2.00 mol(0.083145 bar L K-1 mol-1)(298.15 K)/24.80 L = 2.00 bar 
 P2 = n2RT/V2 = 1.00 mol(0.083145 bar L K-1 mol-1)(298.15 K)/12.39 L = 2.00 bar 
 

After the stopcock is opened, the total volume is Vtot = V1 + V2 = 37.19 L and total moles of gas 
is ntot = n1 + n2 = 3.00 mol. The final pressure is: 
 

 Ptot = ntot RT/Vtot = 3.00 mol(0.083145 bar L K-1 mol-1)(298.15 K)/37.19 L = 2.00 bar 
 

The mole amount and volume add, so they are extensive. The pressure remains the same and is 
intensive. Repeating a similar problem with constant pressures shows that the temperature is the 
same before and after, so the temperature is also intensive. 
 
 
12.  Classify the following variables as intensive or extensive: 

(a).  molar concentration of a solution. 
(b).  molar density. 
(c).  density ( mass density). 
(d).  surface area of an interface between two dissimilar phases. The air-water, olive oil-water, 

and olive oil-glass interfaces are three examples. The interface can be the planar interface 
between two bulk samples or the surface of a spherical droplet. 

V1 V2 
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(e).  surface tension, which is defined as the change in surface energy of an interface divided 
by the change in surface area:  = dU/d. 

(f).  temperature. 
(g).  coefficient of thermal expansion at constant pressure, which is defined as: 
 

  = – 
1
V 






V

T P
 

where (V/T)P is the rate of change of the volume of a sample with temperature, while 
holding the pressure constant. 

 
 

Answers:  The ratio of any two extensive properties of a system is intensive. 
(a).  molar concentration = n/V, which is the ratio of two extensive quantities: intensive. The 

concentration of a drop or a bucket full of solution is the same. 
(b).  molar density = n/V, which is the ratio of two extensive quantities of the system: intensive 
(c).  density = d = w/V, where w is the mass of the system. The density is the ratio of two 

extensive quantities of the system: intensive 
(d).  surface area depends on the size of an interface or a droplet: extensive 
(e).  surface tension =  = dU/d, where dU is the change in surface energy and d is the 

change in surface area. Surface tension is the ratio of two extensive quantities: intensive 
(f).  temperature is independent of the size of the system: intensive. Combining 50 mL of water 

at 25C with another 50 mL of water at 25C gives 100 mL of water at 25C 
(g)  coefficient of thermal expansion,  = (1/V)(V/T)P. (V/T)P is the ratio of the change in 

volume, which is extensive, to the change in temperature which is intensive, giving the 
derivative as extensive. The coefficient of thermal expansion is the ratio of (V/T)P, which 
is extensive, to the total volume, which is also extensive, giving an overall intensive 
property. The coefficient of thermal expansion is a primary property of a substance. The 
coefficient of thermal expansion for a drop and a gallon of water is the same. 

 
 
13.  Calculate the pressure inside your mouth that would be necessary to drink a soft drink 
through a straw of length 20.0 cm. Assume the drink has the density of water at 20.0C, 0.9982 g 
mL-1 and the atmospheric pressure is 1.000 bar. 
 
 
Answer:  This problem is just like a closed end manometer, with your mouth acting as the 
volume in the closed end. Then Pext = Pin + Pliq and Pliq = dgh. The density of water at 20.0C is 
needed in kg m-3 to match the units of g: 
 d = 0.9982 g mL-1 (1 kg/1000 g)( 1x103 mL/1 L)(1000 L/1 m3) = 998.2 kg m-3 
Then Pliq = dgh =  998.2 kg m-3 (9.807 m s-2)(0.200 m) = 1958 Pa 
Solving Pext = Pin + Pliq for Pin gives: 
 Pin = Pext – Pliq = 1.00x105 Pa – 1958 Pa = 98042 Pa = 0.980 bar 
If you would like to see the pressure in torr: 
 Pin = 0.980 bar (1 atm/1.01325 bar)(760 torr/1 atm) = 735. torr 
 

So, by decreasing the pressure in your mouth, the atmosphere pushes the water up the straw. 
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14. Calculate the height of a column of water at 20.0C in a closed end manometer for an 
atmospheric pressure of 1.000 bar. Assume the liquid has a constant density. The density of 
water at 20C is 0.9982 g mL-1. The vapor pressure of water at 20.0C is 2.338 kPa. 
 
Answer:  For a closed end manometer, Pext = Pin + Pliq with Pliq = dgh and Pin given by the vapor 
pressure of the liquid in the manometer, 2.338 kPa. Solving for Pliq: 
 Pliq  = Pext – Pin =  1.000x105 Pa  – 2338 Pa  =  97662 Pa 
The density of water at 20.0C is needed in kg m-3 to match the units of g: 
 d = 0.9982 g mL-1 (1 kg/1000 g)( 1x103 mL/1 L)(1000 L/1 m3) = 998.2 kg m-3 
Then Pliq =  97662 Pa = dgh =  998.2 kg m-3 (9.807 m s-2) h 
Solving for h = 9.976 m 
In English units for comparison: 
 h = 9.976 m (100 cm/1 m)(1 in/2.540 cm)(1 ft/12 in) = 32.7 ft 
 
 
15. Long’s Peak in the Colorado Rocky Mountains is 3962. m high. What is the predicted 
pressure on the top of Long’s Peak? Assume a constant temperature of 20.0C. Compare the 
molar density on top of Long’s Peak with the molar density of air at sea level. 
 
 
Answer:  Assuming the atmospheric pressure at sea level is 1 atm and the mole fraction averaged 
molar mass of air is 28.8 g mol-1 gives the barometric formula as: 
 

 



–Mgas g h

RT   =  
–28.8x10-3 kg(9.807 m s-2)(3962. m)

8.3145 J mol-1 K-1(293.15 K)   =  –0.4591 

 P = Po e
 

–Mgas g h
RT  = 1.00 atm e-0.4591 = 0.632 atm 

 

The molar density at sea level assuming 1 atm = 1.01325x105 Pa and at 293.15 K, is: 

 
n
V  =  

P
RT  =  

1.01325x105 Pa
8.314 J mol-1 K-1(293.15 K)  =  41.6 mol m-3  

The molar density at the top of the mountain is based on P = 0.632 atm(1.01325x105 Pa/1 atm) = 
6.404x104 Pa: 

 
n
V  =  

P
RT  =  

6.404x104 Pa
8.314 J mol-1 K-1(293.15 K)  =  26.3 mol m-3 

which is why hiking at high altitude is so difficult. 
 
 
16.  Calculate the altitude in the atmosphere that corresponds to a pressure of 0.500 bar if the 
surface pressure is 1.000 bar. Assume the temperature is constant at 18C. 
 
 
Answer:  Use Eq. 1.3.15: 

 ln 
P
Po

   =  – 
Mgas g h

RT  
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 ln(0.500/1.00) = – 
28.8x10-3 kg (9.807 m s-2) h
8.314 J K-1 mol-1 (291.2 K)  = -1.1667x10-4 h 

 h = -0.6931/-1.1667x10-4 = 5941 m = 5.94x103 m 
 
 
17.  For liquids with moderate changes in pressure, the density is given by: 
 

 d = do [1 + T (P – Po)] 
 

where T is the isothermal compressibility, do is the density of the liquid at the surface pressure 
Po and d is the density at final pressure P. (a). Show that the formula for the pressure as a 
function of depth is given by: 
 

 
1
 ln(1 + T (P – Po)) = do g h 

(b). Calculate the pressure in the Mariana Trench at a depth of 10911 m (35798 ft) given T = 
4.587x10-10 Pa-1 at 20C. Use the density of pure water, 0.9982 g mL-1 at 1 bar, for this problem, 
instead of the density of sea water. Assume the surface pressure is 1.000 bar. 
 
 
Answer:  The depth below the surface is x. The surface corresponds to the depth x = 0. The 
change in pressure for a thin disk of water is given by dP = df/A = d g dx. The differential has a 
positive sign since as x increases the column of water above your head increases and the pressure 
increases. 
 
 
 
 
 
 
 
 
 
 
 
Substituting the density as a function of pressure gives: 
 

 dP = [1 + T (P – Po)] do g dx 
 

Separating variables gives: 
 

 
dP

[1 + T (P – Po)]
 = do g dx 

 

Integrating gives: 
 

 



Po

P

  
dP

[1 + T (P – Po)]
 = 0

h
do g dx 

 

h 

dx 

x 

0 

A 

P 

Patm 
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The general form of the left-hand integral is 

  

1
1 + ax dx  =  

1
a ln(1 + ax). Which gives: 

 



Po

P

  
dP

[1 + T (P – Po)]
  =  

1
 ( ln(1 + T (P – Po))|PPo

  =  
1
T

 ln(1 + T (P – Po)) 

 

The final result is then: 
 

 
1
T

 ln(1 + T (P – Po)) = do g h 
 

We can solve for P by rearranging in the following steps: 
 

 ln(1 + T (P – Po)) = T do g h 

 1 + T (P – Po) = eT dogh
 

 (P – Po) = 
1
 





 eT dogh
 – 1  

 

With h = 10911. m, do = 998.2 kg m-3, and T = 4.587x10-10 Pa-1: 
 

 T dogh = (4.587x10-10 Pa-1)(998.2 kg m-3)(9.8067 m s-2)(10911. m) = 4.8993x10-2 
 

Notice that the units are 1 Pa = 1 N m-2 = 1 kg m-1 s-2  
 

and then  





 eT dogh
 – 1  = 5.0213x10-2 giving: 

 

 (P – Po) = 
1
 





 eT dogh
 – 1  = 

5.0213x10-2

4.587x10-10 Pa-1 = 1094.7x105 Pa 
 

and the total pressure at depth is 1095.7x105 Pa or 1.096x103 bar. 
What would we have gotten if we had assumed an incompressible fluid with Pliq = dgh: 
 

 Pliq = 1068.1 x105 or a total pressure of 1069.1x105 Pa 
 

or 2.4% less. So the density of water can be considered as a constant for all but extreme 
conditions. 
 
 
18.  (a).  Find the derivative of the atmospheric pressure with respect to altitude from the 
barometric formula, Eq. 1.3.16. (b). Show that this derivative satisfies the original differential 
equation, Eq. 1.3.10. 
 
 

Answer:  (a).  The barometric formula at height x is: P = Po e
 

–Mgas g x
RT  

The general form of the derivative using the chain rule is:  
de-cx

dx  = (-c) e-cx 
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The derivative is:  
dP
dx = 



–Mgas g

RT  Po e
 

–Mgas g x
RT  = 



–Mgas g

RT  P 
 

(b).  The original differential equation, Eq. Eq. 1.3.10, rearranges to give:  
dP
dx = 



–Mgas g

RT  P 

which shows that the barometric formula is the proper solution to the differential equation. 
 
 
19.  Chemical kinetic equations are good examples of first-order homogeneous differential 
equations with a constant coefficient. The rate of change of the concentration of a substance A 
with time in a first-order chemical reaction is given as: 
 

 
d[A]

dt  = – k [A] 
 

where k is the rate constant. (a). Show that this expression is a first-order homogeneous 
differential equation with a constant coefficient. (b). Integrate the equation from an initial 
concentration of [A]o at time t = 0 to a final concentration of [A] at time t. 
 
 
Answer:  (a).  Multiplying both sides of the rate expression by dt gives: 
 

 d[A] = – k [A] dt 
 

Comparison with Eq. 1.3.18 shows that this expression is a first-order homogeneous differential 
equation with a constant coefficient, where f is replaced by [A] and the constant coefficient is the 
rate constant, k. 
(b).  Dividing both sides of the equation by [A] to separate the variables gives: 
 

 
d[A]
[A]  = – k dt 

 

Now the terms involving the concentration are on the left of the equal sign, and the terms 
involving time are on the right. The limits for the integration are at t = 0 the initial concentration 
of A is [A]o and at time t the concentration of A is given as [A]: 
 

 



[A]o

[A] d[A]
[A]  = – 0

t
k dt 

 

 ln [A] |[A]
[A]o

 = – k t|
t
0 

 

 ln [A] – ln [A]o = – k t 
 

The difference in the logs is the log of the ratio, ln x – ln y = ln(x/y): 
 

 ln




[A]

 [A]o
 = – k t 

 

Solving for [A]: 
 

 [A] = [A]o e–kt 
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20.  Do the Taylor expansion for 1-x for x  0, keeping terms up to x2. 
 
 
Answer:  We need the first and second derivatives: 

 
d (1-x)½

dx   =  
–(1–x)-½

2   =  
-1

2(1-x)½  =  
-1

2(1-x)½ 

 
d2 (1-x)½

dx2   =  
d 



-1

2(1-x)½

dx   =  
-1

4(1-x)3/2 
 

Evaluating at x = xo = 0 
 ( ) (1-x)½

x=0
  =  1 

 



d (1-x)½

dx
x=0

  =   
-1

2(1-0)½  =  
-1
  2 

 



d2 (1-x)½

dx2  
x=0

  =  
-1

4(1-0)3/2  =  
-1
  4 

Substituting into the Taylor series gives: 

 f  f(xo) + 



df

dx x=xo

(x – xo) + 



d2f

dx2
x=xo

(x – xo)2

2   =  1 – 
1
2 (x) – 

1
4 



x2

2  

Giving the same result as Table 1.4.2: 

 1-x  1 – 
x
2 – 

x2

8  

 
 
21. Using a Taylor series expansion, what is the linear approximation for ln(f2/f1) for f2 f1. 
 
 
Answer:  From Table 1.4.2: ln x  (x – 1)  for x  1 
Substitute x = f2/f1 giving: 

 ln 
f2

f1
  



f2

f1
 – 1  

Now we should derive ln x  (x – 1). The function at x = xo = 1 is: 
 ( ln x )x=1  =  0 
 

The derivative evaluated at x = xo = 1: 

 



d ln x

dx
x=1

  =  


1

x
x=1

  =  1 

Substituting into the Taylor series: 

 f  f(xo) + 



df

dx x=xo

(x – xo)  =  0  +  (1) (x – 1) = (x – 1) 
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22.  Determine the number of terms in the Taylor series expansion of ln(1 – x) that are necessary 
for 1% and 0.1% accuracy, if x = 0.100. 
 
 
Answer:  First, note that the exact value is ln(1 – 0.100) = -0.10536. Using Example 1.5.6, 
keeping the first two terms gives a 5% error. We need to generate the next few terms in the 
Taylor expansion. From Example 1.5.6: 
 

 ln(1 – x)|x = 0 = 0 
 

 
d ln(1 – x)

dx  = – 
1

(1 – x)
x = 0

 = -1 

 

 
d2 ln(1 – x)

dx2  = 
d 

-1
(1 – x)
dx  = – 

1
(1 – x)2

x = 0
 = -1 

 

 
d3 ln(1 – x)

dx3  = 
d 

-1
(1 – x)2

dx  = – 
2

(1 – x)3
x = 0

 = -2 

 

 f  f(xo) + 



df

dx x=xo

(x – xo) + 



d2f

dx2
x=xo

(x – xo)2

2  + 



d3f

dx3
x=xo

(x – xo)3

3!  

 

 ln(1 – x)  (0) – 1 x – 
x2

2! – 
2 x3

3!  – 
3 x4

4!  = –x – 
x2

2  – 
2 x3

6  – 
3 x4

24 = – x – 
x2

2  – 
x3

3  – 
x4

8  
 

 ln(1 – 0.1)  -0.1     with 5 % error for two terms 
         -0.1 – 0.05 = -0.105   with 0.34 % error for three terms 
         -0.1 – 0.05 – 0.0033= -0.10533  with 0.03 % error for four terms 
 

Three terms, including the first zero term, are sufficient for 1% accuracy. Four terms are needed 
for 0.1 % accuracy. The approximation ln(1 – x)  – x is appropriate only for x < 0.022, for 1% 
error. 
 
 
23.  Calculate the derivative of  h(x) = e-cx/(1-e-cx), with respect to x for c equal to a constant. 
 
 
Answer:  Using the product rule with f = e-cx  and g = 1/(1-e-cx): 
 

 
d (f g)

dx   =  f 
dg
dx  + g 

df
dx  =  e-cx 

d (1/(1-e-cx))
dx   + 

1
(1-e-cx) 

d e-cx

dx  
 

Using the chain rule: 
 

 
d e-cx

dx   =  – c e-cx 

 

and (see Eq. 1.4.7-9): 
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d (1/(1-e-cx))

dx   =  
–1

(1-e-cx)2  (–(–c) e-cx)  =  
–c e-cx

(1-e-cx)2 
 

Substituting back into the product rule result: 
 

 
dh
dx  =  e-cx   



–c e-cx

(1-e-cx)2   + 
1

(1-e-cx)  (– c e-cx) 

 
dh
dx  = 



–c e-2cx

(1-e-cx)2   –  
c e-cx

(1-e-cx) 
 

This derivative is actually useful; it is related to the heat capacity of a normal mode of vibration. 
 
 

24. Find the derivative of  P = 
nRT

(V – nb) – a 
n2

V2, with respect to V. Assume that n, R, T, a, and b 

are all equal to a constant. 
 
 
Answer:  We hold n, R, T, a, and b constant and take the derivative of the two terms: 
 

 
dP
dV = nRT 

d 



1

(V – nb)
dV  – a n2 

d 



1

V2

dV     (cst. n, R, T, a, & b) 
 

Consulting Table 1.5.1, we find: 
 

 
d( )1/xn

dx  = 
– n

  xn+1 
 

For the first derivative, we can use the substitution z = (V – nb). The first derivative, using the 
chain rule, is: 
 

 
d 



1

(V – nb)
dV  = 

d 


1

z
dz  

dz
dV = 

– 1
  z2 



dz

dV  = 
– 1

(V – nb)2 



d(V – n b)

dV  = 
– 1

(V – nb)2 (1) 
 

The next derivative is then: 
 

 
d 



1

V2

dV  = 
– 2
  V3 

 

Then the partial derivative is given by: 
 

 
dP
dV = – 

nRT
(V – nb)2+ 

2an2

V3      (cst. n, R, T, a, & b) 
 

This derivative is actually useful; it is related to the compressibility of a real (Van der Waals) 
gas. In Ch. 7 we will note that this derivative is better written as (P/V)T. 
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25.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true. If the statement is true, but too restrictive, 
give the more general statement. 
 

(a).  For a spontaneous process, no work can be done by the surroundings on the system. 
 

(b).  Fast processes are spontaneous. 
 

(c).  On an average day at sea level, supporting a column of mercury in a closed tube higher 
than 760 mm requires more force per unit area than the atmosphere can provide. 
 

(d).  Your mouth provides a partial vacuum that pulls a soft drink into your mouth through a 
straw. 
 

(e).  The derivative of the potential energy with respect to a displacement in a system is zero 
for a system at equilibrium. 

 
 
Answers:  (a).  False:  Spontaneous processes can have heat and work transfers with the 
surroundings in both directions. The heat and work necessary to return the system to the initial 
state are different than the heat and work for the forward process. The overall result of the 
forward process and then returning the system back to the initial state requires a net transfer of 
energy from the surroundings into the system. In other words, there is a net change in the 
surroundings for the cyclic overall process. A true statement is “The work done in a spontaneous 
process is not equal to the work required to return the system to the initial state.” 
 

(b).  False: Don’t confuse kinetic and equilibrium considerations. Spontaneous processes can be 
fast or slow. Spontaneous processes have equilibrium constants greater than one. The 
equilibrium constant is the ratio of the forward and reverse overall reaction rates, Kp = kf/kr. If 
the forward rate constant is large, the reverse rate can be even larger, which would make the 
equilibrium constant small. A true statement is “spontaneous processes may be fast or slow.” 
 

(c).  True. 
 

(d).  False: A vacuum provides no force. Rather, “a partial vacuum in your mouth decreases the 
downward pressure on the liquid, so that the pressure of the atmosphere can provide sufficient 
force to raise the liquid higher in the straw.” 
 

(e).  True but too restrictive: The complete statement is “the derivative of the potential energy 
with respect to a displacement in the system is zero for metastable and equilibrium systems.” 
 
 
26.  (Challenge Problem)  Three definitions of a reversible process are: 
 

  (a).  A reversible process is one in which the system never deviates from equilibrium by more 
than an infinitesimal amount. 
 

  (b).  A reversible process is not a real process, but a hypothetical succession of equilibrium 
states. 
 

  (c).  A reversible process is one for which the system can be returned to its initial state with no 
net change in the surroundings. 
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Consider the melting of 1 mole of ice at 0C as an example. Show how each of the three 
definitions is equivalent. 
 
 
Answer:  Consider a glass of iced tea in a refrigerator at 0C, illustrated below, and the melting 
of one mole of water: H2O (s)  H2O (l). Small amounts of energy can be withdrawn or added to 
the glass of iced tea through heat transfers from the system, dq, to the refrigerator. To transfer 
heat from the system, the temperature of the refrigerator is decreased by an infinitesimal amount, 
until an infinitesimal amount of heat is transferred. To transfer heat to the system, the 
temperature of the refrigerator is increased an infinitesimal amount, until an infinitesimal amount 
of heat is transferred. Any amount of ice and water are in equilibrium at the normal melting 
point, as long as both phases are present. If the temperature of the refrigerator and the iced tea 
are exactly the same, no heat is transferred and the net amount of ice and liquid remain constant. 
 
 
 
 
 
 
 
 
 
 
(a).  An infinitesimal change in temperature gives rise to either melting or fusion, but the system 
remains at equilibrium as long as the temperature is returned to 0C, after the heat transfer. One 
mole of ice may be melted or one mole of liquid may be frozen by a series of heat transfers using 
infinitesimal changes in the temperature of the refrigerator. The system remains at equilibrium 
during the process, or infinitesimally close to equilibrium during the heat transfers. 
 

(b).  An infinitesimal is the limit of a small change. Let the temperature of the refrigerator be T + 
T. The infinitesimal change dT is the limit T  0. So even though infinitesimal changes are 
hypothetical, such processes are realized through extrapolation of practical processes at T  0. 
Any amount of ice and water are in equilibrium at the normal melting point, as long as both 
phases are present. So the process occurs through a succession of equilibrium states as one mole 
of ice melts or one mole of liquid freezes. 
 

(c).  If we freeze a small amount of ice by infinitesimally lowering the temperature of the 
refrigerator, the energy flows into the refrigerator. Because the process is an infinitesimal 
process, the freezing can be reversed by the transfer of exactly the same amount of heat back into 
the glass of iced tea: dqmelt = – dqfuse. The net result is no change for the refrigerator, which acts 
as the surroundings in this example. Because the melting of one mole of ice or the freezing of 
one mole of liquid can be accomplished through a sequence of such transfers, the net change in 
the refrigerator (surroundings) is always zero for the overall combined forward and reverse 
process, no matter how big the overall transfer. 
 
 
 

dq 
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Chapter 2 Problems: Concentrations and Partial Pressures 
 
1.  A 1.00-L bulb containing H2 at a pressure of 2.50 bar is connected to a 2.00-L bulb containing 
N2 at a pressure of 1.50 bar, both at the same temperature. Calculate (a) the total pressure of the 
system, (b) the mole fraction of H2, and (c) the partial pressure of each gas. 
 
 
Answer:  (a) The easiest way to work this kind of problem is to convert to moles. For the 1.00-L 
bulb: 
 nH2  =  PV/RT  =  2.50 bar 1.00 L/RT =  2.50 L bar/RT 
for the 2.00-L bulb:  
 nN2  =  1.50 bar 2.00 L/RT  =  3.00 L bar/RT 
 

the total pressure is given by the total moles, n = nH2 + nN2 in the total volume V= 3.00 L, Eq. 
2.1.3: 
 P  =  n RT/V =  (2.50 L bar/RT + 3.00 L bar/RT) RT/3.00 L =  1.833 bar 
 

(b) The mole fractions are: 

 yH2  =  nH2/n = 
2.50 L bar/RT
5.50 L bar/RT  =  0.4545 

and  yN2  = nN2/n  =  
3.00 L bar/RT
5.50 L bar/RT  =  0.5455 

 

(c) The partial pressures are given by Eq. 2.1.10: 
 PH2  =  yH2 P  =  0.4545 (1.833 bar)  =  0.833 bar 
 PN2  =  yN2 P  =  0.5455 (1.833 bar)  =  1.000 bar 
 
 
2.  Dry air is 20.946% by volume O2 and 79.054% N2. Consider a constant pressure piston filled 
with dry air at 1.000 atm or 1.01325 bar pressure at 298.2 K. A small amount of water is 
admitted and allowed to evaporate to give the equilibrium vapor pressure of water in the piston. 
Calculate the partial pressure of O2 at 298.2 K. 
 
 
Answer:  Think through this problem first: At constant pressure, admission of water vapor into 
the piston will cause an increase in the total moles of gas and a corresponding increase in 
volume. The moles of O2 remain the same, but with the increase in volume, the partial pressure 
of O2 will decrease. Assume the initial volume is Vo. In dry air P = PO2 + PN2, with 
PO2 = nO2 RT/Vo and PN2 = nN2 RT/Vo giving: 
 

 P = nO2 RT/Vo + nN2 RT/Vo or    P = (nO2 + nN2) RT/Vo    (1) 
 

Using the given mole fraction of O2, the partial pressure of O2 in dry air is: 
 PO2 = yO2 P = 0.20946 (1.01325 bar) = 0.2122 bar  or 
 PO2 = yO2 P = 0.20946 (1.0000 atm) = 0.2095 atm = 159.2 torr   (2) 
 

After the admission of water vapor, P = PO2 + PN2 + PH2O and the volume increases to V1, or: 
 

 P – PH2O = PO2 + PN2 = nO2 RT/V1 + nN2 RT/V1 = (nO2 + nN2)RT/V1   (3) 
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Dividing Eq. 3 by Eq. 1 gives: 
 

 
P – PH2O

P   =  
(nO2 + nN2)RT/V1

(nO2 + nN2)RT/Vo
  =  

1/V1

1/Vo
  =  

Vo

V1
      (4) 

 

In addition, the ratio of the wet and dry partial pressures for O2 can be calculated from: 
 

 
PO2,1
PO2,o

  =  
nO2 RT/V1

nO2 RT/Vo
  =  

1/V1

1/Vo
  =  

Vo

V1
       (5) 

 

since the moles of O2 remain constant. Combining Eq. 4 and 5 gives: 
 

 
PO2,1
PO2,o

  =  
P – PH2O

P          (6) 

 

Substitution of the equilibrium vapor pressure of water from Table 2.1.1 gives the ratio: 
 

 
PO2,1
PO2,o

  =  



101.325 kPa – 3.168 kPa

101.325 kPa   =  0.9687     (7) 

 

Using the dry partial pressure from Eq. 1 gives the wet partial pressure: 
 

 PO2,1  =  PO2,o 



P – PH2O

P   =  0.2122 bar (0.9687)  =  0.2056 bar 
 

or equivalently, 0.2029 atm and 154.2 torr. 
 
 
3.  Dry air is 20.946% by volume O2 and 79.054% N2. Consider a constant volume flask filled 
with dry air at 1.000 atm or 1.01325 bar pressure at 298.2 K. A small amount of water is 
admitted and allowed to evaporate to give the equilibrium vapor pressure of water in the constant 
volume flask. Calculate the partial pressure of O2 at 298.2 K. 
 
 
Answer:   The dry partial pressure is: 
 

 PO2 = yO2 P = 0.20946 (1.01325 bar) = 0.2122 bar 
 

and the total pressure is given by Po = PO2 + PN2. The admission of water vapor to the constant 
volume flask will increase the total pressure to P1 = PO2 + PN2 + PH2O. However, since the partial 
pressure of O2 is the pressure the gas would exert in the flask if it were alone, the partial pressure 
of O2 won’t change. So the final partial pressure of O2 is 0.2122 bar, or 0.2095 atm, or 159.2 torr. 
 
 
4.  An aqueous solution is prepared by adding 5.0822 g of ammonium sulfate, (NH4)2SO4, to a 
100-mL volumetric flask and then diluting to the mark. The final mass of the solution is 
102.97 g. Calculate the molarity, molality, and the mole fraction of ammonium sulfate in this 
solution. Calculate the mole fraction of the solvent. 
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Answer:  The molar mass of (NH4)2SO4 is 132.14 g mol-1. The number of moles of added 
(NH4)2SO4 is 0.0384607 mol and the molarity is: 
 

 cB = 0.0384607 mol/0.1000 L = 0.384605 M. 
 

The molality, using the mass of the solvent: 
 

 wA = wsoln – wB = 102.97 g – 5.0822 g = 97.888 g = 0.097888 kg 
is mB = nB/wA = 0. 0.0384607 mol/0.097888 kg = 0.392904 mol kg-1 
 

The mole fraction is given using Eq. 2.2.13: 
 

 xB = 
mB (1kg)





1000g

 MA +mB (1kg)
  =  

0.392904 m (1kg)





1000g

18.0153 g mol-1 + 0.392904 m (1kg)
 

 xB =  7.02853x10-3 
 

Don’t forget to use all constants to at least the number of significant figures justified by the 
problem. Then calculate the mole fraction of the solvent by difference, since xA + xB = 1: 
 xH2O = 1 – 7.02853x10-3 = 0.992971 
 

Notice that the molarity and molality differ by 2.1%. 
 
 

5.  An aqueous solution is prepared by adding 2.012 g of CaCl22H2O to a 100-mL volumetric 
flask and then diluting to the mark. The final mass of the solution is 101.26 g. Calculate the 
molarity, molality, and the mole fraction of CaCl2 in this solution. Calculate the mole fraction of 
the solvent. 
 
 
Answer:  We need to take into account the waters of hydration. The plan is to note that the 
number of moles of anhydrous CaCl2 is equal to the moles of added CaCl22H2O. For the 
molality calculation the water of hydration is added to the mass of the solvent. The molar mass 
of CaCl22H2O is 147.014 g mol-1. 

   The moles of CaCl22H2O is based on the hydrated molar mass: 
 

 nB = 2.012 g/147.014 g mol-1 = 0.013686 mol 
 

and the molarity is: 
 

 cB = 0.013686 mol/0.1000 L = 0.13686 M. 
 

The mass of the solvent includes the water of hydration, based on 0.013686 mol of CaCl22H2O: 
 

 wA = water added in making solution + water of hydration from solute 
 wA = (101.26 g – 2.012 g) + 2 (18.02 g mol-1)(0.013686 mol) 
       = 99.741 g = 0.99741 kg 
 

The molality is then: 
 mB = nB/wA = 0.013686 mol/0.99741 kg = 0.13721 mol kg-1 
 

The mole fraction is given using Eq. 2.2.13: 
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 xB = 
mB (1kg)





1000g

MA
+mB (1kg)

  =  
0.13721 m (1kg)





1000g

18.0153 g mol-1 + 0.13721 m (1kg)
 

 xB =  2.466x10-3 
 

Don’t forget to use all constants to at least the number of significant figures justified by the 
problem. Then calculate the mole fraction of the solvent by difference, since xA + xB = 1: 
 xH2O = 1 – 2.466x10-3 = 0.9975 
 

Notice that the molarity and molality differ only by 0.26% in this problem. 
 
 
6.  Calculate the molality and mole fraction of an 0.851 M aqueous NH4Cl solution (MB = 53.50 
g mol-1). The density of the solution is 1.0140 g mL-1. 
 
 
Answer:  Using Eq. 2.2.7, the molality is: 

  m =  
c (1L)





1000mL dsoln – c (1L) MB

1000g/kg

 = 
0.851 mol L-1 (1L)

1000mL (1.0140 g mL-1) – 0.851 mol L-1 (1L) 53.50 g mol-1

1000g/kg

 

 

 =  0.879 m 
 

The molality and molarity differ by 3.3%. The mole fraction is given by Eq. 2.2.14: 
 

 xB = 
cB (1L)







1000mL dsoln- cB (1L) MB

MA
 + cB (1L)

 

      =  
0.851 mol L-1 (1L)





1000mL 1.0140 g mL-1 – 0.851 mol L-1 (1L) 53.50 g mol-1

18.02 g mol-1  + 0.851 mol L-1 (1L)
 

 xB =  0.01558 = 0.0156 
 
 
7.  The intensity of a 552 nm light beam is decreased to 18.2% of its original intensity on passing 
through 3.00 cm of a 2.13x10-4 M solution of an absorbing solute. What is the molar absorption 
coefficient? 
 
 
Answer:  The plan is to first calculate the absorbance of the solution and then use the Beer-
Lambert Law. The absorbance is given by Eq. 2.4.8: 
 

 A =  log 
Io

I   =  log 1/T = log 
100
%T = log 

100
18.2 = 0.73993 

 
The uncertainty can be easily evaluated by changing the %T to 18.3 and noting the change in the 
absorbance:  log(100/18.3) = 0.7375. The result changed in the third significant figure past the 
decimal point. So A = 0.7399 or just 0.740. Alternatively, you can use significant figure rules for 



Chapter 2: Concentrations and Partial Pressures 21 

log x with x = 100/18.2 = 5.49 for three significant figures for x. The resulting log x should also 
have three significant figures past the decimal point, that is in the mantissa, A = 0.734. 
   Now using the Beer-Lambert Law, A =  l c, Eq. 2.4.7: 
 

  = 
A
l c = 

0.7399

3.00 cm (2.13x10-4 M) = 1157. mol-1 L cm-1 =  1.16x103 M-1 cm-1 

 
 
8.  Explicitly do the integration of Eq. 2.4.1 to give Eq. 2.4.3. 
 
 
Answer:  Starting with Eq. 2.4.1 
 dJ = –  c J(x) dx 
 

Separate the variables by dividing both sides of the equation by J: 
 

 
dJ
J  = –  c dx 

 

At x= 0 J = Jo, the incident intensity. Integrating x from 0 to l: 
 

 



Jo

J
 
dJ
J  = – 


0

 l  c dx 

 

The integral on the left is in the form of 

dx

x  = ln x   and the constants  and c can factor out in 

front of the integral on the right: 
 

 ( ln J|JJo
  =  –  c 


0

 l  dx  =  –  c ( x |l0 

 

Evaluating at the endpoints of the integral gives: 
 

 ln J – ln Jo  =  –  c l 
 

Combining the ln terms: 
 

 ln 
J
Jo

   = – l c 
 

and multiplying by -1 gives: 
 

 - ln 
J
Jo

   = ln 
Jo

J   =  l c  

 
 
 
 
9.  Bipyridine forms an intense red color when mixed with aqueous solutions of Fe(II): 
 

 3 bipy + Fe2+   Fe(bipy)3
2+ 
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This complex is commonly used for low level spectrophotometric determinations of Fe(II) in 
natural waters. A standard solution of 5.04x10-4 M Fe(II) was added, using volumetric pipettes, 
to a series of 50.0-mL volumetric flasks and diluted to the mark with excess bipyridine solution 
according to the following table. The absorbance of the solutions was determined at the 
wavelength of maximum absorbance, 522 nm, using a cuvette path length of 1.00 cm. (a). What 
color corresponds to 522 nm? (b). Determine the molar absorption coefficient. (c). A 20.000-mL 
sample of water from a stream that drains a bog was treated in the same fashion producing an 
absorbance of 0.271. Calculate the concentration of Fe(II) in the stream. 
 

Fe(II) added, (mL) 2.00 4.00 6.00 8.00 10.00 
A 0.176 0.345 0.523 0.702 0.870 

 
 
Answer:  (a). The wavelength of 522 nm is in the green to blue-green region of the spectrum. The 
important point is the wavelength of maximum absorption is not red. 
(b). According to the Beer-Lambert Law, A =  l c, Eq. 2.4.7, absorbance is a linear function with 
slope l  and zero intercept when plotted as A versus c. An Excel spreadsheet was set up and 
linest() used to calculate the molar absorption coefficient from the slope of the plot. A plot of the 
data with the best fit line is also shown below: 
 

 

V(total) = 50 mL  
[A] (stand.)=  5.04E-04 M  
    
V (mL) c (M) A  

0 0.00E+00 0  
2 2.02E-05 0.176  
4 4.03E-05 0.345  
6 6.05E-05 0.523  
8 8.06E-05 0.702  

10 1.01E-04 0.87  
    
    
slope 8653.628 -0.00014 intercept 
 37.65683 0.002298 
r2 0.999924 0.003176 st.dev. Y 
F 52809.12 4 df 
ssreg 0.532618 4.03E-05 ssresidual 

 

 

 

 

It is always good idea to use the (0,0) data point, assuming the absorbance scale was calibrated 
properly. The molar absorption coefficient is 8654.  38 M-1 cm-1. The uncertainty is 0.44%. 
(c). The unknown absorbance is 0.271, which when substituted into A =  l c gives: 
 

 c = 0.271/8654 M-1 cm-1/1.00 cm = 3.131x10-5 M 
 

To find the uncertainty in the final result, note that the relative uncertainty in the unknown 
absorbance is 0.001/0.271 = 0.37%. Relative variances add on multiplication and division. 
Assuming that the intercept is zero with no uncertainty, the total relative uncertainty in the result 
is then 0.00442 + 0.00372 = 0.0057 or 0.57%. The uncertainty in the result is: 
 

 c =  (0.0057)(3.131x10-5 M) = 0.018x10-5 M, giving: 
 c = 0.271/8654 M-1 cm-1/1.00 cm = 3.131x10-5  0.018x10-5 M = 3.13x10-5 M 

y = 8653.6x - 0.0001
R2 = 0.9999

0

0.2

0.4

0.6

0.8

1

0.0E+00 5.0E-05 1.0E-04
c (M)

A
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Please consult a text on Analytical Chemistry for a more complete discussion on the propagation 
of errors for calibration problems, such as this. This result is the concentration in the 50-mL 
volumetric flask. The concentration in the original 20-mL stream sample is: 
(50 mL/20 mL)( 3.131x10-5  0.018x10-5 M) = 7.828x10-5  0.045x10-5 M. 
 
 
10.  What is the absorbance of the column of water that corresponds to ¼, ½, and ¾ of the depth 
of the euphotic zone? What absorbance corresponds to the depth of the euphotic zone? 
 
 
Answer: The euphotic zone corresponds to 99% of the incident light absorbed or a percent 
transmission of 1%. Using Eq. 2.4.8: 
 

 A =  log 
Io

I   =  log 1/T = log 
100
%T = log 

100
1  = 2.00 

 

The other absorbances can be determined using the Beer-Lambert Law, A =  l c, Eq. 2.4.7, and 
direct proportions assuming the molar absorption coefficient and concentration of absorber are 
constant with depth: 

 
A2

A1
 = 
 l2c
 l1c

 = 
l2
l1

 

 

So at ¼ of the depth of the euphotic zone A = 0.5, at ½ of the depth of the euphotic zone A= 
1.00, and at ¾ of the full depth A = 1.5. These absorbances correspond to %T of 31.6%, 10%, 
and 3.16%, respectively. 
 
 
11.  The concentration of quinine sulfate in tonic water can easily be determined using 
fluorescence emission. A series of standard solutions in 0.05 M sulfuric acid was prepared and 
the fluorescence emission at 470 nm was determined as shown below. The standard stock 
concentration was 1.00x10-3 g L-1 or 1.28x10-6 M. The volumes of the quinine stock solution, 
listed below, were added to 100–mL volumetric flasks and diluted to the mark with 0.05 M 
sulfuric acid. Fluorescence light fluxes, or intensities, are usually measured in arbitrary units, 
which could be in millivolts or the unscaled computer digitized output from the detector. The 
units are immaterial since fluorescence must always be calibrated with standard solutions and 
then the fluorescence units cancel out. A commercial tonic water sample was diluted 0.5 mL to 
100 mL with 0.05 M sulfuric acid and the fluorescence intensity was determined to be 22167 
units. Determine the molar concentration of the quinine in the tonic water. 
 

stock added, (mL) 10.00 30.00 50.00 70.00 100.00 
fluorescence intensity 2741 8214 13586 18983 27319 

 
 
Answer:  The fluorescence is assumed to be directly proportional to concentration, Section 2.4, If 
= k c. A plot of fluorescence intensity, or flux, versus concentration should give a straight line 
with slope k. An Excel spreadsheet was developed and linest() was used to determine the slope 
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of the curve (essentially the same spreadsheet as for Problem 9). A plot of the data with the best 
fit line is also shown at right: 
 

 

V(total) = 100 mL  
[A] (stand.)=  1.28E-06 M  
    
V (mL) c (M) If  

0 0.00E+00 0  
10 1.28E-07 2761  
30 3.84E-07 8514  
50 6.40E-07 13086  
70 8.96E-07 18983  

100 1.28E-06 27019  
    
    
slope 2.102E+10 69.83178 intercept 
 2.706E+08 191.8388 
r2 0.9993371 292.5832 st.dev. Y 
F 6030.4259 4 df 
ssreg 516234315 342419.8 ssresidual 

 

 

 
 

 
The calibration constant is k = 2.102x1010  0.027x1010 M. The unknown intensity is 22167, so 
solving for the corresponding concentration from If = k c gives: 
 

 c = If/k = 22167/2.102x1010 = 1.055x10-6 M 
 

To find the uncertainty, note that relative variances add on multiplication and division. The 
relative uncertainty in k is 1.3%. We can use the standard deviation of the Y values from the 
curve fit as a measure of the uncertainty of the fluorescence intensities, which gives a relative 
uncertainty of the unknown intensity as 293/22167 = 1.3%. The relative uncertainty in the result 
is then 0.0132 + 0.0132  = 2 0.013 = 0.018, which gives the final result as 1.055x10-6  
0.019x10-6 M. 
 
 
12. Photovoltaic cells convert sunlight into electrical energy. The units often used for the 
electrical energy are kW hours, or kWh. Calculate the conversion factor from kWh to joules. 
 
Answer:  Given that 1 Watt = 1 J s-1 then: 
 

  1 kWh = 1000 J s-1(1 hr)(3600 s/1 hr) = 3.6x106 J 
 
 
13.  The peak sun solar flux that reaches a surface pointed directly at the sun is about 
1000 W m-2. The solar insolation is the total amount of solar energy for a given location for a 
specific time. The solar insolation is the average incident energy for a specific time that takes 
into account the tilt of the sun during the day and the effects of clouds. Calculate the factor for 
the conversion of the peak sun flux of 1000 W m-2 to the yearly average flux for Phoenix (6.08 
kWh m-2 day-1), Seattle (3.69 kWh m-2 day-1), Boston (4.16 kWh m-2 day-1), and Miami (5.45 
kWh m-2 day-1). (The yearly average insolation for the United States is given in color plate 1 at 
the end of this section, from data from the National Renewable Resource Laboratory, NREL, 
http://www.nrel.gov/gis/solar.html). 
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Answer:  The tabulated yearly average value for Phoenix from NREL is 6.08 kWh m-2 day-1. 
First convert the insolation into the equivalent averaged flux. 
 

 J = 6.08 kWh m-2 day-1(3.6x106 J/1 kWh)(1 day/24 hr)(1 hr/3600 s) = 253.33 J m-2 s-1 

 

Remember that 1 J s-1 = 1 W so J = 253 W m-2. We want to find the factor, k, for the conversion: 
 

 k = averaged flux/peak sun flux = 253.3 W m-2/1000 W m-2 = 0.253  or 25.3% 
 

Let’s check this result. The solar insulation should be given by 
 

 solar insulation = k (peak sun flux) (24 hr/1 day) 
    = 0.25333 (1 kW m-2) (24 hr/1 day) = 6.08 kWh m-2day-1 
 

The values for the other cities are given in the table below: 
 

City flux  
(W m-2) 

k Insolation  
(kWh m-2 day-1) 

Phoenix 253 25.3% 6.08 
Miami 227 22.7% 5.45 
Boston 173 17.3% 4.16 
Seattle 154 15.4% 3.69 

 
 
14.  A photovoltaic panel can convert about 17-23% of the light flux into electrical power. The 
conversion of the DC power from a solar panel to AC power that can be used to power 
appliances or to feed into the power grid is about 77% efficient. Use the solar insolation values 
listed in Problem 13. (a) Calculate the AC power available per square meter per day from 
photovoltaic cells operating at 23% efficiency in each of the four cities listed in the previous 
problem. (b) A typical refrigerator requires 450 kW hours of energy per year. Calculate the 
photovoltaic panel area needed to provide all the energy for this refrigerator. 
 
 
Answer:  The tabulated yearly average value for Phoenix from NREL is 6.08 kWh m-2 day-1. 
First convert the insolation into the equivalent averaged flux: 
 

 J = 6.08 kWh m-2 day-1(3.6x106 J/1 kWh)(1 day/24 hr)(1 hr/3600 s) = 253.33 J m-2 s-1 

 

Remember that 1 J s-1 = 1 W so J = 253 W m-2.The AC power from a 23% efficient solar 
photovoltaic cell is: 
 

 AC power = (253 W m-2)(0.23)(0.77) = 44.87 W m-2. 
 

and in kWh per year: 
 

 AC energy = 44.87 W (365 day/1 yr)(24 hr/1day) = 393 kWh m-2 yr-1 

 

The refrigerator requires 450 kWh yr-1. The panel area necessary is: 
 

 panel area = (450 kWh yr-1)/ 393 kWh m-2 yr-1 = 1.15 m2 
 

The values for the other cities are given in the table below: 
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City flux 
(W m-2) 

Insolation  
(kWh m-2 day-1) 

AC power 
(W m-2) 

AC energy 
(kWh m-2 yr-1) 

Collector area 
(m2) 

Phoenix 253 6.08 44.9 393 1.15 
Miami 227 5.45 40.2 352 1.28 
Boston 173 4.16 30.7 269 1.67 
Seattle 154 3.69 27.2 239 1.89 

 
This calculation is optimistic, because most current commodity photovoltaics have an efficiency 
closer to 19%. This calculation also doesn’t have any inefficiency added for energy storage. 
Battery storage is 80-90% efficient. So in Boston with 19% efficiency and battery storage, the 
roof area to be energy neutral for a refrigerator is in the range of 2.25-2.5 m2. This refrigerator 
power corresponds to an averaged 51 W. So the roof areas listed in the table would also be 
needed for roughly 15 “100 watt-equivalent” LED light bulbs (10 W), assuming they are on a 
third of the time. 
 
 

15.  Calculate the value for the limiting molar conductivity, o
m, for CaCl2 from the following 

data, taken at 25C. 
 

c (M) 1.00x10-3 2.00x10-3 10.00x10-3 0.100 
m (mS m2 mol-1) 26.386 26.072 24.850 24.072 

 
 
Answer:  From Eq. 2.4.14, m = o

m – K c½, we need to plot the molar conductivity as a function 
of the square root of the concentration. The y-intercept is then the value of 

o
m. The following 

spreadsheet and plot were constructed and linest() was used to find the intercept: 
 

 

c (M) c½ (M½) m (mS m2 mol-1) 
1.00E-03 0.031623 26.386 
2.00E-03 0.044721 26.072 
1.00E-02 0.1 24.85 

0.02 0.141421 24.072 
 
 

slope -21.1568 27.02572 intercept 
 0.621326 0.056435 
r2 0.998278 0.05472 st.dev. Y 
F 1159.469 2 df 
ssreg 3.471775 0.005989 ssresidual 

 

 

 
The intercept gives o

m(CaCl2) = 27.02 ± 0.06 mS m2 mol-1. 
 
 
16.  Conductivity electrodes are calibrated using standard KCl solutions. The conductivity of 
0.001000 M KCl is 0.14695 S m-1. Many meters and texts list conductivities in mS m-1, S cm-1, 
mS cm-1, and µS cm-1. Find the conductivity of 0.001000 M KCl in these additional units. 

y = -21.157x + 27.026
R² = 0.9983
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Answer:   = 0.14695 S m-1 (1000 mS/1S) = 146.95 mS m-1 
     = 0.14695 S m-1 (1 m/100 cm) = 0.0014695 S cm-1 
     = 0.14695 S m-1 (1 m/100 cm)(1000 mS/1S) = 1.4695 mS cm-1 
     = 0.14695 S m-1 (1 m/100 cm)(1x106 µS/1S) = 1469.5 µS cm-1 
 
 
17.  Conductivity electrodes are calibrated using standard KCl solutions. The conductivity of 
0.01000 M KCl is 0.14127 S m-1 or 1412.7 µS cm-1. The resistance of a conductance cell 
containing 0.0100 M KCl is 552.2 ohm at 25ºC. The resistance of the same cell when filled with 
a solution containing 2.380 g of MgCl2 per liter is 151.0 ohm. (a). Calculate the cell constant, 
which is defined as (l /A), where l is the distance between the electrodes and A is the cross-
sectional area of the electrodes. (b). Calculate the conductivity of the MgCl2 solution. (c). 
Calculate the molar conductivity in mS m2 mol-1, S cm2 mol-1, and S cm-1 mol-1. 
 
 

Answer:  (a). Using Eq. 2.4.11:   = 
1
R  



l

A  

Solving for (l /A) gives: 
  = R  = 552.2 ohm (0.14127 S m-1) = 78.009 m-1 

or   



l

A  = R  = 552.2 ohm (1412.7 µS cm-1) (1x10-6 ohm-1/1 µS) = 0.78009 cm-1 

(b). The conductivity of the MgCl2 solution is: 

  = 
1
R  



l

A  = 
1

151.0 ohms  78.009 m-1 = 0.5166 S m-1 

or   = 
1
R  



l

A  = 
1

151.0 ohms  0.78009 cm-1 = 5.166x10-3 S cm-1 = 5166. µS cm-1 
 

(c). The concentration of the MgCl2 solution is: 
 

 c = 2.380/95.21 g mol-1/1 L = 0.02500 mol L-1  
    = 2.380/95.21 g mol-1/1 L (1000 L/1m3) = 25.00 mol m-3 
    = 2.380/95.21 g mol-1/1 L (1 L/1000 cm3) = 2.500x10-5  mol cm-3 
 

The molar conductivity is then defined by Eq. 2.4.12 

 m = 

c = 

0.5166 S m-1

25.00 mol m-3 = 0.02066 S m2 mol-1 = 20.66 mS m2 mol-1 

 m = 

c = 

5166. µS cm-1

2.500x10-5  mol cm-3 = 2.066x108 µS cm2 mol-1 
 

Another common set of units for molar conductivity are S cm2 mol-1: 
 

 m =  0.02066 S m2 mol-1 (100 cm/1m)2 = 206.6 S cm2 mol-1 
 
 
18.  Ammonia is a weak electrolyte and weak base:  NH3 + H2O   NH4

+ + OH-. The fraction of 
NH4OH is always small in aqueous solution, so the limiting molar conductivity cannot be 
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measured directly. However, NH4Cl, NaCl, and NaOH are all strong electrolytes. Given 
o

m(NH4Cl) = 14.97 mS m2mol-1,  o
m(NaCl) = 12.64 mS m2mol-1, and  o

m(NaOH) = 
24.80 mS m2mol-1, calculate the limiting molar conductivity of NH4OH. 
 
 
Answer:  At infinite dilution the conductivity of ions is independent, because negligible forces 
act between the ions. Then 

o
m(NH4OH) = 

o
m(NH4Cl) – 

o
m(NaCl) + 

o
m(NaOH): 

 

 
o
m(NH4OH) = 14.97 – 12.64 + 24.80 mS m2mol-1 = 27.13 mS m2mol-1 

 
 
19.  Thermal conductivity can be expressed as a linear flux-force relationship: 
 

 Jq = –  
dT
dx 

 

where  is the thermal conductivity and dT/dx is the temperature gradient. The units of the 
thermal flux are J m-2 s-1 giving the units of  as J m-1 K-1 s-1. Some manufactures sell 
thermopane windows with argon as the fill gas between the panes. Calculate the thermal flux 
with air and with argon as the fill gas in a thermopane window with a spacing of 2.00 mm 
between the panes of glass. Assume the outside air temperature is 0.0C and the inside is 20.0C. 
The thermal conductivity of air is 0.0252 and argon is 0.0233 J m-1 K-1 s-1 at 15C and 1 atm. 
Assume a linear temperature gradient. 
 
 
Answer:  Note that for temperature differences, a C is the same as a degree K. Analogously to 
Eq. 2.3.4 for a linear temperature gradient: 
 

 
dT
dx = 

(T' – T)
  

 
 
For air: 

 Jq = –  
dT
dx = – 0.0252 J m-1 K-1 s-1 (20.0 –0.0C)/2.00 mm (1000 mm/1 m)  

     = -252 J m-2 s-1  the flux direction is    (hotter to colder) 
For argon: 

 Jq = –  
dT
dx = – 0.0233 J m-1 K-1 s-1 (20.0 –0.0C)/2.00 mm (1000 mm/1 m)  

     = -233 J m-2 s-1 
 

The difference is about 7.5%. 
 
 
20.  Thermal conductivity can be expressed as a linear flux-force relationship: 
 

T (C) 

x 

2.0 mm 

0C 

20C 

 Jq 
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 Jq = –  
dT
dx 

 

where  is the thermal conductivity and dT/dx is the temperature gradient. The units of the 
thermal flux are J m-2 s-1 giving the units of  as J m-1 K-1 s-1. Why are stainless steel cooking 
pans often sold with a thin copper cladding on the bottom? The thermal conductivity of 
aluminum is 250, copper is 401, and stainless steel is 16 J m-1 K-1 s-1 at 25C. 
 
 
Answer:  Note that for temperature differences, a C is the same as a degree K. Analogously to 
Eq. 2.3.4 for a linear temperature gradient: 
 

 
dT
dx = 

(T' – T)
  

 

For the same temperature gradient, a substance with a higher thermal conductivity will conduct 
more energy in a given amount of time. The chemical resistance of stainless steel is much better 
than copper and aluminum, but the thermal conductivity is poor. The copper cladding distributes 
the heat more evenly from the cooking surface. Even heat distribution helps to minimize food 
sticking and carbonizing on the bottom of the pot. Copper is more expensive than aluminum. 
 
 
21.  Often in practical applications of membrane diffusion the membrane thickness is not known. 
When the membrane thickness is not known, the flux across the membrane from Eqs. 2.3.3 and 
2.3.4 is written as: 
 

 Jm = – D 
(c' – c)

  = – P (c' – c) 
 

where the permeability, P, is defined as P = D/, and  is the thickness of the membrane. A linear 
concentration gradient through the membrane is assumed. The permeability of a cellulose-based 
dialysis membrane was found to be 6.3x10-4 m s-1 for KCl. Calculate the initial flux of KCl 
through the membrane if one side of the membrane is a well-stirred solution of 0.100 M KCl and 
the other side is distilled water. 
 
 
Answer:  Using Jm =  – P (c' – c) = – 6.3x10-4 m s-1 (0 – 0.100 mol L-1)(1000 L/1 m3) 
        = 0.063 mol m-2 s-1 
 

The flux will decrease as the two solutions approach the same concentration, so this value is only 
for short times. 
 
 
22.  Assume two well-mixed compartments with volumes V1 and V2 are separated by a 
membrane. Substance X diffuses through the membrane, which has cross-sectional area A: 
 
 
 
 

membrane 
cross-sectional area = A 

V1 V2 

X 
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(a). Prove for diffusion of substance X across a membrane that the rate of concentration change 
in compartment 1 is given by: 
 

 
d[X]

dt  = 
dcX

dt   =  Jm (A/V1) 
 

(b). Using the data in the last problem calculate the initial rate for the concentration change for 
compartment 1 assuming a 3.00 cm diameter circular membrane and V1 = 50.0 mL. 
 
 
Answer:  (a). The flux is the amount per unit time per unit area. Starting with Eq. 2.3.1: 
 

 
dnx

dt  = Jm A 
 

gives the change in moles of X flowing into compartment 1 per unit time. The change in 
concentration is then just the change in moles from the last equation divided by the volume for 
compartment 1: 
 

 
d[X]

dt  = 
dcX

dt   = 
1

V1
 
dnX

dt =  Jm 



A

V1
 

 

(b). The cross-sectional area of the membrane is A = r2 = 7.07x10-4 m2. The volume should be 
converted to liters, since we normally express rates in mol L-1. From the last problem, Jm = 0.063 
mol m-2 s-1 giving the rate as: 
 

 
d[X]

dt   =  Jm 



A

V1
  =  0.063 mol m-2 s-1 



7.07x10-4 m2

0.050 L   =  8.91x10-4 mol L-1 s-1 
 

The rate will decrease as the two solutions approach the same concentration, so this value is only 
for short times. However, to check the order of magnitude of the result to see if it is reasonable, 
if the flux were constant after 112 s the concentration would increase to 0.10 M. 
 
 
23.  A constant volume flow reactor is used to convert used vegetable oil to biodiesel fuel. The 
input stream contained vegetable oil, 1% KOH and 20% methanol. The yield of biodiesel for a 
constant flow at 50C was 73.0% and the yield when the reactor was run at 65C was 92.1%. 
Assume a constant flow. (a). Show that the ratio of the reaction yields under two different 
conditions is equal to the ratio of the product fluxes out of the reactor. Assume the flow cross-
sectional area for the input and output are the same. (b). Show that the ratio of the reaction yields 
is equal to the ratio of the average chemical reaction rates under the two different conditions. 
[Hint: the average reaction rate for the formation of product over the time interval t is given by 
– = [P]/t, where [P] is the change in product concentration.] 
 
 
Answer:  (a). The yield for a reaction is given by: 
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 y = 
moles product
moles reactant        1 

 

Using Eq. 2.3.2, the amount can be related to the flux into and out of the reactor. Assume the 
input cross-sectional area is Ain and for the output Aout. The yield for a time in the reactor of t is 
given by: 
 

 y = 
moles product
moles reactant =  

nP

nR
 =  

JmP Aout t
JmR Ain t

     2 
 

where JmR and JmP are the fluxes for the reactant into the reactor and the product out of the 
reactor, respectively. If the cross-sectional area of the input and output to the flow reactor are 
equal then y = JmP/JmR for a given experiment. For two different experiments with the same 
input, the ratio is given by: 
 

 y1 = (JmP1/JmR)  y2 = (JmP2/JmR)  and    
y2

y1
  = 

JmP2

JmP1
  3 

 

which is just the ratio of the output product fluxes. 
(b). Assuming a constant average reaction rate over the time in the reactor, –, the amount of 
product formed is given by: 
 

 – = 
[P]
t

    or    [P]  =  – t     4 
 

Note that nP = [P]V, where V is the total volume flowing through the reactor in time t. 
Substitution of this last result with Eq. 4 into Eq. 2 gives for a given experiment: 
 

 y  =  
nP

nR
 =  

– V t
nR

        5 
 

For two different experiments the ratio is given by: 
 

 y1  =  
–1 V t

nR
  y2  =  

–2 V t
nR

  and   
y2

y1
  =  

–2

–1

   6 

 

The ratio of the average reaction rates over the fixed time interval is given by the ratio of the 
yields in a constant volume flow reactor. 
 
 
24.  By drawing vectors in an x-y coordinate plot, show that matrix multiplication: a  = M  b with 
the matrix: 
 

 M   = 






3/2 –1/2

1/2 3/2
 

corresponds to a rotation of the vector by 30 around the z-axis. Use b = 



1/2

3/2
, which is 

diagrammed at right: 
 

y 

x 0.5 

0.866 
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Answer: 

 a  = M  b = 






3/2 –1/2

1/2 3/2 



1/2

3/2
 =  



3/4 – 3/4

1/4 + 3/4
  =  



0

1  

 

which lies along the y-axis: 
 
 
 
 
 
 
 
 
To verify the angle we can remember from your General Physics course that the dot product is 
related to the angle between the vectors,  uv = |u| |v| cos . Both a  and b  are unit length; that is, 
|a| = |b| = 1, giving: 
 

 cos   =  
ab

|a| |b|  =  (1/2(0) + 3/2(1)) = 3/2  = 0.866 or     = 30 

 
 
25.  How are 3D computer graphics done? Many of the operations in computer games and 
molecular graphics correspond to rotation about the axis perpendicular to the computer screen. 
We showed in the last problem that matrix multiplication can generate such rotations. Show that 
the matrix: 
 

 Rz()  =  






cos  –sin 

sin  cos 
 

 

generates a rotation around the z-axis of  degrees, by showing that Rz(30) gives the matrix in 
the last problem. 
 
 

Answer:  Rz(30)  =  






cos 30 –sin 30

sin 30 cos 30
  =  







3/2 –1/2

1/2 3/2
 

 
 
26.  In computer graphics, the apparent distance between the observer and the object on the 
screen is determined by scaling the object. Show that the diagonal matrix: 
 

 M  = 






n 0

0 n
  with   a  = M  b 

 

y 

x 0.5 

1 
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changes the length of the vector b but not the direction. Use b = 



1/2

3/2
, which is diagrammed in 

Problem 24. 

Answer:  a  = M  b = 






n 0

0 n
 



1/2

3/2
 = 



n(1/2)

n( 3/2)
 which is in the same direction but is longer if n > 

1 and shorter if n < 1. To verify the angle we can remember from your General Physics course 

that uv = |u| |v| cos . Note that |a| = n2(1/2)2 + n2( 3/2)2) = n and b  is unit length; that is, |b| 

= 1. The angle is given by: 
 

 cos   =  
ab

|a| |b|  =  
n(1/2(1/2) + 3/2( 3/2))

n  = 1   or    = 0 

 
 
27.  The UV-visible absorption spectra of two compounds is shown below. The concentration of 
each is 5.00x10-5 M. The absorbances at the two chosen analytical wavelengths, 1 and 2 are 
listed. 
 
 
 
 
 
 
 
 
 
 
 
 
The path length of the cuvette is 1.00 cm. An unknown mixture has an absorbance of 0.419 at 1  
and an absorbance of 0.546 at 2. (a). Determine, without calculations, the component with the 
larger concentration. (b). Calculate the concentrations of the two compounds. 
 
 
Answer:  (a). The absorbance at the second wavelength for the unknown is bigger than at the 
first. As a pure substance, compound 2 has the bigger absorbance at wavelength 2. This shows 
that component 2 is in higher concentration than component 1 in the unknown. 
(b). The plan is to first find  l for each compound at each wavelength. Then invert the matrix in 
Excel to do the matrix multiplication based on the Beer-Lambert Law, Eq. 2.6.8. 
   Using the Beer-Lambert Law, A =  l c, Eq. 2.4.7 gives  l = A/c: 
 
          compound 1   compound 2 
             
 

 ( l )  = 



13440 2240

2080 10660  
 1

 2
 

wavelength (nm) 
300 400 500 600 

0.2 

0.4 

0.6 

0.8 

1 2 

A = 0.672 

A = 0.112 

A = 0.533 

A = 0.104 

A Compound 1 Compound 2 
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Excel was then used to invert the matrix and do the multiplication, as in Figure 2.8.2: 
 
 

  compound 1 compound 2        

  l =    ( l )-1  * A = c 
wavelength 1  13440 2240  7.6906E-05 -1.6160E-05  0.419  2.340E-05 
wavelength 2  2080 10660  -1.5006E-05 9.6962E-05  0.546  4.665E-05 

 

One difficulty with simultaneous concentration determinations is that the uncertainties are a bit 
harder to determine. Since we are using Excel, we can use the trick of changing an absorbance 
by ±1 in the last significant figure and recalculating to see how the final results change. For 
example, changing 0.419 to 0.420 changes the results to (2.348x10-5 and 4.664x10-5M). In other 
words the results change roughly in the third significant figure. Of course, there are uncertainties 
in every measurement, which compound to increase the uncertainty in the result. But at least the 
results are certainly not known to better than three significant figures. Changing a few values 
simultaneously at random will give an even better estimate of the overall uncertainty. Using 
three significant figures, the final results are c1 = 2.34x10-5 M and c2 = 4.67x10-5 M. 
 
 

28. Show that A  (B+C) = AB + AC explicitly using A  = 



a b

c d
 ,  B = 



e f

g h
 , and C = 



i j

k l
 

 
 
Answer:  The plan is to work on the left-hand side and then the right-hand side and compare to 
see if the results from both sides are equal. For the left-hand side: 
 

  A  (B+C) = 



a b

c d
 









e f

g h
 + 



i j

k l
  =  



a b

c d
 



e+i f+j

g+k h+l
  =  







a(e+i)+b(g+k) a(f+j)+b(h+l)

c(e+i)+d(g+k) c(f+j)+d(h+l)
 

 

For the right-hand side: 
 

       AB + AC = 



a b

c d
 



e f

g h
 + 



a b

c d
 



i j

k l
  =  



ae+bg af+bh

ce+dg cf+dh
 + 



ai+bk aj+bl

ci+dk cj+dl
 

  =  



ae+bg+ai+bk af+bh+aj+bl

ce+dg+ci+dk cf+dh+cj+dl
 = 






a(e+i)+b(g+k) a(f+j)+b(h+l)

c(e+i)+d(g+k) c(f+j)+d(h+l)
 

 

The left-hand and right-hand sides agree. Matrices are distributive. 
 
 
29.  Find the determinant of the following matrix: 
 

 M  = 








2 0 1

3 5 0
0 1 4

 

 
 
Answer:  We can expand across any row or down any column. Expanding down the first column, 
we need the first and second minors: 
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 M  = 








2 0 1

3 5 0
0 1 4

  and  M  = 








2 0 1

3 5 0
0 1 4

 

 

We need to take into account the signs of the associated minors:  








+ – +

– + –
+ – +

 

 

Expanding in terms of the minors gives: |M| = 2 



5 0

1 4 – 3 



0 1

1 4  

The determinants of the 2x2 minors are: 
 

 



5 0

1 4  = 5(4) – 1(0) = 20 and 



0 1

1 4  = 0(4) – 1(1) = –1 
 

giving the final determinant:  |M| = 2(20) – 3(-1) = 43. 
 
 
30.  Find the determinant of the following matrix (which we will use in Chapter 6): 
 

 M  = 








–k1–i 0 0

k1 –k1'–i 0
0 k1' – i

 

 
 
Answer:  We can expand across any row or down any column. Expanding across the first row, 
we only need the first minor, since the second and third elements across the row are zero. 
Striking out the first row and column: 
 

 M  = 








–k1–i 0 0

k1 –k1'–i 0
0 k1' – i

 

 

and then the first minor gives: 
 

 



–k1'–i 0

 k1' – i
 = (–k1' – i)(– i) 

 

Overall, then the determinant is: 
 

 |M| = (–k1 – i)(–k1' – i)(– i) 
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Color Plate1: Average Daily Solar Insolation. The solar insolation is the average daily energy 
falling on a surface parallel to the ground per day averaged over the year. (Map source: 
http://projectsol.aps.com/solar/data_insolation.asp)(See also: http://www.nrel.gov/gis/solar.html) 
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Chapter 3 Problems: Kinetics 

 
1. In Example 3.3.1 we discussed denitrification of contaminated ground water. The literature 
assumes a half-order reaction with respect to NO–

3, but the differential method for the particular 
data set gives ¾ order. The best fit values for the corresponding rate constants are k½ = 26.71 and 
k¾ = 7.12. Give the units for the rate constants with the concentration expressed in mg L-1. 
 
 

Answer:  For a half-order reaction the rate law is in the form: –
d[A]

dt   = k½ [A]½ 

The units of the rate, based on the data, are mg L-1 hr-1. The units of [A]½ are mg½ L-½, giving 
the rate constant as: k½ = 26.71 mg½ L-½ hr-1 

For a ¾-order reaction the rate law is in the form: –
d[A]

dt   = k¾ [A]¾ 

The units of the rate are mg L-1 hr-1 and k¾ = 7.12 mg¼ L-¼ hr-1. 
 
 
2. The half-life of the pesticide aldicarb (trade name Temik) is 30.0 days. The decomposition of 
aldicarb is first-order. Calculate the time necessary for the amount of adicarb in a soil sample to 
drop to 10.0% of its initial value. 
 
 
Answer:  First we calculate the rate constant and from the integrated rate law, Eq. 3.2.5, solve for 
the time to achieve [A] = 0.100 [A]o. Solving, Eq. 3.2.11: 

 t½ = 
ln 2
k1

  = 
0.6931

k1
  rearranges to  k1 = 

0.6931
30.0 days = 0.0231 days-1 

Then from Eq. 3.2.5, when [A] = 0.100 [A]o: 
 

 ln 




0.100 [A]o

[A]o
  = – 0.0231 days-1 t 

 t = 99.7 days. 
 
 
3. Organisms require iron for survival. Reduced iron in the form of Fe2+ is readily available for 
acquisition by living systems. However, Fe2+ is oxidized by O2 from the air to produce Fe3+, 
which precipitates from solution as mixed hydrated oxides and hydroxides. Iron(II) stability is 
strongly pH dependent. The oxidation of Fe2+ in aqueous 0.5 M HClO4 solution at 35C follows 
the rate law: 
 

 – 
d[Fe2+]

dt  = k [Fe2+]2 PO2 

 

where PO2 is the partial pressure of O2 above the solution and k = 3.65x10-3 mol-1 L atm-1 hr-1. 
Assume that the air above the solution is at constant PO2 = 0.200 atm. (a) Calculate the half-time 
of the reaction in days for an initial concentration of 0.100 M Fe2+. (b)How long would it take for 
the concentration of Fe2+ to drop to 0.0100 M? 
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Answer:  For a constant PO2 the reaction is pseudo-second order with effective rate constant, keff 
= k PO2 = 7.30x10-4 mol-1 L hr-1. 
(a)  The half-time is given by Eq. 3.2.30: 
 

 t½ = 
1

[A]okeff
 = 

1
0.100 M(7.30x10-4 mol-1 L hr-1) = 1.370x104 hr = 571 days 

 

(b)  The integrated rate law is given by Eq. 3.2.27 with [A] = 0.0100 M: 
 

 
1

[A] – 
1

[A]o
  =  keff t 

 

or  
1

0.0100 M – 
1

0.100 M  =  (7.30x10-4 mol-1 L hr-1) t 
 

Solving for t: t = 1.233x105 hr = 5.14x103 days. Unfortunately for living organisms, the half-life 
of Fe2+ at neutral pH is many orders of magnitude shorter. 
 
 
4. The concentration of ozone, O3, in the stratosphere is dependent on interactions with the odd 
electron reactive nitrogen species, NO. The concentration of NO in the atmosphere is determined 
in part by the rate of oxidation by O2: 
 

 2 NO (g) + O2 (g)  2 NO2 
 

An initial rate study at 25C was completed with the following results. Determine the rate law 
and the rate constant. The initial rate is the slope of the time course for very short times, t  0: 
 

initial rate = o = – 



d[O2]

dt o
 

 

Exp [O2]o (mol L-1) [NO]o (mol L-1) o (mol L-1 s-1) 
1 1.44x10-3 0.28 x10-3 6.90x10-7 
2 1.44 x10-3 0.93 x10-3 7.50 x10-6 
3 1.44 x10-3 2.69 x10-3 6.00 x10-5 
4 6.60 x10-5 2.69 x10-3 3.00 x10-6 

 

 
 
Answer:  The order with respect to O2 can be calculated from experiments 3 and 4. Just looking 
at the ratios, since they are about equal, first-order behavior is indicated. To be more precise, 
using Eq. 3.3.4 gives: 
 

 ln






o2

o1
   =  n ln



[A]o2

[A]o1
 

 ln



3.00 x10-6

6.00 x10-5  =  n ln



6.60 x10-5

 1.44 x10-3  

 -2.996  =  n (-3.083)  or   n = 0.972 
 

To determine the order with respect to NO we could just do the same. In fact with just three data 
points, using Eq. 3.3.4 is the best approach. But, if we did have more data points a curve fitting 
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approach would make better use of the experimental uncertainties. So as an example, a 
spreadsheet was constructed based on the left and right-hand sides of Eq. 3.3.4: 
 

[NO]o rateo ln[NO]o ln rateo 
2.80E-04 6.90E-07 -8.1807 -14.187 
9.30E-04 7.50E-06 -6.9803 -11.801 
2.69E-03 6.00E-05 -5.9182 -9.7212 

 
 

 
The order with respect to NO is then 1.97, which rounds to 2. It would be silly to do any serious 
error analysis using linest() with only three data points. So we won’t bother, other than using 
significant figure rules. The ln values are good to 2-3 significant figures, so the final order is 
good to about 2-3 significant figures. The rate law is then:   = k3 [O2][NO]2. The rate constant 
can be calculated from each run and then the averaged result can be calculated. Using run 1: 
 

   = k3 [O2][NO]2 
gives 6.90x10-7 mol L-1 s-1 = k3 (1.44x10-3 mol L-1)( 0.28 x10-3 mol L-1)2 

solving for k3:   k3 = 6.11x103 mol-2 L2 s-1 
 
 

5. The decomposition of acetaldehyde: 
 

 CH3CH=O   CH4 + CO 
 

at 518°C and at an initial pressure of 363 mm Hg can be monitored by measuring the total 
pressure of the reaction at constant volume.1 What is the order of the reaction and the rate 
constant? Use non-linear curve fitting. [Hint: you need to solve for the partial pressure of 
acetaldehyde from the total pressure.] 
 

t (s) 42 73 105 190 242 310 
P (mm Hg) 397 417 437 477 497 517 
t (s) 384 480 665 840 1070 1440 
P (mm Hg) 537 557 587 607 627 647 
 
Answer:  The total pressure during the reaction is the sum for the reactants and products: 
 

 P = PCH3CHO + PCH4 + PCO      1 
 

The stoichiometric relationships for the initial pressure, Po, give: 
 

 CH3CH=O   CH4 + CO 
Pi :    Po –             2 
 

Substituting these values into the total pressure gives: 
 

 P = Po –  +  +  =  Po +       3 

y = 1.974x + 1.9671
R2 = 1
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o
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solving for   gives: 
 

  = P – Po  and then   PCH3CHO = Po –   =  2 Po – P   4 
 

The transformation from Eq. 4 was used in an Excel spreadsheet to calculate the acetaldehyde 
partial pressures: 
 

t (s) P (mm Hg) 2Po-P (mm Hg) 
0 363 363 

42 397 329 
73 417 309 

105 437 289 
190 477 249 
242 497 229 
310 517 209 
384 537 189 
480 557 169 
665 587 139 
840 607 119 

1070 627 99 
1440 647 79 

 

Using the “Nonlinear Least Squares Curve Fit” applet on the text book Web site and on the 
companion CD with the “a exp(–bx)” fitting function for a first-order fit gives: 
 

===============   Results   ============= 
 a= 337.6 +- 8.8 
 b= 0.00133 +- 0.000091 
----------------------------------------- 
 sum of squared residuals= 2912 
 stand. dev. y values= 16.27 
 correlation between a & b= 0.6541 

 

Using the “1/((1/a)+bx)” fitting function for a second-order fit gives: 
 

===============   Results   ============= 
 a= 363.24 +- 0.76 
 b= 0.000006674 +- 3.5e-8 
----------------------------------------- 
 sum of squared residuals= 13.9 
 stand. dev. y values= 1.124 
 correlation between a & b= 0.5758 

 

The corresponding plots are: 
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The second-order fit is much better, giving the rate constant as: 
 k = 6.674x10-6  0.035x10-6 mm Hg-1 s-1. 
 
 

6. Redo the kinetic analysis for the data from Problem 5 using the linearized forms of the 
integrated rate laws. 
 
 

Answer:  The data transformations using Eqs. 3.2.18 and 3.2.25 are given below as an Excel 
spreadsheet: 
 

t (s) P (mm Hg) 2Po-P (mm Hg) ln(PCH3CHO) 1/PCH3CHO 
0 363 363 5.894 0.0027548 

42 397 329 5.796 0.0030395 
73 417 309 5.733 0.0032362 

105 437 289 5.666 0.0034602 
190 477 249 5.517 0.0040161 
242 497 229 5.434 0.0043668 
310 517 209 5.342 0.0047847 
384 537 189 5.242 0.005291 
480 557 169 5.13 0.0059172 
665 587 139 4.934 0.0071942 
840 607 119 4.779 0.0084034 

1070 627 99 4.595 0.010101 
1440 647 79 4.369 0.0126582 

 
The corresponding plots are: 
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 (a) First-order plot    (b) Second-order plot 
 
The output from the linest() spreadsheet linear fit for the second-order plot is: 
 

slope 6.864E-06 2.703E-03 intercept 
 3.745E-08 2.312E-05  
r2 0.99967 5.715E-05 st.dev. y 
F 33585.36 11 df 
ssreg 1.097E-04 3.593E-08 ssresid 

 

The reaction is second order with a rate constant of 6.864x10-6  0.037x10-6 mm Hg-1 s-1. Notice 
that the difference between the non-linear fit rate constant and this current value is greater than 
the estimated uncertainty. This underestimate of the uncertainty from the linearized forms is 
another reason to rely on non-linear curve fitting, which has a firmer statistical basis. The reson 
for the better statistical treatment is that the random errors are evaluated directly and not in the 
transformed 1/P form. 
 
 

7. Use the differential method during the time course for the data in Problem 5. 
 
 

Answer:  First note that  = – dPCH3CHO/dt. We next need to calculate the average rate for each 
time interval. For example, for the first interval: 
 

 – = – 
Pi(t2) – Pi(t1)

t2 – t1
 = – 

329 – 363
42 – 0  = 0.8095 mm Hg s-1 

 

and the partial pressure in the middle of this first time interval is: 
 

 P–CH3CHO = 
Pi(t1) + Pi(t2)

2  = 
329 + 363

2  = 346 mm Hg 
 

A spreadsheet was constructed with rates and average acetaldehyde partial pressures, as shown 
below. The ln of the average partial pressure and the ln of the rate are also included. 
 

  average average   
t (s) 2Po-P (mm Hg) rate PCH3CHO ln PCH3CHO ln rate 

0 363     
42 329 0.8095 346 5.8464 -0.2113 
73 309 0.6452 319 5.7652 -0.4383 
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105 289 0.6250 299 5.7004 -0.4700 
190 249 0.4706 269 5.5947 -0.7538 
242 229 0.3846 239 5.4765 -0.9555 
310 209 0.2941 219 5.3891 -1.2238 
384 189 0.2703 199 5.2933 -1.3083 
480 169 0.2083 179 5.1874 -1.5686 
665 139 0.1622 154 5.0370 -1.8192 
840 119 0.1143 129 4.8598 -2.1691 

1070 99 0.0870 109 4.6913 -2.4423 
1440 79 0.0541 89 4.4886 -2.9178 

 

The plot of ln(rate) versus ln P is given below: 
 

 
The output from the linest() spreadsheet linear fit is: 
 

slope 1.9521 -11.659 intercept 
 0.0303 0.1603  
r2 0.9976 0.0439 st.dev. y 
F 4159 10 df 
ssreg 8.0012 0.0192 ssresid 

 

The reaction order is 1.950.03, which is close enough to the integer 2. 
   You’ll probably agree that the non-linear curve fitting method is easiest, flowed by the 
linearized equation fitting. However, the differential method is somewhat less susceptible to 
problems arising from offsets than the linearized methods. 
 
 
8. Pharmacokinetics is the study of the absorption, disposition, metabolism, and excretion 
(ADME) of drugs in living organisms. Pharmacokinetics uses chemical kinetics as a tool to 
predict drug levels in the body and anticipate drug distribution problems that might arise. Your 
study of chemical kinetics puts you in a good position to understand ADME properties of drug 
substances. In the terminology of pharmacology, a bolus dose is a drug given in a short period of 
time, for example by intravenous injection or oral tablet administration. The table, below, gives 
the plasma concentration as a function of time for the administration of a 184-mg bolus dose of 
ceftriaxone to a newborn infant.2,3 Ceftriaxone is an antibiotic. Find the effective kinetic order 
for the time course of the drug concentration, the rate constant, and half-life of the drug in the 
body. 
 

t (hr) 1.0 6.0 12. 24. 48. 72. 96. 144. 

y = 1.9521x - 11.659
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Concentration (mg L-1) 137. 120. 103. 76. 42. 23. 12. 3.7 
 
 
Answer:  To construct kinetic plots based on the linear forms of the integrated rate laws, Eq. 
3.2.18 for first-order and Eq. 3.2.27 for second-order, the following spreadsheet was constructed: 
 

t (hr) [C] (mg L-1) ln [C] 1/[C] 
1 137 4.919981 0.007299 
6 120 4.787492 0.008333 

12 103 4.634729 0.009709 
24 76 4.330733 0.013158 
48 42 3.73767 0.02381 
72 23 3.135494 0.043478 
96 12 2.484907 0.083333 

144 3.7 1.308333 0.27027 

 
The corresponding plots are given below: 

   
 (a) first-order plot    (b) second-order plot 
 
The output from the linest() linear least squares curve fitting function in Excel for the first-order 
plot is: 
 

slope -0.02529 4.941594 intercept 
 0.000109 0.007509  
r2 0.999889 0.014537 st. dev. Y 
F 54177.75 6 df 
ssreg 11.44938 0.001268 ssresiduals 

 

The plasma concentrations clearly decrease by first-order kinetics. The slope of the ln[C] versus t 
curve gives the rate constant: slope = – k1. The half-time for a first-order reaction is given by t½ 
= ln(2)/k1. The final results are then: 
 

 k1 = 0.02529  0.00011 hr -1   and  t½ = ln(2)/k1 = 0.6931/0.02529 = 27.4  0.1 hr 
 

The uncertainty in the half-time was calculated from the relative standard deviation in the slope, 
which is 0.43 %. In other words the relative uncertainty in 1/x is the relative uncertainty in x, 
since multiplication and division are involved. 
 
 

y = -0.0253x + 4.9416
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9. The absorption of UV light by benzophenone creates a long-lived excited state. When 
isopropanol-water mixtures are used as the solvent, the excited state of benzophenone rapidly 
reacts with isopropanol to produce protonated benzophenone ketyl (C6H5)2COH, which is a free 
radical: 
 

 (C6H5)2CO*  +  (CH3)2CHOH     (C6H5)2COH  +  (CH3)2COH 
 

The “*” indicates an electronic excited state. In basic solution protonated benzophenone ketyl 
rapidly looses a proton to produce the benzophenone ketyl radical anion: 
 

 (C6H5)2COH    (C6H5)2CO + H+ 

 

The benzophenone ketyl radical anion then reacts with the protonated form to produce 
benzpinacol: 
 

(C6H5)2COH + (C6H5)2CO   
k2  (C6H5)2C(OH)-C(OH)(C6H5)2 

 

The benzophenone ketyl radical anion has an absorption maximum at 630 nm, which allows the 
disappearance of the radical anion to be followed as a function of time in a laser flash photolysis 
instrument. The absorbance time course for the reaction is given below. The data table is 
extracted from the much larger data file from the instrument, which is plotted at right. Find the 
order of the reaction and the rate constant with respect to benzophenone ketyl radical anion using 
non-linear least squares curve fitting. 
 

 
t (ms) A 

0.064 0.2736 
0.128 0.2660 
3.264 0.1080 
6.464 0.0540 
9.664 0.0282 

12.864 0.0129 
16.064 0.0029 
19.264 -0.0039 
22.464 -0.0084 
25.664 -0.0109 
28.864 -0.0125 
32.064 -0.0111 
35.264 -0.0102 

 

 

 
 
Answer:  The long-time portion of the absorbance time course is negative, which shows that the 
data has a constant offset. That is, A in Eq. 3.2.38 is negative. The long-time behavior of the 
time course has some low frequency noise, such that the time course has a minimum before the 
end of the time course. This level of noise is common for real world kinetics runs. The noise 
makes the determination of A in Eq. 3.2.38 very difficult. Therefore, the curve fit equations 
chosen included a constant offset as a fit parameter. The data table was pasted into the 
“Nonlinear Least Squares Curve Fitting” applet, which is available on the textbook companion 
Web site and the and on the companion CD. For first-order fitting, Eq. 3.2.6 with a constant 
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offset, is the “a exp(-bx) + c” option. For second-order curve fitting, Eq. 3.2.26 with a constant 
offset, is the “1/((1/a)+bx) + c” option. The results are plotted below. 
 

 
The first-order fit results are: 
 

===================   Results   ===================== 
 a= 0.2821 +- 0.0051 
 b= 242 +- 12 
 c= -0.0076 +- 0.0025 
----------------------------------------------------- 
 sum of squared residuals= 0.0003994 
 stand. dev. y values= 0.00632 
 correlation between a & b= 0.05997 
 correlation between b & c= 0.5454 
 correlation between a & c= -0.4078 

 

The second-order fit results are: 
 

===================   Results   ===================== 
 a= 0.3208 +- 0.0031 
 b= 1180 +- 6.3 
 c= -0.0395 +- 0.0023 
---------------------------------------------------- 
 sum of squared residuals= 0.0001139 
 stand. dev. y values= 0.003375 
 correlation between a & b= -0.4096 
 correlation between b & c= 0.8893 
 correlation between a & c= -0.5629 

 

The second-order fit appears to reproduce the time-course better. In addition, in agreement with 
our visual inspection, the standard deviation of the y values for the second-order plot, 0.003375, 
is about half that for the first-order plot. The effective second-order rate constant is 1180  6 s-1. 
Note that a second-order rate constant should have units M-1 s-1. Because the absorbance is 
plotted instead of the actual concentration, an effective rate constant using Eq. 3.2.37 is the 
result, keff = k2/b, which has units of s-1. Absorbance is unitless. To distinguish this result from a 
first-order rate constant you might give the result as 1180  6 au-1 s-1, where “au” stands for 
absorbance units (which are officially unitless). The fit parameter correlation coefficients are 
acceptable. However, notice that the “correlation between b & c= 0.8893” value shows that final rate 
constant is very dependent on the choice of the offset constant, A. 
 
 

10. Use the data in the last problem with linear curve fitting to determine the order of the 
reaction and the rate constant. 
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Answer:  In the last problem, the long-time portion of the absorbance time course is negative, 
which shows that the data has a constant offset. The difficulty in using the linear integrated rate 
law forms, Eq. 3.2.18 for first-order and Eq. 3.2.27 for second-order, is that the constant offset 
must be handled explicitly. As a first approach, choose the minimum value for the offset, A = -
0.0125. Then the corresponding data point can’t be used in the fit, since ln 0 is undefined. A 
spreadsheet that is set up to do the transformations is given below with the resulting curve fits: 
 

t (s) A A - A ln[A] 1/[A] 
0.000064 0.2736 0.2861 -1.251 3.4956 
0.000128 0.2660 0.2785 -1.278 3.5910 
0.003264 0.1080 0.1205 -2.116 8.3002 
0.006464 0.0540 0.0665 -2.710 15.031 
0.009664 0.0282 0.0407 -3.202 24.600 
0.012864 0.0129 0.0254 -3.672 39.337 
0.016064 0.0029 0.0154 -4.173 64.968 
0.019264 -0.0039 0.0086 -4.761 116.897 
0.022464 -0.0084 0.0041 -5.508 246.592 
0.025664 -0.0109 0.0016 -6.445 629.445 

 

  
 

The last two data points are included in the plot to show the effect of noise, but they weren’t used 
in the curve fitting. Notice that these plots predict a first-order reaction in contradiction to 
Problem 5. If instead of the minimum value from the time course, the A value from the non-
linear curve fits is used, A =  -0.0395, then the following plots are obtained: 
 

t (s) A A - A ln[A] 1/[A] 
0.000064 0.2736 0.3131 -1.161 3.1941 
0.000128 0.2660 0.3055 -1.185 3.2736 
0.003264 0.1080 0.1475 -1.914 6.7806 
0.006464 0.0540 0.0935 -2.369 10.691 
0.009664 0.0282 0.0677 -2.693 14.780 
0.012864 0.0129 0.0524 -2.948 19.076 
0.016064 0.0029 0.0424 -3.160 23.589 
0.019264 -0.0039 0.0356 -3.336 28.125 
0.022464 -0.0084 0.0311 -3.471 32.200 

 

y = -169.17x - 1.3985
R2 = 0.9951
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In which case the reaction appears to be second-order with a rate constant of 1240 s-1 (please see 
the answer to the last problem concerning units). This problem shows that non-linear curve 
fitting is often the best method. If you choose an incorrect value for the long time value, the 
resulting kinetic plots can be so distorted that you determine the incorrect order. Non-linear 
curve fitting provides a non-biased method to determine the long time value because A can be 
treated as an adjustable parameter. 
 
 
11. Determine the fluorescence lifetime for anthracene using the following fluorescence intensity 
measurements. 
 

t (ns) 0 2 4 6 8 10 
Intensity 62620 41250 27218 17708 11352 7560 

 
 
Answer:  First convert the times from nano-seconds to seconds. Using the “Nonlinear Least 
Squares Curve Fit” applet on the text book Web site and on the companion CD with the “a exp(–
bx)” fitting function for a first-order fit gives: 
 

============   Results   =============== 
 a= 62720 +- 170 
 b= 210700000.0 +- 1100000 
---------------------------------------- 
 sum of squared residuals= 145100 
 stand. dev. y values= 190.5 
 correlation between a & b= 0.5655 

 

with the fluorescence lifetime  from the slope:  = 2.11x108  0.011x108 s-1. You could also do 
the linear fit as ln I versus t using the following spreadsheet. 
 

t (s) Intensity ln I 
0.00E+00 62620 11.04483999 
2.00E-09 41250 10.62740639 
4.00E-09 27218 10.2116338 
6.00E-09 17708 9.781771794 
8.00E-09 11352 9.337149219 
1.00E-08 7560 8.930626469 

 
The plot from the non-linear fit and the linear version are shown below: 

y = -84.59x - 1.5604
R2 = 0.898
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 (a) Non-linear fit    (b) First-order plot 
 
 
12. Determine the integrated rate law for a zeroth-order reaction with stoichiometry 2 A  P. 
Use definite integrals. Zeroth-order reactions are common with reactions involving surfaces. 
Find the half-time for a zeroth-order reaction with this stocihiometry. 
 
 

Answer:  The rate law is – 
1
2 

d[A]
dt   = ko. 

The rate of the reaction is independent of the amount of reactant. Separation of variables to 
isolate all concentration dependent terms on the left side of the equality and all the time 
dependent terms on the right side gives: 
 

 d[A]  = – 2ko dt 
 

The integral limits are at t = 0, [A] = [A]o, and at time t the concentration is [A]. The definite 
integrals are: 
 

 [A]o

[A]
d[A]  = – 0

t
 2ko dt 

 

The integrals are: 
 

 [A]|
[A]

[A]o
 = – 2ko t|

t

0
 

 

Evaluating the integrals at the limits gives: 
 

 [A] – [A]o = – 2ko t 
 

This equation can be rearranged into the linear form by adding [A]o to both sides: 
 

 [A] = [A]o – 2ko t 
 

which has slope = – 2ko and intercept [A]o. The half-time is when [A] = [A]o/2: 
 

 [A]o/2 – [A]o = – 2kot½ 
 

Solving for the half-time: 

y = -2.1245E+08x + 1.1051E+01
R2 = 9.9987E-01

8.5

9

9.5

10

10.5

11

11.5

0.E+00 2.E-09 4.E-09 6.E-09 8.E-09 1.E-08
t (s)

ln
 I

0

10000

20000

30000

40000

50000

60000

70000

0.E+00 2.E-09 4.E-09 6.E-09 8.E-09 1.E-08
t (s)

I



50 

 

 t½ = 
[A]o

4ko
   (for 2 A  P) 

 

The half-time is greater when you start with more material, since the rate of the reaction is 
independent of the starting amount. 
 
 
13. The half-time for a chemical reaction is the time when ½ the original amount of reactant 
remains. However, the choice of the half-time point as a measure of the reaction rate is not 
unique. We can also determine the time when ¼ of the original amount remains, or when 1/p of 
the original amount remains. Find the formula that relates the time to reach the 1/p point to the 
rate constant, for a first-order and a second-order reaction. 
 
 
Answer:  For a first order reaction, starting with the integrated rate law in the form, Eq. 3.2.5: 
 

 ln 




[A]

[A]o
  = – k1t 

 

The 1/p time corresponds to the concentration of a dropping to [A] = [A]o/p. Substituting into the 
integrated rate law gives: 
 

 ln 



[A]o/p

[A]o
  = – k1t1/p 

 

Simplifying the ln term: 
 

 ln 



[A]o/p

[A]o
 = ln(1/p) = – ln p 

 

Then solving for t1/p gives: 
 

 t1/p = 
ln p
k1

 
 

which for p = 2 reduces to Eq. 3.2.11. As an example, assume that the half-time for a first order 
reaction is t½ = 10 s, or k1 = 0.0693 s-1. The ¼ time would occur at 20 s, which is 2 t½, and the 1/8 
time at 30 s, which is 3 t½. 
   For a second-order reaction, from Eq. 3.2.27: 
 

 
1

[A]o/p
 – 

1
[A]o

  =  k2 t1/p 

 

Simplifying the left-hand side gives: 
 

 
1

[A]o/p
 – 

1
[A]o

  =  
p

[A]o
 – 

1
[A]o

  =  
p – 1
[A]o

  =  k2 t1/p 

 

Solving for the 1/p time gives: 
 

 t1/p = 
p – 1

[A]o k2
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which reduces to Eq. 3.2.30 when p = 2. As an example, assume that the half-time for a second 
order reaction is t½ = 10 s. The ¼ time would occur at 30 s and the 1/8 time at 70 s. 
 
 
14. Determine the integrated rate law and the half-time for a third-order reaction with the 
stoichiometry A  P. 
 
 
Answer:  The rate law is: 
 

 –
d[A]

dt   = k3 [A]3 
 

Separation of variables to isolate all concentration dependent terms on the left side of the 
equality and all the time dependent terms on the right side gives: 
 

 – 
d[A]
[A]3  = k3 dt 

 

The indefinite integrals are: 
 

 – 

 1

[A]3 d[A]  = k3 dt 

 

Note that  –

 1

x3 dx  =  
1

2x2 

Combining the integration constants: 
 

 
1

2[A]2 = k3t + c 
 

The boundary condition is at t = 0, [A] = [A]o, the initial concentration: 
 

 c  = 
1

2[A]2
o
 

 

Substituting the integration constant back in to the integrated rate law gives the linear form: 
 

 
1

2[A]2 = k3t + 
1

2[A]2
o
  

 

Rearranging gives the standard form often seen in texts: 
 

 
1

2[A]2 – 
1

2[A]2
o
 = k3t 

 

Or solving for the time course gives: 
 

 [A]  =   
1





1

[A]2
o
 + 2k3t

½ 

 

For the half-time: 
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1

2([A]o/2)2 – 
1

2[A]2
o
 = 

2
[A]o

2 – 
1

2[A]2
o
 = 

3
2[A]2

o
 = k3 t½ 

 

Solving for the half-time gives: 
 

 t½ = 
3

2[A]2
o k3

 

 
 
15. Determine the integrated rate law for a half-order reaction with the stoichiometry A  P.  
 
 
Answer:  The rate law is: 
 

 –
d[A]

dt   = k½ [A]½ 
 

Separation of variables to isolate all concentration dependent terms on the left side of the 
equality and all the time dependent terms on the right side gives: 
 

 – 
d[A]
[A]½  = k½ dt 

 

The indefinite integrals are: 
 

 

 1

[A]½ d[A]  = –k½ dt 
 

Note that  

 1

x½ dx  =  2 x½   or conversely in proof:  
d(2 x½)

dx  = x–½ 

Combining the integration constants: 
 

 2 [A]½ = – k½t + c 
 

The boundary condition is at t = 0, [A] = [A]o, the initial concentration: 
 

 c  = 2 [A]½
o  

 

Substituting the integration constant back in to the integrated rate law gives the linear form: 
 

 2 [A]½ = – k½t + 2 [A]½
o  and  [A]½ = – 

k½

2  t + [A]½
o  

 
Solving for the time course gives: 
 

 [A] = 



[A]½

o  – 
k½

2  t
2
 

 
 
16. In biology, exponential population growth arises from the rate law: 
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d[P]
dt  = k [P] 

 

where [P] is the population of a given organism and d[P]/dt is the birth rate. In short, the greater 
the number of individuals the greater the birth rate. Find the integrated rate law for the 
population. 
 
 
Answer:  Separation of variables to isolate all concentration dependent terms on the left side of 
the equality and all the time dependent terms on the right side gives: 
 

  
1

[P] d[P] = k dt 
 

The indefinite integrals are: 
 

 

 1

[P] d[P]  = k dt 
 

Integrating and combining the integration constants gives: 
 

 ln [P] = kt + c 
 

The boundary condition is at t = 0, [P] = [P]o; if you don’t start with at least a few individuals, 
there can be no population growth. Evaluating the integration constant: 
 

 c = ln [P]o 
 

Substituting the integration constant back into the integrated rate law gives: 
 

 ln [P] = kt + ln [P]o 
 

Combining the ln terms gives: 
 

 ln [P] – ln [P]o = kt  or  ln
[P]
[P]o

 = kt 
 

Solving for the population gives: 
 

 [P] = [P]o ekt 

 

which is Malthusian exponential population growth. 
 
 
17. Determine the integrated rate law for a ¾-order reaction with the stoichiometry A  P.  
 
 
Answer:  The rate law is: 
 

 –
d[A]

dt   = k¾ [A]¾ 
 

Separation of variables to isolate all concentration dependent terms on the left side of the 
equality and all the time dependent terms on the right side gives: 
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 – 
d[A]
[A]¾  = k¾ dt 

 

The indefinite integrals are: 
 

 

 1

[A]¾ d[A]  = –k¾ dt 
 

Note that  

 1

x¾ dx  =  4 x¼   or conversely in proof:  
d(4 x¼)

dx  = x–¾ 

Combining the integration constants: 
 

 4 [A] ¼ = – k¾t + c 
 

The boundary condition is at t = 0, [A] = [A]o, the initial concentration: 
 

 c  = 4 [A]¼
o  

 

Substituting the integration constant back in to the integrated rate law gives the linear form: 
 

 4 [A]¼ = – k¾t + 4 [A]¼
o  and  [A]¼ = – 

k¾

4  t + [A]¼
o  

 

Solving for the time course gives: 
 

 [A] = 



[A]¼

o  – 
k¾

4  t
4
 

 
 
18. In Example 3.3.1 we discussed denitrification of contaminated ground water. The literature 
assumes a half-order reaction with respect to NO–

3, but the differential method for the data set 
gives ¾ order. Plot the time course for a ½-order and a ¾-order reaction using [NO–

3]o = 409 mg 
L-1 for 0 hr to 1.7 hr. Include the data points from Example 3.3.1. The best fit values for the rate 
constants are k½ = 26.71 mg-½ L½ hr-1 and k¾ = 7.12 mg-¾ L¾ hr-1. [Hint: restrict the time interval 
for the half-order plot so that ([A]½

o  –k½ t /2)  0 or for the ¾-order plot, ([A]¼
o  – k¾ t/4)  0] 

 
 
Answer:  The following spreadsheet was set up using the equations from Problems 15 and 17, or 
alternatively from the Chapter Summary Table: 
 

 For ½-order: [A] = 



[A]½

o  – 
k½

2  t
2
 

 For ¾-order:  [A] = 



[A]¼

o  – 
k¾

4  t
4
 

 

A spreadsheet based on these equations and the corresponding plot is: 
 

 

t (hr) [NO3
-] n=1/2 fit n=3/4 fit 

0 409 409 409 
0.25  285.11 269.53 
0.49 178.2 187.14 172.56 
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0.75  104.20 99.88 
1.19 23.8 18.76 31.96 

1.5  0.04 11.11 
1.6  0 7.37 
1.7 0 0 4.66 

 
 

 
 

The values for the half–order fit for 1.6 and 1.7 hr were just manually set to zero since 
([A]½

o  –k½ t /2) was negative for these times. The plots show that both orders fit fairly well. The 
key time range for determining the correct order is the long-time region where the concentrations 
get close to zero. More data points in the 1.25-1.5 hr range would be helpful. 
 
 
19. Find the integrated rate law for a third-order reaction that is second-order in A and first-order 
in B for the stoichiometry:  2 A + B  products. In actual examples, B is often called a “third 
body” and is often an inert gas, an N2 molecule from the air, a particle, or the walls of the 
container. If the third body were not present, the collision of two A molecules would not be 
stable and would dissociate back to form two A molecules. The third body is necessary to carry 
away the excess energy of the collision. 
 
 
Answer:  The rate law would be given as: 
 

  = – 
1
2 

d[A]
dt  = k3 [A]2[B] 

 

Given the stoichiometric relationships, [A] = ([A]o – 2) and [B] = ([B]o – ): 
 

 
d
dt  = k3 ([A]o – 2)2 ([B]o – ) 

 

Separating variables:  
d

([A]o – 2)2 ([B]o – )
  =  k3 dt 

 

The indefinite integrals are:  


 d

([A]o – 2)2 ([B]o – )
  =   k3 dt 

 

Integral tables give: 
 

 

 dx

(a + bx)2 (a' + b'x)  =  
1

ab' – a'b 



1

a + bx + 
b'

ab' – a'b ln
(a' + b'x)
(a + bx)  

 

With b = -2 and b' = -1: 
 

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2
t (hr)

[N
O

3
- ] 

(m
g/

L)

n=1/2  f it

n=3/4  f it



56 

 


 d

([A]o – 2)2 ([B]o – )
  =  

1
2 [B]o – [A]o

 






1

[A]o – 2 – 
1

 2[B]o – [A]o
 ln






[B]o – 

[A]o – 2  

 

The integrated rate law is: 
 

 
1

2 [B]o – [A]o
 






1

[A]o – 2 – 
1

 2[B]o – [A]o
 ln






[B]o – 

[A]o – 2   =  k3 t + c 
 

The boundary condition is at t = 0,  = 0, and the integration constant is: 
 

 c = 
1

2 [B]o – [A]o
 



1

[A]o
 – 

1
 2[B]o – [A]o

 ln



[B]o

[A]o
 

 

Substituting the integration constant back into the integrated rate law and collecting common 
terms gives: 
 

 
1

2 [B]o – [A]o
 






1

[A]o – 2 – 
1

[A]o
 – 

1
 2[B]o – [A]o

 ln






[A]o([B]o – )

[B]o([A]o – 2)
  =  k3 t 

 

This equation is often rearranged by taking a common denominator for the terms: 
 

 
1

[A]o – 2 – 
1

[A]o
 = 

2
[A]o([A]o – 2)

 
 

Substitution back into the integrated rate law gives: 
 

 
1

2 [B]o – [A]o
 






2

[A]o([A]o – 2)
 – 

1
 2[B]o – [A]o

 ln






[A]o([B]o – )

 [B]o([A]o – 2)
  =  k3 t 

 

In the next chapter we will discuss a method of calculating numerical approximations to rate 
laws that avoids having to do complicated integrals. However, this rate law arises often enough 
that it is handy to have a closed-form solution. 
 
 

20. The cis-trans isomeration of 1-ethyl-2-methylcyclopropane is first order in the forward and 
reverse directions:4,5 

  k1 

    cis    trans 
  k-1 
The reaction, starting with only cis isomer has the following time course. The long-time value 
for the cis-isomer concentration is 0.00443 M. Determine k1 and k-1. 
 

t (s) 0 400 1000 1600 2100 
[cis] (M) 0.01679 0.01406 0.01102 0.00892 0.00775 

 
 
Answer:  Using Eq. 3.4.23 with Ao = 0.01679 M and A= 0.00443 M, the follow spreadsheet was 
constructed: 
 

t (s) [cis] (M) 
([A]-[A])
([A]o-[A])

 ln 
([A]-[A])
([A]o-[A])

 

0 0.01679 1 0 
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400 0.01406 0.7791 -0.2496 
1000 0.01102 0.5332 -0.6289 
1600 0.00892 0.3633 -1.0126 
2100 0.00775 0.2686 -1.3145 

 

The corresponding plot and linest() output is: 
 

slope -0.0006283 -0.000258 intercept 
 3.039E-06 0.003875  
r2 0.999929 0.00520 st. dev. y 
F 42737.8 3 df 
ssreg 1.15585 8.114E-05 ssres 

 

 

The slope gives the sum of the rate constants: slope = –(k1 + k-1) = -0.0006283, or: 
 

 (k1 + k-1) = 0.0006283        1 
 

To calculate the rate constants separately, we can use the equilibrium constant. The long-time, 
equilibrium concentration of the cis isomer is [cis] = 0.00443 M, and from the 1:1 
stoichiometry: 
 

 [trans] = [cis]o– [cis] = 0.01679 – 0.00443 M = 0.01236   2 
 

The ratio gives the equilibrium constant: 
 

 Kc = 
k1

k-1
 = 

0.01236
0.00443 = 2.79       3 

 

We now have two equations in two unknowns, Eq. 1 and 3. Solving Eq. 3 for k-1 gives k-1 = 
k1/Kc and substitution into Eq . 1 gives: 
 

 (k1 + k1/Kc) = 6.283x10-4 s-1       4 
 

Solving for k1: 
 

 k1 = 
6.283x10-4

1 + 1/Kc
 = 

6.283x10-4

1 + 1/2.79  = 4.625x10-4 s-1 

 

and then k-1 = k1/Kc = 4.625x10-4 s-1/2.79 = 1.658 x10-4 s-1 

 
 
21. The rate of decomposition of acetaldehyde has been studied as a function of temperature. The 
table below gives the rate constant for the reaction as a function of temperature. Determine the 
activation energy and the pre-exponential factor. 
 

T (K) 703 733 759 791 811 836 
k2 (M-1 s-1) 0.011 0.035 0.105 0.343 0.79 2.14 

y = -6.283E-04x - 2.575E-04
R2 = 9.999E-01
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Answer:  We will first do the common Arrhenius plot and then compare the results with a non-
linear curve fit in the next problem. The non-linear fit gives a more realistic view of the 
experimental errors. 
   The following spreadsheet was developed to fit the linear form of the Arrhenius equation, 
Eq. 3.5.3. 
 

T (K) k2 (M-1 s-1) 1/T (K-1) ln k2 
703 0.011 0.001422 -4.5099 
733 0.035 0.001364 -3.3524 
759 0.105 0.001318 -2.2538 
791 0.343 0.001264 -1.0700 
811 0.79 0.001233 -0.2357 
836 2.14 0.001196 0.7608 

 
The linest() output and plot are: 
 

slope -23243.86 28.4312 intercept 

 619.84 0.8069  
r2 0.9972 0.1176 st.dev.y 
F 1406.2193 4.0000 df 
ssreg 19.4383 0.0553 ssresid 

 

 
 

The activation energy is given by: slope = – Ea/R or Ea = – slope(R) = 193.2  5.1 kJ mol-1. 
The pre-exponential factor is given by intercept = ln A  or: 
 

 A = e28.43 = 2.2x1012 M-1 s-1. 
 

See the next problem for more on error analysis. 
 
 
22. This problem concerns the error analysis of the results from the last problem. (a) Using the 
results from the last problem, determine the error in the activation energy and the pre-
exponential factor. (b) Often a better approach is to use a non-linear fit. Do a non-linear fit to the 
original data in the last problem and compare the fit values and the uncertainties with the 
linearized fit. 
 
 
Answer:  From the last problem, the relative uncertainty in the slope is 2.7% giving the activation 
energy as uncertain to 2.7% or 193.2  5.1 kJ mol-1. The error for the pre-exponential factor is a 

y = -23244x + 28.431
R2 = 0.9972
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bit harder. The intercept is quite uncertain: 28.43  0.81. The significant figure rule is Significant 
Figure Rule 4 from Appendix 1: 
 

“The number of significant figures in 10x is the number of significant figures in the mantissa of 
x. Use the same rule for ex.” 
 

Using significant figure rules, the uncertainty is in the order of magnitude; there are no 
significant figures in the mantissa. Using the “Uncertainty Calculator” applet on the textbook 
Web site and on the text companion CD: 
 

 
 

The pre-exponential factor and uncertainty are 2.2x1012  1.9x1012 M-1 s-1, which is a bit smaller 
than expected by the significant figure rules. 
   The full propagation of errors rule is: the relative variance in ex is equal to the variance in x 
(Rule 4, Appendix 1). In this case there is only one error term so we can work with standard 
deviations directly (Rule 5, Appendix 1). The standard deviation in x is 0.8069 so the relative 
standard deviation in e28.43 is 0.8069, or in other words 81%. The final result is the same as given 
by the “Uncertainty Calculator.” 
   A better approach is to do non-linear curve fitting, which is also quicker and easier. However, 
for non-linear curve fitting you need to specify initial guesses for the fit parameters. Sometimes 
these guesses can be far from the final value. For this particular function the guesses need to be 
pretty close to the final results. To get guesses for the fit parameters, we can use the results from 
the linear fit that we obtained in the last problem. The fit function is set up as: 
 

 
 

The results of the non-linear fit are significantly different from the linear form for the pre-
exponential factor: 
 

============   Results   =============== 
 a= 171000000000000 +- 75000000000000 
 b= -26760 +- 360 
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---------------------------------------- 
 sum of squared residuals= 0.0007028 
 stand. dev. y values= 0.01326 
 correlation between a & b= -0.9999 

 

This fit gives Ea = 222.5  3.0 kJ mol-1 and A = 1.71x1014  0.75x1014 M-1 s-1. The correlation 
between the fit values shows why the uncertainties are so large. This very large correlation 
between the fit values suggests that the value would be best reported as log A  14 to avoid over-
representing the precision. 
   A Note on Convergence:  If you start with a guess that results in the error message “Not 
Converged,” try clicking on one of the damping options. Choosing “Damped” or “Strongly 
Damped” allows a much larger range of input guesses to converge on the final result for this 
particular function. Unfortunately, damping is not always helpful for other fitting functions. 
 
 

23.  Calculate the activation energy and pre-exponential factor for the decomposition of N2O5 
from the following temperature dependence.6 

 

T (K) 298.0 308.0 318.0 328.0 338.0 
k1 (min-1) 2.03 8.09 29.9 90.1 291.5 

 
 

Answer:  The plan is to use the linearized form of the Arrhenius temperature dependence, 
Eq. 3.5.8, and linear least squares curve fitting. 
   The linearized form of the Arrhenius equation is ln k = –Ea/R + ln A. A fit of the ln k1 versus 
1/T is done using linest() in the following spreadsheet and plot. 
 

 

T (K) k1 (min-1) 1/T (K-1) ln k1 
298.0 2.03 0.003356 0.7080 
308.0 8.09 0.003247 2.0906 
318.0 29.9 0.003145 3.3979 
328.0 90.1 0.003049 4.5009 
338.0 291.5 0.002959 5.6750 

 
slope -12443.7 42.483 intercept 
 123.38 0.389  
r2 0.9997 0.0387 st.dev.y 
F 10171.6 3.00 df 
ssreg 15.2657 0.0045 ssresid 

 

 

y = -12444x + 42.483
R² = 0.9997

0.0

1.0

2.0

3.0

4.0

5.0

6.0
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ln
 k

1

1/T (K-1)
 

   The straight-line behavior verifies Arrhenius temperature dependence. The slope is –Ea/R, 
giving:  Ea = –(-12443.7)8.3145 J K-1 mol-1 (1 kJ/1000 J) = 103.46 kJ mol-1 
Relative errors propagate upon multiplication and division, giving the uncertainty of 1.0% or 
Ea = 103.5  1.0 kJ mol-1. 
   The pre-exponential factor is determined from the intercept, ln A = 42.480.39, giving: 
 A = e42.48 = 2.81x1018 min-1 
The relative uncertainty of ex is the absolute uncertainty in x. The absolute uncertainty in the pre-
exponential factor is 0.39 or equivalently 39% of the final result: 
 A = 2.8x1018  1.1x1018 min-1 
 

The pre-exponential factor always has the same units as the rate constant. 
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24.  The rate constant for the disappearance of chlorine in the reaction of NO with Cl2 to form 
NOCl is 4.52 M-2 s-1 at 0.0°C and 8.03 M-2 s-1 at 22.0°C. What are the activation energy and 
pre-exponential factor for this reaction? 
 
 

Answer:  The plan is to follow Example 3.5.1. The linearized form of the Arrhenius relationship 
for two data points is Eq. 3.5.7: 
 

 ln kT2/kT1
 = – Ea/R (1/T2 – 1/T1)     (3.5.7) 

 ln (8.03/4.52) = – 
Ea

8.3145 J K-1 mol-1 (1/295.15 K – 1/273.15 K) 

 0.5747            = – 
Ea

8.3145 J K-1 mol-1 (-2.7288x10-4 K-1) 

 Ea = 17.51 kJ mol-1 
 

Then  k = A e–Ea/RT  using the lower temperature data point: 
 

 4.52 M-2 s-1 = A e(–17.51x103 J mol-1/8.3145 J K-1 mol-1/273.15 K) = A e-7.710 = A (4.484x10-4) 
 A = 1.01x104 M-2 s-1 
 

The number of significant figures in ex is the number of significant figures in the mantissa of x. 
The mantissa of the argument of the exponential is the “.710” part, or two significant figures. 
Either original data point gives the same pre-exponential factor. The units of the pre-exponential 
factor are always the same as the rate constant. 
 
 

25.  The decomposition of urea is NH2CONH2 + 2 H2O  2 NH+
4 + CO–

3 . The activation energy 
for the reaction is 128.0 kJ mol-1. The rate constant 71.2C is 2.77x10-5 min-1. Calculate the rate 
constants at 40.0C.  
 
 

Answer:  The plan is to use the linearized form of the Arrhenius temperature dependence, 
Eq. 3.5.7. The temperatures must be converted to absolute temperatures. 
   At 71.2C the absolute temperature is 344.4 K. The linearized form of the Arrhenius 
relationship for two data points is Eq. 3.5.7: 
 

 ln kT2/kT1
 = – Ea/R (1/T2 – 1/T1)     (3.5.7) 

 ln (kT2/2.77x10-5 min-1) = – 
128. x103 J mol-1

8.3145 J K-1 mol-1 (1/313.2 K – 1/344.4 K) 

 ln (kT2/2.77x10-5 min-1) = – 1.5394x104 (2.892x10-4 K-1) = 4.452 

 kT2 = 2.77x10-5 min-1 e–4.452 = 3.228x10-7 min-1 = 3.2x10-7 min-1 

 

There are only three significant figures in the inverse temperature difference: 
 

 (1/313.2 K – 1/344.4 K) = 3.19285x10-3 – 2.90360x10-3 = 0.2892x10-3 K 
 

     3 SFpdpt 3 SFpdpt      3 SFpdpt 
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where “3 SF dpdt” is short for three significant figures past the decimal point. The number of 
significant figures in ex is the number of significant figures in the mantissa of x. The mantissa of 
the argument of the exponential is the “.452” part, or two significant figures. 
 
 

26.  The rate constant for the decomposition of N2O5 is 8.09 min-1 at 308.0 K and 90.1 min-1 at 
328.0 K.6 Calculate the rate constant at 298.2 K. 
 
 

Answer:  The plan is to calculate the activation energy using Arrhenius temperature dependence 
and then use the same equation and one of the data points to calculate the new rate constant. 
   The linearized form of the Arrhenius relationship for two data points is Eq. 3.5.7: 
 

 ln kT2/kT1
 = – Ea/R (1/T2 – 1/T1)     (3.5.7) 

 ln (90.1/8.09) = – 
Ea

8.3145 J K-1 mol-1 (1/328.0 K – 1/308.0 K) 

 2.4103           = – 
Ea

8.3145 J K-1 mol-1 (-1.9797x10-4 K-1) 

 Ea = 101.23 kJ mol-1 
 

There are four significant figures in the ln because the number of significant figures in the 
mantissa of ln x is the number of significant figures in x; the mantissa is the “.4103” portion. 
There are only three significant figures in the inverse temperature difference: 
 

 (1/328.0 K – 1/308.0 K) = 3.04878x10-3 – 3.24675x10-3 = 0.19797x10-3 K 
 

     3 SFpdpt 3 SFpdpt      3 SFpdpt 
 

where “3 SFdpdt” is short for three significant figures past the decimal point. 
   Then using the lower temperature data point and Eq. 3.5.7 gives the rate constant at 298.2 K: 
 

 ln kT2/kT1
 = – Ea/R (1/T2 – 1/T1)     (3.5.7) 

 ln (kT2/8.09 min-1) = – 
101.23x103 J mol-1

8.3145 J K-1 mol-1 (1/298.2 K – 1/308.0 K) 

 ln (kT2/8.09 min-1) = – 1.2175x104 (-1.0670x10-4 K-1) = 1.2991 

 kT2 = 8.09 min-1 e–1.2991 = 2.207 min-1 = 2.2 min-1 

 

WWW  We can verify the significant figure propagation using the “Uncertainty Calculator,” from 
the text Web site. The activation energy calculation propagation is given by the following input. 
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The propagation for the Arrhenius temperature dependence of the rate constant gives: 
 

 

 
 

Significant figure rules and careful error propagation both give two significant figures in the final 
result: 2.2070.046 min-1 = 2.2 min-1.  For publication, the result is best expressed as 
2.2070.046 min-1. Significant figure rules are a poor substitute for careful error analysis, used 
only as a time saving convenience. 
 

[Alternately, the pre-exponential factor can be determined by solving for A from k2 = A e–Ea/RT, 
and then the rate constant at the new temperature is determined using A and Ea. However, this 
approach is much more difficult to determine the proper number of significant figures in the final 
result. While algebraically equivalent, using Eq. 3.5.7 is the preferable approach.] 
 
 
27.  The half-time for the first-order denaturation of yeast invertase at 55.0C and pH 3 is 
26.7 min. The activation energy is 308. kJ mol-1.7 Calculate the time for the denaturation of the 
protein to be 75% complete at 60.0C. 
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Answer:  The plan is to calculate the rate constant at 55C from the half-time and use the 
linearized form of the Arrhenius temperature dependence, Eq. 3.5.7, to calculate the rate constant 
at 60C. Next the time for 75% completion is calculated using [A]/[A]o = 0.75. The temperatures 
must be converted to absolute temperatures. 
   At 55.0C the absolute temperature is 328.2 K and at 60.0 C the temperature is 333.15 K. The 
rate constant at 55C is calculated from the half-time using Eq. 3.2.11, t½ = ln 2/k2: 
 

 k2,328K = 0.6932/26.7 min = 0.02596 min-1 

 

The linearized form of the Arrhenius relationship for two data points is Eq. 3.5.7: 
 

 ln kT2/kT1
 = – Ea/R (1/T2 – 1/T1)     (3.5.7) 

 ln (kT2/0.02596 min-1) = – 
308. x103 J mol-1

8.3145 J K-1 mol-1 (1/333.2 K – 1/328.2 K) 

 ln (kT2/0.02596 min-1) = – 3.704x104 (-4.5722x10-5 K-1) = 1.6937 

 kT2 = 0.02596 min-1 e1.6937 = 1.412x10-7 min-1 = 0.1412 min-1 

 

    There are only two significant figures in the inverse temperature difference: 
 

 (1/333.2 K – 1/328.2 K) = 3.00120x10-3 – 3.04692x10-3 = 0.04572x10-3 K 
 

     3 SFpdpt 3 SFpdpt      2 SF 
 

where “3 SFdpdt” is short for three significant figures past the decimal point. The number of 
significant figures in ex is the number of significant figures in the mantissa of x. The mantissa of 
the argument of the exponential is the “.6937” part, or one significant figure. 
   The time for 75% completion is determined from the integrated first-order rate law: 
 

 ln



[A]

[A]o
 = –k1t  giving   ln(0.75) = -(0.1412 min-1)t        with       t = 2.0 min 

 

The reaction is greatly accelerated by the temperature increase of only 5C because the activation 
energy is so large. 

WWW  We can improve upon the significant figure propagation using the “Uncertainty 
Calculator,” from the text Web site. The Arrhenius equation propagation is given by the 
following input. 
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The result has two significant figures, 0.14. The error in the final result is given by: 
 

 

 
 

The final result is 2.0370.098 min-1, which is significantly more precise than the uncertainty 
based on significant figure rules, namely 2. min-1. For publication, the result is best expressed as 
2.0370.098 min-1. Significant figure rules are a poor substitute for careful error analysis, used 
only as a time saving convenience. 
 
 
28.  The development of biological complexity and the emergence of life have important time 
constraints. These time constraints in turn give a corresponding range of reaction rate constants 
for the production of the building blocks of life. All reactions are reversible, and the ratio of the 
forward and reverse rate constants is given by the equilibrium constant, Keq =kf/kr. Favorable 
equilibrium is required to allow the significant build-up of products. A careful balancing of rate 
and equilibrium constants is necessary for the persistence necessary to build molecular and 
organizational complexity. If reactions are two fast, complexity can’t be established because the 
lifetimes of the molecules are too short. If reactions are too slow, interdependent sets of complex 
reaction sequences can’t develop. The range of reaction half-times that are amenable for the 
building of complexity is estimated to be in the 1 s to 100 yr range, which still spans more than 9 
orders of magnitude.8 Assume a range of pseudo-first order half-times of 1 s to 100 yr to 
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calculate the range of amenable activation energies for reactions that build complexity at 298 K. 
Typical pre-exponential factors are in the range of 1.0x1010 s-1 to 1.0x1011 s-1. 
 
 

Answer:  The plan is to use k = A e-Ea/RT to calculate a range of corresponding activation 
energies, where the range of rate constants is determined from the half-times, t½ = ln(2)/k1. 
   The range of half-times, 1 s to 100 years, corresponds to a range of pseudo-first order rate 
constants from 0.693 s-1 to 2.20x10-10 s-1, respectively. The following table then gives the values 
of the activation energies, depending on the chosen value of the pre-exponential factor and half-
time, using Ea = –RT ln(k/A): 
 

Table:  Activation Energies for Specific Pre-exponential Factors and Rate Constants 
 

A                  k = 0.693 s-1 k = 2.20x10-10 s-

1 

1.0x1010 s-1 58 kJ mol-1 112 kJ mol-1 

1.0x1011 s-1 64 kJ mol-1 118 kJ mol-1 

 
Notice that significant activation energies are required. The activation energies are sizable 
fractions of typical covalent bond energies. The conclusion is that the development of 
complexity must be mediated through covalent bonding.8 Non-covalent interactions, such as 
hydrogen bonding and - interactions, are insufficient to provide the persistence necessary for 
building complexity. However, after significant complexity is established, networks of 
cooperative non-covalent interactions are sufficient. For example, protein denaturation typically 
has high activation energies (see the previous problem). Even though the range of half-times 
covers nine-orders of magnitude, the corresponding activation energies vary only by a factor of 
two. Molecules involved in cell signaling, such as NO and acetylcholine, typically have short 
half-times. Structural scaffold polymers, such as cellulose and collagen, have long half-times. 
Both extremes are necessary to maintain complex systems. 
 

 
29. In this problem we compare the integrated rate law for A + B  P with A  P for a simple 
first-order and second-order reaction. (a) For a second-order reaction that is first order in A and 
first order in B, solve Eq. 3.2.52 for . Then plot [A] = [A]o –  using the initial conditions [A]o = 
0.5 M, [B]o = 1.0 M and k2 = 0.1 M-1 s-1. Let t range from 0 to 20 s. (b) On the same axis, plot the 
corresponding time course for a first-order reaction, AP, with [A]o = 0.5 M and k1 = 0.1 s-1. (c) 
On the same axis, plot the corresponding time course for a simple second-order reaction of the 
form and stoichiometry A  P. For this last plot, use a rate constant of k2 = 0.2 M-1 s-1 so that 
the initial rates for all three types of reactions are equal, to make a fair comparison. (d) 
Rationalize the differences in the plots. 
 
 
Answer:  The integrated rate law for A + B  P that is first-order in both reactants is given in 
Eq. 3.2.52: 

 
1

([B]o–[A]o)
 ln






[B]o–

[A]o–
   =  k2t + 

1
([B]o–[A]o)

 ln



[B]o

[A]o
 

 

Multiplying both sides of the equation by [B]o–[A]o and exponentiating gives: 
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[B]o–

[A]o–
  = e([B]o–[A]o) k2t + ln([B]o/[A]o) =  

[B]o

[A]o
 e([B]o–[A]o) k2t 

 

Cross multiplying and multiplying out terms: 
 

 [B]o–   =  [B]o e([B]o–[A]o) k2t – 
[B]o

[A]o
  e([B]o–[A]o) k2t 

 

Collecting terms in : 
 

  – 
[B]o

[A]o
  e([B]o–[A]o) k2t = [B]o–  [B]o e([B]o–[A]o) k2t 

 

Solving for : 
 

  = [B]o 
( )1 – e([B]o–[A]o) k2t





1 – 

[B]o

[A]o
e([B]o–[A]o) k2t

 

 

Alternatively, multiplying numerator and denominator by [A]o/[B]o gives: 
 

  = [A]o 
( )1 – e([B]o–[A]o) k2t





[A]o

[B]o
 – e([B]o–[A]o) k2t

 

 

A spreadsheet was set up to calculate e([B]o–[A]o) k2t, , and [A]o–. Additional columns were 
added for the first-order function, [A] = [A]o e–k1 t, and the simple second-order function: 

 [A] = 
1





1

[A]o
 + k2t

 

 
   [A]o- [A] [A] 
t (s) exp((b-a)kt)  A+B -> P 1st order 2nd order 

0 1 0 0.5 0.5 0.5 
2 1.105 0.087 0.413 0.409 0.417 
4 1.221 0.153 0.347 0.335 0.357 
6 1.350 0.206 0.294 0.274 0.313 
8 1.492 0.248 0.252 0.225 0.278 

10 1.649 0.282 0.218 0.184 0.250 
12 1.822 0.311 0.189 0.151 0.227 
14 2.014 0.335 0.165 0.123 0.208 
16 2.226 0.355 0.145 0.101 0.192 
18 2.460 0.372 0.128 0.083 0.179 
20 2.718 0.387 0.113 0.068 0.167 

 

The corresponding plot is: 
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 (d) To rationalize the differences, we write the rate laws at 10 s as an example. At 10 s, from the 
table, for the A + B P  case, [A] = 0.218 M and [B] = [B]o–  = 0.718 M. Substituting the 
actual concentrations: 
 

   2nd order overall A + B  P –
d[A]

dt   = k2 [A] [B] = k2 [A] (0.718)   1 

For the first-order rate law: 

 1st order A  P  –
d[A]

dt   = k1 [A]     2 

and for the simple second-order rate law, [A] = 0.250 at t = 10 s giving: 

 2nd order A  P  –
d[A]

dt   = k2 [A] [A] = k2 [A] (0.250)   3 
 

In Eq. 1, [A] is multiplied by (0.718) thus decreasing the rate of disappearance. In Eq. 2, [A] 
stands alone, so the rate of disappearance of [A] is faster than Eq. 1. In Eq. 3, [A]2 is effectively 
[A] (0.250) which is the smallest product of all three and therefore the slowest. 
 
 
30. Show that Eq. 3.4.22 reduces to simple first-order behavior, with a rate constant of just k1, 
for a reaction that runs to completion. 
 
 

Answer: Eq. 3.4.22 involves the sum of the rate constants: 
 

 
d([A] – [A]eq)

dt  = – (k1 + k-1)([A] – [A]eq) 

which doesn’t look like it will reduce to a form that only depends on k1. However, note that from 
the equilibrium constant: 
 

 Keq = 
k1

k-1
 = 

[B]eq

[A]eq
 

 

or solving for k-1 gives: 
 

 k-1 = k1/Keq 
 

giving: 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30
t (s)

[A
]

A+B -> P

1st order

2nd order
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d([A] – [A]eq)

dt  = – k1(1 + 1/Keq)([A] – [A]eq) 
 

In addition, [A]eq = [B]eq/Keq. For a reaction that runs to completion, Keq  , k-1  0, and [A]eq 
 0, which gives Eq. 3.2.2. 
 
 
31. Find the lifetime and half-time for a reversible first-order/first-order reaction from Eq. 
3.4.23: 
 

  k1 
      A     
  k-1 
 
 
Answer: The lifetime, , is the 1/e time for the course of the reaction. Since the reaction doesn’t 
run to completion, the 1/e point is when the displacement is 1/e of the way to equilibrium: 
 

 



[A] – [A]eq

[A]o – [A]eq
 = 1/e 

 

Then Eq. 3.4.23 reduces to: 
 

 ln



[A] – [A]eq

[A]o – [A]eq
 = ln(1/e) = –ln e = –1 = – (k1 + k-1)  

 

Solving for the lifetime gives: 
 

  = 
1

(k1 + k-1)
 

 

This equation should be compared to the temperature-jump relaxation time for the same reaction 
order and stoichiometry, Eq. 3.6.14. These two equations are the same. 
   Now for the half-time: 
 

 



[A] – [A]eq

[A]o – [A]eq
 = ½ 

 

Then Eq. 3.4.23 reduces to: 
 

 ln



[A] – [A]eq

[A]o – [A]eq
 = ln(1/2) = –ln 2 = –0.6931 = – (k1 + k-1)  

 

and the half-time is t½ = 
ln 2

(k1 + k-1) = 
0.6931

(k1 + k-1) 

 
 
32.  For a reversible first-order/first-order reaction: 
 

  k1 
      A     
  k-1 
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(a) Show that the displacement for A after n half-times is given by: 
 

 [A] – [A]eq = ([A]o – [A]eq) 


1

2
n

 
 

(b)What percentage of the initial displacement for A remains after five half-times? 
 
 
Answer:  The half-time for a reversible first-order/first-order reaction with 1:1 stoichiometry is 
the time when: 
 

 



[A] – [A]eq

[A]o – [A]eq
 = 1/2 or  t½ = 

ln 2
(k1 + k-1)

 
 

For n half-times, substituting t = n t½ into Eq. 3.4.24 gives: 
 

 [A] – [A]eq = ([A]o – [A]eq) e– (k1+k-1)n t½  =  ([A]o – [A]eq) e–n ln 2  = ([A]o – [A]eq) eln 2–n
 

        = ([A]o – [A]eq) 2-n =  ([A]o – [A]eq) 


1

2
n

 
 

(b) After five half-times the displacement is [A] – [A]eq = ([A]o – [A]eq) 


1

2
5

 

and 


1

2
5
 = 0.0312 or 3.1% remains compared to its equilibrium value. 

 
 
33.  For a reversible first-order/first-order reaction: 
 

  k1 
       A    B
  k-1 
 

(a) Show that the displacement for A after n lifetimes is given by: 

 [A] – [A]eq = ([A]o – [A]eq) 


1

e
n

 

A commonly quoted rule is that a reaction or process has essentially returned to equilibrium after 
five lifetimes. (b)What percentage of the initial displacement for A remains after five lifetimes? 
 
 

Answer:  The lifetime for a reversible first-order/first-order reaction with 1:1 stoichiometry is the 
time when: 
 

 



[A] – [A]eq

[A]o – [A]eq
 = 1/e or   = 

1
(k1 + k-1)

 
 

For n lifetimes, substituting t = n  into Eq. 3.4.24 gives: 
 

 [A] – [A]eq = ([A]o – [A]eq) e– (k1+k-1)n   =  ([A]o – [A]eq) e–n 

        = ([A]o – [A]eq) 


1

e
n

 

(b) After five lifetimes the displacement is [A] – [A]eq = ([A]o – [A]eq) 


1

e
5
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and (1/e)5 = 6.74x10-3 or 0.67% remains compared to its equilibrium value. 
 
 
34.  Show that the relaxation time for a dimerization: 
  k2 

  2 A   A2 

  k-1 
 

is  = 
1

(4k2[A]eq + k-1)
 

 

Assume that the reaction is second order in the forward direction and first order in the reverse 
direction. 
 
 
Answer:  The rate law is given by: 
 

   = 
d[A2]

dt  =  k2 [A]2 – k-1[A2]      1 
 

Equilibrium is established when the forward and reverse rates are equal: 
 

 Keq = 
k2

k-1
 = 

[A2]eq

[A]eq
2  or   k2[A]eq

2  – k-1 [A2]eq = 0    2 
 

Subtracting Eq. 2 from Eq. 1 references the concentrations to the equilibrium values: 
 

 
d[A2]

dt  =  k2 [A]2 – k2[A]eq
2  – k-1[A2] + k-1 [A2]eq    3 

 

Factoring out the rate constants gives: 
 

 
d[A2]

dt  =  k2([A]2 – [A]eq
2 ) – k-1([A2] – [A2]eq)     4 

 

Eq. 3.1.2 gives the relationship of the concentration changes, d[A] = –2 d[A2].The displacement 
in the product concentration is x = [A2] – [A2]eq and then for the reactant [A] – [A]eq = –2x or 
solving for [A]: 
 

 [A] = [A]eq – 2x        5 
 

The [A]2 in terms of the displacement is the square of eq. 5: 
 

 [A]2 = [A] eq
2  –4[A]eq x + 4 x2  [A] eq

2  –4[A]eq x    6 
 

However for the last inequality, we assume the displacement is small so that the 4x2 is negligible 
(as we assumed for Eq. 3.6.7). Substituting Eq. 6 into Eq. 4 and using x = [A2] – [A2]eq, the rate 
law in terms of the displacements is: 
 

 
dx
dt   =  – 4k2[A]eq x – k-1 x       7 

 

Distributing out the factor of x gives: 
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dx
dt   =  – (4k2[A]eq + k-1) x       8 

 

Setting the relaxation time to: 
 

  = 
1

(4k2[A]eq + k-1)
        9 

 

Substituting this definition for the relaxation time gives: 
dx
dt   = – 

x
  which integrates to: 

 x = xo e
–t/

          10 
 

as in Eq. 3.6.13. Once again, neglecting the term in x2 in Eq. 6 guarantees the relaxation is 
simple-exponential. 
 
 
35. Consider the reaction:  A + B   C + D 
Show that the displacement for each product is x and for each reactant is – x, independent of the 
initial concentrations used to prepare the reaction mixture. 
 
 
Answer:  Set up the following reaction table to show the stoichiometric relationships based on 
the extent of the reaction: 
 
 A                  + B                   C                  + D 
Initial [A]o [B]o [C]o [D]o 
During [A] = [A]o–  [B] = [B]o–  [C] = [C]o+  [D] = [D]o+  
Equilibrium [A]eq = [A]o– eq [B]eq = [B]o– eq [C]eq = [C]o+ eq [D]eq = [D]o+ eq 
Displacement [A] – [A]eq =  [B] – [B]eq = [C] – [C]eq = [D] – [D]eq = 
 ([A]o-)-([A]o-eq) ([B]o-)-([B]o-eq) ([C]o+)-([C]o+eq) ([D]o-)-([D]o-eq) 
 = eq –  = – x = eq –  = – x =  – eq= x =  – eq= x 

 
 
36. Consider a temperature jump perturbation for a reaction that is second order in the forwards 
and second order in the reverse direction: 
 

  k2 
 A + B    C + D 
  k-2 

Show the relaxation time is:   
1

k2([A]eq + [B]eq) + k-2([C]eq + [D]eq)
 

 
 
Answer:  For the displacement away from equilibrium x  [C] – [C]eq = [D] – [D]eq. 
Since the stoichiometry is 1:1 the displacement in A is [A] – [A]eq = [B] – [B]eq = –x. The 
stoichiometric relationships are summarized in Table P30.1. 
 

Table P30.1: Concentrations for an opposed second-order/second-order reaction. 
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Progress [A] [B] [C] [D] 
initial, new T [A]o [B]o [C]o [D]o 
middle [A]eq – x [B]eq– x [C]eq + x [D]eq + x 
equilibrium [A]eq [B]eq [C]eq [D]eq 
displacement [A] – [A]eq= –x [B] – [B]eq= –x x  [C] – [C]eq x = [D] – [D]eq 

 
The rate law is: 
 

 
d[C]

dt   = k2[A][B] – k-2[C][D]      1 
 

At equilibrium, the forward rate is equal to the reverse rate, k2[A]eq[B]eq = k-2[C]eq[D]eq, since at 
equilibrium the time derivative is zero: 
 

 k2[A]eq[B]eq – k-2[C]eq[D]eq = 0     2 
 

Using Eq. 3.6.5 
 

 
d[C]

dt   =  
d([C]eq+x)

dt   =  
dx
dt       3 

 

Substituting the values from Table P30.1 and Eq. 3 into Eq. 1 gives: 
 

 
dx
dt   = k2([A]eq– x)([B]eq– x) – k-2([C]eq+x)([D]eq+x)   4 

 

Multiplying out each term gives: 
 

dx
dt  = k2[A]eq[B]eq – k2[A]eq x – k2[B]eq x + k2x2 – k-2[C]eq[D]eq – k-2[C]eq x – k-2[D]eq x – k-2x2 

          5 
Since the perturbation is small, the displacement away from equilibrium, x, must be small. The 
term in x2 is then negligible. Neglecting the terms in x2 and subtracting Eq. 2 from Eq. 5 gives: 
 

 
dx
dt   = – k2[A]eq x – k2[B]eq x – k-2[C]eq x – k-2[D]eq x   6 

 

Distributing out the common factor of –x gives: 
 

 
dx
dt   = – {k2([A]eq + [B]eq) + k-2([C]eq + [D]eq)} x   7 

 

All the terms in the braces are constants. We define the relaxation time: 
 

   
1

k2([A]eq + [B]eq) + k-2([C]eq + [D]eq)
    8 

 

The rate law in terms of the displacement again reduces to 
 

 
dx
dt   = – 

x
        9 
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37. Consider a temperature jump perturbation for a reaction that is second order in the forwards 
and second order in the reverse direction and catalyzed by C:9 
 

  k2 
 A + C    B + C 
  k-2 
 

Given the catalyst concentration is [C]o, show that the relaxation time is:  = 
1

(k2 + k-2)[C]o
 

 
 
Answer:  Assuming that the reaction as written is complete and no other mechanistic steps are 
involved, the concentration of the catalyst is constant. The rate law is: 
 

 
d[B]

dt   = k2[A][C]o – k-2[B][C]o 

 

This reaction is pseudo-first order in both directions with effective rate constants that combine 
the original rate constants with the catalyst concentration: 
 

 
d[B]

dt   = (k2[C]o) [A] – (k-2[C]o) [B] 

 

The reaction is then pseudo-first order in both directions, with relaxation time given by Eq. 
3.6.14: 
 

  = 
1

 (k2[C]o) + (k-2[C]o)
 

 

which simplifies to:  = 
1

(k2 + k-2)[C]o
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Chapter 4 Problems: Kinetic Mechanisms 
 
1. Consider the gas phase oxidation of HBr:   4 HBr + O2  2 H2O + 2 Br2. The following 
mechanism has been proposed: 
    k1 
   HBr + O2  HOOBr 
 

    k2 
   HOOBr   +  HBr  2 HOBr 
 

    k3 
       HOBr   +  HBr   H2O  +  Br2 
 

Assume all unidirectional steps. Comment on the validity of this mechanism. 
 
 
Answer:  The forward steps in a mechanism must add to give the overall stoichiometry of the 
reaction. To give the proper overall stoichiometry, the last step must be doubled. 
 

   HBr + O2  HOOBr 
 

        HOOBr   +  HBr  2 HOBr 
 

 2x (   HOBr   +  HBr   H2O  +  Br2   ) 
           4 HBr  +  O2    2 H2O + 2 Br2 
 

The multiplier for a step in a mechanism is called the stoichiometric number. The stoichiometric 
number for Step 3 is 2. The next issue is that this mechanism can only hold far from equilibrium. 
Close to equilibrium a complete mechanism must include each step and its exact reverse. 
 
 
2. For the H2 + I2 reaction,  H2 + I2   2 HI, the empirical rate law is 
 

  = 
d[HI]

dt  = k [H2][I2] 

The empirical rate law matches the stoichiometry of the reaction. Why can’t you conclude that 
the mechanism is a simple single-step mechanism? 
 
 
Answer:  The reaction may occur by direct collisions of H2 and I2 molecules, but other 
mechanisms that have lower overall activation energies or larger pre-exponential factors may 
also be possible. The introductions to Chapters 3 and 4 discuss two alternate proposals. The 
direct molecular and rapid pre-equilibrium proposals are kinetically equivalent and therefore 
indistinguishable without additional experimental time course data for the concentrations of any 
and all reactive intermediates. 
 
 
3. The gas phase decomposition of acetic acid at 1189 K proceeds by way of two parallel 
reactions: 
 (1)  CH3COOH  CH4 + CO2  k1= 3.74 s-1 

 (2)  CH3COOH  H2C=C=O   k2= 4.65 s-1 
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What is the maximum ratio of H2C=C=O to CH4 obtainable at this temperature? 
 
 
Answer:  The ratio of products during a parallel mechanism is always the same, Eq. 4.1.13: 
 

 
[CH4]

[H2C=C=O]  =  
k1

k2
  =  

3.74 s-1

 4.65 s-1 

 
 
4. The gas phase reaction, 2 NO + 2 H2  N2 + 2 H2O, is known to have the rate law: 
 

  = k [NO]2[H2] 
 

Can this mechanism be a one-step mechanism? If not, suggest a possible two-step mechanism 
and suggest the rate determining step. You can use unidirectional elementary steps. 
 
 
Answer:  The reaction cannot have a simple one-step mechanism because the empirical rate law 
does not agree with the stoichiometry for the reaction. The rate law suggests (but does not 
require) that the rate determining step may be termolecular: 
 

 2 NO + H2  N2 + H2O2     1 
 

The product H2O2 is suggested by the difference: 2 NO + H2 – N2 = H2O2. This reaction 
produces stable products, which helps to justify the proposition. The hydrogen peroxide 
produced must be an intermediate since it does not appear in the overall reaction. To suggest the 
second step, we can “subtract” this first elementary step, Eq. 1, from the overall reaction, since 
sum of the mechanistic steps should give the overall stoichiometry: 
 

 overall:      2 NO + 2 H2  N2 + 2 H2O 
 first step: –  (2 NO +    H2  N2 + H2O2) 
        

 remaining:     H2 + H2O2  2 H2O 
 

This last step as an elementary process is a reasonable proposition for the second elementary 
step. For this mechanism to agree with the given empirical rate law, the first step must be the 
intrinsically slow step: 
 

 2 NO + H2  N2 + H2O2   (slow) 

 H2 + H2O2  2 H2O    (fast) 
 
 
5. Use the finite difference approximation to integrate the rate law for a second order reaction, 
A + B  P with a rate constant of 0.05 M-1 s-1. Choose the initial concentrations [A]o = 1.00 M 
and [B]o = 0.50 M. Integrate to at least 100 s. Use Excel for the integration. Compare to the exact 
expression and the results from the Web based “Kinetics Mechanism Simulation” applet or 
MathCad or MatLab. 
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Answer:  Starting with the second-order rate law: 

 – 
d[A]

dt  = – 
d[B]

dt  =  k [A][B] 

The finite-difference iteration formulas are: 
 

 [A](t + ∆t) = [A](t) – k [A](t)[B](t) ∆t 
and [B](t + ∆t) = [B](t) – k [A](t)[B](t) ∆t 
 

The spreadsheet for t = 5 s is: 
 

A1 B C D E F 
2      
3 [A]o = 1 M   
4 [B]o = 0.5 M   
5 k = 0.05 M-1 s-1   
6 dt = 5 s   
7    exact exact 
8 t (s) [A] [B] extent [A] 
9 0 1 0.5 0 1 
10 5 0.875 0.375 0.105148 0.894852 
11 10 0.792969 0.292969 0.181133 0.818867 
12 15 0.73489 0.23489 0.238218 0.761782 
13 20 0.691735 0.191735 0.282367 0.717633 
14 25 0.658578 0.158578 0.317284 0.682716 
15 30 0.632469 0.132469 0.345393 0.654607 
16 35 0.611523 0.111523 0.368343 0.631657 
17 40 0.594474 0.094474 0.3873 0.6127 
18 45 0.580433 0.080433 0.403109 0.596891 
19 50 0.568762 0.068762 0.416398 0.583602 
20 55 0.558984 0.058984 0.427643 0.572357 
21 60 0.550741 0.050741 0.437213 0.562787 
22 65 0.543755 0.043755 0.445396 0.554604 
23 70 0.537807 0.037807 0.452423 0.547577 
24 75 0.532724 0.032724 0.458477 0.541523 
25 80 0.528366 0.028366 0.463711 0.536289 
26 85 0.524619 0.024619 0.468245 0.531755 
27 90 0.52139 0.02139 0.472184 0.527816 
28 95 0.518602 0.018602 0.475612 0.524388 
29 100 0.51619 0.01619 0.4786 0.5214 

 

The formula for C10 is: “=C9-$C$5*C9*D9*$C$6” 
and for D10 is “=D9-$C$5*C9*D9*$C$6”. 
The exact formula for the extent of the reaction is taken from the Chapter 3 Summary Table. The 
“Kinetics Mechanism Simulation” applet setup is: 
 

 
 

and the applet result at 100 s is  [A] = 0.5213 M and [B] = 0.02134 M. The error for the simple 
Excel version at 100 s is 2% and the error for the “Kinetics Mechanism Simulation” applet 
compared to the exact analytical integral is 0.02%. The error for the very simple Excel version is 
actually quite small given the simplicity of the approach. The error could be greatly decreased by 
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choosing a smaller ∆t. The ∆t for the Web applet version is ∆t = max time/750 = 0.20 s, so it is 
not surprising that the Web applet does better than the Excel version. However, the Web applet 
also uses a better approximation technique, which is the “4th order Runge–Kutta” algorithm, to 
further decrease errors. “Numerical Analysis” courses in Mathematics cover advanced methods 
for integrating differential equations. 
 
 
6. Use the finite difference approximation to integrate the rate law for the two step mechanism: 
 

  k1     k2 

  A + B  X  X   P 
 

with rate constants k1 = 0.05 M-1 s-1 and k2 = 0.2 s-1. Choose the initial concentrations [A]o = 1.00 
and [B]o = 0.50 M. Use ∆t = 1 s for a maximum time of at least 50 s. Use Excel and compare to 
the results from the Web based “Kinetics Mechanism Simulation” applet or MathCad or MatLab. 
A useful comparison is to find the maximum concentration of the reactive intermediate. 
 
 
Answer:  We can extend the spreadsheet from Problem 5. The additional rate laws are: 
 

 
d[X]

dt  = k1 [A][B] – k2[X]  
d[P]
dt  =  k2 [X] 

 

The corresponding iteration formulas are: 
 [A](t + ∆t) = [A](t) – k1 [A](t)[B](t) ∆t 
 [B](t + ∆t) = [B](t) – k1 [A](t)[B](t) ∆t 
 [X](t + ∆t) = [X](t) + k1 [A](t)[B](t) ∆t – k2 [X](t) ∆t 
 [P](t + ∆t) = [P](t) + k2 [X](t) ∆t 
 

The first part of the spreadsheet for t = 1 s is: 
 

A1 B C D E F       G 
2       
3 [A]o = 1 M    
4 [B]o = 0.5 M    
5 k1 = 0.05 M-1 s-1    
6 k2= 0.2 s-1    
7 dt = 1 s    
8      check 
9 t (s) [A] [B] [X] [P] [A]+[X]+[P] 
10 0 1 0.5 0 0 1 
11 1 0.975 0.475 0.025 0 1 
12 2 0.951844 0.451844 0.043156 0.005 1 
13 3 0.93034 0.43034 0.056029 0.013631 1 
14 4 0.910321 0.410321 0.064841 0.024837 1 
15 5 0.891645 0.391645 0.070549 0.037805 1 
16 6 0.874185 0.374185 0.0739 0.051915 1 
17 7 0.857829 0.357829 0.075475 0.066695 1 
18 8 0.842482 0.342482 0.075728 0.08179 1 
19 9 0.828055 0.328055 0.075009 0.096936 1 
20 10 0.814473 0.314473 0.07359 0.111938 1 
21 11 0.801666 0.301666 0.071678 0.126656 1 
22 12 0.789574 0.289574 0.069434 0.140991 1 
23 13 0.778142 0.278142 0.06698 0.154878 1 
24 14 0.767321 0.267321 0.064405 0.168274 1 
25 15 0.757065 0.257065 0.06178 0.181155 1 
26 16 0.747334 0.247334 0.059155 0.193511 1 
27 17 0.738092 0.238092 0.056566 0.205342 1 
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The formula for [A] in C11 is: “=C10-$C$5*C10*D10*$C$7” 
for [B] in D11 is “=D10-$C$5*C10*D10*$C$7” 
for [X] in E11 is “=E10+$C$5*C10*D10*$C$7-$C$6*E10*$C$7” 
and [P] in F11 is “=F10+$C$6*E10*$C$7”. 
   We also added a column to act as an error check, [A]+[X]+[P], from the mass balance during 
the reaction. This column should always give [A]o. The “Kinetics Mechanism Simulation” applet 
setup is: 
 

 
 

The initial part of the applet output is: 
 

 time A B X P 
0 1 0.5 0 0 
2.5 0.9428 0.4428 0.04416 0.01302 
5 0.8948 0.3948 0.06388 0.04135 
7.5 0.8539 0.3539 0.07029 0.07582 
10 0.8187 0.3187 0.06975 0.1115 
12.5 0.7883 0.2883 0.06582 0.1459 
15 0.7617 0.2617 0.06047 0.1779 
17.5 0.7382 0.2382 0.05476 0.207 
20 0.7175 0.2175 0.04921 0.2333 
22.5 0.6991 0.1991 0.04408 0.2568 
25 0.6826 0.1826 0.03946 0.2779 

 

The maximum concentration for the reactive intermediate from the simple Excel version is 
0.0757 M at 8.0 s, while the more accurate applet version gives 0.0703 M at about the same time. 
At 10 s, where we have data for both approaches, the error is 6%. So the t = 1 s is too long and 
the Excel simulation should be repeated with much shorter t. The Web applet used t = 75 
s/750 = 0.10 s, so the result of the Web applet should be much more accurate. 
 
 
7. The purpose of this exercise is to understand the statement: “the intrinsically slow step is the 
rate determining step.” (a) Plot the integrated time course for the first-order mechanism: 
 

       ka 

 A    P 
 

using ka = 0.05 s-1 and 0.20 s-1. Plot both [A] and [P] for each case. Use an initial concentration 
of [A]o = 1. Use the Web based “Kinetics Mechanism Simulation” applet or MathCad or MatLab. 
    (b) Similarly find the integrated time course for the consecutive first-order mechanism: 
 

       k1     k2 
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 A    X  P 
 

Use k1 =  0.2 s-1 and k2 = 0.05 s-1. Predict the step that will be the rate determining step. Plot the 
time course for A, X, and P. To which curve in part (a) does the disappearance of A correspond, 
k=0.05 or k=0.20 s-1? To which curve in part (a) does the appearance of product correspond? 
According to the plot, which step is the rate determining step? Is the intrinsically slow step the 
rate determining step? 
 
Answer:  Using the Web based “Kinetics Mechanism Simulation,” the single-step first-order plots 
are:  
  k1 = 0.05 s-1     k1 = 0.20 s-1 

    
 

(b) The “Kinetics Mechanism Simulation” applet setup is: 
 

 
 

The “reservoirs” (green rectangles) are shown for t = 10 s, showing a significant concentration of 
the intermediate. The plot is shown below. The disappearance of A corresponds to the curve in 
part (a) for ka = 0.2 s-1, that is, the faster rate constant. However, the appearance of product 
corresponds to the curve for ka = 0.05 s-1, that is the slower rate constant. So the appearance of 
product is given by the slower second step. So, the rate determining step for the appearance of 
product is the intrinsically slower step. Since k1 >> k2, this is as we expected and the 
intermediate is a stable intermediate. The concentration of the intermediate builds to a significant 
fraction of the initial concentration of A. Note that the steady-state approximation would not be 
appropriate for this case. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60
t (s)

[A
], 

[P
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60
t (s)

[A
], 

[P
]

A A 

P 
P 



82 
 

 
 
 
8. Consider the reaction: H2O2 + 2H+ + 2 I-  I2 + 2 H2O. The following mechanism has been 
proposed: 
 

 H+ + I-    HI     rapid equilibrium 

 HI + H2O2  H2O + HOI   slow 

 HOI + I-  I2 + OH-    fast 

 OH- + H+  H2O    fast 
 

Show that this mechanism is consistent with the experimentally determined rate law: 
  = k [H+][I-][H2O2] 
 
 
Answer:  The rate law for the disappearance of H2O2 is: 
 

 – 
d[H2O2]

dt  = k2 [HI][H2O2] 
 

If the first step is a rapid pre-equilibrium, that is k1 and k-1 >> k2 then we can obtain the HI 
concentration from the equilibrium expression: 
 

 Kc = 



 

[HI]
[H+][I-] eq

  giving  [HI] = Kc [H+][I-] 

 

Substituting this value for [HI] into the rate law for H2O2 gives: 
 

 – 
d[H2O2]

dt  = k2 Kc [H+][I-][H2O2] 
 

For the overall reaction, H2O2 + 2H+ + 2 I-  I2 + 2 H2O:  = – 
d[H2O2]

dt  . Fast steps after the rate 

determining step don’t have an effect on the rate law for the disappearance of a reactant in the 
rate determining step. 
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9. A possible mechanism for 3rd order reactions is: 
 

   k1 
         A + M    AM 
   k-1 
   k2 

        AM + A  A2 + M 
 

Show that the rate law can be expressed as:  
d[A2]

dt  = 
k1k2[A]2[M]
k-1 + k2[A]  

 
 
Answer:  The plan is to use the steady-state approximation for the concentration of the reactive 
intermediate AM. Use the steps in the generalized scheme in Section 4.2. Step 1: The rate law for 
the formation of product is: 
 

 
d[A2]

dt  = k2 [AM][A] 
 

Step 2: The rate law for the formation of the reactive intermediate is equal to zero by the steady-
state approximation: 
 

 
d[AM]

dt  = k1[A][M] – k-1 [AM] – k2 [AM][A]  0    (k1 << k2) 
 

Step 3: Solving for the concentration of the reactive intermediate, AM, gives: 
 

 k1[A][M] = k-1 [AM] + k2 [AM][A]     giving     [AM] = 
k1[A][M]

k-1 + k2 [A] 
 

Since there is only one reactive intermediate, we can skip step 4. 
Step 5: Substituting the concentration of the reactive intermediate into the rate law for the 
formation of product gives the final desired result: 
 

 
d[A2]

dt  = k2  
k1[A][M]

k-1 + k2 [A] [A] = 
k1k2[A]2[M]
k-1 + k2[A]   

 

Step 6: If k-1 >> k2[A], then this mechanism is a pre-equilibrium mechanism and is third-order 
overall. On the other hand, if k2[A] >> k-1, this overall rate law reverts to a second-order process. 
 
 
10.  Use the steady-state approximation to determine the rate law for the following mechanism: 
 

      k1     k3 

 A    B  B + C    D 
      k2 
 
 
Answer:  The plan is to treat B as a reactive intermediate using the steady-state approximation. 
Step 1:  The rate law for the production of product is: 
 

 
d[D]

dt  = k3 [B][C] 
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Step 2:  The rate law for the formation of the reactive intermediate is equal to zero by the steady-
state approximation: 
 

 
d[B]

dt  = k1[A] – k2 [B] – k3 [B][C]  0    (k1 << k3) 
 

Step 3:  Solving this last equation for the steady-state concentration of B gives: 
 

 k1[A] = k2 [B] + k3 [B][C]  giving   [B] = 
k1[A]

k2 + k3 [C]  
 

Since there is only one reactive intermediate, we can skip step 4. 
Step 5:  Substitution into the rate law for the formation of product gives: 
 

 
d[D]

dt  = 
k1k3[A][C]
k2 + k3[C]  

 
Step 6:  If k2>> k3[C], is a pre-equilibrium mechanism, with Keq = k1/k2, and then the process is 
second order overall. If k3[C] >> k2, then the first step is the rate determining step making the 
reaction first-order overall. 
 
 
11. Determine the overall rate law for the proposed H2 + I2 mechanism: 
 

  k1 
    I2 (g)  2 I (g) 
  k-1 

            k2 

 H2 (g) + I (g)   HI (g) + H (g) 
 

            k2 
 H (g) + I2 (g)   HI (g) + I (g) 
 
 
Answer:  The plan is to use the steady-sate approximation on both H and I atoms, as reactive 
intermediates.  Step 1 is to write the rate law for the formation of product: 
 

 
d[HI]

dt   =  k2 [H2][I] + k2' [H][I2]     1 
 

Step 2 for the steady-state mechanistic scheme is to find the rate law for the formation of the 
reactive intermediates: 

 
d[I]
dt   =  2 k1 [I2] – 2 k-1 [I]2 – k2 [H2][I] + k2' [H][I2]  = 0  2 

 
d[H]

dt   =  k2 [H2][I] – k2' [H][I2]  = 0     3 
 

Step 3: To solve for the concentration of the reactive intermediate, I, add Eqs. 2 and 3: 
 

  (2 + 3):  2 k1 [I2] – 2 k-1 [I]2  = 0    4 
 

and solve for [I]: 
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 [I] = 



k1

k-1

½
 [I2]½       5 

 

We have two reactive intermediates in this problem. Note, however, if we add Eq. 3 to Eq. 1 that 
the rate law for formation of product becomes: 
 

  (1 + 3):  
d[HI]

dt  = 2 k2 [H2][I]     6 
 

So only [I] is needed, which eliminates one of the unknowns. We can now proceed to Step 5 and 
find the overall rate law by substituting the steady-state I concentration from Eq. 5 back into the 
rate law for the formation of product, Eq. 6: 
 

 
d[HI]

dt  = 2 k2 



k1

k-1

½
 [H2] [I2]½      7 

 

This mechanism does not agree with the empirical rate law, and may contribute only at high 
temperatures. 
 
 
12.  The decomposition of HI is given by the reaction 2 HI  H2+ I2. One proposed mechanism 
is: 
 

  k1 

       HI  H + I 
 

  k2 

 H + HI  H2 + I 
 

  k3 
 2 I + M  I2 + M 
 

Use the steady-state approximation to find the rate law for this mechanism. Show that this 
mechanism does not agree with the experimentally determined rate law: 
 

 
d[H2]

dt  = k [HI]2 

 
 
Answer:  The rate law for the production of H2 from the second elementary step is: 
 

 
d[H2]

dt  = k2 [H][HI] 
 

This rate law is dependent on a reactive intermediate, so it is not in a form that would be 
typically found from an experimental study. We need to use the steady-state approximation to 
find the concentration of the reactive intermediate. To do this we need to assume that k1<< k2. 
Step 1 in the general scheme for the steady-state approximation is to write the rate law for the 
formation of products, which we have already done, above. Step 2 is to write the rate laws for the 
formation of any reactive intermediates. For the H atom: 
 

 
d[H]

dt  = k1[HI] – k2 [H][HI] = 0 
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This rate law will allow us to solve for the H atom concentration in terms of the reactant, so we 
don’t need to consider the formation of the other reactive intermediate, which is the I atom. Step 
3 is to apply the steady-state approximation to the last equation by setting the rate of formation 
of H atoms equal to zero. Then solving for [H] gives: 
 

 [H] = k1/k2 
 

Step 5 is to substitute this value for the reactive intermediate back into the rate law for the 
formation of products: 
 

 
d[H2]

dt  = k2 [H][HI] = k1 [HI] 
 

Notice that to apply the steady-state approximation, we assumed that the first step was slower 
than the second step. In other words, the slow step is the first step, which is unimolecular in HI. 
This result does not agree with the experimentally determined rate law. 
 
 
13. (a) Determine the integrated rate law for the Michaelis-Menten mechanism. Note that during 
the portion of the reaction where the steady-state approximation applies, – d[S]/dt = d[P]/dt so 
that Eq. 4.2.31 becomes: 
 

 – 
d[S]
dt   =  

k1 [E]o[S]
(kM + [S]) 

 (b) Show that for short times, [S] is a linear function of time: [S] – [S]o = – 
[E]o([S]o + 1) k1

kM
 t 

[Hint: you can approximate ln(x)  x – 1, when x is close to 1.] 
 
 
Answer:   (a). Separating variables by cross multiplying: 
 

 
kM + [S]

[S]  d[S] = – [E]o k1 dt 
 

which simplifies to: 
 

 



kM

[S] +1  d[S] = – [E]o k1 dt 
 

The integration limits start at t= 0, [S] = [S]o: 
 

 



[S]o

[S]

 



kM

[S] +1  d[S] = –0
 
t
 [E]o k1 dt 

 

The sum in the first integral can be split into two terms: 
 

 kM  ln([S]|[S]
[S]o

  + [S]|[S]
[S]o

  = – [E]o k1 t 

 kM ln
[S]

 [S]o
 + ([S] – [S]o) = – [E]o k1 t 
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(b). At the beginning of the reaction [S]  [S]o and [S]/[S]o  1 in the logarithmic term. 
Remembering that the Taylor series for ln x  x – 1, expanded about x =1, then: 
 

 kM 



[S]

[S]o
 –1  + ([S] – [S]o) = – [E]o k1 t 

 

Factoring 1/[S]o out of the first term in parentheses gives: 
 

 
kM

[S]o
 ([S] – [S]o) + ([S] – [S]o) =  



kM

[S]o
 + 1  ([S] – [S]o) =   – [E]o k1 t 

 

Solving for the concentration difference gives:    [S] – [S]o = – 
[E]o[S]o k1

kM + [S]o
 t 

which is a linear function of time. 
 
 
14.  Use the “Kinetic Mechanism Simulation” applet to numerically integrate the rate laws for the 
Michaelis-Menten enzyme mechanism, Eq. 4.2.22. Set k2 = 0.40 M-1s-1, k-1 = 0.1 s-1, and k1= 
0.10 s-1. Use the initial conditions [S]o = 1.0 M and [E]o = 0.1 M. Such a large enzyme 
concentration will make the plot scaling more convenient. (a). Plot [S], [ES], and [P] for a 
maximum of 300 s to verify the linear time course for short times. (b). To observe the pre-
induction lag, using the same conditions, plot [ES] and [P] for a maximum time of 15 s. 
 
 
Answer:  In our Michaelis-Menten simulation, we will use the symbols: 
 A + B = X 
 X = P + B 
where B is the enzyme, A is the substrate, X is the enzyme substrate complex, and P is the 
product. The set-up for the “Kinetic Mechanism Simulation” applet is: 
 

 
 

The requested plots are: 
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A straight line is included for the shorter time scale plot to show the pre-induction lag. The linear 
portion of the time course is offset from the origin. 
 
 
15. Consider the Lindemann-Henshelwood Mechanism for first-order reactions. Compare the net 
rate of the pre-equilibrium step to the rate of the unimolecular step during the majority of the 
time course of the reaction. Look at the rate dependence after any induction period. 
 
 
Answer:  This portion of the time course is adequately approximated using the steady-state 
approximation. The rate law for the formation of the activated molecule is: 
 

 
d[A*]

dt   =  k2[A]2 – k-2 [A*][A] – k1[A*]  = 0 
 

Applying the steady-state approximation corresponds to setting this rate equal to zero. We can 
rearrange this equation to place the rate terms for the appearance and disappearance of reactant 
on the left and the rate terms for the appearance of product from the activated molecule on the 
right: 
 

 k2[A]2       –     k-2 [A*][A]   =  k1[A*] 
     +      –     -          =   2 
 forward rate reverse rate 
  first step  second step 
 

In accordance with the results from Eq. 4.2.19, the terms on the left give the net rate of the 
reversible first step and the term on the right gives the rate of the second step. As expected, these 
rates are equal during the majority of the time course for the reaction. 
 
 
16.  The following mechanism has been proposed for an enzyme reaction with two substrates, A 
and B: 
 

  k1 

 E + A    EA 
  k-1 
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    k2 

 EA + B  EAB + Y 
 

  k3 

    EAB  E + P 
 

where EA and EAB are enzyme substrate complexes. Assuming that k2 and k3 are large 
compared to k1, show that the mechanism gives the rate law: 
 

 
d[P]
dt   = 

k1 k2 [E][A][B]
k-1 + k2 [B]  

 
 
Answer:  The plan is to use the steady state approximation for both reactive intermediates EA 
and EAB. Since the overall rate law is written in terms of the formation of product, we start with 
the rate law for the formation of products. 
   The rate law for the formation of products is a function of the reactive intermediate EAB: 
 

 
dP
dt  = k3 [EAB]         1 

 

   The rate laws for the formation of EA and EAB are equal to zero by the steady state 
approximation: 
 

 
d[EA]

dt  = k1[E][A] – k-1 [EA] –k2[EA][B] = 0     2 
 

 
d[EAB]

dt  = k2[EA][B] – k3[EAB] = 0      3 
 

Solving Eq. 2 for [EA] gives:  [EA] = 
k1[E][A]

k-1 + k2[B]     4 

Solving Eq. 3. for [EAB] gives:  [EAB] = 
k2

k3
 [EA][B]    5 

Substituting Eq. 4 into EQ. 5 gives:  [EAB] = 
k1k2

k3
 

[E][A][B]
(k-1 + k2[B])   6 

Substituting the concentration of the reactive intermediate from Eq. 6 into the rate law for the 
formation of product, Eq. 1, gives the final rate law: 
 

 
dP
dt  = 

k1k2[E][A][B]
(k-1 + k2[B])  

 
 
17.  Consider the following proposed mechanism for the decomposition of ozone. M is an 
unreactive gas molecule that collides with the ozone to break the ozone apart: 
 

  k2     k'2 

 O3 + M 2+ O + M   O + O3  2 O2 
  k-2 
 

Assume k'2>> k2. Show that the rate law that corresponds to this mechanism is: 
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d[O2]

dt   = 
3 k'2 k2 [O3]2[M]

k-2[O2][M] + k'2[O3]
 

 
 
Answer:  The plan is to use the steady state approximation for the reactive intermediate O atoms. 
Since the rate law is written in terms of the formation of the product O2, we start with the rate 
law for the formation of O2. 
   For the formation of product: 
 

 
d[O2]

dt  = k2 [O3][M] – k-2 [O2][O][M] + 2 k'2 [O][O3]     1 
 

Use the steady-state approximation for the reactive intermediate, [O]: 
 

 
d[O]

dt  = k2 [O3][M] – k-2 [O2][O][M] – k'2 [O][O3] = 0    2 
 

Subtracting Eq. 2 from Eq. 1 cancels terms, eliminating the explicit dependence on [M]: 
 

 
d[O2]

dt  = 3 k'2 [O][O3]         3 
 

Solving Eq. 2 for the concentration of the reactive intermediate gives: 
 

 [O] = 
k2 [O3][M]

k-2 [O2] [M] + k'2 [O3]
        4 

 

Substitute this result for [O] into Eq. 3:  
d[O2]

dt  =  
3 k'2 k2 [O3]2[M]

k-2 [O2] [M] + k'2 [O3]
 

 
 
18.  Report all six of the rate constants for the kinetics of proton exchange in aqueous solution of 
acetic acid, Figure 4.5.1. The reaction was studied at pH = 4.74 with the acetic acid and acetate 
concentrations both 0.100 M. The rate constants determined from temperature jump kinetics 
studies are k31 = 4.5x1010 M-1 s-1 and k23 = 1.8x1010 M-1 s-1.1 Use the data from Example 3.6.1 for 
the auto-protolysis constants for water. The Ka for acetic acid is: 
 

 Ka = 
[H+][OAc-]

[HOAc]  = 1.75x10-5 M 

 
 
Answer:  Because of the cyclic mechanism, the number of independent rate constants is five. The 
specification of the acid dissociation constant, Ka = k13/k31, relates k13 and k31. The auto-
protolysis equilibrium constant for water is Kc = k21/k12, with water explicitly in the equilibrium 
expression, Example 3.6.1. The auto-protolysis equilibrium constant for water relates k12 and k21 
giving three independent rate constants left to be to determined (Example 4.5.1). With the given 
rate constant for the recombination of the proton and the conjugate base of the weak acid, k31 = 
4.5x1010 M-1 s-1, and the Ka we can find the weak acid dissociation rate constant: 
 

 k13 = Ka k31 = 1.75x10-5 M (4.5x1010 M-1 s-1) = 7.9x105 s-1   1 
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At equilibrium, the forward and reverse rates for the hydrolysis of acetate, (2)(3), are equal and 
given by: 
 

 k32 [OAc-][H2O] = k23 [OH-][HOAc]      2 
 

with the concentration of water explicitly given in the rate law. Since pH = 4.74, [H+] = 10-4.74, 
giving [OH-] = 10-9.26 = 5.50x10-10 M. With the given rate constant for proton transfer from the 
weak acid to hydroxide, k23: 
 

 k32 (0.100 M)(55.33 M) = 1.8x1010 M-1 s-1(5.50x10-10 M)(0.100 M) 
 k32 = 0.181 M-1 s-1        3 
 

with water explicitly in the rate expression. Alternatively, if the concentration of water is 
combined with the k32 rate constant then Eq. 2 is written: 
 

 k32 [OAc-] = k23 [OH-][HOAc] 
 k32 (0.100 M) = 1.8x1010 M-1 s-1 (5.50x10-10 M)(0.100 M) 
 k32 = 9.9 s-1         4 
 

Instead of working with the rate laws directly, Eq. 2 and 4, we could have done this problem 
equivalently using the equilibrium constant for the hydrolysis. Remembering from General 
Chemistry that: 
 

 Kb = 
Kw

Ka
 = 

[OH-][HOAc]
[OAc-]  = 5.76x10-10 M     5 

 

Then Kb = k32/k23 and from the given k23: 
 

 k32 = 5.76x10-10 M (1.8x1010 M-1 s-1) = 10.4 s-1    6 
 

where Eq. 4 and 6 differ because of round-off error. 
   Just a note on uncertainty; the relaxation times and rate constants are uncertain to about 30%, 
so the number of significant figures is really only 1 for each result. The rate constants for the 
auto-protolysis of water are given in Example 3.6.1: 
 

 k21 = 1.35x1011 M-1s-1 
 k12 = k21/Kc = 2.45x10-5 s-1 
 
 
19. The following mechanism has been proposed for the oxidation of HBr to Br2: 
    k1 
   HBr + O2  HOOBr 
 

    k2 
   HOOBr   +  HBr  2 HOBr 
 

    k3 
       HOBr   +  HBr   H2O  +  Br2 
 

To give the proper overall stoichiometry, this last step must be doubled. All the steps are 
unidirectional. Show that the corresponding rate law can be expressed as: 
 

 
d[Br2]

dt   =  k1 [HBr][O2] 
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Answer:  There are two reactive intermediates in this mechanism, HOOBr and HOBr. The way to 
determine that these are reactive intermediates is to note that neither HOOBr nor HOBr are 
reactants or products. We will need to apply the steady-state approximation to both. Step 1: The 
rate law for the production of product is: 
 

 
d[Br2]

dt   =  k3 [HOBr][HBr]      1 
 

Step 2: The rate laws for the formation of the reactive intermediates are equal to zero by the 
steady-state approximation: 
 

 
d[HOOBr]

dt   =  k1 [HBr][O2] – k2 [HOOBr][HBr]  0   2 
 

 
d[HOBr]

dt   =  2 k2 [HOOBr][HBr] – 2 k3 [HOBr][HBr]  0  3 
 

The 2 k3 is required to give the proper overall stoichiometry. Step 3: Multiplying Eq. 2 by two 
and adding to Eq. 3 gives: 
 

 2 k1 [HBr][O2] – 2 k3 [HOBr][HBr] = 0    4 
 

and solving for [HOBr]: 
 

 [HOBr] = 
k1 [HBr][O2]

k3 [HBr]       5 
 

Step 5: Substitution of this last equation into the rate law for the production of products, Eq. 1, 
gives: 
 

 
d[Br2]

dt   =  k3 
k1 [HBr][O2]

k3 [HBr]  [HBr] =  k1 [HBr][O2]   6 

 
 
20.  For some oscillating mechanisms the same cycle results, after a short initial period, no 
matter the starting conditions. For such cases the plot of the oscillating concentrations is called a 
limit cycle. Does the Lotka-Volterra mechanism give a limit cycle? [Hint: repeat Example 4.4.1 
but with initial conditions [A]o = 1 M and [B]o = 0.5 M. Does the same cycle result as in Figure 
4.4.2b?] 
 
 
Answer:  The settings specified in Example 4.4.1 were used for the “Kinetics Mechanism 

Simulation,” except with the new starting conditions. The new starting conditions give 
the cycle shown below: 
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The cycle concentration ranges are larger than Example 4.4.2b. The Lotka-Volterra mechanism 
does not give a limit cycle. Similarly, Example 4.4.1 showed that no time dependence resulted 
when the steady state concentrations were used as the initial conditions. 
 
21.  The Lotka-Volterra mechanism with all irreversible steps, Eqs. 4.4.6, are unrealistic in 
several ways. One result is that oscillations occur for too wide a range of rate constants and 
starting conditions. In addition, the system does not evolve towards a steady state. Modify the 
mechanism to include reversible reactions for the formation of A and B (steps 1 and 2), but leave 
the formation of products as irreversible. Run a simulation with the same conditions as in 
Example 4.4.1, except set the equilibrium constants for the formation of A and of B at 20. 
Comment on the results. 
 
 
Answer:  The “Kinetic Mechanism Simulation” applet was set up as in Example 4.4.1, but with 
the reverse rate constants for steps 1 and 2 set to 0.005, since Keq = kf/kr = 0.1/0.005 = 20. 
 

 
 

The resulting simulation is shown below. 
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The oscillations now last for a limited time and the system approaches the steady state. Choosing 
an even smaller equilibrium constant for the first two steps damps out the oscillations. One of the 
reasons that the reversible processes inhibit oscillations is that the initial conditions are not as far 
from equilibrium. Notice also that the steady-state shifts slightly for the case with irreversible 
reactions. 
 
 
22.  The “Brusselator” or “trimolecular” mechanism is a more realistic model for oscillating 
systems than the Lotka-Volterra mechanism. The Brusselator displays most of the complex 
phenomena associated with reactions far from equilibrium and is centrally important in the 
development of non-equilibrium thermodynamics. The mechanism is:2 

 

       k1 
           M    A 
 

       k2 
  N  +  A     B  + P 
 

       k3 
 2 A  + B    3 A 
 

       k4 
            A    Q 
 

where M and N are held constant by running the reaction in a flowing system. A convenient set 
of conditions for simulation is to set all the rate constants to 0.10, [M]o = 1.00 M and 
[N]o = 3.00 M. Run kinetics simulations using MatLab, Mathematica, or the “Kinetic Mechanism 
Simulation” applet for three sets of initial conditions: (a) [A]o = [B]o = 1.00 M; 
(b) [A]o = 1.00 M, [B]o = 2.00 M; and (c) [A]o = 1.00 M, [B]o = 3.00 M, which are the steady 
state concentrations. Run the simulation for 300 s. Because the concentrations change rapidly 
over the time interval, you will need to choose a large number of time steps to ensure numerical 
accuracy, choose 15000 time steps. Plot the concentrations of A and B. 
 
 
Answer:  The set-up for the “Kinetics Mechanism Simulation” applet is shown below. Notice the 
large number of time steps to insure better accuracy for the numerical integration. 
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The output for the three runs is shown below: 
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   Figure P22.1: [A]o = [B]o = 1.00 M 
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   Figure P22.2: [A]o = [B]o = 1.00 M 
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   Figure P22.3: [A]o = 1.00, [B]o = 2.00 M 
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   Figure P22.4: [A]o = 1.00, [B]o = 3.00 M 
 

 
In Figure P22.1, the concentration maximum at 220 s should be comparable to the previous 
maxima; the appearance of the time course is distorted by the large time interval used for 
plotting. Notice the similarity between Figures P22.2 and P22.3 at long times. Notice also that 
when the reaction is started with the steady state conditions, [A]o = 1.00 M, [B]o = 3.00 M, the 
reactions also oscillate, Figure P22.4. When run for longer time intervals, all initial conditions 
result in the same cycle; the Brusselator gives a limit cycle (see Problem 20). See the next 
problem for the derivation of the steady-state conditions. 
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23.  The Brusselator mechanism is given in the previous problem. (a). Find relationships for the 
steady state concentrations of A and B in terms of the rate constants. (b). Find the steady state 
concentrations for the conditions given in the previous problem: that is, all the rate constants 
equal to 0.10, [M]o = 1.00 M, and [N]o = 3.00 M. 
 
 
Answer:  The plan is to use the steady-state approximation for the intermediates A and B. 
   The rate laws for the appearance of A and B are set to zero, according to the steady-state 
approximation. For intermediate B: 
 

 
d[B]

dt  = k2[N][A] – k3[A]2[B] = 0      1 
 

Solving for [B]ss gives:    [B]ss = 
k2[N][A]ss

k3[A]2
ss

      2 
 

The rate law for the appearance of [A] is: 
 

 
d[A]

dt  = k1[M] – k2 [N][A] – 2k3[A]2[B] + 3k3[A]2[B] – k4[A] = 0  3 

         = k1[M] – k2 [N][A] + k3[A]2[B] – k4[A] = 0    4 
 

Substituting the equation for [B]ss into this last equation gives: 
 

 k1[M] – k2 [N][A] + k2 [N][A] – k4[A] = k1[M] – k4[A] = 0   5 
 

Solving for [A]ss gives:  [A]ss = 
k1

k4
 [M]      6 

 

Substitution of Eq. 6 into Eq. 2 gives:   [B]ss = 
k2k4[N]
k1k3[M]    7 

 

(b).  Eqs. 6 and 7 give the steady-state conditions as: 
 

 [A]ss = 
0.1
0.1 [1.00 M] = 1.00 M  and [B]ss = 

(0.1)(0.1)[3.00 M]
(0.1)(0.1)[1.00 M] = 3.00 M 

 

as given in the previous problem. 
 
 
24.  The Belousov-Zhabotinsky reaction is an oscillating reaction based on the oxidation of 
malonic acid with KBrO3, which is catalyzed by Ce(IV): 
 

 3 CH2(CO2H)2 + 4 BrO-
3  4 Br- + 9 CO2 + 6 H2O 

 

The BZ reaction played a central role in the development of techniques to study oscillating 
reactions and in the theory of non-equilibrium thermodynamics.2,3 The initiation step is the 
generation of HBrO2, the key reactive intermediate, from BrO-

3: 
 

 BrO-
3 + Br- + 2H+  HBrO2 + HOBr      1 

 

The bulk of the HBrO2 is produced auto-catalytically: 
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 BrO-
3 + HBrO2 + 2 Ce3+ + 3 H+  2 HBrO2 + 2 Ce4+ + H2O   2 

 

The intermediate HBrO2 is consumed in the reactions: 
 

 HBrO2 + Br- + H+  2 HOBr       3 

 2 HBrO2  BrO-
3 + HBrO + H+      4 

 

The oxidation of malonic acid is complex, but a simplified version includes first the bromination 
of malonic acid: 
 

 HOBr + Br- + H+  Br2 + H2O      5 

 Br2 + CH2(CO2H)2  BrCH(CO2H)2 + H+ + Br-    6 
 

and the oxidation of malonic acid and bromomalonic acid by Ce4+: 
 

 Ce4+ + ½ [CH2(CO2H)2 + BrCH(CO2H)2]  ½ Br- + Ce3+ + products 7 
 

The products include CO2, H2O, and a mixture of organic acids. For modeling purposes, the 
oxidation of the malonic acid by Ce(IV) is represented by the net Ce(IV) to Br- stoichiometry 
using: 
 

 CH2(CO2H)2 + Ce4+ + HOBr  Ce3+ + Br- + H+ + products   net 5-7 
 

Field, Körös, and Noyes have developed a mechanism for the reaction that displays oscillations. 
With steps numbered according to the mechanistic steps listed above, the FKN mechanism is:2,3 

 

  k1 
 B + M  A + P  k1 = 1.28 mol L s-1    1 
 

  k2 
 A + M  2 A + 2 C  k2 = 8.0 mol-1 L s-1    2 

 

  k3 
  A + B  2 Q   k3= 8.0x105 mol-1 L s-1   3 
 

             k4 
     2 A  Q + M  k4 = 2.0x103 mol-1L s-1   4 
 

  k5 
  C + N  B   k5 = 1.0 mol-1 L s-1    net 5-7 
 

 with A = HBrO2,  B = Br-,  C = Ce4+,  M = BrO-
3, N = malonic acid, Q = HOBr 

 

The H+ and Ce3+ concentrations are roughly constant and are included through pseudo-rate 
constants. M and N are held constant by a flowing reactor. This mechanism is also called the 
“Oregonator.” 
   Do a numerical simulation of the FKN mechanism using MatLab, Mathematica, or the 
“Kinetics Mechanism Simulation” applet on the companion CD or the textbook Web site with the 
following conditions: 
 

 [M] = [BrO-
3] = 0.06 M,  [N] = [malonic acid] = 0.02 M 

 [A]o = [HBrO2] = 2.0x10-7M,  [B]o = [Br-] = 2.0x10-5 M,  [C]o = [Ce4+] = 1.0x10-4 M. 
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Run the simulation for 750 s. Because the rate constants span almost six orders of magnitude, 
you will need to choose a large number of time steps to ensure numerical accuracy, choose 7500 
or more total time steps. Plot the concentrations of A and B. 
 
 
Answer:  The set-up for the “Kinetics Mechanism Simulation” applet is shown below. Notice the 
large number of time steps which insure better accuracy for the numerical integration. 
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25. Consider a reaction A  B at equilibrium that can occur via a catalyzed path and an 
uncatalyzed path, with C the catalyst: 
  kAC    kA 

 A  +  C    B + C and        A      B 

  kBC    kB 
 

Show that if 10% of the forward process at equilibrium occurs by the uncatalyzed path that 10% 
of the reverse process will also occur by the uncatalyzed path. 
 
 
Answer:  The overall rate law is given by: 
 

  = 
d[A]

dt  = – kAC [A][C] – kA[A] + kBC[B][C] + kB[B]   1 
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At equilibrium the rate with respect to A is zero and then the overall forward rate is equal to the 
overall reverse rate, + = -: 
 

 kAC [A][C] + kA[A] = kBC[B][C] + kB[B]     2 
 

By detailed balance, the forward rate must be equal to the reverse rate for each elementary step 
and then for the uncatalyzed path: 
 

 kA [A] = kB [B]        3 
 

Dividing Eq. 3 by Eq. 2 gives the ratio of the uncatalyzed to the overall rate: 
 

 
kA [A]

kAC [A][C] + kA[A] = 
kB [B]

kBC[B][C] + kB[B]     4 
 

The term on the left of the equality is the fraction of the forward reaction that proceeds by the 
uncatalyzed path. The term on the right is the fraction of the reverse reaction that proceeds by the 
uncatalyzed path. The fractions are then shown to be equal. 
 
 
26. A random bi-substrate enzyme mechanism requires two substrates, but the substrates can 
bind to the enzyme in either order. One example is an enzyme that phosphorylates a protein 
using ATP as the phosphate source; ATP and the protein target are the two substrates. The 
mechanistic steps are: 
 

 E + A     [EA] 
 

 E + B     [EB] 
 

 [EA] + B   [EAB] 
 

 [EB] + A   [EAB] 
 

all of which are assumed to be in quasi-equilibrium (in the same sense as the pre-equilibrium 
mechanism). The production of product is assumed to be essentially irreversible: 
 

 [EAB]  E + products 
 

Draw the quasi-equilibrium mechanistic steps as a four-state cyclic process, and give the 
relationship among the corresponding rate constants. 
 
 
Answer:  The four states for the cycle are (1) E, (2) [EA], (3) [EAB], and (4) [EB]: 
 
 
 
 
 
 
 

E + A 
   +B 

[EA] 
  +B 

[EB] + A [EAB] E + P 

k14  k41 k32 k23 

k43


k34

 
kp

 

k12


k21

 
k12


k21

 E + A + B [EA] + B 

[EB] + A [EAB] E + products 

k14  k41 k32 k23 

k43


k34

 
kp

 

(1) (2) 

(3) (4) 
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   (a) Box model style      (b) Conventional depiction 
 
The relationship of the rate constants around the cycle is the product of all the forward rate 
constants divided by the product of all the reverse rate constants: 
 

 
k12 k23 k34 k41

k21 k32 k43 k14
 = 1 

 
 
27. Consider the bidirectional reaction: 
 

      A   B    C 
 

The initial rate law for the reaction, starting with A only, is experimentally determined to be: 
 

 
d[A]

dt  = – kobs,f [A]o 

 

If the reverse reaction is run starting with C only, the initial rate law is determined to be: 
 

 
d[C]

dt  = – kobs,r [C]o 

 

Why isn’t the equilibrium constant for the overall reaction given by the ratio of the initial 
forward to the initial reverse rate constants, kobs,f/kobs,r? 
 
 
Answer:  The given experimentally determined rate laws are for the system away from 
equilibrium. Detailed balance only applies to reactions at equilibrium. For the reaction at 
equilibrium, applying detailed balance: 
 

  k1 k2 
      A   B    C 
  k-1 k-2 
 

Comparing to the given experimental initial rate laws we find that kobs,f = k1 and kobs,r = k-2. 
Rather, at equilibrium detailed balance gives: 
 

 Kc = 
k1k2

k-1k-2
 

 

See the next problem for a detailed analysis of the rate laws for the complete mechanism. 
 
 
28. This problem is an example of finding the relationship among the rate constants in a 
mechanism and the overall equilibrium constant, based on detailed balance. For the mechanism: 
 

  k1 k2 
      A   B    C 
  k-1 k-2 
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determine the rate law for the overall forward process, +, and the rate law for the overall reverse 
process, -, at equilibrium. Show that the ratio of the resulting rate constants gives the overall 
equilibrium constant. 
 
 
Answer:  The plan is to note that this problem is essentially like a steady-state approximation 
derivation, but the steady state approximation is exact at equilibrium. The flow of the problem is 
to formulate the overall rate law for A and then determine the portion that applies for the forward 
reaction and the portion that applies for the reverse reaction. 
   The rate laws with respect to A, B, and C are: 
 

 
d[A]

dt  = – k1 [A] + k-1[B]        1 
 

 
d[B]

dt  = k1[A] – k-1[B] – k2[B] + k-2[C]      2 
 

 
d[C]

dt  = k2[B] – k-2[C]         3 
 

At equilibrium, the change of the concentration of B with time is zero and the second rate law 
equals zero: 
 

 k1[A] – k-1[B] – k2[B] + k-2[C] = 0       4 
 

Solving for [B] gives: 
 

 [B] = 
k1[A] + k-2[C]

k-1 + k2
         5 

 

Substitution into the rate law for A and taking a common denominator gives: 
 

 
d[A]

dt  = – k1 [A] + k-1



k1[A] + k-2[C]

k-1 + k2
 = – 



k1k-1 + k1k2

k-1 + k2
 [A] + 



k1k-1[A] + k-1k-2[C]

k-1 + k2
 

            6 
 

Cancelling terms gives: 
 

 
d[A]

dt  = – 
k1k2

k-1 + k2
 [A] + 

k-1k-2

k-1 + k2
 [C]       7 

 

The overall rate is given by: 
 

  = 
1
V 

d
dt  = – 

d[A]
dt          8 

 

In terms of the overall process A  C, near equilibrium we would write the overall rate law in 
terms of the initial reactant and the final product: 
 

  = – 
d[A]

dt  = kf [A] – kr [C]  with Keq = kf/kr   (overall) 9 
 

Comparing Eqs. 7 and 9, the first term in Eq. 7 is the rate law for the overall forward process and 
the second term is the rate law for the overall reverse process at equilibrium: 
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 + =  
k1k2

k-1 + k2
 [A]  - = 

k-1k-2

k-1 + k2
 [C]     10 

 

The effective rate constants for the forward and reverse processes are: 

  kf = 
k1k2

k-1 + k2
   and  kr = 

k-1k-2

k-1 + k2
      11 

and the ratio should give the overall equilibrium constant: 
 

 Kc = 
kf

kr
 = 

k1k2

k-1k-2
          12 

 

This result agrees with Eq. 4.5.12, which is required by detailed balance. 
 
 
29.  Using the Principle of Detailed Balance, show that the following mechanism generates the 
expected overall equilibrium ratio when the reaction is at equilibrium: 
 

  k1 

       HI  H + I  
  k-1 
 

  k2 
 H + HI  H2 + I 
  k-2 
 

  k3 
 2 I + M  I2 + M 
  k-3 
 

 

 
 
 
overall: 
 

Keq = 



[H2][I2]

[HI]2
eq

 

Derive the relationship between the rate constants and the overall equilibrium constant, starting 
from the rate laws for each mechanistic step. 
 
 
Answer:  Detailed balance requires that each mechanistic step and its exact reverse must be at 
equilibrium: 
 

  k1 

       HI  H + I  
  k-1 

 
 
   k2 

 H + HI  H2 + I 
  k-2 

 
 
   k3 
 2 I + M  I2 + M 
   k-3 
 

1 = k1 [HI] – k-1 [H][I] = 0 
 

Keq,1 = 
k1

k-1
 = 



[H][I]

[HI] eq
 

 

2 = k2 [H][HI] – k-2 [H2][I] = 0 
 

Keq,2 = 
k2

k-2
 = 



[H2][I]

[H][HI] eq
 

 

3 = k3 [I]2[M] – k-3 [I2][M] = 0 
 

Keq,3 = 
k3

k-3
 = 



[I2][M]

[I]2[M] eq
 

 

The overall equilibrium constant is then 
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 Keq = Keq,1 Keq,2 Keq,3 = 



[H][I]

[HI] eq
 

[H2][I]
[H][HI] eq

 
[I2][M]

[I]2[M] eq
 = 



[H2][I2]

[HI]2
eq

 
 

and the relationship to the rate constants give the ratio of the forward rate constants to the reverse 
rate constants: 
 

 Keq = Keq,1 Keq,2 Keq,3 = 
k1

k-1

k2

k-2

k3

k-3
 

 

 
 
 
30.  The reaction A + B  D is proposed to have the following mechanism: 
  k1 

   A + B  C 
  k-1 
 

  k2 
   C + M  D + M 
  k-2 
 

where C is a reactive intermediate and M is an inert gas in large concentration. (a). Show that 
with appropriate approximations that the rate law is: 
 

 
d[D]

dt  = 



k1k2[A][B][M] – k-1k-2 [D][M]

k-1 + k2[M]  
 

(b). In terms of the overall process, A + B  D, near equilibrium, the overall rate law in terms of 
the initial reactant and the final product is: 
 

  = 
d[D]

dt  = kf [A][B] – kr [D] 

Show that the equation in part (a) reduces to this last overall equation and find the relationship 
between the overall equilibrium constant and the four rate constants for the mechanistic steps 
from this equation. Discuss any approximations that you make for parts (a) and (b). 
 
 
Answer:  (a).  The rate law for the formation of D is given as: 
 

 
d[D]

dt  = k2 [C][M] – k-2 [D][M]       1 
 

The rate law for the intermediate is: 
 

 
d[C]

dt  =  k1 [A][B] – k-1 [C] – k2 [C][M] + k-2 [D][M] = 0    2 
 

We apply the steady-state approximation to find the steady-state concentration of C. Note that 
this approximation holds before the system reaches equilibrium, if C is a reactive intermediate: 
 

 [C] = 
k1 [A][B] + k-2 [D][M]

k-1 + k2 [M]         3 
 

Substitution into Eq. 1 to gives: 
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d[D]

dt  = 
k1 k2 [A][B][M] + k2 k-2 [D][M]2

k-1 + k2[M]  – k-2 [D][M]    4 
 

Taking a common denominator: 
 

 
d[D]

dt  = 
k1 k2 [A][B][M] + k2 k-2 [D][M]2 – k-1 k-2 [D][M] – k2 k-2 [D][M]2

k-1 + k2[M]   5 
 

Canceling common terms: 
 

 
d[D]

dt  = 
k1 k2 [A][B][M] – k-1 k-2 [D][M]

k-1 + k2[M]       6 
 

(b). If M is a buffer gas in large concentration, then k2[M] >> k-1 is reasonable in the 
denominator, which gives: 
 

 
d[D]

dt  = 
k1 k2

k2
 [A][B] – 

k-1 k-2

k2
 [D]       7 

 

which is in the form: 
 

         = 
d[D]

dt  = kf [A][B] – kr [D]       8 

   forward     reverse 
   rate     rate 
 

At equilibrium, Eq. 7 is equal to zero giving: 
 

 
k1 k2

k2
 [A][B] – 

k-1 k-2

k2
 [D] = 0      (equilibrium) 9 

 

and solving for the equilibrium concentration ratio gives:  
 

 Keq = 



[D]

[A][B] eq
 = 

k1 k2

k-1 k-2
        10 

 

as expected from detailed balance. 
 
 
31.  The reaction 2 A  C is proposed to have the following mechanism: 
  k1 

          A  B 
  k-1 
 

  k2 
   A + B  C 
  k-2 
 

(a). Show that near equilibrium: 
 

 – 
1
2 

d[A]
dt  = 

d[C]
dt  = k1[A] – 



k1k-1[A] + k-1k-2 [C]

k-1 + k2[A]  
 

(b). In terms of the overall process, 2A  C, at equilibrium we would write the overall rate law 
in terms of the initial reactant and the final product: 
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  = – 
1
2 

d[A]
dt  = kf [A]2 – kr [C] 

 

Show that the equation in part (a) reduces to this last overall equation and find the relationship 
between the overall equilibrium constant and the four rate constants for the mechanistic steps. 
 
 
Answer:  This problem can be done in several ways. For this answer, we will make the least 
restrictive assumptions at each step to give the most general interpretation of the final result and 
to give intermediate results that are as broadly applicable as possible. 
(a).  The rate law for the formation of A is given as: 
 

 
d[A]

dt  = – k1 [A] + k-1 [B] – k2 [A][B] + k-2 [C]   1 
 

The rate law for the intermediate is: 
 

 
d[B]

dt  =  k1 [A] – k-1 [B] – k2 [A][B] + k-2 [C] = 0   2 
 

We will apply the steady-state approximation to find the steady-state concentration of B. Note 
that this approximation holds before the system reaches equilibrium. The steady-state 
approximation becomes exact when the system reaches equilibrium. Applying the steady-state 
approximation gives for [B]: 
 

 [B] = 
k1 [A] + k-2 [C]

k-1 + k2 [A]        3 
 

At steady state we can simplify Eq. 1 by subtracting Eq. 2 from Eq. 1 to give: 
 

 
d[A]

dt  = – 2 k1 [A] + 2 k-1 [B]      4 
 

which holds away from equilibrium, as long as the steady-state approximation is valid. 
Substituting in the concentration of the reactive intermediate then gives: 
 

 
d[A]

dt  = – 2 k1 [A] + 2 k-1 
k1 [A] + k-2 [C]

k-1 + k2 [A]     5 
 

rearrangement gives: 
 

 – 
1
2 

d[A]
dt  = k1[A] – 



k1k-1[A] + k-1k-2 [C]

k-1 + k2[A]     6 
 

(b). Taking a common denominator gives: 
 

 – 
1
2 

d[A]
dt  = 



k1k-1[A] + k1k2[A]2 – k1k-1[A] – k-1k-2 [C]

k-1 + k2[A]   7 
 

or cancelling terms: 
 

 – 
1
2 

d[A]
dt  = 



k1k2

k-1 + k2[A]  [A]2 – 



k-1k-2

k-1 + k2[A]  [C]   8 
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If B is a reactive intermediate, the equilibrium between A and B must favor A, such that 
k1 << k-1. In other words, the reverse reaction for step one is rapid, with k-1 a large number 
compared to k1. As the reaction proceeds, the concentration of A drops. When k-1>> k2[A] this 
last equation reduces to: 
 

 – 
1
2 

d[A]
dt  = 



k1k2

k-1
 [A]2 – 



k-1k-2

k-1
 [C]     9 

 

which is in the form: 
 

  = – 
1
2 

d[A]
dt  = kf [A]2 – kr [C]     10 

   forward     reverse 
   rate     rate 
 

At equilibrium, Eq. 9 is equal to zero giving: 
 

 



k1k2[A]2

k-1
 [A]2 – 



k-1k-2

k-1
 [C] = 0   (equilibrium) 11 

 

and solving for the equilibrium concentration ratio gives:  
 

 Keq = 



[C]

[A]2
eq

 = 
k1 k2

k-1 k-2
      12 

 

as expected from detailed balance. 
   Notice also, that at equilibrium Eq. 8 would also be equal to zero giving the same equilibrium 
constant. In other words, the assumption that k-1>> k2[A] is not necessary to find the 
thermodynamic equilibrium constant. 
 
 
32.  For the reaction: 
 

     k1       k3 

 I2  2 I   H2 + 2 I  2 HI 
     k-1 
 

find the relationship of the experimentally determined, overall activation energy to the activation 
energies for the individual mechanistic steps. Assume the rate law is: 
 

 
d[HI]

dt  = 
k1 k3

k-1
 [H2][I2] 

 
 
Answer:  The plan is to follow Example 4.4.2. However, we can also consider another method 
based directly on the Arrhenius Law in the form k = A e–Ea/RT. 
Method 1 (based on Eq. 4.5.25):  Taking the logarithm of the effective rate constant k = k1k3/k-1 
gives: 
 

 ln k = ln k1+ ln k3– ln k-1 
 

The terms in the derivatives, at constant volume, are given by the corresponding activation 
energies for each mechanistic step: 
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dln k
dT  = 

dln k1

dT  + 
dln k3

dT  – 
dln k-1

dT  = 
Ea1

RT + 
Ea3

RT – 
Ea-1

RT = 
Ea

RT 
 

Comparison with the overall activation energy gives: Ea = Ea1 + Ea3 – Ea-1 
 

Method 2 (based on k = A e–Ea/RT):  The overall reaction rate constant with activation energy Ea is 
k = A e–Ea/RT. This form of the Arrhenius equation can also be applied to each individual 
elementary step. For the individual elementary steps, for step 1: k1 = A1 e–Ea1/RT, for the reverse 
of step 1: k-1 = A-1 e–Ea-1/RT, and for the formation of product: k3 = A3 e–Ea3/RT. Finding the ratio of 
the individual rate constants in Arrhenius form gives: 
 

 k = 
k1 k3

k-1
 = 

A1 e–Ea1/RT A3 e–Ea3/RT

A-1 e–Ea-1/RT  = 
A1 A3

A-1
 e–(Ea1 + Ea3 – Ea-1)/RT 

 

The overall activation energy is again Ea = Ea1 + Ea3 – Ea-1. The method based on Eq. 4.5.25 is 
less susceptible to errors for complex rate laws if there are non-integer rate exponents. 
 
 
33.  Consider the SN1 mechanism as a typical multi-step mechanism. For the case given in 
Eq. 4.2.17, the rate law has the form: 

 

 
d[P]
dt   = k  

[RX] [Nuc:-]
[X-]

         (k-1 [X-] >> k2[Nuc:-]) 
 

with the effective rate constant, k = k2 k1/k-1. From Eq. 3.5.1, for the overall reaction with 
activation energy Ea:  k = A e–Ea/RT. This form of the Arrhenius equation can also be applied to 
each individual elementary step. For the individual elementary steps, for step 1: k1 = A1 e–Ea1/RT, 
for the reverse of step 1: k-1 = A-1 e–Ea-1/RT, and for the formation of product: k2 = A2 e–Ea2/RT. 
Using these Arrhenius expressions, find the relationship between the overall pre-exponential 
factor and activation energy and the pre-exponential factors and activation energies for the 
individual elementary steps. 
 
 
Answer:  Finding the ratio of the individual rate constants in Arrhenius form gives: 
 

 k = 
k2 k1

k-1
 = 

A2 e–Ea2/RT A1 e–Ea1/RT

A-1 e–Ea-1/RT  = 
A2 A1

A-1
 e–(Ea2 + Ea1 – Ea-1)/RT 

 

We could also use the method in Example 4.5.2, based on Eq. 4.5.25, but we wouldn’t have 
gotten the expression for the overall pre-exponential factor. The method based on Eq. 4.5.25 is 
easier for complex rate laws. 
 
 
34.  The connection between detailed balance and forward and reverse reaction rates for a multi-
step mechanism is illustrated in Eqs. 4.5.3-4.5.10. The rate laws are written for each individual 
step in the mechanism, rather than the rate of appearance or disappearance of a particular 
species. Symbolize the net rates of the individual mechanistic steps as 1, 2, and 3: 
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 1 = 
1
V 

d1

dt   2 = 
1
V 

d2

dt   and  3= 
1
V 

d3

dt  
 

(a). Write the rate law for the appearance of intermediate A2, the rate law for the appearance of 
intermediate X, and the rate law for the appearance of product D in terms of 1, 2, and 3. The 
purpose is to show the relationship between the species specific and step specific methods of 
writing rate laws. 
(b). For a multi-step mechanism at steady state, the rates of the individual steps are equal, Sec. 
4.2. Use the results of part (a) for intermediates A2 and X to prove this statement for this example 
mechanism. [Hint: apply the steady-state approximation]. 
 
Answer: (a). The rates of appearance for A2, X, and D written in the conventional manner is: 
 

 
d[A2]

dt  = kAM[A]2[M] – kMA[A2][M] – kAB[A2][B] + kXA[A][X] 
 

 
d[X]

dt  = kAB[A2][B] – kXA[A][X] – kX[X] + kDC[C][D] 
 

 
d[D]

dt  = kX[X] – kDC[C][D] 
 

Comparing these conventional rate laws to Eqs. 4.5.7-4.5.9 gives: 
 

 
d[A2]

dt  = 1 – 2 
d[X]

dt  = 2 – 3  and  
d[D]

dt  = 3 
 

(b). At steady-state, the rate of formation of the reactive intermediates is zero: 
 

  
d[A2]

dt  = 1 – 2 = 0  
d[X]

dt  = 2 – 3 = 0 
 

Solving for the rates of the individual steps gives 1 = 2 = 3. At steady-state the net rate of 
each mechanistic step is identical. There is no “slow” or “fast” step. 
 
 
35.  Consider the SN1 mechanism, Eqs. 4.2.6-4.2.7. The first mechanistic step is reversible and 
the second is uni-directional. Symbolize the net rates of the two mechanistic steps as 1 and 2: 
 

 1 = 
1
V 

d1

dt  and 2 = 
1
V 

d2

dt  
 

(a). Write the rate law for the appearance of intermediate R+ and the rate law for the appearance 
of product R-Nuc in terms of 1 and 2. The purpose is to show the relationship between the 
species specific and step specific methods of writing rate laws. 
(b). For a multi-step mechanism at steady state, the rates of the individual steps are equal. Use 
the result of part (a) for intermediate R+ to prove this statement for this example mechanism. 
[Hint: apply the steady-state approximation]. 
 
Answer: The plan is to use Eqs. 4.5.3-4.5.9 as a template for writing the step-specific rate laws. 
(a). The rates of appearance for R+ and product R-Nuc written in the conventional manner is: 
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d[R+]

dt  = k1[RX] – k-1[R+][X–] – k2[R+][Nuc:–]   1 

 

 
d[P]
dt  = k2[R+][Nuc:–]       2 

 

The step-specific rate laws are: 
 

 1 = 
1
V 

d1

dt  = k1[RX] – k-1[R+][X–]     3 
 

 2 = 
1
V 

d2

dt  = k2[R+][Nuc:–]      4 
 

Comparing the conventional rate laws, Eqs. 1-2, to the step specific rate laws, Eqs. 3-4, gives: 
 

 
d[R+]

dt  = 1 – 2 and 
d[P]
dt  = 2 

 

(b). At steady-state, the rate of formation of the reactive intermediate is zero: 
 

  
d[R+]

dt  = 1 – 2 = 0  or   1 = 2 
 

At steady-state the net rate of each mechanistic step is equal. There is no “slow” or “fast” step. 
See also Eq. 4.2.19 for an alternate proof. 
 
 
36.  After a perturbation, the three unidirectional reactions in Eq. 4.5.1 approach a steady state 
very differently than a reversible process approaches equilibrium; the approach of the 
unidirectional steps to a steady state shows oscillatory behavior, but a reversible system 
approaches equilibrium in an exponential process.4,5 (a) Use the Web based “Kinetic Mechanism 
Simulation” applet or MatLab, Maple, or Mathematica to numerically integrate the rate laws for 
the mechanism in Eq. 4.5.1. Set kAB = 0.1, kBC = kCA = 0.05, and [A]o = 1 while [B]o = [C]o = 0. 
Plot the approach to the steady state and verify the appearance of oscillations. (b) Change the 
rate law to match Eq. 4.5.2. Set the forward rate constants as in part (a) and the reverse rate 
constants to give the equilibrium constant for A  B as 2 and for B  C as 2. Compare the 
approach to equilibrium with part (a). 
 
 
Answer:  (a) Using the “Kinetics Mechanism Simulation,” and [X] for [C], the model is set up as: 
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The resulting plot and a plot with the scale expanded in the vertical direction to show the 
oscillations at longer times better are: 
 

   
 

(b) For A  B, given KAB = kf/kr = 2, then kr = 0.05. For B  C, given KBC = kf/kr = 2, then kr = 

0.025. Since this is a cyclic mechanism, from Eq. 4.5.16, with kCA = 0.05, then kAC = 0.2. The 
setup with reversible steps is: 
 

 
 

The concentrations approach equilibrium smoothly, unlike the unphysical unidirectional case: 
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Chapter 5 Problems: Photochemistry and Surface Chemistry 
 
1.  Show that the units are correct for Eq. 5.1.15 with  in M-1 cm-1, A in m2, and V in liters in 
Eq. 5.1.6. 
 
 
Answer:  Substituting Eq. 5.1.6 into Eq. 5.1.15 gives: 
 

 
d[B]

dt  =  2.303 JoB l [A] = 






2.303 Jo l B

NA h 



A

V  [A] 

with Jo in J m-2 s-1,  in M-1 cm-1, l in cm, A in m2, and V in L. The concentrations are in mol L-1. 
Substituting in just the units: 
 

 mol L-1 s-1 =  



J m-2 s-1 (mol-1 L cm-1)(cm)

 mol-1 (J s)(s-1) 



m2

L  [mol L-1] 
 

No other unit conversions are necessary. 
 
 
2.  Show that the photochemical rate constant for an optically thin solution is independent of path 
length for a cell with a uniform cross section. For example, a cell with uniform cross section 
includes cylindrical cells and rectangular cells where the volume is given by the area of the 
solution exposed on the face of the cell, a, multiplied by the path length, V = al. Determine any 
unit conversion factors in the final result. 
 
 
Answer:  The photochemical rate constant for the formation of a secondary photoproduct from 
Eqs. 5.1.6 and 5.1.19 is: 
 

 jB = 






2.303 Jo l B

NA h 



A

V   with l in cm, A in m2, and V in L. 
 

The total volume of the solution is given by V = al, where l is the reaction cell path length. 
 
 
 
 
 
 
 
 
Substituting V = al into Eqs. 5.1.6 and 5.1.19 gives: 
 

 jB = 






2.303 Jo l B

NA h 


A

al  = 






2.303 Jo  B

NA h 


A

a  
 

which is independent of path length. In other words, as the path length increases, the volume of 
the solution also increases, keeping the increase in moles per unit volume per unit time constant. 

Lens 
A 

a 

l 
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However, now we need to be careful about units. With Jo in J m-2 s-1,  in M-1 cm-1, and jB in s-1 
the conversions needed are: 
 

 jB =  






2.303 Jo  B

NA h  (100 cm/1 m)(1 m3/1000 L) 
 

In other words, putting in just the units: 
 

 s-1 =  



J m-2 s-1 (mol-1 L cm-1)

 mol-1 (J s)(s-1)  (100 cm/1 m)(1 m3/1000 L) 

 
 
 
3.  A chemical actinometer is a solution with known quantum yield that can be used to find the 
incident intensity in photochemical experiments. The ferrioxalate actinometer uses the reaction: 
 

 2 Fe3+ + (C2O4)2-   
h
  2 Fe2+ + 2 CO2 

 

A ferrioxalate concentration of 0.15 M is normally used for actinometry, which is optically thick. 
A common light source for photochemical reactions is the 366 nm emission line of a mercury 
lamp. The quantum yield for the ferrioxalate reaction at 366 nm is 1.18.1 The progress of the 
reaction is monitored using the visible absorption of the ortho-phenanthroline complex of Fe2+ at 
522 nm. The molar absorption coefficient of the Fe2+ complex at 522 nm is 8650. M-1 cm-1. The 
ortho-phenanthroline complex for Fe3+ is very weak and transparent at 522 nm. The following 
experiment was used to determine the incident intensity for a photoreactor. A solution of 0.15 M 
ferrioxalate was irradiated for 10.0 min. A 1.00 mL aliquot was withdrawn and diluted with 
water to a total volume of 100.0 mL in a volumetric flask. The absorbance of this solution in a 
1.00 cm pathlength cuvette at 522 nm was 0.410. Calculate the incident flux in mol L-1 s-1. 
 
 
Answer:  The plan is to use the Beer-Lambert Law to calculate the concentration of Fe2+ in the 
aliquot. Then the dilution factor is used to calculate the Fe2+ concentration in the actinometer 
solution. Since the solution is optically thick, we assume a zeroth-order reaction and, using Eq. 
5.1.14, we calculate the incident intensity. 
   Using the Beer-Lambert law: A = lc the concentration of the aliquot is: 
 

 c = A/l = 0.410/(8650. M-1 cm-1 1.00 cm) = 4.74x10-5M 
 

The dilution factor for the absorbance sample is 1/100 giving the concentration of Fe2+ in the 
original actinometer as [Fe2+] = 4.74x10-3 M. Assuming zeroth-order kinetics, Eq. 5.1.14: 
 

 
d[Fe2+]

dt   = B Ja  =  B Jo 
 

which integrates to  [Fe2+] = [Fe2+]o + B Jo t, where the initial concentration is zero, [Fe2+]o = 0. 
Using the known photochemical quantum yield, B = 1.18, and the Fe2+ concentration at 10.0 
min gives the incident intensity as: 
 

 [Fe2+] = B Jo t 
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or    Jo = [Fe2+]/(B t) = 
4.74x10-3 M

1.18 (10.0 min)(60 s/1 min) = 6.70x10-6 mol L-1 s-1 

 
 
4.  A high power mercury lamp produces 219.0 W m-2 at 366 nm at the surface of a 
photochemical reaction cell (see Problem 3). Assume the cross-section of the incident beam is 
1.00 cm2 and the solution volume is 10.0 mL. Calculate the incident flux in mol L-1 s-1. 
 
 
Answer:  (a) The energy of 366 nm light in kJ mol-1 is: 
 

 E = NA h = NA hc/ = 6.022x1023 mol-1 (6.626x10-34 J s)(2.998x108 m s-1)/366x10-9m = 
    = 3.268 x105 J mol-1 = 326.8 kJ mol-1 
 

Using Eq. 5.1.6 gives the flux in mol L-1 s-1: 
 

 Jo =  
Jo

NA h



A

V  = 
219.0 J m-2 s-1

3.268 x105 J mol-1



1 cm2 (1 m/100 cm)2

0.0100 L   =  6.70x10-6 mol L-1 s-1 
 

(which, by the way, corresponds to the answer from Problem 3). 
 
 
 
5.  When p-nitroanisole and pyridine are photolyzed in aqueous solution the reaction is: 
 

 

O
CH3

NO2

N

N
+

O
CH3

+ + NO2
-

h

H2 O

 
The quantum yield for a solution containing 1.00x10-5M  p-nitroanisole and 0.0100 M pyridine 
in 1% acetonitrile is 4.65x10-3 at 366 nm.2 The molar absorption coefficient at 366 nm of p-
nitroanisole is 1990 M-1 cm-1. Calculate the photochemical rate constant and write the rate law 
for an optically thin solution assuming the incident flux is 6.70x10-6 mol L-1 s-1 for a 10.00 cm 
path length reaction cell. 
 
 
Answer:   For an optically thin solution, using Eq. 5.1.19: 
 

 jB =  2.303 JoB l 
     =  2.303 (6.70x10-6 mol L-1 s-1)( 4.65x10-3)( 1990 M-1 cm-1)(10.0 cm) 
     =  1.43x10-3 s-1 
 

The rate constants for environmental problems is often given in days-1: 
 

 jB = 1.43x10-3 s-1 (60 s/1 min)(60 min/1 hr)(24 hr/1 day) = 123 day-1 
 

Using Eq. 5.1.17 gives the rate law: 
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d[B]

dt   = jB [A] = 1.43x10-3 s-1 [PNA] 
 

where [PNA] is the concentration of p-nitroanisole. This reaction is commonly used as an 
actinometer for environmental studies. 
 
 
 
6.  A solution with a known photochemical quantum yield can be used to calculate the incident 
light flux during a photolytic reaction. Such solutions are called chemical actinometers (see 
Problems 3 and 5). Consider the reaction of p-nitroacetophenone and pyridine: 
 

 

NO2

C
CH3

O

N

N
+

C
CH3

O

+ + NO2
-

h

H2O

 
 

A chemical actinometer and a solution of p-nitroacetophenone and pyridine were simultaneously 
photolyzed at 366 nm in reaction cells with identical geometry. The path length of the reaction 
cell is 1.00 cm. The quantum yield for the actinometer is 4.65x10-3 with a molar absorption 
coefficient 1990 M-1 cm-1. The photochemical rate constant for the actinometer is determined to 
be 1.43x10-3 s-1. The molar absorption coefficient of p-nitroacetophenone is 160. M-1 cm-1.2 The 
photochemical rate constant for 1.00x10-5 M p-nitroacetophenone and 0.100 M pyridine is 
4.18x10-5 s-1. Calculate the quantum yield for the p-nitroacetophenone and pyridine reaction at 
366 nm. 
 
 
Answer:  For an optically thin solution, using Eq. 5.1.19: 
 

 jB =  2.303 JoB l 
 

The incident flux calculated from the actinometer is: 
 

 Jo = 
jact

2.303 act l
 = 

1.43x10-3 s-1

2.303 (4.65x10-3)(1990 M-1 cm-1 1 cm) 

     =  6.71x10-5 mol L-1 s-1 
 

Then applying Eq. 5.1.19 for the p-nitroacetophenone, PNAP, reaction gives: 
 

 PNAP = 
jPNAP

2.303 Jo l
  =  

4.18x10-5 s-1

2.303 (6.71x10-5 mol L-1 s-1)(160. M-1 cm-1 1 cm) 

         = 1.69x10-3 
 

This reaction is also commonly used as a chemical actinometer. This actinometer is appropriate 
with slower environmental reactions than are covered by the PNA actinometer in Problem 5. 
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7.  Consider the following reversible first-step mechanism for a first-order photochemical 
reaction: 
 

    jA*    kR 

 A + h      A*       A*   B 
    kD 
 

where kD is the combined rate constant for all the non-photochemical deactivation processes, 
with kD = kf + kISC + knr. Derive Eq. 5.1.24 directly from this mechanism. [Hint: Express the rate 
law in the form of Eq. 5.1.17 and then use Eq. 5.1.19] 
 
 
Answer:   The plan is to use the steady-state approximation to find the overall rate law for the 
formation of products in the form of Eq. 5.1.17 and then find the photochemical quantum yield 
using Eq. 5.1.19. The reactive intermediate is the molecular excited state, A*.  Step 1 is to write 
the rate law for the formation of product: 
 

 
d[B]

dt   =  kR [A*] 
 

Step 2 for the steady-state mechanistic scheme is to find the rate law for the formation of the 
reactive intermediate: 

 
d[A*]

dt   =  jA* [A] – kD [A*] – kR [A*]  = 0 
 

Step 3: Solving for the concentration of the reactive intermediate, A*: 
 

 [A*] = 
jA*

kD + kR
 [A] 

 

With only one unknown we can proceed to Step 5 and find the overall rate law by substituting 
the steady state A* concentration back into the rate law for the formation of product: 
 

 
d[B]

dt   =  kR 
jA*

kD + kR
 [A] 

 

Comparing this last equation with Eq. 5.1.17 and 5.1.19, that is jB = B jA*, gives: 
 

 jB = kR 
jA*

kD + kR
 = B jA* 

 

which is an important equation in its own right. This equation shows the relationship between jB, 
which is the rate constant for the overall production of the product while kR is the rate constant 
for the formation of product from the molecular excited state. So solving for the photochemical 
quantum yield and using the definition of kD = kf + kISC + knr gives: 

 B =  
kR

kf + kISC + knr + kR
 

 
 
8.  Anthracene fluorescence is quenched by halogenated compounds like CCl4. A Stern-Volmer 
quenching study was completed giving the fluorescence intensities, as a function of CCl4 
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concentration, in the following table.3 The intensities are in arbitrary units. The fluorescence 
lifetime in the absence of CCl4 is 5.03 ns. Calculate the quenching rate constant. 
 

[CCl4] (M) 0 0.02 0.04 0.08 0.12 
Intensity 2437 1860 1490 1110 893 

 
 
Answer: Using Eq. 5.1.31 in the absence of quencher, kR = kq[Q] = 0 gives: 
 

 kf + kISC + knr  = 1/ = 1/5.03x10-9 s = 1.99x108 s-1 
 

Using Eq. 5.1.28, in terms of the intensity ratio:  
 

 Io/I = o/f =   1 + 
kq[Q]

kf + kISC + knr
 

 

a plot of Io/I versus [CCl4] is constructed. The slope is determined by a least squares fit using the 
spreadsheet and linest(): 
 

 

[CCl] Intensity Io/I 
0 2437 1.000 

0.02 1860 1.310 
0.04 1490 1.636 
0.08 1110 2.195 
0.12 893 2.729 

 
 

slope 14.3850 1.0260 intercept 
± 0.3139 0.0212 ± 
r2 0.9986 0.0302 s(y) 
F 2099.9195 3.0000 df 
ssregression 1.9203 0.0027 ssresidual 

 

 

 

 
 

From the slope the quenching rate constant is: 
 

 kq = slope (kf + kISC + knr) = 14.38 (1.99x108 s-1) = 2.86x109  0.06x109 s-1 

 
 
 
9.  Run a numerical simulation for the Chapman mechanism for the rate constants and 
concentrations appropriate at an altitude of 25 km. A table of appropriate constants is given 
below.4,5S Determine the steady-state concentration of ozone using Eq. 5.2.11 and by numerical 
simulation. 
 
 
Altitude    j1    k2    j3    k4    [M]    [O2] 
km s-1 cm6 molecule-2s-1 s-1 cm3 molecule-1s-1 molecule cm-3 molecule cm-3 
25 3.0x10-12 1.2x10-33 5.5x10-4 6.9x10-16 9x1017 1.8x1017 
40 5.7x10-10 9.1x10-34 1.9x10-3 2.2x10-15 8.1x1016 1.7x1016 

 

y = 14.385x + 1.026
R2 = 0.9986

1.000

1.200

1.400

1.600

1.800

2.000

2.200

2.400

2.600

2.800

0 0.02 0.04 0.06 0.08 0.1 0.12
[CCl4] (M)

I o
/I
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Answer:  We proceed by editing the MatLab files listed in Addendum 5.7. A longer maximum 
time is necessary to achieve a steady state. The changes necessary to the files listed in the 
Addendum define the rate constants: 
 

% Constants for 25 km: 
   j1=3.0e-12; 
   k2=1.2e-33;  
   j3=5.5e-4; 
   k4=6.9e-16;  
   M=9.0e17; 

 

and the main file is changed to give: 
 

% Set the initial values 
    Xo = [0 1.8e17 0]; 
% Set the total integration time in seconds 
    maxTime = 4.0e7; 

 

The steady-state concentration of ozone that results is 1.645x1013 molecules cm-3. A short Excel 
spread sheet was written to solve the quadratic equation for the steady-state ozone concentration 
from Eq. 5.2.11: 
 

j1 3.00E-12 s-1 
k2 1.20E-33 cm6 molecule-2 s-1 
j3 5.50E-04 s-1 
k4 6.90E-16 cm3 molecue-1 s-1 
[M] 9.00E+17 molecule cm-3 
[O2] 1.80E+17 molecule cm-4 
   
   
a 7.59E-19  
b 7.45E-10  
c -2.10E+08  
O3 (+root) 1.66E+13 molecule cm-6 
(-root) -1.66E+13 molecule cm-7 

 

The listed a, b, and c cells are the normal coefficients for ax2 + bx + c = 0. The analytical value, 
1.66x1013 molecules cm-3, is differs slightly from the limiting numerical value because of 
numerical error. Stiff methods are usually not as accurate as the much slower 4th order Runge-
Kutta algorithm, ode45(). 
 
 
 
10.  Nitrogen oxides catalyze the destruction of ozone and must be taken into account in accurate 
stratospheric models. The reactions and the rate constants appropriate for 25 km are: 
 

      k5 

 NO + O3   NO2 + O2  k5 = 3.4x10-15 cm3 molecules-1 s-1 
      k6 
 NO2 + O   NO + O2   k6 = 1.1x10-11 cm3 molecules-1 s-1 
      j7 
 NO2 + h  NO + O   j7 = 7x10-3 s-1 

 

The values for the rate constants j1-k4 and [M] at 25 km are given in Problem 9. Guesses for the 
starting concentrations for NO and NO2 that you can use are: 
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 [NO]o =  8.0x108 molecules cm3 and  [NO2] = 1.0x109 molecules cm3 
 

Add these three reactions to the numerical simulation outlined in Addendum 5.7 to find the 
change of the ozone concentration with and without catalysis. You can use MatLab or MathCad, 
or any numerical routines that employ stiff methods. 
 
 
Answer:  The rate laws are: 
 

   
d[O]

dt  = 2 j1 [O2] – k2 [O][O2][M] + j3 [O3] – k4 [O][O3] – k6 [NO2][O] + j7 [NO2]     1 

   
d[O2]

dt  = – j1 [O2] – k2 [O][O2][M] + j3 [O3] + 2 k4 [O][O3] + k5 [NO][O3] + k6 [NO2][O]    2 

   
d[O3]

dt  =  k2 [O][O2][M] – j3 [O3] – k4 [O][O3] – k5 [NO][O3]       3 

   
d[NO]

dt  =  – k5 [NO][O3] + k6 [NO2][O] + j7 [NO2]         4 

   
d[NO2]

dt  =  k5 [NO][O3] – k6 [NO2][O] – j7 [NO2]         5 
 

The rate of formation of odd oxygen species is obtained by adding Eqs. 1 and 3 to give: 
 

 
d([O3]+[O])

dt  =  2 j1 [O2] – 2 k4 [O][O3] – k5 [NO][O3] – k6 [NO2][O] + j7 [NO2]    6 
 

The concentrations are set to X(4) = [NO] and X(5) = [NO2]. The revised “chapman.m” method 
file for MatLab is called “chapmanNOx.m”: 
 

function dX = chapmanNOx(t,X); 
% Differintial equations for the Chapman Mechanism. 
% Based on work by Farhan Akhtar, School of Earth and Atmospheric Sciences 
% Georgia Institute of Technology: 
%   http://www.prism.gatech.edu/~gte618p/chapman.html 
% Constants for 25 km: 
   j1=3.0e-12; 
   k2=1.2e-33;  
   j3=5.5e-4; 
   k4=6.9e-16; 
   k5=3.4e-15; 
   k6=1.1e-11; 
   j7=7.0e-3; 
   M=9.0e17; 
%Calculations 
 dX = zeros(5,1) ; 
 dX(1) = 2*j1*X(2)-k2*X(1)*X(2)*M+j3*X(3)-k4*X(1)*X(3)-k6*X(5)*X(1)+j7*X(5) ; 
 dX(2) = -j1*X(2)-k2*X(1)*X(2)*M+j3*X(3)+2*k4*X(1)*X(3)+k5*X(5)*X(3)+k6*X(5)*X(1) ; 
 dX(3) = k2*X(1)*X(2)*M-j3*X(3)-k4*X(1)*X(3)-k5*X(4)*X(3) ; 
 dX(4) = -k5*X(4)*X(3)+k6*X(5)*X(1)+j7*X(5) ; 
 dX(5) = -dX(4) ; 

 
And the revised main program is: 
 

% The differential equations are defined in the -m file: 'chapmanNOx.m' 
% 
clear 
% Set the initial values 
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    Xo = [0 1.8e17 0 8e8 1e9]; 
% Set the total integration time in seconds 
    maxTime = 4.0e7; 
    trange = [0 maxTime]; 
 
% solve the differential equations 
    [T,X] = ode15s(@chapmanNOx,trange,Xo); 

 

These calculations give a steady-state ozone concentration of 8.74x1012 molecules cm3, which is 
a factor of 0.53 smaller than the case without NO and NO2. However, the exact change in ozone 
concentration is very dependent of the values of the rate constants and the total NO and NO2 
concentration. Hopefully, you noticed that the graph of [O2] shows a slow, constant increase for 
long times. This increase is from numerical errors that are caused by the use of the less accurate 
stiff differential equations solver. However, using the more accurate ode45(), a 4th order Runge-
Kutta solver, requires many hours of computation time. 
 
 
 
11.  Problem 10 lists the three reactions that supplement the Chapman mechanism to account for 
the catalytic destruction of ozone caused by NO and NO2. (a) At steady state, show that the rate 
law for odd oxygen species can be expressed as: 
 

 
d([O3]+[O])

dt  =  2 j1 [O2] – 2 k4 [O3][O]



1 + 

k6 [NO2]
k4 [O3]

 
 

The term in parentheses is called the enhancement factor, : 
 

  = 



1 + 

k6 [NO2]
k4 [O3]

 
 

which determines the extent of the catalysis of the destruction of ozone by NO and NO2.Use the 
rate constants given in Problems 9 and 10 along with the following rough estimates for the 
steady-state concentrations to estimate the enhancement factor at 25 km. These concentrations 
are from the results of Problem 10 at 25 km: 
 

 [O3] = 8.74x1012 molecules cm-3 [NO2] = 1.45x109 molecules cm-3 
 
 
Answer:  The rate laws are: 
 

   
d[O]

dt  = 2 j1 [O2] – k2 [O][O2][M] + j3 [O3] – k4 [O][O3] – k6 [NO2][O] + j7 [NO2]     1 

   
d[O2]

dt  = – j1 [O2] – k2 [O][O2][M] + j3 [O3] + 2 k4 [O][O3] + k5 [NO][O3] + k6 [NO2][O]    2 

   
d[O3]

dt  =  k2 [O][O2][M] – j3 [O3] – k4 [O][O3] – k5 [NO][O3]       3 

   
d[NO]

dt  =  – k5 [NO][O3] + k6 [NO2][O] + j7 [NO2]         4 

   
d[NO2]

dt  =  k5 [NO][O3] – k6 [NO2][O] – j7 [NO2]         5 
 

The rate of formation of odd oxygen species is obtained by adding Eqs. 1 and 3 to give: 
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d([O3]+[O])

dt  =  2 j1 [O2] – 2 k4 [O][O3] – k5 [NO][O3] – k6 [NO2][O] + j7 [NO2]    6 
 

Eq. 6 involves both the NO and O atom concentrations. One of these intermediate concentrations 
can be eliminated using the steady-state approximation. Assume that the reactions are at steady 
state. The rate law for reaction 5 can then be set equal to zero. Adding Eqs. 5 and 6 eliminates 
[NO] as a variable and gives an additional destruction term: 
 

 
d([O3]+[O])

dt  =  2 j1 [O2] – 2 k4 [O3] [O] – 2 k6 [NO2][O]       7 

   production destruction destruction 
 

which can be rearranged to give: 
 

 
d([O3]+[O])

dt  =  2 j1 [O2] – 2 k4 [O3] [O]



1 + 

k6 [NO2]
k4 [O3]

       8 

   production     destruction 
 

with  = 



1 + 

k6 [NO2]
k4 [O3]

            9 
 

Substituting in the values of the constants from Problems 9 and 10 and the steady-state 
concentrations of O3 and NO2 gives: 
 

  = 



1 + 

k6 [NO2]
k4 [O3]

 = 



1 + 

1.1x10-11 cm3 molecules-1 s-1 (1.45x109 molecules cm-3)
6.9x10-16 cm3 molecule-1s-1 (8.74x1012  molecules cm-3)  

    =  3.6 
 

The ozone destruction processes are accelerated by a factor of 3.6 by NO and NO2 catalysis. This 
value is very sensitive to the values of the rate constants, especially the photolytic rate constant 
j7, as shown in the next problem. 
 
 
 
12.  Nitrogen oxides catalyze the destruction of ozone and must be taken into account in accurate 
stratospheric models. The reactions and the rate constants appropriate for 25 km are: 
 

      k5 

 NO + O3   NO2 + O2  k5 = 3.4x10-15 cm3 molecules-1 s-1 
      k6 
 NO2 + O   NO + O2   k6 = 1.1x10-11 cm3 molecules-1 s-1 
      j7 
 NO2 + h  NO + O   j7 = 7x10-3 s-1 

 

Show that the ratio of the NO2 and NO concentrations at steady-state are given by the 
relationship: 
 

 
[NO2]
[NO]  = 

k5 [O3]
k6 [O] + j7

 
 

Calculate the steady-state ratio assuming that the O atom concentration is small enough that 
k6[O] << j7. Assume [O3] = 8.74x1012 molecules cm-3 (as in Problem 11). 
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Answer:  The rate laws are: 
 

 
d[NO]

dt  =  – k5 [NO][O3] + k6 [NO2][O] + j7 [NO2] = 0   1 

 
d[NO2]

dt  =  k5 [NO][O3] – k6 [NO2][O] – j7 [NO2] = 0    2 
 

At steady-state both are equal to zero. Either Eq. 1 or 2 can be solved for the NO2 to NO ratio: 
 

 k5 [NO][O3] =  k6 [NO2][O] + j7 [NO2]     3 
 

 
[NO2]
[NO]  = 

k5 [O3]
k6 [O] + j7

        4 
 

This relationship can also be used to find the enhancement factor in Problem 11 in terms of the 
NO and O atom concentrations. Assuming k6[O] << j7 and substitution of the constants gives: 
 

 
[NO2]
[NO]  = 

k5 [O3]
j7

 = 
3.4x10-15 cm3 molecules-1 s-1 (8.74x1012 molecules cm-3)

7x10-3 s-1  

  =  4.2 
 

This relationship shows that the ratio of NO2 and NO and the O atom concentrations are sensitive 
to the rate constant for the photolytic decomposition of NO2. Photolytic rate constants are 
dependent on time of day, time of year, and altitude and so are highly variable. The range of 
photolytically active wave lengths for the decomposition of NO2 is 300-400 nm. Direct O3 
photolysis occurs in the ranges of 200-300 and 450-650 nm. 
 O3+ h(200-300, 450-650 nm)   O2 + O 
 NO2 + h(300-400 nm)   NO + O 
The UV-A range is 320–400 nm and the UV-B range is 280–320 nm. 
 
 
 
13.  The combustion of carbon sources, such as coal or charcoal, in limited amounts of oxygen 
produces carbon monoxide. Carbon monoxide is a commonly used reducing agent, especially in 
metallurgy. The reaction of carbon with high temperature steam produces carbon monoxide and 
hydrogen gas. Carbon monoxide and hydrogen are the feed stocks for industrial processes like 
the Fischer-Tropsch process, which can be used to produce transportation fuels from coal or 
biomass. Carbon monoxide readily adsorbs onto charcoal surfaces. The equilibrium surface 
loading of CO on charcoal at 0°C is given in the following table. Determine the Langmuir 
coefficient for this system. 
 

Pco (bar) 0.0973 0.240 0.412 0.720 1.176 
 (mmol g-1) 0.113 0.248 0.378 0.573 0.787 

 
 
Answer: Based on Eq. 5.3.11 or 5.3.18, using the general form “abx/(1+bx)” in the “Nonlinear 
Least Squares Curve Fitting” applet gives the following results and corresponding curve-fit plot. 
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=======   Results   ============ 
 a= 0.001823 +- 0.000061 
 b= 0.643 +- 0.033 
--------------------------------------------- 
 sum of squared residuals= 8.473e-11 
 stand. dev. y values= 0.000005315 
 correlation between a & b= -0.989 
 

 

 
 
The fit gives b = 0.643± 0.033 bar-1. A double reciprocal plot also works well, but again the 
nonlinear fit parameters are better because the uncertainties are handled better. Inverting Eq. 
5.3.18: 

 A = max 
b PA

1 + b PA
  gives 

1
A

 =  
1

max b PA
 + 

1
max

 

 
 

Pco 
(bar) 

 
(mol g-1) 

1/Pco  
(bar-1) 

1/
(mol-1 g) 

0.0973 0.000113 10.27671 8859.907 
0.240 0.000248 4.167778 4027.23 
0.412 0.000378 2.427832 2647.382 
0.720 0.000573 1.389259 1744.076 
1.176 0.000787 0.850567 1270.541 

 
The linear fit gives b = 0.81 bar-1, which is 
outside the error bounds from the non-linear 
fit. 
 

 
However, the double reciprocal plot does help verify Langmuir behavior. Notice the very high 
correlation coefficient between fit parameters in the non-linear fit, -0.989. The values of the 
maximum binding capacity and the Langmuir coefficient are highly correlated. To resolve this 
issue, to generate results that can be published, experimental points at higher PCO are necessary. 
 
 
 
14.  Antibody-antigen interactions are very strong and very specific. The interaction between a 
protein, bovine serum albumin, and anti-BSA immunoglobulin G (IgG ) was determined using 
SPR. BSA was attached to a gold surface and the IgG was flowed over the surface at constant 
concentration. The results for the observed association rate constant are given in the table below. 
The dissociation rate constants, from nonlinear curve fitting from the time courses, were 
averaged over each run and found to be 5.94x10-5 s-1. Find ka, the association equilibrium 
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constant, KA, and the dissociation equilibrium constant, KD. Convert KD to picomolar units, pM, 
which is typical of the conventional choice of units in the medicinal chemistry literature. 
 

[IgG] (nM) 10.0 4.00 1.60 0.640 
kobs (s-1) 0.00623 0.002914 0.001578 0.00057 

 
 
Answer: From Eq. 5.4.10, kobs = ka [A]o + kd, a plot of kobs versus the concentration of IgG 
flowing over the surface, [A]o, should yield a straight line. The linest() fit is for kobs vs. [IgG] in 
units of nM, so the final slope must be multiplied by 1x109 to convert to M-1 s-1. 
 

 

[IgG] nM [IgG] (M) kobs (s-1) 
10 1.00E-08 0.00623 
4 4.00E-09 0.002914 

1.6 1.60E-09 0.001578 
0.64 6.40E-10 0.00057 

 
In nM concentration units: 

slope 0.00058452 0.00045 intercept 
± 3.3891E-05 0.000185 ± 
r2 0.9933 0.000247 s(y) 
F 297.467 2 df 
ssregression 1.812E-05 1.22E-07 ssresidual 

 

 

 

 
 

The resulting ka = 5.85x105  0.34x105 M-1 s-1, giving KA = 5.85x105 M-1 s-1/ 5.94x10-5 s-1 = 
9.84x109 M-1 and KD = 1/KA= 1.02x10-10 M. In picomolar units: 
 

 KD = 1.02x10-10 M (1 pM/1.0x10-12M) = 102. pM = 1. x102 pM 
 
 
 
15.  SPR is a commonly used technique in immunology. The interaction between a protein, 
porcine serum albumin, PSA, and anti-PSA immunoglobulin G (IgG ) was determined using 
SPR. The anti-PSA IgG was attached to a gold surface and PSA was flowed over the surface at 
constant concentration. The results for the observed association rate constant are given in the 
table below.6 The dissociation rate constants, from nonlinear curve fitting from the time courses, 
were averaged over each run and found to be 1.02x10-3 s-1. Find ka, the association equilibrium 
constant, KA, and the dissociation equilibrium constant, KD. Convert KD to nanomolar units, nM, 
which is typical of the conventional choice of units in the medicinal chemistry literature. 
 

[PSA] (nM) 7.18 21.5 66.4 201. 601. 
kobs (s-1) 0.0122 0.00189 0.00189 0.0297 0.0641 

 
 
 
Answer: From Eq. 5.4.10, kobs = ka [A]o + kd, a plot of kobs versus the concentration of PSA 
flowing over the surface, [A]o, should yield a straight line. The linest() fit is for kobs vs. [PSA] in 
units of nM, so the final slope must be multiplied by 1x109 to convert to M-1 s-1. 
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[PSA] nM [PSA] (M) kobs (s-1) 
7.18E+00 7.18E-09 0.0122 
2.15E+01 2.15E-08 0.0189 
6.64E+01 6.64E-08 0.0189 
2.01E+02 2.01E-07 0.0297 

 
In nM concentration units: 

slope 8.3207E-05 0.013825 intercept 
± 4.7595E-06 0.001358 ± 
r2 0.99028 0.00235969 s(y) 
F 305.627 3 df 
ssregression 0.0017018 1.6704E-05 ssresidual 

 

 

 

 
The resulting ka = 8.32x104  0.48x104 M-1 s-1, giving KA = 8.32x104 M-1 s-1/ 1.02x10-3 s-1 = 
8.16x107 M-1 and KD = 1/KA= 1.23x10-8 M. In nanomolar units: 
 

 KD = 1.23x10-8 M (1 nM/1.0x10-9M) = 12.3. nM = 1. x101 nM 
 
 
 
16.  It is not necessary in dynamic SPR measurements to wait for the surface adsorption to reach 
equilibrium. However, if the time course for the association does essentially reach equilibrium, 
the equilibrium values can be fit to the Langmuir adsorption isotherm. Such equilibrium SPR 
experiments provide an alternative method to determine the equilibrium dissociation constant 
that is complementary to dynamic measurements. Comparison between equilibrium and dynamic 
results helps to determine experimental uncertainties. The limiting refractive index values from 
the time course measurements for the system in Problem 15 are given below.6 By fitting the 
results to a Langmuir adsorption isotherm, determine the equilibrium dissociation constant in 
nanomolar units. The units typical for SPR instrument output are micro-refractive index units, or 
RIU. 
 

[PSA] (nM) 0 7.18 7.18 19.7 59.2 181.3 538.5 
R (RIU) 0 23.6 26.5 38 55.6 57.6 58.8 

 
 
Answer:  Based on Eq. 5.3.11 or 5.3.18, using the general form “abx/(1+bx)” in the “Nonlinear 
Least Squares Curve Fitting” applet gives the following results and corresponding curve-fit plot, 
below. The non-linear fit value for KA = 9.52x107  1.0x107 M-1. Then KD = 1/KA = 1.05x10-8 M 
= 10.5 nM. The value from Problem 16 was 12 nM, which agrees within experimental 
uncertainty. 
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========   Results   ========= 
 a= 61.36 +- 1.55 
 b= 95200000 +- 10000000 
--------------------------------------------- 
 sum of squared residuals= 22.66 
 stand. dev. y values= 2.129 
 correlation between a & b= -0.6582 
 

 

 
   A double reciprocal plot also works well, but again the nonlinear fit parameters are better 
because the uncertainties are handled better: 
 

 

[PSA] (M) R (RIU) 1/[PSA] (M-1) 1/R 
0 0   

7.18E-09 23.6 1.39E+08 4.24E-02 
7.18E-09 26.5 1.39E+08 3.77E-02 
1.97E-08 38.0 5.06E+07 2.63E-02 
5.92E-08 55.6 1.69E+07 1.80E-02 
1.81E-07 57.6 5.52E+06 1.74E-02 
5.38E-07 58.8 1.86E+06 1.70E-02 

 

 

 
 
 
17.  The rate of decomposition of NH3 was determined as a function of the initial partial pressure 
of H2 and is inhibited by product formation:7 
 

 NH3 (g)   ½ N2(g) + 3/2 H2 (g) 
 

The initial pressure of NH3 in each run was 100 mm Hg, and varying amounts of H2 gas were 
added to the reaction vessel at the beginning of the reaction. The catalyst was platinum and the 
reaction was run at 1138C. The results are given below. Show that the dependence on the 
product, H2, partial pressure is described by Eq. 5.5.17. 
 

PNH3 in 120 s PH2 initially added 
33 50 
27 75 
16 100 
10 150 
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Answer:  First we approximate the initial rate as o = PNH3/120 s. Then a plot of the initial rate 
as a function of 1/PH2 should give a straight line in accordance with Eq. 5.5.17. A spreadsheet 
was set up and the plot was constructed: 
 

 

PNH3  PH2,o  o  (mm Hg s-1) 1/PH2,o 
33 50 0.275 0.020 
27 75 0.225 0.013 
16 100 0.133 0.010 
10 150 0.083 0.007 

 
 

 

 
The inverse dependence on PH2 is verified by the linear plot, to within experimental error. 
 
 
18.  Hydrogen is a clean burning substance that is being suggested as a transportation fuel. 
However, hydrogen is costly to produce. One proposal is to use solar thermal energy to provide 
the energy necessary to convert water into hydrogen gas. The Sulfur-Iodine cycle consists of 
three coupled reactions, which add to give the dissociation of water: 
 

 H2SO4 (l)    SO2 (g)+ H2O (g) + ½ O2 (g)   (>850°C) 
 I2 + SO2 + 2 H2O    2 HI + H2SO4    (>120°C) 
 2 HI    I2 + H2       (>450°C) 
        

net: H2O    H2 (g) + ½ O2 (g) 
 

The first step is the most unfavorable thermodynamically and kinetically. The reaction occurs in 
two steps: 
 

 H2SO4 (l)  SO3 (g) + H2O (g) 
 SO3 (g)  SO2 (g) + ½ O2 (g) 
 

The decomposition of SO3 has a negligible rate at 800°C without a catalyst. Mixed chromium-
iron oxide catalysts have been proposed for the gas phase decomposition of SO3.8 The 
heterogeneous decomposition of SO3 on Fe1.6Cr0.4O3 in a constant flow reactor has been studied 
as a function of temperature. The percent yields at several temperatures are given in the table, 
below. The residence time of the reactant in a constant flow reactor is constant with temperature, 
so the percent yield is directly proportional to the reaction rate. Verify Arrhenius behavior and 
determine the activation energy. 
 

T (°C) 550 600 650 750 800 
SO2 yield % 1.2 5.5 10.7 52.7 79.3 
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Answer:  The ln(rate) and ln(yield) can be used interchangeably for this constant flow reactor 
data. A plot of ln(yield) versus 1/T will verify Arrhenius behavior with the slope = –Ea/R. A 
spreadsheet was set up, the plot was constructed, and the slope determined using linest(): 
 

 

T (C) SO2 yield  T (K) 1/T (K-1) ln(yield) 
550 1.2 823.2 0.001215 0.182 
600 5.5 873.2 0.001145 1.705 
650 10.7 923.2 0.001083 2.370 
750 62.7 1023.2 0.000977 4.138 
800 79.3 1073.2 0.000932 4.373 

 
 

slope -14532.895 18.076 intercept 
 1011.114 1.087  
r2 0.986 0.236 st.dev. Y 
F 206.588 3.000 df 
ssreg 11.506 0.167 ssresid 

 

 

 

 
 

Given the experimental uncertainty, Arrhenius behavior may be justified. The lowest 
temperature point, which is the point with the largest absolute and relative uncertainty, deviates 
significantly from the line. Several additional data points at low temperatures would be necessary 
to judge if systematic curvature exists for the plot. Given Arrhenius behavior, the activation 
energy is: 
 

 Ea = –slope R = 148  23 kJ mol-1 

 

The nonlinear fit using the “Nonlinear Least Squares Curve Fitting” applet, however, provides a 
very important lesson: 
 

===========   Results   ============= 
 a= 4130000 +- 4750000 
 b= -11630 +- 1200 
----------------------------------------------------- 
 sum of squared residuals= 43.02 
 stand. dev. y values= 3.787 
 correlation between a & b= -0.9994 

 
The activation energy from the non-linear fit is 97  10 kJ mol-1, which is outside the range of 
the experimental uncertainties. Why the large difference? The correlation coefficient between the 
fit values is very large at -0.9994, showing a very strong correlation between the fit values of A 
and EA. You wouldn’t have noticed this problem without the non-linear fit and you would have 
underestimated the uncertainty in the activation energy. In fact, using the linearized form of the 
data in the “Nonlinear Least Squares Curve Fitting” applet using the simple line option, “ax + b”, 
also gives a very large correlation coefficient between the slope and the intercept of -0.9953. The 
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results from this experiment are best given as 1.x102 kJ mol-1 to avoid over-representing the 
uncertainty. 
 
 
 
19.  Derive the rate law for a bimolecular heterogeneous reaction with stoichiometry: A + C P. 
Assume that reactant C is strongly adsorbed to the catalytic surface and A is weakly adsorbed. 
 
 
Answer:  The reaction mechanism can be approximated by: 
 

   kAa  k 

 A (g) + B   
    A  +  C     P+ B     1 

   kAd 
 

where the surface concentration of C is determined by the rapid pre-equilibrium: 
 

   kCa 

 C (g) + B   
   C        2 

   kCd 
 

The rate law for the formation of products is constructed similarly to Eq. 5.5.2: 
 

 
1
 

d
dt  = k [A] [C]        3 

 

with the pre-equilibrium concentration of free binding sites dominated by the fractional coverage 
for C, in analogy with Eq. 5.5.15 : 
 

 [C]  [B]o          4 

and  [B]  
[B]o

bC PC
         5 

 

with bC = kCa/kCd which is the equilibrium constant for the surface adsorption of C, and PC the 
partial pressure for C. The rate law for the formation of A bound on the surface from Eq. 1 is: 
 

 
d[A]

dt  = kAa [B] PA – kAd [A] – k[A][C] = 0  (steady-state) 6 
 

where [B] is given by Eq. 5. Solving for [A] using the steady-state approximation and 
substituting Eq. 5 gives: 
 

 [A] = 
kAa

kAd – k[C]
  

[B]o

bC PC
 PA       7 

 

Substitution of Eq. 7 for the surface concentration for A into Eq. 3 and using Eq. 4 for the 
surface concentration of C gives: 
 

 
1
 

d
dt  = k 

kAa

kAd – k[B]o
  

[B]o

bC PC
 PA [B]o     8 
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For the rate law with respect to the disappearance of A, using Eq. 5.5.5: 
 

 – 
dPA

dt  = k(RT) 
kAa

kAd – k[B]o
  
/V [B]o

bC PC
 PA [B]o     9 

 

Gathering together all of the constants defines the observed rate constant: 
 

 kobs = k(RT) 
kAa

kAd – k[B]o
  
/V [B]o

bC
 [B]o     10 

 

and then the final rate law is: 
 

 – 
dPA

dt   = kobs 
PA

PC
        11 

 

In some cases the rate constant for the surface reaction, k, is assumed to be very small so that 
the observed rate constant can be written: 
 

 kobs = k(RT) 
bA

bC
 /V [B]o

2       12 
 

where bA = kAa/kAd, which is the equilibrium constant for the surface adsorption of A. 
 
 
 
20.  Determine the integrated rate law for surface catalysis from an adsorbed monolayer using 
Eq. 5.5.7. 
 
 
Answer: Starting with Eq. 5.5.7 and separating variables: 
 

 
1 + bA PA

bA PA
 dPA  = 



1

bA PA
 +1  dPA = – k dt 

 

The integration limits start at t= 0, PA = PAo: 
 

 



PAo

PA

 



1

bA PA
 +1  dPA = – 0

 
t
 k dt 

 

The sum in the first integral can be split into two terms: 
 

 
1
bA

 ln(PA|PA

PAo
  + PA|PA

PAo
  = – kt 

 
1
bA

 ln
PA

PAo
  + (PA – PAo) = – kt 

 
If A is weakly adsorbed, then bA is small. Notice that if bA is small, then the (PA – PAo) is 
negligible compared to the logarithmic term and this last equation reduces to a simple first-order 
reaction, Eq. 5.5.8: 
 

 
1
bA

 ln 
PA

PAo
    – kt and   ln 

PA

PAo
    – bA kt 
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On the other hand, if bA is large, the logarithmic term is negligible and the reaction is zeroth 
order, as expected from Eq. 5.5.9: 
 
 (PA – PAo)  – kt 
 
 
 
21.  We assumed a pre-equilibrium mechanism to determine the rate for a heterogeneously 
catalyzed reaction according to Eq. 5.5.1: 
 

         ka       k 
 A (g) + B    A   P (g) + B 
         kd 
 

The rate law for the reaction, in terms of the products is then given by: 
 

 
d[P]
dt  = k(RT) (/V) [A] 

 

To give a better approximation, use the steady-state approximation to determine the rate law. 
Then show that the more exact rate law reduces to Eq. 5.5.6 using a suitable approximation. 
 
 
Answer:  Eq. 5.5.1 is equivalent to the Michaelis-Menten mechanism, so the derivation for this 
rate law should be parallel to our previous derivation. The plan is to use the steady-state 
approximation on [A] and then use the mass balance for the total concentration of surface 
adsorption sites, [B]o = [B] + [A], Eq. 5.3.1. 
   The rate law for the appearance of surface bound A for this mechanism is identical to Eq. 
5.5.11: 
 

 
d[A]

dt  = kAa [B] PA – kAd [A] – k[A]      1 
 

In steady state, for [A] as the reactive intermediate: 
 

 ka [B] PA – kd [A] – k[A]  0 or   [A] =  
ka [B] PA

kd + k
    2 

 

Solving the mass balance equation, Eq. 5.3.1, for the concentration of free surface sites gives: 
 

 [B] = [B]o – [A]         3 
 

and substitution into Eq. 2 gives: 
 

 (kd+k)[A] = kaPA([B]o – [A]) or   (kd+k+kaPA)[A] = kaPA[B]o  4 
 

Solving for [A] gives: 
 

 [A] =  
ka PA [B]o

kd + k + ka PA
        5 
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Dividing both numerator and denominator by kd and using the definition of the Langmuir 
coefficient, bA = ka/kd gives: 
 

 [A] =  
bA PA [B]o

1 + k/kd + bA PA
        6 

 

Substitution of Eq. 6 into the rate law for appearance of product gives the final result: 
 

 
d[P]
dt  = k(RT) (/V) [A] = k(RT) (/V) 

bA PA [B]o

1 + k/kd + bA PA
    7 

 

If we assume that kd >> k  then the k/kd term is negligible and this last equation reduces to the 
pre-equilibrium mechanism result, Eq. 5.5.6. 
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Chapter 6 Problems: Applications of Reaction Mechanisms 

 
1.  Qualitatively predict the effect of wind turbulence on the exchange of CO2 across the air/sea 
interface. 
 
 
Answer:  Wind caused turbulence increases the mixing rate at the air/sea interface, thus 
decreasing the thickness of the stagnant boundary layer. Assuming a linear concentration 
gradient, using Eq. 6.1.29: 
 

 Jo = – 
DCO2

  ([CO2]bulk – [CO2]w/a) 
 

The thinner the boundary layer, the larger the concentration gradient and the larger the flux. 
 
 
2.  Find the second derivative with respect to x of a Gaussian distribution for a non-zero mean. 
Use explicit differentiation of the general form of the Gaussian distribution in Eq. 6.1.8. 
 
 
Answer: Starting with Eq. 6.1.8: 
 

 g(x) = 
1

 2
 e– (x–)2/22

       1 

 
Taking the first derivative with respect to x of Eq. 6.1.8 gives: 
 

 
dg
dx  = 

1

 2
   

d( )e– (x–)2/22

dx   =  
1

 2
 






–2(x – )

22  e– (x–)2/22
  2 

 

This last equation can be written more simply by substituting back in the definition of g(x): 
 

 
dg
dx  =  







–(x – )

2  g        3 
 

and then the derivative of this last equation gives the second derivative. Let f equal the first term: 
f = (–(x – )/2). Using the product rule  d(fg)/dx = f dg/dx + g df/dx : 
 

 
d2g
dx2  =  

d






–(x – )

2  g

dx   =  
















–(x – )

2  



dg

dx  + g 
d






–(x – )

2

dx    4 
 

Using Eq. 3 for the first derivative of g gives: 
 

 
d2g
dx2  =  

d






–(x – )

2  g

dx   =  














–(x – )

2  






–(x – )

2  g + 




–1

2  g   =  














(x – )2

4  – 




1

2  g 
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3.  In deriving Eq. 6.1.24, we used Eq. 6.1.19 from General Pattern 5. Instead, derive Eq. 
6.1.24 by explicit differentiation of Eq. 6.1.7. 
 
 
Answer:  Starting with the Gaussian concentration profile from Eq. 6.1.7: 
 

 c(x,t) = 
no

A 4Dt
 e– x2/4Dt 

 

Taking the first derivative of Eq. 6.1.7 with respect to distance while keeping t constant gives: 
 

 






c

x t
 = 

no

A 4Dt
 
d( )e– x2/4Dt

dx   =  
no

A 4Dt
 



–2x

4Dt  e– x2/4Dt 

 

Using the definition of c(x,t) in this last equation gives: 
 

 






c

x t
 =  



–2x

4Dt  c 

 

and then the derivative of this last equation gives the second derivative. Let f equal the first term: 
f = (–2x/4Dt). Using the product rule  d(fc)/dx = f dc/dx + c df/dx : 
 

 






2c

x2
t
 =  

d



–2x c

4Dt
dx   =  









–2x

4Dt  



dc

dx  + c 



–2

4Dt  

 

Substitution of the first derivative gives: 
 

 






2c

x2
t
 =  









–2x

4Dt  



–2x

4Dt  c + 



–2

4Dt  c   =  









x2

4D2t2  – 



1

2Dt   c 

 
 
4.  Write an Excel spreadsheet that uses the finite difference approximation to solve Eq. 6.1.6 for 
the one-dimensional planar diffusion problem. The analytical solution is Eq. 6.1.7. To do this, 
first assume finite differences for Eq. 6.1.6 to give: 

 c(x) = D






2c

x2
t
t 

where this equation is applied at each point, x, on equally spaced intervals along the x-axis. We 
also need an approximation for the second derivative. Assume the concentrations along the x-
axis are c0, c1, c2, c3, …., which are evaluated at points x = 0, dx, 2dx, 3dx,… The first derivative 
from c0 to c1 and the first derivative from c1 to c2 are: 
 

 



dc

dx x=0.5 dx
 = 

c1– c0

dx   and 



dc

dx x=1.5 dx
 = 

c2– c1

dx  
 

The second derivative is the derivative of the first derivatives: 
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d2c

dx2
x=dx

 = 




c2– c1

dx  – 



c1– c0

dx
dx  =  

c2– 2 c1 + c0

dx2  
 

This result is then used to find the new value for the concentration at c1 in the next time interval 
using the finite difference formula. Assume the diffusion coefficient is 1.0x10-9 m2s-1. Assume a 
time interval of t = 0.01 s and integrate to 0.3 s. Assume an x spacing of dx = 1.0x10-5m from 0 
to 1x10-4m. (In other words, use a range from 0 to 100 m.) Assume the initial conditions are a 
concentration of 1.00 mol m-3 in the first x interval and zero at larger distances. One problem 
arises however. The second derivative can’t be calculated at the very first or very last spatial 
point. For this problem, just set the value of the concentration at the largest value of x at zero. 
For the value of the concentration at x = 0, that is c0, we can use conservation of mass. In other 
words find the sum of the concentrations: c1+c2+c3+c4… and then subtract from the initial 
concentration, c0 at t = 0. Here is a start on how you might lay out the first few rows of your 
spreadsheet. The concentrations at equally spaced x are arranged across the columns and 
successive time points correspond to successive rows: 
 

A1 B C D E F G H I J K L M N 
2   dt= 0.01 s         
3   dx= 1.E-05 m         
4   D= 1.E-09 m2 s-1         
5   c(0,0)= 1 mol m-3        
6   x (m):           
7  t (s): 0 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05 6.E-05 7.E-05 8.E-05 9.E-05 1.E-04 
8  0 1.00 0 0 0 0 0 0 0 0 0 0 
9  0.01            
10  0.02            

  : 
  : 
 
 
Answer: The formula in cell E9 is: “=E8+$E$4*(F8-2*E8+D8)/$E$3^2*$E$2”. This formula 
can then be automatically filled across and down the spreadsheet to provide the formulas for all 
the other cells, except the first and last concentration points. The formula in the cell D9 is: 
“=$E$5-SUM(E9:N9)”. This formula can then be filled down for all the other c0 values. The last 
concentration at x = 1.0x10-4 m is set to zero for each time. 
 

A1 B C D E F G H I J K L M N 
2   dt= 0.01 s         
3   dx= 1.E-05 m         
4   D= 1.E-09 m2 s-1         
5   c(0,0)= 1 mol m-3        
6   x (m):           
7  t (s): 0 1E-05 2E-05 3E-05 4E-05 5E-05 6E-05 7E-05 8E-05 9E-05 1E-04 
8  0 1.00 0 0 0 0 0 0 0 0 0 0 
9  0.01 0.90 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
10  0.02 0.82 0.170 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
11  0.03 0.76 0.219 0.025 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
12  0.04 0.70 0.253 0.042 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
13  0.05 0.66 0.277 0.059 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
14  0.06 0.62 0.293 0.076 0.011 0.001 0.000 0.000 0.000 0.000 0.000 0.000 
15  0.07 0.59 0.304 0.091 0.017 0.002 0.000 0.000 0.000 0.000 0.000 0.000 
16  0.08 0.56 0.311 0.105 0.023 0.003 0.000 0.000 0.000 0.000 0.000 0.000 
17  0.09 0.53 0.315 0.117 0.029 0.005 0.001 0.000 0.000 0.000 0.000 0.000 
18  0.1 0.51 0.317 0.128 0.035 0.007 0.001 0.000 0.000 0.000 0.000 0.000 
19  0.11 0.49 0.318 0.138 0.042 0.009 0.001 0.000 0.000 0.000 0.000 0.000 
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20  0.12 0.47 0.317 0.146 0.048 0.012 0.002 0.000 0.000 0.000 0.000 0.000 
21  0.13 0.46 0.316 0.153 0.054 0.014 0.003 0.000 0.000 0.000 0.000 0.000 
22  0.14 0.44 0.314 0.160 0.060 0.017 0.004 0.001 0.000 0.000 0.000 0.000 
23  0.15 0.43 0.311 0.165 0.066 0.020 0.005 0.001 0.000 0.000 0.000 0.000 
24  0.16 0.42 0.309 0.170 0.071 0.023 0.006 0.001 0.000 0.000 0.000 0.000 
25  0.17 0.41 0.306 0.174 0.076 0.026 0.007 0.002 0.000 0.000 0.000 0.000 
26  0.18 0.40 0.303 0.177 0.081 0.029 0.009 0.002 0.000 0.000 0.000 0.000 
27  0.19 0.39 0.300 0.180 0.086 0.032 0.010 0.003 0.001 0.000 0.000 0.000 
28  0.2 0.38 0.297 0.183 0.090 0.036 0.011 0.003 0.001 0.000 0.000 0.000 
29  0.21 0.37 0.294 0.185 0.094 0.039 0.013 0.004 0.001 0.000 0.000 0.000 
30  0.22 0.36 0.291 0.187 0.097 0.042 0.015 0.004 0.001 0.000 0.000 0.000 
31  0.23 0.36 0.288 0.188 0.101 0.044 0.016 0.005 0.001 0.000 0.000 0.000 
32  0.24 0.35 0.284 0.189 0.104 0.047 0.018 0.006 0.002 0.000 0.000 0.000 
33  0.25 0.34 0.281 0.190 0.107 0.050 0.020 0.007 0.002 0.000 0.000 0.000 
34  0.26 0.34 0.278 0.191 0.109 0.053 0.021 0.007 0.002 0.001 0.000 0.000 
35  0.27 0.33 0.276 0.192 0.112 0.055 0.023 0.008 0.003 0.001 0.000 0.000 
36  0.28 0.33 0.273 0.192 0.114 0.058 0.025 0.009 0.003 0.001 0.000 0.000 
37  0.29 0.32 0.270 0.192 0.116 0.060 0.027 0.010 0.003 0.001 0.000 0.000 
38  0.3 0.32 0.267 0.192 0.118 0.062 0.028 0.011 0.004 0.001 0.000 0.000 

 
The plot of the last row at t = 0.3 s is shown below with the analytical solution from Eq. 6.1.7. 
 

 
The agreement between the finite difference approach and the analytical solution is much better 
than you might expect from the coarse grid of x points and the large t that we used. Better 
agreement would be obtained for smaller t. 
 
 
 
5.  In this problem we will use Fick’s Second Law to model diffusion through a membrane. 
Consider a membrane of thickness  separating two well mixed solutions of concentration cout 
and cin. The origin of the x-axis is chosen to be at the interface between the membrane and the 
solution at concentration cout as shown below: 
 
 
 
 
 
 
 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.E+00 2.E-05 4.E-05 6.E-05 8.E-05 1.E-04
x (m)

c 
(m

ol
 m

3
)

exact 

finite 
difference 

cout 

cin 

c 

x 0  



Chapter 6: Applications of Reaction Mechanisms 137 

 
(a.) Show that the concentration profile: 
 

 c(x)  =  




cin – cout

  x + cout 
 

has the correct behavior at the surfaces of the membrane. 
(b). Assume Fick’s Second Law holds for diffusion within the membrane. Show that this linear 
concentration profile is a valid solution to Fick’s Second Law at steady-state. 
(c). Find the relationship for the flux across the membrane. 
 
 
Answer:  (a) At x = 0, c(0) = cout and at x = : 
 

 c() = 




cin – cout

   + cout = cin      1 
 

This linear concentration profile has the correct concentrations at the edges of the membrane. In 
other words, it obeys the proper boundary conditions. 
(b). At steady state, Eq. 6.1.6 is equal to zero and we no longer need to worry about time 
dependence: 
 

 D
d2c
dx2 = 0        2 

 

We need to show that the second derivative of the proposed solution is equal to zero. Starting 
with the first derivative gives the gradient: 
 

 
dc
dx = 

d [(cin – cout) x/ + cout]
dx   = 





cin – cout

     3 
 

The second derivative is equal to zero, because the first derivative is a constant, as required by 
Eq. 2. Therefore, the proposed solution is a valid solution for 0 < x < . 
(c). Fick’s First Law of diffusion, Eq. 2.3.4, relates the molar flux of a substance to the 
concentration gradient, Jm = – D dc/dx. Eq. 3 is the gradient so that: 
 

 Jm = – D




cin – cout

        4 
 

This final result is the same as for diffusion across an interface, Eq. 6.1.29, and also the general 
form from Eqs. 2.3.3 and 2.3.4. Therefore, all of the theory that we have developed for gas 
exchange across an interface is applicable to membrane diffusion. 
 
 
 
 
 
6.  A very simple model for active transport of Na+ ions across a membrane is shown below, 
where the driving force for the transfer results from a H+ gradient.9 The key is the membrane 
soluble fatty acid that shuttles Na+ and H+ ions across the membrane in opposite directions. The 
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fatty acid is only soluble in the membrane. The reactions at the membrane surfaces are shown at 
right. 
 
 
 
 
 
 
 
 
 
 
 
 
The two forms of the fatty acid are HR and NaR. The reactions at the surfaces of the membrane 
are: 
 

             kL 

   Left:  HR + Na+(left) + OH-(left)    NaR + H2O 
          kR 

   Right:  NaR + H+(right)    HR + Na+(right) 
   Net:  Na+(left) + OH-(left) + H+(right)    Na+(right) + H2O 
 

The reactions don’t occur within the membrane, so Eq. 6.1.26 applies just at each interface as a 
surface reaction. For the purposes of this problem, you can assume that the reactions are 
unidirectional. Assume that the solutions on the left and right are well mixed. Use Fick’s Second 
Law to write the differential equations for the transport within the membrane. Indicate how you 
would find the steady-state for the fluxes. You don’t need to solve the differential equations, but 
linear concentration gradients would be applicable at steady state if you did. 
 
 
Answer:  The rate of the reactions on the left-hand side are: 
 

 L = – 
d[HR]

dt  = 
d[NaR]

dt  = kL [HR][Na+(left)][OH-(left)]   (x = 0) 
 

and for the right-hand side: 
 

 R = = – 
d[NaR]

dt = 
d[HR]

dt  = kR [NaR][H+(right)]    (x = ) 
 

at the left-hand interface using Eq. 6.1.26: 
 

 






[HR]

t x
 = D







2[HR]

x2
t
  –  kL [HR][Na+(left)][OH-]    (x = 0) 

 

 






[NaR]

t x
 = D







2[NaR]

x2
t
  +  kL [HR][Na+(left)][OH-]   (x = 0) 

 

and at the right-hand interface: 
 

membrane 

0.1 M NaOH 0.1 M HCl 
0.2 M NaCl 

 

 

Na+ 
Na+ 

H+ 
H2O 

OH- 

low [Na+]     high [Na+] 
low [H+]       high [H+] 
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[HR]

t x
 = D







2[HR]

x2
t
  +  kR [NaR][H+(right)]    (x = ) 

 

 






[NaR]

t x
 = D







2[NaR]

x2
t
  –  kR [NaR][H+(right)]    (x = ) 

 

and within the membrane with no chemical reactions: 
 

 






[HR]

t x
 = D







2[HR]

x2
t
 and 







[NaR]

t x
 = D







2[NaR]

x2
t
  (0 < x < ) 

 
For steady-state fluxes, the time derivatives in the six above equations would be set to zero. 
   Note that for a more realistic model, the chemical reactions at each interface should be 
reversible, which would add additional terms to the rate laws. At steady state for the fluxes, the 
reaction rate at both interfaces would be equal, L = R, which would help simplify the problem. 
Also note that H+ gradients across membranes are used to drive many processes, including the 
primary events in photosynthesis. 
 
 
7.  Find the eigenvalue-eigenvector solution to the set of linear equations: 
 

   x  + y   = 0 
   x  + y + z  = 0 
 y + z  = 0 

which give the coefficient matrix  M  = 








1 1 0

1 1 1
0 1 1

 

 

Calculate the eigenvalues by hand and the eigenvectors using MatLab, MathCad, Maple, or 
Mathematica. (For symmetric matrices, you can also use the “Matrix Diagonalization” applet on 
the textbook Web site and on the companion CD.) The MatLab command to use is [X,L] = 
eig(M), where X is the matrix of eigenvectors and L is the diagonal matrix of eigenvalues of the 
input matrix M. 
 
 
Answer:  Using the given coefficient matrix, the characteristic equation is: 
 

 (M  – i I)Xi~  = 








1– i 1 0

1 1– i 1
0 1 1– i

 








x

y
z

 

 

This characteristic equation has the characteristic determinate ( –1)(2 – 2   – 1) = 0. The 
factor ( –1) = 0 gives the eigenvalue  = 1. Solving the quadratic factor (2 – 2   – 1) = 0 gives 
the additional eigenvalues:  = -0.4142 and 2.4142. 
   Here is the MatLab input (after the >>) and output: 
 

>> M=[1,1,0;1,1,1;0,1,1] 
 

M = 
     1     1     0 
     1     1     1 
     0     1     1 
 

>> [X,L] =eig(M) 
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X = 
    0.5000   -0.7071    0.5000 
   -0.7071    0.0000    0.7071 
    0.5000    0.7071    0.5000 
 

L = 
   -0.4142         0         0 
         0    1.0000         0 
         0         0    2.4142 

 

Note that the L matrix lists the three eigenvalues along the diagonal. The X matrix lists the 
eigenvector as columns. The three sets of eigenvalues and eigenvectors are: 
 

 1 = -0.4142   2 = 1    3 = 2.4142 
 

 X1~ = 








0.5000

-0.7071
0.5000

   X2~ = 








-0.7071

0
0.7071

   X3~ = 








0.5000

0.7071
0.5000

 

 

To help you get used to eigenvectors, we can verify that X1~  is a valid solution. We need to prove 
that MXi~   =  i Xi~ , for eigenvector 1: 
 

 MX1~  = 








1 1 0

1 1 1
0 1 1

 








0.5000

-0.7071
0.5000

 =  








1(0.5)+1(-0.7071)+0(0.5)

1(0.5)+1(-0.7071)+1(0.5)
0(0.5)+1(-0.7071)+1(0.5)

  = 








-0.2071

0.2929
-0.2071

 =  -0.4142 X1~  

 

Notice that any constant multiple of the listed eigenvectors is also a solution, including the case 
where all the signs are reversed. Matrix techniques allow the solution of problems that would 
otherwise be exceedingly time consuming to solve. 
 
 
8.  A bi-exponential process is given by the form: 
 

 [A] = c1 e–k1t + c2 e–k2t 
 

The logarithmic plot of a bi-exponential process produces two straight line segments and a 
transition region between. Bi-exponential decay curves are fit in two segments. First the long 
time behavior of the logarithmic plot is fit to a straight line to determine the slope, k2, and 
intercept ln(c2). The non-linear transition region is avoided when points are selected for this plot. 
Then, the long time behavior is “stripped” from the time course: 
 

 ln[A]short = ln([A] – c2 e–k2t) 
 

and a second logarithmic plot of the stripped data produces the short time k1 and ln(c1). These 
estimated constants are then used as guesses for non-linear curve fitting. Fit the following data to 
a bi-exponential function. For the non-linear fit, use the four-parameter version of the “Nonlinear 
Least Squares Curve Fit” applet on the textbook Web site and on the companion CD. 
 

time 0 5 10 20 30 40 60 80 100 120 140 
[A] 1 0.727 0.564 0.401 0.328 0.288 0.235 0.196 0.163 0.136 0.114 

 
 
Answer:  The spreadsheet to implement the stripping procedure is: 
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  original original stripped 
 time [A] ln [A] ln [A] ln([A]- c2exp(k2t)) 

0 1 0  -0.50777 
5 0.727 -0.3188  -1.06062 

10 0.564 -0.5727  -1.61001 
20 0.401 -0.9138  -2.68794 
30 0.328 -1.1147   
40 0.288 -1.2448   
60 0.235 -1.4482   
80 0.196 -1.6296   

100 0.163  -1.8140  
120 0.136  -1.995  
140 0.114  -2.1716  

 

The last few points are moved into a separate column so the curve fit can be done from the chart, 
directly. The stripped data is in the last column. The plot showing the stripped data is:  

 

 
 

The linest() output for the long curve fit and the stripped, short-time curve fit are given below: 
 

Long time fit Short time fit after stripping 
slope -0.00894 -0.9209 intercept slope -0.11022 -0.50834 intercept 
 6.7E-05 0.008109   0.000199 0.001288  
r2 0.999944 0.001894 st.dev. y r2 0.999997 0.001411 st.dev. y 
F 17822.69 1 df F 305307.4 1 df 
ssreg 0.063922 3.59E-06 ssresid ssreg 0.607473 1.99E-06 ssresid 

 

The corresponding values for the constants are 
 c2 = e–0.9209 = 0.3982  k2 = 0.00894 s-1 

 c1 = e–0.5083 = 0.6015  k1 = 0.1102 s-1 
 

WWW   Using these fit values as guesses in the “Nonlinear Least Squares Curve Fit” applet with 

the “a exp(–bx) + c exp(–dx)” option and the above guesses gives: 
 

===========   Results   ============ 
 a= 0.596731 +- 0.000631 
 b= 0.111514 +- 0.00022 
 c= 0.403231 +- 0.0006 
 d= 0.0090422 +- 0.0000204 
------------------------------------ 
 sum of squared residuals= 7.226e-7 
 stand. dev. y values= 0.0003213 
 correlation between a & b= -0.5727 

-3

-2.5

-2

-1.5

-1

-0.5

0
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ln
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after stripping
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 correlation between b & c= 0.8166 
 correlation between a & c= -0.8726 
 correlation between c & d= 0.907 
 correlation between b & d= 0.6811 
 correlation between a & d= -0.8034 

 

Notice that the correlation coefficient between c and d is high, but acceptible. If the long-time 
behavior were extended, the linear version of the fit could give good uncorrelated results for 
these parameters. Fitting bi-exponential curves is a difficult issue, and the corresponding fit 
coefficients are difficult to estimate accurately. 
 
 
9.  Draw the Chapman ozone mechanism, Section 5.2, as a box model. 
 
 
Answer:  The Chapman mechanism from Section 5.2 is comprised of four steps: 
   j1 

        O2 + h    2 O 
   k2 

 O + O2 + M    O3  + M 
   j3 
       O3  + h    O  + O2 
   k4 
       O + O3   2 O2 
 

Common depictions of the Chapman model are: 
 
 
 
 
 
 
 
 
 
 
Since steps 2 and 4 aren’t first order, the additional reactants must be shown with additional 
arrows, unlike purely first-order processes. There are many other possibilities, but all would have 
three boxes and at least four arrows that relate to the four elementary steps. 
 
 
10.  Would the residence time in the body for X be altered if an excretion pathway for Y was 
added to the model in Section 6.2, Figure 6.2.2? The added pathway is shown below. 
 
 
 
 
 
 

    O3 

    O 

    O2 

j1 
h 

h j3 k2 

k4 
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O2 
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h 

+M 
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j1 

k4 

[X] 

+ = kin [X]o 

kexX [X] 

kmet [X] 
[Y] 

kexY [Y] 
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Answer:  The residence time for X would not be altered, because the new differential equation 
for X still does not involve the concentration for Y; Eq. 6.2.8 still holds: 
 

 
d[X]

dt  = kin [X]o – kex [X] – kmet [X] 
 

Just as for any chemical reaction, the concentration of X does not depend on any unconnected 
“downstream” processes, if the mechanistic steps are uni-directional. However, if the metabolic 
process were reversible, then the concentration of X would depend on Y and the residence time 
would change (the effective rate of the metabolic removal would decrease). 
 
 
11.  Use Maple or Mathematica to solve for X1and X2 for the reversible two-box problem 
starting from the rate matrix, Eq. 6.3.3. Find the concentrations symbolically first. Then 
substitute in the specific constants: k1 = 0.3 s-1, k-1 = 0.15 s-1, and kex = 0.1 s-1, with initial 
conditions [X1]o = 1.0 M and [X2]o = 0. Solve for the concentrations at t = 1 s. Note that in 
general Eqs. 6.3.8, 6.3.9, and 6.3.28 can be combined into: 
 

 [X
~

] = C
~

 (exp 
~

t) C
~

-1[X
~

]o 
 

where exp 
~

t is the matrix with the exponential terms along the diagonal: 

 exp 
~

t = 







e1t 0 0 ...

0 e2t 0 ...

0 0 e3t …

... ... ...

 

 

Let K be the rate matrix, L be the vector of eigenvalues, C be the matrix of eigenvectors, and E 
be the diagonal matrix, exp 

~
t. The set of initial conditions is given by the vector Xo. After 

defining the rate matrix, K, and initial values vector, Xo, the Maple commands to do these 
calculations symbolically are: 
 

 (L,C) := Eigenvectors(K) ; 
 E := DiagonalMatrix(Map(exp,L*t)) ; 
 X := C.E.MatrixInverse(C).Xo ; 
 
 
Answer:  The Maple input is: 
 

 with(LinearAlgebra) ; 
 K := Matrix([[ –kex–k1 , k-1 ], [ k1 ,–k-1 ]]) ; 
 Xo := Vector([1,0]) ; 
 (L,C) := Eigenvectors(K) ; 
 E := DiagonalMatrix(Map(exp,L*t)) ; 
 X := C.E.MatrixInverse(C).Xo ; 
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 kex := 0.1 ; 
 k1 := 0.3 ; 
 k-1 := 0.15 ; 
 t := 1.0 ; 
 eval(X) ; 
 

which gives: 

 



0.68597

0.21308  

 
The advantage of determining the result symbolically is that the concentrations can easily be 
calculated at any time. A finite difference numerical solution would need to start at t = 0 and 
integrate up to the desired time. The symbolic result is also exact. 
 
 
 
12.  Use MatLab to solve the two-box model in Figure 6.3.1 and Eq. 6.3.3. Plot [X1] and [X2] for 
t = 0 – 30 s. See Problem 11 for a hint on how to compactly write the solution. The 
corresponding MatLab commands are in the form: 
 

 [C,L] = eig(K) ; 
 

to determine the eigenvalues, L, and eigenvectors, C. Then at time t, the vector of concentrations 
is given by: 
 

    E = diag(exp(diag(L)*t)) ; 
    X = C*E*inv(C)*X0 ; 

 

[Note: You can create a matrix with concentrations as the rows and the time points indexed along 
the columns by using: 
 

    X(:,t+1) = C*E*inv(C)*X0 ; 
 

which makes plotting easier. The t values would be successive integers, so they can be used as 
array indices. The t+1 is necessary because we want to evaluate the concentrations at t = 0, but 
MatLab indexes vectors and matrices starting at 1.] 
 
 
 
Answer:  The MatLab –m file is: 

kex = 0.1 ; 
kf1 = 0.3 ; 
kr1 = 0.15 ; 
X0 = [1;0] ; 
tmax = 30 ; 
  
K(1,1) = -kex-kf1 ; 
K(1,2) = kr1 ; 
K(2,1) = kf1 ; 
K(2,2) = -kr1 ; 
  
[C,L] = eig(K) ; 
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for t = 0:1:tmax 
    T(t+1) = t ; 
    E = diag(exp(diag(L)*t)) ; 
    X(:,t+1) = C*E*inv(C)*X0 ; 
end 
  
% Plot data 
figure(1) 
plot(T,X) 
xlabel('Time (s)') 
ylabel('[X1],[X2] (M)') 
 

The plot is given below: 
 

 
 
 
 
13.  Use Maple or Mathematica to symbolically verify the solution to the reversible two-box 
problem, Eqs. 6.3.24-6.3.26, and also find the time course for X2. 
 
 
Answer:  Refer to Example 6.3.3. Let K be the rate matrix, L be the vector of eigenvalues, and C 
be the matrix of eigenvectors with each eigenvector corresponding to a column. The set of initial 
conditions is given by the vector Xo and A is the vector of the  values. The Maple input is: 
 

 with(LinearAlgebra) ; 
 K := Matrix([[ –kex–k1,k-1 ], [ k1,–k-1 ]]) ; 
 Xo := Vector([1,0]) ; 
 (L,C) := Eigenvectors(K) ; 
 A := MatrixInverse(C).Xo ; 

 A[1] C[1..2,1] ; 

 A[2] C[1..2,2] ; 
 

The eigenvectors are listed as: 
 

 






–½ k-1–½ kex–½ k1+½ k-1

2–2k-1kex+2k-1k1+kex
2+2kexk1+k1

2

– ½ k-1–½ kex–½ k1–½ k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2

 = 



1

2
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The results for A[1] C[1..2,1] corresponding to the first eigenvalue, 1 : 
 





(–k-–1+kex+k1+ k-1

2–2k-1kex+2k-1k1+kex
2+2kexk1+k1

2) (k-–1–kex–k1+ k-1
2–2k-1kex+2k–1k1+kex

2+2kexk1+k1
2)Xo

k1 k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2 · 

 







-1

4  
k1

–½ k-1+½ kex+½ k1+½ k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2

–1
4

    2 

 

This result can be simplified by noticing that: 
 

 1 – 2 = k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2      3 

 k-1 + 1 = ½ k-1 – ½ kex – ½ k1 + ½ k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2  4 

 k-1 + 2 = ½ k-1 – ½ kex – ½ k1 – ½ k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2   5 

 

Substitution of Eqs. 3-5 into Eq. 2 gives: 
 

 









–(k-1 + 2)( k-1 + 1) k–1

–(k-1 + 2) k–1 (1 – 2)
 Xo

–(k-1 + 2)(k-1 + 1)
k–1 (1 – 2)

 Xo

 = 









(k-1 + 1)

(1 – 2)
 Xo

–(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo

 

 

Similarly for A[2] C[1..2,2] corresponding to the second eigenvalue, 2 : 
 

 









(k-1 + 2)( k-1 + 1) k–1

–(k-1 + 1) k–1 (1 – 2)
 Xo

(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo

 = 









– 

(k-1 + 2)
(1 – 2)

 Xo

(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo

 

 

 
The final time profiles are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A[1] C[1..2,1] = 

(k-1 + 1)
(1 – 2)

 Xo

–(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo

 

A[2] C[1..2,2] = 

– 
(k-1 + 2)
(1 – 2)

 Xo

(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo

 

[X1] =     
(k-1 + 1)
(1 – 2)

 Xo    e-1t    –         
(k-1 + 2)
(1 – 2)

 Xo      e-2t  

[X2] = 
–(k-1 + 2)( k-1 + 1)

k–1 (1 – 2)
 Xo e-1t   + 

(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo e-2t  

coefficients for1st eigenvalue coefficients for2nd eigenvalue 
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14.  The box model below corresponds to a reversible first-step mechanism, as in Section 4.1, 
with all first-order processes. Determine the eigenvalues and time constants. Compare the results 
with the model in Figure 6.3.1 and Eq. 6.3.3.  
 
 
 
 
 
 
 
 
 
 
Answer:  The rate laws for this model are: 
 

 1 = 
d[X1]

dt  =– k1 [X1] + k-1 [X2]     1 
 

 2 = 
d[X2]

dt  =  k1 [X1] – k-1 [X2] – kex [X1]    2 
 

The rate matrix is: 
 

 K  = 



– k1 k-1

k1 – (k-1 + kex)
      3 

 

Using Eq. 6.3.23 gives the eigenvalues as: 
 

 i  =  
–(k1 + k-1 + kex)  (– k1 + k-1 + kex)2 + 4 k1 k-1

2   4 
 

The result is similar to, but not identical to, Eq. 6.3.24. For the same constant values as Example 
6.3.1, the eigenvalues in this case are: i = -0.4886, -0.0614. 
 
 
15.  The model in Section 6.2, Figure 6.2.2, considers the metabolic elimination of a drug in 
parallel with excretion. Since the liver is often the site for metabolic processes, this model would 
be more realistic if the drug is first transported by the blood plasma (bulk flow) to the liver where 
the drug is metabolized and excreted. (Compounds can be excreted from the liver in the bile.) 
The added pathways are shown below, including a constant flow input. 
 
 
 
 
 
 
 
 

kex [X1] 

Compartment 1 

[X1] 

Compartment 2 

[X2] 

k1 [X1] 

k-1 [X2] 

Excretion 

X1 

+ = kin Xo 

kexX X1 

kmet X2 
Y 

kexY Y 

X2 

compartment 1 compartment 2 

kD1 X1 

kD2 X2 
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(a). Set up the differential equations for this model and write the rate matrix. (b). Find the 
relationship between kD1 and kD2. The typical plasma volume of a 70 kg person is 3 L, and the 
volume of extracellular fluids, excluding plasma, is 12 L. The total body water is about 42 L, so 
most of the water volume is in the cellular cytoplasm, which is about 80% water. Assume 
compartment 1 is the blood plasma and compartment 2 is the liver. Assume the effective volume 
for this process in the liver is 0.5 L. 
 
 
Answer:  (a). Because this model uses more than one spatial compartment and mass transfer is 
occurring, the differential equations should be written in terms of moles instead of 
concentrations, for each process for consistency. 
The rate laws are: 
 

 
dXo

dt  = 0   (Xo is a constant flow input) 
 

 
dX1

dt  = kinXo – kexX X1 – kD1 X1 + kD2 X2 
 

 
dX2

dt  =  kD1 X1 – kD2 X2 – kmet X2 

 

 
dY
dt  =  kmet X2 – kexY Y 

 
The rate matrix is given below with the rows and columns labeled to help you see the 
relationships: 
   Xo    X1        X2  Y 
                      
 

 K    =    









0 0 0 0

kin – kexX– kD1 kD2 0

0 kD1 –kD2 – kmet 0

0 0 kmet –kexY

  

 dXo/dt

 dX1/dt

 dX2/dt

 dY/dt

 

 
The time course for this problem would be determined by numerical simulation.  
(b). The ratio of the mass transport coefficients is given by Eq. 6.1.46: kD2/kD1 = V1/V2 = 3 /0.5. 
   This general model has many applications. For example, in atmospheric environmental 
chemistry, compartment 1 could be the gaseous atmosphere and compartment 2 an aerosol 
droplet where a reaction occurs. One specific example is the conversion of NaCl particles to 
NaHSO4 (aq) by reaction with sulfuric acid. Another example is the reaction of dimethyl sulfide 
produced by bacteria in the ocean with ozone or hydroxyl radical in cloud droplets or on particle 
surfaces. 
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16.  Show that the kinetic versus thermodynamic control mechanism in Example 4.1.2 gives two 
exponential time constants. Calculate the time constants using the rate constants given in 
Example 4.1.2, namely: k1 = 0.020 s-1, k-1 = 0.00050 s-1, k2 = 0.50 s-1, and k-2 = 1.50 s-1. The 
corresponding box model is shown below. 
 
 
 
 
 
 
 
 
Answer:  The rate matrix is: 
 

 K  = 








– k-1– k-2 k-1 k-2

k1 – k-1 0
k2 0 – k-2

 

 

The secular equation is: 
 

 (M  – i I)Xi~  = 0 = 








– k-1 – k-2 –i k-1 k-2

k1 – k-1 –i 0
k2 0 – k-2 –i

) 

 

Expanding the determinant in terms of the first column gives: 
 

 (– k-1 – k-2 –i)( – k-1 –i)( – k-2 –i) – k1 k-1 (– k-2 –i) – k2 k-2 (– k-1 –i) = 0 
 

The multiplications give: 
 

 – i
3 – i

2(k1 + k2 + k-1 + k-2) – i (k1k-2 + k-1k2 + k-1k-2) = 0 
 

Since there is a common factor of i, one of the eigenvalues is zero. A zero eigenvalue is 
expected because all the processes are reversible (7 point 14). Dividing the characteristic 
polynomial by – i gives: 
 

 i
2 + i(k1 + k2 + k-1 + k-2) + (k1k-2 + k-1k2 + k-1k-2) = 0 

 

This equation can then be solved using the quadratic equation using Excel: 
 

kf1 0.02 s-1 
kr1 0.0005 s-1 
kf2 0.5 s-1 
kr2 1.5 s-1 
   
a= 1  
b= 2.0205  
c= 0.031  
   
lamda(+)= -0.015461 s-1 
lamda(-)= -2.005039 s-1 
   
1 = 1/1 64.6786759 s 
 =1/2 0.49874343 s 

 

A X 

Y 

k1 [A] 

k-1 [X] 
k2[A] k-2 [Y] 
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The listed a, b, and c cells are the normal coefficients for ax2 + bx + c = 0. Notice that the two 
time constants differ by over two-orders of magnitude. That is the reason for the very quick rise 
and comparatively slow decay in Figure 4.1.2. 
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Chapter 7 Problems: Heat and Work 

 
1. The movie “On Golden Pond” (IPC Films, 1982, 3 Academy Awards) was based on a play 
that was written about a summer home on Great Pond in central Maine. The surface area of Great 
Pond is 3.383x107 m2 and the volume is 2.130x108 m3. Great Pond is a large lake. The solar 
insolation for the Boston area is given in Chapter 2, Problem 13 as 4.16 kWh m-2 day-1. Calculate 
the total energy received by the lake per day on average and the corresponding change in 
temperature. 
 
 
Answer:  From Chapter 2 Problem 12 the conversion factor is given as: 
 

 1 kWh = 1000 J s-1(1 hr)(3600 s/1 hr) = 3.6x106 J  
 

The total energy received by the lake on an average day is given by: 
 

 q = JAt  
    = 4.16 kWh m-2 day-1(3.6x106 J/1 kWh)( 3.383x107 m2)(1 day) = 5.066x1014 J 
 

The molar heat capacity of water is 75.291 J K-1 mol-1, Table 7.2.2. The specific heat capacity of 
water is: 
 

Cs(H2O) = Cp,m(H2O)/MH2O = 75.291 J K-1 mol-1 (1 mol/18.02 g) = 4.178 J K-1 g-1 

 

The density of water at 20.0C, Table 2.2.1, is 0.9982 g mL-1, giving the heat capacity of the lake 
as: 
 Cp = (4.178 J K-1 g-1)(2.130x108 m3)(0.9982 g mL-1)(1x106mL/1 m3) = 8.902x1014 J K-1 

The corresponding change in temperature is obtained from qp = Cp T: 
 

 T = qp/Cp = 5.066x1014 J/8.902x1014 J K-1  = 0.57 K 
 

As the temperature of the lake rises, there will be significant loss of energy by radiation, 
convection at higher winds speeds, and evaporation. These losses will moderate the temperature 
rise. The predominant energy loss mechanism is radiative loss. 
 
 
2.  The specific heat capacity of stainless steel is 0.505 J K-1 g-1. A typical spoon weighs 20.9 g. 
Calculate the change in temperature when you place a spoon at 21.5 C into 250. mL of hot 
coffee at 58.5 C. Assume the heat capacity of coffee is 4.179 J K-1 g-1 and the density is the 
density of water at 50C from Table 2.2.1. 
 
 
Answer:  This problem is very similar to Example 7.2.1. The plan is to use the fact that: 
 qcoffee = – qspoon. The heat capacities are constant pressure heat capacities since the system is 
open to the atmosphere. The density of water at 50.0C, Table 2.2.1, is 0.9880 g mL-1.  
   The mass of the coffee solution is wcoffee = dH2O Vcoffee= 0.9880 g mL-1 (250.0 mL) = 247.0 g. 
The energy transfered as heat to the spoon is given by: 
 

 qspoon = wspoon Cs(spoon)(T2 – T1,spoon) 
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The energy transferred as heat from the coffee is: 
 

 qcoffee = wcoffee Cs(coffee)(T2 – T1,coffee) 
 

Using qcoffee = – qspoon gives: 
 

 wcoffeeCs(coffee)(T2 – T1,coffee) = – wspoon Cs(spoon)(T2 – T1,spoon) 
 

Solving for T2 gives: 
 

 247.0 g(4.179 J K-1 g-1)(T2 – 58.5C) = – 20.9 g(0.505 J K-1 g-1)(T2 – 21.5C) 
 1032.2 T2 – 60384. = -10.555 T2 + 227. 
 1042. 8 T2 = 60611. 
 T2 = 58.13 C 
 

The change in temperature of the coffee is only T = -0.4 C. The result has only one significant 
figure since T = 58.13 C – 58.5 C = -0.4 C. 
 
 
3.  Calculate the work done as a gas expands from an initial volume of 1.00 L to a final volume 
of 10.00 L against a constant external pressure of 1.000 atm. 
 
 
Answer:  We need to convert to pascals and m3 to find the work in joules. The conversions are: 
 

 1.000 atm = 1.01325x105 Pa  and 1.00 L = 1.00x10-3 m3 
 

Giving the work against a constant external pressure as: 
 

 w = –Pext V = –(1.01325x105 Pa)(9.00x10-3 m3) = –912. J 
 

The work is negative because the system loses energy pushing against the external pressure. 
 
 
4.  Calculate the work done by one mole of an ideal gas in a reversible isothermal expansion 
from an initial volume of 1.00 L to a final volume of 10.00 L at 298.2 K. Compare the work done 
to the constant pressure expansion given in Problem 3. 
 
 
Answer:  For a reversible isothermal expansion the work is given by Eq. 7.3.6: 
 

 w = – nRT ln



V2

V1
 = – 1.00 mol(8.314 J K-1 mol-1)(298.15 K) ln



10.00

1.00  = -5708. J 

     = -5.71 kJ 
 

Reversible expansions do the maximum amount of work, in magnitude, for the given initial and 
final states of the system. The magnitude of the work for a reversible expansion is maximal 
because the system pressure is equal to the external opposing pressure, P = Pext, so the system 
always pushes against the maximum external pressure. 
 
 



Chapter 7: Heat and Work  153 

5.  Calculate the work done by one mole of an ideal gas in a reversible isothermal expansion 
from an initial pressure of 10.00 bar to a final pressure of 1.00 bar at 298.2 K. Compare the work 
done to the isothermal reversible expansion in Problem 4. 
 
 
Answer:  For an isothermal process in an ideal gas P1V1 = P2V2 or: 
 

 
V2

V1
 = 

P1

P2
 

 

Substitution into Eq. 7.3.6 gives: 
 

 w = – nRT ln



V2

V1
 = – nRT ln



P1

P2
 

      = – 1.00 mol(8.314 J K-1 mol-1)(298.15 K) ln



10.00

1.00  = -5708. J 

     = -5.71 kJ 
 

Comparing to Problem 4, if the volume increases by a factor of 10 for an isothermal expansion, 
the pressure will drop by a factor of 10. So this problem and Problem 4 are the same problem. 
This expansion is reversible, so the system does maximum work for the given initial and final 
states. 
 
 
6. How ideal is water vapor? To answer this question, try the following problem: Assume a 
volume for a closed flask of 10.000 L, a temperature of 298.15K, and 0.01280 moles of water 
vapor. Calculate the pressure of water vapor in the flask using the ideal gas law and the Van der 
Waals equation of state and compare. (For comparison with the results of this problem, note that 
the vapor pressure of water at 298K is Pvap= 23.8 torr.) 
 
 
Answer:  From the Van der Waals equation, Eq. 7.5.1: 
 

 P = 
nRT

V– nb – 
an2

V2  as compared to the ideal gas   P = nRT/V 
 

with a = 5.536 bar L2 mol-2 and b = 0.03049 L mol-1, Table 7.5.1. The Van der Waals result is: 
 

      P = 
0.01280 mol(0.0831447 bar L K-1 mol-1)(298.15 K)

10.0 L – 0.01280 mol (0.03049 L mol-1)  – 
5.536 bar L2 mol-2(0.01280 mol)2

10.02  

 P = 0.031732– 9.07x10-6 bar = 0.031723 bar 
  or P = 0.031308 atm = 23.794 torr 
 

The ideal gas result is: 

 P = 
0.01280 mol(0.0831447 bar L K-1 mol-1)(298.15 K)

10.000x10-3m3   =  0.031731 bar 

 P = 0.031316 atm = 23.800 torr 
 

Water vapor at its equilibrium vapor pressure at room temperature is well described by the ideal 
gas law. 
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7. Find the formula for the work done in the reversible isothermal expansion of a Van der Waals 
gas. (i.e. derive the equation corresponding to the ideal gas result: w = – nRT ln(V2/V1) 
 
 

Answer:  For a reversible process P = Pext and then   w = – P dV. From the Van der Waals 

equation, Eq. 7.5.1: 
 

 P = 
nRT

V– nb – 
an2

V2  
 

which upon substitution into the formula for the work gives: 
 

 w = – V1

V2  



nRT

V– nb – 
an2

V2  dV 

 w = – V1

V2  



nRT

V– nb  dV + V1

V2  
an2

V2  dV 

 w = – nRT (ln(V – nb)|V2

V1
  –  

an2

V  |V2

V1
 

 w = – nRT ln



V2 – nb

V1 – nb  – an2 



1

V2
 – 

1
V1

 
 

Notice the effect of the second term. The Van der Waals a-coefficient is proportional to the 
average intermolecular forces that exist between gas molecules. For an expansion, V2 is bigger 
than V1 making (1/V2 – 1/V1) < 0. The overall sign of the second term is then positive. The 
resulting work done will be less than an ideal gas expansion, since the intermolecular force term 
is opposite in sign to the main work term. One way of thinking about this effect is that some 
energy goes into separating the gas molecules against their intermolecular forces, thus decreasing 
the work that can be done by the gas. 
 
 
8.  Derive the relationships between the second and third virial coefficients and the Van der 
Waals coefficients, as listed in Eqs. 7.5.9. Assume that the virial equation is truncated after the 
cubic term. [Hint: use the Taylor series approximation that for small x: 1/(1 – x)  1 + x + x2] 
 
 
Answer:  The plan is to rearrange the Van der Waals equation to find z and then arrange this 
expression into a power series in (n/V). 
   Starting with Eqs. 7.5.1 and solving for P gives: 
 

 P = 
nRT

V – nb – 



a 

n2

V2  
 

Next solving for z by multiplying by (V/nRT) gives: 
 

 z = 
PV

nRT = 
V

V – nb – 
a

RT 



n

V  
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 z = 
1





1 – b 



n

V

  –  
a

RT 



n

V  

 

The last term is already in the form expected for a term in a power series expansion. However, 
the first term is not. Using the Taylor series approximation, 1/(1 – x)  1 + x + x2, for the first 
term gives: 
 

 z = 1 + b 



n

V  + b2 



n

V

2
 – 

a
RT 



n

V  
 

Gathering the terms in (n/V) and comparing this result to the virial expansion, Eq. 7.5.7, gives: 
 

 z =  1 + 



b – 

a
RT  



n

V  + b2 



n

V

2
 

 

 z =  1 +      B       



n

V  + C 



n

V
2
      (7.5.7) 

 

     B = b – 
a

RT   and    C = b2 
 

At this level of approximation, we see clearly why B is a function of temperature. 
 
 
9.  Show that the Van der Waals equation is a cubic equation in the volume. In other words, 
rearrange the Van der Waals equation to give a cubic polynomial in V. 
 
 
Answer:  Starting with Eq. 7.5.1, multiply both sides of the equation by V2 and then take the 
product of the pressure and volume terms: 
 

 



P + a 

n2

V2  ( )V – nb  = nRT       7.5.1 

 ( )PV2 + an2  ( )V – nb  = nRT V2 

 PV3 + an2V – nbPV2 – abn3 = nRT V2 
 PV3 – (nbP + nRT)V2 + an2V – abn3 = 0 
 

Luckily, we can usually avoid having to solve this equation for V. The cubic form explains the 
shape of the isotherms at temperatures below the critical point in Figure 7.5.3. 
 
 
10. Use the virial equation to find the compressibility factor and the pressure for 10.00 mol of O2 
contained in a 1.000 L vessel at 298.15 K. Do attractive or repulsive forces dominate? 
 
 
Answer:  Using the virial expansion, Eq. 7.5.7 and the coefficients from Table 7.5.4 gives: 
 

 z = 1 + B(T) 



n

V  + C(T) 



n

V
2
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    = 1 + (-0.0161 L mol-1) 



10.00 mol

1.000 L  + (0.001200 L2mol-2) 



10.00 mol

1.000 L

2
 

    = 1 – 0.161 + 0.1200 = 0.959 
 

Since z < 1, attractive forces dominate. Using PV = z nRT gives: 
 

 P = z nRT/V = 0.959(10.00 mol)(0.08314 bar L K-1 mol-1)(298.15 K)/1.000 L = 238. bar 
 

which is a factor of (1 – 0.959) or 4.1% less than the ideal value. 
 
 

11.  Integrate Eq. 7.6.9 for a small change in pressure during an isothermal process; that is, 
integrate dV = –V T dP. 

 
 
Answer:  Integrating from Vo, Po to V, P gives: 
 

 Vo

V
dV = – Po

P
V T dP 

For small changes in pressure we can approximate the volume in the integrand as V Vo. Then 
the factor of (Vo T ) is a constant, which factor out of the integral to give: 
 

 V – Vo =  – Po

P
Vo T dP = – Vo T (P – Po) 

 

or succinctly as V = – Vo T P. We can also solve for the final volume as: 
 

 V = Vo – Vo T (P – Po) 
 
 
12.  If the isothermal compressibility of acetone is 111.x10-6 atm-1 at 14.2°C, what is the change 
in volume if the pressure is increased from 10.0 atm to 35.0 atm? Assume an initial volume of 
1.00 L, the P is small so that V  Vo, and the isothermal compressibility is constant. 
 
 
Answer:  From Eq. 7.6.9, for a constant temperature: 
 

 dV = – V T dP 
 

Assuming a small enough temperature change to give V  Vo and a constant isothermal 
compressibility gives:  
 

 V = Vo T P 
       = – (1.00 L)(111.x10-6 atm-1)(35.0 – 10.0 atm) = -2.78x10-3 L 
       =  -2.78 mL 
 
 
13.  From the definition of T prove that for moderate changes in pressure: 
 

 V = Vo – Vo T (P – Po) + 
Vo T

2

2  (P – Po)2. 
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Answer:  Integrating from Vo, Po to V, P gives: 
 

 Vo

V
dV = – Po

P
V T dP 

 

For moderate changes in pressure we can approximate the volume in the integrand using the 
result of Problem 11 as V = Vo – Vo T (P – Po).  The integral is then: 
 

 V – Vo =  – Po

P
[ Vo – Vo T (P – Po)] T dP  

  =  – Po

P
Vo T dP  +  Po

P
Vo T

2 (P – Po) dP 
 

Then the factors of (Vo T ) and (Vo T
2) are constants, which factor out of the integrals to give: 

 

 V – Vo =  – Vo T (P – Po) + 
Vo T

2

2  (P – Po)2|PPo
 

 V – Vo =  – Vo T (P – Po) + 
Vo T

2

2  (P – Po)2 

 
 

14.  Find the relationship between 






T

P V
 and  and T. Use the Euler chain relationship in your 

proof. 
 
 

Answer:  Noting that   
1
V 






V

T P
 and T  – 

1
V 






V

P T
, neither derivative is taken at constant 

volume. The key to finding the relationship is to focus on the constant volume constraint. For a 
constant volume process the total differential of the volume is zero; from Eq. 7.6.7: 
 

 dV = 






V

T P
 dT + 







V

P T
 dP = 0     1 

 

Subtracting the pressure dependent term from both sides of the equation gives: 
 

 






V

T P
 dT = – 







V

P T
 dP      2 

 

We can then solve for the differential of the temperature: 
 

 dT = 

–






V

P T

 






V

T P

  dP       3 

 

To find the partial derivative (T/P)V “divide” by dP and specify constant volume conditions: 
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T

P V
 = 

–






V

P T

 






V

T P

       4 

 

We can relate these partial derivatives to  and T by dividing the numerator and denominator of 
this expression by the volume: 
 

 






P

T V
 = 

– 
1
V 






V

P T

 
1
V 






V

T P

 = 
T

       5 

 

The result is that the behavior of the system can be expressed as a function of only  and T. 
 
 
15.  Calculate the expansion work done by 1.00 L of water when the temperature is raised by 
100.0C. Assume the pressure is constant at 1.00 bar. This problem is an important issue when 
considering upwelling in the ocean.1 The effect is small on the laboratory scale, but important on 
an oceanic scale. 
 
 
Answer:  The plan is to use Eq. 7.6.29 and the value of the thermal expansion coefficient from 
Table 7.6.1. We need to be careful about units, to get joules we need to work with volume in m3 
and pressures in Pa, 1 bar = 1x105 Pa: 
 

 w = – PVo  T = – (1.00x105 Pa)(1.00 L)(1 m3/1000 L)(2.57x10-4 K-1)(100.0 K) 
   = -2.57 J 
 

In the laboratory, we can neglect the work of expansion of liquids and solids under most 
circumstances. 
 
 
16.  The upwelling of deep-sea water is caused by large scale ocean currents such as the Atlantic 
current, which brings warm water north in the Atlantic. This current keeps western Europe 
warmer than other areas at similar latitude. As a packet of water rises, the pressure drops, the 
volume of the packet expands and the system does work.1 The work is given by: 
đw = PVT dP at constant temperature. Derive this relationship. 
 
 
Answer:  The work is given by đw = – Pext dV. A packet of water is surrounded by and is in 
contact with its surroundings so that P = – Pext, where Pext is the pressure at the given depth for 
the packet of water. The process is reversible. The change in volume with pressure at constant 
temperature is given by the definition of the isothermal compressibility, Eq. 7.6.9 and Eq. 7.6.10: 
 

 T  – 
1
V 






V

P T
  with dV = V  dT – V T dP 
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For constant temperature this last equation reduces to: 
 

 dV = – V T dP       (cst. T) 
 

Substituting this last equation into the general equation for the work of the system gives: 
 

 đw = – P dV = PVT dP     (reversible, cst. T) 
 
 
17.  The empirical temperature scale is based on the ideal gas thermometer. However, how can 
you build an ideal gas thermometer when there is no such thing as an ideal gas? The answer is 
that the effective temperature based on the ideal gas law is measured for differing amounts of gas 
and the results are extrapolated to zero gas density. The ideal gas thermometer can then be used 
to calibrate more convenient thermometers. An ideal gas thermometer using helium is 
constructed with an internal volume for the gas of 0.500 L. The following table gives the number 
of moles of gas and the corresponding pressure at the fixed external temperature to be measured. 
Use the ideal gas law to calculate the effective temperature and then extrapolate the results to 
zero density. 
 

n mol 0.040342 0.030256 0.020171 0.008068 0.004034
P (bar) 2.08225 1.56116 1.04042 0.41602 0.20797

 
 
Answer:  A spreadsheet was set up to calculate the molar density of the gas and PV/nR from the 
measured parameters. 
 
 
 

 

n n/V PV/nR 

0.040342 0.080684 310.4108

0.030256 0.060513 310.3071

0.020171 0.040342 310.2017

0.008068 0.016137 310.0884

0.004034 0.008068 310.0306

 
slope 4.842429 310.0098intercept 

 0.32278 0.015895+- 

r2 0.986846 0.019524s(y) 

F 225.0679 3df 

ssreg 0.085789 0.001144ssresid 
 

 

 

 

 

The extrapolated temperature in the ideal gas limit is 310.01  0.02 K. 
[Note:  Vacuum lines can be easily set up to include calibrated gas burets. Then Avagadro’s Law 
can be used to meter out the required amounts of helium for each run. Using Avagadro’s law 
avoids using the full, accurate equation of state, which was unknown when gas thermometry was 
first developed. The mole amounts need not be accurate since the intercept is the desired 
quantity, as long as the amounts are precise and proportional.] 

y = 4.842x + 310.010
R² = 0.987
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18.  The heat transfer at constant volume is the internal energy change and the heat transfer at 
constant pressure is the enthalpy change. Consider a constant volume process for an ideal gas. 
Even though the pressure isn’t constant, you can still calculate H. Calculate the change in 
enthalpy for a constant volume process given the temperature change, T or dT. Assume a 
constant heat capacity over the temperature range. Give your answer in differential, derivative, 
and integrated (H) form. 
 
 
Answer:  From the definition of the enthalpy, H  U + PV, the change in enthalpy can be 
determined from the differential: dH = dU + d(PV). For an ideal gas, PV = nRT and for a closed 
system d(PV) = nR dT, giving dH as: 
 

 dH = dU + nR dT      (ideal gas) 
 

Then at constant volume for any system dU = CvdT: 
 

 dH = CvdT + nR dT      (ideal gas) 
 

Integrating this expression for a constant heat capacity gives: 
 

 H1

H2 dH = T1

T2 CvdT + T1

T2 nR dT    (ideal gas) 
 

or  H = Cv T + nR T      (ideal gas) 
 

Notice that since Cp = Cv+ nR for an ideal gas this last equation is equivalent to H = Cp T. 
Now we need to get the derivative form (H/T)v. Once again using the definition of the 
enthalpy, H  U + PV: 
 

 






H

T V
 = 






U

T V
 + V 







P

T V
 

 

The first derivative on the right is the constant volume heat capacity. For an ideal gas, P = nRT/V 
giving: 
 

 






P

T V
 = 

nR
V        (ideal gas) 

 

Substitution then gives: 
 

 






H

T V
 = Cv + nR      (ideal gas) 

 

which is consistent with our previous results. 
 
 
19.  Enthalpy is a state function. The heat transfer at constant pressure is the enthalpy change, 
qP = H. Does this equality argue that q is a state function? 
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Answer:  No, H is a state function, but q is not. The heat transferred depends on the path. In the 
given expression, the path is specified as a constant pressure path. Only for the specific case of a 
constant pressure path is qP = H. 
 
 
20. Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement.2 

 

(a). The work done by the system on the surroundings during a change in state is never greater 
than the decrease in the internal energy of the system. 
 

(b). The enthalpy of a system cannot change during an adiabatic process. 
 

(c). When a system undergoes a given isothermal change in state, the enthalpy change for the 
system does not depend upon the path of the process involved. 
 

(d). When a change in state occurs, the increase in the enthalpy of the system must equal the 
decrease in the enthalpy of the surroundings. 
 

(e). The equation U = q + w is applicable to any macroscopic process, provided no electrical 
work is performed by the system on the surroundings. 
 

(f). No change in state occurring in an isolated system can cause a change in the system’s 
internal energy or enthalpy. 
 

(g). For any constant pressure process, the increase in enthalpy equals the heat transferred 
whether or not electrical or chemical work is done during the process. 
 

(h). A reversible process is one in which the internal energy lost by the system is just sufficient 
to restore the system to its original state. 
 

(i). When a real gas expands into a vacuum, it does work because the molecules of the gas have 
been separated from one another against an attractive force. 
 
 
Answers:  (a). The work done by the system on the surroundings during a change in state is never 
greater than the decrease in the internal energy of the system. 
 

False: Solving U = q + w for the work gives w = U – q. The work done on the surroundings is 
– w = –U + q. The work done on the surroundings can be greater than 
– U if heat is transferred into the system (q>0). In fact, the internal energy need not change at 
all for work to be done. The corrected statement is: “The work done by the system on the 
surroundings during a change in state is equal to the decrease in the internal energy of the system 
added to any heat transferred into the system.” 
 
(b). The enthalpy of a system cannot change during an adiabatic process. 
 

False: For an adiabatic process đq = 0 giving dU = đw = – Pext dV and in general P, V, and T can 
all change. The definition of enthalpy then gives: 
 

 dH = dU + d(PV) = dU + PdV + VdP = – Pext dV + PdV + VdP (adiabatic) 
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which can be non-zero. For example, consider a system in contact with the surroundings so that 
P = Pext in a reversible adiabatic expansion. During the expansion the pressure of the system 
decreases and the change in enthalpy is given by Eq. 7.8.31: 
 

 dH = – P dV + PdV + VdP = V dP    (reversible adiabatic) 
 

Then dH = 0 only for a reversible, constant pressure, adiabatic process, but not in general. The 
correct statement is: “The enthalpy of a system cannot change during a reversible adiabatic 
process at constant pressure.” An example of such a process is the Joule-Thomson expansion. 
 
(c). When a system undergoes a given isothermal change in state, the enthalpy change for the 
system does not depend upon the path of the process involved. 
 

True but too restrictive: The statement is too restrictive because the process does not need to be 
isothermal to be path independent, since enthalpy is a state function. The correct statement is 
“For any given change in state, the enthalpy change is independent of the path.” 
 
(d). When a change in state occurs, the increase in the enthalpy of the system must equal the 
decrease in the enthalpy of the surroundings. 
 

False:  Both internal energy and enthalpy are state functions. However, while internal energy is 
conserved, enthalpy is not (see Section 7.8). Consider a reversible process. The change in the 
enthalpy is given by Eq. 7.8.30: 
 

 dH = đq + V dP    (reversible, PV work only) 1 
 

   Now consider the surroundings. Assume that the surroundings are large in extent and uniform 
so that the pressure of the surroundings is constant. The enthalpy change for the surroundings is 
given by the heat transfer at the constant pressure of the surroundings: 
 

 dHsurr = dqp,surr = – đq        (surroundings at cst. P, PV work only) 2 
 

Comparing Eq. 1 for the system and Eq. 2 for the surroundings shows that enthalpy is not in 
general conserved; the increase in the enthalpy of the system is not equal to the decrease in the 
enthalpy of the surroundings for a general reversible process. 
   However, the enthalpy change of the surroundings is equal in magnitude and opposite in sign 
to the system enthalpy change specifically for a constant pressure process. Then dH = đqp for the 
system from Eq. 1 (or Eq. 7.8.18) and dHsurr = – đqp for the surroundings. So the corrected 
wording is “the increase in the enthalpy of the system is equal to the decrease in the enthalpy of 
the surroundings for a constant pressure process.” 
 
(e). The equation U = q + w is applicable to any macroscopic process, provided no electrical 
work is performed by the system on the surroundings. 
 

True but too restrictive:  The First Law, U = q + w, holds for any form of work. The work done 
in expansion and electrical work is given by: 
 

 đw = – Pext dV +  dqi   giving   dU = đq + đw = đq – Pext dV +  dqi 
 

For another example of non-PV work, for an open system with one component i gives: 
 

 dU = đq – Pext dV + i dni 
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The correct statement is “The equation U = q + w is applicable to any macroscopic process for 
the system.”  
 
(f). No change in state occurring in an isolated system can cause a change in the system’s 
internal energy or enthalpy. 
 

False for the enthalpy but true for the internal energy: The statement is equivalent to the First 
Law in the case of the internal energy, but the enthalpy is not conserved. In general, dH = dU + 
d(PV) = dU + PdV + VdP. In an isolated system dU = 0 and dV = 0 and then: 
 

 dH = VdP or since V is constant:  H = VP   (isolated) 
 

(See also Eq. 7.8.31) So the enthalpy is not necessarily constant for an isolated system. The point 
here is that the “P” in the definition of the enthalpy, H  U + PV, is the system pressure. A 
process in an isolated system can cause a change in pressure. The correct statement is just “No 
change in state occurring in an isolated system can cause a change in the system’s internal 
energy.” 
 
(g). For any constant pressure process, the increase in enthalpy equals the heat transferred 
whether or not electrical work is done during the process. 
 

False:  Consider a process with PV and electrical work, Eq. 7.9.7: 
 

 dU = đq + đw = đq – Pext dV + dqi 
 

From the definition of enthalpy, dH = dU + d(PV), giving: 
 

 dH = đq – Pext dV + dqi + d(PV) 
 

For a constant pressure process in contact with the surroundings P = Pext and the last equation 
reduces to: 
 

 dH = đqp – P dV + dqi + PdV = đqp +  dqi 
 

Solving for the heat transfer at constant pressure gives: 
 

 đqp = dH –  dqi 
 

The correct statement is “The heat transer at constant pressure is the change in enthalpy minus 
any non-PV work.” 
 
(h). A reversible process is one in which the internal energy lost by the system is just sufficient 
to restore the system to its original state. 
 

True but too restrictive:  Internal energy is a state function, so the change in internal energy is 
independent of the path. For a given change in state, the change in internal energy for the 
forward and the reverse processes are always equal in magnitude and opposite in sign. This 
statement is true for any process, reversible and irreversible. The correct statement is something 
like “For any given change in state, the internal energy lost by the system is just sufficient to 
restore the system to its original state.” For a reversible process, specifically, the statement is “A 
reversible process is one in which the work transfer by the system is just sufficient to restore the 
system to its original state.” 
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(i). When a real gas expands into a vacuum, it does work because the molecules of the gas have 
been separated from one another against an attractive force. 
 

False:  The work is only a function of the external pressure: đw = – Pext dV. For expansion into a 
vacuum Pext = 0 and no work is done. The internal energy, however, does change for a real gas 
expansion against a vacuum. We will calculate the change of the internal energy in Chapter 9. 
The correct statement is “When a real or ideal gas expands into a vacuum, no work is done, 
because the external pressure is zero.” 
 
 
21.  The Gibbs free energy is usually considered a function of the temperature and the pressure, 
G(T,P). Write the total differential of G with respect to changes in temperature and pressure. 
 
 
Answer:  The independent variables for G are given as T and P. So both T and P change: giving 
dT and dP. The form of the differential is then: 
 

 dG = 






   

   
 dT + 







   

   
 dP 

 

Then the total differential is given as: 

 dG = 






G

T P
 dT + 







G

P T
 dP 

 
 
22.  Write the total differential of U considered as a function of T and P as independent variables. 
 
 
Answer:  The independent variables for U are given as T and P. So both T and P change, and 
these changes are dT and dP. The form of the differential is then: 
 

 dU = 






   

   
 dT + 







   

   
 dP 

 

Then the total differential is given as: 

 dU = 






U

T P
 dT + 







U

P T
 dP 

 
 
23.  (a). Integrate Eq. 7.6.10 for a constant temperature process using the total differential. 
Assume a narrow pressure range so that V  Vo and T is constant. (b). Integrate Eq. 7.6.9 using 
the “short-cut” method discussed in the Addendum, Sec. 7.11. 
 
 
Answer:  (a). For a constant temperature process, Eq. 7.6.10 reduces to:  dV = – V T dP. See 
problem 12 and 13 for the integration. 
(b). From the definition of T, Eq. 7.6.9, multiplying both sides of the equation by – V gives: 
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V

P T
 = – V T 

 
Multiply both sides of the equation by dP and “cancel” the P and dP on the left: 
 

 






V

P T
 dP  = – V T dP or dV  = – V T dP 

 
which is the same as the rigorous approach starting with the total differential. 
 
 
24. Find (P/T)V for a Van der Waals gas in a closed system. 
 
 
Answer:  Rearranging the Van der Waals equation, Eq. 7.5.1, to isolate P as the dependent 
variable on the left side of the equation gives: 
 

 P = 
nRT

V– nb – 
an2

V2  
 

Only the first term on the right is temperature dependent: 
 

 






P

T V
 = 

nR
V– nb 

 
since n and R are constants, and V is the independent variable that is held constant for the partial 
derivative 
 
 
25.  The critical point is the point of inflection on the critical isotherm. The point of inflection 
corresponds to: 
 

 



∂P

∂V T
 = 0 and 



∂2P

∂V2
T

 = 0 

 

Assume the gas is described by the Van der Waals equation of state. The two equations for the 
inflection point, above, provide two equations in two unknowns. Show that, in terms of the Van 
der Waals a and b coefficients, the critical volume, temperature, and pressure are given by: 

 Vc = 3nb  Tc = 
8a

27bR Pc = 
a

27 b2 

 
 

Answer:  Starting from Example 7.6.1:  



∂P

∂V T
 = – 

nRTc

(Vc – nb)2+ 
2an2

V
3
c

 = 0   1 

The second derivative is:      



∂2P

∂V2
T

 = 
2nRTc

(Vc – nb)3 – 
6an2

V
4
c

 = 0   2 
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To solve for Vc multiply Eq. 1 by  2/(Vc – nb)  to give: 
 

  – 
2nRTc

(Vc – nb)3+ 
4an2

V
3
c(Vc – nb)

 = 0       3 

 

Now add Eqs. 2 and 3: 
 

  2 + 3:  – 
6an2

V
4
c

 + 
4an2

V
3
c(Vc – nb)

 = 0       4 

 

Dividing both sides of Eq. 4 by the common factor  2an2/V
3
c gives: 

 

 – 
3

Vc
 + 

2
 (Vc – nb) = 0         5 

 

and solving for Vc gives :  Vc = 3nb        6 
Substituting Eq. 6 into Eq. 1 gives: 
 

  – 
nRTc

(3nb – nb)2+ 
2an2

(3nb)3 = 0  or  Tc = 
8a

27bR      7 
 

Finally, substituting Eq. 6 and 7 into the original Van der Waals equation gives: 
 

 Pc = 
nRTc

Vc– nb – 
an2

V
2
c

 =  
nR



8a

27bR
3nb– nb  – 

an2

(3nb)2      8 

 

 Pc = 
a

27 b2          9 

 
 
26.  Calculate the change in internal energy for an adiabatic expansion of a gas for a change in 
volume from 1.00 L to 10.00 L against a constant external pressure of 1.00 bar. 
 
 
Answer:  Starting with Eq. 7.8.2, for the finite process U = q + w. However, for an adiabatic 
process, q = 0, giving U = w. The work done in the expansion is w = – Pext V: 
 

 w = – 1.00x105 Pa (10.00 L – 1.00 L)(1 m3/1000 L) = -900. J 
 

which gives U = -900. J 
 
 
27.  Calculate the internal energy and enthalpy change for a constant volume process for one 
mole of ideal gas with a change in temperature from 298.2 K to 323.2 K. Assume the gas is 
diatomic with a constant volume heat capacity of 5/2 nR. Explain the relative sizes of the internal 
energy and the enthalpy changes. 
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Answer:  The plan is to use U = qv = Cv T, since the process is at constant volume. Then Eq. 
7.8.29 can be used to calculate the enthalpy, since this system is an ideal gas. 
   From Eq. 7.8.10: 
 

 U = Cv T = 5/2 nR T = 5/2 (1.000 mol)(8.3145 J K-1 mol-1)(323.2 K – 298.2 K) 
       = 519.6 J 
 

Using Eq. 7.8.29: 
 H = U + nR T = 519.6 J + (1.00 mol)(8.3145 J K-1 mol-1)(25.0 K) 
        = 519.6 J + 207.9 J = 727. J 
 

So even though the pressure changes in this process, the change in enthalpy can still be 
calculated. Now, why is the enthalpy change bigger than the internal energy change? Since the 
pressure of the gas increases on heating, the PV-product increases: d(PV) > 0. No work is done, 
since the volume is constant, but the PV-product does increase. Then dH = dU + d(PV) for a 
general process and d(PV) adds to dU. So the enthalpy change is bigger than the internal energy 
change. Notice that the difference between H and U is not the work done by this process, 
because no expansion work is done at constant volume. 
 
 
28.  Find the enthalpy change for a constant volume process for a change in temperature T of a 
Van der Waals gas, starting from the internal energy change, U. 
 
 
Answer:  The plan is to use Eq. 7.8.16 and the Van der Waals equation of state to find (PV). 
   From the Van der Waals equation, Eq. 7.5.1: 
 

 P = 
nRT

V– nb – 
an2

V2  

The PV-product is then: 
 

 PV = 



V

V– nb  nRT – 
an2

V  
 

and for a constant volume process for a change in temperature T: 
 

 (PV) = 



V

V– nb  nRT      (cst. V) 
 

Finally then from Eq. 7.8.16: 
 

 H = U + 



V

V– nb  nRT      (cst. V) 
 

You can also use Eq. 7.8.10 if the heat capacity is constant over the temperature range: 
 

 H = Cv T + 



V

V– nb  nRT      (cst. V) 
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29. Heat capacities are often approximated by a power series: Cp,m = a + b T + c T2. Find the 
change in molar enthalpy for a constant pressure process from T1 to T2. 
 
 
Answer:  The plan is to integrate the partial derivative relationship (H/T)P = Cp. For a constant 
heat capacity, H = Cp(T2 – T1) = CpT. 
   The integral is: 
 
 H = T1

T2 Cp dT = T1

T2 ( a + b T + c T2) dT 

       = T1

T2 a dT + T1

T2 bT dT + T1

T2 cT2 dT 

       = a [ T |T1
T2 + 

b
2 [ T2 |T1

T2 + 
c
3 [ T3 |T1

T2 

       = a(T2– T1) + 
b
2 (T2

2 – T2
1) + 

c
3 (T3

2 – T3
1) 

 
 
30.  Consider the surroundings as a constant temperature and pressure reservoir. Show for a 
reversible adiabatic expansion of a gas from P1 to P2 that the enthalpy change of the system is not 
equal in magnitude and opposite in sign to the enthalpy change of the surroundings. In other 
words, enthalpy is not conserved. 
 
 
Answer:  The plan is to note that the surroundings are at constant pressure, which gives a simple 
relationship for the enthalpy change of the surroundings. The enthalpy change of the system is 
given by Eq. 7.8.31. 
   Since the surroundings are at constant pressure, the enthalpy change for the surroundings is the 
heat transfer to the surroundings. This transfer is at constant pressure, from the perspective of the 
surroundings, even if the system is not at constant pressure. The heat transferred to the 
surroundings is then the negative of the heat transfer of the system:Hsurr = –đq. For an adiabatic 
process, đq = 0 giving no change in enthalpy for the surroundings. The enthalpy change of the 
system for a reversible adiabatic process is given by Eq. 7.8.31: dH = VdP, which is non-zero. 
Because the enthalpy change of the system is not equal in magnitude and opposite in sign to the 
enthalpy change of the surroundings, enthalpy is not conserved. 
 
 
31.  Consider the surroundings as a constant temperature and pressure reservoir. Show for a 
constant pressure process that the enthalpy change of the system is equal in magnitude and 
opposite in sign to the enthalpy change of the surroundings. 
 
 
Answer: The plan is to note that the surroundings are at constant pressure, which gives a simple 
relationship for the enthalpy change of the surroundings. 
   Since the surroundings are at constant pressure, the enthalpy change for the surroundings is the 
heat transfer to the surroundings. This transfer is at constant pressure, from the perspective of the 
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surroundings, even if the system is not at constant pressure. The heat transferred to the 
surroundings is then the negative of the heat transfer of the system:Hsurr = –đq. 
   The process is at constant pressure for the system, giving H = đq = đqP. As a consequence, 
H = – Hsurr for the special case of a constant pressure process, for the system. Note that the 
pressure of the system and the pressure of the surroundings do not necessarily need to be the 
same. For example, a gas can be confined in a cylinder with a weight on the piston, giving P > 
Psurr. However, if the system is held at constant pressure by contact with the surroundings, then 
H = – Hsurr is guaranteed since P = Psurr. This holds for example, for a solution in a beaker at 
ambient pressure. 
   For a constant pressure process, enthalpy is conserved. However, enthalpy is not conserved in 
general (see the previous problem for an example). 
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Chapter 8 Problems: Thermochemistry 

 
1.  Verify the statement from Sec. 8.2 that the difference between Eqs. 8.2.3 and 8.2.4 is the 
enthalpy of vaporization of water, Eq. 8.1.1. 
 
 
Answer:  Reversing Eq. 8.1.1 and adding to 8.2.3 gives Eq. 8.2.4: 
 

   3 NO2 (g, 1bar) + H2O (l)  2 HNO3 (l) + NO (g, 1bar)     rH = -71.66 kJ mol-1 (8.2.3) 
        H2O (g)  H2O (l)   –vapH = -44.01 kJ mol-1       –(8.1.1) 
            

  3 NO2 (g, 1bar) + H2O (g)  2 HNO3 (l) + NO (g, 1bar)     (8.2.4) 
 

By Hess’s Law the sum of the reaction enthalpies for the two reactions as written should give the 
reaction enthalpy for Eq. 8.2.4: 
 

 rH(Eq. 8.2.4) = rH(Eq. 8.2.3) – vapH(H2O) 
     = -71.66 kJ mol-1 – 44.01 kJ mol-1 = -115.67 kJ mol-1 
 

as listed for Eq. 8.2.4. Rearranging then, rH(Eq. 8.2.3) – rH(Eq. 8.2.4) = vapH(H2O). 
 
2.(a). Write the chemical reaction that corresponds to the enthalpy of formation of urea, 
(NH2)2CO. (b). The enzyme urease catalyzes the hydrolysis of urea to ammonia and carbon 
dioxide. Using the data in the appendix, calculate the reaction enthalpy for the hydrolysis of urea 
to give gaseous ammonia and carbon dioxide, at standard state and at 298.15 K. 
 
 
Answer:  (a).  The formation reaction is the production of one mole of substance from the 
constituent elements in their standard states: 
 

 C (graph) + 2 H2 (g, 1 bar) + N2 (g, 1bar)  (NH2)2CO (s)      fH = -333.1 kJ mol-1 

 

(b).  The hydrolysis reaction and enthalpies of formation, from Tables 8.4.1 and 8.4.2, are: 
 

  (NH2)2CO (s) + H2O (l)    2 NH3 (g, 1 bar) + CO2 (g, 1bar)     units 
 fH     -333.1  -285.830 -46.11    -393.509        kJ mol-1 
 

Remember that the enthalpy is an extensive function, so the stoichiometric coefficients are 
important. The reaction enthalpy change is given by Eq. 8.4.9: 

 rH = [products] – [reactants] = i fH 
 rH = [2(-46.11) + (-393.509)] – [(-333.1) + (-285.83)] kJ mol-1 = 133.2 kJ mol-1 
 
 
3.  NaCl aerosols are created when bubbles burst at the surface of the ocean. However, NaCl in 
marine aerosols has a short lifetime. A natural source of sulfur in the atmosphere above the 
ocean is the production of H2S (g) from bacteria. H2S is oxidized by atmospheric oxygen to give 
sulfur trioxide, which then dissolves in water droplets to form highly concentrated sulfuric acid. 
The sulfuric acid reacts with NaCl to give HCl gas and aqueous NaHSO4. (a). Using the data in 
the appendix, calculate the reaction enthalpy for the reaction of NaCl (s), H2S (g), and 
atmospheric O2 through the following reactions, under standard conditions and at 298.15 K. 
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  H2S (g, 1bar) + 2 O2 (g, 1bar)  SO3 (g, 1bar) + H2O (g, 1bar) 

  SO3 (g, 1 bar) + H2O (l)  H2SO4 (l) 
  NaCl (s) + H2SO4 (l)  HCl (g, 1bar) + Na+ (ao) + HSO–

4 (ao) 
 

(b). Combine the three reactions to show the overall process. Use the combined reaction to 
calculate the overall reaction enthalpy. Compare with the result in part (a). 
 
 
Answer:  The plan is to use Hess’s Law for each reaction and then the three reactions in 
sequence. Note that both gaseous and liquid water are involved in the reactions. Use the enthalpy 
of formation for pure liquid H2SO4. 

(a). The enthalpies of formation, from Table 8.4.1, combine to give the reaction enthalpies: 
 

  H2S (g, 1bar) + 2 O2 (g, 1bar)  SO3 (g, 1bar) + H2O (g, 1bar)        units  1 
 fH: -20.63      0  -395.72          -241.818     kJ mol-1 

 

  SO3 (g, 1 bar) +  H2O (l)    H2SO4 (l)      2 
 fH: -395.72 -285.83       -813.989      kJ mol-1 
 

  NaCl (s)  +  H2SO4 (l)  HCl (g, 1bar) + Na+ (ao) + HSO–
4 (ao)   3 

 fH:  -411.003     -813.989    -92.307   -240.12     -887.34    kJ mol-1 
 

Each reaction enthalpy change is given by Eq. 8.4.9: 

 rH = [products] – [reactants] = i fH 
 

For reaction 1: 
     rH = [(-395.72) + (-241.818)] – [(-20.63) + 0] kJ mol-1 = -616.91 kJ mol-1 
For reaction 2: 
    rH = [(-813.989)] – [(-395.72) + (-285.83)] kJ mol-1 = -132.44 kJ mol-1 
For reaction 3: 
    rH = [(-92.307) + (-240.12) + (-887.34)] – [(-411.003) + (-813.989)] kJ mol-1= 5.23 kJ mol-1 
 

The overall sequence gives rH = (-616.91) + (-132.44) + (5.23) kJ mol-1 = -744.12 kJ mol-1 
 

(b).  We can check the results by working directly with the overall reaction. The sum of the three 
steps gives: 
 

 H2S (g) + 2O2 (g) + NaCl (s) + H2O (l)  HCl (g) + Na+(ao) + HSO–
4 (ao) + H2O (g) 

  fH:  -20.63       0     -411.003    -285.83    -92.307   -240.12    -887.34       -241.818   kJ mol-1 
 

 rH = [(-92.307)+(-240.12)+(-887.34)+(-241.818)] – 
   [(-20.63)+(0)+(-411.003)+(-285.83)] kJ mol-1 
          =  -744.12 kJ mol-1 
 

The results are identical to the sum of the three sequential reactions; enthalpy is a state function, 
which is independent of the path. Notice that the combined process includes the enthalpy of 
vaporization of water. The actual aerosols are probably best thought of as “slush balls” with 
NaCl in the solid and aqueous phase, the ratios of which depend on the humidity. The standard 
state for the aqueous electrolytes is totally dissociated at a concentration of 1.000 m. 
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4.  Components of perfumes must be in the gas phase to be smelled. Monoterpines are common 
ingredients in perfumes and “essential oils,” Figure P8.1. Monoterpines are also found in health-
care products and the air in forests. Determine the enthalpy of formation for each listed 
monoterpine in the gas phase. The literature values for the enthalpy of formation of the solids or 
liquids are available from Lange's Handbook, the CRC, or Data Section Table 8.4.2. The 
enthalpies of vaporization or sublimation are in Data Section Table 8.1.1. 
 

CH3

CH3

CH2 CH3

CH3 CH3

CH2

CH3 CH3

 
 camphene  -pinene  -pinene 
 

CH3

CH3 CH2

CH3

CH3 CH3

OH

CH3 H

CH3

CH3

H

OH

H

 
 limonene,  -terpineol  menthol 
 

Figure P8.1:  Some monoterpine natural products. 

 
Answer:  The enthalpies of vaporization or sublimation in kJ mol-1 are: camphene, 43.5; -
pinene, 44.7; -pinene, 46.4; limonene, 43.9; -terpineol, 52.3; menthol, 56.5 kJ/mol, Table 
8.1.1. The enthalpy of vaporization or sublimation must be added to the liquid or solid enthalpy 
of formation: 
 

 ∆fH (s or l) 

kJ mol-1 (kcal mol-1) 

∆subH or ∆vapH 
kJ mol-1 (kcal mol-1) 

∆fH(g) 

kJ mol-1 (kcal mol-1) 

camphene (s) -76.23 (-18.22) 43.5 (10.40) -32.7 (-7.82) 

-pinene (l) -16.4 (-4.04) 44.7 (10.68)   28.3 (6.76) 

-pinene (l) -7.70 (-1.84) 46.4 (11.09)   38.7 (9.25) 

limonene (l) -54.5 (-23.51) 43.9 (10.49) -10.6 (-2.53) 

-terpineol (l) -359.2 (-85.84) 52.3 (12.50) -306.9 (-73.34) 

menthol (s) -480.57 (-114.86) 56.5 (13.50) -424.07 (-101.36) 
 

We will use these values for a later problem using molecular mechanics. 
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5. Calculate the standard internal energy of formation at 298.2 K of liquid methyl acetate, 
C3H6O2, from its standard enthalpy of formation, which is -442.0 kJ mol-1 at 298.2 K.  
 
 
Answer:  The plan is to write the balanced chemical reaction that corresponds to the process and 
then use rH = rU + rng RT. The balanced reaction is: 
 

 3 C (graph) + 3 H2 (g) + O2 (g)   C3H6O2 (l) 
 

and rng = [products] – [reactants] = [0] – [ 4 mol] = -4 mol 
 

 rH = rU + rng RT 
 (1 mol)(-442.0 kJ mol-1) = rU + (-4 mol)(8.314 J K-1 mol-1)(1 kJ/1000 J)(298.2 K) 
 fU = rU = -442.0 kJ + 9.92 kJ = -432.1 kJ 
 

Since the internal energy of formation is for one mole, the final value may also be written as 
fU = -432.1 kJ mol-1. Alternatively, rng is usually taken as unitless. 
 
 
6. The enthalpy of combustion of cyclopropane, C3H6, is -2091. kJ mol-1 at 298.2 K and 1.00 
bar. Given that ∆fH° for CO2= -393.509 kJ mol-1 and ∆fH° for  H2O(l)= -285.830 kJ mol-1, 
calculate the enthalpy of formation of cyclopropane. 
 
 
Answer:  The pressure given is 1 bar, so the system is in the standard state. The first step to write 
the balanced chemical reaction for the combustion process and to note the literature values for 
the known enthalpies of formation: 
 
 
 

 C3H6 (g) + 9/2 O2 (g)      3 CO2 (g)      +       3 H2O (l) 
  ∆fH°:      x  0 -393.509 kJ mol-1 -285.830 kJ mol-1 
 

Remember that the enthalpy is an extensive function, so the stoichiometric coefficients are 
important. The reaction enthalpy change is given by Eq. 8.4.9: 

 rH = combH = [products] – [reactants] = i fH 
 

 combH = [3 (-393.509 kJ mol-1) + 3 (-285.830 kJ mol-1)] – [x + 0] 
 -2091. kJ mol-1 = -2038.017 kJ mol-1 – x 
 

where: 
 

 x = fH(cyclopropane) = -2038.017 + 2091. kJ mol-1 = 53. kJ mol-1 
 
 
7.  The enthalpy of combustion at 298.2 K and 1.000 bar pressure for cyclohexane is -3953.0 kJ 
mol-1. Calculate the standard state enthalpy of formation at 298.2 K. 
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Answer:  The pressure given is 1 bar, so the system is in the standard state. The first step is to 
write the balanced chemical reaction for the combustion process and to note the literature values 
for the known enthalpies of formation: 
 

 C6H12 (l) + 9 O2 (g)      6 CO2 (g)      +       6 H2O (l) 
  ∆fH°:      x  0 -393.509 kJ mol-1 -285.830 kJ mol-1 
 

Remember that the enthalpy is an extensive function, so the stoichiometric coefficients are 
important. The reaction enthalpy change is given by Eq. 8.4.9: 

 rH = combH = [products] – [reactants] = i fH 
 

 combH = [6(-393.509 kJ mol-1) + 6(-285.830 kJ mol-1)] – [x + 0] 
 -3953.0 kJ mol-1 =  -4076.034 kJ mol-1 – x 
 

where: 
 

 x = fH(cyclohexane) = -4076.034 + 3953.0 kJ mol-1= -123.0 kJ mol-1 
 
 
8.  The Haber process is central to the production of fertilizers and many commodity chemicals: 
 

 ½ N2 (g) + 3/2 H2 (g)  NH3 (g) 
 

The kinetics for the reaction are unfavorable at room temperature. Calculate the enthalpy change 
for the reaction at 500. K. Use Table 7.2.3 to express the heat capacities as a cubic polynomial. 
 
 
Answer:  The enthalpy change for the reaction is just the enthalpy of formation of NH3 (g), 
-46.11 kJ mol-1. For constant heat capacities, rHT2 = rHT1 + rCp T. However, in this case we 
need to take the temperature dependence of the heat capacities into account. The difference for 
the heat capacities for the reaction is: 
 
 

Substance a
J K-1 mol-1 

b
10-2 J K-2 mol-1 

c
10-5 J K-3 mol-1 

d
10-9 J K-4 mol-1 

N2 (g) 28.883 -0.157 0.808 -2.871 
H2 (g) 29.088 -0.192 0.400 -0.870 
NH3 (g) 24.619 3.75 -0.138  
r -33.454 4.116 -1.142 2.740 

 
 rCp =  [products] – [reactants] = ra + rb T + rc T2 + rd T3 

         = -33.454 + 0.04116 T + (-1.142x10-5) T2 + 2.740x10-9 T3   J K-1 
 

Then using this cubic polynomial: 

 rHT2 = rHT1 + ra (T2– T1) + 
rb
2  (T2

2– T1
2) + 

rc
3  (T2

3– T1
3) + 

rd
4  (T2

4– T1
4) 

 The enthalpy at 500.0C is then: 
 

 rHT2 = -46.11 kJ mol-1 – 3.77 kJ mol-1 = -49.88 kJ mol-1 
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9.  Yeasts convert glucose to ethanol. Calculate the change in enthalpy if one mole of glucose is 
converted to ethanol at 298.2 K: 
 

 C6H12O6 (s)  2 CH3CH2OH (l) + 2 CO2 (g) 
 

[fH(glucose) = -1274. kJ mol-1, fH(ethanol) = -277.69 kJ mol-1, fH(CO2) = -393.51 kJ 
mol-1] (For comparison the oxidation all the way to CO2 and H2O provides much more energy 
for the organism, but requires O2.) 
 
 
Answer:  The reaction enthalpy change is given by Eq. 8.4.9: 

 rH = [products] – [reactants] = i fH 
 

 rH =  [2(-277.69 kJ mol-1) + 2 (-393.51 kJ mol-1)] – [1 (-1274. kJ mol-1)] 
          =  -68.4 kJ mol-1 
 
 
10.  The molar enthalpy of vaporization of water at 298.2 K is vapH = 44.01 kJ mol-1. Calculate 
the molar enthalpy of vaporization of water at the boiling point of water, 373.2 K. The Cp,m of 
water liquid is 75.29 J K-1 mol-1 and of water vapor is 33.58 J K-1 mol-1. 
 
 
Answer:  The transition is H2O (l)  H2O (g). The difference in heat capacity for the phase 
transition is: 
 

 trCp = 33.58 J K-1 mol-1 – 75.29 J K-1 mol-1 = -41.71 J K-1 mol-1 

 

Eq. 8.5.5 gives: 
 

 trHT2 = trHT1 + trCp T 
 trHT2 = 44.01 kJ mol-1 + (-41.71 J K-1 mol-1)(1 kJ/1000 J)(373.15 K – 298.15 K) 
 trHT2 = 44.01 kJ mol-1 – 3.128 kJ mol-1 = 40.88 kJ mol-1 
 

A significant amount of energy in our society is used to produce steam for space heating and 
drying. For example, the hot metal rollers used to dry paper are heated by steam. Papermaking is 
one of the top energy consuming industries for this reason. 
 
 
11.  Thermophilic bacteria operate at 80.0C. Calculate the change in enthalpy for the reaction in 
the Problem 9 at 80.0C. Cp for glucose is 209. J K-1mol-1, Cp for ethanol is 111.5 J K-1mol-1, and 
Cp for CO2 is 37.11 J K-1 mol-1. 
 
 
Answer:  Assuming constant heat capacities, rHT2 = rHT1 + rCp T. The difference for the 
heat capacities for the reaction is: 
 

 rCp =  [products] – [reactants] = i Cp,i 
         = [2 (111.5 J K-1mol-1) + 2 (37.11 J K-1mol-1)] – [1(209. J K-1mol-1)] 
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         = 88.2 J K-1 mol-1 

 

The enthalpy at 80.0C is then: 
 

 rHT2 = -68.4 kJ mol-1 + 88.2 J K-1 mol-1(55.0 K)(1 kJ/1000 J) 
           = -68.4+ 4.9 kJ mol-1 = -63.5 kJ mol-1 = -64. kJ mol-1 
 
 
12.  Show that the temperature drift in a calorimetry experiment, before and after the reaction is 
complete, for short times and small temperature differences with the surroundings, is 
approximately linear. [Hint use Newton’s Law of Cooling.] 
 
 
Answer:  Newton's Law of Cooling, Eq. 7.2.18, gives: 
 

 (T – Tsurr) = (To – Tsurr) e– r t  with r = 
KA
 CP

      (linear gradient) 
 

Expanding the exponential term in a Taylor series for short times, Eq. 1.4.20, and keeping only 
the first two terms gives e– r t  1 – r t: 
 

 (T – Tsurr) = (To – Tsurr) (1 – r t) 
 

Solving for the temperature as a function of time gives: 
 

 T = Tsurr + To – Tsurr – (To – Tsurr) r t = To – (To – Tsurr) r t 
 

defining To  (To – Tsurr) gives a linear temperature drift: 
 

 T = To – To r t 
 
 
13.  In Sec. 8.4 we used two different perspectives for envisioning a partial derivative. The first 
was based on making a very small change in the extent of a reaction and then normalizing the 
change in enthalpy to place the result on a per mole basis, rH = (H/)P = H/. The second 
model was to make a one mole change in the extent of the reaction, but in such a large quantity 
of reactants and products that the partial pressures remained essentially constant, Figure 8.4.3. In 
either perspective the constancy of the pressures was maintained for the partial derivative. 
Consider a solution containing nA moles of A and nB moles of B. The partial molar volume with 
respect to changes in the number of moles of A while keeping the number of moles of B constant 
is given as (V/nA)nB

. The resulting partial derivative is at constant concentration in the same 
way that the reaction enthalpy is at constant pressure for each reactant and product. Use both of 
the perspectives for envisioning partial derivatives to describe the meaning of the partial molar 
volume. 
 
 
Answer:  Consider the perspective of making a very small change and then normalizing to a per 
mole quantity. Start with nA and nB moles of the substances with a total volume V in a 
volumetric flask: 
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Add so small an amount of A, nA, that the concentration of the solution remains essentially 
unchanged. Then the volume change per mole of added A is the partial molar volume: 
 

 






V

nA nB

 = 
V
nA

  limit as nA  0 

 

This partial molar volume is the derivative of the solution volume with respect to changes in the 
amount of A. Now consider the perspective of making a one mole change in a very large amount 
of solution. Start with nA and nB moles of the substances with a total volume V in a swimming 
pool: 
 
 
 
 
 
 
The amount of A and B in the pool is so large that the concentration of A remains essentially 
unchanged upon the addition of one mole of A. Then the change in volume is already for one 
mole of A and: 
 

 






V

nA nB

 = V  for nA = 1 mol 

 

The partial molar volume is the change in volume upon addition of one mole of A to so large a 
volume of solution that the concentration remains essentially unchanged. 
 
 
14.  In Sec. 8.4 we used two different perspectives for envisioning a partial derivative. The first 
was based on making a very small change in the extent of a reaction and then normalizing the 
change in enthalpy to place the result on a per mole basis, rH = (H/)P = H/. The second 
model was to make a one mole change in the extent of the reaction, but in such a large quantity 
of reactants and products that the partial pressures remained essentially constant, Figure 8.4.3. In 
either perspective the constancy of the pressures was maintained for the partial derivative. Use 
both of the perspectives for envisioning partial derivatives to describe the meaning of the 
reaction heat capacity rCp. 
 
 
Answer:  The change in heat capacity for the reactions is given by the analog of Eq. 8.5.26: 
 

 rCp = 
i=1

ns

 i Cpi        1 

nA & nB 

nA 

V 

nA & nB nA & nB 

nA = 1 mol 

V 
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where the Cpi are the molar heat capacities for each reactant and product. Consider the 
perspective of making a very small change and then normalizing to a per mole quantity. The 
reasoning follows Eqs. 8.4.17-8.4.19. Consider the change in heat capacity for a small change in 
extent of the reaction, say 0.0001 mole, and then divide the resulting change in Cp by the number 
of moles, Cp/0.0001 mol = rCp. The result is a per mole quantity, and since the change in 
extent of the reaction is so small, the partial pressures of the constituents remain essentially 
constant. The change in Cp for infinitesimal changes in the amounts of reactants and products is: 
 

 dCp = 
i=1

ns

 Cpi dni      (cst. T&P) 2 

 

or in terms of the extent of the reaction, Eq. 3.1.4, with dni = i d: 
 

 dCp = 
i=1

ns

 i Cpi d      (cst. T&P) 3 

 

Dividing both sides of the equation by d gives: 
 

 






Cp

 T,P
 = 

i=1

ns

 i Cpi = rCp     (cst. T&P) 4 

 

where the last equality is from Eq. 1. Dividing dCp by d puts the reaction heat capacity on a per 
mole basis, even though the change in extent of the reaction is infinitesimal. The reaction heat 
capacity is the derivative of the heat capacity with respect to the extent of the reaction. 
   Now consider the perspective of making a one mole change in extent in a very large amount of 
reactants and products, Figure 8.4.3. The reaction heat capacity, rCp, corresponds to the change 
in heat capacity for a change in reaction extent of one mole. However, since the mole change is 
such a small fraction of the total amounts, the partial pressure of each constituent remains 
constant. Then the change in heat capacity is already for  = one mole and: 
 

 






Cp

 T,P
 = Cp for one mole 

 

The reaction heat capacity is the change in heat capacity for one mole of reaction for so large an 
amount of reactants and products that the partial pressures remain essentially unchanged. 
 
 
15.  Octane is often taken as being representative of the fuel value for gasoline. When 0.7908 g 
of benzoic acid was burned in a bomb calorimeter the temperature of the calorimeter increased 
2.0252ºC. When 0.5458 g of octane was burned in the same calorimeter under the same 
conditions, the temperature increase was 2.5272ºC. Assume the calorimeter was at an average 
temperature of 298.15 K. Calculate the enthalpy of combustion and the enthalpy of formation of 
octane at 298.15 K. 
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Answer:  The steps are outlined in Sec. 8.6. 1. Bomb calorimeters are at constant volume. The 
molar mass of octane is 114.23 g mol-1. The amount of octane burned was noct = 4.77808x10-3 
mol. 
 1. Determine the heat capacity of the calorimeter: 
  with qcal from a known reaction: qcal = –qv = 26.436 J g-1 (0.7908 g) = 20.9056 kJ 
  Ccal = qcal/Tcal = 10.3227 kJ K-1 
 2. Determine the internal energy change for the reaction in the calorimeter: 
  a. with qcal = Ccal Treact = 10.3227 kJ K-1(2.5272 K) = 26.0876 kJ 
      and qreact  = – qcal = -26.0876 kJ 
  b. giving qreact = qv = U = -26.0876 kJ 
 3. Convert to molar terms for unit extent: combU = U/n = -26.0876 kJ/4.77808x10-3 mol 
  combU = -5459.85 kJ mol-1 
 

Notice that once the value is on a per mole basis, you no longer need to know the 
actual amount used in the experiment. 

 4. Relate rU and rH: the balanced combustion reaction is: 
  C8H18 (l) + 25/2 O2 (g)  8 CO2 (g) + 9 H2O (l) 
  giving rng = 8 – 25/2 = -9/2 = -4.5 mol of gas per mol of reaction and then 
  combH = combU + rng RT 
    = -5459.85 kJ mol-1 + (-4.5)(8.31447 J K-1 mol-1)(298.15 K) 
    = -5471.01 kJ mol-1 

 5. Calculate fH from rH: Use the table, below, and 

  rH = combH = [products] – [reactants] = i fH 
 

  C8H18 (l) + 25/2 O2 (g)  8 CO2 (g) + 9 H2O (l) units 
    fH:   x  0   -393.51 -285.83  kJ mol-1 

 
  -5471.01 kJ mol-1 = [8(-393.51 kJ mol-1) + 9(-285.83 kJ mol-1)] – [ x + 25/2(0)] 
  fH = x = -249.54 kJ mol-1 
 
 
16.  This problem explores the difference between bond enthalpies, Table 8.8.1, and bond 
increments, Table 8.8.2. Use the bond enthalpies in Table 8.8.1 to estimate the enthalpy of 
formation for methane. Calculate the bond increment for the C–H bond as ¼ of the estimated 
enthalpy of formation of methane. Compare your results with the bond increments in Table 8.8.2. 
 
 
Answer:  The enthalpy of formation for methane can be estimated using bond enthalpies and the 
formation reaction: 
 

 C(graph) + 4 H2 (g)   CH4 (g) 
 

 #   Bonds Broken    #   Bonds Formed 
 1 C (graph)      716.7 kJ mol-1 4 C-H  4(412 kJ mol-1) 
 2  H-H    2 (436 kJ mol-1)      
 total     1588.7 kJ mol-1  – total    1648 kJ mol-1  =  -59.3. kJ mol-1 
 

 bond increment(C–H Aliphatic)  ¼ (-59.3 kJ mol-1)  -14.8 kJ mol-1 
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The bond increment listed in Table 8.8.2 for C–H bonds differs from this result because the final 
parameters are optimized to reproduce the enthalpy of formation for a wide variety of aliphatic 
hydrocarbons in conjunction with steric energy calculations. 
 
 
17.  In Table 8.9.1 note that the constant volume heat capacity for CO2 exceeds the prediction 
based on translation and rotation alone by a larger margin that does O3. (a). Why? Answer 
qualitatively, no calculations are needed. (b). Why does rotation contribute only 2/2 RT to the 
heat capacity for CO2, while the contribution for O3 and H2O is 3/2 RT? 
 
 
Answer:  (a). The heat capacity for CO2 exceeds the prediction based on translation and rotation 
alone by a larger margin because CO2 has two low frequency bending modes, while O3 has only 
one, see Figures 8.9.2 and 8.11.1. Bending normal modes are typically at much lower frequency 
than stretching modes. (b). CO2  is linear so it has only two degrees of freedom for rotation. 
 
 
18. The general form for the Coulomb potential is: 
 

 ele = 
qi qj

4or rij
 

 

where qi and qj are the charges on the two atoms in coulombs, o is the vacuum permittivity, r is 
the relative dielectric constant, and rij is the distance between the two charges in meters. Eq. 
8.8.18 is written in terms of the partial charges Qi, where qi = Qi e, with e the fundamental unit of 
charge in coulombs. For example, for an electron, Qi = -1 and for a proton Qi = 1. If the partial 
charge on an atom is given as Qi = 0.210 then the charge in coulombs is qi = 0.210 e. Qi and r 
are unitless. The vacuum permittivity is the dielectric constant of vacuum, 
o = 8.85419x10-12 J-1 C2 m-1. Verify the units conversion constant in Eq. 8.8.18. 
 
 

Answer:  Assuming one mole of interacting charges, substituting qi = Qi e for the charge, and rij 
in Angstroms gives: 
 

 ele = 
NA e2 Qi Qj

4or rij 1x10-10 m Å-1 = 




NA e2

1x10-10 m Å-1o
 

Qi Qj

4r rij
 

 

      = 



6.02214x1023 mol-1(1.60217733x10-19 C)2

1x10-10 m Å-1(8.85419x10-12 J-1 C2 m-1)  
Qi Qj

4r rij
 

 

      = (1.74591x107 J mol-1 Å) 
Qi Qj

4r rij
 = (17459.1 J mol-1 Å) 

Qi Qj

4r rij
 

 
 
19.  Calculate the electrostatic potential energy of two partial charges with Qi= Qj = 0.40 at a 
distance corresponding to the H atom distance in H2O2 assuming the relative dielectric constant 
for vacuum and also the relative dielectric constant for water. The dihedral angle for H2O2 is near 
118 giving the H atom distance as 2.37 Å. Does the higher dielectric constant of water increase 
or decrease the magnitude of the electrostatic interaction? 
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Answer:  Using Eq. 8.8.18 with the given parameters in vacuum gives: 
 

 ele = (17459.1 J mol-1 Å) 
Qi Qj

4r rij
 = (17459.1 J mol-1 Å) 

(0.40) (0.40)
4(1) 2.37 Å

 = 93.80 kJ mol-1 

 

or 22.42 kcal mol-1. Assuming a uniform dielectric constant equal to that for water:  

 

 ele = (17459.1 J mol-1 Å) 
Qi Qj

4r rij
 = (17459.1 J mol-1 Å) 

(0.40) (0.40)
4(78.54) 2.37 Å

 = 1.19 kJ mol-1 

 

The effect of the higher dielectric constant for water is to decrease the magnitude of the 
electrostatic interaction. This effect is called dielectric screening. We will return to this issue in 
the chapter on solutions. 
 
 
20. The Merck Molecular Force Field, MMFF, uses a “buffered” electrostatic interaction. MMFF 
is optimized for work on small molecules and proteins in aqueous solution, for use in medicinal 
chemisty. In addition, MMFF and some other force fields scale electrostatic interactions for 
atoms that are separated by three bonds by a factor of 0.75. Interactions for atoms separated by 
more than three bonds and atoms in different molecules are not scaled. The buffered Coulomb 
potential is:1 

 

 ele = 
c Qi Qj

4r (rij + 0.05 Å)
 

 

The distance between the two oxygen atoms in hydrogen peroxide, H2O2, is near 2.37 Å and the 
partial charges are 0.40. The H-atoms are three bonds apart, H–O–O–H. Calculate the 
electrostatic potential energy term using Eq. 8.8.18 and also the buffered and scaled version. 
 
 

Answer:  The unbuffered and unscaled value using Eq. 8.8.18 is: 
 

 ele = (17459.1 J mol-1 Å) 
Qi Qj

4r rij
 = (17459.1 J mol-1 Å) 

(0.40) (0.40)
4(1) 2.37 Å

 = 93.80 kJ mol-1 

 

or 22.42 kcal mol-1. The buffered and scaled version gives: 

 ele = 0.75 (17459.1 J mol-1 Å) 
Qi Qj

4r (rij + 0.05 Å)
 = 

 

       = 0.75 (17459.1 J mol-1 Å) 
(0.40)(0.40)

4(1) (2.37 + 0.05 Å)
 = 68.89 kJ mol-1 

 

or 16.47 kcal mol-1. The difference in the two approaches is large. The justification for scaling 
and buffering is simply that the scaled and buffered potential works better in actual practice 
within the complete force field. The approach does seem arbitrary, and many physical chemists 
prefer to take a more fundamental approach using ab initio molecular orbital calculations with 
carefully defined solvation models. Such calculations, however, are currently impractical for 
large molecules. 
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21.  The calculated equilibrium bond length for the C-H bond in ethane is re = 1.0856 Å. The 
potential energy for the C–H stretch is 0.1917 kJ mol-1 higher when the bond is compressed to 
1.0750 Å. Calculate the stretching force constant. 
 
 

Answer:  The compressed bond length gives (r – re) = (1.0750 – 1.0856 Å) = -0.0106 Å. Eq. 
8.8.10 relates the potential energy for stretching a bond to the displacement: 
 

 str = ½ kstr,ij (rij - ro)2 
 

Solving for the stretching force constant results in: 
 

 ½ kstr,CH  = str/(rij - ro)2 = 0.1917 kJ mol-1/(-0.0106 Å)2 = 1706. kJ mol-1 Å-2 
 

The value used in MM3 is 1384. kJ mol-1 Å-2, however, this value was optimized with the cubic 
anharmonicity term, so differences are expected. The data for this problem are from molecular 
orbital calculations at the HF 6-31G* level, with the geometry frozen at the geometry optimized 
values, except for the one C–H bond. 
 
 
22.  The calculated equilibrium bond length for the C-H bond in ethane is re = 1.0856 Å. The 
potential energy for the C–H stretch is listed as a function of bond length in the following table. 
Calculate the stretching force constant. Assume a quadratic potential. (Don’t bother to calculate 
uncertainties.) 
 

rC-H (Å)    str (kJ mol-1) 
1 15.136 

1.05 2.3630 
1.075 0.1917 

1.0856 0 
1.1 0.3439 

1.15 6.414 
 
 

Answer:  The plan is to use a quadratic curve fit and then compare with Eq. 8.8.10. The 
following Excel worksheet and plot were constructed. 

 

r C-H (Å) r-re (Å) str (kJ mol-1) 
1 -0.0856 15.13601 

1.05 -0.0356 2.36295 
1.075 -0.0106 0.191662 

1.0856 0 0 
1.1 0.0144 0.34394 

1.15 0.0644 6.414096 
 

 

y = 1872.4x2 - 16.55x - 0.1475
R² = 0.9978

0
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Comparison with Eq. 8.8.10, str = ½ kstr,ij (rij - ro)2, gives ½ kstr,CH = 1870 kJ mol-1 Å-2. For an 
exact fit to the model, the linear and constant terms in the quadratic polynomial should be zero. 
The fact that these terms are not zero shows that the purely quadratic potential is only an 
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approximation. Terms for the anharmonicity need to be introduced for a better fit to the data. The 
value for ½ kstr,CH in MM3 is 1384. kJ mol-1 Å-2, however, this value was optimized with the 
cubic anharmonicity term, so differences are expected. The data for this problem are from 
molecular orbital calculations at the HF 6-31G* level, with the geometry frozen at the geometry 
optimized values, except for the one C–H bond. 
 
 
23. Use the data in the last problem to determine the C–H stretching force constant and the cubic 
stretch constant. 
 
 
Answer:  The plan is to use a cubic curve fit and then compare with Eq. 8.8.20. The following 
Excel worksheet and plot were constructed. 

 

r C-H (Å) r-re (Å) str (kJ mol-1) 
1 -0.0856 15.13601 

1.05 -0.0356 2.36295 
1.075 -0.0106 0.191662 

1.0856 0 0 
1.1 0.0144 0.34394 

1.15 0.0644 6.414096 
 

 

y = -3572.5x3 + 1768.8x2 + 0.6502x -
0.0102
R² = 1

0

5

10

15

20
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)
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Comparison with Eq. 8.8.20, str = ½ kstr,ij (rij – ro)2 – ½ kstr,ij Cs (rij – ro)3, gives: 
 

 ½ kstr,CH = 1769 kJ mol-1 Å-2 
 

The cubic stretch constant is given by the coefficient for the cubic term: 
 

 – ½ kstr,ij Cs = -3572.5 kJ mol-1 Å-3 
and then: 
 Cs = 3572.5 kJ mol-1 Å-3/1769 kJ mol-1 Å-2 = 2.02 Å-1 
 

Please see the previous problem for a note about the source of the data for this problem. The fit 
to the data is seen to be a considerable improvement over the quadratic fit, as is expected since 
there is one more variable coefficient. The residual linear and constant terms in this cubic fit, 
however, are quite small, indicating that the cubic equation is sufficient for small deviations in 
bond length. The value of Cs = 2 Å-1 is the normal value for most force fields. 
 
 
24.  The geometry optimized bond angle for water is 105.50º. The potential energy for the bend 
is 0.305 kJ mol-1 higher when the bond angle is expanded to 107.50º, keeping the same bond 
lengths. Calculate the bending force constant. 
 
 
Answer:  Using the purely quadratic, Hookean potential in Eq. 8.8.11: bend = ½ kbend,ijk (ijk – o)2 
Solving for ½ kbend,HOH: 
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 ½ kbend,HOH = 0.305 kJ mol-1/(2.00º)2 = 0.0762 kJ mol-1 (º)-2 
 

The value used by MMFF is 0.06035 kJ mol-1 (º)-2, but in conjunction with a cubic bend 
anharmonicity correction (Cb = -0.007(º)-1). The data for this problem are from molecular orbital 
calculations at the HF 6-31G* level, with the bond lengths frozen at the geometry optimized 
values. 
 
 
25.  Build and geometry optimize water using a molecular orbital calculation at the HF 6-31G* 
level (a fairly quick level with only moderate accuracy). Determine the equilibrium bond length. 
Then constrain the bond angle in several steps between 95º and 110º and geometry optimize at 
each new bond angle. (Make sure to measure the bond angle each time to verify that you 
constrained the bond angle properly.) Plot the geometry optimum bond length versus the bond 
angle. In our discussion of the stretch-bend interaction, Eq. 8.8.12, we argued that when a bond 
is bent to smaller angles, the two associated lowest energy bond lengths increase. Does your plot 
agree with this observation? 
 
 
Answer:  The following data was obtained at HF 6-31G* at constrained bond angles: 

 

theta E (H) r (Å) 
95 -76.007407 0.9524 

100 -76.009851 0.9498 
105.4971 -76.010747 0.9473 

110 -76.010179 0.9454 

  1 H = 1 AU = 2625.5 kJ mol-1 

 

y = -0.0005x + 0.9965
R² = 0.998
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The data shows the stretch-bend interaction clearly. As the bond is bent to smaller angles, the 
optimum bond length does increase. 
 
 
26.  Determine the enthalpy of formation for the monoterpines listed in Problem 4 using the 
MM2, MM3, or MM4 molecular mechanics program. Compare the results with the literature 
values from Problem 4. 
 
 
Answer:  The literature ∆fH(g) values are taken from Problem 4 and are listed in the first 
column of the following table. The values using the MM2 and MM3 programs are: 
 

 ∆fH(g) 

kcal mol-1 

∆fHº MM2 

kcal mol-1 

difference 

kcal mol-1 

∆fHº MM3 

kcal mol-1 

difference 

kcal mol-1 

camphene -7.82   -3.07 4.75 -3.00 4.82 
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-pinene 6.76    6.82 0.06 8.70 1.94 

-pinene 9.25  12.95 3.70 14.59 5.34 

limonene -2.53   -1.94 0.59 -0.50 2.03 

-terpineol -73.34 -71.48 1.86 -69.64 3.7 

menthol -101.36 -104.84 -3.38 -93.44 7.92 
 

The agreement with the literature values is quite good, given the experimental uncertainties and 
given the possible range of enthalpies of formation for molecule in this size range. 
 
 
27.  Estimate the contribution of vibration to the enthalpy of formation for the monoterpines in 
Problem 4. Use the approximate torsional increments described in Sec. 8.10. 
 
 
Answer:  The number of non-methyl group internal rotations for the monoterpines are: 
camphene, 0; -pinene, 0; -pinene, 0; limonene, 1; -terpineol, 2; menthol 2. The contribution 
to the enthalpy of formation is estimated as 1.51 kJ mol-1 for each internal rotation. 
 
 
28.  Calculate the partition function for a harmonic oscillator with fundamental vibration 
frequency 200 cm-1 at 298.2 K, by explicit summation. (Use the lowest energy state as the 
reference energy, o = 0). Then calculate the probability of occupation for the vibrational states 
with population greater than ~1%. Plot the probability as a function of the energy of the 
vibrational state. 
 
 
Answer:  The plan is to calculate the Boltzmann weighting factors for the states with significant 
population and sum, as given by Eq. 8.10.7. The probability for each state is then given by the 
Boltzmann distribution, Eq. 8.10.5. A spreadsheet was set-up with the appropriate factors: 
 

 

i vib  (cm-1) exp(-vib/kT) pi 
0 0 1 0.6191 
1 200 0.380888 0.2358 
2 400 0.1450754 0.090 
3 600 0.0552574 0.0342 
4 800 0.0210469 0.0130 
5 1000 0.0080165 0.0050 
6 1200 0.0030534 0.0019 
7 1400 0.0011630 0.0007 
8 1600 0.0004430 0.0003 
9 1800 0.0001687 0.0001 

10 2000 6.426E-05 3.98E-05 

 q =  1.61517605  
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The plot shows the exponential decrease in probability with increasing energy. The partition 
function can be interpreted as the number of accessible states for the system. Since   RT in 
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this problem, most molecules are in the lowest energy state. The number of accessible states on 
average is 1.615. 
 
 
29.  A good example of the use of the Boltzmann distribution is the derivation of the barometric 
formula, Eq. 1.3.16. The potential energy of a molecule of mass m at an elevation h is  = mgh, 
with g the acceleration of gravity. The ratio of the number of molecules at height h to height ho is 
then given by Eq. 8.10.8 with  = mg(h – ho). Let the number of molecules at sea level, ho = 0, 
be no. Then note that the molar mass is given by M = NA m, and the pressure of the gas is P = 
nRT/V for a given fixed volume of gas. In other words the pressure is proportional to the number 
of molecules. Derive the barometric formula from the Boltzmann distribution assuming a 
constant temperature. 
 
 
Answer:  The plan is to start with Eq. 8.10.8 and then do the units conversion to give pressures. 
   The ratio of the number of molecules at the two elevations is given by Eq. 8.10.8: 
 

 
n
no

 = e
–
kT = e

–mg(h – ho)
kT        1 

 

Multiply the numerator and denominator of the argument of the exponential term by Avogadro’s 
number and then use M = NA m and R = NAk: 
 

 
–mg(h – ho)

kT  = 
–NA mg(h – ho)

NA kT  =
–M g(h – ho)

RT      2 
 

Next note that for a given volume of air V at the two altidudes: 
 

 
n
no

 = 
nRT/V
noRT/V = 

P
Po

        3 
 

and then substituting Eqs. 2 and 3 into Eq. 1 with ho = 0: 
 

 
P
Po

 = e
 

–M g h
RT

         4 
 

and multiplying through by Po gives: 
 

 P = Po e




–M g h

RT
     (ideal gas, cst. T) (1.3.16) 

 
 
30.  The energy between the ground electronic state and the first excited state in typical 
molecules is on the order of 30,000. cm-1. Find the ratio of the number of molecules in the first 
excited state and the ground state at 298.2 K. Find the temperature that gives a ratio of 0.001. 
(Assume the ground and excited states are non-degenerate.) 
 
Answer:  Using Eq. 8.10.8 and RT in cm-1 as 207.23 cm-1: 
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nj

ni
 = e

–30000. cm-1

  207.23 cm-1
 = 1.345x10-63 

 

For all intents and purposes, all the molecules are in the ground electronic state. Converting 
30,000. cm-1 into kJ mol-1gives: 
 

 E = NA hc/ (1 kJ/1000J) = NA hc ~ (1 kJ/1000J) 
       = 6.0223x1023 mol-1(6.626x10-34 J s)(2.998x1010 cm s-1)(30,000. cm-1)(1 kJ/1000J) 
       = 358.9 kJ mol-1 
 

For a ratio of 0.001 in the excited state, taking the logarithm of Eq. 8.10.8 gives: 
 

 ln(0.001) = – 

RT = – 

358.9 kJ mol-1

8.314x10-3 kJ K-1 mol-1 T 
 

Solving for T gives 6250 K. Only refractory oxides could survive at this temperature. 
 
 
31.  Calculate the energy difference in J, kJ mol-1, and cm-1 for transitions with the wavelength of 
maximum absorbance at 500.00 nm and 50,000. nm. The transition at 500 nm corresponds to the 
blue-green portion of the visible spectrum. The transition at 50,000 nm or equivalently 50 m is 
in the infrared. Calculate the ratio of the number of molecules in two states separated by these 
energy differences at 298.2 K. Do this calculation with /kT or /RT with the energy in J, 
kJ mol-1, and cm-1 (three separate calculations). 
Answer:  Given E = h = hc/, at 500 nm: 
 

 E = hc/ = 6.626x10-34 J s (2.998x108 m s-1)/500.x10-9 m = 3.9729x10-17 J 
 E = NA hc/ (1 kJ/1000J) = 23925. kJ mol-1 

 ~ = c/ = 2.998x108 m s-1/500.x10-9 m (100 cm/1 m) = 20000. cm-1 
 

Using Eq. 8.10.8 for the population ratio gives: 
 

 
nj

ni
 =      e

–
kT    =      e

–
RT    = e

–~

  207.23 cm-1
    at 298.2 K 

 
nj

ni
 = e

–3.9729x10-17 J
1.38066x10-23 J K-1 298.2 K  = e

–23925. kJ mol-1

8.3145x10-3 kJ K-1 mol-1 298.2 K = e
–20000. cm-1

  207.23 cm-1
    at 298.2 K 

 

The results for several transition wavelengths are given in the table below. 
 

nm   J      kJ mol-1   cm-1  /kT   nj/ni 
500 3.9729x10-19 239.253 20000 96.5 1.216x10-42 

5000 3.9729x10-20 23.9253 2000 9.65 6.434x10-5 
50000 3.9729x10-21 2.39253 200 0.965 0.381 

500000 3.9729x10-22 0.23925 20 0.0965 0.908 
 
 
32.  Use the Equipartition theorem to predict the heat capacity of N2O and HCN. Constant 
pressure heat capacities are more commonly tabulated than constant volume heat capacities. For 
an ideal gas Cp = Cv + nR. Compare your predictions to literature values for Cp. 
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Answer:  Given that both N2O and HCN are linear, without vibrations: 
 

 Cv,m = 3/2 R   +   2/2 R    =  5/2 R 
        translation  rotation  
 

and Cp,m = Cv,m + R = 7/2 R = 29.1 J K-1 mol-1, which is the same as predicted for carbon dioxide. 
The literature values are Cp,m(N2O) = 38.45 J K-1 mol-1 and Cp,m(HCN) = 35.86 J K-1mol-1, which 
both exceed the prediction. Vibrations must contribute to the heat capacity. A linear triatomic 
molecule has 3(3)-5 = 4 normal modes. Two normal modes are the low frequency degenerate 
bending vibrations, Figure 8.11.1. With just the bending vibrations: 
 

 Cv,m = 3/2 R   +   2/2 R   +  2(2/2 R)  =  9/2 R 
        translation  rotation       bending vibrations 
 

and Cp,m = Cv,m + R = 11/2 R = 45.7 J K-1 mol-1. The bending vibrations contribute, but not fully. 
 
 
33.  Molecular shape plays an important role in determining the properties of a substance. Of 
sulfur dioxide and carbon dioxide, which molecule is predicted to have the greater heat capacity? 
Constant pressure heat capacities are more commonly tabulated than constant volume heat 
capacities. For an ideal gas Cp = Cv + nR. Compare your predictions to literature values for Cp. 
 
 
Answer:  Note that CO2 is linear and SO2 is bent. For CO2 with two moments of inertia, 
neglecting vibrations, Table 8.9.1: 
 

 Cv,m(CO2) = 3/2 R   +   2/2 R    =  5/2 R 
         translation  rotation  
 

and Cp,m = Cv,m + R = 7/2 R = 29.1 J K-1 mol-1. For SO2 with three rotational moments of inertia: 
 

 Cv,m(CO2) = 3/2 R   +   3/2 R    =  6/2 R 
         translation  rotation  
 

and Cp,m = Cv,m + R = 8/2 R = 33.3 J K-1 mol-1. Neglecting vibrations, SO2 is predicted to have the 
larger constant pressure heat capacity. The literature values agree, with Cp,m(CO2) = 37.11 J K-1 
mol-1 exceeded by Cp,m(SO2) = 39.87 J K-1. Some caution is required, however, because CO2 has 
two bending modes, while SO2 has only one, but the bending mode in SO2 will be lowered in 
frequency because of the greater mass of the central sulfur atom. So the vibrational contributions 
will not be the same for both molecules. 
 
 
34.  The amino acid valine has three possible conformations for the side chain –CH(CH3)2 group. 
Calculate the probabilities of the side chain being in each of these three conformations at 298.2 
K. Use molecular mechanics with the MMFF force field in the gas phase for the zwitter-ionic 
form to determine the low energy side chain conformations and the corresponding energies. 
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Answer:  The low energy conformations for zwitter-ionic valine in the gas phase using the 
MMFF94x force field are -3.0881, -5.3433, -4.4024 kcal mol-1 at -51.8, 57.6, -168.7 
respectively. The dihedral angle was measured from the carbonyl carbon to the side chain 
methine-hydrogen, O=C–C–C–H. Using the lowest energy conformer as the reference, the 
energies in kJ mol-1 in increasing order are then: 0, 3.937, 9.436 kJ mol-1. 
   The Boltzmann weighting factor for the lowest energy conformer is 1, since e0 = 1. The 
Boltzmann weighting factors for the higher energy conformers are: 
 

 e-2/RT = e-9.436x103J/(8.314 J K-1 mol-1 298.2 K) = 0.0222 

 e-1/RT = e-3.937x103J/(8.314 J K-1 mol-1 298.2 K) = 0.2043 
 

The partition function, Eq. 8.10.7, is the normalization for the probability distribution: 
 

 q = 
i

 e–i/kT = 1 + 0.2043 + 0.0222 = 1.2265 

The probabilities for each conformational state are then: 
 

 p2 = e-2/RT/q = 0.0222/1.2265 = 0.0181 

 p1 = e-1/RT/q = 0.2043/1.2265 = 0.1666 

 p0 = e-o/RT/q = 1/q = 1/1.2265 = 0.8153 
 
 
35.  Nitrous oxide, N2O, can act as a ligand in transition metal complexes. The infrared 
stretching frequencies for N2O are used to judge the strength of coordination to the metal.2 
Nitrous oxide is also an important component of the atmosphere.3 The isotopic composition of 
nitrous oxide is a useful marker in atmospheric photochemistry.4 Nitrous oxide  can be thought 
of as a resonance hybrid among: N-=N+=O ↔ N≡N+–O-↔ N–N-≡O+.  N2O is isoelectronic with 
carbon dioxide. As such N2O is linear and has a symmetric (~1 = 1285 cm-1) and an asymmetric 
(~3= 2223.5 cm-1) stretching mode and two degenerate bending modes (~2 = 588 cm-1). Using 
valence force field techniques, the force constants for the NN and NO bonds in nitrous oxide 
have been estimated to be 1790 N m-1 and 1140 N m-1, respectively.5 (a). Use these bond force 
constant estimates and MatLab, Mathematica, or the “eigen” Web applet from the companion 
CD or the text Web site to calculate the frequencies for the symmetric and asymmetric stretches 
for nitrous oxide. Your calculation will be very similar to the CO2 example in Sec. 8.11. For 
example, restrict the motions to just the x-axis (e.g. neglect the bending vibrations) and estimate 
the force constants in a similar way. You should end up, again, with a 3x3 mass weighted force 
constant matrix. [Hint: k

22
xx won’t be equal to 2 k

11
xx in this case because there is a nitrogen on one 

side and an oxygen on the other side of the central atom, atom 2] (b). Which of the three 
resonance structures is most representative of the true bonding in N2O, based on the NN and NO 
force constants? 
 
 

Answer:  (a). Assume that k
22
xx = k(NN) + k(NO), since moving the central N simultaneously 

stretches the NN bond and compresses the NO bond. The mass weighted force constant matrix 
is: 
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  N1  N2       O3 
 

N1

N2

O3

   – 









1790
14 14

– 
1790
14 14

 0

 –
1790
14 14

 
2930
14 14

 – 
1140
14 16

 0  – 
1140
16 14

 
1140
16 16

 = 









-127.86  127.86  0

 127.86  -209.29  76.17

 0  76.17  -71.25

 

 

The output from the “eigen” applet with units conversion using Eq. 8.11.24 is: 

Eigenvector 1: E=318.506  or ~ =2325. cm-1 (or 4.6% high) 
-0.539616 
0.804598 
-0.247865 
------------- 

Eigenvector 2: E=89.8936  or ~ = 1235.2 cm-1 (or 3.9% low) 
-0.625007 
-0.185588 
0.758237 
------------- 

Eigenvector 3: E=0.0000830617  center of mass translation 
0.564075 
0.564074 
0.603026 

 

The agreement is amazing given the approximations. (b). The resonance structure N≡N+–O- is 
most representative of the bonding , because the NN force constant is larger than the  NO force 
constant. 
 
 
36.  Acetylene is a linear hydrocarbon with a carbon-carbon triple bond, H-CC-H, with 
stretching modes at 1973.8 cm-1, 3287.0 cm-1, and 3373.7 cm-1. Using valence force field 
techniques, the force constants for the C-H and CC bonds in acetylene have been estimated to 
be 592. N m-1 and 1580. N m-1, respectively. Use these bond force constant estimates and 
MatLab, Mathematica, or the “eigen” Web applet, from the text Web site, to calculate the 
frequencies for the three linear stretch normal modes for acetylene. Your calculation will be 
similar to the CO2 example in Sec. 8.11. For example, restrict the motions to just the x-axis (e.g. 
neglect the bending vibrations) and estimate the force constants in a similar way. You should end 
up with a 4x4 mass weighted force constant matrix. [Hint: k22

xx won’t be equal to 2 k11
xx in this case 

because there is a hydrogen on one side and a carbon on the other side of atom 2]. Sketch the 
normal modes. 
 
 
Answer: The plan is to number the H-CC-H atoms in the order 1-23-4 and then note that k22

xx 
involves stretching a C-H and a CC bond. By symmetry, k22

xx = k33
xx. The force constant k23

xx 
involves moving atom 3 and noting the force on atom 2. The force on atom 2 for k23

xx is only 
determined by the CC bond, because the C-H bond remains at equilibrium. By symmetry k23

xx = 
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k32
xx. A good test of the self-consistency of the Hessian is the small value of the eigenvalue that 

represents the motion of the center of mass. 
   The estimate for k22

xx is 592. N m-1 + 1580. N m-1, since moving atom 2 changes the extension of 
the C-H and CC bonds. The estimate for k23

xx is -1580 N m-1, because moving atom 3 in the 
positive x-direction gives a negative potential gradient for motion of atom 2 in the positive x-
direction, based on just the CC bond extension. The mass weighted force constant matrix is: 
 

  H1      C2            C3     H4 
 

H1

C2

C3

H4

  – 













592
1 1

–
592
1 12

 0  0

 – 
592
12 1

 
2172
12 12

 – 
1580
12 12

 0

 0  – 
1580
12 12

 
2172
12 12

 – 
592
12 1

 0  0  – 
592
1 12

 
592
1 1

 = 







-592.0 170.90  0  0

170.90  -181.0 131.67  0

 0 131.67 -181.0 170.90

 0  0 170.90 -592.0

 

 

The output from the “eigen” applet with units conversion using Eq. 8.11.24 is: 
 

Eigenvector 1: E=0.0000415985   center of mass translation 
0.196116 
0.679366 
0.679366 
0.196116 
------------- 
Eigenvector 2: E=-231.625   ~ = (232.625/5.8921x10-5)½ = 1982.7 cm-1 (0.46% high) 
0.30298 

0.638908        
-0.638908    H-CC-H 
-0.30298 
------------- 
Eigenvector 3: E=-641.333   ~ = (641.333/5.8921x10-5)½ = 3299.2 cm-1 (0.37% high) 
0.679366 

-0.196116        
-0.196116    H-CC-H 
0.679366 
------------- 
Eigenvector 4: E=-673.042   ~ = (673.042/5.8921x10-5)½ = 3379.8. cm-1 (0.18% high) 
0.638908 

-0.30298         
0.30298    H-CC-H 
-0.638908 
------------- 

 
 
37.  Infrared spectroscopy is a useful tool for functional group determination in organic 
molecules. The correlation chart from your Organic Chemistry text lists typical values for 
infrared frequencies for different functional groups.6 Do a normal mode analysis for acetone and 
dimethylether using molecular mechanics or molecular orbital methods and compare the C–H, 
C=O, and C–O stretching frequencies to the typical values. These absorptions are typically easy 
to find because they are intense or in uncluttered regions of the spectrum. 
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Characteristic Infrared Absorption Frequencies7 

 

bond Compound type Frequency range (cm-1) 
C–H Alkanes 2850-2960 
C–H Alkenes 3020-3080(m) 
C–H Aromatic 3000-3100(m) 
C=C Alkenes 1640-1680(v) 
C—
C Aromatic 1500, 1600(v) 

C–O Alcohols, ethers,carboxylic acids, esters 1080-1300 
C=O Aldehydes, ketones, carboxylic acids, esters 1690-1760 
CN Nitriles 2210-2260(v) 
–NO2 Nitro 1515-1560, 1345-1385 

All absorptions are strong except: m moderate, v variable 
 
 
Answer:  The MM3 (left) and HF 6-31G* (right) output for acetone and dimethylether are given 
below. The molecular orbital frequencies are also tabulated as scaled by 0.9, to correct for 
anharmonicity. For acetone, the MM3 C–H stretches are from 3019-2901 cm-1, modes 1-6, 
followed by a region with no vibrations and then the very strong 1727 cm-1 carbonyl-dominated 
normal mode 7, as expected from correlation tables. For dimethylether, the MM3 C-H stretches 
are from 2995-2850 cm-1, modes 1-6, and the strong C-O dominated stretch is at 1172 cm-1, 
mode 13, as expected from correlation tables. Notice the six eigenvalues that the MM3 program 
rounds to 0 cm-1 that account for the motion of the center of mass and the rotation of the 
molecule are not listed, to save space. The molecular orbital program did not list the 
translation/rotation eigenvalues. 
   If you do not have a visualization application that draws the normal mode displacements or 
animates the vibrations, you can identify the vibrations from their position in the spectrum and 
by looking at the numerical printout of the normal coordinate displacements. The acetone 
HF 6-31G* normal coordinate displacements for the C=O stretch show large displacements for 
the bonded C and O atoms: 
 

    2021.60 
      A1 
    X      Y      Z 
C2 0.000  0.000  0.228 
O1 0.000  0.000 -0.148 

 

The dimethylether HF 6-31G* normal coordinate displacements for the C–O stretch again show 
large displacements for the bonded C and O atoms: 
 

    1045.33 
      A1 
     X      Y      Z 
C1 -0.139  0.000 -0.057 
O1  0.000  0.000  0.124 
C2  0.139  0.000 -0.057 
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Acetone: 
 
FUNDAMENTAL NORMAL VIBRATIONAL FREQUENCIES 
       ( THEORETICALLY  24 VALUES ) 
  
  Frequency : in 1/cm 
  A(i)      : IR intensity (vs,s,m,w,vw,--) 
  A(i) = -- : IR inactive 
 

no  Frequency Symmetry  A(i) 
 1.  3018.9   (A1  )     m 
 2.  3015.7   (B1  )     m 
 3.  2989.6   (B2  )     s 
 4.  2988.7   (A2  )    -- 
 5.  2901.5   (B1  )     m 
 6.  2901.4   (A2  )     m 
 7.  1727.1   (A1  )    vs 
 8.  1439.3   (B2  )     w 
 9.  1432.2   (A2  )    -- 
10.  1425.5   (A1  )     w 
11.  1423.6   (B1  )    vw 
12.  1410.9   (B1  )    vs 
13.  1329.7   (A1  )     w 
14.  1211.0   (B1  )     m 
15.  980.1    (B2  )     w 
16.  950.5    (A1  )     w 
17.  905.5    (B1  )     w 
18.  904.2    (A2  )    -- 
19.  776.9    (A1  )     w 
20.  529.0    (B1  )     w 
21.  479.6    (A1  )     w 
22.  396.6    (B2  )    vw 
23.  126.7    (B2  )     w 
24.  102.8    (A2  )    -- 

 
 
HF 6-31G* 
 
 
 
 
 
 

Frequency 
3323.89  
3322.68  
3265.39  
3256.83  
3210.29  
3202.57  
2021.60  
1632.50  
1614.02  
1610.61  
1607.68  
1554.76  
1546.42  
1351.79  
1239.41  
1190.63  
983.25 
980.71 
846.16 
574.74 
531.87 
400.84 
146.20 
59.09 

 
 
 
 
 
 
 
 
 

Symm 
A1 
B2 
B1 
A2 
A1 
B2 
A1 
B1 
A1 
A2 
B2 
B2 
A1 
B2 
B1 
A1 
B2 
A2 
A1 
B2 
B1 
A1 
B1 
A2 

 
 
 
 
 
 
 
 
 

x0.9 
2992 
2990 
2939 
2931 
2889 
2882 
1819 
1469 
1453 
1450 
1447 
1399 
1392 
1217 
1115 
1072 
885 
883 
762 
517 
479 
361 
132 
53 

 
Dimethylether: 
 

FUNDAMENTAL NORMAL VIBRATIONAL FREQUENCIES 
       ( THEORETICALLY  24 VALUES ) 
  
  Frequency : in 1/cm 
  A(i)      : IR intensity (vs,s,m,w,vw,--) 
  A(i) = -- :  IR inactive 
 

no  Frequency Symmetry  A(i) 
 1.  2995.2   (A1  )     m 
 2.  2993.1   (B1  )     m 
 3.  2934.5   (B2  )     s 
 4.  2933.3   (A2  )    -- 
 5.  2850.5   (A1  )     w 
 6.  2849.8   (B1  )     w 
 7.  1492.8   (B1  )     m 
 8.  1485.1   (A1  )     w 
 9.  1472.3   (B2  )     w 
10.  1450.4   (A2  )    -- 
11.  1429.1   (B1  )     w 
12.  1424.0   (A1  )     w 
13.  1172.1   (B1  )     s 
14.  1170.9   (A1  )     w 
15.  1135.9   (B2  )     w 
16.  1080.4   (A2  )    -- 
17.  1041.4   (B1  )     m 
18.   924.6   (A1  )     m 
19.   399.4   (A1  )     w 
20.   273.3   (B2  )     w 
21.   187.6   (A2  )    -- 

 
 

HF 6-31G* 
 
 
 
 
 
 

Frequency 
3304.91 
3302.37 
3218.00 
3215.44 
3179.74 
3163.77 
1650.75 
1670.72 
1652.21 
1650.05 
1639.42 
1612.32 
1402.47 
1349.94 
1316.28 
1280.63 
1234.60 
1045.33 
443.75 
265.81 
215.54 

 
 

 
 
 
 
 
 
 

Symm 
A1 
B2 
B1 
A2 
A1 
B2 
B1 
A1 
B2 
A1 
A2 
B2 
A1 
B2 
B1 
A2 
B2 
A1 
A1 
B1 
A2 

 
 

 
 
 
 
 
 
 

x0.9 
2974 
2972 
2896 
2894 
2862 
2847 
1486 
1504 
1487 
1485 
1475 
1451 
1262 
1215 
1185 
1153 
1111 
941 
399 
239 
194 
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Organic texts often imply the absorptions in a vibrational spectrum are individual bond stretches. 
However, the absorptions are actually normal modes that involve the concerted motion of many 
atoms in the molecule. However, for some normal modes, those involving C=O for example, the 
normal mode vibration is dominated by a particular functional group and occurs in a predictable 
range. 
   Your instructor may stress that molecular mechanics is insufficiently accurate for normal mode 
calculations, which is correct. However, for very large molecules molecular orbital based 
methods are too slow. MM3 was parameterized and designed to predict enthalpies of formation 
and normal mode frequencies, as accurately as possible within the classical perspective. MM3 
often does better than low level molecular orbital methods. Very time intensive methods like 
B3LYP/6-31G* or MP2/6-311G* are usually necessary for accurate predictions from the 
quantum mechanical perspective (see the next problem). 
 
 
38. The infrared spectrum for 2-nitropropane is shown below. Do a normal mode analysis using 
B3LYP/6-31G* molecular orbital calculations to assign the –NO2 asymmetric and symmetric 
stretches. You will need to use a visualization environment that displays the normal mode 
displacements or animates the vibrations. 
 

 

P 8.2: The infrared spectrum of 2-nitropropane. 
 
 
Answer:  The B3LYP/6-31B* normal modes in this region are 1668, 1541, 1525, 1518, 1511, 
1460, and 1418 cm-1, with the –NO2 asymmetric stretch at 1668 and the symmetric stretch at 
1460 cm-1. Using the approximate scaling factor of ~0.9 to adjust for anharmonicity, the 
asymmetric stretch is predicted to be at 1500 cm-1, which is close to the major peak at 1554 cm-1. 
The ratio of the experimental to predicted peak positions is actually 1554 cm-1/1668 cm-1 = 0.93. 
Using this new scaling factor for the predicted symmetric stretch gives 1460*0.93 = 1358 cm-1, 
which matches well with the experimental peak at 1362 cm-1. There are four vibrations that fall 
between the two –NO2 stretches in both the predicted and experimental spectra, which is 
additional evidence for the assignment, however these intervening band positions don’t match up 
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well. In addition, experimental spectra often display overtones, sum, and difference bands, so 
simply noting the number of experimental peaks can be misleading. 
   The relatively high computational level of B3LYP/6-31G* is necessary for this example to find 
reasonable predictions. We will cover many of the issues surrounding molecular orbital 
calculations and the meaning of the acronyms in the later chapter on computational methods. 
 
 
39.  The energy density of fuels differs greatly. At times optimizing the energy density per unit 
weight is most important. For practical purposes the low energy density per unit volume for 
gases or biomass are an issue. Calculate the enthalpy of combustion on a kJ kg-1 and a kJ L-1 
basis for the following fuels, and plot the enthalpy of combustion in kJ L-1 versus kJ kg-1. Note 
that 1 Btu lb-1 = 2.326 kJ kg-1. For the gases, assume ideal gas behavior at a pressure of 10 bar at 
298 K. The octanes are commonly used to represent gasoline and methane is the major 
component in natural gas. 
 

Enthalpy of formation or combustion for common fuels.8-10 

Fuels fH° combH combH density 

 kJ mol-1 kJ g-1 Btu lb-1 g mL-1 
graphite 0   2.25 
methanol (l) -238.66   0.7914 
ethanol (l) -277.69   0.7893 
octane -249.9   0.7025 
isooctane -255.1   0.6918 
glucose -1274   1.526 
wood    -4480 0.55 
biodeisel  -41.2  0.87 
coal (lignite)   -8000 0.75 
coal (anthracite)  -14000 0.88 
H2 (g) 0    
CH4 (g) -74.81    

 
 
Answer:  The following spreadsheet was developed: 
 

Fuel Formula fH combH combH M combH -combH density -combH 

 C H O kJ mol-1 Btu lb-1 kJ mol-1 g mol-1 kJ g-1 kJ kg-1 g mL-1 kJ L-1 
graphite 1 0  0  -393.51 12.01 -32.77 32765 2.25 73722 
methanol (l) 1 4 1 -238.66  -726.51 32.04 -22.67 22674 0.7914 17944 
ethanol (l) 2 6 1 -277.69  -1366.82 46.07 -29.67 29670 0.7893 23419 
octane 8 18  -249.9  -5470.65 114.22 -47.89 47895 0.7025 33646 
isooctane 8 18  -255.1  -5465.45 114.22 -47.85 47849 0.6918 33102 
glucose 6 12 6 -1274  -2802.04 180.15 -15.55 15554 1.526 23735 
wood      -4480   -10.42 10420 0.551 5743 
biodeisel        -41.2 41200 0.82 33784 
coal lignite     -8000   -18.61 18608 0.753 14011 
coal anthracite    -14000   -32.56 32564 0.881 28692 
H2 (g)  2  0  -285.83 2.02 -141.79 141795 0.000813 117 
CH4 (g) 1 2  -74.81  -604.53 14.03 -43.10 43101 0.00565 247 

 
The enthalpy of combustion of graphite and H2 were calculated using ∆fH° for CO2= -393.509 kJ 
mol-1 and ∆fH° for H2O(l)= -285.830 kJ mol-1. The densities of the gases were calculated using: 
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 d = 
Mn
V  = 

MP
RT  with P = 10 bar, R = 0.08314 L bar mol-1 K-1, T = 298.2 K 

 

where M is the molar mass. The corresponding plot shows H2 to be the best fuel on a per weight 
basis, but difficult to transport because of its low density. Working with liquefied gases solves 
some of the density issues, but raises technological issues. Some interstitial metallic hydrides 
have higher effective H2 energy density than liquid H2. 
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Chapter 9 Problems: Using the First Law 
 
 
1. Write the total differential for V given as a function of the independent variables U and T. 
 
 
Answer:  Given V(U,T) then from Addendum Sec. 7.11, Eq. 7.11.13: 
 

 dV = 






V

U T
 dU + 







V

T U
 dT 

 

These partial derivatives are not so strange as they may first appear. The first can simply be 
inverted to give the fundamental derivative: (V/U)T = 1/(U/V)T. For the second, a process at 
constant energy corresponds to a process in an isolated system. 
 
 
2.  Write the total differential for the new function G with independent variables T and P. 
 
 
Answer:  Given G(T,P) then from Addendum Sec. 7.11, Eq. 7.11.13: 
 

 dG = 






G

T P
 dT + 







G

P T
 dP 

 

We will use this equation often where G is the Gibbs Energy. 
 
 
3.  Determine if the following total differential is exact:  dF = 3y2 dx + 6xy dy 
 
 
Answer:  The general form of the total differential of F(x,y) is given by Eq. 9.1.5. Matching the 
terms in dx and dy identifies the coefficients: 
 

 






F

x y
 =  3y2   and 







F

y x
 = 6xy 

 

The mixed partials are: 
 

 








y





F

x y x
 =  







(3y2)

y x
 and 









x





F

y x y
 = 






(6xy)

x y
 

 

Completing the indicated derivatives gives: 
 

 








y





F

x y x
 =  6y   and 









x





F

y x y
 = 6y 

 

The mixed partials are equal, so the differential is exact and F(x,y) is a state function. Integrating 
either of these partial derivatives gives: F = 3xy2 + c, where c is a constant. Compare the 
differential given in this problem with Example 9.1.2. 
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4. We showed that the differential in Example 9.1.1 is exact: 
 

 dV = 
nR
P  dT – 

nRT
P2  dP  with     







V

T P
 = 

nR
P  and 







V

P T
 = 

– nRT
P2  

 

Separately integrate these partial derivatives to find V. Do indefinite integrals. 
 
 

Answer:  From 






V

T P
 = 

nR
P   V =  dV=  

nR
P  dT =  

nRT
P  + constant 

 

and from 






V

P T
 = 

– nRT
P2   V =  dV=  

– nRT
P2  dP =  

nRT
P  + constant 

 

Both coefficients in the differential are consistent with the same function of V, which is the ideal 
gas law to within a constant. In this sense the differential is “complete.” The same information 
about the original function is available from either partial derivative. Integrating either gives the 
original function. You couldn’t get the same result for an inexact differential. An inexact 
differential is incomplete without the specification of the path of integration. 
 
 
5. Find the partial derivative of the enthalpy with respect to volume at constant temperature from 
dH = dU + PdV + VdP. Express the result in terms of Cv, Cp, , T, (U/V)T, and (H/P)T. 
 
 
Answer: From H  U + PV, dH = dU + PdV + VdP. Now, take the derivative with respect to V at 
constant T: 

 






H

V T
 = 






U

V T
 + P







V

V T
 + V







P

V T
 

Note that 






U

V T
= internal pressure and since 







V

V T
= 1: 

 






H

V T
 = 






U

V T
 + P + V







P

V T
 

Also remember that 






P

V T
 = 

-1
VT

 where T is the isothermal compressibility. 

 






H

V T
 = 






U

V T
 + P – 

1
T

 

This equation shows the relationship of the partial derivative to fundamental properties of the 
system. 
 
 
6. Show that Eq. 9.4.12, dH = dU + nR dT or H =  U + nRT, is consistent with CP = CV + 
nR, which is true for an ideal gas. 
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Answer:  Remember the definitions of the heat capacities: 






U

T V
= Cv and 







H

T P
 = Cp. To find 

(H/T)P, “divide” dH = dU + nRdT by dT at constant P: 
 

 






H

T P
 = 






U

T P
 + nR 







T

T P
       1 

Substituting the definition of Cp, and using (T/T)P = 1 in Eq. 1 gives: 
 

 Cp = 






U

T P
 + nR        2 

 

To find (U/T)P, identify P as the “misplaced” variable and work through the total differential 
of dU, U(V,T): 
 

 dU = 






U

T V
dT + 







U

V T
dV       3 

 

Divide both sides of the equation by dT and specify constant P: 
 

 






U

T P
 = 






U

T V
+ 






U

V T





V

T P
       4 

 

(Remember that we derived this equation in our derivation of Cp–Cv, Eq. 9.4.5). Since (U/V)T 
= 0 for an ideal gas, substitution into Eq. 4 and the definition of Cv gives: 
 

 






U

T P
 = Cv          5 

Then substitution of Eq. 5 into Eq. 2 gives: 
 

 Cp = Cv + nR         6 
 
Alternative Answer:  Starting with H =  U + nRT, remember that for an ideal gas for any 
process, H = Cp T and U = Cv T. Substituting gives Cp T = Cv T + nRT. Division by T 
gives Cp = Cv + nR. 
 
 

7. Show that 






H

V T
 = 






U

V T
 for an ideal gas in a closed system. 

 
 
Answer:  Using the results of Problem 5: 
 

 






H

V T
 = 






U

V T
 + P + V







P

V T
 

 

Note that for an ideal gas, P = nRT/V and: 
 



200 
 

 






P

V T
 = 

–nRT
V2  

Substitution gives: 

 






H

V T
 = 






U

V T
 + P + V



–nRT

V2  

The V cancels in the last term to give –nRT/V, which is –P: 

  






H

V T
 = 






U

V T
 + P + –P = 







U

V T
 

 
 

8. Show that 






H

P T
 = (–nRT/P2)







U

V T
   for an ideal gas in a closed system. 

 
 
Answer:  Substituting the definition of enthalpy, H U + PV, into (∂H/∂P)T gives: 
 

 



∂H

∂P T
 = 



∂U

∂P T
 + 



∂(PV)

∂P T
 

 

From the ideal gas law PV = nRT, with n a constant for a closed system: 
 

 



∂H

∂P T
 = 



∂U

∂P T
 + 



∂(nRT)

∂P T
 

 

However, for an isothermal process T is constant and the second term is zero. We can use the 
chain rule to relate (∂U/∂P)T to (∂U/∂V)T: 
 

 



∂H

∂P T
 = 



∂U

∂V T
 



∂V

∂P T
 

 

Using the ideal gas law in the form V = nRT/P gives (∂V/∂P)T = –nRT/P2 and then substitution 
into the last equation gives: 
 

 



∂H

∂P T
 = (–nRT/P2) 



∂U

∂V T
  

 
 
9.  Find H in terms of U for a gas that obeys the Virial-type equation of state at constant 
volume: 

 PV = nRT(1 + B 
n
V) 

We will assume that B is a constant (the second Virial coefficient is actually temperature 
dependent). Use this result to find the change in enthalpy for heating one mole of water vapor 
starting at a pressure of 23.8 torr from an initial temperature of 298.2K to a final temperature of 
373.2 K. Assume the volume is constant for the process. Assume CV = 6/2 nR and B = –425 cm3 
mol-1 (roughly the value for water at 373 K).1 Compare with Example 9.3.2. 
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Answer:  The plan is to use Eq. 9.3.10 and the Virial Equation in terms of the density: 

 PV = nRT(1 + B 
n
V)        1 

Since V is constant, substitution of Eq. 1 into Eq. 9.4.10 gives: 
 

 H =  U + (PV) = U + nRT + (n2RB/V)T    2 
 

   Next we need to find the volume of the gas. As a first approximation we can use the ideal gas 
law and the initial state to get the volume. Converting pressure units gives: 
 

 P = 23.8 torr =  0.03132 atm = 3.173x103 Pa     3 
and then: 
 V = 1.00 mol(8.314 J K-1 mol-1)(298.2 K)/3.173x103 Pa = 0.7814 m3 4 
 

Is this ideal value close enough or do we need to use the Virial equation to get the volume? How 
big is the correction to the volume from the Virial equation? We can use a successive 
approximations approach. We can substitute the V from the ideal gas law into the right-hand side 
of Eq. 1 and then solve for the corrected volume. Solving for V with: 
 

 B = –425. cm3 mol-1 = –0.425 L mol-1 = –4.25x10-4 m3 mol-1  5 

 V  nRT(1 + B 
n
V)/P        6 

but   B 
n
V = –4.25x10-4 m3 mol-1(1 mol)/0.7814 m3 = 5.4x10-4    7 

is negligible compared to 1. So the ideal gas equation of state will do fine for calculating the 
volume. 
   Then as in Example 9.3.2: 
 

  U = CvT = 6/2 nR T = 6/2 (1.00 mol )(8.314 J mol-1K-1)(373.2-298.2K) 
 U = 1.871 kJ         8 
 

Substitution of this value of the internal energy change into Eq 2. gives: 
 

 H = 1.87 kJ + (1.00 mol)(8.314x10-3 kJ mol-1 K-1) (373.2-298.2K)  
     + (1.00 mol)2(8.314 x10-3 kJ mol-1 K-1)(-4.25x10-4 m3 mol-1)(373.2-298.2K)/0.7814 m3 
 H = 1.871 kJ + 0.624 kJ – 0.000339 kJ = 2.495 kJ 
 

So for water vapor under these circumstances, the correction for non-ideality is negligible. We 
did assume that B was a constant, however. At 298.2 K, B is significantly more negative than the 
given value, which would make this correction larger. Eq. 2 is useful in geological circumstances 
where water vapor pressures are much higher and have a decisive effect on the types of minerals 
that are formed. Constant volume conditions are often appropriate for geological processes and 
computer simulations. 
 
 
10.  Show that: 
 

 






H

T V
 = Cv + nR + 

n2RB
V  
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for a gas that obeys the Virial-type equation of state: 

 PV = nRT(1 + B 
n
V) 

Assume that B is a constant (the second Virial coefficient is actually temperature dependent). 
Compare the result to the last problem. 
 
 
Answer:  Using the definition of the enthalpy: H  U + PV: 
 

 






H

T V
 = 






U

T V
 + 






(PV)

T V
 

 

with PV = nRT(1 + B 
n
V) gives: 

 

 






(PV)

T V
  =  nR(1 + B 

n
V)  =  nR + 

n2RB
V  

 

Substitution back into (H/T)V gives the final result: 
 

 






H

T V
 = Cv + nR + 

n2RB
V  

 

since (U/T)V = Cv. For a constant volume process and assuming B is a constant over the 
temperature range gives the integrated result: 
 

 H = CvT + nRT + (n2RB/V)T 
 

as we saw in the last problem. 
 
 
11.  In Section 9.3 for the isothermal reversible expansion of an ideal gas, which is Path 1 in 
Figure 9.3.1, we integrated dH = dU + d(PV)  to prove that H = U. Integrate: 
 

 dH = dU + P dV + V dP       (9.2.5) 
 

directly for an isothermal reversible process and show the result also gives H = U. In other 
words, assuming an ideal gas at constant temperature, substitute P = nRT/V and V = nRT/P and 
then integrate. Compare the integral to Eq. 9.3.10. 
 
 
Answer:   Integrating Eq. 9.2.5: 
 

 H1

H2dH = U1

U2dU + V1

V2PdV + P1

P2VdP     (closed) 1 
 

We need to be very careful about the P in PdV and the V in VdP. The P and V are not constant, 
as they are in Eq. 9.3.18. Assuming an ideal gas, at constant temperature P = nRT/V and V = 
nRT/P. Substituting into Eq. 1 and integrating: 
 

 H = U + 



V1

V2nRT
V dV + 




P1

P2nRT
P dP   (closed, ideal gas, cst. T) 2 
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First note that since the process is isothermal, T is a constant, factors out of the integrals, and 
gives: 
 

 H = U + nRT



V1

V2 1
VdV + nRT




P1

P21
PdP  (closed, ideal gas, cst. T) 3 

and integrating gives: 
 

 H = U + nRT ln



V2

V1
 + nRT ln



P2

P1
   (closed, ideal gas, cst. T) 4 

 

However, for an ideal gas, 
 

 



P2

P1
 = 



V1

V2
          5 

 

Substituting Eq. 5 into Eq. 4 gives 
 

 H = U + nRT ln



V2

V1
 + nRT ln



V1

V2
 = U + nRT ln



V2

V1
 – nRT ln



V2

V1
  6 

 

The last two terms cancel giving: 
 

 H = U      (closed, ideal gas, cst. T) 7 
 

Once again we find that H is independent of the path and integrating dH = dU + d(PV) or dH = 
dU + P dV + V dP is equivalent. The choice of the form of the differential to use is just 
dependent on convenience. 
 
 

12.  Given that: 






H

P T
 = 0, show that 







H

V T
 = 0. 

 
 
Answer:  Since the enthalpy is usually considered a function of the independent variables P and 
T, the “misplaced” variable is the derivative with respect to V. Using the chain rule: 
 

 






H

V T
 = 






H

P T
 






P

V T
 

 

Using the given partial derivative (H/P)T = 0: 
 

 






H

V T
 = 0 

 
 
13.  We will prove in a later chapter that the internal pressure for a Van der Waals gas is given 
by: 
 

 






U

V T
 = 

an2

V2  
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Find Cp – Cv for a Van der Waals gas. 
 
 
Answer:  From Eq. 9.4.7: 
 

 Cp – Cv = 














U

V T
 + P  







V

T P
       1 

 

For a Van der Waals gas:  P = 
nRT

(V – nb) – 
an2

V2 , which upon substitution into Eq. 1 gives: 
 

 Cp – Cv = 



an2

V2  + 
nRT

(V – nb) – 
an2

V2  






V

T P
 = 

nRT
(V – nb) 






V

T P
   2 

 

The remaining partial derivative is difficult to find directly. Notice however that the inverse is 
easier. Solving the Van der Waals equation for T: 
 

 T = 
1

nR 



P + 

an2

V2 (V – nb)       3 
 

Using the product rule: 
 

 






T

V P
 = 

1
nR 









P + 

an2

V2  + (V – nb) 



–2an2

V3      4 

 

We will do a bit of algebra below, but it is sufficient for our purposes to simply divide Eq. 2 by 
Eq. 4 to get the final result: 
 

 Cp – Cv  = nR 

nRT
(V – nb)











P + 

an2

V2  + (V – nb) 



–2an2

V3

     5 

 

In the denominator we can substitute for the first term: 
 

 



P + 

an2

V2  = 
nRT

(V – nb)         6 
 

to give: 
 

Cp – Cv  = nR 

nRT
(V – nb)











nRT

(V – nb)  + (V – nb) 



–2an2

V3

  =  nR 
1





1 + 

(V – nb)2

nRT  



–2an2

V3

 7 

 

Notice that when a = 0, that this last equation reduces to Cp– Cv = nR, which is the correct result 
for an ideal gas. 
 
 
14.  For CO2, JT = 1.11 K bar-1 and Cp,m for CO2 is 37.11 J K-1mol-1. Calculate the change in 
enthalpy per mole of CO2 for an isothermal process for a change in pressure of 1.00 bar. Assume 
that both JT and Cp are constant over the pressure range. 
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Answer:  The process corresponds to the partial derivative (H/P)T. The value of this partial 
derivative is given by the Joule-Thompson coefficient: 
 

 JT = – 
1

Cp
  






H

P T
 or equivalently 







H

P T
 = – JT Cp  

 

Integration assuming a constant JT and Cp gives: 
 

 H = – JT Cp P 
 

Substitution of the values for this problem gives: 
 

 H = – 1.11 K bar-1(37.11 J K-1mol-1) (1.00 bar) = -41.2 J mol-1 
 

For an ideal gas, the change would be zero since the process is isothermal. 
 
 
15.  Determine the “misplaced” variable for (H/V)T and express the result in terms of Cv, Cp, 
, T, (U/V)T, and (H/P)T. 
 
 
Answer:  The partial derivative that is required is (H/V)T. Substituting the definition of 
enthalpy, H  U + PV, gives using the product rule: 
 

 






H

V T
 = 






(U + PV)

V T
 = 






U

V T
 + P 







V

V T
 + V 







P

V T
   1 

 

Given that (V/V)T = 1 and from Eq. 7.6.14: 
 

 






V

P T
 = – V T or the inverse:  







P

V T
 = 

–1
V T

    2 

 

Substituting Eq. 2 into Eq. 1 gives: 
 

 






H

V T
 = 






U

V T
 + P – 

1
T

 

 

Everything on the right-hand side is in the form of a fundamental partial derivative or can be 
obtained from the equation of state of the substance. Compare this problem to Problem 5. 
 
 
16.  Show that for an ideal gas Cv is not a function of the volume of the system and that Cp is not 
a function of the pressure of a system. In other words show that, for a closed system: 
 

 






Cv

V T
= 0   







Cp

P T
 = 0 

 
 
Answer: (a). The definition of the constant volume heat capacity is: 
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 Cv = 






U

T V
 

 

Substitution into the partial derivative with respect to V, above, gives: 
 

 






Cv

V T
 = 








V





U

T V T
  =  









T





U

V T V
 

 

The order of differentiation can be reversed because U is a state function. The fact that mixed 
partials are equal is the basis of the Euler criterion for exactness for state functions. For an ideal 
gas, (U/V)T = 0, giving: 
 

 






Cv

V T
 = 0 

 

In other words Cv is not a function of volume for an ideal gas. 
(b).  The definition of the constant pressure heat capacity is: 
 

 Cp = 






H

T P
 

 

Substitution into the partial derivative with respect to V, above, gives: 
 

 






Cp

P T
 = 








P





H

T P T
  =  









T





H

P T P
 

 

The order of differentiation can be reversed because H is a state function. For an ideal gas, 
(H/P)T = 0, giving: 
 

 






Cp

P T
 = 0 

 

In other words Cp is not a function of pressure for an ideal gas. 
 
 

17.  Show that 






H

T V
= CP + 







H

P T







 . 

 
 
Answer:  We can get a hint of how to proceed by substituting in the definition of Cp and also that 
/T = (P/T)V. Correspondingly we need to show that: 
 

 






H

T V
= 






H

T P
 + 






H

P T





P

T V
 

 

Since we normally consider H(P,T) and not H(V,T), we can consider the “misplaced” variable 
the constant V specification. Notice that given H(P,T) the total differential of H is: 
 

 dH = 






H

T P
 dT + 







H

P T
 dP 
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Notice that the partials in this total differential also occur in the relationship we are trying to 
derive. Simply “dividing” this last equation by dT and specifying constant V for any new partial 
derivative gives: 
 

 






H

T V
= 






H

T P
 





P

P V
+ 






H

P T





P

T V
 = 






H

T P
 + 






H

P T





P

T V
 

 

Using the definition of the constant pressure heat capacity, Cp = (H/T)P, and the result from 
Eq. 7.6.21, that is /T = (P/T)V, gives: 
 

 






H

T V
= CP + 







H

P T







  

 

Notice that it is often helpful to “work backwards” from the original statement of the problem. 
Working “backwards” can help give you hints on how to proceed. Just remember to present the 
full derivation in the “forward” direction as we did here. 
 
 
18.  The Joule-Thomson coefficient is JT = (T/P)H. Show that the corresponding coefficient 
for constant internal energy processes is given by: 
 

 






T

V U
  = – 

1
Cv

  






U

V T
 

 
 
Answer:  Starting with (T/V)U, the “misplaced” variable is the constant internal energy. Since 
U is held constant, we can set the total differential ofU equal to zero. As normal we consider 
U(V,T), in other words the independent variables for U are V and T: 
 

 dU = 






U

V T
 dV + 







U

T V
 dT = 0 

 

Subtracting the volume dependent term from both side sof the equality: 
 

 






U

T V
 dT = – 







U

V T
 dV 

 

“Dividing” both sides of the equation by dV and applying constant U: 
 

 






T

V U
  =  – 







U

V T







U

T V

 

 

Using the definition of the constant volume heat capacity: Cv = 






U

T V
 

gives the final result: 
 

 






T

V U
  = – 

1
Cv

  






U

V T
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This result is an example of the Euler chain relationship. 
 
 
19.  Rewrite Figure 9.7.1 for the partial derivatives: 
 

 






U

T P
  







T

U V
  







U

P T
  







U

T P
  







T

V U
 

 
 
Answer:  The partial derivative conversions are shown below: 
 







U

T P
= 






H

T P
 – P 







V

T P
 = Cp + PV 

            U = H – PV 

         






T

U V
 = 

1







U

T V

 = 
1

Cv
 

 

      H  U + PV 
 

           definition     invert 
   misplaced numerator        misplaced numerator 
 

 

            






U

T P
     







T

U V
 

 

   






U

P T
  







U

T P
      







T

V U
 

 

   misplaced denominator         misplaced constant variable misplaced constant variable 
 chain rule        total differential, dU    total differential, dU=0 
 

    






U

P T
  = 







U

V T
 






V

P T
 

     






U

P T
 = 






U

V T
 (VT) 

dU =






U

V T
dV + 







U

T V
dT 







U

T P
=






U

V T





V

T P
 + 






U

T V
 

          =  






U

V T
 V + Cv 

dU =






U

V T
dV + 







U

T V
dT = 0 

   






T

V U
= 

– 






U

V T

  






U

T V

 = 
– 






U

V T

Cv
 

 

Figure P.1:  Partial Derivative Conversion. Partial derivative manipulations to convert 
unknown partial derivatives to those involving Cv, Cp, , T, (U/V)T, and (H/P)T. 

 
 
20.  One mole of an ideal diatomic gas at 200. K is compressed in a reversible adiabatic process 
until its temperature reaches 300. K. Given that Cv,m = 5/2R, calculate q, w, U, and H. 
 
 
Answer:  For a reversible adiabatic expansion of an ideal gas q = 0, which gives U = w. In 
addition, U = Cv T andH = Cp T for any process in an ideal gas: 
 

 U = Cv T = 5/2 nRT  = 5/2 (1 mol)(8.314 J K-1 mol-1)(300. – 200. K) = 2078. J 
 U = 2.08 kJ  = w 
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With Cp–Cv = nR, Cp = 7/2 nR: 
 

 H = Cp T = 7/2 nRT  = 7/2 (1 mol)(8.314 J K-1 mol-1)(300. – 200. K) = 2910. J 
 H = 2.91 kJ 
 
 
21. Calculate q, w, U, and H for a reversible isothermal expansion of 10.0 mol of an ideal 
diatomic gas. The initial pressure is 5.00 bar, and the temperature is 298.2 K. The final pressure 
is 1.00 bar. Assume Cv = 5/2 nR (equipartition neglecting vibration). 
 
 
Answer:  The plan is to use T=0, q = –w, U = H = 0 for an isothermal expansion of an ideal 
gas. For a reversible isothermal expansion in an ideal gas, w = – nRT ln(V2/V1). 
   Using P2V2= P1V1 to relate the work to the pressure change gives Eq. 9.8.25: 
 

 w = – nRT ln(V2/V1) = – nRT ln(P1/P2) = nRT ln(P2/P1) 
 w = 10.0 mol(8.3145 J K-1 mol-1)(1 kJ/1000 J)(298.15 K) ln(1.00/5.00) = -39.9 kJ 
 q = – w = 39.9 kJ 
 
 
22.  Calculate q, w, U, and H for an isothermal expansion of 10.0 mol of an ideal diatomic gas 
against a constant external pressure of 1.00 bar. The final pressure of the gas is equal to the 
external pressure, P2 = Pext. The initial pressure is 5.00 bar, and the temperature is 298.2 K. 
Assume Cv = 5/2 nR (equipartition neglecting vibration). 
 
 
Answer:  The plan is to use T=0, q = –w, U = H = 0 for an isothermal expansion of an ideal 
gas. For an irreversible expansion, w = – PextV. 
   The initial and final volumes are calculated from the ideal gas equation of state: 
 

 V1 = (10.0 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(5.0 bar) = 49.58 L 
 V2 = (10.0 mol)(0.083145 L bar K-1 mol-1)( 298.15 K)/(1.00 bar) = 247.9 L 
 

The work done is:  w = – PextV: 
 

 w = –(1.00 bar)(1x105Pa/1 bar)(247.9 – 49.58 L)(1 m3/1000 L) = -19.8 kJ 
 q = – w = 19.8 kJ 
 

Notice that the magnitude of the work done is significantly less than the reversible case in the 
last problem, because the gas is expanding against a constant external pressure. 
 
 
23.  The volume of 1.00 mol of an ideal diatomic gas exactly doubles in a reversible adiabatic 
expansion. The initial pressure is 5.00 bar and the initial temperature is 298.2 K. Calculate q, w, 
U, and H. Use the constant volume heat capacity for water vapor, Cv = 25.3 J K-1 mol-1. 
 
 
Answer:  The plan is to use Eq. 9.8.13 to find the final temperature, and then for an adiabatic 
expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. 
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   Using the heat capacity for water Cv/nR = 25.3 J K-1 mol-1/8.314 J K-1 mol-1 = 3.04. From Eq. 
9.8.13: 
 

 



T2

T1

Cv/nR
 = 



V1

V2
 giving    T2 = T1 



V1

V2

1/3.04
 

 T2 = 298.15 K (½)0.3286 = 298.15 K(0.7963) = 237.4 K 
 w = U = Cv T = (1.00 mol)(25.3 J K-1 mol-1)(237.4 – 298.15 K) = -1537. J 
 w = U = -1.54 kJ 
 

Assuming ideal gas behavior Cp = Cv + nR = 25.3 + 8.314 J K-1 mol-1 = 33.6 J K-1 mol-1: 
 

 H = Cp T = (1.000 mol)(33.6 J K-1 mol-1) (237.4 – 298.15 K) = -2041. J 
       = -2.04 kJ 
 

The temperature difference is -60.8 K, so you might expect only 2 significant figures in the 
result. But a quick propagation of errors treatment allows 3 significant figures for U, with T = 
-60.79  0.18 K based on 3 significant figures in the heat capacity. On a test, however, when you 
don’t have time to do an error analysis, it would be safest to report only 2 significant figures in 
the final U and H. The heat capacity limits the number of significant figures to no more than 
three. 
 
 
24. Calculate q, w, U, and H for a reversible adiabatic expansion of an ideal diatomic gas. The 
initial volume is 50.0 L, the initial pressure is 5.00 bar, and the initial temperature is 298.2 K. 
The final volume is 157.8 L. Assume Cv = 5/2 nR (equipartition neglecting vibration). 
 
 
Answer:  The plan is to use Eq. 9.8.13 to find the final temperature, and then for an adiabatic 
expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. 
   The number of moles of gas is calculated from the ideal gas equation of state: 
 

 n = PV/RT = 5.00 bar 50.0 L/0.083145 J K-1 mol-1/298.15 K = 10.08 mol 
 

Using the equipartition predicted heat capacity, neglecting vibrations, Cv = 5/2 nR, gives Cv/nR = 
5/2. From Eq. 9.8.13: 
 

 



T2

T1

Cv/nR
 = 



V1

V2
 giving    T2 = T1 



V1

V2

2/5
 

 T2 = 298.15 K 



50.0

157.8

2/5
 = 298.15 K(0.6315) = 188.3 K 

 w = U = Cv T = 5/2 (10.08 mol)(8.3145 J K-1 mol-1)(188.3 – 298.15 K) 
     = -23.0 kJ 
 

Assuming ideal gas behavior Cp = Cv + nR = 7/2 nR: 
 

 H = Cp T = 7/2 (10.08 mol)(8.3145 J K-1 mol-1)(188.3 – 298.15 K) = -32.2 kJ 
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25.  Calculate the initial and final volume, q, w, U, and H for a reversible adiabatic expansion 
of 2.000 mol of an ideal monatomic gas. The initial pressure is 10.00 bar and the initial 
temperature is 298.2 K. The final pressure is 1.000 bar. Use the heat capacities predicted by 
equipartition. Verify that Eqs. 9.8.19 and 9.8.21, P2 V2

 = P1V1
, give the same result. 

 
 
Answer:  For an adiabatic expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. 
For a monatomic gas Cv = 3/2 nR and Cp = Cv + nR = 5/2 nR. Using Eq. 9.8.19 to determine the 
final temperature: 
 

 



T2

T1

Cp/nR
 = 



P2

P1
 and T2 = T1 (P2/P1)2/5 = 298.15 K(1.000/10.00)2/5 

 T2 = 118.70 K 
 

 U = Cv (T2- T1) = 3/2 (1.000 mol)(8.314 J K-1 mol-1)(118.70 – 298.15 K) 
 U = -2238. J 
 

 H = Cp (T2- T1) = 5/2 (1.000 mol)(8.314 J K-1 mol-1)(118.70 – 298.15 K) 
 H = -3730. J 
 

The initial and final volumes are determined from the ideal gas equation of state: 
 

 V1 = (1.000 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(10.00 bar) = 2.4790 L 
 V2 = (1.000 mol)(0.083145 L bar K-1 mol-1)(118.70 K)/(1.000 bar) = 9.8689 L 
 

Alternatively, for the final volume,  = Cp/Cv = 5/3 and using P2V2
 = P1V1

: 
 

 V2 = V1(P1/P2)1/ = 2.4790 L(10.00/1.000)3/5 = 9.8689 L 
 
 
26. Calculate the initial and final volume, q, w, U, and H for a reversible adiabatic expansion 
of an ideal diatomic gas. The initial pressure is 5.000 bar and the initial temperature is 298.2 K 
for 10.00 moles. The final pressure is 1.000 bar. Assume Cv = 5/2 nR (equipartition neglecting 
vibration). 
 
 
Answer:  The plan is to use Eq. 9.8.19 to calculate the change in temperature for the reversible 
adiabatic expansion. Then, for an adiabatic expansion of an ideal gas, q = 0, U = w, U = Cv 
T, H = Cp T. 
   Assuming ideal gas behavior Cp = Cv + nR = 7/2 nR. For a reversible expansion, the change in 
temperature is given by Eq. 9.8.19: 
 

 



T2

T1

Cp/nR
 = 



P2

P1
 and T2 = T1 (P2/P1)2/7 = 298.15 K(1.000/5.000)2/7 

 T2 = 188.25 K 
 

 U = Cv (T2- T1) = 5/2 (10.000 mol)(8.314 J K-1 mol-1)(188.25 – 298.15 K) 
 w = U = -22.844 kJ 
 

 H = Cp (T2- T1) = 7/2 (10.000 mol)(8.314 J K-1 mol-1)(188.25 – 298.15 K) 
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 H = -31.982 kJ 
 

The initial and final volumes are determined from the ideal gas equation of state: 
 

 V1 = (10.000 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(5.000 bar) = 49.579 L 
 V2 = (10.000 mol)(0.083145 L bar K-1 mol-1)(154.43 K)/(1.000 bar) = 128.40 L 
 

Alternatively, for the final volume, using P2V2
 = P1V1

: 
 

 V2 = V1(P1/P2)1/ = 49.579 L(5.000/1.000)5/7 = 156.52 L 
 

Notice that the magnitude of the work done is significantly less than the corresponding 
isothermal expansion in Problem 21, since the temperature drops, causing the pressure to 
decrease, decreasing the pressure against which the gas expands. 
 
 
27.  Calculate the final pressure, initial and final volume, q, U, and H for a reversible 
adiabatic expansion of an ideal diatomic gas that does -10.00 kJ of work in the process. The 
initial pressure is 10.00 bar and the initial temperature is 298.2 K for 10.00 moles. Assume Cv = 
5/2 nR (equipartition neglecting vibration). 
 
 
Answer:  The plan is to calculate the final temperature from w = U = Cv T, and from the final 
temperature the final pressure is calculated from Eq. 9.8.19. 
   For an adiabatic expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. Solving 
for the change in temperature from the work specified: 
 

 w = U = Cv T = -10000. J 
giving: 
 -10000. J =  5/2 (10.00 mol)(8.3145 J K-1mol-1)(T2 – 298.15 K) 
 T2 = 250.04 K 
 H = Cp (T2- T1) = 7/2 (10.000 mol)(8.314 J K-1 mol-1)( 250.04 – 298.15 K) 
 H = -14.00 kJ 
 

   Assuming ideal gas behavior Cp = Cv + nR = 7/2 nR. For a reversible expansion, the change in 
temperature and pressure are related by Eq. 9.8.19: 
 

 



T2

T1

Cp/nR
 = 



P2

P1
 and P2 = P1 (T2/T1)7/2 = 10.0 bar(250.04 K /298.15 K)7/2 

 P2 = 5.4015 bar 
 

The initial and final volumes are determined from the ideal gas equation of state: 
 

 V1 = (10.000 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(10.00 bar) = 24.790 L 
 V2 = (10.000 mol)(0.083145 L bar K-1 mol-1)(250.04 K)/(5.4015 bar) = 38.488 L 
 

Alternatively, for the final volume, using P2V2
 = P1V1

: 
 

 V2 = V1(P1/P2)1/ = 24.790 L(10.00/5.4015)5/7 = 38.488 L 
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The temperature drops less in this problem as compared to Example 9.8.1c, the magnitude of the 
work done per mole is less, and w = U = Cv T. The work comes at the expense of the internal 
energy, since less work is done the internal energy change is less. 
 
 
28. Calculate the initial and final volume, q, w, U, and H for an adiabatic expansion of an 
ideal diatomic gas against a constant external pressure, with the final pressure of the gas equal to 
the external pressure, P2 = Pext. The initial pressure is 5.000 bar and the initial temperature is 
298.2 K for 10.00 moles. The external pressure is 1.000 bar. Use the heat capacities predicted by 
equipartition, neglecting vibration. 
 
 
Answer:  For an adiabatic expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. 
For an adiabatic irreversible expansion against a constant external pressure of Pext: 
 

 U = Cv (T2- T1) U = w = - Pext (V2 –V1)    1 
 

Solve these two expressions simultaneously for T2 gives: 
 

 Cv (T2 – T1) = - Pext (V2 – V1)       2 
 

For the final state to be in equilibrium with the surroundings, P2 = Pext. Then for an ideal gas V2 
= nRT2/P2 = nRT2/Pext: 
 

 Cv (T2- T1) = - Pext 



nRT2

Pext
 - 

nRT1

P1
      3 

 

Divide both sides of the equation by nR: 
 

 
Cv

nR (T2- T1) = - Pext 



T2

Pext
 - 

T1

P1
 = - T2 + 

Pext

P1
 T1     4 

 

Collecting terms in T2 and T1: 
 

 



Cv

nR + 1  T2 = 
Cv

nR T1 + 
Pext

P1
 T1       5 

 

Solving for T2: 
 

 T2 = 




Cv

nR + 
Pext

P1





Cv

nR + 1
 T1        6 

 

For a diatomic gas, neglecting vibrations, Cv/nR = 5/2: 
 

 T2 = 




5/2 + 

1.000 bar
5.000 bar

( )5/2 + 1
 298.2 K      7 

 

 T2 = 230.00 K 
 U = Cv (T2- T1) = 5/2 (10.000 mol)(8.314 J K-1 mol-1)(230.00 – 298.15 K) 
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       = -14.17 kJ 
 

Using Cp = Cv + nR = 5/2 nR + nR = 7/2 nR: 
 

 H = Cp (T2- T1) = 7/2 (10.000 mol)(8.314 J K-1 mol-1)(230.00 – 298.15 K) 
       = -19.83 kJ 
 

The initial and final volumes are determined from the ideal gas equation of state: 
 

 V1 = (10.000 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(5.000 bar) = 49.579 L 
 V2 = (10.000 mol)(0.083145 L bar K-1 mol-1)(230.00 K)/(1.000 bar) = 191.23 L 
 

The work is given by w = U = -14.17 kJ, or checking for consistency: 
 

 w = - PextV = - (1.000 bar)(1x105 Pa/1 bar)(191.23 – 49.579 L)(1 m3/1000 L)= 
     = -14.17 kJ 
 

The magnitude of the work is less than the reversible expansion, Problem 26, as expected, since 
the gas is expanding against a constant external pressure. The magnitude of the work is much 
less than Problem 21, because in addition to being irreversible, the temperature also decreases. 
 
 
29. Consider an adiabatic expansion against a constant external pressure, Pext, with the final 
pressure of the gas equal to the external pressure. The initial pressure is 10.00 bar and the initial 
temperature is 298.2 K for 10.00 moles of an ideal diatomic gas. Calculate the external pressure 
that is required for -10.00 kJ of work to be done by the gas. Calculate the final temperature, 
volume, q, U, and H. Use the heat capacities predicted by equipartition, neglecting vibration. 
 
 
Answer:  For an adiabatic expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. 
For an adiabatic irreversible expansion against a constant external pressure of Pext: 
 

 U = Cv (T2- T1) U = w = - Pext (V2 –V1)    1 
 

Solve these two expressions simultaneously for Pext to give: 
 

 Cv (T2 – T1) = - Pext (V2 – V1)       2 
 

For the final state to be in equilibrium with the surroundings, P2 = Pext. Then for an ideal gas V2 
= nRT2/P2 = nRT2/Pext: 
 

 Cv (T2- T1) = - Pext 



nRT2

Pext
 - 

nRT1

P1
      3 

 

Divide both sides of the equation by nR: 
 

 
Cv

nR (T2- T1) = - Pext 



T2

Pext
 - 

T1

P1
 = - T2 + 

Pext

P1
 T1     4 

 

Collecting terms in T2 and T1: 
 

 



Cv

nR + 1  T2 = 
Cv

nR T1 + 
Pext

P1
 T1       5 
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Solving Eq. 5 for Pext = P2: 
 

 



Cv

nR + 1  
T2

T1
 - 

Cv

nR = 
Pext

P1
       6 

 

 Pext = P1 









Cv

nR + 1
T2

T1
 - 

Cv

nR        7 
 

For a diatomic gas, neglecting vibrations, Cv/nR = 5/2. Solving for the final temperature from the 
work gives: 
 

 w = U = Cv (T2 – T1) 
 -10000. J = 5/2 (10.00 mol)(8.314 J K-1 mol-1)(T2 – 298.15 K) 
 T2 = 250.04 K 
 

The constant pressure for the expansion from Eq. 7 is: 
 

 Pext = P1 



( )5/2 + 1

250.04 K
298.15 K - 5/2  

 

 Pext = 4.3525 bar 
 

The initial and final volumes are determined from the ideal gas equation of state: 
 

 V1 = (10.000 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(10.00 bar) = 24.790 L 
 V2 = (10.000 mol)(0.083145 L bar K-1 mol-1)(250.04 K)/(4.3525 bar) = 47.765 L 
 

Using Cp = Cv + nR = 5/2 nR + nR = 7/2 nR: 
 

 U = w = -10000. J = -10.00 kJ 
 H = Cp (T2 – T1) = 7/2 (10.000 mol) (8.314 J K-1 mol-1)(250.04 – 298.15 K) 
       = -14.00 kJ 
 
Notice that the change in temperature for this problem is the same as in Problem 27, since w = 
U = CvT for an adiabatic process, reversible or irreversible. 
 
 
30. The relationships of the variables that are being held constant for the partial derivative 
transformation in Eq. 9.4.5 are sketched Figure 9.10.1. (a). Sketch the corresponding 
relationships for the transformation: 
 

 






H

T V
=  






H

P T





P

T V
+ 






H

T P
 

 

(b). Rewrite this expression in terms of the fundamental properties, Cv, Cp, , T, and JT, and 
integrate the resulting expression assuming that the temperature range is sufficiently narrow that 
the system properties are constant. 
 
 
Answer:  The change in state for the constant volume path may simply be accomplished using a 
constant temperature path followed by a constant pressure path. 
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The direct path is shown as a straight line because, assuming an ideal gas with P = nRT/V: 
 

 






P

T V
 = 

nR
V   gives a linear relationship at cst. V:    dP = 

nR
V  dT 

 

(b).The two-step path is a more convenient way of accomplishing the same change in state, since 
the values of the partial derivatives are available from experiment; which are tabulated in the 
form of Joule-Thomson coefficients and constant pressure heat capacities. Using Eq. 9.6.10, Eq. 
7.6.16, and the constant pressure heat capacity, Eq. 7.8.24: 
 

 






H

T V
=  






H

P T





P

T V
+ 






H

T P
 = – Cp JT 









T
 + Cp 

 
If these system properties are all constant then the infinitesimals may be replaced by finite 
differences (Sec. 9.3): 
 

 
H
T

 = – Cp JT 








T
 + Cp 

 

Direct Path 

Two-step Path 

P 

T 

T1, P1 

T2,P2 





∂H

∂P
T
 





∂H

∂T
V
 





∂H

∂T P
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Chapter 10 Problems: Entropy, Temperature, and Heat Transfer 

 
1. What is the change in entropy for the system for an adiabatic reversible expansion? 
 
 
Answer:  For any adiabatic process đq = 0. For an adiabatic reversible process đq = đqrev and the 
entropy change is dS = đqrev/T = 0. Adiabatic reversible processes are constant entropy 
processes. 
 
 
2. Calculate the change in entropy for the isothermal reversible expansion of one mole of an 
ideal gas from an initial volume of 1.00 m3 to a final volume of 10.0 m3. 
 
 
Answer:  Integrating the definition of the entropy change for an isothermal process from Eq. 
10.2.18: 

 S1

S2dS = 
1
T  đqrev        (isothermal reversible) 

 

Entropy is a state function so that integration gives: 
 

 S = 
qrev

T          (isothermal reversible) 

This equation is specific to an isothermal reversible process. For an isothermal expansion of an 
ideal gas, dH = dU = 0 and đq = – đw. For a reversible isothermal ideal gas expansion remember 
that  P = Pext, đwrev = – PdV, and wrev = –nRT ln(V2/V1) giving: 
 

 qrev = nRT ln 
V2

V1
   (isothermal reversible, closed, ideal gas) 

Dividing by T to determine the corresponding entropy change gives: 
 

 S = 
qrev

T  = nR ln 
V2

V1
        (isothermal, ideal gas) 

From the values given in the problem: 
 

 S = nR ln 
V2

V1
  =  1.00 mol (8.314 J mol-1 K-1) ln(10.0 m3/1.00 m3) = 19.1 J K-1 

Notice that you can use any volume units, since the units cancel in the ratio. Notice also that the 
same change in entropy per mole results from any expansion by a factor of 10: 1 mL10 mL, or 
100 L1000 L. 
 
 
3. Evapotranspiration is the process of conversion of liquid water into vapor by the earth’s 
surface. Evapotranspiration is the sum of evaporation and transpiration. Evaporation is the direct 
vaporization of water from water bodies, plant surfaces, and the soil. Transpiration is the 
conversion of liquid water into water vapor by movement of water within plants and the 
subsequent loss of water vapor through stomata in the leaves. Approximately 60% of the energy 
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available from the solar flux in a forest is consumed by evapotranspiration. The solar flux at the 
equator at midday is about 1000 W m-2. The evaporation of water results in a large increase in 
entropy in vegetated areas. Evapotranspiration also moderates the surface temperature and 
maintains the local humidity. To provide a very rough model, consider a flat surface that is 
heated to the boiling point of water by the sun. Assume that 60% of the solar flux is available for 
the vaporization of water on this surface. Calculate the rate of the production of entropy from the 
vaporization of water per second per m2 at midday at the equator for a forest. The enthalpy of 
vaporization of water at the normal boiling point is vapH = 40.7 kJ mol-1. 
 
 
Answer:  Using Eq. 10.2.19 and the normal boiling point of water, Tb = 373.15 K at 1 atm, the 
molar entropy of vaporization is: 

 trSm = 
trH
Ttr

 = 
40.7 kJ mol-1 (1000 J/1 kJ)

373.15 K  = 108. J K-1 mol-1 

With 60% of the solar flux utilized for evapotranspiration, the energy flux is given by: 
 JET = 1000 W m-2 (1 J s-1/1 W)(0.60) = 600. J s-1 m-2 
and the evapotranspiration rate in moles of water per unit area is then 

 RET = JET/vapH = 
600. J s-1 m-2

40.7 kJ mol-1(1000 J/1 kJ) = 0.0147 mol s-1 m-2 

and the entropy production is the product of the evapotranspiration rate and the molar entropy of 
vaporization. A common symbol for the entropy production is : 
  = RET trSm = 0.0147 mol s-1 m-2(108 J K-1 mol-1) = 1.59 J K-1 s-1 m-2 
 

Much of the sun’s energy is used for entropy production by evapotranspiration over vegetated 
areas. The deforestation of rainforests has the potential to greatly alter the energy balance in 
tropical regions, which may result in higher temperatures and the loss of productivity because of 
water scarcity. The humidity above rainforests is recycled as rain. 
   We used the flat surface at 100C because at this point, we haven’t discussed how to calculate 
entropy change for irreversible processes. Please see Chapters 11 and 13. 
 
 
4. The following is a common student question concerning temperature as a measure of the 
“quality” of the energy in a system. Answer the student’s question. 

“The higher the temperature of a substance (for example a gas) the higher the quality of the 
energy in the system to do useful work. But at the same high temperature, the system has 
high entropy as well, which accounts for energy dispersal and hence less availability of the 
energy. How is the concept of temperature as a measure of quality and the concept of entropy 
consistent?” 

 
 
Answer:  The first bit of confusion is that the change of the entropy for a system is a measure of 
the energy dispersal, not the value of the entropy itself. Energy dispersal is the result of a 
process. A second bit of confusion relates to the fact that temperature is an intensive variable and 
entropy is an extensive variable. The temperature is an intrinsic property of the system, 
independent of size. The entropy scales with size or total energy transferred into the system. So if 
you double the size of a system, you double the entropy and you double the internal energy. 
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However, the spontaneity of the transfer of energy from this system to another system is 
dependent on the temperature gradient and not the size of the system or the total amount of 
energy. The entropy of a system does increase with temperature. But this thermal energy is not 
available unless the system comes into contact with another object that is at a lower temperature. 
If the system comes into contact with a colder object, energy will be transferred from the hotter 
to the colder. This transfer causes some of the available energy to spread, or disperse, from the 
hotter object into the colder object. The transfer of energy stops when the hotter object cools and 
the colder object heats to the same temperature. 
 
 
5. A hot cup of coffee has a temperature of 60-70C and a mass of 250 g. Calculate the change in 
entropy for 250. g of water when the temperature is increased from 25.0C to 60.0C at constant 
pressure. Assume a constant heat capacity of 4.18 J K-1 g-1. [Hint: Remember that at constant 
pressure dH = Cp dT and then you need to integrate the definition of entropy.] 
 
 
Answer:  At constant pressure from the definition of the constant pressure heat capacity, 
 đqp = dH = Cp dT 
Since H is a state function, the heat transfer in this particular case is independent of the path, and 
đqp is equivalent to a reversible heat transfer, đqrev. Substitution into the definition of entropy 
gives: 

 dS  
đqrev

T  = 
dH
T  = Cp 

dT
T      (cst. P, closed) 

Integration gives: 

 ∆S = 



T1

T2

Cp 
dT
T       (cst. P, closed) 

 

Assuming a constant heat capacity: 
 

 ∆S = Cp ln 
T2

T1
       (cst. P, closed) 

For the temperatures given in the problem, converting into kelvins, 298.12 K and 333.15 K: 

 ∆S = Cp ln 
T2

T1
 = 250. g (4.18 J K-1 g-1) ln 

333.15
298.15  =  116. J K-1 

 
 
6. Calculate the change in entropy for the isothermal reversible expansion of an ideal gas from an 
initial volume of V1 to a final volume of V2. This is the same problem as Problem 2. However, 
this time, approach the derivation using the combined First and Second Laws of 
thermodynamics, Eq. 10.4.1. Solve for the change in entropy using Eq. 10.4.1 and then make 
substitutions appropriate for an isothermal reversible expansion of an ideal gas. 
 
 
Answer:  The combined First and Second Laws is dU = TdS – PdV. Solving for the change in 
entropy gives: 
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 dS = 
dU
T  + 

P
T dV          (closed, PV work) 

 

For an isothermal process in an ideal gas dU = 0, so the first term drops out. For an ideal gas P/T 
= nR/V. Substitution gives: 
 

 dS = nR 
dV
V      (isothermal, closed, PV work) 

 

Integration gives: 

 S = nR 



V1

V2dV
V  = nR ln 

V2

V1
   (isothermal, closed, PV work) 

 

as we derived before in Problem 2. 
 
 
7. Use the concept of energy dispersal to discuss the specific changes in entropy for the 
combustion of one mole of glucose: 

C6H12O6 (s) + 6 O2 (g)  6 CO2 (g) + 6 H2O (g) 
where the water is produced as a gas at high temperature. Do you expect this reaction to be 
spontaneous? 
 
 
Answer:  There are three sources of energy dispersal in this example. First, there is an increase in 
the number of moles of gas, ng = [6 + 6] – [6] = 6 moles, since the problem specifies that the 
water is released as a gas. Gases are more dispersed, per mole, than liquids and solids. The 
energy dispersal in the net conversion of a solid into a gas is that the kinetic energy of translation 
and rotation and the kinetic and potential energy of vibration of the gas molecules is dispersed. 
   Second, this reaction is very exothermic. The energy stored in the bonds in the glucose and 
oxygen molecules is much higher than the energy stored in the bonds in the product CO2 and 
H2O. The energy in the chemical bonds is stored in the potential and kinetic energy of the 
electrons and the potential energy of repulsion of the nuclei. This stored energy is greater in the 
reactants than the products. The exothermicity provides thermal energy to the product gases that 
increases the translation, rotation, and vibrational kinetic energy and vibrational potential energy 
of the products, hence dispersing this extra energy to more molecules in a larger volume. 
   Third, there is a net increase of non-linear gas molecules. The reactant gas, O2, is diatomic and 
therefore linear. While CO2 is linear, water is bent. Non-linear molecules have one more 
rotational degree of freedom than linear. In linear molecules the rotation around the internuclear 
axis has no moment of inertia. 
 
 

8. Show that 



∂S

∂V
U

= 



∂U

∂V
S
 



∂S

∂U
V

 =  
P
T 
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Answer:  The “misplaced” variable, in the sense of Section 9.7, is that the internal energy is held 

constant in 



∂S

∂V
U

. Working through the total different of U(S,V) and setting dU = 0: 

 

 0 = dU = 



∂U

∂S
V

dS + 



∂U

∂V
S
dV      (1) 

 

and dividing by dV at constant U: 
 
 
           (2) 
 
 

and solving for (∂S/∂V)U: 
 

 



∂S

∂V
U

 = – 



∂U

∂V
S
 



∂S

∂U
V

       (3) 

This result is an example of the Euler chain relationship. From Eq. 10.2.10: 
 

 



∂U

∂V
S
 = – P         (4) 

and inverting Eq. 10.2.16: 



∂S

∂U
V

 = 
1
T      (5) 

Substitution of Eqs. 4 and 5 into Eq. 3 gives the final result: 



∂S

∂V
U

= – 



∂U

∂V
S
 



∂S

∂U
V

 = 
P
T 

 
 
9. Considering that S(U,V), find the total differential of S. From the total differential and the 
relationship in Problem 8, show that: 

 dS = 
1
T dU + 

P
T dV 

 
 
Answer:  Given that S(U,V) the total differential is: 
 

 dS = 



∂S

∂U
V

dU + 



∂S

∂V
U

dV        1 

 

Note that from the definition of temperature, Eq. 10.2.16: 
 

 



∂S

∂U
V

=  
1





∂U

∂S
V

  =  
1
T         2 

 

and in Problem 8 we proved 



∂S

∂V
U

= – 



∂U

∂V
S
 



∂S

∂U
V

 =  
P
T     3 

Substitution of Eqs. 2 and 3 into the total differential gives: 
 

1 

0 = 
∂U
∂S

V

∂S
∂V

U
+ 

∂U
∂V

S

∂V
∂V

U
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dS = 



∂S

∂U
V

dU + 



∂S

∂V
U

dV =   
1
T dU + 

P
T dV       4 

 

We could also have derived the same result by solving the combined First and Second Laws, Eq. 
10.4.1, for dS. Eq. 4 will be very useful when we show the general properties of entropy. Eq. 4 
shows explicitly the differences between the entropy and the internal energy. 
 
 
10. We will find that dH = T dS + V dP. (see Problem 12) Find the total differential of H 
assuming that H(S,P). Then determine the values for: 

 



∂H

∂S
P
  and  



∂H

∂P
S
 

 
 
Answer:  Given the independent variables for H(S,P), the total differential is: 
 

 dH = 



∂H

∂S
P
dS + 



∂H

∂P
S
dP 

 

Comparing term by term with dH = T dS + V dP gives: 
 

 



∂H

∂S
P
 = T   and   



∂H

∂P
S
 = V 

 
 

11. Prove that 



∂S

∂T
V

=  
Cv

T  

 
 

Answer:  The definition of temperature is 



∂U

∂S
V

 = T or inverting gives 



∂S

∂U
V

= 
1
T. This definition 

suggests that the “misplaced” variable in the partial derivative is T. Therefore, it might be better 
to have U in the denominator, rather than T. Then expanding (∂S/∂T)V using the chain rule: 
 

 



∂S

∂T
V

 = 



∂S

∂U
V
 

∂U
∂T

V
 

 

The definition of the constant volume heat capacity is 
 

 



∂U

∂T
V

 = Cv 

 

Substitution gives: 
 

 



∂S

∂T
V

 = 



∂S

∂U
V
 

∂U
∂T

V
 = 

1
T  Cv 
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12. Using the combined First and Second Laws, dU = T dS –P dV, and the definition of 
enthalpy, H  U + PV, show that dH = T dS + V dP 
 
 
Answer:  From H  U + PV, the total differential is dH = dU + PdV + VdP. Substituting 
 dU = T dS –P dV into the total differential of H gives: 
 

 dH = dU + PdV + VdP = T dS –P dV + P dV + V dP 
 

Cancelling terms gives the final result: 
 

 dH = dU + PdV + VdP = T dS + V dP 
 
 
13 The N-[2-(dimethylamino)ethyl]-N-methylguanidium ion has a strong intramolecular 
hydrogen bond. Describe the change in entropy when this ion is heated sufficiently to break the 
hydrogen bond. 
 

CH3

N
N NH2

CH3

CH3

NH2

+

CH3 N

N NH2

CH3

CH3

N
+ HH

 
 
Answer:  The torsional vibrations for the C-C bonds to the methylene groups are hindered by the 
formation of the hydrogen bond. This steric hindrance is released when the hydrogen bond melts 
producing three free low frequency torsions that more easily accept energy. These torsions are 
illustrated below. The conformational entropy increases through energy dispersal into the low 
frequency torsions upon breaking the hydrogen bond 
 

CH3

N
N NH2

CH3

CH3

NH2

+

 
 

 
14. Describe the potential of using the oceans of the world as a source of thermal energy. 
Explicitly consider changes in the internal energy and entropy of the oceans and extraction of 
energy from the oceans to do useful work. 
 
 
Answer:  The internal energy of the oceans is immense. Since internal energy and entropy are 
extensive, the internal energy and entropy of the oceans increase from transfers of water to the 
oceans and the transfer of energy from solar radiation to the oceans. The internal energy and 
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entropy of the oceans is increasing because of sea level rise and global climate change. However, 
under normal circumstances, this energy is pretty much useless because of the low effective 
temperature of the oceans. A temperature gradient is necessary to extract useful energy. The vast 
thermal energy of the oceans is only available if the temperature of the engine or other system 
that you want to run is lower than the available ocean water temperature (see Chapter 11 for a 
more careful description of thermal energy conversion). 
   However, one process is under development that extracts energy from the oceans based on 
naturally occurring temperature gradients. Ocean thermal energy conversion, OTEC, uses the 
temperature gradient between deep water and surface water in the ocean to drive specially 
designed turbines that are linked to electrical generators. To be economical OTEC plants must be 
located where a difference of about 22C occurs year round. This requirement restricts the 
location of OTEC to tropical regions with access to deep water. Maintenance costs and materials 
durability are current problems for large-scale application of this otherwise straightforward 
technology. A second possibility for cold regions is the use of the ocean as the high temperature 
thermal reservoir when the ambient air temperature is significantly lower than the ocean 
temperature. A Stirling engine or a turbine would be able to convert ocean thermal energy into 
electricity on cold winter days. However, the low heat capacity and thermal conductivity of air 
limits the power available from such a system. 
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Chapter 11 Problems: The Thermodynamic Definition of Entropy 
 
1. Calculate the Carnot efficiency of a solar concentrator–Stirling engine system that operates at 
700C and 37C. 
 
Answer:  The temperatures are 973 K and 310 K in kelvins. The efficiency is then  
  = (973-310)/973 = 68.1% 
However, most companies stopped development research on solar concentrator–Stirling engine 
systems in the late 1990’s, because the systems were not economically viable. The increase in 
petroleum and natural gas prices in 2007 caused a resurgence in interest. 
 
2. Is it more efficient to fly in the summer or winter? 
 

Answer:  Given Eq. 11.2.14, max =  



TH – TL

TH
, TL is lower in winter so max is greater in winter. 

[Also, air turbulence decreases in the winter, which probably has a bigger effect.] 
 
 
3. On a really hot day, is it possible to cool the kitchen by opening the refrigerator door? 
 
Answer:  The temperature near the refrigerator will briefly drop, but the room temperature will 
subsequently steadily rise. The refrigerator acts as a heat pump, using electrical work to transfer 
heat from a low temperature reservoir to a high temperature reservoir. The best that can happen 
is that the room stays at constant temperature. This is because the low temperature reservoir is 
the area in front of the open refrigerator, and the high temperature reservoir is the area in back of 
the refrigerator, which is heated by the cooling coils on the back of the refrigerator. The 
temperature in fact must increase. You can argue this question using the First Law or the Second 
Law. Using the First Law: electrical energy enters the room to run the refrigerator, so Uroom > 0, 
so T > 0. Using the Second Law: assume that the refrigerator runs on a battery, even then the 
temperature would increase. The reason is that no engine or heat pump can be 100% efficient, so 
some energy will be wasted and the temperature will increase. 
 
 
4. One mole of an ideal monatomic gas is used as the working substance for a reversible Carnot 
cycle. The initial temperature is 500. K and the initial volume is 4.00 L. For step I, the gas 
expands to twice its initial volume. In step II the temperature is lowered to 300. K. What is the 
volume V3 after step II, and V4after step III,? Step IV returns the system to the initial 
temperature and volume. 
 
Answer:  For step II, since the step is adiabatic and reversible: V3T3

c = V2 T2
c with c = Cv/nR. 

For a monatomic gas Cv = 3/2 nR, giving c= 3/2: 

 V3 = V2 



T2

T3

c

  =  8.00 L 



500.

300.

3/2

 =  17.21 L 

For step III, we need to calculate V4 from V1 using step IV. Step IV is an adiabatic reversible 
step so that we can calculate V4 from V1 by V4 T4

c = V1 T1
c: 
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 V4 = V1 



T1

T4

c

  =  4.00 L 



500.

300.

3/2

 =  8.606 L 

 
 
5. One mole of an ideal monatomic gas is used as the working substance for a reversible Carnot 
cycle. The initial temperature is 500. K and the initial volume is 4.00 L. For step I, the gas 
expands to twice its initial volume. In step II the temperature is lowered to 300. K. Notice that 
for a reversible cycle, the work done in steps II and IV is equal, but opposite in sign. (a) 
Calculate the work done in step I and step III. (b) Calculate the energy transferred from the high 
temperature reservoir, qH. (c) Calculate the efficiency for the cycle. 
 
 
Answer:  (a) For step I, n = 1.00 mol, TH=500. K, V1 = 4.00 L and V2 = 8.00 L as given in the 
problem. Since the expansion is isothermal and reversible: wI  =  – nRTH ln(V2/V1) giving: 
 wI  =  – (1.00 mol)(8.314 J mol-1 K-1)(500. K) ln(8.00/4.00)  =  – 2881. J 
 

(b) Please see Problem 4 for the calculation of V3 = 17.21 L and V4 = 8.606 L. Since step III is 
isothermal reversible at TL = 300. K: 
 wIII  =  – (1.00 mol)(8.314 J mol-1 K-1)(300. K) ln(8.606/17.21)  = 1729. J 
 

(c) The total work is w = wI + wIII for a reversible cycle: 
 w =  – 2881. J  + 1729. J  =  – 1152. J 
For isothermal step I, U = 0, so that qH = – wI = 2881. J giving the efficiency, using Eq. 11.1.5: 

  =  
–w
qH

  =  
–(– 1152.)

 2881.   =  0.400 

We can check our calculation using Eq. 11.2.14 giving: 

 max =  



TH – TL

TH
  =  



500. – 300.

500.   =  0.400 

So our calculations are correct. Notice that the comparison of the results from Eq. 11.1.5 and Eq. 
11.2.14 shows that the maximum efficiency for a process operating in a cycle is an exclusive 
function of the operating temperatures. We chose a process where the volume doubles in step I. 
However, this choice does not, in the end, have an effect on the efficiency. 
 
 
6. A 0.200-mol sample of a monatomic ideal gas is used as the working substance in a reversible 
Carnot cycle that operates between 700 K and 300 K. The starting volume is 0.500 L. The heat 
transferred into the gas from the high temperature reservoir is 1000. J. (a) Calculate q, w, U, 
and S for each of the steps in the Carnot cycle. (b) Calculate q, w, U, and S for the complete 
cycle. 
 
Answer:  (a) For step I, n = 0.200 mol, qH = 1000. J, TH=700. K, TL= 300. K, and V1 = 0.500 L as 
given in the problem. For this isothermal step, U = 0, so that wI = – qH = –1000. J and  
 S = qrev/TH = 1000. J/700. K  =  1.429 J K-1 
For the subsequent step we will need to know V2. Since the expansion is isothermal and 
reversible: w  =  – nRT ln(V2/V1) giving: 
 wI  =  –1000 J  =  – (0.200 mol)(8.314 J mol-1 K-1)(700. K) ln(V2/ V1) 
or ln(V2/ V1)  =  0.8591 and finally: 
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 V2 = 0.500 L e0.8591 = 1.181 L 
 

For step II, since the step is adiabatic and reversible, q = qrev = 0, S = 0, and for a monatomic 
gas Cv = 3/2 nR: 

 wII = U = Cv T = 
3
2 nR(TL – TH)  =  

3
2  (0.200 mol)(8.314 J mol-1 K-1)(300. – 700. K) 

 wII = U =  –997.7 J 
For the subsequent step we will need to know V3. Since the expansion is adiabatic and 
reversible: V3T3

c = V2 T2
c with c = Cv/nR. For a monatomic gas Cv = 3/2 nR, giving c= 3/2: 

 V3 = V2 



T2

T3

c

  =  1.181 L 



700.

300.

3/2

 =  4.208 L 
 

For step III, which is again isothermal, U = 0 so that wIII = – qL and w = – nRTL ln(V4/V3). We 
need to calculate V4. Step IV is an adiabatic reversible step so that we can calculate V4 from V1 
by V4 T4

c = V1 T1
c: 

 V4 = V1 



T1

T4

c

  =  0.500 L 



700.

300.

3/2

 =  1.782 L 

So the work in step III is: 
 wIII = – nRT ln(V4/V3) =  – (0.200 mol)( (8.314 J mol-1 K-1)(300. K) ln(1.782/4.208) 
    =  428.6 J 
with qL = qrev = –wIII = –428.6 J and S = qrev/TL = – 428.6 J /300. K  =  –1.429 J K-1 
which is the same absolute value as for step I. 
 

For step IV, since the step is adiabatic and reversible, q = qrev = 0, S = 0, and for a monatomic 
gas Cv = 3/2 nR: 

 wIV = U = Cv T = 
3
2 nR(TH – TL)  =  

3
2  (0.200 mol)(8.314 J mol-1 K-1)(700. – 300. K) 

giving wIV = U =  997.7 J  which is just the negative of step II, as expected. 
 
(b) The results and totals are summarized in the following table. 
 

Step q (J) w (J) U (J) S (J K-1) 
I: isothermal, TH 1000. – 1000. 0 1.429 
II. adiabatic 0 –997.7 –997.7 0 
III. isothermal, TL – 428.6 428.6 0 – 1.429 
IV. adiabatic 0 997.7 997.7 0 
totals   571.4 -571.4 0 0 

 
We can check our results by calculating the overall efficiency using the numbers from the table 
and comparing with Eq. 11.2.14. Using w and qH, explicitly from the table, and using Eq. 11.1.5 
gives: 

  =  
–w
qH

  =  
–(– 571.4 J)

1000. J   = 0.5714 

Now using Eq. 11.2.14 gives: 

 max =  



TH – TL

TH
  =  



700. – 300.

700.   =  0.5714 
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So our calculations are correct. Note that the overall change in S for this cyclic process is zero, 
since the cycle is reversible. 
 
 
7. The peak sun solar flux that reaches a surface pointed directly at the sun is about 1.00 kW m-2. 
Using a solar collector of area 10.0 m2, calculate the collector temperature that would be 
necessary to produce 4.00 kW of power using a steam turbine coupled to an electric generator at 
peak sun flux. Assume the discharge temperature of the turbine is 35C and that the combined 
steam turbine and electrical generator operate at 60.0% of the maximum theoretical efficiency 
(due to frictional losses, etc.). Neglect radiative losses from the solar collector absorber surface. 
 
Answer:  The final output power, P, is: 
 P = Jsolar A max (0.600) 
using the fact that the combined steam turbine and electrical generator operate at 60% of the 
maximum theoretical efficiency. The required power is 4 kW: 
 P = 4 kW = (1.00 kW m-2)(10.0 m2) max (0.600) 
solving for max gives max =  0.667 
Using max and solving for TH from Eq. 11.2.14 using TL = 35 + 273. K = 308. K: 

 max  = 0.667  =  



TH – TL

TH
  =  



TH – 308. K

TH
 

or  0.667 TH = TH – 308 K 
gives  TH = 925. K 
 
 
8. In problem 7, we neglected radiative losses from the solar collector absorber surface. 
Assuming the same conditions and operating temperatures as in problem 7, calculate the output 
power when radiative losses from the solar collector absorber surface are taken into account. 
Assume that the absorber surface is 0.1 m2 (this concentration ratio is  A/a =100). 
 
Answer: From Eq. 11.2.20, and using TH = 925. K and TL= 308. K from problem 7: 

 max =  



TH – TL

TH
 



Jsolar A – a  TH

4

Jsolar A
  

 =  (0.667) 



1000 W m-2 (10.0 m2) – 0.1 m2 (5.6704×10−8 W·m-2·K-4)(925.)4

1000 W m-2(10.0 m2)  

 =  (0.667)



1.00x104 – 4151.3 W

1.00x104 W   =  (0.667)(0.585)  =  0.390 

The radiative loss from the absorber area is significant. Then the final output power is decreased 
almost by a factor of two: 
 P  =  Jsolar A max (0.600) =  (1.00 kW m-2)(10.0 m2)(0.390)(0.600) = 2.34 kW 
The implication for chemists from this example is that many diverse energy sources must be 
found to decrease our dependence on fossil fuels. Solar power alone will not solve the problem; 
the materials requirements are too large. 
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9. Give a rough sketch of the progress for a reversible Carnot cycle on a plot of entropy versus 
temperature. Label the steps I-IV so that you can compare with Figure 11.2.1. Also indicate the 
starting point. 
 
Answer:  Please review problem 4, for explicit example numbers. The starting point in Figure 
11.2.1 is chosen at TH. Step I is isothermal with an increase in entropy, since S = qrev/TH with 
qrev>0. Step II is adiabatic reversible, so S is zero and then S is constant. The temperature drops 
from TH to TL. Step III is isothermal, again, but with a decrease in entropy since qL < 0. Step IV 
is adiabatic again, but the temperature increases from TLto TH. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10. The solar concentration ratio of a solar collector is defined as the total collector area divided 
by the absorber area, c = A/a. The solar collection area for a very large “power tower” is on the 
order of 200. m2. For a small solar absorber area of 0.1 m2 (~1 ft2), the corresponding 
concentration ratio is 2000. Plot the solar thermal efficiency for this concentration ratio as a 
function of absorber temperature, TH, including the Carnot efficiency and radiative losses. 
Assume that the low temperature reservoir for the solar thermal process is at 300. K and the solar 
flux is 1000. W m-2. 
 
Answer:  Using Eq. 11.2.20: 

 max =  



TH – TL

TH
 



Jsolar A – a  TH

4

Jsolar A
 

where the first term in brackets is the Carnot efficiency. With the given values: 

 max =  



TH – 300. K

TH
 



1000 W m-2

 (200. m2) – 0.1 m2 (5.6704×10−8 W·m-2·K-4) TH
4

1000 W m-2
 (200. m2)  

 

The following table lists the calculated values. The efficiency peaks at 1300 K. The chemical 
importance of this problem is that, even for very large collection areas, the maximum 
temperature available to drive chemical fuel cycles is limited. Additionally, finding materials that 
are robust at these temperatures is an important research area in materials chemistry. 

P 

V 

TH 

qH 

qL 
TL 

V1 

V2 

V3 

V4 

I. 

II. 

III. 

IV. 

S 

T TL 
TH 

1 

2 3 

4 

I. 

II. 

III. 

IV. 
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TH Carnot SB* efficiency 

400 0.250 0.999 0.250 

500 0.400 0.998 0.399 

600 0.500 0.996 0.498 

700 0.571 0.993 0.568 

800 0.625 0.988 0.618 

900 0.667 0.981 0.654 

1000 0.700 0.972 0.680 

1100 0.727 0.958 0.697 

1200 0.750 0.941 0.706 

1300 0.769 0.919 0.707 

1400 0.786 0.891 0.700 

1500 0.800 0.856 0.685 

1600 0.813 0.814 0.662 

1700 0.824 0.763 0.629 

1800 0.833 0.702 0.585 

1900 0.842 0.631 0.531 

2000 0.850 0.546 0.464 
 * SB = Stefan-Boltzmann factor 
 

 
 
 
11. The electrolysis of water is a potential source of hydrogen for use as a transportation fuel. 
However, H2 production is very costly. From your General Chemistry course, you might 
remember that the direct electrolysis of water is based on the two standard reduction half-cells: 
 2 H+ (aq) +  2 e-     H2 (g)   E  0 V 
 O2 (g) + 4 H+ (aq) + 4 e-   2 H2O (l) E = 1.23 V 
with the standard cell potential: 
 H2O (l)  H2 (g) + ½ O2(g)   Ecell  = Ecathode – Eanode = –1.23 V.  
This cell potential is large and unfavorable. The Westinghouse-S cycle was developed in the 
1970s to use solar thermal energy to lower the cost of the production of hydrogen.17 The 
Westinghouse-S cycle consists of two reactions, the net result of which is the production of H2: 
 

 H2SO4 (aq)   SO2 (g) + H2O (g) + ½ O2 (g)  at 1140 K 
 SO2 (g) + 2 H2O (l)   H2SO4 (aq) + H2(g)   at 320-350 K 
        

 H2O (l)  H2 (g) + ½ O2(g) 
 

The first step, the dehydration of sulfuric acid, is run in a concentrating solar collector. The 
second step is run in an electrolytic cell with the standard reduction half reactions: 
 

 2 H+ (aq) + 2 e-    H2 (g)     E  0 V 
 SO4

2- (aq) + 4 H+ (aq) + 2 e-   2 H2O (l) + SO2 (g)  E = +0.17 V 
 

0.0
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giving the standard cell potential Ecell  = Ecathode – Eanode = –0.17 V. Even though this cell 
potential is still negative, the energy requirement is greatly diminished from the direct 
hydrolysis. Of course, electrical energy is required to run the second step, which must be 
obtained from conventional sources. The solar thermal efficiency for this process covers only the 
production of SO2 (g). (a) Calculate the change in enthalpy for both steps in the Westinghouse-S 
cycle. (b) Calculate the maximum solar thermal efficiency for the production of SO2 (g) for the 
thermal part of the process operating between 1140 K and 350 K. Neglect radiative losses. (c) 
Calculate the electrical work necessary to produce one mole of H2 for Ecell at  -1.23 V and -0.17 
V. [Hint: for electrochemical cells zi is given by the number of electrons transferred in the 
balanced cell reaction.] 
 
Answer:  (a)Using the thermochemical tables in the appendix, the standard enthalpies of 
formation are listed below: 
 

   H2SO4 (aq)     SO2 (g)    +    H2O (g)    + ½ O2 (g) 
  fH -909.27   -296.83 -241.82 0   kJ mol-1 rH = 370.62 kJ mol-1 
 

   SO2 (g)    +   2 H2O (l)        H2SO4 (aq) + H2(g) 
  fH   -296.83 -285.83 -909.27 0   kJ mol-1 rH = -40.78 kJ mol-1 
 

The reaction enthalpy change is rH  = [products] – [reactants] =   i fHi 

The first reaction is highly endothermic, requiring a significant input of thermal energy. 
 
(b) The Carnot efficiency for the production of SO2 is: 

 max =  



TH – TL

TH
 =  



1140 – 350

1140   =  0.693 

The question is if the value of the H2 as a replacement for fossil fuels is sufficient to outweigh 
the production costs. 
 
(c). The electrical work is given by w = –zi F . For this electrochemical cell to produce one 
mole of H2, zi = 2 mol of electrons. The difference in electric potential  is the cell voltage,  
= Ecell. For the direct production of hydrogen by electrolysis,  
 w = – (2 mol)(96,485 C mol-1)(-1.23 V)(1 J/1 C V)(1 kJ/1000 J) = 237. kJ mol-1 
For the Westinghouse-S cycle, the electrolysis requires: 
 w = – (2 mol)(96,485 C mol-1)(-0.17 V)(1 J/1 C V)(1 kJ/1000 J) = 32.8 kJ mol-1 
Even though the process still requires electrical energy, the electrical energy required is greatly 
decreased by providing the difference from the sun. 
 
 
12. In Eq. 11.2.20: 

 max =  



TH – TL

TH
 



Jsolar A – a  TH

4

Jsolar A
 

The second term in brackets is the correction for the efficiency caused by radiative loss from the 
absorber surface. This correction results from the Stefan-Boltzmann equation, Eq. 11.2.16. 
Derive this radiative loss correction from Eq. 11.2.16. 
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Answer:  The flux is the power gain or loss per unit area. Given the solar collector area, A, the 
incident power from the sun is Jsolar A. From Eq. 11.2.16, Jblackbody =  T4: Jblackbody is the flux 
emitted by the absorber surface. Given the absorber surface area, a, the emitted power from the 
surface at temperature TH is  
 emitted power = Jblackbody a = a  TH

4 
The net power absorbed is the difference: Jsolar A – a  TH

4. The efficiency of the net absorption 
is the ratio of the net power absorbed to the incident power: 

 absorb =   



Jsolar A – a  TH

4

Jsolar A
 

 

The overall efficiency is max = Carnot absorb 
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Chapter 12 Problems: The Statistical Definition of Entropy 
 
 
1. Calculate the number of ways of arranging the energy states and find all the microstates 
consistent with the distribution numbers (2,2,0,0). Find the average energy for the distribution. 
(Assume distinguishable systems.) 
 
 
 
 
 
 
Answer:  There are four total systems, N = 4, and two packets of energy, E = 2. Using Eq. 
12.2.8, the number of ways of arranging the energy states is given as: 
 

 W(2,2,0,0) = 
N!

no! n1! n2!…
 = 

4!
2! 2! 0! 0! = 

4·3·2·1
(2·1)(2·1) = 6 

 

So we should find six microstates: 
 
 
 
 
 
 
 
The average energy using Eq. 12.2.4 is: 
 

 E = 
1
N 

i

 niEi = 
2 (0) + 2 (1) + 0 (2) + 0 (3)

4  = ½  

 

Alternately, we could just use the ensemble values and Eq. 12.1.1: 
 

 E = 
E
N = 

2
4  = ½  

 
 
2. Calculate the number of ways of arranging the energy states and find all the microstates 
consistent with the distribution numbers (2,1,0,1). Find the average energy for the distribution. 
(Assume distinguishable systems.) 
 
 
 
 
 
 
Answer:  There are four total systems, N = 4, and four packets of energy, E = 4. Using Eq. 
12.2.8, the number of ways of arranging the energy states is given as: 
 

 N =4 
E = 2 

E 

  
0 

1 
2 
3 

  

ABcd        AbCd     AbcD   aBCd   aBcD         abCD 
  

  
E 
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 W(2,1,0,1) = 
N!

no! n1! n2!…
 = 

4!
2! 1! 0! 1! = 

4·3·2·1
(2·1)(1)(1)(1) = 12 

 

So we should find 12 microstates: 
 
 
 
 
 
 
 
 
 
 
 
 
The average energy using Eq. 12.2.4 is: 
 

 E = 
1
N 

i

 niEi = 
2 (0) + 1 (1) + 0 (2) + 1 (3)

4  =  

 

Alternately, we could just use the ensemble values and Eq. 12.1.1: 
 

 E = 
E
N = 

4
4  =  

 
 
3.  Given the following microstates: 
 
 
 
 
 

(a). Find the set of distribution numbers. 
(b). Specify the macrostate. 
(c). Find the number of ways of arranging the energy states for the system for the set of 

distribution numbers. Is the given set of microstates complete? 
(d). Find the statistical weight for the macrostate. 
(e). Find the degeneracy for the macrostate. 
(f). Find E and U – U(0). 
(g). Find the probability of occurrence of the first microstate, within the given macrostate. 
(h). Find another macrostate with the same number of systems and the same energy. Which is 

more probable, the given macrostate or the new macrostate? 
(i). What is the most probable distribution and Wmax subject to N = 5 and E = 2? 
(j). What is the equilibrium distribution? 
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Answers:  (a). The distribution numbers are (3,2,0,0). (b) The macrostate is specified by the set 
of distribution numbers, (3,2,0,0). (c). Using Eq. 12.2.8, the number of ways of arranging the 
energy states is given as: 
 

 W(3,2,0,0) = 
N!

no! n1! n2!…
 = 

5!
3! 2! 0! 0! = 

5·4·3·2·1
(3·2·1)(2·1) = 10 

 

The given ten microstates are complete, since W = 10. (d). The statistical weight is W. (e). The 
degeneracy is also W. (f). The average energy and internal energy using Eq. 12.2.4 are: 
 

 U – U(0) = E = 
1
N 

i

 niEi = 
3 (0) + 2 (1) + 0 (2) + 0 (3)

5  = 2/5  

 

Alternately, we could just use the ensemble values and Eq. 12.1.1: 
 

 U – U(0) = E = 
E
N = 

2
5  = 2/5  

 

(g). Each microstate has an equal a priori probability. The probability of each individual 
microstate within the given macrostate is 1/10. Each microstate appears one-tenth of the time. (h). 
The only other macrostate with the same number of systems and energy is (4,0,1,0): 
 
 
 
 
The new statistical weight is: 
 

 W(4,0,1,0) = 
N!

no! n1! n2!…
 = 

5!
4! 0! 1! 0! = 

5·4·3·2·1
(4·3·2·1)(1)(1)(1) = 5 

 

which is less probable than the original macrostate. (i). The most probable distribution is 
(3,2,0,0) with Wmax = 10, subject to the constraints. (h). The equilibrium distribution is the most 
probable distribution, (3,2,0,0), subject to the given constraints. 
 
 
4.  Assume a system has equally spaced energy states with spacing . (a). Find N, E, E, and 
U – U(0) for the distributions (26,14,9,5,3,2,1) and (25,16,8,5,3,2,1). (b). Which distribution is 
the more probable macrostate? (c). Find the difference between the two macrostates in the 
number of ways of arranging the energy states for the system. (d). One of the two is the most 
probable distribution. Which macrostate corresponds to the equilibrium state? 
 
 
Answer:  (a). Both sets of distribution numbers correspond to N = 60 and E = 75 for 
 

 U – U(0) = <E> = 
E
N = 

75 
60  = 1.25  

 

(b). Using Eq. 12.2.8, the number of ways of arranging the energy states is given using a 
calculator or Excel as: 
 

E 

0 
1 
2 
3 
4 
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 W(26,14,9,5,3,2,1) = 
N!

no! n1! n2!…
 = 

60!
26! 14! 9! 5! 3! 2! 1! = 4.5292x1035 

and W(25,16,8,5,3,2,1) = 
N!

no! n1! n2!…
 = 

60!
25! 16! 8! 5! 3! 2! 1! = 4.4160x1035 

 

The first distribution is the more probable. 
(c). The difference is 1.13x1034. The first distribution is more probable by a very large number of 
microstates. (d). The first macrostate, (26,14,9,5,3,2,1), is the most probable state and 
correspondingly is the equilibrium state. 
 
 
5.  Calculate the residual entropy for a crystalline solid like N=N=O assuming the energy 
difference for the two crystalline alignments is 0.300 kJ mol-1. Assume that the distribution of 
alignments is “frozen in” at the melting point. Assume the melting point is -90.8C. Compare the 
result to Eq. 12.4.10. Why is there a difference? 
 
 
Answer:  The plan is to use S = – R  pi ln pi, Eq. 12.4.14, with a Boltzmann distribution over 
two states at energies o= 0 and 1 = 0.300 kJ mol-1. At the melting point: 
 

 RT = 8.314 J K-1mol-1(273.2 –90.8 K) = 1516. J K-1 mol-1 
 

The lower energy state has a Boltzmann weighting factor of e–o/RT = e0 = 1. The higher energy 
alignment has a Boltzmann weighting factor of: 
 

 e–1/RT = e–300. J mol-1/1516. J K-1 mol-1= 0.8205 
 

The partition function, which is the probability normalization factor, is the sum of the weighting 
factors: 
 

 q = e–o/RT + e–1/RT = 1 + 0.8205 = 1.8205 
 

The corresponding probabilities are: 
 

 p1 = e–1/RT/q = 0.8205/1.8205 = 0.4507 
 po = e–o/RT/q = 1/1.8205 = 0.5493 
 

Finally the entropy, based on Eq. 12.4.14, is: 
 

 S = – R  pi ln pi = – 8.314 J K-1 mol-1 (0.5493 ln 0.5493 + 0.4507 ln 0.4507) 
    = – 8.314 J K-1 mol-1 (-0.6882) = 5.722 J K-1 mol-1 

 

The result using Eq. 12.4.10 is S = – R ln 2 = 5.763 J K-1 mol-1, with w = 2. The difference is that 
Eq. 12.4.10 with w = 2 assumes that the two orientations are equally probable, which is true if 
the difference in alignment energies is less than RT, 1– o =  << RT. In this problem, /RT = 
0.2, which is small enough to give the equal populations result, to within expected experimental 
error. 
 
 
6.  The goal of this problem is to help you become more comfortable with partition functions. 
Consider the residual entropy of N=N=O. Define the lowest energy alignment as having energy 
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o and the higher energy alignment at 1. A reasonable way to assess the degree of alignment is 
to calculate the fraction of molecules in the low energy state, fo, and the fraction of the molecules 
in the high energy state, f1: 
 

 fo = 
no

no+ n1
  f1 = 

n1

no+ n1
 

 

where no is the number of molecules in the low energy alignment and n1 is the number of 
molecules in the high energy alignment.1 Of course, fo + f1 = 1. (a). The number of molecules in 
a specific energy state is proportional to the Boltzmann weighting factor, ni  e–i/kT. Use this 
proportionality to find the fractions fo and f1. (b). Alternatively, the probability of finding a 
molecule in a specific energy state, i, is given by Eqs. 12.4.13 (Eq. 8.9.5). Show that your 
answers to part (a) are consistent with Eqs. 12.4.13. 
 
 

Answer:  (a). Given the proportionality ni  e–i/kT, the fractions are: 
 

 fo = 
no

no+ n1
 = 

e–o/kT

e–o/kT + e–1/kT  f1 = 
n1

no+ n1
 = 

e–1/kT

e–o/kT + e–1/kT 

 

(b). The partition function for the two-state system is: 
 

 q = 
i

 e–i/kT = e–o/kT + e–1/kT 

 

Notice that the partition function is the same as the denominators for the fractions in part (a). The 
Boltzmann probabilities using Eqs. 12.4.13 (Eq. 8.9.5) are then: 
 

 po = fo = 
e–o/kT

q  = 
e–o/kT

e–o/kT + e–1/kT 

 

 p1 = f1 = 
e–1/kT

q  = 
e–1/kT

e–o/kT + e–1/kT 

 

as we derived in part (a). The partition function, q, and the denominator of the fractions, no+ n1, 
play the same role; they normalize the probability to give either  pi = 1 or  fi = 1. 
 
 
7.  Calculate the number of ways of arranging 10 distinguishable balls in three boxes with 3 in 
the first box, 5 in the second box, and 2 in the third box. 
 
 
Answer:  The statistical weight is given by Eq. 12.2.8 with the distribution numbers (3,5,2): 
 

 W = 
N!

no! n1! n2!…
 = 

10!
3! 5! 2! = 2520 
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8.  (a). Calculate the number of ways of arranging 3 distinguishable balls among 3 boxes with 2 
balls in the first box, 1 ball in the second box, and 0 balls in the third box. (b). Calculate the 
number of ways of arranging the energy states of the system with 3 molecules given that 2 
molecules are in the first energy level, 1 molecule is in the second energy level, and 0 molecules 
are in the third energy level. Draw the arrangements. 
 
Answer: (a) The number of ways of arranging 3 distinguishable balls among 3 boxes with 2 balls 
in the first box, 1 ball in the second box, and 0 balls in the third box is given by Eq. 12.2.8 with 
the distribution numbers (2,1,0): 
 

 W = 
N!

no! n1! n2!…
 = 

3!
2! 1! 0! = 3 

 
 
 
 
(b). The statistical weight is the same as in part (a): 
 
 
 
 
 
 
 
9.  Find the set of distribution numbers that maximizes the number of arrangements for 3 balls in 
3 boxes. 
 
 
Answer:  The statistical weight is given by Eq. 12.2.8 with n1 balls in box 1, n2 balls in box 2, 
and n3 balls in box 3: 
 

 W  =  
3!

n1! n2! n3!
 

 

Notice that permuting the same set of distribution numbers among the boxes gives the same 
statistical weight. That is W(3,0,0) = W(0,3,0) = W(0,0,3), so we only need to look for unique 
sets of (n1,n2,n3). The possibilities are: 
 

 W(3,0,0) = 
3!

3! 0! 0! = 1 W(2,1,0) = 
3!

2! 1! 0! = 3 W(1,1,1) = 
3!

1! 1! 1! = 6 
 

Wmax results for (1,1,1). The distribution with equal occupancies is called the uniform 
distribution. The distribution with the maximum number of ways of arrangement is always the 
uniform distribution in the absence of any constraints. The Boltzmann distribution arises because 
of the constraint on the total energy of the ensemble. 
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10.  (a). Starting with N!  (N/e)N show that  ln N!  N ln N – N. (b). Starting with 
N!  2N (N/e)N show that  ln N! = N ln N – N + ½ ln 2N. (c) Compare the exact value of 
 ln N! and the two approximations for the largest number your calculator can use. 
 
 
Answer:  (a). Taking the log of  N!  (N/e)N: 
 

 ln N!  ln((N/e)N) = N ln(N/e) = N ln N + N ln(1/e) = N ln N – N ln e 
 

since ln(1/x) = – ln(x). For the last term, ln(x) and ex are inverse functions and ln(e1) = 1. 
 

 ln N!  N ln N – N        (Eq. 12.4.2) 
 

(b). Taking the log of  N! = 2N (N/e)N: 
 
 ln N!  ln((N/e)N) + ln 2N 
 
Using the result for ln((N/e)N) from part (a) simplifies the first term and noting that x = x½: 
 
 ln N!  N ln N – N + ln (2N)½ 
 ln N!  N ln N – N + ½ ln 2N      (Eq. 12.9.12) 
 
(c). The following values were calculated for N = 69: 
 

 69! = 1.71122x1098 with the exact ln N! = 226.1905 
 

The approximations give: 
 

 ln N!  N ln N – N + ½ ln 2N = 226.1893 for a negligible error 
and ln N!  N ln N – N = 223.1533  for a 1.34% error from the exact value. 
 
 
11. Show that the percent error using Sterling’s approximation for ln(N!) decreases with 
increasing N. (Excel has a larger range for valid N than most calculators.) 
 
Answer:  Excel maintains 15 significant figures for N! up to N = 170. The following spreadsheet 
was set-up using Eqs. 12.4.2 and 12.9.12 as approximations for ln N!. The percent error is the 
error using ln N!  N ln N – N compared to the exact value to 15 significant figures. 
 

N N! ln N! exact N ln N - N + (ln 2N)/2 N ln N - N % error 
30 2.65253E+32 74.6582 74.6555 72.0359 3.51 
69 1.71122E+98 226.1905 226.1893 223.1533 1.34 
80 7.15695E+118 273.6731 273.6721 270.5621 1.14 
90 1.48572E+138 318.1526 318.1517 314.9829 1.00 

100 9.33262E+157 363.7394 363.7385 360.5170 0.89 
150 5.71338E+262 605.0201 605.0196 601.5953 0.57 
170 7.25742E+306 706.5731 706.5726 703.0857 0.49 

 
The thermodynamic limit is for very large numbers of systems, where N  1023. Sterling’s 
approximation introduces negligible error for such large numbers. 
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12.  In Problem 4 the most probable distribution was determined, choosing from 
(26,14,9,5,3,2,1) and (25,16,8,5,3,2,1). Verify that the most probable distribution is a Boltzmann 
distribution. 
 
 
Answer:  The first distribution is the most probable distribution, (26,14,9,5,3,2,1). You can verify 
that the first macrostate corresponds to a Boltzmann distribution, as closely as possible given the 
small number of systems, by plotting ln pi versus Ei as in Example 12.4.2: 
 

 

Ei/ ni pi ln pi 
0 26 0.4333 -0.8363 
1 14 0.2333 -1.4553 
2 9 0.15 -1.8971 
3 5 0.0833 -2.4849 
4 3 0.05 -2.9957 
5 2 0.0333 -3.401 
6 1 0.0167 -4.0943 

 

 

y = -0.5273x - 0.8702
R² = 0.9973

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

ln pi

Ei/  
 
 
13.  The fundamental vibration frequency for I2 is 214.50 cm-1. Assume the vibrational states are 
equally spaced with spacing 214.50 cm-1. Iodine vapor is held in an oven at elevated temperature. 
The relative occupations of the vibrational states were found to be 1.000 : 0.467 : 0.222 : 0.100. 
Calculate the temperature. 
 
 
Answer:  Following Example 12.4.2, the spacing between the energy states is given by: 
 

  = E = 
hc
  = h c ~o NA        1 

   = 6.626x10-34 J s(2.998x108m s-1)(214.5 cm-1)(100 cm/1 m)(6.022x1023 mol-1) 
   =  2.566 kJ mol-1 

 

The relative populations of the states, ri, is determined by dividing the probability by the 
population of the i = 0 state; so the probability of the ith state is determined by: 
 

 ri = 
pi

po
  giving  pi = ri po       2 

 

The sum of the pi is given by normalization:  pi = 1. The sum of the ri values is: 
 

  ri = 
 pi

po
 = 

1
po

  giving po = 
1
ri

       3 
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Substitution of this last value for po into Eq. 2 gives: 
 

 pi = 
ri

ri
           4 

 

Using Eq. 4 the probabilities are calculated and the data are plotted as in Example 12.4.2: 
 

 

i Ei (kJ mol-1) Rel. pop. pi ln pi 
0 0.000 1 0.559 -0.582 
1 2.566 0.467 0.261 -1.343 
2 5.132 0.222 0.124 -2.087 
3 7.698 0.1 0.056 -2.884 

 
slope -0.2982 -0.5762 intercept 
± 0.0030 0.0143 ± 
r2 0.9998 0.0171 s(y) 
F 10059.0807 2.0000 df 
ssregression 2.9272 0.0006 ssresidual 

 

 

y = -0.2982x - 0.5762
R² = 0.9998

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.0 2.0 4.0 6.0 8.0 10.0

ln pi

Ei (kJ mol-1)
 

 slope = –1/RT = -0.2982 kJ-1 mol 
 RT = 3.353 kJ mol-1 

 

 T = 
3.353 kJ mol-1

8.314x10-3 kJ K-1 mol-1 = 403. K  4. K 

The relative populations for vibrational states can be easily determined by the intensity of 
vibrational transitions that start from states higher than  = 0. These bands are called hot bands. 
 
 
14. Is the following system at thermal equilibrium? Give the approximate temperature, assuming 
the unit of energy, , is 10.0 cm-1. 
 
 
 
 
 
 
 
 
 
Answer:  The plan is to make a plot using Eq. 12.4.29 to check for linearity, similar to Example 
12.4.2. There are 20 systems for this problem. The value for  in kJ mol-1 is given by: 
 

  = E = 
hc
  = h c ~o NA        1 

   = 6.626x10-34 J s(2.998x108m s-1)(10.0 cm-1)(100 cm/1 m)(6.022x1023 mol-1) 
   =  0.1196 kJ mol-1 

 

The plot using Eq. 12.4.29 with units in kJ mol-1 is: 
 

  

E 

0 

2 

6 

12 n3 = 2 
 
 
n2 = 3 
 
n1 = 4 
no = 11 
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state i Ei (kJ mol-1) ni pi ln pi 
0 0.000 11 0.550 -0.598 
1 0.239 4 0.200 -1.609 
2 0.718 3 0.150 -1.897 
3 1.436 2 0.100 -2.303 

 
 slope = –1/RT = -1.015 kJ-1 mol 
 RT  0.985 kJ mol-1 

 

 T  
0.985 kJ mol-1

8.314x10-3 kJ K-1 mol-1  120 K 

 

y = -1.0148x - 0.9947
R² = 0.7804

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.0 0.5 1.0 1.5 2.0

ln pi

Ei (kJ mol-1)
 

 

The plot is not linear so the system is not at equilibrium. Since the system is not at equilibrium, 
an effective temperature cannot be determined. However, using the slope of the fit curve, a rough 
measure of the temperature for the equivalent Boltzmann distribution is 120 K with a large error. 
   The energy states in this problem are further apart as the energy increases. The energy states 
are said to “diverge” instead of being equally spaced. Translational and rotational energy states 
diverge. However, rotational energy states have a degeneracy of (2J+1), where J is the index for 
the energy state. The energy states in this problem then energetically equivalent to rotational 
levels but are non-degenerate. 
 
 
15.  The conformational entropy for butane was determined in Example 12.4.3 using the gauche-
anti-energy difference from molecular mechanics. Use a molecular orbital calculation to estimate 
the energy difference and determine the corresponding conformational entropy. How sensitive is 
the conformational entropy to the value of the energy difference? Your instructor will assign a 
molecular orbital method from the following list depending on the resources available: AM1, 
PM3, HF 3-21G(*), HF 6-31G*, B3LYP/6-31G*, MP2/6-311G*//HF 6-31G* (single point 
energy at MP2/6-311G* for the geometry calculation at 6-31G*). 
 
 
Answer:  The energies are given below in the energy units normally associated with the 
calculation method: 
 

State units Egauche Eanti E 
MMFF kcal mol-1 -4.2554 -5.0348 0.7794 
AM1 kcal mol-1 -30.4195 -31.1262 0.7067 
PM3 kcal mol-1 -28.5375 -29.0632 0.5257 
HF 3-21G(*) Hartrees -156.431 -156.432 0.001223 
HF 6-31G* Hartrees -157.297 -157.298 0.001514 
B3LYP 6-31G* Hartrees -158.457 -158.458 0.001388 
MP2 6-311G* Hartrees -157.885 -157.886 0.000999 

 
The difference in energy was converted to kJ mol-1 and the entropy calculated following 
Example 12.4.3: 
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State E  gauche q pgauche panti S 
   (kJ mol-1) e-E/RT          (J K-1 mol-1) 
MMFF 3.26101 0.26839 1.53677 0.174643 0.65072 7.39 
AM1 2.956833 0.30342 1.60684 0.18883 0.6223 7.69 
PM3 2.199529 0.41182 1.82363 0.225822 0.54836 8.33 
HF 3-21G(*) 3.210987 0.27386 1.54771 0.176943 0.64612 7.44 
HF 6-31G* 3.974744 0.20125 1.40250 0.143493 0.71301 6.64 
B3LYP 6-31G* 3.643406 0.23003 1.46005 0.157546 0.68491 7.00 
MP2 6-311G* 2.622087 0.34728 1.69456 0.204939 0.59012 7.99 

 
The MP2/6-311G* calculation was a single point energy based on the HF 6-31G* optimized 
geometry. It is interesting to note that, at least for this simple compound, molecular mechanics 
represents the torsional interaction as well as lower level quantum mechanical calculations. The 
torsional entropy is moderately sensitive to the level of the calculation. The experimental value is 
0.67 kcal mol-1 or 2.8 kJ mol-1.2 

 
 
16. Determine the conformational entropy for 1,2-dichlorobutane. Your instructor will assign a 
molecular mechanics or molecular orbital method from the following list depending on the 
resources available: MMFF, PM3, HF 3-21G(*), HF 6-31G*, B3LYP/6-31G*, MP2/6-
311G*//HF 6-31G* (single point energy at MP2/6-311G* for the geometry calculation at 
6-31G*) 
 
 
Answer:  The energies are given below in the energy units normally associated with the 
calculation method: 
 

State units Egauche Eanti E 
MMFF kcal mol-1 6.2564 5.0273 1.2291 
PM3 kcal mol-1 -24.0718 -24.6829 0.6111 
HF 3-21G(*) Hartrees -992.435 -992.438 0.002923 
HF 6-31G* Hartrees -997.028 -997.031 0.003047 
B3LYP 6-31G* Hartrees -999.016 -999.019 0.002713 
MP2 6-311G* Hartrees -997.646 -997.648 0.002430 

 
The difference in energy was converted to kJ mol-1 and the entropy calculated following 
Example 12.4.3 and Eq. 12.4.11: 
 

State E gauche q pgauche panti S 

 (kJ mol-1) e-E/RT    (J K-1mol-1) 
MMFF 5.142554 0.12565 1.25130 0.10042 0.79917 5.33 
PM3 2.556842 0.35654 1.71308 0.20813 0.58374 8.04 
HF 3-21G(*) 7.674337 0.04526 1.09051 0.04150 0.91700 2.86 
HF 6-31G* 7.999899 0.03969 1.07937 0.03677 0.92646 2.61 
B3LYP 6-31G* 7.121931 0.05655 1.11310 0.05080 0.89839 3.32 
MP2 6-311G* 6.379177 0.07630 1.15261 0.06620 0.86760 4.01 

 
The results are surprisingly dependent on the method. The experimental E is 1.08 kcal mol-1 or 
4.52 kJ mol-1.2%%WJH 
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17.  The process of folding a protein to produce the active conformation restricts torsions along 
the polypeptide backbone and side chain torsions for amino acids that are buried in the interior of 
the protein. Calculate the conformational entropy of the side chain of the amino acid valine at 
298.2 K. Use molecular mechanics with the MMFF force field in the gas phase for the zwitter-
ionic form to determine the low energy side chain conformations and the corresponding energies. 
 
 
Answer:  The calculation of the entropy parallels Example 12.4.3. The low energy conformations 
for zwitter-ionic valine in the gas phase using the MMFF94x force field are -3.0881, -5.3433, 
-4.4024 kcal mol-1 at -51.8, 57.6, -168.7 respectively. The dihedral angle was measured from 
the carbonyl carbon to the side chain methine-hydrogen, O=C–C–C–H. Using the lowest energy 
conformer as the reference, the energies in kJ mol-1 in increasing order are then: 0, 3.937, 9.436 
kJ mol-1. 
   The Boltzmann weighting factor for the lowest energy conformer is 1, since e0 = 1. The 
Boltzmann weighting factors for the higher energy conformers are: 
 

 e-2/RT = e-9.436x103J/(8.314 J K-1 mol-1 298.2 K) = 0.0222 

 e-1/RT = e-3.937x103J/(8.314 J K-1 mol-1 298.2 K) = 0.2043 
 

The partition function, Eq. 12.4.13 (Eq. 8.9.7), is the normalization for the probability 
distribution: 
 

 q = 
i

 e–i/kT = 1 + 0.2043 + 0.0222 = 1.2265 

The probabilities for each state are then: 
 

 p2 = e-2/RT/q = 0.0222/1.2265 = 0.0181 

 p1 = e-1/RT/q = 0.2043/1.2265 = 0.1666 

 p0 = e-o/RT/q = 1/q = 1/1.2265 = 0.8153 
 

The molar conformational entropy as given by Eq. 12.4.14: 
 

 S =  – R 
i

  pi ln pi     (molecular probabilities) 

 S = – 8.314 J K-1 mol-1 [0.8153 ln(0.8153) + 0.1666 ln(0.1666) + 0.0181 ln(0.0181)] 
    = – 8.314 J K-1 mol-1 [-0.1665 + (-0.2986) + (-0.0726)] 
    = 4.47 J K-1 mol-1 
 

When the side chain is bound in a restricted environment, most of this entropy is lost. Notice that 
the highest energy conformer plays a minor role in the overall entropy, because the state is not 
easily accessible at 298.2 K. In other words, at room temperature RT = 2.48 kJ mol-1 and the 
highest energy conformer is at 9.44 kJ mol-1. If the energy differences were very small the 
conformational entropy would have been S = R ln 3 = 9.13 J K-1 mol-1. Torsional conformational 
isomers are often called rotomeric states. The side chain of valine has three rotomeric states. 
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18. Assume that the gauche-energy states for a 1,2-disubstituted ethane, X–CH2–CH2–Y, are at 
energy  above the anti-state. The anti-state is set at the reference state. Show that the 
conformational entropy for the C–C bond in disubstituted ethane compounds is given by: 
 

 S = – 
R

(1 + 2 e-/RT)
 










ln






1

1 + 2 e-/RT
 + 2 e-/RT ln









e-/RT

1 + 2 e-/RT
 

 
 
Answer:  The Boltzmann weighting factor for the anti-conformer is 1, since we chose a reference 
energy of zero for the anti-conformer and e0 = 1. The Boltzmann weighting factor for the 
gauche-conformer with the given energy of  is: 
 

 e-Egauche/RT = e-/RT 
 

The partition function is the normalization for the probability distribution: 
 

 q = 
i

 e–Ei/kT = 1 + 2 e-/RT 

The probabilities for each gauche and anti-energy state are then: 
 

 p(gauche) = 
e-Egauche/RT

q  = e-/RT/(1 + 2 e-/RT) 

 p(anti) = 
e-Eanti/RT

q  = 1/q = 1/(1 + 2 e-/RT) 
 

The conformational entropy as given by Eq. 12.4.9 is for a sum over all the energies for a 
system. The entropy is given using Eq. 12.4.11: 
 

 S = – R 
i

 pi ln pi = – R [panti ln panti + pgauche ln pgauche + pgauche ln pgauche] 

 S = – 
R

(1 + 2 e-/RT)
 










ln






1

1 + 2 e-/RT
 + 2 e-/RT ln









e-/RT

1 + 2 e-/RT
 

 
 
19.  Show that the maximum conformational entropy for freely rotating sp3 hybridized bonds is 
given by S = R ln 3. In other words, assume that the energy differences between the three 
conformational states is much less than RT. You also need to assume that the three 
conformations are distinguishable, as in the central butane dihedral or the side chain of valine but 
not –CH3 torsions. 
 
 
Answer:  Assign the lowest energy conformer as the reference state with o = 0. Then the 
remaining conformers have energies 1 and 2. Assume that 1 << RT and 2 << RT. The 
Boltzmann weighting factor for each level is then essentially equivalent, e–i/RT  1. The partition 
function is then  e–i/RT = 3. Then the probability for finding each conformational state is equal, 
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po = p1 = p2 = 1/3. There is no conformational biasing, because the energy differences are small 
compared to the available thermal kinetic energy. The conformational entropy, using Eq. 
12.4.14, is: 
 

 S =  – R 
i

  pi ln pi = – R [1/3 ln 1/3 + 1/3 ln 1/3 + 1/3 ln 1/3] = – R ln 1/3 = R ln 3 

In general, the maximum conformational entropy is given by S = R ln w, where w is the number 
of distinguishable conformational states. (See the previous problem for more information about 
distinguishability.) 
 
 
20.  Calculate the conformational entropy for the C(sp3)–C(sp2) bond torsion leading to the 
phenyl ring in the side chain of the amino acid phenylalanine. Use molecular mechanics with the 
MMFF force field for gas phase energies. To obtain values that are appropriate for protein 
folding studies, build a protein in the alpha-helical form with 11 residues: five alanines followed 
by phenylalanine followed by five alanines. Acetylate the N-terminus and amidate the C-
terminus to help stabilize the alpha-helix. Once the lowest energy structure is found, fix (or 
freeze) all of the atoms except those in the phenyl side chain. Then determine the low energy 
conformers as you rotate around the C–C(sp3)–Cring(sp2)–Cring dihedral. You will find four low 
energy conformers. However, the conformers are in two equivalent pairs. The conformers in 
each pair differ by rotation of the phenyl ring by 180. The phenyl ring is symmetrical with 
respect to rotation by 180, so the conformational states that differ by 180 are indistinguishable. 
The counting of states for calculation of the entropy is over distinguishable states. To correct for 
symmetry, then, calculate the entropy by summing over only the two unique, distinguishable 
states. The structure and the required dihedral is illustrated below, Figure P12.1. 
 

 
 

Figure P12.1: An alpha-helical 11-mer with phenylalanine in the center. The required 
dihedral is depicted with the angle of -48.0, giving the lowest energy conformer. The dotted 
lines show the hydrogen-bonding pattern. The distortions in the hydrogen-bonding pattern 
are caused by the shortness of the peptide. Your model may differ in the conformations of the 
terminal residues. 
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Answer:  The calculation of the entropy parallels Example 12.4.3. The low energy conformations 
in the gas phase using the MMFF94x force field are 3.3441 and 6.2248 kcal mol-1 at -48.0 and 
7.2 respectively. The dihedral angle was measured from the alpha-carbon to the side chain beta-
carbon to the ring sp2-C, and finishing with another ring-carbon: C–C(sp3)–Cring(sp2)–Cring. The 
dihedral for the methylene, -carbon and the alpha-carbon for this structure was 163. Using the 
lowest energy conformer as the reference, the relative energy of the higher energy conformer is 
12.05 kJ mol-1. 
   The Boltzmann weighting factor for the lowest energy conformer is 1, since e0 = 1. The 
Boltzmann weighting factor for the higher energy conformer is: 
 

 e-1/RT = e-12.05x103J/(8.314 J K-1 mol-1 298.2 K) = 0.00774 

 

The partition function, Eq. 12.4.13 (Eq. 8.9.7), is the normalization for the probability 
distribution: 
 

 q = 
i

 e–i/kT = 1 + 0.00774 = 1.0077 

The probabilities for each state are then: 
 

 p1 = e-1/RT/q = 0.00774/1.0077 = 7.68x10-3 

 p0 = e-o/RT/q = 1/q = 1/1.0077 = 0.9924 
 

The molar conformational entropy as given by Eq. 12.4.14: 
 

 S =  – R 
i

  pi ln pi     (molecular probabilities) 

 S = – 8.314 J K-1 mol-1 [0.9924 ln(0.9924) + 7.68x10-3 ln(7.68x10-3)] 
    = – 8.314 J K-1 mol-1 [(-7.57x10-3) + (-0.037)] 
    = 0.37 J K-1 mol-1 
 

The conformational entropy is quite small. Burying phenylalanine side chains in the interior of 
proteins has favorable energetic and solvation entropic effects with little conformational entropy 
penalty. Notice that the higher energy conformer plays a minor role in the overall entropy, 
because the state is not easily accessible at 298.2 K. In other words, at room temperature RT = 
2.48 kJ mol-1 and the higher energy conformer is at 12.05 kJ mol-1. If the energy differences were 
very small the conformational entropy would have been S = R ln 2 = 5.76 J K-1 mol-1. Torsional 
conformational isomers are often called rotomeric states. The side chain of phenylalanine has 
four rotomeric states, but only two distinguishable states. 
   Your results may have been rather different for this problem. Reliable estimates of the 
conformational entropy of amino acid side chains is a difficult computational problem and very 
sensitive to the details of the computation and the computational method. 
 
 
21.  The Boltzmann distribution is often derived directly by maximizing W instead of 
maximizing the entropy using Eq. 12.4.9. In this problem, we derive the Boltzmann distribution 
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in several steps directly from the statistical weights. (a) Starting with Eq. 12.4.1, show that 
without constraints: 

 d(lnW) =  



∂lnW

∂ni
 dni 

 

(b). Add in the constraints to give: 
 

 0 = 






lnW

ni
 dni +   dni –   Ei dni 

 

(c). Show that the constrained maximization results in 
 

 






lnW

ni
 +  –  Ei = 0  

 

(d). Note that the summation variable in Eq. 12.4.5 is an arbitrary index. We can also write: 
 

 ln W = N ln N – 
j

 nj ln nj 

Show that the derivative of ln W with respect to ni while holding all the other distribution 
numbers constant gives just one term, which is: 
 

 



∂lnW

∂ni
 = – (ln ni + 1)  – ln ni 

 

(e). Substitute this last result into the result from part (c) and solve for ni to find: 
 

 ni = e – Ei = e e–Ei 
 

(f). Use normalization to find the Boltzmann distribution: 
 

 
ni

N = 
e–Ei

Q  

 
 
Answer:  (a). Maximizing the entropy is equivalent to maximizing ln W. The statistical weights 
are: 

 W = 
N!

no! n1! n2!...
        1 

 

The total number of systems in the ensemble and the total ensemble energy is: 
 

 N = 
i

 ni E = 
i

 ni Ei       2 

where the sum is over all energy states, i. The logarithm of the statistical weights is, Eq. 12.4.1: 
 

 ln W = ln N! –  ln ni!       3 
 

The number of systems in each state is changed by dni to find the maximum in ln W. The total 
differential of ln W is: 
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 d(lnW) =  



∂lnW

∂ni
 dni       4 

 

(b). However, since the ensemble is isolated, we can’t change the number of systems in the 
ensemble nor the total energy. The constraints are: 
 

 Constraints: dN = dno + dn1 + dn2 + dn3 + ... =  dni  = 0   5 

 dE = Eo dno + E1 dn1 + E2 dn2 + E3 dn3 + ... =  Ei dni = 0   6 
 

Any constant multiple of these constraints will also give zero: 
 

  dni  = 0 and   Ei dni = 0      7 
 

where  and  are undetermined multipliers. Adding in the constraints and setting the result 
equal to zero to find the maximum gives: 
 

 0 = 






lnW

ni
 dni +   dni –   Ei dni     8 

 

(c). Now the ni's can be treated as independent! Combining sums and distributing out the factor 
of dni gives: 
 

 0 =  














lnW

ni
 +  –  Ei  dni      9 

 

The only way for this sum to always give zero for any changes in the dni is for each term in the 
sum to give zero: 
 

 






lnW

ni
 +  –  Ei = 0        10 

 

(d). We can now substitute in Eq. 3 into this last equation. Using Sterling’s formula, ln x! = 
x ln x – x, for the factorials gives: 
 

 ln W = N ln N – N – 
j

 (nj ln nj – nj)      11 

 

Notice that the last term in the sum gives the total number of systems in the ensemble,  nj = N 
giving Eq. 12.4.5: 
 

 ln W = N ln N – 
j

 nj ln nj       12 

 

The derivative of this last equation with respect to ni while holding all the other occupation 
numbers constant only results in the single term: 
 

 






lnW

ni
 = – 









ni 
ln ni

ni
 + ln ni        13 

 

since all the other derivatives are zero. Taking the derivative of ln ni gives: 
 

 






lnW

ni
 = – 



ni 

1
ni

 + ln ni        14 
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∂lnW

∂ni
 = – (ln ni + 1)  – ln ni      15 

 

The final approximation is valid since we work in the thermodynamic limit were all the 
occupation numbers are very large. 
 

(e). The derivation from this point parallels Eqs. 12.4.7-12.4.14. Substituting this last equation 
for the derivative into Eq. 10 gives: 
 

 – ln ni +  –  Ei = 0        16 
 

Solving for the ln ni: 
 

 ln ni =  –  Ei        17 
 

and exponentiating both sides of the last equation results in the occupation number for the i th 
state for the most probable distribution: 
 

 ni = e – Ei = e e–Ei       18 
 

(f). We can solve for the normalization by substituting Eq. 18 into Eq. 2 to give: 
 

 N = 
i

 ni= 
i

 e e–Ei = e 
i

e–Ei      19 

 

Solving for the normalization constant gives: 
 

 e = 
N


i

e–Ei
         20 

 

The sum in the denominator is defined as the partition function, Q: 
 

 Q= 
i

 e–Ei         21 

 

which upon substitution into Eq. 20 gives the final result for the occupation numbers in the most 
probable distribution: 
 

 ni = 
N
Q e–Ei         22 

 
where ni is the number of systems in energy state Ei. The probability of occurrence of a system in 
energy state Ei is then obtained by dividing by the number of systems in the ensemble, to give 
the ensemble average: 
 

 
ni

N = 
e–Ei

Q          23 
 

which is probability of finding a system in energy state Ei. 
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f 

x y 

maximum without 
constraint 

f 

x y 

maximum subject to 
constraint 

constraint on y 

 

22.  Consider the bowl shaped function, f(x,y) = 1 – x2 – y2. Maximize the function subject to the 
constraint y = 0.5 using the Lagrange method of undetermined multipliers. 
 
 
Answer:  The function and the constraint are shown in Figure P.1: 
 

 f(x,y) = 1 – x2 – y2        1 
 
 
 
 
 
 
 
 
 
 
 
 

Figure P.1: Constrained maximization of f(x,y) = 1 – x2 – y2. 
 
 
The total differential is: 
 

 df = – 2 x dx – 2 y dy = 0     (maximum) 2 
 

The unconstrained maximum for this function is calculated by setting df equal to 0, giving x = 0 
and y = 0 for the maximum, fmax = 1. The constraint is given as: 
 
 y = 0.5  or    c = y – 0.5 = 0    (constraint) 3 
 
as shown in Figure P.1. As x and y are changed to find the maximum, the differential of the 
constraint gives: 
 

 dc = dy = 0       (constraint) 4 
 

This equation can be multiplied by a constant, , and still give zero; the constant is the Lagrange 
multiplier: 
 

 ( dy) = 0       (constraint) 5 
 

Adding Eqs. 1 and 4 still gives zero: 
 

 – 2 x dx – 2 y dy + ( dy) = 0     (constrained) 6 
 

or collecting terms in dx and dy: 
 

 – 2 x dx + (– 2 y + ) dy = 0     (constrained) 7 
 

We can now treat dx and dy as independent of each other. The only way for Eq. 6 to always 
equal zero is if the coefficients of dx and dy are both always equal to zero: 
 



252 
 

 (– 2 x) = 0 
 (– 2 y + ) = 0       (constrained) 8 
 

The first equation gives x = 0. The constraint requires y = 0.5. The maximum in our function 
occurs when x = 0 and y = 0.5. The value of f at the constrained maximum is then obtained from 
Eq. 1: 
 

 f(0,½) = 1 – (0)2 – (0.5)2 = 0.75     (constrained) 9 
 

as shown in the figure. This problem is really just a one dimensional problem since y is 
constrained to a constant value. We didn’t need to use Lagrange multipliers. However, the 
problem gives us a simple opportunity to explore the meaning of the Lagrange multiplier. The 
Lagrange multiplier, , is used for the constraint on the value of y. Solving Eq. 8 gives  = 2y, 
which is just –(f/y)x. Looking back to the derivation of the Boltzmann distribution,  is the 
Lagrange multiplier used to constrain the total energy of the ensemble, which also constrains the 
average energy of a system in the ensemble. Similarly to this problem,  = (1/k)(S/U)V = 
(1/k)(S/E)V, using Eq. 12.5.20. The Lagrange multiplier is proportional to the slope of the 
function that is being maximized with respect to changes in the corresponding constraint. 
 
 
23.  A scientific instrument company produces two different widgets. Let the number of widgets 
produced by the factory per day of the two different widgets be n1 and n2, respectively. The profit 
obtained by selling type-one widgets, P1, and type-two widgets, P2, is given as: 
 

 P1 = 40 n1 – n1
2   P2 = 20 n2 – 0.5 n2

2 

 

The negative terms in the profit equations result because as the production increases, the cost of 
labor increases (extra people need to be hired) and the marketing costs increase. The factory can 
make at most 25 widgets per day. Find the optimal level of production for the two widgets to 
maximize the overall profit. Compare the constrained result to the unconstrained result assuming 
the factory can produce any number of widgets per day. 
 
 
Answer:  This problem follows the Lagrange Multipliers example in Addendum 12.7. The total 
profit is given by P = P1 + P2. The total differential of the profit, as the production rates are 
varied, is: 
 

 dP = 






P

n1 n2

 dn1 + 






P

n2 n1
 dn2 

 

 dP = (40 – 2 n1) dn1 + (20 – n2) dn2       1 
 

Setting dP = 0 gives the optimum result with no production constraint. If dn1 and dn2 can vary 
freely, then the only way we can guarantee that dP = 0 is if both coefficients are equal to zero: 
 

 (40 – 2 n1) = 0  and  (20 – n2) = 0   (unconstrained) 2 
 

Solving for the production gives n1 = 20 and n2 = 20, which exceeds the maximum production 
possible by the factory. The production constraint is given by n1+ n2 = 25, or subtracting the 
constant from both sides of the equation to give the constraint equation equal to zero: 
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 c = n1+ n2 – 25 = 0      (constraint)  3 
 

The total differential of the constraint as n1 and n2 are varied is: 
 

 dc = dn1 + dn2 = 0      (constraint)  4 
 

In other words, the total number of widgets produced is constant. So if more type-one widgets 
are produced, then an equal number fewer type-two widgets can be produced. Eq. 4 can be 
multiplied by a constant and still satisfy the constraints: 
 

  (dn1 + dn2) = 0      (constraint)  5 
 

Adding Eqs. 1 and 5 still gives zero for the maximum profit: 
 

 (40 – 2 n1) dn1 + (20 – n2) dn2 +  (dn1 + dn2) = 0  (constrained)  6 
 

Collecting terms in dn1and dn2: 
 

 (40 – 2 n1 + ) dn1 + (20 – n2 + ) dn2 = 0   (constrained)  7 
 

Since dn1 and dn2 can now be treated as independent variables, the only way we can guarantee 
dP = 0 is if both coefficients are separately equal to zero: 
 

 40 – 2 n1 +  = 0 
 20 – n2 +  = 0 
 

Subtracting the second equation from the first gives: 
 

 20 – 2 n1 + n2 = 0  and then  n2 = 2 n1 – 20  (constrained max.) 8 
 

Since n1+ n2 = 25 from the constraint, we can solve for n1 and substitute n1 = 25 – n2 into the last 
equation to give: 
 

 n2 = 50 – 2 n2 – 20 giving  n2 = 10    (constrained max.) 9 
 

and then from the original constraint, n1 = 25 – n2 = 15,. The maximum profit is then: 
 

 P = P1+ P2 = (40 n1 – n1
2) + (20 n2 – 0.5 n2

2) = 525 + 150 = 675 
 
 
24.  Thermodynamic state functions can be written directly in terms of the partition function, Q, 
which adds to the importance of this central concept. Using Eqs. 12.4.9, 12.4.12, 12.2.6, and 
12.1.2, show that the entropy can be written as: 
 

 S =  k ln Q + 
U – U(0)

T  

 
 
Answer:  Starting from Eq. 12.4.9, we need to find the ln pi. Taking the logarithm of pi from Eq. 
12.4.12 gives Eq. 12.5.29: 
 

 ln pi = 
– Ei

  kT – ln Q 
 

Substituting this last equation into Eq. 12.4.9 gives: 
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 S = – k 
i

 pi



– Ei

  kT – ln Q  

    =  
k

kT 
i

 pi Ei + k 
i

 pi ln Q 

The first summation is just the average energy from Eq. 12.2.6. In the second summation, ln Q is 
a constant, which factors out in front of the summation: 
 

 S = 
E
T  + k ln Q 

i

 pi 

 

The ensemble average energy is U – U(0), Eq. 12.1.2. The sum of the pi is equal to one, because 
the probabilities are normalized,  pi = 1, giving: 
 

 S = k ln Q + 
U – U(0)

T  
 

The partition function gives the number of accessible states; therefore the more accessible states 
the greater the energy dispersal. In addition energy transfer into the system, as given by 
U – U(0), increases the number of accessible states, because more energy is available to the 
system. The entropy given as a function of Q will play an important role in Chapt. 32. 
 
 
25.  What is the probability of selecting an Ace in 10 total cards? To avoid statistical 
complications, assume that after each selection the card is returned to the deck, so that each 
selection is made from a full deck of 52 cards. 
 
 
Answer:  The probability of being dealt an Ace on a single selection is 4/52. The probability of 
being dealt an Ace in 10 selections is 10(4/52) = 40/52. It doesn’t matter which selection of the 
10 results in an Ace, so being dealt a single Ace is an “OR” series of events. 
 
 
26.  The next five problems concern the relationship between statistical weights and the 
probability of occurrence of a particular set of events. The number of ways of selecting n objects 
from N, which we called C[N choose n], is also called the binomial coefficient and given the 
symbol ( )N

n . Using Eq. 12.9.1 show that the binomial coefficient can be expressed as: 
 

 


N

n  = C[N choose n] = 
N!

n!(N-n)! 

 
 
Answer: Starting with Eq. 12.9.1, multiply the numerator and denominator by (N–n)!: 
 

 


N

n  = C[N choose n] = 
N(N–1)…(N–n+1)(N-n)!

n!(N-n)!  
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However, the numerator is just the complete series of products from N down to 1, which is 
equivalent to N!: 
 

 


N

n  = C[N choose n] = 
N!

n!(N-n)! 
 

 
27. In the last problem we showed that the binomial coefficient ( )N

n  can be defined as: 
 

 


N

n  = C[N choose n] = 
N!

n!(N-n)! 
 

The binomial coefficient ( )N
n  is the numerical coefficient for the nth term in the Nth-order 

polynomial (1 + x)N. For example: 
 

 (1 + x)3 = (1 + 2x + x2)(1 + x) 
   =   1     +  3x   +   3x2   +    x3 

   = 


3

0  1 + 


3

1  x + 


3

2  x2 + 


3

3  x3 

 

Verify the corresponding result for (1 + x)4. 
 
 
Answer: Start with the explicit polynomial: 
 

 (1 + x)4 = (1 + 3x + 3x2 + x3)(1+x) = 1 + 4 x + 6 x2 + 4 x3 + x4 
 

In terms of the binomial coefficients, following the pattern from the cubic polynomial, we should 
find: 
 

 (1 + x)4 =  


4

0 1 + 


4

1  x + 


4

2  x2 + 


4

3  x3 + 


4

4  x4 
 

Do the evaluations of the binomial coefficients match up with the expected coefficients: 
1 : 4 : 6 : 4 : 1? 
 

 


4

0  = 


4

4  = 
4!

0!(4-0)! = 1 


4

1  = 


4

3  = 
4!

1!(4-1)! = 4 


4

2  = 
4!

2!(4-2)! = 6 

 
 
28.  Assume that 3 distinguishable balls are selected at random for placement into two boxes. 
The volume of box 1 is V1 and the volume of box 2 is V2. The probability of a single ball landing 
in box 1 is proportional to its volume, p1 = V1/(V1 + V2). The probability of a single ball landing 
in box 2 is proportional to its volume, p2 = V2/(V1 + V2). What is the probability that all 3 balls 
land in the first box? There is only one way for all 3 balls to land in box 1 giving the probability 
as p(3,0) = p1

3. There is only one way for all 3 balls to land in box 2 giving p(0,3) = p2
3. Find the 

probability of 2 balls landing in box 1 and the remaining ball landing in box 2. Relate the results 
to the statistical weight W(2,1). 
 
 
Answer: The probability of a single ball landing in box 1 is p1. The probability of two specific 
balls landing in box 1 is p1

2 and then the probability of the remaining ball landing in box 2 is p2. 
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The overall probability for a set of specific balls is given as (p1
2p2). However, there is more than 

one way of achieving this distribution: 
 
 
 
 
 

 W(2,1) = 
3!

2! 1! = 3 
 

The final probability is then p(2,1) = W(2,1) (p1
2p2) = 3 (p1

2p2). This example shows the 
relationship between W and the probability of occurrence of a particular set of distribution 
numbers. Notice that this result can also be expressed using the binomial coefficient, which is the 
subject of the next problem. 
 
 
29.  Show that for a two-category problem with N distinguishable objects the binomial 
coefficient and statistical weight are related by: 
 

 W(n1,n2) =  


N

n1
 

 

An example is the previous two-box problem. The result also holds for any molecular system 
that has only two energy levels. Use the result of the last problem as a specific example. 
 
 
Answer:  In general for a two category selection problem, because there are only two categories 
the distribution numbers are related by n2 = N – n1 and: 
 

 W(n1,n2) = 
N!

n1! n2!
 = 

N!
n1! (N-n1)!

 = 


N

n1
 

 
 

Using the last problem as an example, for 3 balls, the probability for finding two balls in the first 
box and one ball in the second box depends on the statistical weight for the distribution (2,1): 
 

 W(2,1) = 
3!

2! 1! = 
3!

2! (3–2)! = 


3

2  
 

giving the final probability: 

 p(2,1) = W(2,1) (p1
2p2) = 



3

2  (p1
2p2) 

 

The binomial coefficients are the statistical weight for two-category problems. The next problem 
puts this result in a broader context. 
 
 
30.  Assume that 3 distinguishable balls are selected at random for placement into two boxes. 
The volume of box 1 is V1 and the volume of box 2 is V2. The probability of a single ball landing 
in box 1 is proportional to its volume, p1 = V1/(V1 + V2). The probability of a single ball landing 
in box 2 is proportional to its volume, p2 = V2/(V1 + V2). There is only one way for all 3 balls to 

a 
b 

c a 
c 

b b 
c 

a 
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land in box 1 giving the probability as p(3,0) = p1
3. There is only one way for all 3 balls to land 

in box 2 giving p(0,3) = p2
3. The probability of 2 balls landing in box 1 and the remaining ball 

landing in box 2 is p(2,1) = 3(p1
2p2), because there are 3 ways of arranging the set of distribution 

numbers. Likewise p(1,2) = 3(p1p2
2). Show the relationship of the probabilities p(3,0), p(2,1), 

p(1,2), and p(0,3) to the terms in the expansion of the polynomial (p1+ p2)3 . 
 
 
Answer:  Expanding the polynomial gives: 
 

 (p1+ p2)3 = p1
3    +   3 p1

2p2    +  3 p1 p2
2   +  p2

3 
                           

  p(3,0)       p(2,1) p(1,2)        p(0,3) 
 

The first term is the probability of all three balls occurring in the first box. The second term is the 
probability of finding two balls in the first box and 1 ball in the second box, and so on. The 
probabilities are related through the statistical weights given by the binomial coefficients. The 
polynomial can be more generally written using the binomial coefficients as: 
 

 (p1+ p2)3 = 


3

0  p1
3 + 



3

1  p1
2p2 + 



3

2  p1 p2
2 + 



3

3  p2
3 

 

The probability of occurrence of the different sets of distribution numbers is proportional to the 
statistical weights. This result is the theoretical foundation for the title of Sec. 12.4. 
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Chapter 13 Problems: Entropy and Applications 
 
1. Eqs. 13.2.10 and 13.2.15 apply for all processes for an ideal gas. Show that the two 
expressions are equivalent. 
 
 

Answer:  Starting with Eq. 13.2.15: S = Cp ln 
T2

T1
 – nR ln 

P2

P1
 

Using the ideal gas equation of state to find the pressure ratio: 
 

 
P2

P1
 = 

nRT2/V2

nRT1/V1
 = 

T2V1

T1V2
 

Substituting this ratio into the original equation gives: 
 

 S = Cp ln 
T2

T1
 – nR ln 

P2

P1
  =  Cp ln 

T2

T1
 – nR ln 

T2V1

T1V2
 

      =  Cp ln 
T2

T1
 – nR ln 

T2

T1
 – nR ln 

V1

V2
 

 

However, Cp =Cv + nR for an ideal gas: 
 

 S = Cv ln 
T2

T1
 + nR ln 

T2

T1
 – nR ln 

T2

T1
 – nR ln 

V1

V2
 

 

The middle two terms cancel. Flipping the volume ratio, ln(V1/V2) = – ln(V2/V1), gives: 
 

  S = Cv ln 
T2

T1
 + nR ln 

V2

V1
 

 
 
2. Eq. 13.2.10 applies for all processes for an ideal gas, assuming a constant heat capacity. 
However, for an adiabatic reversible process, S = 0. Does Eq. 13.2.10 give S = 0 for an 
adiabatic reversible process? 
 
 
Answer: For an adiabatic reversible process, V2T2

c = V1T1
c where c = Cv/nR, for solving for the 

volume ratio: 

 
V2

V1
 = 



T1

T2

c
= 



T1

T2

Cv/nR
 

Substitution into Eq. 13.2.10 gives: 

 S = Cv ln 
T2

T1
  + nR ln 

V2

V1
 = Cv ln 

T2

T1
  + nR ln 



T1

T2

Cv/nR
 

      =  Cv ln 
T2

T1
  + nR 

Cv

nR ln 



T1

T2
 = Cv ln 

T2

T1
  – Cv ln 



T2

T1
 = 0 
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3. Calculate the change in entropy for 1.00 mole of ideal gas that is expanded against a constant 
external pressure of 1.00 atm from an initial pressure of 10.0 atm to a final pressure of 1.00 atm. 
During this process the temperature also drops from 25.00 ºC to 0.00 ºC. The heat capacity is Cp 
= 7/2 nR. 
 
 
Answer:  Even though the expansion is irreversible, knowing the initial and final states allows us 
to construct an equivalent reversible process. Using Eq. 13.2.15 gives: 
 

 S = Cp ln 
T2

T1
 – nR ln 

P2

P1
 

 

You can think of this equation as the result of a reversible constant pressure process followed by 
a reversible isothermal process. 
 

      S =  7/2(1.00 mol)(8.314 J mol-1 K-1) ln 
273.2 K
298.2 K – (1.00 mol)(8.314 J mol-1 K-1) ln 

1.00 atm
10.0 atm 

 =  -2.548 J K-1 + 19.14 J K-1 = 16.6 J K-1 

 

Notice that we can use any pressure units for the ratio, since the units cancel out. 
 
 
4. For a closed system we know that U = q + w, U = qrev + wmax, and that a reversible process 
does maximum work on expansion and minimum work on contraction. Use these statements to 
derive the Clausius inequality. 
 
 
Answer:  Since internal energy is a state function and independent of the path for a process: 
 

 U = q + w = qrev + wmax       1 
 

Rearranging this expression to group the work terms and the heat transfer terms gives: 
 

 q – qrev = wmax – w        2 
 

Consider the expansion first. In doing comparisons, we like to arrange equations so that we are 
comparing positive quantities. In an expansion, the internal energy of the system drops and 
wmax and w are negative. Multiplying the last equation by -1 allows us to compare positive values 
for the work terms: 
 

 qrev – q = (-wmax) – (-w) > 0       3 
 

The inequality holds because a reversible process does maximum work on expansion. Adding q 
to both sides of the inequality gives: 
 

 qrev > q          4 
 

Dividing both sides of this equation by T and using the definition of the entropy, S = qrev/T 
gives the Clausius inequality: 
 

 S> 
q
T          5 
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Now consider contraction. The work terms for a contraction are positive and a reversible process 
does minimum work on contraction. Eq. 2 then becomes: 
 

 q – qrev = wmax – w < 0 or   q – qrev < 0    6 
 

Adding qrev to both sides of this inequality gives Eq. 4 again. So the derivation works for both 
expansions and contractions. 
   You may wonder why we didn’t use this derivation in this chapter. First, this derivation 
requires a rigorous proof of the statement that “a reversible process does maximum work on 
expansion and minimum work on contraction.” Secondly, the form of Eq. 13.1.8 and the concept 
of “lost work” plays an important role in the development of irreversible thermodynamics. 
 
 
5. In the section on “Temperature as an Integrating Factor” we derived Eq. 13.2.28 using Eq. 
13.2.10. Repeat the derivation of the entropy change for path 2, Eq. 13.2.28. However, this 
time start from the heat transfers directly, Eqs. 13.2.16 and 13.2.18, find dS1 and dS2. Then do 
the integrals. Note when path specific information is eliminated. 
 
 
Answer:  For path 2, we need to calculate the entropy change for each step and then add. For the 
constant pressure first step from Eq. 13.2.16: 
 

 dS1 = 
đqrev,1

T  = 
Cv

T  dT + 
P1

T  dV   (cst P, reversible, closed, ideal gas) 1 
 

Notice that both T and V change along this path. We can use the ideal gas equation of state for 
the second term, P1/T = nR/V: 
 

 S1 = 



T

Ti

 
Cv

T  dT + 



V1

V2

 
nR
V  dV      (cst. P, closed, ideal gas) 2 

 

Eq. 1 is path specific, but after substitution of P1/T = nR/V, the second term only depends on the 
initial and final states! Integrating the last equation results in: 
 

 S1 = Cv ln 
Ti

T  + nR ln 
V2

V1
        (cst. P & Cv, closed, ideal gas) 3 

 

For the second step, at constant volume, dividing Eq. 13.2.18 by T gives: 
 

 dS2 = 
dqrev,2

T  = 
Cv

T  dT     (cst V, reversible, closed) 4 
 

Integrating from Ti to back to the original temperature, T, gives: 
 

 S2 = Cv ln 
T
Ti

     (cst. V & Cv, reversible, closed) 5 
 

The total change in entropy is the sum of 3 and 5: 
 

 S = Cv ln 
Ti

T + nR ln 
V2

V1
 + Cv ln 

T
Ti

   (cst. Cv, closed, ideal gas) 6 
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However, the temperature dependent terms cancel to give: 
 

 S = nR ln 
V2

V1
       (closed, ideal gas) 7 

 

The intermediate temperature no longer appears in the equation, so the final result is path 
independent and only depends on the initial and final states. 
 
 
6.  Given the total differential for the function z(x,y): 

 dz = 
y
x dx – dy 

Show that dz is not an exact differential. The integrating factor for dz is (1/x). Define a new 
differential as df = dz/x. Show that df is exact. In other words, df is a state function. 
 
 
Answer:  Comparing the total differential dz to: 

 dz = 






z

x y
dx + 







z

y x
dy       1 

Gives: 






z

x y
 = 

y
x  and   







z

y x
 = –1      2 

 

The mixed partials are not equal: 
 

 








y





z

x y x
 = 






 y/x

y x
  = 

1
x and 









x





z

y x y
 = 






 (–1)

x y
 = 0  3 

 

So, dz is not an exact differential. However, multiplying both sides of Eq. 1 by the integrating 
factor (1/x) gives: 
 

 df = (1/x) dz = 
y
x2 dx – 

1
x dy       4 

with 






f

x y
 = 

y
x2  and   







f

y x
 = – 

1
x      5 

 

Now the mixed partials give: 

 








y





f

x y x
 = 






 y/x2

y x
  = 

1
x2 and 









x





f

y x y
 = 






 (–1/x)

x y
 = 

1
x2  6 

 

Therefore df is an exact differential and f is a state function. 
 
 
7. The lowest temperature heat capacity measurement for benzene is 3.79 K,  
where Cp = 0.051463 J K-1 mol-1. The heat capacity data for crystalline and liquid benzene in 
Figure 13.4.1 can be fit to power series expansions. Because of the complex shape of the curve, 
this fitting is best done over three temperature ranges. The breaks between the ranges are 
arbitrary and are simply chosen to get a good fit to the overall curve. There are no solid-state 
phase transitions. The enthalpy of fusion for benzene is 10.59 kJ mol-1 at the normal melting 
point of 278.6 K. Calculate the absolute entropy of benzene at 298.2 K. 
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 Table Problem 6: Approximate Heat Capacity for Solid and Liquid Benzene 

solid Cp (J K-1 mol-1) 
3.79 – 20 K Cp = 0.10321 T + 0.02431 T2 

20 – 84 K Cp = – 16.5375 + 1.3854 T – 0.00770 T2 
84 -278.6 K Cp = 38.2869 + 0.01075 T + 1.097x10-3 T2 
liquid  
278.6 – 300 K Cp = 81.228 + 0.1794 T  

 
 
Answer:  For the cubic polynomial Cp curve fits, the integrals are given by: 
 

 



T1

T2Cp
solid

T  dT = 



T1

T2a + b T + c T2

T  dT =  T1

T2 (a/T + b + c T) dT = 

           =  a (ln T|T2

T1
  +  b (T|T2

T1
  +  

c
2 (T2|T2

T1
 = 

           =  a ln 
T2

T1
   + b (T2 – T1) + 

c
2 (T2

2 – T1
2) 

 

The low temperature Debye extrapolation is covered in the text. The results of the integrals are 
given in the following table: 
 

T1 
(K) 

T2 
(K) 

a ln(T2/T1) 
J K-1 mol-1 

b (T2-T1) 
J K-1 mol-1 

c
2 (T2

2-T1
2) 

J K-1 mol-1 

A
3 (T2

3-T1
3) 

J K-1 mol-1 

total 
J K-1 mol-1 

0 3.79    0.0172 0.017 
3.79 20 0 -1.673 4.687  3.01 
20 84 -23.733 88.666 -25.626  39.31 
84 278.6 45.904 2.092 38.703  86.70 

278.6 298.2 5.501 3.502   9.00 
 

The entropy of fusion is: fusS = 
fusH
Tmelt

 = 
10.59x103J mol-1

278.6 K  = 38.01 J K-1 mol-1 
 

The total then is S298 K = 176.04 J K-1 mol-1 
The literature value is 173.3 J K-1 mol-1, which is close considering the approximations in the 
curve fitting. The coefficients from the curve fits don’t have a particular interpretation. The curve 
fits are presented only as a way to make the integrals easier to do. 
 
 
8.  Calculate the absolute entropy of methylammonium chloride at 298.15 K. There are three 
crystalline forms. For the low temperature -form, the heat capacity is 0.4209 J K-1 mol-1 at 
12.04 K. The enthalpy of the equilibrium solid-state phase transition from the  to -form is 
1.7790 kJ mol-1 at 220.4 K. The enthalpy of the equilibrium solid-state phase transition from the 
 to -form is 2.8183 kJ mol-1 at 264.5 K. All values are at standard state. The integrals of Cp/T 
for the three phases are:1 
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12.04 K

220.4 K

 
Cp


T  dT = 93.412 




220.4 K

264.5 K

 
Cp


T  = 15.439    




264.5 K

298.15 K

 
Cp


T  = 10.690 J K-1 mol-1 

 
 
Answer:  The plan is to add the Cp/T integrals and the entropy changes for the phase transitions. 
The integral from 0 K to 12.04 K is done using the Debye relationship for the heat capacity. 
   The transition entropies for the solid-state phase transitions are: 
 

   :   trS = trH/Ttr = 1.7790 kJ mol-1(1000 J/1 kJ)/220.4 K = 8.0717 J K-1 mol-1 

 

   :   trS = trH/Ttr = 2.8183 kJ mol-1(1000 J/1 kJ)/264.5 K = 10.6552 J K-1 mol-1 
 

The Debye form for the heat capacity is Eq. 13.4.3 giving Cp = AT3
l ow = 0.4209 J K-1 mol-1 at the 

lowest experimental temperature, Tlow. The integral from 0 K is, Eq. 13.4.6: 
 

 




0 K

Tlow

 
Cp


T  dT = 0 K

TlowAT2 dT = 
AT3

l ow

3  = 
0.4209 J K-1 mol-1

3  = 0.1403 J K-1 mol-1 

 

The absolute entropy, which is also called the Third Law entropy, is the sum: 
 

     (0  12.04 K)  +  (12.04  220.4 K)   +  trS()  +  (220.4  264.5 K)  +  trS()  +  (264.5  298.15 K) 

 S298.15 K = 0.1403   +    93.412       + 8.0717  +     15.439     + 10.6552 + 10.690 J K-1 mol-1 
              = 138.41 J K-1 mol-1 
 
 
9. One mole of an ideal gas undergoes an isothermal reversible compression from an initial 
pressure of 1.00 bar to a final pressure of 10.00 bar. Calculate the change in entropy of the 
system, the surroundings, and the total entropy change. 
 
 
Answer:  For an isothermal expansion of an ideal gas, P2V2 = P1V1 or (V2/V1) = (P1/P2). For an 
isothermal expansion of an ideal gas T = Tsurr and Eq. 13.2.4 gives: 
 

 S = nR ln(V2/V1) = nR ln(P1/P2) =1 mol (8.314 J K-1 mol-1) ln (1.00/10.0) = -19.1 J K-1 
 Ssurr = –S = 19.1 J K-1 

 Stot = S + Ssurr = 0 
 
 
10. One mole of an ideal gas undergoes an isothermal expansion against a constant external 
pressure of 1.00 bar. In this process the system does 900.0 J or work from an initial volume of 
1.00 L, that is w = -900.0 J. The temperature is 298.2 K. Calculate the change in entropy of the 
system, the surroundings, and the total entropy change. 
 
 
Answer:  The work for an isothermal expansion against a constant external pressure of Pext is: 
 

 w  = –Pext V  =  –Pext (V2 – V1) 
 

Solving for the final volume gives: 
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 w =  -900.0 J = -1.00x105 Pa (V2 – 1.00 L)(1 m3/1000 L) 
 

or V2 = 10.0 L. The entropy change for the system is the same as a reversible expansion, since 
entropy is a state function and Eq. 13.2.4 again applies: 
 

 S = nR ln(V2/V1) = 1 mol (8.314 J K-1 mol-1) ln (10.0 L/1.00 L) = 19.1 J K-1 
For the surroundings we use Eq. 13.5.2: 

 Ssurr = 
qsurr

Tsurr
 = 

–q
  T 

Since U = 0 for an isothermal process in an ideal gas, q = –w = 900. J 

 Ssurr  = 
–q
  T =  

–900. J
298.2 K = -3.02 J K-1 

The entropy change of the surroundings is negative, because the surroundings transfer heat into 
the system to “pay” for the work done. Finally the total entropy is given by: 
 

 Stot = S + Ssurr = 19.1 J K-1 – 3.02 J K-1 = 16.1 J K-1 
 

The expansion is spontaneous. 
 
 
11. The volume of one mole of an ideal gas changes from 1.00 L to 2.00 L in an adiabatic 
reversible expansion. The initial temperature is 298.2 K. The gas is diatomic. Calculate the 
change in entropy of the system, the surroundings, and the total entropy change. 
 
 
Answer:  Since this is an adiabatic reversible expansion, q = qrev = 0: 

 S =  
qrev

  T  = 0 and   Ssurr  = 
–q
  T = 0 

 Stot = S + Ssurr = 0 
 

We assume an isolated composite system consisting of the system and the surroundings. A 
reversible process is not spontaneous, so S for the composite, isolated system is zero. If the 
system and surroundings are taken to be the universe, and if we assume that the universe is 
isolated, then Stot = Suniv = 0. 
 
 
12. The pressure of one mole of an ideal gas drops from 10.0 bar to 1.00 bar in an adiabatic 
expansion against a constant external pressure of 1.00 bar. The initial temperature is 298.2 K. 
Assume the gas is diatomic. Calculate the change in entropy of the system, the surroundings, and 
the total entropy change. 
 
 
Answer:  The temperature and pressure change for an adiabatic expansion so Eq. 13.2.15 must 
be used. However, the change in temperature must be calculated from U = w, Eq. x.x.x: 
 

 Cv (T2 – T1) = –Pext (V2 – V1) 
 

For a diatomic gas Cv = 5/2 nR. The volumes can be calculated using the ideal gas law: 
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 5/2 nR (T2 – T1) = –Pext 



nRT2

P2
 – 

nRT1

P1
 

 

The nR is a common factor and cancels out. Substituting in the initial conditions and the final 
pressure gives: 
 

 5/2 (T2 – 298.2 K) = –1.00 bar 



T2

1.00 bar – 
298.2 K
10.0 bar  

Simplifying: 
 5/2 T2 – 745.5 K = –T2 + 29.82 K 
 

Solving for T2 gives 221.5 K. Using Cp = Cv + nR = 7/2 nR, the entropy change is then: 
 

 S = Cp ln 
T2

T1
 – nR ln 

P2

P1
  

      = (1 mol)(8.314 J mol-1 K-1)[7/2 ln(221.5 K/298.2 K) – ln(1.00 bar/10.0 bar)] 
       = 10.5 J K-1 
 

Since q = 0, then Ssurr = 0 and Stot = S. As expected, this expansion is spontaneous. Note that 
U = w = Cv T = -1.59 kJ and H = Cp T = -2.23 kJ for this example. 
 
 
13. The pressure inside an inflated balloon filled with 1.00 mol of helium is 112.0 kPa. Assume 
the gas expands from the opening in the balloon in an adiabatic expansion. In other words, 
assume the gas expands quickly and we measure the final temperature of the gas before any 
thermal energy can be transferred from the surroundings. The initial temperature is 298.2 K. The 
atmospheric pressure is 101.3 kPa. Calculate the entropy change of the system and the 
surroundings and the entropy change of the universe. 
 
 
Answer:  To help visualize this expansion, as the helium leaves the balloon, think of the gas 
expanding inside a soap bubble. The surface of the soap bubble pushes back the atmosphere and 
work is done against the constant external ambient pressure. 
 
 
 
 
 
 
 
 
The temperature and pressure change for an adiabatic expansion so Eq. 13.2.15 must be used. 
However, the change in temperature must be calculated from U = w, Eqs. 9.8.23-9.8.24: 
 

 Cv (T2 – T1) = –Pext (V2 – V1) 
 

For a monatomic gas Cv = 3/2 nR. The volumes can be calculated using the ideal gas law: 
 

 3/2 nR (T2 – T1) = –Pext 



nRT2

P2
 – 

nRT1

P1
 

Pext 

balloon 
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The nR is a common factor and cancels out. The gas expands until the pressure of the helium is 
equal to the ambient pressure P2 = Pext. Substituting in the initial conditions and the final pressure 
gives: 
 

 3/2 (T2 – 298.2 K) = –101.3 kPa 



T2

101.3 kPa – 
298.2 K

112.0 kPa  

Simplifying: 
 3/2 T2 – 447.3 K = –T2 + 269.7 K 
 5/2 T2 = 717.0 K 
 

Solving for T2 gives 286.8 K. Using Cp = Cv + nR = 5/2 nR, the entropy change is then: 
 

 S = Cp ln 
T2

T1
 – nR ln 

P2

P1
  

      = (1 mol)(8.314 J mol-1 K-1)[5/2 ln(286.8 K/298.2 K) – ln(101.3 kPa/112.0 kPa)] 
      = (1 mol)(8.314 J mol-1 K-1)[-0.09745 + 0.1004] 
      = (1 mol)(8.314 J mol-1 K-1)[0.00295] 
       = 0.0245 J K-1 
 

The ln(101.3/112.0) term has only three significant figures; then normal significant figure rules 
give only one significant figure in the final result. Since q = 0, then Ssurr = 0 and Stot = S. As 
expected, this expansion is spontaneous. Note that U = w = Cv T = -142. J and H = Cp T = 
-237. J for this example. 
 
 
14. One mole of an ideal gas at 298.2 K triples its volume in an isothermal irreversible expansion 
against Pext = 0. Calculate the changes in entropy of the system, the surroundings, and the total 
entropy change. 
 
Answer:  The entropy change for the system is the same as a reversible expansion, since entropy 
is a state function and Eq. 13.2.4 again applies: 
 

 S = nR ln(V2/V1) = 1 mol (8.314 J K-1 mol-1) ln (3.00) = 9.13 J K-1 
 

For the surroundings we use Eq. 13.5.2: 

 Ssurr = 
qsurr

Tsurr
 = 

–q
  T 

The work for an isothermal expansion against an external pressure of zero, Pext = 0, is: 
 

 w  = –Pext V  = 0 
Since U = 0 for an isothermal process in an ideal gas, q = –w = 0 
 Ssurr  = 0 
Finally the total entropy is given by: 
 

 Stot = S + Ssurr = 9.13 J K-1 
 

The expansion is spontaneous. 
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15. Calculate the molar entropy change for the phase transition of water to water vapor at room 
temperature, 298.15K, and one atmosphere pressure. The difference in heat capacity on 
vaporization is -41.9 J K-1 mol-1. The standard enthalpy of vaporization of water at 373.15 K is 
40.7 kJ mol-1. 
 
Answer:  When the pressure is at 1 atm, we can only use Eq. 13.3.2 at the normal boiling point, 
because only at that temperature is the system in equilibrium: 
 

 vapS = 
vapH

Tb
 = 

40.7x103J mol-1

373.15 K  = 109.1 J K-1 mol-1 
 

To find the entropy change at room temperature, use Eq. 13.3.7: 
 

 trST2   =  trST1 +  trCp ln 
T2

T1
  

  = 109.1 J K-1 mol-1  + ( -41.9 J K-1 mol-1) ln 
298.15 K
373.15 K 

  = 109.1 + 9.36 J K-1 mol-1 =  118.5 J K-1 mol-1 
 
 
16. Consider the reaction: 

 pyruvic acid  acetaldehyde +  CO2 (g) 
 

(which is catalyzed by the enzyme pyruvate decarboxylase.) Calculate rS° for this reaction for 
the system and the surroundings at 298.2 K. The values in the table below are at 298.2 K. 
 

Table for Problem 2: 
 

substance fH° (kJ mol-1) S°(J K-1 mol-1) 
acetaldehyde -192.30 160.2 
CO2 -393.51 213.74 
pyruvic acid -584.5 179.5 

 
Answer:  The data are: 

 pyruvic acid  acetaldehyde +  CO2 (g) 

  fH° -584.5  -192.30 -393.51 kJ mol-1 
  S° 179.5  160.2  213.74  J K-1 mol-1 
 
 
rH° = [products] – [reactants]  
         = [1mol(-192.30 kJ mol-1) + 1 mol(-393.51 kJ mol-1)] – [1 mol(-584.5 kJ mol-1)] 
       = -1.3 kJ 
 

rS° = [products] – [reactants]  
         = [1mol(160.2 J K-1 mol-1) + 1 mol(213.74 J K-1 mol-1)] – [1 mol(179.5 J K-1 mol-1)] 
       =  194.4 J K-1 
 

which is dominated by the increase in number of moles of gas. The change in entropy for the 
surroundings is: 
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 Ssurr = 
qsurr

Tsurr
 = 

–rH
  T   =  

1.3 kJ (1000 J /1kJ)
298.2  =  4.36 J K-1 

 

which is spontaneous. 
 
 
17.  The chemical reaction that corresponds to the enthalpy of formation of urea, (NH2)2CO, is: 
 

 C (graph) + 2 H2 (g, 1 bar) + N2 (g, 1bar)  (NH2)2CO (s)      fH = -333.1 kJ mol-1 

 

Calculate the reaction entropy for the formation reaction, at standard state and at 298.15 K.  
 
 
Answer:  The formation reaction is the production of one mole of substance from the constituent 
elements in their standard states: 
 

 C (graph) + 2 H2 (g, 1 bar) + N2 (g, 1bar)  (NH2)2CO (s)      fH = -333.1 kJ mol-1 

       S   5.740  130.574 191.50    104.6        J K-1 mol-1 
 

Remember that the enthalpy is an extensive function, so the stoichiometric coefficients are 
important. The reaction enthalpy change is given by Eq. 13.6.1 at standard state: 

 rS = [products] – [reactants] = i S 
 rS = [104.6] – [5.740 + 2(130.574) + 191.50] J K-1 mol-1 = -353.79 J K-1 mol-1 
 
 
18.  (a).  The enzyme urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide: 
 

 (NH2)2CO (s) + H2O (l)    2 NH3 (g, 1 bar) + CO2 (g, 1bar) 
 

Using the data in the appendix, calculate the reaction enthalpy, at standard state and at 298.15 K. 
(b).  Consider the reaction as an isothermal process in a closed system in thermal contact with the 
surroundings acting as a constant temperature reservoir. Calculate the change in entropy for the 
surroundings and the total entropy change at 298.15 K. (See Chapter 8 Problem 2b). 
 
 
Answer:  The plan is to note that the entropy change of the surroundings is determined from the 
reaction enthalpy, since at constant pressure, qreaction = qp = rH. 
  The enthalpies of formation and absolute entropies, from Tables 8.4.1 and 8.4.2, are: 
 

  (NH2)2CO (s) + H2O (l)    2 NH3 (g, 1 bar) + CO2 (g, 1bar)     units 
 fH     -333.1  -285.830 -46.11    -393.509        kJ mol-1 
     S      104.6     69.92 192.34      213.74        J K-1 mol-1 

 

Remember that enthalpy and entropy are extensive functions, so the stoichiometric coefficients 
are important. The reaction enthalpy and entropy changes are given by Eqs. 8.4.9 and 13.6.1 at 
standard state: 

 rH = [products] – [reactants] = i fH 

 rS = [products] – [reactants] = i S 
 

(a).  The reaction entropy is: 
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 rS = [2(192.34) + 213.74] – [104.6 + 69.92] J K-1 mol-1 = 423.9 J K-1 mol-1 
 

The reaction entropy is strongly favorable because three moles of gas are produced. 
(b).  The reaction enthalpy is (see Chapter 8 Problem 2b): 
 

 rH = [2(-46.11) + (-393.509)] – [(-333.1) + (-285.83)] kJ mol-1 = 133.2 kJ mol-1 
 

The entropy change of the surroundings is given by Eq. 13.5.4: 
 

 rSsurr = –rH/T = –(133.2 kJ mol-1)(1000 J/1 kJ)/298.15 K = -446.75 J K-1 mol-1 
 

The total entropy change is: 
 

 Stot = S + Ssurr = 423.9 J K-1 mol-1 + (-446.75 J K-1 mol-1) = -22.9 J K-1 mol-1 
 

The reaction is not spontaneous at 298.15 K. Of course, enzyme catalysis won’t change the 
spontaneity. 
 
 
19.  The aging of marine aerosols produces NaHSO4 cloud condensation nuclei, CCN. The 
distribution of CCN determines the formation and reflectivity of clouds, which play an important 
role in determining the albedo of the atmosphere (see Chapter 8 Problem 3). (a). Using the data 
in the appendix, calculate the entropy change for the system and for the surroundings for the 
following reactions separately and in sum, under standard conditions and at 298.15 K. 
 

  H2S (g, 1bar) + 2 O2 (g, 1bar)  SO3 (g, 1bar) + H2O (g, 1bar) 

  SO3 (g, 1 bar) + H2O (l)  H2SO4 (l) 
  NaCl (s) + H2SO4 (l)  HCl (g, 1bar) + Na+ (ao) + HSO–

4 (ao) 
 

(b). Combine the three reactions to show the overall process. Use the combined reaction to 
calculate the overall reaction enthalpy. Compare with the result in part (a). 
 
 
Answer:  The plan is to use Hess’s Law for each reaction and then the three reactions in 
sequence. Note that both gaseous and liquid water are involved in the reactions. Use the absolute 
entropy for pure liquid H2SO4. The reaction enthalpies are given in Chapter 8 Problem 3. 
 

(a). The absolute entropies, from Table 8.4.1, combine to give the reaction entropies: 
 
  H2S (g, 1bar) + 2 O2 (g, 1bar)  SO3 (g, 1bar) + H2O (g, 1bar)        units      1 
 S: 205.8   205.029 256.76            188.715 J K-1mol-1 

 
  SO3 (g, 1 bar) +  H2O (l)    H2SO4 (l)          2 
 S: 256.76    69.92         156.904    J K-1mol-1 
 

  NaCl (s)  +  H2SO4 (l)  HCl (g, 1bar) + Na+ (ao) + HSO–
4 (ao)       3 

 S:  72.4       156.904    186.799   59.0        131.8 J K-1 mol-1 
 
Each reaction enthalpy change is given by Eq. 8.4.9: 
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 rS = [products] – [reactants] = i S 
 

For reaction 1: 
 

     rS = [188.715 + 256.76] – [205.8 + 2(205.029)] J K-1mol-1 = -170.38 J K-1 mol-1 
     rSsurr = –rH/T = –(-616.91 kJ mol-1)(1000 J/1 kJ)/298.15 K = 2069.13 J K-1 mol-1 
 

For reaction 2: 
 

     rS = [156.904] – [256.76 + 69.92] J K-1 mol-1 = -169.776 J K-1 mol-1 
     rSsurr = –rH/T = –(-132.44 J K-1 mol-1)(1000 J/1 kJ)/298.15 K = 444.131 J K-1 mol-1 
 

For reaction 3: 
 

     rS = [131.8 + 59.0 + 186.799] – [72.4 + 156.904] J K-1 mol-1 = 148.30 J K-1 mol-1 
     rSsurr = –rH/T = –(5.23 J K-1 mol-1)(1000 J/1 kJ)/298.15 K = -17.54 J K-1 mol-1 
 

The overall sequence gives: 
  rS = (-170.38) + (-169.776) + 148.30 J K-1mol-1 = -191.86 J K-1mol-1 
 rSsurr = 2069.13 + 444.131 + (-17.54) J K-1 mol-1 = 2495.72  J K-1 mol-1 
 

 (b).  We can check the results by working directly with the overall reaction. The sum of the 
three steps gives: 
 

         H2S (g) + 2O2 (g) + NaCl (s) + H2O (l)  HCl (g) + Na+(ao) + HSO–
4 (ao) + H2O (g) 

  S: 205.8     205.029     72.4        69.92       186.799     59.0        131.8          188.715  J K-1 mol-1 
 

     rS = [186.799 + 59.0 + 131.8 + 188.715] – [205.8 + 2(205.029) + 72.4 + 69.92] J K-1 mol-1 
             =  -191.86 J K-1 mol-1 
 

The combined reaction enthalpy is rH = -744.12 kJ mol-1 , giving the entropy change of the 
surroundings: 
 

 rSsurr = –rH/T = –(-744.12 kJ mol-1)(1000 J/1 kJ)/298.15 K = 2495.79 J K-1 mol-1 
 

The step-wise and combined reactions give the same result, to within round-off error. The 
combined reaction entropy is unfavorable. The overall reaction is enthalpy driven, since the 
entropy change of the surroundings is the dominant factor. 
 
 
20. Use normal mode analysis to decide whether propane or 2-methylpropane has a higher 
absolute entropy. You can use any convenient normal mode analysis program based on 
molecular mechanics or molecular orbital theory. 
 
 
Answer:  The results of a normal mode analysis using Spartan at the AM1 level is given in the 
table below. You didn’t need to get the thermodynamic analysis, but it is included for 
comparison. 
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Table: Normal Mode Analysis for Several Hydrocarbons 

Compound translation rotation vibration total literature ~ < 500 cm-1 
methane 143.3 42.8 0.4 186.6 186.26  
acetylene 149.4 45.4 2.7 197.5 200.94  
ethylene 150.3 66.4 2.4 219.1 219.56  
ethane 151.2 68.1 10.9 230.3 229.60 204 
cyclopropane 155.4 75.8 4.8 236.0 237.55  
propane 156.0 89.0 32.8 277.7 269.91 79, 190, 414(b) 
2-methylpropane 159.4 93.5 44.4 297.3 294.64 149, 191x2, 398x2, 478 
butane 159.4 96.7 45.4 301.4 310.23 103, 196, 206, 302, 473 
cyclohexane 164.0 95.2 36.8 296.0 298.19 214x2, 331, 467x2 
benzene 163.1 86.7 19.1 268.9 269.31 371x2 

 
Notice that 2-methylpropane has six low frequency normal modes, while propane has three. The 
lower the frequency of the normal mode the bigger the contribution to the entropy and heat 
capacity. From the table above, propane has the smallest frequency normal mode. However, the 
overall result for 2-methylpropane is a larger vibrational contribution to the entropy. 
   The normal modes for propane, using MOPAC are a little different: 
 

 142.40391   187.97537   412.50857 
 

The normal modes for 2-methylpropane, using MOPAC are: 
 

 144.44885   182.36068   199.92640   395.61601   398.93565   477.33557 
 

The thermodynamic analysis is at the bottom of the output for Spartan, GAMESS, Gaussian, and 
MOPAC. The thermodynamic analysis for propane from MOPAC, with the THERMO keyword, 
at 300 K is: 
 

                   CALCULATED THERMODYNAMIC PROPERTIES 
                                          * 
   TEMP. (K)   PARTITION FUNCTION   H.O.F.    ENTHALPY   HEAT CAPACITY  ENTROPY 
                                    KCAL/MOL   CAL/MOLE    CAL/K/MOL   CAL/K/MOL 
 
    300  VIB.         4.226                  1173.47287    8.68840    6.77570 
         ROT.     .200E+05                    894.267      2.981     22.664 
         INT.     .846E+05                   2067.740     11.669     29.439 
         TRA.     .286E+27                   1490.445      4.968     37.291 
         TOT.                       -24.224  3558.1849    16.6374    66.7306 
 

The thermodynamic analysis for 2-methylpropane from MOPAC at 300 K is: 
 

      CALCULATED THERMODYNAMIC PROPERTIES 
                                          * 
   TEMP. (K)   PARTITION FUNCTION   H.O.F.    ENTHALPY   HEAT CAPACITY  ENTROPY 
                                    KCAL/MOL   CAL/MOLE    CAL/K/MOL   CAL/K/MOL 
 
    300  VIB.         9.160                  1911.82988   13.87179   10.77417 
         ROT.     .517E+05                    894.267      2.981     24.547 
         INT.     .473E+06                   2806.097     16.853     35.321 
         TRA.     .433E+27                   1490.445      4.968     38.114 
         TOT.                       -29.325  4296.5419    21.8208    73.4355 

 
The vibrational frequencies for torsional modes are very sensitive to the level of the calculation. 
You will see large differences, especially for the lowest frequency normal modes, from program 
to program. However, the number of low frequency normal modes will be reproducible. There is 



272 
 

another problem with this approach. The normal mode analysis assumes that the vibrations are 
purely harmonic oscillators. We will see in the vibrational spectroscopy chapter that torsions are 
strongly anharmonic. Normal mode analysis does a poor job, quantitatively, in predicting the 
frequencies of these vibrations. For now, just counting low frequency normal modes will help 
you to visualize the vibrational contribution to the entropy. We will argue later about how to get 
good quantitative predictions. 
 
 
21. Use normal mode analysis to decide whether cyclohexane or benzene has a higher absolute 
entropy. You can use any convenient normal mode analysis program based on molecular 
mechanics or molecular orbital theory. 
 
 
Answer:  Since cyclohexane has more atoms, we would predict that cyclohexane would have the 
higher absolute entropy. The larger number of atoms predicts a greater moment of inertia for the 
molecule and thus a greater rotational contribution to the entropy. Also, remember that the 
number of normal modes for a non-linear molecule is 3N-6. So the number of vibrational normal 
modes for cyclohexane is greater, which would also predict a higher entropy. 
   Please consult the table for the last problem for the results of the normal modes analysis. 
Cyclohexane has five vibrations with low wavenumbers, while benzene has only two. Therefore, 
cyclohexane will have a higher contribution from vibrations than benzene. The three lowest 
frequency vibrations for cyclohexane are hindered ring torsions. The low frequency vibrations 
for benzene are out-of-plane C-H bending vibrations. 
 
 
22. Give an example for each of the following types of processes. Choose your examples from 
ideal gas expansions or compressions or phase transitions of pure substances. Specify the 
difference in the variable, P or T, that is responsible for the spontaneous or non-spontaneous 
direction of the process: 

(a). a spontaneous adiabatic and isothermal process, 
(b). a spontaneous isothermal process with a decrease in entropy for the system, 
(c). a non-spontaneous isothermal process with an increase in entropy for the system, 
(d). a spontaneous adiabatic process that decreases the temperature of the system. 

 
 
Answers:  (a). a spontaneous adiabatic and isothermal process: an irreversible expansion of an 
ideal gas against a vacuum. (Ideal mixing of gases is an additional example that will be covered 
in the next chapter.) The variable controlling the spontaneous direction is the pressure: Po  0 
with Pext = 0. 
 

(b). a spontaneous isothermal process with a decrease in entropy for the system: an irreversible 
compression of an ideal gas with an external pressure greater than the system pressure. The 
variable controlling the spontaneous direction is the pressure: Po  Phigh with Po < Pext. Another 
example is the liquefaction of 1 mol of a gas or freezing of 1 mol of a liquid at a temperature 
below the equilibrium phase transition temperature, at the chosen ambient pressure. A specific 
example is the freezing of water at -5C at 1 bar ambient pressure. The independent variable is 
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the number of moles of gas or liquid, respectively: dng = -1 mol or dnliq = -1 mol. The variable 
controlling the spontaneous direction is the temperature, T < T*

b or T*
f  with T = Tsurr. 

 

(c). a non-spontaneous isothermal process with an increase in entropy for the system: the 
isothermal expansion of an ideal gas against an external pressure greater than the system 
pressure. The variable controlling the spontaneous direction is the pressure: Po  Plow with Po < 
Pext giving a non-spontaneous process. Another example is the melting of 1 mol of a solid at a 
temperature below the equilibrium phase transition temperature, at the chosen ambient pressure. 
The variable controlling the spontaneous direction is the temperature, T < T*

f  with T = Tsurr. 
 

(d). a spontaneous adiabatic process that decreases the temperature of the system: an irreversible 
adiabatic expansion of an ideal gas against an external pressure less than the system pressure. 
The variable controlling the spontaneous direction is the pressure: Po  Plow with Po > Pext. For 
an adiabatic process for a phase transition, consider a phase transition in a thermos bottle. 
Melting decreases the temperature of the system for an adiabatic process. Then for a spontaneous 
adiabatic process that decreases the temperature of the system, the melting of 1 mol of a solid at 
a temperature above the equilibrium phase transition temperature is a good example. The 
variable controlling the spontaneous direction is the temperature, To  Tlow with To > T*

f. 
 
 
23.  The Clausius inequality relates the entropy changes of the system and surroundings. 
Consider an isothermal process in a closed system in thermal contact with the surroundings 
acting as a constant temperature reservoir. Use the Clausius inequality, Eq. 13.1.9, to show that 
dS > –dSsurr for a spontaneous process. 
 
 
Answer:  Consider the system and surroundings as an isolated composite. The Clausius 
inequality, Eq. 13.1.9, gives dS > đq/T. For a spontaneous isothermal process, T = Tsurr giving 
dSsurr = – đq/T. Substitution of this result for the surroundings into the right-side of the Clausius 
inequality gives, for a spontaneous isothermal process: dS > –dSsurr. 
 
 
24.  Determine if the following statements are true of false. If the statement is false, describe the 
changes that are required to make the statement true, if possible. Assume that the system and 
surroundings are an isolated composite. (Hint: three of the following statements are true.) 

(a). The heat transfer for the system is equal in magnitude and opposite in sign to the heat 
transfer for the surroundings (đq = – đqsurr). 

(b). The entropy change of the system is equal in magnitude and opposite in sign to the 
entropy change of the surroundings (dS = – dSsurr). 

(c). For a spontaneous process, the magnitude of the entropy change of the system is never 
greater than the magnitude of the entropy change of the surroundings. 

(d). Heat transfer to a system at low temperature gives a larger change in the entropy of the 
system than the transfer of the same amount of heat at high temperature. 

(e). Spontaneous processes always result in dispersal of energy to the surroundings. 

(f). The entropy of every system is zero at absolute zero. 



274 
 

(g). For a given heat transfer, the entropy change of the surroundings is independent of the 
details of the process for the system. 

(h). One mole of xenon gas at 1 bar and 298.2 K is mixed with another mole of xenon gas at 1 
bar and 298.2 K. The total entropy change of the combined systems is positive for the process. 

 
 
Answers: (a). True: heat and work are transfers of energy and so necessarily for the transfer, đq = 
– đqsurr and đw = – đwsurr. 
 

 (b). False: The entropy change for a spontaneous process is always positive for an isolated 
composite of the system and surroundings, by the Second Law, dS + dSsurr > 0. Only for a 
reversible process is dS = – dSsurr, since then đq = đqrev. 
 

 (c). False: For a spontaneous endothermic process in a closed system, the entropy change of the 
system is positive and the entropy change of the surroundings is negative. By the Second Law 
for an isolated composite of the system and the surroundings, 
dS + dSsurr > 0. To give an increase in total entropy for an endothermic process, the magnitude of 
the entropy change of the system must be greater than the magnitude of the entropy change of 
the surroundings. 
   However, to be more precise, we should use the Clausius inequality. Consider an isothermal 
process in a closed system in thermal contact with the surroundings acting as a constant 
temperature reservoir. The Clausius inequality, Eq. 13.1.9, is dS > đq/T. For a spontaneous 
isothermal process, T = Tsurr giving dSsurr = – đq/T. Substitution of the last result into the 
Clausius inequality gives for a spontaneous isothermal process: 
dS > –dSsurr. For an endothermic process, dSsurr is negative. The magnitude of dSsurr is then 
|dSsurr| = –dSsurr. To satisfy the Second Law, if the entropy change of the surroundings is negative 
then the entropy change of the system must be positive, and then |dS| = dS. The Clausius 
inequality then gives for a spontaneous endothermic process 
|dS| > |dSsurr|; the magnitude of the entropy change of the system must be greater than the 
magnitude of the entropy change of the surroundings. 
 

 (d). True: refer to Figure 13.1.1. 
 

 (e). False: By the Second Law, for an isolated composite of the system and the surroundings, dS 
+ dSsurr > 0. However, the change in entropy of the surroundings can be negative, as for an 
endothermic process, or zero, as for an adiabatic process. The total entropy change can be 
dominated by the entropy change of the system, which allows an unfavorable entropy change of 
the surroundings. A spontaneous process may or may not give an increase of the entropy of the 
surroundings. A spontaneous process may or may not result in energy dispersal to the 
surroundings. 
 

 (f). False: the entropy of all pure, perfect crystalline substances is zero at absolute zero. Residual 
entropy can be locked into a system before cooling to absolute zero. Such a system is metastable, 
being trapped into a non-zero entropy state by a kinetic barrier. 
 

 (g). True: For a given heat transfer, đq, the entropy change of the surroundings is given by dSsurr 
= – đq/Tsurr, irrespective of whether the process is reversible or irreversible. 
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(h). False: the entropy change is zero, because the xenon atoms in the two systems are 
indistinguishable. Consider the two systems as an isolated composite. The process is 
diagrammed as follows: 
 
 
 
 
 
The instant that the barrier is removed, the combined system is at equilibrium. There are no 
gradients, so no process occurs. 
 
 
25. Heat capacities are often approximated by a power series: Cp = a + b T + c T–2, for a, b, and c 
constants. Find the change in enthalpy and entropy of a substance for a constant pressure process 
with a temperature change from T1 to T2. 
 
 
Answer:  The plan is to integrate the partial derivative relationships (H/T)P = Cp and (S/T)P 
= Cp/T. For a constant heat capacity, H = Cp(T2 – T1) and S = Cp ln(T2/T1). 
   The enthalpy integral is: 
 

 H = T1

T2 Cp dT = T1

T2 ( a + b T + c T–2) dT 

       = T1

T2 a dT + T1

T2 bT dT + T1

T2 cT–2 dT 

       = a [ T |T1
T2 + 

b
2 [ T2 |T1

T2 – c [ T–1 |T1
T2 

       = a (T2– T1) + 
b
2 (T2

2 – T2
1) + c 



1

T2
 – 

1
T1

 
 

Compare this result with Chapter 7 Problem 29, which uses a different heat capacity power series 
expansion. The leading term, in both cases, agrees with the expression that assumes a constant 
heat capacity, H = Cp(T2 – T1). 
   The entropy integral is: 
 

 S = T1

T2 Cp/T dT = T1

T2 



a

T + b + c 
1
T3  dT 

       = T1

T2 
a
T dT + T1

T2 b dT + T1

T2 cT–3 dT 

       = a [ ln(T)|T1
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Compare this result with Eq. 13.2.34, which uses a different heat capacity power series 
expansion. An example from the NIST WebBook online database that uses a term in T–2 is 
carbon dioxide (g) (http://webbook.nist.gov). 
 

Xe 
1 bar 

298.2 K 

Xe 
1 bar 

298.2 K 

Xe 
1 bar 

298.2 K 
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26. Calculate the residual entropy at 0 K for NO, assuming random NO and ON orientations. 
 
 
Answer:  Given the two ways of orienting NO is the same as for CO and N2O, the residual 
entropy is approximated as So= R ln w = (8.314 J K-1 mol-1) ln(2) = 5.76 J K-1 mol-1. 
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Chapter 14 Problems: Focusing on Chemical Reactivity 
 
 
1.  Find the number of thermodynamic constituents and components for a solution of hexane and 
chloroform. Find the expression for dG for changes in the number of components in an open 
system at constant temperature and pressure. 
 
 
Answer:  The number of constituents and components is the same since there are no chemical 
reactions or chemical constraints. There are no chemical constraints because there are no special 
chemical conditions relating the amounts of each constituent. There are two components, which 
can be expressed as nh for hexane and nc for choloroform. At constant temperature and pressure: 
 

 dG = h dnh + c dnc 

 
 
2.  Lime is made commercially through the thermal decomposition of limestone, which is 
composed primarily of calcium carbonate: 
 

 CaCO3 (s)  CaO (s) + CO2 (g) 
 

Find the number of thermodynamic components starting with only CaCO3. In other words, 
assume that there are no other sources of CaO or CO2  other than the decomposition of CaCO3. 
 
 
Answer:  There are three constituents: CaCO3, CaO, and CO2. So ns = 3. However, there is one 
chemical reaction and one chemical constraint. The chemical constraint is that the initial reaction 
is prepared from just CaCO3 with no other sources of the products than the chemical reaction. 
The number of components is then given by Eq. 14.2.1: 
 

 c = ns – no. of reactions – no. of chemical constraints 
    =  3 – 1 – 1 = 1 
 

Once the system attains equilibrium the amounts of products can be obtained from the 
equilibrium expression: the partial pressure of CO2 at equilibrium is given by: 
 

 Kp = PCO2. 
 
 
3.  Solid ammonium chloride decomposes at high temperatures to give ammonia and hydrogen 
chloride gas: 
 

 NH4Cl (s)  NH3 (g) + HCl (g) 
 

Find the number of components for a system prepared from only NH4Cl (s). 
 
 
Answer:  There are three constituents: NH4Cl (s), NH3 (g), and HCl (g). However, there is one 
chemical reaction and one chemical constraint. The chemical constraint is that the initial reaction 
is prepared from just NH4Cl (s) with no other sources of the products than the chemical reaction. 
 



 

 

 c = ns – no. of reactions – no. of chemical constraints 
    =  3 – 1 – 1 = 1 
 

At equilibrium the amounts of reactants and products can be obtained from the equilibrium 
expression: 
 

 Kp = PNH3 PHCl 
 

Since the only source of products is the chemical reaction and from the 1:1 stoichiometry, PNH3 = 
PHCl. 
 
 
4.  Gas phase ammonia and hydrogen chloride gas react to form solid ammonium chloride: 
 

 NH3 (g) + HCl (g)  NH4Cl (s) 
 

(a). Find the number of components for a system prepared from arbitrary amounts of NH3 and 
HCl. (b). Find the number of components for a system prepared from equal-molar amounts of 
NH3 and HCl. 
 
Answer:  There are three constituents: NH3 (g), HCl (g), and NH4Cl (s). There is one chemical 
reaction. For (a) there are no additional chemical constraints and from Eq. 14.2.1: 
 

 c = ns – no. of reactions – no. of chemical constraints 
    =  3 – 1 – 0 = 2 
 

For (b) the specification of equal-molar amounts of reactants is a chemical constraint and then 
the number of components is given by: 
 

 c = ns – no. of reactions – no. of chemical constraints 
    =  3 – 1 – 1 = 1 
 

   The information from the chemical reactions is algebraically expressed by the equilibrium 
expressions. At equilibrium the amounts of reactants and products can be obtained from the 
equilibrium expression: 
 

 Kp = 
1

PNH3 PHCl
. 

 
and since the reactants are supplied in equal-molar amounts and the reaction stoichiometry is 1:1, 
PNH3 = PHCl. This problem is just the reverse of Problem 3; but as always we should get the same 
result since at equilibrium every chemical reaction is reversible. It shouldn’t matter what 
direction the reaction is written, from the point of view of the number of components. Kp in this 
problem is equal to 1/Kp in Problem 3. 
 
 
5.  Consider the dissociation of the weak acid, acetic acid, in aqueous solution: 
 

 CH3COOH (aq)  H+ (aq) + CH3COO- (aq) 
 

Find the number of constituents and thermodynamic components starting with only acetic acid 
and water. In other words, assume that there are no other sources of CH3COO- other than the 
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dissociation of CH3COOH. Also, include the dissociation of water as a source of H+. Relate the 
number of components to the number of independent chemical reactions and the number of 
chemical constraints. 
 
 
Answer:  The number of constituents is five: CH3COOH, H+, CH3COO-, OH-, and H2O. The 
solution is made from acetic acid and water, so the number of components is 2. There are two 
chemical reactions, the dissociation of acetic acid and water: 
 

 CH3COOH (aq)  H+ (aq) + CH3COO- (aq) 
 H2O  H+(aq) + OH- (aq) 
 

and then the number of chemical constraints is one, as is given by: 
 

 c = ns – no. of reactions – no. of chemical constraints 
    = 5 – 2 – 1 = 2 
 

Charge balance is the chemical constraint: 
 

 [H+] = [CH3COO-] + [OH-] 
 

The two components are most easily expressed as the mole amounts of CH3COOH and H2O, 
although the choice is not unique. 
   The information from the chemical reactions is algebraically expressed by the equilibrium 
expressions. At equilibrium the amounts of reactants and products can be obtained by solving: 
 

 Ka = 
[H+][CH3COO-]

[CH3COOH]   and  Kw = [H+][OH-]. 

 
 
6.  Consider the dissociation of the weak acid, acetic acid, in aqueous solution: 
 

 CH3COOH (aq)  H+ (aq) + CH3COO- (aq) 
 

Find the number of constituents and thermodynamic components starting with a solution 
prepared from acetic acid, sodium acetate, and water. Also, include the dissociation of water as a 
source of H+. Relate the number of components to the number of independent chemical reactions 
and the number of chemical constraints. 
 
 
Answer:  Since the solution is prepared from acetic acid and sodium acetate there are two sources 
of CH3COO-, the dissociation of CH3COOH and added sodium acetate. The sources of H+ are 
the dissociation of CH3COOH and H2O. The number of constituents is six: CH3COOH, H+, 
CH3COO-, OH-, Na+, and H2O. The number of components is three, since the solution can be 
made up from arbitrary amounts of acetic acid, sodium acetate, and water. There are two 
chemical reactions, the dissociation of acetic acid and water: 
 

 CH3COOH (aq)  H+ (aq) + CH3COO- (aq) 
 H2O . H+(aq) + OH- (aq) 
 

Charge balance is the chemical constraint: 
 



 

 

 [H+] + [Na+] = [CH3COO-] + [OH-] 
 

The number of thermodynamic chemical components is then: 
 

 c = ns – no. of reactions – no. of chemical constraints 
    =  6 – 2 – 1 = 3 
 

The three components are most easily expressed as the mole amounts of acetic acid, sodium 
acetate, and H2O, although the choice is not unique. 
   The information from the chemical reactions is algebraically expressed by the equilibrium 
expressions. At equilibrium the amounts of reactants and products can be obtained from the 
equilibrium expressions: 
 

 Ka = 
[H+][CH3COO-]

[CH3COOH]   and  Kw = [H+][OH-]. 

 
 
7.  Find the number of constituents and thermodynamic components starting with a solution 
prepared from phosphoric acid, sodium hydroxide, and water. Relate the number of components 
to the number of independent chemical reactions and the number of chemical constraints. 
 
 
Answer:  There are three chemical components, phosphoric acid, sodium hydroxide, and water. 
There are eight constituents: Na+, H+, OH-, H3PO4, H2PO4

-, HPO4
2-, PO4

3-, and H2O. The 
equilibria are: 
  

    Ka1 

 H3PO4    H2PO4
-  + H+ 

 

    Ka2 

 H2PO4
-     HPO4

2- + H+ 
 

    Ka3 
 HPO4

2-        PO4
3- + H+ 

 

    Kw 

    H2O      H+   + OH- 
 

giving four chemical reactions. With three components and four reactions, there must be only 
one chemical constraint: c = 8 – 4 – 1 = 3. The charge balance is the chemical constraint: 
 

 [Na+] + [H+] = [H2PO4
-] +2 [HPO4

2-] + 3 [PO4
3-] + [OH-] 

 
 
8.  Hydrogen peroxide, which is used as a topical disinfectant, decomposes to give O2 gas in a 
highly exothermic reaction. This reaction is often used as a rather spectacular chemical 
demonstration: 
 

 2 H2O2 (aq)  2 H2O (l) + O2 (g) 
 

Hydrogen peroxide is also important in redox reactions in the environment and in biological 
processes. During this reaction many things can change: V, P, S, T, U, H, and the mole amounts 
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of the reactants and products. Keeping track of all these variables can be daunting. How can we 
simplify the definition of our system so that we can focus on the chemical changes? 
 
 
Answer:  One possibility to study this reaction is as follows. 
Step 1:  The reaction is set up in a closed piston initially containing only the H2O2 solution so 
that the only source of O2(g) is from the decomposition of the hydrogen peroxide. Therefore, 
there is only one chemical component and this quantity is fixed by the closed system. There are 
three dependent chemical constituents, H2O2, H2O, and O2: 
 

 dU = TdS – PdV + 2 H2O d + O2 d - 2 H2O2 d    1. 
 

However, there is only one composition variable, , because there is one chemical reaction. 
Starting with reactants only, if the reaction were to go to completion,  ranges from 0 to 1 mol. 
In the final equilibrium state, the extent of the reaction will also be constrained to the equilibrium 
value with  < 1. 
 

Step 2:  Consider the closed chemical reaction as a system which is held at constant temperature 
and pressure by contact with the surroundings. The surroundings are large in extent so that the 
surroundings act as a constant temperature and pressure reservoir. Therefore the temperature and 
pressure in Eq. 1 are constrained: T = Tsurr, P = Pext. In other words, the T and P in Eq. 1 are not 
independent variables. 
 

Step 3:  The composite of the system and surroundings is assumed to be isolated. Therefore, 
 đq = -đqsurr,  dw = -dwsurr 
 dVtot = dV + dVsurr = 0,  giving dV = - dVsurr, 
 dUtot = dU + dUsurr = 0,  giving dU = - dUsurr 

 
 
9. For the reaction in the last problem, evaluate the change in entropy of the system, the 
surroundings, and the total change in entropy. Don’t use any specific numbers; just consider the 
appropriate equations and inequalities. Compare the results for the entropy with the results from 
the last problem for the change in internal energy. 
 
 
Answer:  The entropy change for the system is dS. The entropy change in the surroundings is 
always straightforward; from Eq. 12.5.2: 

 dSsurr = 
đqsurr

Tsurr
 = 

–đq
  T       1 

and since the system is at constant pressure, Eq. 12.5.4, đq = đqp: 

 dSsurr = 
đqsurr

Tsurr
 = 

–dH
  T       2 

However, entropy is not conserved for a spontaneous process: 
 

 dStot = dS + dSsurr > 0      3 
 

The inequality is from the Second Law. For the internal energy, dUtot = dU + dUsurr = 0 because 
the internal energy is conserved. Equations 1-3 are the basis for the next chapter. 
 



 

 

 
10. The decomposition of hydrogen peroxide is a spontaneous process: 
 

 2 H2O2 (aq)  2 H2O (l) + O2 (g) 
 

How can we use thermodynamics, which only applies to systems at equilibrium, to study this 
process? 
 
 
Answer:   To calculate the change in internal energy, enthalpy, entropy, and as we shall see 
Gibbs energy for the reaction, we consider a temporary internal constraint that prevents the 
reaction from occurring. Then the changes U, H, S, and G can be calculated from the state 
of the system before and after the internal constraint is removed. 
   Since there is only one reactant for this reaction you might be wondering how we might 
establish such an internal constraint. One way is to measure the properties of the hydrogen 
peroxide in a long enough time interval after it has been placed in the closed piston that the 
initial equilibrium state can be established, but before the reaction has had a chance to proceed to 
an appreciable extent. For such a short time interval, the system can be considered as at 
equilibrium with respect to temperature and pressure gradients, but not at equilibrium with 
respect to the overall course of the chemical reaction. However, this reaction is slow in the 
absence of a catalyst. Hydrogen peroxide can be purchased in drug stores for this reason. The 
kinetic stability of this metastable system acts as a de facto internal constraint. So the properties 
of the hydrogen peroxide solution would be measured and then a catalyst would be added to 
accelerate the attainment of equilibrium. If you have ever seen this reaction as a lecture 
demonstration, the catalyst that is used is solid MnO. 
 
 
11. Consider the following chemical reaction at room temperature and in the absence of a 
catalyst: 
 

 H2 (g) + ½ O2 (g)  H2O (l) 
 

This reaction is spontaneous and therefore the process is irreversible. This reaction is in fact the 
primary source of propulsion for the space shuttle. Describe how we can apply thermodynamics 
to calculating the change in internal energy and entropy for this process when the reaction goes 
to equilibrium by an irreversible reaction. 
 
 
Answer:  The reaction of H2 and O2 at room temperature and in the absence of a catalyst is very 
slow. A mixture of H2 and O2 is metastable at room temperature. The kinetic stability of this 
metastable system acts as a temporary internal constraint. It is very easy to measure the 
properties of a mixture of H2 and O2, giving U1 and S1. After addition of a catalyst (a piece of Pt 
metal) the reaction quickly proceeds to equilibrium and then the final U2 and S2 can be 
measured. Then U = U2 – U1 and S = S2 – S1. 
 
 
12. Devise an internal constraint for an electrochemical reaction that you wish to maintain at the 
initial conditions. For example consider the reaction: 
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 AgCl (s) + ½ H2 (g, 1 bar)    Ag (s) + Cl- (1 m) + H+ (1 m) 
 
 
Answer:  The application of an external voltage to the electrochemical cell that is equal to the 
initial emf maintains the initial conditions in the cell. The electrochemical reaction can be broken 
into two half-cells: AgCl (s) + 1 e-  Ag (s) + Cl- 
     ½ H2 (g)  H+ + 1 e- 
 

The electrochemical cell:  Pt| H2 (g) | H+ (1 m), Cl- (1 m) | AgCl (s)|Ag(s) 
has a cell potential (the standard state cell potential) of E = 1.223 V. If a battery with a voltage of 
1.223 V were attached to this electrochemical cell, the cell would be at equilibrium and no AgCl 
(s) would react. After removing the battery and connecting the cell electrodes with a wire, the 
reaction will reach equilibrium with increased H+and Cl- concentrations with a final cell emf of 0 
V. rG = –nFE for this reaction, even though the course of the reaction is very irreversible. 
   An even easier way to arrange for a temporary internal constraint is to simply leave the 
electrodes unconnected. However, we wouldn’t be able to experimentally measure the initial 
voltage of the system. Stated in other terms, an unused battery maintains its initial voltage. 
 
 
13. Determine the change in internal energy for a reaction in terms of the change in extent of the 
reaction, d, for the reaction in a closed system: 
 

 ½ N2 (g) + 3/2 H2 (g)  NH3 (g) 
 
 
Answer: 
 dU = TdS – PdV + NH3 d – ½ N2 d – 3/2 H2 d 
 
 
14. Determine the change in internal energy for a reaction in terms of the change in extent of the 
reaction, d, for the reaction in a closed system: 
 

 C6H12O6 (s) + 6 O2 (g)  6 CO2 (g) + 6 H2O (l) 
 
 
Answer: 
 dU = TdS – PdV + 6 H2O d + 6 CO2 d – C6H12O6 d – 6 O2 d 
 
 
15.  A 0.10 M NaCl aqueous solution is separated from pure water by a semi-permiable 
membrane. The height difference between the solution and the pure solvent is h and the 
corresponding equilibrium osmotic pressure is . The system and the surroundings are in 
equilibrium. Assume the molar volume of the solvent in the solution is essentially the pure molar 
volume. Construct a isolated composite system with this membrane system and the surroundings. 
Consider the transfer of dnA moles of solvent from the pure solvent through the membrane into 
the solution. Consider h = 0 as the reference height. Relate Pext and Tsurr with PA, PB, and T, where 
PA is the pressure at h = 0 for the pure solvent and PB is the pressure at h = 0 for the NaCl 



 

 

solution. Relate dU, đq, đw, and dV for the total composite, the surroundings, the system (A and 
B), and for the pure solvent (A) and the NaCl solution (B). 
 
 
 
 
 
 
 
 
 
 
Answer:  The system is closed with no exchange of matter between the system and the 
surroundings (no evaporation of the solvent). The exchange of energy between the system and 
surroundings is restricted to transfers of heat and PV-work. Let the pure solvent compartment be 
side A and the NaCl solution be side B with: 
 

  đq = đqA + đqB đw = đwA + đwB  and    dU = dUA + dUB 
 

The surroundings act as a constant temperature and pressure reservoir with Tsurr = T = 298.2 K. 
The compartment pressures are PA = Pext = 1.00 bar and PB = Pext + . The composite is isolated 
giving: 
 

 dUtot = 0  dU = dUA + dUB = – dUsurr 
 đqtot  = 0  đq  = đqA + đqB  = – đqsurr 
 đwtot = 0  đw = đwA + đwB = – đwsurr  
 dVtot = 0  dV = dVA + dVB = – dVsurr 
 

In other words, the total internal energy is conserved. The membrane acts as a temporary 
constraint. Assuming the molar volume of the solvent is the same on both sides of the membrane 
gives dVB = – dVA. There is no net change in volume of the system or surroundings: 
 

 dV = dVA+ dVB = 0  and    dVsurr = 0 
 
 
16.  (Challenge Problem)  For the previous problem, find the PV-work, đw, for the the transfer 
of dnA moles of solvent from the pure solvent through the membrane into the NaCl solution. 
 
 
Answer:  The plan is to evaluate the PV-work in each compartment separately and then add the 
results to find the net work for the system. 
   In the transfer of dnA moles of solvent from the A compartment into the B compartment, the 
surroundings does work on the A compartment, in compression at Pext, and the system does work 
on the surroundings in the B compartment, in expansion against Pext+ :1 

 

 đwA = – Pext dVA   đwB = – (Pext + ) dVB = (Pext + ) dVA 
 

The net work for the system is đw =  dVA. The change in volume is given by: 
 

 dVA = – (MA/dA)(1x106 mL/1 m3) dnA 
 

system:  V, T 

Vsurr, Pext, Tsurr 

dnA 

pure 0.10 M 
NaCl solvent 

h 
 

0 

dnB 

A B 
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where MA is the molar mass of the solvent and dA is the density of the solvent. We will find in 
the ideal solutions chapter that the energy requirement for the process is supplied by the dilution 
of the NaCl solution. The reverse of the process described in this problem is called reverse 
osmosis. Reverse osmosis is commonly used for water purification. The energy requirement for 
reverse osmosis systems is large and is given by đw =  dVA. 
 
 
 
Literature Cited: 
 

1. S. R. Caplan, A. Essig, Bioenergetics and Linear Nonequilibrium Thermodynamics, Harvard 
University Press, Cambridge, Massachusetts, 1999. Section 2.4. 
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Chapter 15: Spontaneity 
 
1.  The water gas shift reaction is an important process in the gasification of coal or biomass to 
produce transportation fuels: 
 

 CO (g) + H2O (g)  CO2 (g) + H2 (g) 
 

What is the relationship among the chemical potentials for the reaction at equilibrium? 
 
 
Answer:  At equilibrium:  CO + H2O = CO2 + H2 

 
 
2.  Some authors use “=” instead of “” for chemical equations at equilibrium. For example: 
 

 ATP4- + H2O = ADP3- + HPO4
2- + H+ 

 

Why is the use of the equals sign a good idea? 
 
 
Answer:  The equals sign is appropriate because the chemical potentials of the reactants and 
products are equal at equilibrium: ATP4- + H2O = ADP3- + HPO42- + H+ 
 
 
3.  Calculate fusH, fusS, and fusG for freezing one mole of supercooled water at –10.0 C 
and 1.00 bar pressure: 
 

 H2O (l)  H2O (s) 
 

At 273.15 K, fusH = 6.008 kJ mol-1. Assume the heat capacities are constant over the 
temperature range with Cp,m(s) = 37.66 J K-1 mol-1 and Cp,m(l) = 75.29 J K-1 mol-1. 
 
 
Answer:  Lets first work with the phase transition in the normal direction from low entropy phase 
to high entropy phase: 
 

H2O (s)  H2O (l) 
 

Then at the end we will reverse the direction to give the required results. We can use fusS = 
fusH/T*m, but only at the normal melting point, which is at 0C: 
 

 fusS = fusH/T*m = 6.008x103 J mol-1/273.15 K = 22.00 J K-1 mol-1 

 

The change in heat capacity for the phase transition is: 
 

fusCp = Cp(l) – Cp(s) = (75.29 – 37.66 ) J K-1 mol-1 = 37.63 J K-1 mol-1 

 

At –10C:  fusS T2
 = fusS T1

 + fusCp ln(T2/T1) 

        = 22.00 J K-1 mol-1 + (37.63 J K-1 mol-1) ln(263.15/273.15) = 20.59 J K-1 mol-1 
 

 fusH T2
 = fusH T1

 + fusCp (T2 – T1) 

  = 6.008 kJ mol-1 + 37.63 J K-1 mol-1 (-10.0 K)(1 kJ/1000J) = 5.632 kJ mol-1 
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The Gibbs energy change at -10C is then: 
 

 fusG T2
 = fusH T2

 – T2 fusS T2
   for   H2O (s)  H2O (l) 

  = 5.632 kJ mol-1 – 263.15 K (20.59 J K-1 mol-1)(1kJ/1000 J) 
  = 5.632 kJ mol-1 – 5.419 kJ mol-1 = 0.213 kJ mol-1 
 

The direction for the transition in the original problem is the reverse of this process giving: 
 

 trG T2
 = -0.213 kJ mol-1    for   H2O (l)  H2O (s) 

 

It is not surprising that the result is small, since at 273.15 K, trG = 0. However at –10C, the 
result is negative as it should be, since the freezing of water is spontaneous at T < 0C. 
 
 
4.  Determine the energy necessary to form a peptide bond by determining ∆rG° for the 
following reaction at 298.2 K: 
 

 2 glycine  glycylglycine + H2O (l) 
 

Use the data table below. 
 

Substance ∆fHm  (kJ mol-1) Sm (J K-1 mol-1) 
glycine -528.5 103.5 
glycylglycine -747.7 190.0 
H2O (l) -285.830 69.92 

 
 
Answer:  The trick is to remember that the thermodynamic potentials are extensive, so we need 
to take into account the stoichiometric coefficients. 
 

 2 glycine  glycylglycine + H2O (l)  units 
  ∆fHm -537.2  -745.3  -285.8  kJ mol-1 
  Sm  103.5   190.0     69.9  J K-1 mol-1 
  ∆fHm -528.5  -747.7  -285.83 kJ mol-1 
  Sm  103.5   190.0     69.92 J K-1 mol-1 
 
 

Then the reaction changes are given by: 

 rH  = 
i=1

ns

 ifH = [products] – [reactants]  

  = [1 (-285.83 kJ mol-1) + 1(-747.7 kJ mol-1)] – [2(-528.5 kJ mol-1)] 
  =  23.47 kJ mol-1 
 

 rS  = 
i=1

ns

 i S = [products] – [reactants] 

  = [1(69.92 J K-1 mol-1) + 1(190.0 J K-1 mol-1)] – [2(103.5 J K-1 mol-1)] 
  =  52.92 J K-1 mol-1 
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and from the definition of the Gibbs energy change for the reaction: 
 

 rG = rH – T rS = 23.47 kJ – 298.15 K(52.92 J K-1)(1 kJ/1000J) 
          = 7.7 kJ mol-1 

 

This final result is per mole of peptide bonds formed: rGm = 7.7 kJ mol-1 under standard state 
conditions. In living cells, the energy to drive this reaction is provided by the hydrolysis of ATP. 
 
 
5.  The enzyme pyruvate decarboxylase catalyzes the following reaction: 
 

 pyruvic acid  acetaldehyde +  CO2 (g) 
 

Calculate rH°, rS°, and rG° for this reaction at 298.2K given the following data. Is this process 
enthalpy or entropy driven? 
 

substance fHm (kJ mol-1) fGm (kJ mol-1) 
acetaldehyde -166.19 -128.86 
CO2 (g) -393.509 -394.359 
pyruvic acid -584.5 -463.4 

 
 

Answer:  rH = 
i=1

ns

 ifH = [products] – [reactants]  

  = [1(-166.19 kJ mol-1) + 1(-393.509 kJ mol-1)] – [1(-584.5 kJ mol-1)] 
  =  24.80 kJ mol-1 

 

 rG = 
i=1

ns

 ifG = [products] – [reactants]  

  = [1(-128.86 kJ mol-1) + 1(-394.359 kJ mol-1)] – [1(-463.4 kJ mol-1)] 
  = -59.82 kJ mol-1 

 

Using the definition of the Gibbs energy allows the calculation of the entropy change for the 
reaction: 

 rG = rH – T rS        or   rS = 
rH – rG

T  = 
[24.80 kJ – (-59.82 kJ)](1000 J/1 kJ)

298.2 K  

giving rS = 284. J K-1. This process is entropy driven. The fact that CO2 is a gas, which is a 
high entropy state, and also chemically quite stable helps make this reaction favorable under 
standard state conditions. 
 
 
6.  Before glucose can be used as an energy source in your body, it must first be phosphorylated: 
 

 glucose + HPO4
-2  glucose-6-phosphate   rGm = 16.7 kJ mol-1  rHm = 35.1 kJ mol-1 

the energy for this process is supplied by the hydrolysis of ATP: 

 ATP4- + H2O  ADP3- + HPO4
2- + H+ rGm = -31.0 kJ mol-1  rHm = -24.3 kJ mol-1 

at pH 7. The overall reaction is then: 
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 glucose + ATP4- + H2O  glucose-6-phosphate + ADP3- 

Calculate the entropy change for the overall reaction at 298.2 K from the given values of rG 
and rH. Is the phosphorylation of glucose enthalpy or entropy driven? 
 
 
Answer:  According to Hess’s law when chemical reactions are added, the enthalpies and Gibbs 
energies also add. In other words, enthalpy and Gibbs energy are state functions: 
 

 glucose + HPO4
-2  glucose-6-phosphate   rG = 16.7 kJ mol-1  rH = 35.1 kJ mol-1 

 ATP4- + H2O  ADP3- + HPO4
2- + H+ rG = -31.0 kJ mol-1  rH = -24.3 kJ mol-1 

              

 glucose + ATP4- + H2O  glucose-6-phosphate + ADP3- 

 

Overall:   rG = 16.7 kJ mol-1 + (-31.0 kJ mol-1) = -14.3 kJ mol-1 
     rH = 35.1 kJ mol-1 + (-24.3 kJ mol-1) = 10.8 kJ mol-1 

 

Using the definition of the Gibbs energy allows the calculation of the entropy change for the 
reaction: 

 rG = rH – T rS  or   rS = 
rH – rG

T  = 
10.8 kJ mol-1– (-14.3 kJ mol-1)

298.2 K  
 

giving rS = 84.2 J K-1 mol-1 at pH 7. This process is entropy driven. 
 
 
7.  Ethanol is used as an additive in gasoline to increase the octane rating and to help decrease air 
pollution. Calculate rH°, rS°, and rG° for the combustion of ethanol at 298.2 K using 
standard data tabulations: 
 

 CH3CH2OH (l) + 3 O2 (g)  2 CO2 (g) + 3 H2O (l) 
 
 
Answer:  The relevant data from the data tables in the appendix are given in below. 
 

Substance at 298.15 K fG (kJ mol-1) fH (J K-1 mol-1) S (J K-1 mol-1) 
CH3CH2OH (l) -174.2 -277.0 161.0 
O2 (g)      0       0 205.029 
CO2 (g) -394.359 -393.509 213.74 
H2O (l) -237.178 -285.830 69.92 

 

 rG = 
i=1

ns

 ifH = [products] – [reactants] 

  = [2(-394.359 kJ mol-1) + 3(-237.178 kJ mol-1)] – [1(-174.2 kJ mol-1) + 3(0)] 
  = -1326.05 kJ mol-1 

 

 rS = 
i=1

ns

 i S = [products] – [reactants] 
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 = [2(213.74 J K-1 mol-1) + 3(69.92 J K-1 mol-1)] – [1(161.0 J K-1 mol-1) + 3(205.029)] 
 = -138.85 J K-1 mol-1 
 

 rH = 
i=1

ns

 ifH = [products] – [reactants] 

  = [2(-393.509 kJ mol-1) + 3(-285.830 kJ mol-1)] – [1(-277.0 kJ mol-1) + 3(0)] 
  = -1367.51 kJ mol-1 

 

As a check, we should also find rG using: 
 

 rG = rH – T rS 
          = -1367.51 kJ mol-1 – 298.15 K(-138.85 J K-1 mol-1)(1 kJ/1000 J) 
          = -1326.11 kJ mol-1 
 

which certainly agrees to within the experimental error. 
 
 
8.  Why can we choose the Gibbs energy of formation of an element, in its most stable state at 
1 bar pressure, as equal to zero? 
 
 
Answer:  In practical circumstances, we always determine the difference in internal energy, 
enthalpy, entropy, Helmholtz energy, and Gibbs energy for a process: U, H, S, A, and G. 
Therefore, the reference point is arbitrary. Figure 8.4.1 applies equally to Gibbs energy 
differences. 
 
 
 
9.  The enthalpy change for a reaction can be endothermic or exothermic. The entropy change for 
a chemical reaction can be positive or negative. Consider the temperature dependence of the 
spontaneity of a chemical reaction at constant pressure. Assume that the sign of the reaction 
enthalpy and entropy don’t change with temperature. Under what cases, for the signs of the 
enthalpy and the entropy, is a reaction always spontaneous? Under what cases is a reaction never 
spontaneous? 
 
 
 
Answer:  Since rG = rH – T rS for a constant temperature process, the relative weighting of 
the enthalpy and entropy terms depends on temperature. Assuming that the sign of the reaction 
enthalpy and entropy don’t change with temperature, if the enthalpy change is exothermic and 
the entropy change is positive, the reaction is spontaneous at all temperatures. If the enthalpy 
change is endothermic and the entropy change is negative, the reaction is non-spontaneous at all 
temperatures. If the enthalpy is exothermic and the entropy change is negative, or conversely if 
the enthalpy change is endothermic and the entropy change is positive, the sign of G changes 
with temperature. 
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rH rS   rG 
– + –    always spontaneous 
– –       spontaneous at low T 

+ +       spontaneous at high T 

+ – +   non-spontaneous 
 
 
10.  The water gas shift reaction is an important process in the gasification of coal or biomass to 
produce transportation fuels: 
 

 CO (g) + H2O (g)  CO2 (g) + H2 (g) 
 

What is the relationship between the Gibbs and Helmholtz reaction energy changes at constant 
pressure? Why? 
 
 
Answer:  Since the change in the number of moles of gases is zero, rng = 0, the Helmholtz and 
Gibbs energy changes for the reaction are the same: rG = rA. The reason is that no PV work is 
done since the volume is constant, for all practical purposes. 
 
 
11.  The internal energy of combustion of iso-propyl alcohol is -2003.2 kJ mol-1 at 298.2 K and 
1.000 bar. The absolute entropy of iso-propyl alcohol is 180.58 J K-1 mol-1 at 298.2 K and 1.000 
bar. Calculate the enthalpy, Helmholtz energy, and Gibbs energy of combustion of iso-propyl 
alcohol. Treat all gases as ideal. 
 
 
Answer:  The plan is to use the “thermodynamic cube,” Figure 15.4.1, and the balanced 
combustion reaction. In addition, from Eqs. 8.3.1 and 8.3.2,  r(PV) = rngas RT. 
   The balanced reaction is C3H8O (s) + 9/2 O2 (g)  3 CO2 (g) + 4 H2O (l), giving 
rngas = 3 – 9/2 = - 3/2. The change in entropy is given from standard tabulations as: 
 

 C3H8O (s) + 9/2 O2 (g)  3 CO2 (g) + 4 H2O (l) units: 
   S 181.1        205.029        213.74     69.92 J K-1 mol-1 
 
giving: rS = cS = [products] – [reactants] 
 cS = [3(213.74) + 4(69.92)] – [1(181.1) + 9/2(205.029)] J K-1 mol-1 = -182.83 J K-1 mol-1 
 

The entropy change is negative because the number of moles of gases decreases for the reaction. 
The definitions of the state functions and Figure 15.4.1 gives: 
 

        cH = cU + rngas RT 
    = -2003.2 kJ mol-1 + (-3/2)(8.314 J K-1 mol-1)(298.15 K)(1 kJ/1000 J) 
    = -2003.2 kJ mol-1 – 3.718 kJ mol-1 = -2006.9 kJ mol-1 
 

        cA = cU – TcS 
    = -2003.2 kJ mol-1 – 298.15 K(-182.83 J K-1 mol-1)(1 kJ/1000 J) = -1948.69 kJ mol-1 
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        cG = cH – TcS 
    = -2006.9 kJ mol-1 – 298.15 K(-182.83 J K-1 mol-1)(1 kJ/1000 J) = -1952.39 kJ mol-1 
 

As a check, we can use: 
        cG = cA + rngas RT = -1948.69 kJ mol-1 – 3.718 kJ mol-1 = -1952.41 kJ mol-1 
 

The magnitude of the total maximum work available is less than |cU| because of the unfavorable 
change in entropy. However, more non-PV work is available than total work, |cG| > |cA|, 
because the surroundings do work on the system, since the number of moles of gas and the 
corresponding volume of the system decreases. 
 
 
12.  Calculate the change in Gibbs energy when one mole of an ideal gas expands isothermally 
from an initial volume of 1.00 L to a final volume of 10.0 L at 298.15 K. 
 
 
Answer:  For an isothermal expansion of an ideal gas, Eq. 15.4.6: 
 G = – nRT ln(V2/V1) = – (1 mol)(8.314 J K-1 mol-1)(298.15 K) ln(10.0/1.00) 
       = -5.708x103J = -5.71 kJ 

 
 
13.  Calculate the changes in Gibbs energy and Helmholtz energy when one mole of an ideal gas 
expands isothermally from an initial pressure of 2.00 bar to a final pressure of 1.00 bar at 
298.15 K. 
 
 
Answer:  For an isothermal expansion, using Eq. 15.4.4: 
 

 G = nRT ln(P2/P1) = (1 mol)(8.3145 J K-1 mol-1)(298.15 K) ln(1.00 bar/2.00 bar) 
       = -1.718x103J = -1.72 kJ 
 

For the change in Helmholtz energy, we can use Eq. 15.4.2, A = – nRT ln(V2/V1). From the 
ideal gas law: 
 V1 = nRT/P1 = 1.00 mol(0.083145 L bar K-1 mol-1)(298.15 K)/2.00 bar = 12.39 L 
 V2 = nRT/P2 = 1.00 mol(0.083145 L bar K-1 mol-1)(298.15 K)/1.00 bar = 24.79 L 
 

 A = – nRT ln(V2/V1) = – (1 mol)(8.3145 J K-1 mol-1)(298.15 K) ln(24.79/12.39) 
       = -1.719x103J = -1.72 kJ 
 

Alternatively, for an isothermal process in an ideal gas, substituting V2/V1 = P1/P2 into Eq. 
15.4.2 gives A = – nRT ln(V2/V1) = – nRT ln(P1/P2) = nRT ln(P2/P1) = G. So A = G for an 
isothermal process in an ideal gas, as shown in Chap. 15.4, but this time for the expressions 
written in terms of pressures. 
 
 
14.  General Chemistry texts often use a standard state pressure of 1 atm instead of 1 bar. Does 
the change in standard state make a significant difference in the tabulated values? Calculate the 
standard state Gibbs energy of formation for CO2 at P = 1 atm, given that the 1 bar standard 
state is fG(CO2) = -394.36 kJ mol-1 at 298.15 K. 
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Answer:  The 1 bar standard state is just slightly less than the 1 atm standard state, 1 atm = 
1.01325 bar. To a good approximation, we only need consider the gaseous reactants and products 
in a chemical reaction. The change in Gibbs energy for each reactant and product gas is given by 
Eq. 15.4.4, assuming the gases are ideal. The formation reaction: 
 

 C (graph) + O2 (gas, P)  CO2 (g, P) 
 

however, has an equal number of moles of reactant and product gases, so the change with 
pressure is zero, assuming ideal gas behavior. The 1 bar and 1 atm standard state reaction Gibbs 
energies are identical, for moderate changes in pressure. 
 
 
15.  General Chemistry texts often use a standard state pressure of 1 atm instead of 1 bar. Does 
the change in standard state make a significant difference in the tabulated values for Gibbs 
energies of formation? Calculate the standard state Gibbs energy of formation for SO3 at P = 
1 atm assuming ideal gas behavior, given that the 1 bar standard state is fG(SO3, P = 1 bar) = 
-371.06 kJ mol-1 at 298.15 K. 
 
 
Answer:  The 1 bar standard state is just slightly less than the 1 atm standard state, 1 atm = 
1.01325 bar. To a good approximation, we only need consider the gaseous reactants and products 
in a chemical reaction. The change in Gibbs energy for each reactant and product gas is given by 
Eq. 15.4.4, assuming the gases are ideal. For reactant or product i: 
 

 Gi(Pi) – Gi(P) = ni RT ln Pi/P 
 

where Pi is the new pressure for reactant or product i and P is the old standard state value. The 
ni are given by the stoichiometric coefficients for a chemical reaction, ni = i. The total change in 
Gibbs energy with the new pressures is then given by the difference of the products minus the 
reactants: 
 

 rG = rG +  i RT ln Pi/P    (i for gases only) 
 

If the Pi are identical for all the reactants and products, then the last equation reduces to: 
 

 rG = rG + rng RT ln Pi/P   (Pi equal for all species) 
 

where rng =  i with the sum over all the gas phase species. The formation reaction: 
 

 1/8 S8 (rhombic) + 3/2 O2 (gas, P)  SO3 (g, P) 
 

gives rng = -½. The change in reaction Gibbs energy with pressure is then: 
 

 rng RT ln Pi/P =  

  -½ (8.3145 J K-1 mol-1)(298.15 K) ln (1.01325 bar/1.0000 bar) = -16.32 J mol-1 
 

 fG(SO3, P = 1 atm) = -371.06 kJ mol-1 – 0.01632 kJ mol-1 = -371.08 kJ mol-1 
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Even though this difference seems to be insignificant, the change in value translates into a ~1% 
difference in an equilibrium constant involving a reaction of one mole of SO3 at 298 K (using 
rG = – RT ln Keq). 
 
 
16.  Carbon dioxide plays an important role in many geochemical processes, which often occur 
at high pressure. Calculate the Gibbs energy of formation for CO2 at 50.0 bar and 298.15 K, 
relative to the constituent elements in their standard states: 
 

 C(graph) + O2 (g, 1 bar)  CO2 (g, P = 50.0 bar) 
 

Assume ideal gas behavior and fG(CO2) = -394.36 kJ mol-1 at 298.15 K. 
 
 
Answer:  The change in Gibbs energy is given by Eq. 15.4.4, assuming the CO2 is ideal. 
 

 Gi = niRT ln P2/P1 = 8.3145 J K-1mol-1 (1 kJ/1000 J) 298.15 K ln 50.0 bar/1 bar 

        = 9.70 kJ mol-1 
 

Which gives the enthalpy of formation as: 
 

 fG = fG + 9.70 kJ mol-1 
        = -394.36 kJ mol-1 + 9.70 kJ mol-1 = -384.66 kJ mol-1 
 
 
17.  Carbon dioxide plays an important role in many geochemical processes, which often occur 
at high pressure. Calculate the reaction Gibbs energy at 50.0 bar and 298.2 K for: 
 

 CaCO3 (s)  CaO (s) + CO2 (g, P = 50.0 bar) 
 

One crystalline form of CaCO3 is the mineral calcite. Neglect the effect of the pressure on the 
solids and assume ideal gas behavior. 
 
 
Answer:  Under standard state conditions: 
 

  CaCO3 (s)    CaO (s)    +  CO2 (g, P = 1 bar) 
         fG      -1129.1  -603.3  -394.359 kJ mol-1 
 

 rG  = 
i=1

ns

 ifG = [products] – [reactants] 

           = [(-394.359) + (-603.3)] – [-1129.1] kJ mol-1 = 131.44 kJ mol-1 
 

The Gibbs energy of each gaseous reactant and product is then adjusted for the new pressure: 
 

 rG = rG +  i RT ln Pi/P    (i for gases only) 
 

as derived in the previous problems. The i are the stoichiometric coefficients for each gaseous 
reactant and product, with i negative for reactants. (See Chapter 20 for more information on 
non-standard state reaction Gibbs energies). For this reaction CO2 = 1 is the only gas: 
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 rG = rG + RT ln P2/P 

 rG = rG + RT ln 50.0 bar/1 bar 

        = 131.44 kJ mol-1 + 8.3145 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 50.0 
        = 131.44 kJ mol-1 + 9.70 kJ mol-1 = 141.4 kJ mol-1 
 
 
18.  Derive Eq. 15.4.8, G = Vo (P – Po) – ½ Vo T (P – Po)2, from dG = V dP for an isothermal 
process, from an initial pressure Po and a final pressure P. 
 
 
Answer:  The approximation G = Vo (P – Po) is at the “good” level, which assumes the volume 
is essentially unchanged for a small change in pressure. At the “better” level for moderate 
changes in pressure, we use Eq. 7.6.28, V = Vo – Vo T (P – Po), with Po the initial pressure and P 
the final pressure. The change in Gibbs energy with pressure for an isothermal process is given 
by the thermodynamic force, (G/P)T = V or dG = V dP. Integration using Eq. 7.6.28 gives: 
 

 Go

G
 dG = Po

P
 Vo – Vo T (P – Po) dP = VoPo

P
 dP – Vo T Po

P
 (P – Po) dP 

 G = Vo (P – Po) – ½ Vo T (P – Po)2|PPo
 

 

Applying the integral limits for the second term gives: 
 

 G = Vo (P – Po) – ½ Vo T (P – Po)2 + ½ Vo T (Po – Po)2 
 G = Vo (P – Po) – ½ Vo T (P – Po)2 
 
 
19.  Calculate the change in Gibbs energy for one mole of liquid benzene at 298.2 K for a change 
in pressure from 1.00 bar to 600.0 bar. The isothermal compressibility of benzene is 90.9x10-6 
bar-1 and the density is 0.8765 g/cm3. Compare the results using Eqs. 15.4.7 and 15.4.8 
 
 
Answer:  The molar volume is: 
 

 Vo = 1 mol(78.11 g mol−1)(1 m3/1x106 cm3)/0.8765 g cm-3 = 8.912x10-5 m3 
 

Using the more approximate formula gives: 
 

 G = Vo (P – Po) = 8.912x10-5 m3(599.0 bar)(1x105 Pa/1 bar) = 5338. J 
 

Converting the isothermal compressibility to Pa-1 is most convenient for this problem: 
 

 T = 90.9x10-6 bar-1(1 bar/1x105Pa) = 90.9x10-11 Pa-1 
 

Using the first-order correction for the volume change gives: 
 

 G = Vo (P – Po) – ½ Vo T (P – Po)2 
       = 5338. J – ½ (8.912x10-5 m3)(90.9x10-11 Pa-1)(599.0x105 Pa)2 
       = 5338. J – 145.0 J = 5193. J = 5.193 kJ 
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The volume change correction term is chemically significant at this high pressure. Ultra-high 
pressure high performance liquids chromatographs, UHPLC, routinely operate at 600 bar using 
standard organic solvents for the mobile phase. Microwave assisted organic synthesis is routinely 
operated at 120 bar. The pressure at the bottom of the Mariana Trench is ~1,100 bar, so high 
pressures are accessible both in and outside the laboratory. However, for pressures near sea level 
ambient pressure, the more approximate formula, G = Vo (P – Po), is adequate for liquids and 
solids. 
 
 
20.  Calculate the Gibbs energy difference for one mole of water at the bottom of the Mariana 
Trench compared to 1 bar pressure, given T = 4.587x10-10 Pa-1 at 20C. The maximum depth of 
the trench is 10911 m (35798 ft) and the pressure is 1,086. bar (15,750 psi). Use the density of 
pure water, 0.9982 g mL-1 at 1 bar, for this problem, instead of the density of sea water. 
 
 
Answer:  The plan is to compare Eqs. Eq. 15.4.7 and 15.4.8. The molar volume of water at 1 bar 
is: 
 Vo = 1 mol(18.015 g mol−1)(1 m3/1x106 cm3)/ 0.9982 g cm-3 = 1.8048x10-5 m3 
 

Using the more approximate formula gives: 
 

 G = Vo (P – Po) = 1.8048x10-5 m3(1085.0 bar)(1x105 Pa/1 bar) = 1958. J 
 

Using the first-order correction for the volume change gives: 
 

 G = Vo (P – Po) – ½ Vo T (P – Po)2 
       = 1958. J – ½ (1.8048x10-5 m3)(4.587x10-10 Pa-1)(1085.0x105 Pa)2 
       = 1958. J – 97.5 J = 1861. J = 1.861 kJ 
 

Note the final comments for the previous problem. The relatively small change in Gibbs energy 
with pressure is the reason that we don’t normally need to correct for changes in pressure in 
thermochemical problems for liquids and solids. 
 
 
21.  Starting from A = – nRT ln V2/V1 and the definition of G, in the form G  A + PV, show 
that G = nRT ln P2/P1, for an ideal gas in an isothermal process. 
 
 
Answer:  Using G = A + PV and PV = nRT for an ideal gas gives: 
 

 G = A + (PV) = A + nRT. 
 

For an isothermal process T = 0 and then G = A= – nRT ln V2/V1, using Eq. 15.4.2. For an 
ideal gas V2/V1 = P1/P2, so then as we showed in Eqs. 15.4.5-15.4.6: 
 

 G = A= – nRT ln V2/V1 = – nRT ln P1/P2 = nRT ln P2/P1 
 
 
22.  Reverse osmosis is the most cost effective method for seawater desalinization. However, 
reverse osmosis is energy intensive. In reverse osmosis, seawater is pressurized to 60-70 bar to 
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force water to flow through a semi-permeable membrane. The work in reverse osmosis can be 
estimated using w = – PV, where P is the constant high pressure of the process and V is the 
volume of water pushed through the membrane. Calculate the change in Helmholtz energy for 
purifying 1.00 m3 of water using reverse osmosis with an applied pressure of 65.0 bar. Give your 
results in joules and kWh (1 kWh = 3.6x106 J ). Why is the change in Helmholtz energy salient 
for water desalinization? 
 
 
Answer:  The plan is to note that the change in Helmholtz energy for a process is the total work 
for the process. Integrating Eq. 15.4.1, dA = – P dV, at constant pressure gives A = – P V, 
which is the work required for the process: 
 

 A = – P V = – 65.0 bar(1x105 Pa/1 bar)(1.00 m3) = – 65.0x105 J = – 6.5x103 kJ 
 

The conversion from kWh to joules is 1 kWh = 3.6x106 J, Problem 2.12. The pressure is 
generated by electrical pumps requiring: 
 

 A = – 65.0x105 J(1 kWh/3.6x106 J) = 1.81 kWh m-3 
 

If power is $ 0.10 (kWh)-1, the cost is $ 0.18 m-3, assuming 100% efficiency. The overall 
efficiency is more likely to be near 50%, giving a minimum cost of $ 0.36 m-3 for processing 
alone. Daily indoor per capita water use in a US home is 69.3 gallons or 0.262 m3 day-1 person-1. 
World total fresh water consumption is over 2,000 billion m3 yr-1. The Helmholtz energy change 
is the total work for the process, which is PV work for reverse osmosis. However, the result is a 
change in composition for dissolved salts, which is a chemical energy change, which is reflected 
by a change in Gibbs energy. Reverse osmosis converts mechanical work to chemical work. 
 
 
23.  How big of an effect does an electric field have on the electrochemical potential of an ion? 
Consider a simple electrochemical cell, Zn|Zn2+||Cu2+|Cu. Assume the electric potential is 
0.500 V at the cathode. Calculate the electrochemical potential for one mole of Cu2+ ions, at 
standard state concentration, in the cathode (right-hand) compartment. In the absence of a field, 
fGm for Cu2+ from standard tables is 65.49 kJ mol-1. 
 
 
Answer:  The electrochemical potential is given by Eq. 15.3.9: ̄i  i + zi F i. The charge on a 
mole of Cu2+ ions is zi = 2 mol. 
 

 ̄Cu2+ = Cu2+ + 2 mol F (0.5 V) 
          = 65.49 kJ mol-1 + 2 mol (96485 C mol-1)(0.500 V)(1 kJ/1000 J) 
 

Remembering that 1 J = 1 C V: 
 

         = 65.49 kJ mol-1 + 96.49 kJ mol-1 = 161.98 kJ mol-1 

 

The electric field component makes a significant contribution to the Gibbs energy of an ion in 
solution with an electric field. Another way of saying this is that 0.50 V is a significant voltage. 
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24.  Two solutions containing K+ ions are separated by a K+ ion-selective membrane. Electrodes 
are placed in both solutions and the flow of K+ ions is monitored as a function of applied 
potential,  = in – out. The K+ ions cease migration across the membrane for an applied 
potential of -70.0 mV. Calculate the difference in chemical potential of the K+ ions in the two 
solutions. 
 
 
Answer:  The plan is to note that when the ion flow is zero, the system is at equilibrium and 
G = ̄in – ̄out = 0. 
   Using Eq. 15.3.15 at equilibrium gives: 
 

 G = ̄in – ̄out = (in + z+ F in) – (out + z+ F out) = 0 
 

Solving for the difference in chemical potential gives:  
 

 in – out = – z+ F (in – out) = – z+ F  
 

Hopefully, you remember this relationship from the treatment of electrochemistry in your 
General Chemistry course, where  = Ecell. For this specific problem, z+ = 1 at -70.0 mV: 
 

 in – out =  – 1 (96485 C mol-1)(-70.0x10-3 V)(1 kJ/1000 J) = 6.75 kJ mol-1 

 

Substantial differences in chemical potential are generated by simple concentration differences. 
This potential difference is a typical resting state potential for a nerve cell. 
 
 
25.  Coastal communities may be able to exploit the Na+ gradient between seawater and fresh 
river water to generate electricity. Calculate the electric potential available from a seawater-fresh 
water cell with a Na+ ion selectively-permeable membrane. Assume the difference in chemical 
potential, in the absence of electric fields, between seawater and fresh water is 10.5 kJ mol-1 
(roughly a factor of 100 difference in concentration with an activity coefficient for 0.5 m NaCl of 
0.680). 
 
 
Answer:  The plan is to note that the maximum potential difference is for the system at 
equilibrium, for which G = ̄in – ̄out = 0, and z+ = 1 for NaCl. 
   From the previous problem we determined that at equilibrium: 
 

 in – out = – z+ F (in – out) = – z+ F  
 10.5x103 J mol-1 = – 1(96485 C mol-1)   giving   = 0.109 V 
 

Even though the voltage is small, the volume of the ocean is vast, which could potentially 
generate huge electrical currents. The limiting factors are the supply of fresh water and the large-
scale availability of robust ion-selective membranes. The estimates for global production of 
energy from the seawater-fresh water interface are in the terawatts range. 
 
 
26.  The standard state Gibbs energy of formation of liquid water at 298.15 K is -237.13 kJ mol-1. 
Normally, we ignore any changes of fG with pressure for liquids and solids if the specific 
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reaction is run near 1 bar of pressure. How big of an error does this make? Calculate the change 
in Gibbs energy for one mole of liquid water for a pressure change from 1.00 bar to 50.0 bar. 
 
 
Answer:  Using Eq. 15.4.7 will be sufficiently accurate for this problem. For one mole, the initial 
volume is the pure molar volume of water: 
 

 Vo = MH2O/dH2O = 18.02 g mol-1/ 0.99705 g mL = 18.07 mL 
      = 18.07 mL (1 m3/1x106 mL) = 1.807x10-5 m3 

 

From Eq. 15.4.7: 
 

 G = VoP = 1.807x10-5 m3(50.0 bar – 1.0 bar)(1x105Pa/1bar) = 88.54 J = 0.0885 kJ 
 

Even such a large change in pressure gives a very small change in the Gibbs energy of the mole 
of water. 
 
 
27.  Calculate the change in Helmholtz energy and Gibbs energy for the vaporization of 1.00 mol 
of liquid water at 372.76 K and 1.00 bar. The enthalpy of vaporization at 372.76 K is 
40.7 kJ mol-1. Treat water vapor as an ideal gas. What does the difference between the Helmholtz 
and Gibbs energies tell you about the process? (The standard boiling point of water is 99.61C or 
372.76 K.) 
 
 
Answer:  The phase transition occurs at the equilibrium phase transition temperature, so trG = 0. 
trA is given by the work necessary to push back the atmosphere for the formation of one mole 
of water vapor, Eq. 15.4.18: 
 

 trA = – ngas RTtr = – 1.00 mol(8.314 J K-1 mol-1)(373.15 K)(1 kJ/1000 J) = -3.10 kJ 
 

The Gibbs energy change is the net work at constant temperature and pressure; Gibbs energy 
does not include PV work. The Helmholtz energy change is the total work available from the 
process at constant temperature. The vaporization process is at equilibrium, so no net work is 
available. However, the system expands as one mole of liquid is vaporized and the Helmholtz 
energy reflects the work done by the expansion. The sign of trA is negative because the system 
does work against the surroundings, decreasing the energy of the system. 
 
 
28.  Calculate the change in Gibbs energy for the vaporization of 2.00 mol of liquid water at 
372.76 K and 1.000 bar to give water vapor at 0.500 bar and the same temperature. Assume the 
vapor is ideal. (The standard boiling point of water is 99.61C or 372.76 K.) 
 
 
Answer:  We divide the process into two steps: step one, the vaporization of 2.00 mol of water at 
the standard boiling point and 1.000 bar pressure, and step two, the vapor pressure is lowered to 
0.500 bar at constant temperature. For step one, under standard conditions, the transition is at 
equilibrium and trG = 0. For step two, the vapor is expanded isothermally to give: 
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 G = nRT ln P2/P1 = 2.00 mol(8.3145 J K-1 mol-1)(372.76 K) ln 0.500/1.000 

      = -4297. J = -4.30 kJ 
 
 
29.  Show that for small changes in temperature the last two terms cancel in Eq. 15.4.15: 

 G = – So (T – To) + Cp (T – To) – Cp T ln 
T
To

  – So (T – To) 

To prove this relationship, expand the logarithmic term in a Taylor series and keep just the first 
non-zero term. (Note: the Taylor series expansion for ln(x2/x1)  x2/x1–1, for x2/x1 1.) 
 
 
Answer:  First flip the numerator and denominator in the logarithmic term: 

 G = – So (T – To) + Cp (T – To) + Cp T ln 
To

T   

The Taylor series expansion for ln(x2/x1)  x2/x1–1, for x2/x1 1. Substitution gives: 
 
 G  – So (T – To) + Cp (T – To) + Cp T (To/T – 1) 
        – So (T – To) + Cp (T – To) + Cp (To – T) 
        – So (T – To) 
 

So simply integrating dG = – S dT, with S  So a constant over the temperature range isn’t too 
bad for very narrow temperature ranges. However, in the next Chapter we will find a much better 
approximation that is easy to use and takes into account the change in entropy with temperature 
(Eq. 16.3.14, the Gibbs-Helmholtz equation). 
 
 

30.  Prove Eq. 15.4.15, that is G = – So (T – To) + Cp (T – To) – Cp T ln 
T
To

 . 

 
 
Answer:  We need to integrate dG = –S dT. The change in entropy for a constant pressure 
process, starting with initial entropy of So is: 

 S = So + Cp ln 
T
To

 

Substitution into dG = –S dT gives: 

 dG = –S dT = – (So + Cp ln 
T
To

) dT 

Integration assuming a constant heat capacity gives: 

 G =  – So To

T
dT – Cp To

T
 ln T dT + Cp ln To To

T
dT 

Integrating using ln x dx = x ln x – x: 

 G =  – So (T – To) – Cp (T ln T – T |
T

To
 + Cp ln To (T – To) 

Applying the integral limits and multiplying out terms: 
 

 G =  – So (T – To) – Cp (T ln T – T) + Cp (To ln To – To) + Cp T ln To – Cp To ln To 
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Cancelling terms: 
 

 G = – So (T – To) + Cp (T – To) – Cp (T ln T – T ln To) 
 

Combining the ln terms: 
 

 G = – So (T – To) + Cp (T –To) – Cp T ln 
T
To

 

 
 
31.  Calculate the standard state Gibbs energy of formation for H2S (g) at 500.0 K. Remember 
that the Gibbs energy of formation is for a chemical reaction and not just a pure substance. The 
relevant data are given in the table below. 
 

Substance at 298.15 K fG (kJ mol-1) S (J K-1 mol-1) Cp (J K-1 mol-1) 
H2S (g) -33.56 205.79 34.23 
H2 (g)      0 130.684 28.824 
S (s, rhombic)      0 31.80 22.64 

 
 
Answer:  The plan is to note that Eq. 15.4.15 is for a pure substance at standard state pressure 
with G = GT – Go: 
 

 GT – Go = – So (T – To) + Cp (T –To) – Cp T ln 
T
To

 
 

For a chemical reaction from General Pattern 8 Thermodynamic Relationships for Reactions 
the last equation becomes: 

 rGT – rGo = – rSo (T – To) + rCp (T –To) – rCp T ln 
T
To

 
 

where rSo is the standard state reaction entropy at the reference temperature, To. 
   For the given reaction H2 (g) + S (s, rhombic)  H2S (g): 
 

 rSo = [1(205.79)] – [1(130.684) + 1(31.80)] J K-1 mol-1 = 43.306 J K-1 mol-1 
 rCp = [1(34.23)] – [1(28.824) + 1(22.64)] J K-1 mol-1 = -17.23 J K-1 mol-1 
 

Neglecting the terms for the temperature dependence of the reaction entropy gives: 
 

 rGT = rGo – rSo (T – To) 
 rG500 K = -33.56 kJ mol-1 – 43.306 J K-1 mol-1(500.0 K – 298.2 K)(1 kJ/1000 J) 
    = -33.56 kJ mol-1 – 8.739 kJ mol-1 = -42.299 kJ mol-1 
 

The more exact expression gives: 

 rGT = rGo – rSo (T – To) + rCp (T –To) – rCp T ln 
T
To

 

         = -42.30 kJ mol-1 + (-17.23 J K-1 mol-1)(500.0 K – 298.2 K)(1 kJ/1000 J) –  

     (-17.23 J K-1 mol-1)(500.0 K)(1 kJ/1000 J) ln 500.0 K/298.2 K 

         = -42.299 kJ mol-1 – 3.477 kJ mol-1 + 4.453 kJ mol-1 = -41.32 kJ mol-1 
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H2S is an important component in exhaust from sewage treatment plants, in volcanic gases, and 
is also produced in large quantities by bacteria in the oceans. H2S is also a byproduct of coal 
combustion, although most sulfur in coal is oxidized to SO2. The H2S and dimethylsulfide from 
aquatic bacteria is processed in clouds to form H2SO4 over the oceans. Oceanic H2SO4 reacts 
with NaCl particles to produce Na2SO4 aerosols that act as efficient cloud condensation nuclei. 
The extent of cloud cover is important in determining the extent of global climate change. 
 
 
32.  Calculate the standard state Gibbs energy of formation for SO2 (g) at 500.0 K. 
 
 
Answer:  The plan is to note that Eq. 15.4.15 is for a pure substance. Remember that the Gibbs 
energy of formation is for a chemical reaction and not just a pure substance. The relevant data 
from the data tables in the appendix are given in the table below. 
 

Substance at 298.15 K fG (kJ mol-1) S (J K-1 mol-1) Cp (J K-1 mol-1) 
SO2 (g) -300.194 248.223 39.87 
O2 (g)      0 205.029 29.355 
S (s, rhombic)      0 32.054 22.64 

 
In the previous problem we showed that for a chemical reaction Eq. 15.4.15 becomes: 
 

 rGT – rGo = – rSo (T – To) + rCp (T –To) – rCp T ln 
T
To

 
 

where rSo is the standard state reaction entropy at the reference temperature, To. For the given 
reaction O2 (g) + S (s, rhombic)  SO2 (g): 
 

 rSo = [1(248.223)] – [1(205.029) + 1(32.054)] J K-1 mol-1 = 11.140 J K-1 mol-1 
 rCp = [1(39.87)] – [1(29.355) + 1(22.64)] J K-1 mol-1 = -12.125 J K-1 mol-1 
 

Neglecting the terms for the temperature dependence of the reaction entropy gives: 
 

 rGT = rGo – rSo (T – To) 
 rG500 K  = -300.194 kJ mol-1 – 11.140 J K-1 mol-1(500.0 K – 298.15 K)(1 kJ/1000 J) 
                = -300.194 kJ mol-1 – 2.2486 kJ mol-1 = -302.4426 kJ mol-1 
 

The more exact expression gives: 

 rGT = rGo – rSo (T – To) + rCp (T –To) – rCp T ln 
T
To

 

         = -302.443 kJ mol-1 + (-12.125 J K-1 mol-1)(500.0 K – 298.15 K)(1 kJ/1000 J) –  

     (-12.125 J K-1 mol-1)(500.0 K)(1 kJ/1000 J) ln 500.0 K/298.15 K 

         = -302.443 kJ mol-1 – 2.447 kJ mol-1 + 3.134 kJ mol-1 = -301.756 kJ mol-1 
 

The difference between the more approximate and more exact results is 0.2%. Notice that the 
two terms that are proportional to the reaction heat capacity difference roughly cancel. SO2 is a 
byproduct of coal combustion, which is processed in clouds to form SO3 and H2SO4. 
Atmospheric H2SO4 contributes to acidification of fresh water lakes and rivers through the 
formation of acid rain. 
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33.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a).  When a change in state occurs at constant pressure, the increase in the Gibbs energy of 
the system must equal the decrease in the Gibbs energy of the surroundings. 

 

(b).  The entropy change of the universe is a spontaneity criterion only for isolated systems. 
 

(c).  Gibbs energy is minimized for processes at constant temperature and pressure and no 
electrical work. 

 

(d).  For a chemical reaction at constant pressure, the changes in Helmholtz and Gibbs 
energies are identical if the volume of the products is identical to the volume of the reactants. 

 

(e).  For phase transitions, the Gibbs energy change is zero. 
 
 
Answer:  (a).  False: Gibbs energy, in general, is not conserved. The Gibbs energy change of the 
surroundings is not necessarily equal in magnitude and opposite in sign to the Gibbs energy 
change of the system. The Gibbs energy change of the surroundings, which are at constant 
temperature and pressure, is just Gsurr = Hsurr – Tsurr Ssurr where: 
 

 Hsurr = qsurr = – q and Ssurr = qsurr/Tsurr = – q/Tsurr 
 

where q is the heat transfer for the system. If the process for the system is at constant pressure, 
q = qp = H giving: 
 

 Hsurr = – H  and Ssurr = – q/Tsurr = – H/Tsurr  (cst. P) 
 

and then Gsurr = 0. Transfers of energy to the surroundings are always reversible, and the 
surroundings therefore remain at equilibrium, so that Gsurr = 0. In other words, the Gibbs energy 
change of the universe for a process at constant pressure is entirely a property of the system. 
Gsurr = 0 at constant pressure explains why the Gibbs energy is such a useful concept for 
constant pressure processes. A correct statement for the problem is “only for equilibrium 
processes is G = –Gsurr, under which conditions G = Gsurr = 0.” Another statement is that 
“for a constant pressure process, the Gibbs energy of the surroundings is constant.” 
 

(b). False: the entropy change of the universe is always a good spontaneity criterion. The entropy 
change of the system is a good spontaneity criterion only for isolated systems. A restatement is 
“the entropy change of the universe is always positive for a spontaneous process.” 
 

(c).  Too restrictive: Gibbs energy is minimized at constant temperature and pressure. The 
change in Gibbs energy can result from chemical, electrical, or any other form of work. Eq. 
15.3.11 is explicitly for the case of chemical and electrical work. 
 

(d).  True. If the constant pressure restriction was removed, the statement would no longer 
necessarily be true; at constant volume considering only gas phase reactants and products 
rG = rA +r(PV) = rA + rngas RT, even though the volume is constant. 
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(e).  False: the Gibbs energy change for a phase transition is positive at temperatures below the 
equilibrium phase transition temperature (e.g. the standard boiling point or melting point) and 
negative above the equilibrium phase transition temperature. Were the phase transition Gibbs 
energy always zero, then phase transitions would never be spontaneous. A restatement is “the 
Gibbs energy for a phase transition is zero at the equilibrium phase transition temperature.” 
 
 
34.  Show that the internal energy change gives the work for an adiabatic process and the 
enthalpy change gives the maximum non-PV work for an adiabatic constant pressure process. 
 
 
Answer:  In general U = q + w. Consider an adiabatic process, then q = 0 and U = w. The 
work has a PV and non-PV component, wnet. For the system in contact with the surroundings as a 
constant pressure reservoir the PV-work is reversible, Pext = P, and then wmax = – P dV + wnet. 
Also at constant pressure, H = U + PV. Substituting U = q + w gives: 
 

 H = U + PV = qrev – P dV + wnet + PV = qrev + wnet 
 

For an adiabatic process q = 0 giving finally H = wnet. 
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Chapter 16: Foundation of Thermodynamics Problems 
 
1.  Assume you are a diver. To a good degree of approximation, you are essentially just a 70 kg 
mass of water. Calculate the change in Gibbs energy for 70.0 kg of water in an isothermal 
expansion from a pressure of 2.00 bar to a final pressure of 1.00 bar at a constant temperature of 
298.2 K. This pressure difference corresponds to surfacing from a depth of 10 m. Start with the 
required partial derivative. 
 
 
Answer:  The required partial derivative is (G/P)T. This partial derivative is a thermodynamic 
force, (G/P)T = V, which integrates to give G =  V dP. This expression is given in the last 
column of the table in Figure 16.4.1. For small changes in pressure, we can consider V  Vo, 
where Vo is the initial volume. To calculate G in joules, we must find Vo in m3 and P in Pa, 
with 1 bar = 1x105 Pa: 
 

 Vo = 70.0x103 g(1 mL/0.99705 g)(1 m3/1x106 mL) = 0.07021 m3 
 

 G = Vo P 
       = 0.07021 m3 (1.00 bar – 2.00 bar)(1x105 Pa/1 bar) 
       = -7021. J = -7.02 kJ 
 

Given the large amount of water representing the diver, this is a small change in Gibbs energy. 
The effect of small pressure changes on the Gibbs energy of a condensed phase is often less than 
the experimental uncertainty in the Gibbs energy. See also Chapter 15 Problem 14. 
 
 
2.  What is the thermodynamic force that corresponds to the change in Gibbs energy with 
temperature at constant pressure? Explain your reasoning. 
 
Answer:  The partial derivative that corresponds to the thermodynamic force for changes in 
temperature at constant pressure is: 

 






G

T P
 = ? 

 

We can get this force by comparing with the total differentials for the Gibbs energy, Eq. 16.3.4: 
 

 dG = 






G

T P
 dT +  







G

P T
 dP 

            
 dG = – SdT      +     VdP 
 

Alternatively, we can use the process outlined in Figure 16.3.1: 
 

       change in G when T changes is the thermodynamic force, –S 
 

  dG = – S dT + V dP    giving:    






G

T P
 = – S 

 

    at constant P 
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3.  What is the thermodynamic force that corresponds to the change in Helmholtz energy with 
volume at constant temperature? Explain your reasoning. 
 
 
Answer:  The partial derivative that corresponds to the thermodynamic force for changes in 
volume at constant temperature is: 

 






A

V T
 = ? 

 

We can get this force by comparing the total differentials for the Helmholtz energy, Eq. 16.3.3: 
 

 dA = 






A

T V
 dT +  







A

V T
 dV 

            
 dA = – SdT      –     PdV 
 

Alternatively, we can use the process outlined in Figure 16.3.1: 
 

           change in A      when V changes is the thermodynamic force, –P 
 

  dA = – S dT – P dV    giving:    






A

V T
 = – P 

 

   at constant T 
 
 
4.  Calculate the change in Gibbs energy for one mole of ideal gas for a change in pressure from 
1.00 bar to 2.00 bar at a constant temperature of 298.2 K. Determine the partial derivative that 
relates to this problem, and integrate the result (review Section 9.7). 
 
 
Answer:  The required partial derivative is (G/P)T. This expression is given in the last column 
of the table in Figure 16.4.1. However, for practice, let’s review the process. In (G/P)T, the 
dependent variable is a thermodynamic potential. The independent variables are the natural 
variables for the thermodynamic potential, G(T,P). This partial derivative is then a 
thermodynamic force. The force is given by comparing the total differentials in general form and 
the form given by the Legendre transformation of the combined First and Second Laws: 
 

 dG = 






G

T P
 dT +  







G

P T
 dP   giving:   







G

P T
 = V 

            
 dG = – SdT      +     VdP 
 

Integrating gives G =  V dP. For an ideal gas V = nRT/P and: 
 

 G =  nRT/P dP = nRT ln P2/P1 

       = 1.00 mol(8.3145 J K-1 mol-1)(298.2 K)(1 kJ/1000 J) ln(2.00 bar/1.00 bar) = 1.72 kJ 
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5.  Develop a problem that is based on the partial derivative (A/V)T, and solve the problem 
(review Section 9.7). Choose an ideal gas as the system for simplicity. 
 
 
Answer:  For one example, calculate the change in Helmholtz energy for one mole of an ideal gas 
for an isothermal expansion from 1.00 L to 2.00 L at 298.2 K. 
   The required partial derivative is a thermodynamic force, (A/V)T = – P, which for an ideal 
gas integrates to give Eq. 16.3.9 (see also Figure 16.4.1): 
 

 A = – nRT ln V2/V1 

      = – 1.00 mol(8.3145 J K-1mol-1)(298.2 K)(1 kJ/1000 J) ln(2.00 L/1.00 L) = -1.72 kJ 
 
 
6.  For a given increase in volume, will diamond or liquid water give a larger increase in entropy 
at constant temperature? 
 
 
Answer:  Consulting Figure 16.4.1, note that S =  /T dV = /T V, assuming constant  
and T. For diamond and liquid water, respectively, from Table 7.6.1: 
 

 diamond:  /T = 0.030x10-4 K-1/0.185x10-6 bar-1 = 16.2 bar K-1 
 water:       /T = 2.57x10-4 K-1/45.3x10-6 bar-1 = 5.67 bar K-1 
 

Diamond will give a larger increase in entropy than water for equal changes in volume. 
 
 
7.  Calculate the change in chemical potential for an ideal gas for a change in pressure from 1.00 
bar to 20.0 bar at a constant temperature of 25°C. 
 
 
Answer:  Using Eq. 16.6.20 with the reference pressure at 1 bar, P = 1.00 bar: 

 1 = 
1
 +  RT ln 

P
P 

gives the change: 

 1 – 
1
 =  RT ln 

P
P = 8.314 J K-1 mol-1(298.15 K) ln(20.0/1.00) 

  = 7.426 J K-1 mol-1 = 7.43 kJ mol-1 
 

where the subscript for 1 indicates component 1. Alternatively and equivalently, for a single 
component you can integrate Eq. 16.6.16 directly: 
 

 








P T
 = V*

A      (pure substance) 

 

with V*
A = RT/P for an ideal gas: 
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  = 2 – 1 = 

1

2 d = 



P1

P2

 
RT
P  dP 

 

where 1 is the chemical potential of the initial state and 2 is the chemical potential of the final 
state: 
 

  = RT ln 



P2

P1
 

 

This equation is analogous to Eq. 15.4.4, G = nRT ln(P2/P1), for one mole of substance. 
 
 
8.  The temperature dependence of the Gibbs energy of a chemical reaction is expressed as: 
 

 
∆rGT2

T2
 – 

∆rGT1

T1
  = ∆rH 



1

T2
 – 

1
T1

 
 

What would you plot on the axes of a graph to get a straight line with the slope related to ∆rH? 
How is the slope related to ∆rH? 
 
 
Answer:  This equation is the Gibbs-Helmholtz equation, Eq. 16.3.15. A graph of rG/T versus 
1/T for a chemical reaction gives a straight line with slope = ∆rH, assuming the reaction enthalpy 
is constant over the temperature range. An endothermic reaction will give a positive slope and an 
exothermic reaction a negative slope. 
 
 
 
 
 
 
 
 
 
 
 
 
Rearranging the Gibbs-Helmholtz equation into direct straight-line form gives: 
 

 
∆rGT2

T2
  =  

∆rH
T2

 + 






∆rGT1

T1
 – 

∆rH
T1

 with the intercept =  






∆rGT1

T1
 – 

∆rH
T1

 

 
 
9.  Hydrogen is used as a fuel for internal combustion engines. However, the average combustion 
temperature is significantly higher than tabulated values. Calculate the standard state Gibbs 
energy of combustion of H2 at 700.0 K. 
 
 

slope = rH 

rG
T  

1/T 
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Answer:  The plan is to use the Gibbs-Helmholtz equation, Eq. 16.3.15, to find the reaction 
Gibbs energy at the higher temperature from the tabulated value at 298.2 K. The Gibbs energy of 
combustion of H2 is equivalent to the Gibbs energy of formation of H2O, which at high 
temperatures is water vapor. 
   The combustion reaction is the formation reaction, which at 298.15 K gives: 
 

 H2 (g, 1bar) + ½ O2 (g, 1bar)  H2O (g, 1bar) fG = -228.57 kJ mol-1 
        fH = -241.82 kJ mol-1 
 

Using the Gibbs-Helmholtz equation applied to reaction Gibbs energies, Eq. 16.3.15, gives: 
 

      
∆rGT2

T2
 – 

∆rGT1

T1
  = ∆rH 



1

T2
 – 

1
T1

 

      
∆rGT2

700.0 K – 
-228.57 kJ mol-1

298.15 K  = -241.82 kJ mol-1 



1

700.0 K – 
1

298.15 K  

      
∆rGT2

700.0 K + 0.766628 kJ mol-1 K-1= -241.82 kJ mol-1 (-1.9254x10-3 K-1) = 0.46561 kJ mol-1 K-1 

      
∆rGT2

700.0 K = -0.30102 kJ mol-1 K-1 

      ∆rGT2 = -210.7 kJ mol-1 
 

The combustion of H2 at high temperatures provides less energy than at room temperature, as 
predicted by LeChâtelier’s Principle and the exothermic rH. For the (1/T2 – 1/T1) term, 
remember to keep at least one extra significant figure to avoid round-off error. 
 
 
10.  The Gibbs-Helmholtz expression, Eq. 16.3.15, gives the temperature dependence of the 
reaction Gibbs energy. You should remember from General Chemistry that the equilibrium 
constant for a chemical reaction is related to the reaction Gibbs energy by rG = – RT ln K. Use 
the Gibbs-Helmholtz equation to find the temperature dependence of the equilibrium constant. 
 
 
Answer:  Solving rG = – RT ln K  for ln K gives: 
 

 ln K = – rG/RT 
 

Dividing the Gibbs-Helmholtz equation by – R and specifying standard state pressure gives: 
 

 
∆rGT2

– RT2
 – 

∆rGT1

– RT1
  = 

∆rH
– R  



1

T2
 – 

1
T1

 
 

Substituting in ln Keq = – rG/RT at both temperatures gives: 
 

 ln KT2 – ln KT1 = – 
∆rH

R  



1

T2
 – 

1
T1

 

 ln



KT2

KT1
 = – 

∆rH
R  



1

T2
 – 

1
T1

 
 

where rH is evaluated at the average temperature. This equation is found in most General 
Chemistry texts. 
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11.  Potassium hydrogen phthalate, KHP, is a commonly used primary standard for acid-base 
titrations. KHP is moderately soluble in water. For the reaction: KHP (s)  K+ (aq) + HP- (aq), 
the reaction Gibbs energy is given in the table, below, versus temperature at constant pressure.1 
Calculate the reaction enthalpy and entropy, including uncertainties. Assume the reaction 
enthalpy and entropy are not functions of temperature. 
 

T (°C) 0.6 22.0 45.0 55.0 65.0 
rG (kJ mol-1) 5.995 3.999 2.208 1.044 0.1591 

 
 
Answer:  The plan is to use the thermodynamic force (rG/T)P = – rS and the Gibbs-
Helmholtz expression, Eq. 16.3.15, with suitable linear plots to extract the thermodynamic 
parameters from the slopes. 
   A spreadsheet was written to plot rG versus T and also rG/T versus 1/T, as required by the 
Gibbs-Helmholtz expression, Eq. 16.3.15. 
 

 

T (C) T (K) rG (kJ mol-1) 1/T (K-1) rG/T (J K-1 mol-1) 

0.6 
273.7

5 5.995 
0.00365

3 218.993 

22 
295.1

5 3.999 
0.00338

8 135.496 

45 
318.1

5 2.208 
0.00314

3 69.402 

55 
328.1

5 1.044 
0.00304

7 31.822 

65 
338.1

5 0.1591 
0.00295

7 4.704 
 

 rG vs. T   
slope -0.089782 30.57353 intercept 
 0.00254 0.791182 ± 
r2 0.99761 0.132461 st.dev. y 
F 1249.86 3 dof 
ssreg 21.930 0.052638 ssresid 

 

 

 

y = -0.0898x + 30.574
R² = 0.9976

0

1

2

3

4

5

6

7

270 290 310 330 350


rG

 (k
J m

ol
-1

)

T (K)
 

 
 

 rG/T vs.  1/T  
slope 30529.3 -89.63895 intercept 
 7389.73 2.39990 ± 
r2 0.99825 0.417286 st.dev. y 
F 1706.78 3 dof 
ssreg 297.197 0.522383 ssresid 

 
 

 

 

y = 30529x - 89.639
R² = 0.9982

0

5

10

15

20

25

0.0028 0.003 0.0032 0.0034 0.0036 0.0038


rG

/T
 (J

 K
-1

m
ol

-1
)

1/T (K-1)
 

 
The slope of rG versus T is –rS giving:  rS = 89.8  2.5 J K-1 mol-1 
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The slope of rG/T versus 1/T gives:   rH = 30.53  0.74 kJ mol-1 
 
 
12.  Starting with the internal energy as a function of entropy and volume, give the Legendre 
transformation that defines a new function that will be a good spontaneity criterion at constant 
temperature and volume. 
 
 
Answer:  Consider the case with PV and chemical work. The natural variables for internal energy 
are S, V, and the mole amounts: 

 dU = T dS – P dV+
i=1

c

 i dni 

The Legendre transformation must be defined to switch the role of T and S to obtain a good 
spontaneity criterion at constant temperature: 
 

 A  U – TS 
 

so that dA has natural variables T and V. To show that the natural variables of the new 
thermodynamic potential are T, V and the mole amounts, the total differential is given by: 
 

 dA = dU – T dS – S dT 
 

and substituting for dU gives: 
 

 dA = T dS – P dV+
i=1

c

 i dni – T dS – S dT = – S dT – P dV+
i=1

c

 i dni 

 

At constant T and V the first two terms vanish giving: 
 

 dA = 
i=1

c

 i dni 

 

which focuses our attention of the chemical work. For a spontaneous process at constant T and 
V, dA < 0, thus minimizing A. 
 
 
13.  Show that Cv is not a function of volume for an ideal gas, in a closed system. 
 
 

Answer:  In other words show that, for a closed system:  






Cv

V T
= 0 

The definition of the constant volume heat capacity is: 
 

 Cv = 






U

T V
 

 

Substitution into the partial derivative with respect to V, above, gives: 
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Cv

V T
 = 








V





U

T V T
  =  









T





U

V T V
 

 

The order of differentiation can be reversed because U is a state function, just as we did for the 
Maxwell relationships. For an ideal gas, (U/V)T = 0, giving: 
 

 






Cv

V T
 = 0 

 

In other words Cv is not a function of volume. 
 
 
14.  Calculate the change in Helmholtz energy for Vo liters of a liquid substance with isothermal 
compressibility T when the pressure is changed from P1 to P2 at constant temperature. Start by 
proving that: 
 

 






A

P T
 = PVT 

Then integrate assuming the volume may be considered a constant V  Vo. 
 
 

Answer:  Start with the desired partial derivative: 






A

P T
 = ? 

We note that the natural variables for Helmholtz energy are V and T, not the given independent 
variables P and T. The “misplaced variable,” in the sense discussed in Section 9.7, is the 
derivative with respect to P in the denominator. Using the chain rule then gives: 
 

 






A

P T
 = 






A

V T
 






V

P T
 

 

The first partial derivative on the right of the equality is the thermodynamic force, Eq. 16.3.7, 
(A/V)T = – P. The second partial is given from the definition of the isothermal compressibility: 
 

 






V

P T
 = – VT 

 

which upon substitution gives: 






A

P T
 = 






A

V T
 






V

P T
 = – P(– VT) = PVT 

This expression may be integrated after separating variables: 
 

 dA = PVT dP 
 

Assuming T is constant and the volume change is small for moderate changes in pressure, V  
Vo, gives: 
 

 A = P1

 P2 P Vo T dP = 
VoT

2  (P2
2 – P1

2) 

 
The Helmholtz energy for a substance increases with an increase in pressure. 
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15. Derive the Maxwell relationship that is based on the Helmholtz energy:   






S

V T
 = 






P

T V
 

 
 
Answer:  The independent variables for this relationship are V and T. The thermodynamic 
potential that has natural variables V and T is the Helmholtz energy, Eq. 16.3.3. In analogy with 
Figure 16.4.2, the general form of the total differential and the Legendre transformed First and 
Second Laws are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16.  Starting with the thermodynamic force for the change in internal energy with respect to 
entropy, prove that: 
 

 



∂S

∂T V
 = 

Cv

T  

 
 
Answer:  The thermodynamic force for the change in internal energy with respect to entropy is:  
 

 



∂U

∂S V
 = T  or inverting:  



∂S

∂U V
 = 

1
T 

 

We can use the chain rule for the desired partial derivative with respect to temperature: 
 

 



∂S

∂T V
 = 



∂S

∂U V
 



∂U

∂T V
 

 

Using the thermodynamic force and the definition of Cv, Eq. 7.8.7, gives: 
 

 



∂S

∂T V
 = 

Cv

T  
 

No approximations are made in this derivation. The equation holds for real gases, ideal gases, 
liquids, and solids. 
 
 

dA   = 
A
T V

 dT + 
A
V T

 dV 

dA   =  – S    dT  –   P   dV 

Thermodynamic force Thermodynamic force 

S
V T

 = – 

V

A
T V T

  = – 

T

A
V T V

 =  
P
T V

 

switch order 
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17.  Show that if S is regarded as a function of T and V then, for a closed system: 

 T dS = Cv dT + T 








T
 dV 

 
 
Answer:  Consider S(T,V), giving the total differential: 
 

 dS = 



∂S

∂T V
 dT + 



∂S

∂V T
 dV       1 

 

We can use the chain rule for the partial derivative with respect to temperature (Problem 14): 
 

 



∂S

∂T V
 = 



∂S

∂U V
 



∂U

∂T V
        2 

 

Notice that the thermodynamic force is:  
 

 



∂U

∂S V
 = T  or inverting:  



∂S

∂U V
 = 

1
T    3 

 

Using this thermodynamic force and the definition of Cv gives: 
 

 



∂S

∂T V
 = 

Cv

T          4 

 

Note that the partial derivative in Eq. 1 with respect to V is a Maxwell relationship, Eq. 16.4.10, 
which using Eq. 7.6.21 gives 
 

 






S

V T
 = 






P

T V
 = 








T
        5 

 

Substituting Eqs. 4 and 5 into Eq. 1 gives: 
 

 dS =   
Cv

T  dT +  








T
 dV       6 

 

Finally, multiplying both sides of this last equation by T gives the final result: 
 

 T dS = Cv dT + T 








T
 dV       7 

 
 

18.  Show for an isothermal change in pressure for a liquid or a solid, S = –  V dP. 

 
 
Answer:  The change in entropy for a change in pressure at constant temperature is given by the 
partial derivative: 
 

 



∂S

∂P T
 = ? 
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We can recognize this partial derivative as the Maxwell Relationship that is derived from the 
Gibbs energy, Eq. 16.4.11, since T and P are the independent variables: 
 

 






S

P T
 = – 







V

T P
 

 

The right-hand side is given by the thermal expansion coefficient, Eq. 7.6.13, in the form 
(V/T)P = V : 
 

 






S

P T
 =  – V  

 

Separating variables and integrating gives S = –  V dP 

 
 
19.  Pressure perturbation calorimetry has become a useful tool in studies of protein folding. In 
interpreting the effects of solvation on protein conformation and folding, the following derivative 
is centrally important. Show that: 
 

 






Cp

P T
 = – T 







2V

T2
P
 

 
 
Answer:  Substituting from the definition of Cp = (H/T)P and switching the order of 
diffentiation: 
 

 






Cp

P T
 = 








P





H

T P T
 = 








T





H

P T P
 

 

We can reverse the order of differentiation, since enthalpy is a state function. Using the 
thermodynamic equation of state, Eq. 16.5.11, for (H/P)T gives: 
 

 






Cp

P T
 = 








T



V – T 



∂V

∂T P P
 

 

Using the product rule gives the temperature derivatives as: 
 

 






Cp

P T
 = 






V

T P
 – T 



∂2V

∂T2
P
 – 






V

T P
 






T

T P
 

 

The first and the last terms on the right cancel giving the final result: 
 

 






Cp

P T
 =  – T 



∂2V

∂T2
P
 

 

This equation is very useful for understanding solute-solvent interactions, because changes in 
volume are easy to visualize. 
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20.  Show that:   



∂V

∂S P
 = 
VT
Cp

 

 
 
Answer:  Starting with the partial derivative: 
 

 



∂V

∂S P
 = ?         1 

 

Which variable is the “misplaced” variable in this partial derivative? Consider the definitions of 
 and T, Eqs. 7.6.13 and 7.6.14, respectively: 
 

  = 
1
V 






V

T P
 and T = – 

1
V 






V

P T
     2 

 

These relationships suggest the “misplaced” variable in Eq. 1 is the derivative with respect to S 
in the denominator. Referring to Figure 9.7.2, the suggestion is to use the chain rule: 
 

 



∂V

∂S P
 = 



∂V

∂T P
 



∂T

∂S P
        3 

 

The first partial derivative on the right is given by the thermal expansion coefficient: 
 

 (V/T)P = V         4 
 

The second partial derivative in Eq. 3 can be inverted to find a more familiar form, Eq. 16.3.18: 
 

 






S

T P
 = 

Cp

T  or inverting: 



∂T

∂S P
 = 

T
Cp

     5 
 

Substituting Eqs. 4 and 5 into Eq. 3 gives the final result: 
 

 



∂V

∂S P
 = 
VT
Cp

         6 

 

This partial derivative is important because it is the result of the Maxwell relationship based on 
the enthalpy, Eq. 16.4.9. The Maxwell relationship and Eq. 6 allow the derivative involving the 
entropy to be expressed entirely in terms of a heat capacity and . 
 

Method 2:  Like many derivations in thermodynamics, this relationship can be derived in several 
ways. An alternative and equivalent derivation is based on the Maxwell Relationships. Returning 
to Eq. 1, one quick place to look for partial derivatives involving the entropy is a Maxwell 
Relationship. This partial derivative is given by the Maxwell Relationship that is derived from 
the enthalpy, which has natural variables S and P, Eq. 16.4.9: 
 

 






V

S P
 = 






T

P S
         7 

 

At first this relationship doesn’t look like it helps much, because we don’t often work with 
processes at constant entropy. The “misplaced” variable is the constant entropy. We need to use 
the Euler chain relationship. Writing the total differential of the entropy in terms of independent 
variables T and P gives: 
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 dS = 0 = 






S

T P
 dT + 







S

P T
 dP       8 

 

Solving for (T/P)S gives: 
 

 






T

P S
 = – 







S

P T







S

T P

        9 

 

The partial derivative in the numerator is related through the Maxwell Relationship, Eq. 16.4.11, 
to the thermal expansion coefficient, 
 

 






S

P T
 = – 







V

T P
 = – V       10 

 

and the partial derivative in the denominator is given by Eq. 16.3.18: 
 

 






S

T P
 = 

Cp

T          11 
 

Substituting Eqs. 9-11 into Eq. 7 gives: 
 

 






V

S P
 = 






T

P S
 = – 

( )– V





Cp

T

 = 
VT
Cp

      12 

 

This equation allows the change in volume for a constant pressure process to be calculated from 
the change in entropy or the change in temperature for an adiabatic reversible process from the 
change in pressure. 
 
 

21.  Show that:   



∂P

∂S V
 = 

 T
T Cv

 

 
 
Answer:  Starting with the partial derivative: 
 

 



∂P

∂S V
 = ?         1 

 

Which variable is the “misplaced” variable in this partial derivative? Consider the definitions of 
 and T, Eqs. 7.6.13 and 7.6.14, respectively and Eq. 7.6.16: 
 

  = 
1
V 






V

T P
  T = – 

1
V 






V

P T
       and 







P

T V
 = 


T

  2 

 

These relationships suggest the “misplaced” variable in Eq. 1 is the derivative with respect to S 
in the denominator. Referring to Figure 9.7.2, the suggestion is to use the chain rule: 
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∂P

∂S V
 = 



∂P

∂T V
 



∂T

∂S V
        3 

 

The first partial derivative on the right of the equality is given by Eq. 7.6.16. The second partial 
derivative in Eq. 3 can be inverted to find a more familiar form (see Problem 14 and Problem 15  
Eqs. 2-4): 
 

 






S

T V
 = 

Cv

T  or inverting: 



∂T

∂S V
 = 

T
Cv

     4 
 

Substituting /T and Eq. 4 into Eq. 3 gives the final result: 
 

 



∂P

∂S V
 = 

 T
T Cv

         5 

 

This partial derivative is important because it is the result of the Maxwell relationship based on 
the internal energy, Eq. 16.4.8. The Maxwell relationship and Eq. 5 allow the derivative 
involving the entropy to be expressed entirely in terms of a heat capacity, , and T. 
 
 
22.  Reversible adiabatic processes are constant entropy processes. Derive Eq. 9.8.12 directly 
from (T/V)S. Do this derivation in two steps. (a). Show that: 
 

 



∂T

∂V S
 = – 



∂P

∂T V
 



T

Cv 
 

 

(b). Integrate this last equation for an ideal gas from the initial state, T1 and V1, to the final state, 
T2 and V2. 
 
 
Answer:  The plan is to note that partial derivatives involving entropy can often be simplified 
using a Maxwell relationship. 
   The Maxwell relation based on the internal energy, Eq. 16.4.8, relates the required partial 
derivative to a derivative with respect to the entropy: 
 

 



∂T

∂V S
 = – 



∂P

∂S V
 

 

Using Eqs. 1-5 in the last problem gives the required partial derivative as: 
 

 



∂T

∂V S
 = – 



∂P

∂S V
 = – 



∂P

∂T V
 



∂T

∂S V
 = – 



∂P

∂T V
 



T

Cv 
 

 

(b).  For an ideal gas, P = nRT/V giving (P/T)V = nR/V: 
 

 



∂T

∂V S
 = – 



nR

V  



T

Cv 
 

 

Separating variables gives: 
 

 Cv 
dT
T  = – nR 

dV
V  and integrating: Cv T1

T2 
dT
T  = – nR V1

V2 
dV
V  
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 Cv ln 
T2

T1
 = – nR ln 

V2

V1
       (9.8.12) 

 

Eq. 9.8.12 was originally derived using explicit consideration of the heat and work transfers. 
The derivation in this problem more clearly shows the relationship of the overall changes to the 
constancy of the entropy for the process. Since entropy is a state function, the overall process can 
be broken into the sum of a constant volume process and a constant temperature process, with 
the same initial and final conditions. The first term in Eq. 9.8.12 is the change in entropy for a 
constant volume process and the second term is the negative of the change in entropy for an 
isothermal process in an ideal gas. The two changes are equal in magnitude and opposite in sign 
so that the overall change in entropy is zero. 
 
 
23.  Reversible adiabatic processes are constant entropy processes. Derive Eq. 9.8.18 directly 
from (T/P)S. Do this derivation in two steps. (a). Show that: 
 

 



∂T

∂P S
 = 



∂V

∂T P
 



T

Cp 
 

 

(b). Integrate this last equation for an ideal gas from the initial state, T1 and P1, to the final state, 
T2 and P2. 
 
 
Answer:  The plan is to note that partial derivatives involving entropy can often be simplified 
using a Maxwell relationship. 
   The Maxwell relation based on the enthalpy, Eq. 16.4.9, relates the required partial derivative 
to a derivative with respect to the entropy: 
 

 



∂T

∂P S
 = 



∂V

∂S P
 

 

Using Problem 20, Eqs. 1-5, gives the required partial derivative as: 
 

 



∂T

∂P S
 = 



∂V

∂S P
 = 



∂V

∂T P
 



∂T

∂S P
 = 



∂V

∂T P
 



T

Cp 
 

 

(b).  For an ideal gas, V = nRT/P giving (V/T)P = nR/P: 
 

 



∂T

∂P S
 = 



nR

P  



T

Cp 
 

Separating variables gives: 
 

 Cp 
dT
T  = nR 

dP
P   and integrating: Cp T1

T2 
dT
T  = nR P1

P2 
dP
P  

 

 Cp ln 
T2

T1
 = nR ln 

P2

P1
       (9.8.18) 

 

Eq. 9.8.18 was originally derived using the change in enthalpy for the process. The derivation in 
this problem more clearly shows the relationship of the overall changes to the constancy of the 
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entropy for the process. Since entropy is a state function, the overall process can be broken into 
the sum of a constant pressure process and a constant temperature process, with the same initial 
and final conditions. The first term in Eq. 9.8.18 is the change in entropy for a constant pressure 
process and the second term is the negative of the change in entropy for an isothermal process in 
an ideal gas. The two changes are equal in magnitude and opposite in sign so that the overall 
change in entropy is zero. 
 
 
24.  The heat capacity of a substance can be determined without heat flow measurements by 
determining the change in temperature of a substance with pressure at constant entropy, 
(T/P)S. Constant entropy conditions are obtained by changing the pressure rapidly, so that heat 
flow is minimal. Reversible adiabatic processes are constant entropy processes. Show that:2 

 

 



∂T

∂P S
 = 



∂V

∂T P
 



T

Cp 
 = 

TV
Cp

 

 

(b). The coefficient of thermal expansion for benzene is 1.24x10-3 K-1 and the density is 
0.8765 g/cm3 at 298.15 K. The temperature of a sample of benzene increased by 0.0484 K for a 
sudden increase in pressure of 2.02 bar. Calculate the heat capacity of benzene.2 
 
 
Answer:  The plan is to note that partial derivatives involving entropy can often be simplified 
using a Maxwell relationship. 
(a).  The Maxwell relation based on the enthalpy, Eq. 16.4.9, relates the required partial 
derivative to a derivative with respect to the entropy: 
 

 



∂T

∂P S
 = 



∂V

∂S P
 

 

Using Problem 20, Eqs. 1-6, gives the required partial derivative as: 
 

 



∂T

∂P S
 = 



∂V

∂S P
 = 



∂V

∂T P
 



∂T

∂S P
 = 



∂V

∂T P
 



T

Cp 
 = 

TV
Cp

 

 

(b).  The heat capacity is usually expressed as a molar value; the molar volume of benzene is: 
 

 Vo = 1 mol(78.11 g mol−1)(1 m3/1x106 cm3)/0.8765 g cm-3 = 8.912x10-5 m3 
 

Substituting the required values and solving for Cp gives: 
 

 



∂T

∂P S
 = 

0.0484 K
2.02x105Pa = 

TV
Cp

 = 
298.15 K(8.912x10-5 m3)(1.24x10-3 K-1)

Cp
 

 Cp = 137.5 J K-1 mol-1 
 

This expression shows the importance of the Maxwell relationships in their ability to uncover 
relationships among important system properties. This relationship is also important in modeling 
the mechanism of impulse welding techniques. In impulse welding, two dissimilar metals are 
accelerated towards each other by an explosion, an intense magnetic field pulse, or a laser pulse. 
The impact creates a large pressure, up to 1x109 Pa, that plastically deforms and heats the 
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materials. For example, explosion welding is necessary to fabricate components of high field 
magnet dewars for NMR. 
 
 
25.  Consider the change in Gibbs energy for an isothermal change in pressure for a liquid or a 
solid. Assume the volume changes and that the isothermal compressibility, T, is constant. 
(a). Show that for initial volume Vo, initial pressure Po, and final pressure P, for moderate changes 
in pressure: 
 

 G = Vo (P – Po) – ½ Vo T (P – Po)2 
 

(b). Repeat Problem 1 with this more accurate formula, and compare the results. 
 
 
Answer:  (a). The plan is to integrate Eq. 7.6.9 for small changes in pressure (see Problem 7.11) 
and then use the volume as a function of pressure in G =  V dP (see Problem 1, above, in 
comparision). 
   Reviewing Problem 7.11, integrating dV = –V T dP from Vo, Po to V, P gives: 
 

 Vo

V
dV = – Po

P
V T dP 

For small changes in pressure, we can approximate the volume in the integrand as V  Vo: 
 

 V – Vo =  – Po

P
Vo T dP = – Vo T (P – Po)  and V = Vo – Vo T (P – Po) 

 

Using this last expression for the volume as a function of pressure in G =  V dP gives: 
 

 G = Po

P
 [Vo – Vo T (P – Po)] dP = Po

P
 Vo dP – Po

P
 Vo T (P – Po) dP 

       = Vo (P – Po) – ½ Vo T (P – Po)2|PPo
 

       = Vo (P – Po) – ½ Vo T (P – Po)2 – ½ Vo T (Po – Po)2 
       = Vo (P – Po) – ½ Vo T (P – Po)2 
 

(b).  The second term in the last expressions is a correction term for the approximate formula that 
was derived in Problem 1. Using Table 7.6.1, T = 4.53x10-5 bar-1 = 4.53x10-10 Pa-1 for water: 
 

 G = 0.07021 m3 (-1.00x105 Pa) – ½(0.07021 m3)(4.53x10-10 Pa-1)(-1.00x105 Pa)2 
       = -7021. J – 0.32 J = -7.02 kJ 
 

The correction is negligible for small changes in pressure, but important for work under extreme 
conditions in geochemistry and chemical engineering. 
 
 
26. (a). Calculate the change in internal energy for one mole of liquid water for an isothermal 
decrease in volume from 1.0000 L to 0.9900 L at 298.2 K and an initial pressure of 1.00 bar. 
Assume that  and T are approximately constant over this volume range. Note that to a good 
approximation: 
 

 P = Po – 
1

Vo T
 (V – Vo) 
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(b). Calculate the final pressure. 
 
 
Answer:  The plan is to follow Example 16.5.1, but using the thermodynamic equation of state 
for the change in internal energy with respect to volume, Eq. 16.5.8: 
 

 






U

V T
 = – P + T 


T

 

   Substituting for P and integrating Eq 16.5.8 gives: 
 

 U = – Vo

V
 P dV + Vo

V
 T 


T

 dV =  – Vo

V
 Po dV  + Vo

V
 

1
Vo T

 (V – Vo) dV + Vo

V
 T 


T

 dV 
 

Given that  and T are assumed constant over this volume range, for an isothermal process: 
 

 U = – Po V + 
1

2 Vo T
 (V – Vo)2 + T 


T

 V 
 

The pure molar volume for water at 25C is (1.00 mol)(18.02 g mol-1)/0.99705 g mL-1 = 18.07 
mL = 18.07x10-6 m3. From Table 7.6.1 and using 1 bar = 1x105 Pa,  = 2.57x10-4 K-1, T = 
4.53x10-5 bar-1 = 4.53x10-10 Pa-1, V = (1.0000 – 0.9900 L) = -0.0100 L = -1.00x10-5 m3, giving: 
 

 U = – 1.00x105 Pa(-1.00x105 m3) + 
1

2(1.00x10-3 m3)(4.53x10-10 Pa-1) (-1.00x10-5 m3)2 + 

  298.2 K 
2.57x10-4 K-1

4.53x10-10 Pa-1 (-1.0x10-5 m3) 
 

 U = 1.00 J + 110.4 J – 1691 J = -1.58x103 J = -1.58 kJ 
 

The first two terms are the PV work for the compression, which increases the internal energy. 
The third term is the change in internal energy caused by the change in entropy with respect to 
volume. As the volume decreases the entropy decreases, especially with respect to the 
intermolecular forces, which correspondingly decreases the internal energy by TdS. 
 

(b). The final pressure is: 

 P = Po – 
1

Vo T
 (V – Vo) = 1.00x10-5 Pa – 

1
1.00x10-3 m3(4.53x10-10 Pa-1) (-1.00x105 m3) 

 P = 2.2175x107 Pa = 222. bar 
 

The compression requires a large increase in pressure, comparable to the increase in pressure 
generated while ice skating. 
 
 
27.  Calculate the change in Gibbs energy of a liquid substance with isothermal compressibility 
T when the volume is changed from V1 to V2 at constant temperature. Start by proving that: 
 

 






G

V T
 = – 

1
T

 

Then integrate from V1 to V2 assuming T is constant. 
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Answer:  The plan is to note that since the natural variables for G are P and T, the “misplaced” 
variable is V as the independent variable in the denominator. 
   Reference to Figure 9.7.1 suggests using the chain rule: 
 

 






G

V T
 = 






G

P T
 






P

V T
 

 

The partial (G/P)T is the thermodynamic force, (G/P)T  =V. From the definition of the 
isothermal compressibility, Eq. 7.6.9: 
 

 T = – 



1

V 





V

P T
 or inverting: 







P

V T
 = 




1

VT
 

 

Substituting this last result and the thermodynamic force gives: 
 

 






G

V T
 = V 





1

VT
 = – 

1
T

 

 

This expression is listed in the table Figure 16.4.1. Integration for constant T gives: 
G = – (1/T) V. 
 
 
28.  The Gibbs-Helmholtz relationship is useful at constant pressure. Show that for constant 
volume processes: 
 

 












A

T
T V

 = – 
U
T2 

 
 
Answer:  The plan is to follow Eqs. 16.3.9-16.3.10, but for constant volume processes. 
   Consider A/T as the product (A)(1/T) and use the product rule:  
 

 












A

T
T V

 = A 












1

T
T V

 + 
1
T 






A

T V
 = – 

A
T2 + 

1
T 






A

T V
 

 

Using Eq. 16.3.7 for the thermodynamic force, (A/T)V = – S, gives: 
 

 = – 
A
T2 – 

S
T 

 

Then taking T2 as the common denominator gives: 
 

 












A

T
T V

 = – 
(A + TS)

T2  

 

The definition of the Helmholtz energy is A  U – TS. Rearrangement of the definition gives 
A + TS = U, which upon substitution simplifies to: 
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A

T
T V

 = – 
U
T2 

 
 
29.  Rewrite Figure 9.7.1 for the partial derivatives: 
 

 






G

T V
  







T

G P
  







G

V T
  







G

T V
  







P

T G
 

 
 
Answer:  The plan is to rewrite Figure 9.7.1 using the same five partial derivative conversion 
techniques, , T, and the thermodynamic forces, Eqs. 16.3.7 and 16.3.8: 
 

 






A

T V
 = – S  







G

P T
 = V and  







G

T P
 = – S 

 

The conversion for (G/V)T is given in Problem 24. The partial derivative conversions are 
shown below: 
 







G

T V
= 






A

T V
 + 






P

T V
V = –S + V/T 

 

         






T

G P
 = 

1







G

T P

 = – 
1
S 

 

      G  A + PV 
 

           definition     invert 
   misplaced numerator        misplaced numerator 
 

 

            






G

T V
     







T

G P
 

 

   






G

V T
  







G

T V
      







P

T G
 

 

   misplaced denominator         misplaced constant variable misplaced constant variable 
 chain rule        total differential, dG    total differential, dG = 0 
 

    






G

V T
 = 






G

P T
 






P

V T
 

     






G

V T
 = V 





1

VT
 

                = – 
1
T

 

dG = 






G

T P
dT + 







G

P T
dP 

 







G

T V
= 






G

T P
 + 






G

P T





P

T V
 

 

          = – S + V/T 

dG = 






G

T P
dT + 







G

P T
dP = 0 

        






G

T P
 + 






G

P T





P

T G
= 0 

 

   






P

T G
= 

– 






G

T P

  






G

P T

 = 
S
V 

 

Figure P29.1:  Partial Derivative Conversion. Partial derivative manipulations to convert 
unknown partial derivatives to those involving Cv, Cp, , and T. 
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The last example, using the Euler chain relationship, is used with equilibrium phase transitions of 
pure substances. For a phase transition at equilibrium, trG = 0 and then the change in pressure 
necessary for the system to remain at equilibrium for a change in temperature is given using 
General Pattern  8: 
 

 






P

T G
 = 

trS
trV

        (17.1.7) 
 

where trS is the entropy change for the phase transition and trV is the change in molar volume. 
This last result gives Eq. 17.1.7, which is one form of the famous Clapeyron equation. 
 
 
30.  In an isothermal expansion of an ideal gas U = 0. The value is not zero for a real gas. Using 
the Van der Waals equation of state, find U for an isothermal expansion from V1 to V2. 
 
 
Answer:  The plan is to integrate the thermodynamic equation of state, Eq. 16.5.5: 
 

 






U

V T
  = – P + T 







P

T V
       1 

 

   The Van der Waals equation of state, Eq. 7.5.1, rearranges to give: 
 

 P = 
nRT

(V–nb) – a 
n2

V2        2 
 

The mechanical derivative is: 
 

 






P

T V
 = 

nR
(V–nb)        3 

 

Using this partial derivative and the Van der Waals equation, Eq. 2, to substitute for P into the 
thermodynamic equation of state, Eq. 3, gives: 
 

 






U

V T
 = – 

nRT
(V–nb) + 

an2

V2  + T 
nR

(V–nb)  =  
an2

V2      4 

 

We can now separate variables and integrate: 
 

 dU = 
an2

V2  dV  giving:  U1

U2 dU = 



V1

V2

 
an2

V2  dV   5 

 

Using 

 

1
x2 dx = – 

1
x  gives: 

 

 U = – a n2 



1

V2
 – 

1
V1

        6 
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31.  The work for the system in stretching a rubber band is wnet = – F dx, where F is the restoring 
force, F = – k x. At constant temperature and pressure, G = wnet, where wnet is the non-PV work. 
Therefore, the total change in Gibbs energy for a process involving stretching a rubber band is: 
 

  dG = – S dT + V dP – F dx. 
 

 
 
 
 
 
 
 
 
(a). Under what conditions is G be a good spontaneity criterion ( i.e. when what is held 
constant)?  (b). For an initial state with a stretched rubber band, x > 0, find the direction for 
spontaneous change, either dx > 0 or dx < 0, at constant temperature and pressure.  (c). Define a 
new state function:  R  G + F x. What are the independent variables for R? 
 
 
Answer:  (a). G is a good spontaneity criterion at constant T and P. Setting T and P as constant 
gives dG = – F dx, which focuses attention on the work of extension. 
(b).  For a spontaneous process at constant T and P, dG = – F dx < 0. Substituting in the force, 
F = – k x, gives: 
 

 dG = k x dx < 0 
 

For an initial stretched state with x > 0, then dx < 0 to make dG negative overall. With dx < 0 the 
rubber band relaxes toward x = 0, the equilibrium position, as expected. 
 (c).  This definition is a Legendre transformation. Taking the total differential using the product 
rule gives: 
 

 dR = dG + F dx + x dF 
 

Substituting in for dG gives: 
 

 dR = – S dT + V dP – F dx + F dx + x dF 
 

Canceling terms gives: 
 

 dR = – S dT + V dP + x dF 
 

The independent variables are T, P, and F. This function would be useful for systems that have 
extension work with a constant force and then some other form of work, in addition. The 
additional work might be chemical work, for example in a muscle. 
 
 
32.  Given that dU = TdS – PdV and for an ideal gas the change in entropy is given by: 
 

 dS = 
Cv

T  dT + 
nR
V  dV 

 

dx 

x 0 

k ="stretchiness" 
 x= extension 
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show that dU = Cv dT for any process in an ideal gas. (At first it doesn’t look like 
dU = TdS – PdV will give just dU = Cv dT, does it?) 
 
 
Answer:  Substituting for dS into the combined First and Second Laws gives: 
 

 dU = TdS – PdV = T 



Cv

T  dT + 
nR
V  dV  – PdV 

 dU = Cv dT + 
nRT

V  dV – PdV 
 

However, for an ideal gas  P = nRT/V and the last two terms cancel: 
 

 dU = Cv dT + 
nRT

V  dV – 
nRT

V  dV = Cv dT 
 

The only restriction we have placed on this equation is that the system is an ideal gas. 
 
 
33.  In Eqs. 16.6.14, the chemical potentials expressed in terms of U, H, A, and G were all shown 
to be equal based on comparing the total differential of each thermodynamic potential with the 
Legendre transformed combined First and Second Laws of thermodynamics. As an alternative 
proof, show that the chemical potentials expressed in terms of the Gibbs energy and the enthalpy 
are equal using partial derivative conversions: 
 

 i = 






G

ni T,P,nji
= 






H

ni S,P,nji
 

 
 
Answer:  The plan is to relate dG and dH using the definition of the Gibbs energy, G  H – TS. 
In other words, treat the G in the numerator as “misplaced.” 
   No generality will be lost if we consider only a single component, but the notation will be 
simplified. Substituting the definition of the Gibbs energy gives: 
 

 






G

n T,P
 = 






H

n T,P
 – T 







S

n T,P
       1 

 

Considering (H/n)T,P, the natural variables for H are S and P, not the given independent 
variables T and P. We can treat the constant T as the “misplaced” variable. Consulting Figure 
9.7.2, we need to work through the total differential of the enthalpy expressed as a function of 
independent variables, S, P, and n: 
 

 dH = 






H

S P,n
dS + 







H

P T,n
dP + 







H

n S,P
dn     2 

 

Dividing by dn at constant T and P gives the desired enthalpy derivative. With dP = 0 and using 
the fact that (H/S)P,n is a thermodynamic force, (H/S)P,n = T: 
 

 






H

n T,P
 = 






H

S P,n





S

n T,P
 + 






H

n S,P
 = T 







S

n T,P
 + 






H

n S,P
   3 
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Substitution of Eq. 3 into Eq. 1 gives the desired result after cancellation: 
 

 






G

n T,P
 = T 







S

n T,P
 + 






H

n S,P
 – T 







S

n T,P
 = 






H

n S,P
    4 

 

The other equalities of the chemical potentials, in terms of the corresponding natural variables in 
Eqs. 16.6.14, can be proved in an analogous fashion. 
 
 
34.  Calculate the entropy and Gibbs energy of mixing of 0.80 moles of N2(g) and 0.20 moles of 
O2(g) at 298.15 K. Assume the initial pure gases are at 1 bar pressure and the final total pressure 
is also at 1 bar. 
 
 
Answer:  Using Eqs. 18.2.9 and 18.2.10: 
 

 mixS = – ntotR 
i=1

ns

 yi ln yi = – 1.00 mol(8.3145 J K-1 mol-1)[0.80 ln 0.80 + 0.20 ln 0.20] 

         = 4.16 J K-1 

 

 mixG = – T mixS = – 298.15 K(4.16 J K-1)(1 kJ/1000 J) = -1.24 kJ mol-1 

 
 
35.  Carbon sequestration is a strategy for ameliorating global climate change caused by the 
build-up of CO2 in the atmosphere from fossil fuel combustion. However, the separation of CO2 
from exhaust gases requires work that will necessarily decrease the efficiency of the overall 
process. Assume that the O2 in air is replaced completely by CO2 during a combustion process. 
Calculate the minimum energy per mole of CO2 at constant temperature and pressure necessary 
to separate the CO2 from the remaining N2 at 298.15 K. Assume air is 20.9 mol% O2 and 79.1 
mol% N2. Anthracite coal can be modeled as pure graphite. Compare the energy required for the 
CO2 separation to the Gibbs energy of combustion of graphite. 
 
 
Answer:  For one total mole of air as a feed gas for a fossil fuel based power plant or automobile, 
assuming complete conversion of the O2 to CO2 gives a final exhaust gas that is 20.9 mol% CO2 
and 79.1 mol% N2. The negative of the Gibbs energy of mixing is the minimum work necessary 
to separate the CO2 from the N2: 
 

 mixG = ntotRT 
i=1

ns

 yi ln yi 

          = 1.00 mol(8.3145 J K-1 mol-1)(298.15 K)[0.209 ln 0.209 + 0.791 ln 0.791] 
          = -1.271 kJ 
 

Per mole of CO2 produced:  mixGm(CO2) = -1.271 kJ/0.209 mol = -6.08 kJ mol-1 of CO2. 
 

The energy required to separate the CO2 and N2 is then +6.08 kJ mol-1. The separation is likely to 
be facilitated using a ceramic membrane based on a zeolite-type molecular sieve material. The 
Gibbs energy of combustion of carbon graphite, by comparison, yields: 
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 C(graph) + O2 (g, 1 bar)  CO2 (g, 1 bar)  fG298 K  = -394.36 kJ mol-1 

 

The Gibbs energy of combustion of graphite is equivalent to the Gibbs energy of formation of 
CO2. The separation requires at least 1.5% of the energy produced by the combustion. The 
energy lost in separating CO2 from the exhaust stream is minimal under ideal conditions. 
However, the CO2 produced is at low pressure, 1 bar, and must be liquefied or otherwise 
compacted for disposal. 
 
 
36.  Find the fugacity coefficient for a gas that obeys the Virial equation of state, Eq. 7.5.10: 
z = 1 + (B(T)/RT) P. For CO2 at the critical temperature, 304.14 K, the second Virial coefficient 
is B(T) = -0.114 L mol-1. Calculate the fugacity coefficient for CO2 at 150 bar and 304.14 K, and 
compare to the result using Figure 16.7.1 (see Example 16.7.1). 
 
 
Answer:  The plan is to use Eq. 16.7.9 with the given Virial polynomial expansion for the 
compressibility factor. 
   Substituting the Virial expansion through the second Virial coefficient into Eq. 16.7.9 gives the 
integral as: 
 

 ln f/P = 



0

P

 
(z –1)

P  dP = 



0

P

 
B(T)
RT  dP = 

B(T)
RT  P 

 

With f =  P, then f/P = . For the given conditions: 
 

 ln  = 
-0.114 L mol-1

0.083145 bar L K-1 mol-1 304.14 K 150 bar = -0.6762 

  = 0.509 
 

The reduced temperature is TR = T/Tc = 1 and the reduced pressure is PR = P/Pc. The critical 
pressure for CO2 is 73.843 bar, giving PR = 150 bar/73.843 bar = 2.03. Reading the fugacity 
coefficient from Figure 16.7.1 gives   0.43. Our result of  = 0.509 is sufficiently close given 
that only the second Virial coefficient term was retained in this approximation. Notice when only 
the second Virial coefficient term is retained that ln  = z – 1. 
 
 
37.  A brief outline of carbon sequestration is given in Problem 32. One proposal for carbon 
sequestration is to pump liquid or super critical CO2 deep underground into abandoned oil wells 
that are sealed by salt domes. CO2 may be liquefied at temperatures less than the critical 
temperature and pressures greater than the critical pressure. For CO2 the critical temperature is 
304.14 K and the critical pressure is 73.843 bar. The critical pressure is the maximum vapor 
pressure for liquid CO2. At equilibrium, the chemical potential of the liquid is equal to the 
chemical potential of the vapor, *

CO2(l) = CO2(g). Find the chemical potential for CO2 vapor and 
liquid at the critical point, relative to the standard state, using Figure 16.7.1. Compare your 
results to the value assuming ideal gas behavior. 
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Answer:  Reading the fugacity coefficient from Figure 16.7.1 gives   0.666 for TR = 1.00 and 
PR = 1.00. Using Eq. 16.7.1 the chemical potential is given by: 
 

      for real CO2: 

  = A(g) + RT ln f/P = A(g) + RT ln P/P 
      = A(g) + 8.3145 J K-1 mol-1(304.14 K)(1 kJ/1000 J) ln[0.666(73.843 bar)/1 bar] 
      = A(g) + 9.85 kJ mol-1       (real) 
 

      for ideal CO2: 

  = A(g) + RT ln P/P = A(g) + 10.88 kJ mol-1    (ideal) 
 

Attractive intermolecular forces decrease the chemical potential of the real vapor and liquid as 
compared to the ideal vapor. Notice that in this problem we have not calculated the PV work 
necessary to condense CO2. However, we can use the fugacity coefficient as a general indication 
of the importance of intermolecular forces. 
 
 
38.  Carbon dioxide plays an important role in many geochemical processes, which often occur 
at high pressure. Calculate the reaction Gibbs energy at 50.0 bar and 298.2 K for: 
 

 CaCO3 (s)  CaO (s) + CO2 (g, P = 50.0 bar) 
 

Approximate the fugacity coefficient using: 
 

 ln   z – 1  (B(T)/RT) P 
 

where B(T) is the second Virial coefficient at the given temperature (see Problem 36 for the 
justification). For CO2 at 298.2 K, the second Virial coefficient is B(T) = -0.125 L mol-1. Neglect 
the effect of the pressure on the solids. Compare the results to the value assuming an ideal gas 
(Ch. 15, Problem 17). 
 
 
Answer:  Under standard state conditions: 
 

  CaCO3 (s)    CaO (s)    +  CO2 (g, P = 1 bar) 
         fG      -1128.8  -604.03 -394.36 kJ mol-1 
 

 rG  = 
i=1

ns

 ifG = [products] – [reactants] 

           = [(-394.36) + (-604.03)] – [-1128.8] kJ mol-1 = 130.41 kJ mol-1 
 

The Gibbs energy of each gaseous reactant and product is then adjusted for the new pressure: 
 

 rG = rG +  i RT ln fi/P    (i for gases only) 
 

The i are the stoichiometric coefficients for each gaseous reactant and product, with i negative 
for reactants. (See Chapter 20 for more information on non-standard state reaction Gibbs 
energies). For this reaction CO2 = 1 is the only gas: 
 

 rG = rG + RT ln f/P 
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For the given conditions: 
 

 ln  = 
-0.125 L mol-1

0.083145 bar L K-1 mol-1 298.15 K 50 bar = -0.2521 

  = 0.777 
 

 rG = rG + RT ln (0.777)(50.0 bar)/1 bar 

        = 130.41 kJ mol-1 + 8.3145 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 38.86 
        = 130.41 kJ mol-1 + 9.07 kJ mol-1 = 139.48 kJ mol-1 
 

The value assuming  = 1 is 140.11 kJ mol-1, as given in Ch. 15, Problem 17. 
 
 
39. (Challenge Problem) Consider a one-component open system:  dU = T dS – P dV +  dn, 
with the chemical potential given in terms of the natural variables for U by: 
 

  = 






U

n S,V
 

 

For practical problems we often treat the internal energy as a function of T and V, since we often 
work at constant temperature and constant volume (see Chapter 7). (a). Show using partial 
derivative conversions that: 
 

 dU =T dS – P dV +  dn = Cv dT + 






U

V T,n
dV + 







U

n T,V
dn 

 

(b). Determine dU for a constant temperature and volume process for an open system. 
 
 
Answer:  The plan is to find TdS and dn for an open system in terms of T, V, and n, and then 
substitute into dU =T dS – P dV +  dn. 
   Consider, first,  dn. The chemical potential is given in terms of the natural variables, 
U(S,V, n), by: 
 

 dU = 






U

S V,n
dS + 







U

V S,n
dV + 







U

n S,V
dn      1 

 

Dividing by dn at constant T and V gives the molar internal energy at constant temperature and 
volume: 
 

 






U

n T,V
 = 






U

S V,n
 






S

n T,V
 + 






U

n S,V
      2 

 

The internal energy derivative with respect to entropy is the thermodynamic force, 
(U/S)V,n = T. The last term, (U/n)S,V, is the chemical potential, . Solving for the chemical 
potential gives: 
 

  = 






U

n T,V
 – T 







S

n T,V
        3 
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We next need to find TdS, starting from the total differential of S in terms of T, V, and n: 
 

 dS = 






S

T V,n
dT + 







S

V T,n
 dV + 







S

n T,V
dn      4 

 

Note that the entropy change includes terms from the temperature change, the volume change, 
and the change in number of moles of substance. Note that (S/T)V,n = Cv/T. We can also use 
the Maxwell relationship, Eq. 16.4.10, (S/V)T,n = (P/T)V,n. Then, TdS is given by: 
 

 T dS = Cv dT + T 






P

T V,n
dV + T 







S

n T,V
dn      5 

 

Substituting Eqs. 3 and 5 into dU = T dS – P dV +  dn gives: 
 

 dU = Cv dT + T 






P

T V,n
dV + T 







S

n T,V
dn – P dV + 







U

n T,V
dn – T 







S

n T,V
 dn   6 

 

 dU = Cv dT + T 






P

T V,n
dV – P dV + 







U

n T,V
dn     7 

 

Distributing out the common factor of dV gives: 
 

 dU = CvdT + 








 – P + T 






P

T V,n
 dV + 







U

n T,V
dn     8 

 

The term in brackets is the thermodynamic equation of state for the internal energy, (U/V)T,n, 
Eq. 16.5.5: 
 

 dU = Cv dT + 






U

V T,n
dV + 







U

n T,V
dn      9 

 

This derivation shows that dU = T dS – P dV +  dn and Eq. 9 are consistent and can be derived 
from each other. The derivation of Eqs. 4 and 5 show that both the TdS and the  dn terms 
depend on the change in number of moles of the substance. 
 

(b). At constant temperature and volume, Eq. 9 reduces to: 
 

 dU = 






U

n T,V
dn      (cst. T&V)  10 

 

where the partial derivative is the well-known molar internal energy of the substance. For a 
chemical reaction, the molar internal energy of the products minus the reactants gives the 
conventional rU. 
 
 
40. (Challenge Problem)  The molar absolute entropies of substances that are listed in reference 
tables are given by: 
 

 Sm = 






S

n T,P
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since reference tabulations assume constant temperature and pressure. Consider a single 
component system. The enthalpy change for a general process in terms of the natural variables is: 
 

 dH = T dS + V dP +  dn 
 

The TdS term, however, is more complicated than it might first appear. Show that: 
 

 T dS = Cp dT – T 






V

T P,n
 dP + T Sm dn 

 
 
Answer:  The plan is to write the total differential of S as a function of T, P, and n, and then use a 
Maxwell Relationship for one of the entropy derivatives. 
   Starting from the total differential of the entropy in terms of T, P, and n: 
 

 dS = 






S

T P,n
dT + 







S

P T,n
 dP + 







S

n T,P
dn     1 

 

Note that (S/T)P,n = Cp/T. We can also use the Maxwell relationship, Eq. 16.4.11, 
(S/P)T,n = – (V/T)P,n and the definition of the molar entropy, (S/n)T,P = Sm. Substituting 
these values into Eq. 1 gives TdS as: 
 

 T dS = Cp dT – T 






V

T P,n
 dP + T Sm dn     2 

 

which can also be expressed as: 
 

 T dS = Cp dT – TV dP + T Sm dn      3 
 

Eqs. 2 and 3 show that both the TdS and  dn terms depend on the change in number of moles of 
the substance. 
 
 
41. (Challenge Problem)  (a).  Starting with the result for TdS from the last problem, show that 
for a general process in an open system with one component: 
 

 dH = Cp dT + 






H

P T,n
 dP + T Sm dn +  dn 

 

(b).  The molar enthalpies for substances that are listed in reference tables are given by: 
 

 Hm = 






H

n T,P
 

 

Show that  = 






H

n T,P
 – T Sm 

 

(c).  Combine the expressions in parts (a) and (b) and compare to the general total differential of 
H(T,P,n). 
 

(d).  Find dH for a constant temperature and pressure process in an open system with one 
component. 
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Answer:  (a).  Substituting Eq. 2 from the last problem into dH = T dS + V dP +  dn  gives: 
 

 dH = Cp dT – T 






V

T P,n
 dP + T Sm dn + V dP +  dn 

 

Factoring out the common factor of dP gives: 
 

 dH = Cp dT + 








V – T 






V

T P,n
 dP + T Sm dn +  dn 

 

The term in brackets is the thermodynamic equation of state for the enthalpy, (H/P)T,n, Eq. 
16.5.11: 
 

 dH = Cp dT + 






H

P T,n
 dP + T Sm dn +  dn 

 

(b).  The chemical potential, based on the enthalpy is given by Eq. 16.6.14 as: 
 

  = 






H

n S,P
 

 

since the natural variables for H are S and P. The conventional molar enthalpy of a substance 
listed in reference tables, (H/n)T,P, is at constant T and P, however. The “misplaced” variable 
is the constant T. To find the conventional molar enthalpy, we work from the total differential of 
H with respect to the natural variables: 
 

 dH = 






H

S P,n
 dS + 







H

P S,n
 dP + 







H

n S,P
dn 

 

Dividing by dn at constant T and P gives the conventional molar enthalpy: 
 

 






H

n T,P
 = 






H

S P,n
 






S

n T,P
 + 






H

n S,P
 

 

The first partial on the right of the equality is the thermodynamic force, (H/S)P,n = T. The 
entropy derivative is the conventional molar entropy Sm. The last term is the chemical potential. 
Solving for the chemical potential gives: 
 

  = 






H

n T,P
 – T Sm 

 

This last expression can also be written as  = Hm – T Sm, as expected from the definition, 
G  H – TS. This expression was also proved in Problem 33, Eq. 1 or Eq. 3. 
 

(c).  Combining this last expression for the chemical potential with dH from part (a) gives: 
 

 dH = Cp dT + 






H

P T,n
 dP + T Sm dn + 







H

n T,P
 dn – T Sm dn 

 dH = Cp dT + 






H

P T,n
 dP + 







H

n T,P
 dn 
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Substituting the definition of Cp  (H/T)P,n back into this last expression gives: 
 

 dH = 






H

T P,n
 dT + 







H

P T,n
 dP + 







H

n T,P
 dn 

 

This result, which was derived from dH = T dS + V dP +  dn, is the general total differential of 
the enthalpy with respect to independent variables T, P and n. This equality shows that dH 
derived from H(S,P,n) and H(T,P,n) are equivalent, as they must be. 
 

(d).  At constant T and P, dH reduces to: 
 

 dH =






H

n T,P
 dn = Hm dn 

 

where (H/n)T,P  Hm is the conventional molar enthalpy of the substance as found in standard 
reference tables. While these results are intuitive and expected, the interpretation of the TdS term 
in dH = T dS + V dP +  dn and the relationship to the constant temperature and pressure molar 
enthalpy is a common source of confusion, even for experienced physical chemists. 
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Chapter 17 Problems: Phase Transitions in Pure Substances 
 
1.  Prove that the dependence of the freezing point on the pressure for a pure substance for large 
changes in pressure is given by: 
 

 T = Tm e
P ∆fusVi/∆fusHi 

 
 
Answer:  The plan is to integrate Eq. 17.1.8 without assuming the temperature on the right side of 
the equation is constant. 
   Separating variables in Eq. 17.1.8 and specifying the melting or fusion phase transition: 
 

 
dP
dT = 

∆fusHi

T ∆fusVi
  gives dP = 

∆fusHi

T ∆fusVi
 dT 

 

Integration from an initial pressure of Po and initial melting point of Tm to a final pressure of P 
gives: 
 

 Po

P
 dP = 




Tm

T

 
∆fusHi

T ∆fusVi
 dT 

 

Assuming that ∆fusHi and ∆fusVi are constant over the pressure and temperature range gives: 
 

 P = 
∆fusHi

∆fusVi
  ln T/Tm  or ln T/Tm = 

P ∆fusVi

∆fusHi
 

 

Solving for the new melting point, T, gives: 
 

 T = Tm e
P ∆fusVi/∆fusHi 

 

The temperature change, T = T – Tm, is given by: 
 

 T = Tm (e
P ∆fusVi/∆fusHi – 1) 

 

Note that for small pressure changes, the exponential term can be approximated using a Taylor 
expansion, ex  1 + x, and the last equation reduces to Eq. 17.1.24. 
 
 
2.  Calculate the change in the melting point for water ice for an increase in pressure of 10.00 bar 
starting from the melting point at 1.00 bar. The densities of water and ice at 0.00ºC are 1.000 g 
cm-3 and 0.917 g cm-3, respectively. The enthalpy of fusion is 6.008 kJ mol-1 at 273.15 K. 
 
 
Answer:  The change in molar volume on melting is: 
 

 fusVm = 18.02 g mol-1





1

1.000 g cm-3 – 
1

0.917 g cm-3  = -1.63 cm3 mol-1 

  = -1.63x10-6 m3 mol-1 
 

Note that 10.00 bar = 1.000x106 Pa. The change in melting point is then: 
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 T = 
T*

m fusVm

fusHm
 P = 

273.15 K (-1.63x10-6 m3 mol-1)
6.008x103 J mol-1  (1.000x106 Pa) 

       =  -0.074 K 
 
 
3.  The vapor pressure of acetone is 0.377 bar at 30.0C and 0.817 bar at 50.0C. Calculate (a) 
the enthalpy of vaporization of acetone and (b) the normal boiling point. 
 
 
Answer:  The plan is to use the Clausius-Clapeyron equation to find the enthalpy of the phase 
transition and then again to find the temperature at which the vapor pressure is 1.00 atm. 
(a). The Clausius-Clapeyron equation is: 
 

 ln



P2

P1
 = – 

vapHm

R  



1

T2
 – 

1
T1

 or ln



0.817

0.377  = – 
vapHm

R  



1

323.15
 – 

1
303.15

 
 

Giving: 0.7734 = – 
vapHm

R  (-2.042x10-4 K-1) 
 

Make sure to keep sufficient significant figures for the temperature dependent term. Solving for 
the enthalpy change: 
 

 vapHm = – 
0.7734

-2.042x10-4 K-1 (8.314 J K-1 mol-1) = 3.149x104 J mol-1 = 31.5 kJ mol-1 
 

(b).  The normal boiling point is the temperature where the vapor pressure is equal to 1.00 atm = 
1.0132 bar. We can use either of the data points given in the problem and the Clausius-Clapeyron 
equation. Using the given vapor pressure at the warmer temperature, since it is closest to the 
normal boiling point: 
 

 ln



1.0132

0.817  = – 
vapHm

R  



1

T2
 – 

1
323.15

 = – 
3.149x104 J mol-1

8.314 J K-1 mol-1  



1

T2
 – 

1
323.15

 
 

which gives: 
 

 0.2152 = -3.788x103 K-1





1

T2
 – 3.0945x10-3 K-1  

 1/T2 = 3.0378x10-3 K-1 
Solving for the boiling point gives:  T2 = 329.20 K = 56.0C 
 
 
4.  The normal boiling point of methanol is 64.05C. The vapor pressure of methanol at 20.00C 
is 0.1530 bar. Calculate the enthalpy of vaporization of methanol. 
 
 
Answer:  The plan is to use the Clausius-Clapeyron equation to find the enthalpy of the phase 
transition, given that the normal boiling point is the temperature that gives a vapor pressure of 
1.000 atm (1.01325 bar). 
(a). The Clausius-Clapeyron equation is: 
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 ln



P2

P1
 = – 

vapHm

R  



1

T2
 – 

1
T1

 or ln



1.01325

0.153  = – 
vapHm

R  



1

337.20 – 
1

293.15  
 

Giving: 1.8904 = – 
vapHm

R  (-4.45624x10-4 K-1) 
 

Make sure to keep sufficient significant figures for the temperature dependent term. Solving for 
the enthalpy change: 
 

 vapHm = – 
1.8904

 -4.45624x10-4 K-1 (8.314 J K-1 mol-1) = 3.5269x104 J mol-1 = 35.27 kJ mol-1 

 
 
5.  The vapor pressure of solid CsI at several temperatures is given in the following table. 
Calculate the enthalpy of sublimation of CsI. 
 

T (K) 767.2 801.8 816.3 830.3 846.8 
P/10-6 (bar) 2.03 7.45 12.5 20.5 36.4 

 
 
Answer:  Sublimation follows the Clausius-Clapeyron equation using the molar enthalpy of 
sublimation. The following spreadsheet and plot were constructed: 
 

 

T (K) P/10-6 (bar) 1/T (K-1) ln P 
767.2 2.03 0.001303 -13.1075 
801.8 7.45 0.001247 -11.8073 
816.3 12.5 0.001225 -11.2898 
830.3 20.5 0.001204 -10.7951 
846.8 36.4 0.001181 -10.2209 

 

slope -23509.9 17.52472 intercept 

 171.5568 0.211513  

r2 0.99984 0.016052 st.dev. y 

F 18779.64 3 df 

ssreg 4.839104 0.000773 ssresid 
 

 
 

 

The slope has three significant figures, and slope = – subHm/R, giving: 
 

 subHm = – (-23509.9 K)(8.314 J K-1 mol-1) = 1.95x105 J mol-1= 195. kJ mol-1 
 

This result is very large compared to moderate molar mass organic compounds. 
 
 
6.  The vapor pressure of ethanol as a function of temperature is given in the table below. 
Determine the enthalpy of vaporization of ethanol. Calculate the standard boiling point of 
ethanol. 
 

T (C) -2.3 19.0 34.9 63.5 78.4 
Pvap (mbar) 13.3 53.3 133.3 533.3 1013. 
Pvap (mm Hg) 10.0 40.0 100.0 400.0 760.0 

y = -23510x + 17.525
R2 = 0.9998

-13.5

-12.5

-11.5

-10.5

0.00115 0.0012 0.00125 0.0013 0.00135

1/T (K-1)

ln
 P
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Answer:  The plan is to use the Clausius-Clapeyron equation in its linear form to find the 
enthalpy of vaporization from a plot of ln P vs. 1/T. The enthalpy of vaporization is then used to 
find the vapor pressure at 1.00 bar to give the standard boiling point. 
   Any units may be used for the pressure. The following spreadsheet was developed. 
 

 

T (°C) T (K) Pvap (mbar) 1/T (K-1) ln Pvap 
-2.3 270.85 13.3 0.003692 2.5878 

19 292.15 53.3 0.003423 3.9759 
34.9 308.05 133.3 0.003246 4.8926 
63.5 336.65 533.3 0.00297 6.2791 
78.4 351.55 1013 0.002845 6.9207 

 
slope -5108.1 21.45713 intercept 

 18.43946 0.059922  

r2 0.999961 0.012598 st.dev. y 

F 76740.03 3 df 

ssreg 12.18002 0.000476 ssresid 
 

 

 

 
 

 
The slope has three significant figures, and slope = – subHm/R, giving: 
 

 vapHm = – (-5108.1 K)(8.314 J K-1 mol-1) = 4.247x104 J mol-1= 42.47 kJ mol-1 
 

   The Clausius-Clapeyron equation for two data points is: 
 

 ln



P2

P1
 = – 

vapHm

R  



1

T2
 – 

1
T1

 
 

The normal boiling point, which corresponds to 1.01325 bar, is 351.55 K. Applying the Clausius-
Clapeyron equation from 351.55 K and 1.01325 bar to a final pressure of 1.000 bar gives: 
 

 ln



1.000

1.01325  = – 
4.247x104 J mol-1

8.3145 J K-1 mol-1 



1

T*
b
 – 

1
351.55 K  

 

 -0.013163/-5108.1 = 



1

T*
b
 – 2.84455x10-3 K   T*

b = 351.52 K = 78.4C 
 

The difference between the normal boiling point and standard boiling point is within 
experimental error for ethanol. 
 
 
7.  The vapor pressure of benzoic acid is 0.133 bar at 186.2C and 0.533 bar at 227.0C. 
Calculate the standard boiling point. 
 
 
Answer:  The plan is to calculate the enthalpy of vaporization using the Clausius-Clapeyron 
equation, and then use the same equation to calculate the temperature for which the vapor 
pressure is 1.000 bar. 
   The Clausius-Clapeyron equation is: 
 

y = -5108.1x + 21.457
R² = 1

0

1

2

3

4

5

6

7

8

0.0027 0.00295 0.0032 0.00345 0.0037

ln
 P

va
p

1/T (K-1)
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 ln



P2

P1
 = – 

vapHm

R  



1

T2
 – 

1
T1

 or ln



0.533

0.133  = – 
vapHm

R  



1

500.2 K – 
1

459.4 K  
 

Giving: 1.388 = – 
vapHm

R  (-1.7775x10-4 K-1) 
 

Make sure to keep sufficient significant figures for the temperature dependent term. Solving for 
the enthalpy change: 
 

 vapHm = – 
0.7651

 -1.7775x10-4 K-1 (8.3145 J K-1 mol-1) = 6.493x104 J mol-1 = 64.93 kJ mol-1 
 

Applying the Clausius-Clapeyron equation from 227.0C and 0.533 bar to a final pressure of 
1.000 bar gives: 
 

 ln



1.000

0.533  = – 
6.493x104 J mol-1

8.3145 J K-1 mol-1 



1

T*
b
 – 

1
500.2 K  

 

 -0.6292/7809.7 = 



1

T*
b
 – 1.9992x10-3 K   T*

b = 521.1 K = 247.9C 

 
 
8.  For methanol, the enthalpy of fusion is 3.215 kJ mol-1 and the volume change on melting is 
2.75 mL mol-1 at the standard melting point of 175.59 K.1 The enthalpy of vaporization is 35.21 
kJ mol-1 at the standard boiling point of 337.8 K. Estimate the triple point temperature and 
pressure for methanol. Assume constant transition enthalpies over the temperature range. [Hint: 
you may use the Goal Seek option in Excel.] 
 
 
Answer:  The triple point is at the intersection of the melting curve and the vapor pressure curve. 
The plan is to find the temperature that gives the same equilibrium phase transition pressures for 
melting and vaporization. The Clausius-Clapeyron equation, Eq. 17.1.14, is used to find the 
vapor pressure at the given temperature. Eq. 17.1.24 is used to find the pressure necessary for the 
melting temperature to equal the given temperature. 
   Note that P = 1.00 bar = 1.000x105 Pa with the corresponding standard melting point, Tm, and 
standard boiling point Tb. The change in melting point is then: 
 

 T = 
Tm fusVi

fusHi
 P   or P = P + (T – Tm)/K    1 

 

with the constant K given by: 
 

 K = 
Tm fusVi

fusHi
 = 

175.59 K (2.75x10-6 m3 mol-1)
3.215x103 J mol-1  = 1.502x10-7 K Pa-1   2 

 

The Clausius-Clapeyron equation, with the reference pressure at P, is given by Eq. 17.1.14: 
 

 P = P e
– 

∆trHi

R  
1
T – 

1
Tb  = 1x105 Pa  e

– 
35.31x103 J mol-1

8.3145 J K-1 mol-1( )1
T – 

1
337.8 K    3 
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A spreadsheet was written to do these two calculations at a variable input temperature (in cell 
C12). This temperature was changed until the calculated vapor pressure and equilibrium melting 
pressure were equal. 
 

A1 B C D E 

2     
3 fusH 3.215 kJ mol-1  
4 fusV 2.75 mL mol-1  
5 Tmelt° 175.59 K  
6 K 1.50194E-07 K Pa-1  
7     
8 vapH 35.21 kJ mol-1  
9 Tb° 337.8 K  
10 R 8.3145 J K-1 mol-1  
11     
12 T 175.5749808 K  change this value 
13 Pmelt 0.93221509 Pa  
14 Pvap 0.932215156 Pa  
15 P -6.6131E-08 Pa  to get a small pressure difference 

 

The equation for the melting constant, K , in cell C6 is “=C5*C4*1E-6/(C3*1000)”. In cell C13 
is Eq. 1 for the equilibrium melting pressure: “=1E5+(C12-C5)/C6”. In cell C14 is Eq. 3 for the 
vapor pressure: “=1E5*exp(-C8*1000/C10*(1/C12-1/C9))”. The search for the triple point can 
be easily implemented using the Goal Seek option. The Goal Seek option is accessed from the 
Data tab and “What If Analysis”: 
 

   
 

The Goal Seek option uses linear iteration to find the best value. You must be careful, however, 
to ensure that the calculation has converged. The convergence criteria are given in the Excel 
options window, which is accessed by clicking on the “Office button”. For this calculation, the 
maximum change was decreased from the default value of 0.001 to a more precise setting of 
0.00001, as shown below: 
 

 
 

The final result is at 0.923 Pa and 175.57 K, only slightly less than the standard melting point. 
The literature value for the triple point is 175.5 K. The triple point is only slightly different than 
the standard melting point because the P vs. T curve for the melting transition is very steep. That 
is, the curve has a large slope of 1/K = 6.7x106 Pa K-1 resulting in small melting point changes 
even for large changes in pressure. 
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9.  The sublimation pressure versus temperature of ammonia is ln P = 23.03 – 3754./T. The 
vapor pressure of liquid ammonia is ln P = 19.49 – 3063./T. (a)  Find the enthalpy of sublimation 
and the enthalpy of vaporization. (b).  Calculate the triple point for ammonia. (c).  Find the 
enthalpy of fusion at the triple point. 2 
 
 
Answer:  (a).  The Clausius-Clapeyron equation, Eq. 17.1.16, is: 
 

 ln P = – trHi/R (1/T) + b. 
 

giving for sublimation:  – subHi/R = – 3754.  or subHi = 31.21 kJ mol-1 
and for vaporization:    – vapHi/R = – 3063.  or vapHi = 25.47 kJ mol-1 
 

(b).  At the triple point solid, liquid, and vapor are in equilibrium. The sublimation pressure and 
the vapor pressure of the liquid are equal: 
 

 23.03 – 3754./Ttp = 19.49 – 3063./Ttp 

 3.54 = 691./Ttp 
 

Solving for the triple point gives: Ttp = 195. K. 
(c).  At the triple point the solid, liquid, and vapor are in equilibrium. The enthalpies of the phase 
transitions are state functions and independent of the path: 
 

  fusHi       vapHi      subHi 
 NH3 (s)   NH3 (l)  NH3(g) is equivalent to  NH3 (s)   NH3 (g) 
 

giving:              subHi = fusHi + vapHi 
 31.21 kJ mol-1 = fusHi + 25.47 kJ mol-1 
 fusHi = 31.21 kJ mol-1 – 25.47 kJ mol-1 = 5.74 kJ mol-1  at 195. K 
 
 
10.  Integrate the differential form of the Clausius-Clapeyron equation: 
 

 d lnP = 
trHi

RT2  dT 
 

from an initial temperature of To to a final temperature of T. In this equation T is the equilibrium 
phase transition temperature at the given pressure. Assume the phase transition has a molar 
enthalpy change given by: 
 

 trHi,T = trHi,To + trCp,i (T – To) 
 

where trCp,m is the change in heat capacity for the phase transition, which is assumed to be a 
constant. Show that the result is: 
 

 ln



P

Po
 = – 

trHi,To

R  



1

T – 
1
To

 + 
trCp,i

R  ln



T

To
 + 
trCp,iTo

R  



1

T – 
1
To
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Answer:  Substituting the temperature dependent enthalpy change into the Clausius-Clapeyron 
equation gives: 
 

 d lnP = 
trHi,To

RT2  dT + 
trCp,i

RT  dT – 
trCp,iTo

RT2  dT 
 

Applying the integration limits: 
 

 To

T
d lnP = 





To

T trHi,To

RT2  dT + 




To

T trCp,i

RT  dT – 




To

T trCp,iTo

RT2  dT 

 

Factoring out the constants gives: 
 

 ln



P

Po
 = 
trHi,To

R 


To

T

 
1
T2 dT + 

trCp,i

R  



To

T

 
1
T dT – 

trCp,iTo

R  



To

T

 
1
T2 dT 

 

The integrals are then: 
 

 ln



P

Po
 = – 

trHi,To

R  



1

T – 
1
To

 + 
trCp,i

R  ln



T

To
 + 
trCp,iTo

R  



1

T – 
1
To

 
 

Note that the first and last terms may be combined: 
 

 ln



P

Po
 = – 

(trHi,To
 – To trCp,i)

R  



1

T – 
1
To

 + 
trCp,i

R  ln



T

To
  

 

Grouping all the terms in Po and To together into a constant, a, gives: 
 

 ln P = a – 
b
T  – c ln T 

 

where b = (trHi,To – TotrCp,m)/R and c = – trCp,i/R. Reference handbooks sometimes list the 
vapor pressure of liquids in this form. 
 
 
11.  Reference handbooks sometimes list the vapor pressure of liquids in the form: 
 

 ln P = A – 
B
T  – C ln T + D T 

 

Show that the result from the last problem can be rewritten in this form. Use General Pattern 
4: Exponential Temperature Dependence as a guide. 
 
 
Answer:  Note that taking a common denominator in the temperature dependent portion of the 
last term from Problem 6 and approximating TTo  To

2 gives: 
 

 
trCp,mTo

R  



1

T – 
1
To

 = 
trCp,mTo

R  



To – T

TTo
  
trCp,mTo

R  



To – T

To
2   – 

trCp,m

RTo
 (T – To) 

 

The last term from Problem 6 can then be rewritten as: 
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 ln



P

Po
 = – 

trHm,To

R  



1

T – 
1
To

 + 
trCp,m

R  ln



T

To
 – 
trCp,m

RTo
 (T – To)  

 

Grouping all the terms in Po and To together into a constant A gives: 
 

 ln P = A – 
trHm,To

RT   + 
trCp,m

R  ln T – 
trCp,m

RTo
 T 

 

Compariong the reference handbook form with this last equation gives: 
 

 ln P = A – 
B
T  – C ln T + D T 

 

Comparison shows that  B = 
trHm,To

R  , C = – 
trCp,m

R  , and D = – 
trCp,m

RTo
 

 
 
12.  Long’s Peak in the Colorado Rocky Mountains is 3962. m high. What is the boiling point of 
water at this altitude? Assume a constant temperature of 20.0C (see Problem 1.15) and the 
pressure at sea level is 1.00 atm. The enthalpy of vaporization of water is 42.00 kJ mol-1. 
 
 
Answer:  Assuming the atmospheric pressure at sea level is 1 atm and the mole fraction averaged 
molar mass of air is 28.8 g mol-1 gives the barometric formula as: 
 

 



–Mgas g h

RT   =  
–28.8x10-3 kg(9.807 m s-2)(3962. m)

8.3145 J mol-1 K-1(293.15 K)   =  –0.4591 

 P = Po e
 

–Mgas g h
RT  = 1.00 atm e-0.4591 = 0.632 atm 

 

The enthalpy of vaporization of water at 100C is vapH = 42.00 kJ mol-1. The boiling point is 
the temperature that gives the vapor pressure equal to the ambient pressure. Applying the 
Clausius-Clapeyron equation from 100.0C and 1.00 atm to a final pressure of 0.632 atm: 
 

 ln



0.632

1.00  = – 
4.200x104 J mol-1

8.3145 J K-1 mol-1 



1

T*
b
 – 

1
373.2 K  

 

 0.4589/5051.4 = 



1

T*
b
 – 2.6799x10-3 K   T*

b = 360.9 K = 87.8C 

 
 
13.  For non-ideal gases, from Eq. 7.5.2, PV = z nRT. Find the corresponding integrated form of 
the Clausius-Clapeyron equation for liquid-vapor or solid-vapor equilibrium. In other words, 
correct Eq. 17.1.13 for vapor non-ideality. Assume z and ∆trHm are constant over the 
temperature range for the integration. 
 
 
Answer:  For non-ideal gases, from Eq. 7.5.2, PV = z nRT and Eq. 17.1.9 is corrected to give: 
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 ∆trVm  Vm(vapor) = 
z RT

P          (equilibrium) 1 
 

Substituting this last relationship into the Clapeyron equation gives: 
 

 
dP
dT = 

∆trHm P
zRT2            (equilibrium) 2 

 

Separating variables gives: 
 

 
dP
P  = 

∆trHm

zRT2  dT           (equilibrium) 3 
 

Integrating Eq. 3 assuming both ∆trHm and z are constant over the temperature range: 
 

 ln



P2

P1
 = – 

∆trHm

zR  



1

T2
 – 

1
T1

        (equilibrium, cst. z & ∆trHm) 4 
 

or alternatively, a plot of ln P versus 1/T gives a straight line with slope – ∆ trHm/(zR). 
 
 
14.  Calculate the vapor pressure of methanol at 20.0C under a total ambient pressure of 
10.0 bar of air. The vapor pressure of methanol at 20.00C is 0.1530 bar, under its own vapor 
pressure. 
 
Answer:  The plan is to use Eq. 17.1.31 to determine the vapor pressure under the ambient 
conditions. 
   The molar volume of pure liquid methanol is VMeOH = M/d = 32.04 g mol-1/0.791 g mL-1 = 
40.51 mL mol-1 = 4.051x10-5 m3 mol-1.  

 ln 
Pβ,2

Pβ,1
 = 

Vi()
RT  (P2– P1) 

 

 ln 
Pβ,2

 0.1530 bar = 
4.051x10-5 m3 mol-1

8.3145 J K-1 mol-1(293.15 K) (10.0 bar – 0.1530 bar)(1x105Pa/1 bar) 

            = 0.01637  

 P,2 = 0.1555 bar 
 

In torr the new pressure is 116.7 torr and the vapor pressure under pure vapor is 114.8 torr, 
which is roughly a 2% difference. 
 
 
15.  Particulates released from volcanic eruptions can be a significant source of heavy metals in 
the environment. The magma under a volcano is at high temperature and total pressure. Under 
these circumstances, normally non-volatile substances can have a significant vapor pressure. 
NaCl and heavy metal chlorides are found in the vapor phase at high total pressure as volatile 
molecular species. The concentration of Pb in the minerals formed from the vapor phase in a 
volcano is much higher than in the original magma. At high pressure, the vapor above a magma 
is non-ideal and the fugacity must be used. Eq. 17.1.30 assumes the vapor behaves as an ideal 
gas. Let P,o be the vapor pressure of the pure liquid under its pure vapor pressure. Assume the 
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pure vapor pressure at the given temperature is sufficiently small that the pure vapor is ideal, 
giving f,o = P,o. Show that the fugacity of the vapor, f, in equilibrium with the pure liquid at the 
elevated total pressure, P, is then: 
 

 ln 
fβ

Pβ,o
 = 

Vi()
RT  (P – P,o) 

 
Answer:  The plan is to repeat the derivation of Eqs. 17.1.24-17.1.29, but with the partial vapor 
pressure replaced by the fugacity, i (g) = i(g) + RT ln fβ/P. 
   Consider the partial vapor pressure of a substance, Pβ, with a total applied pressure of P. At 
constant temperature, from Eq. 17.1.26: 
 

 Vi() dP = di(,P',T')    (equilibrium, cst. T) (17.1.26) 
 

The chemical potential of the real vapor is dependent on the fugacity of the vapor above the 
liquid, Eq. 16.6.20: 
 

 i (g) = i(g) + RT ln fβ/P       1 
 

The change in chemical potential is given as: 
 

 di (g) = RT d ln fβ        2 
 

Substitution of this last equation into Eq. 17.1.26 gives the dependence of the fugacity on applied 
pressure: 
 

 RT d ln fβ = Vi() dP      (equilibrium, cst. T)  3 
 

Integration of this last equation from the initial vapor fugacity fβ,1 and applied pressure P1 to the 
final vapor fugacity fβ,2 and applied pressure P2, assuming that the molar volume of the liquid is 
constant, gives: 
 

 ln 
fβ,2

fβ,1
 = 

Vi()
RT  (P2– P1)       (equilibrium, cst. T)  4 

 

Let P1 be the vapor pressure of the liquid under its pure vapor pressure, P1 = P,o. Assume the 
pure vapor pressure at the given temperature is sufficiently small that the pure vapor is 
essentially ideal, then f,o = P,o. The fugacity of the vapor, f, at the elevated total pressure, P, is 
then: 
 

 ln 
fβ

Pβ,o
 = 

Vi()
RT  (P – P,o)  (equilibrium, P,o small, cst. T) 5 

 

The vapor phase above magmas is composed primarily of water vapor and CO2. Water at high 
temperature, and especially above the critical point, is much less polar than at room temperature. 
The decreased polarity of water decreases the degree of dissociation of electrolytes. The 
interaction of NaCl and heavy metal molecular chlorides with water vapor is strong, which gives 
small fugacity coefficients. The fugacity is given by f =  P. However, Eq. 5 fixes the value of 
the fugacity, so that a small fugacity coefficient increases the partial vapor pressure: 
P = f/. The partial vapor pressure above the liquid is increased by both the increase in total 
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pressure and favorable interactions with the other vapor phase components. Lead is considered a 
“volatile” element by volcanologists. 
16.  Redraw Figure 17.1.1 for water. 
 
 
Answer:  The slope of the chemical potential versus temperature at constant pressure is the 
negative of the entropy for each individual phase. So Figure 17.1.1a is qualitatively correct for 
water. An increase in pressure increases the chemical potential of each phase, proportional to the 
pure molar volume of the phase, through the molar thermodynamic force: 
 

 



∂i

∂P T
= Vi 

 

For water, VH2O(s) > VH2O(l), because of the open structure caused by the extensive network of 
hydrogen bonds in the solid. The increase in chemical potential for solid water is greater than for 
liquid water. The melting and boiling points are at the intersections of the new chemical potential 
curves. The result is a decrease in melting point and an increase in boiling point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
17.  Some property needs to be discontinuous to observe a phase transition. What property is 
discontinuous in a pure Ehrenfest second-order phase transition? 
 
 
Answer:  The heat capacity curve as a function of temperature is discontinuous for a second-
order phase transition. For a first-order phase transition, the entropy as a function of temperature 
is discontinuous. 
 
 
18.  Find the difference in slope across the melting transition for the chemical potential versus 
temperature curve, (∂tr/∂T)P , at standard pressure. 
 
 
 
 
 
 solid liquid 

∂tr
∂T

P
 

 

T Tm 

solid liquid vapor 

∂(s)
∂T

P
= – Si(s) 

∂(l)
∂T

P
= – Si(l) 

∂(g)
∂T

P
= – Si(g) 

 

T Tm Tb 

Vi(s) > Vi(l) ∂i

∂P
T
= Vi  

T Tm Tb T'm T'b 
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Answer:  The plan is to use Eq. 17.2.3 and reference tabulations. 
   Rearranging Eq. 17.2.3 to find the difference in slope across the phase transition gives: 
 

 



∂tr

∂T P
 = –trSi 

 

The standard transition temperature is 273.15 K for water, where trSH2O = SH2O (l) – SH2O (s) = 
22.00 J K-1 mol-1 and the corresponding difference in slope is -22.00 J K-1 mol-1. Liquid water 
has higher entropy than solid water and then a more negative slope. 
 
 
19.  Draw the chemical potential versus pressure curves for the solid, liquid, and vapor phases of 
a pure substance, at constant temperature. Assume that Vi(s) < Vi(l).  Describe the process that 
occurs at the intersection of the chemical potential curves. 
 
 
Answer:  The slope of the chemical potential versus pressure is given by the molar 
thermodynamic force: 
 

 



∂i

∂P T
= Vi 

 

The chemical potential of a substance increases with pressure. The assumption that Vi(s) < Vi(l), 
which corresponds to a “normal” substance, shows that the slope of the liquid curve is greater 
than the solid. The solid phase is the stable phase at high pressure: 
 
 
 
 
 
 
 
 
 
 
   Starting at low pressure, as the pressure is increased, when the pressure exceeds the 
equilibrium vapor pressure at the chosen temperature, the liquid phase is more stable. The chosen 
constant temperature is the equilibrium melting point at a specific pressure, Pmelt. When the 
pressure exceeds Pmelt, the solid phase is the stable phase. The intersection of the vapor and 
liquid curves is the equilibrium boiling point at applied pressure Pvap. The intersection of the 
liquid and solid curves is the equilibrium melting point at applied pressure Pmelt. 
 
 
20.  (a). Sketch the chemical potential curves versus temperature for the solid, liquid, and vapor 
phases of substance at a constant pressure below the triple point and (b) for a substance at the 
triple point pressure. 

solid liquid vapor 

∂(s)
∂P

T
= Vi(s) ∂(l)

∂P
T
= Vi(l) 

∂(g)
∂P

T
= Vi(g) 

 

P Pmelt Pvap 

cst. T 
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Answer:  The plan is to redraw Figure 17.1.1a for (a) the direct transition from the solid to the 
vapor phase with no intersection with the liquid line, and (b) for a system where the chemical 
potential of all three phases is equal at the triple point temperature, Ttp. 
   The slope of the chemical potential versus temperature at constant pressure is the negative of 
the entropy for each individual phase. So the slopes in Figure 17.1.1a are qualitatively correct. 
However, for pressures below the triple point pressure, the chemical potential of the liquid phase 
must be higher than either the solid or the vapor throughout the temperature range, otherwise the 
liquid phase will form. The equilibrium sublimation temperature, Tsub, and triple points are at the 
intersections of the new chemical potential curves, Figure P17.1. 
 
 
 
 
 
 
 
 
 

(a) below triple point pressure   (b). at the triple point pressure 
 

Figure P17.1: The chemical potential versus temperature for a substance (a). below the triple 
point pressure, and (b). at the triple point pressure. 

 
 
21.  If first-order phase transitions are “completely cooperative,” how can two-phase systems 
exist at equilibrium? For example, how can ice and liquid water coexist at equilibrium at the 
equilibrium phase transition temperature? 
 
 
Answer:  First-order phase transitions are completely cooperative. The molecules cooperate with 
each other in gaining new motional freedom; when one molecule gains motional energy then 
other nearby molecules find it easier to add motional energy. The motions of the molecules are 
correlated throughout the phase at the phase transition temperature. However, first-order phase 
transitions have a finite enthalpy for the phase transition (or so-called latent heat). Energy 
transfer from the surroundings is necessary for the phase transition to occur. Thermal energy is 
the “limiting reagent” for the phase transition. Once energy is transferred into the two-phase 
system from the surroundings, additional molecules can make the phase transition, without an 
increase in temperature. In a first-order phase transition, all the molecules undergo the phase 
transition together, subject only to the availability of thermal energy. 
 
 
22.  Use the concept of correlation length and domain size to explain why the heat capacity of a 
substance increases as the temperature increases to the critical point. 
 

solid 

liquid  

T Tsub 

vapor solid 

liquid 
 

T Ttp 

vapor 
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Answer:  The plan is to note that thermally activating motional degrees of freedom increases the 
heat capacity of a substance. 
   As the temperature increases near the critical point, the correlation length of the intermolecular 
cooperation increases. As the correlation length increases, the domain size increases, which 
increases the fraction of the substance in the more mobile, higher entropy phase. The increase in 
motion corresponds to activating motional degrees of freedom, for example segmental torsions in 
the fatty acid chains in a phospholipid. The larger fraction of molecules in the more mobile 
domains increases the heat capacity of the sample. 
 
 
23.  The monoclinic and orthorhombic unit cells are illustrated, below. The unit cell lengths for 
both unit cells are all different, a  b  c. The orthorhombic unit cell has all 90 angles between 
the unit cell directions,  =  =  = 90. The monoclinic unit cell has one angle not equal to 90, 
 =  = 90, . 
 
 
 
 
 
 
 
  Monoclinic  Orthorhombic 
 
Methanol crystallizes into long hydrogen-bonded chains. There are two crystalline forms. Crystal 
II has a monoclinic unit cell and is the low temperature form. Crystal I has an orthorhombic unit 
cell and is the high temperature form. The difference is a small displacement of the hydrogen-
bonded chains in the direction perpendicular to the direction of the chains. The solid-solid phase 
transition temperature is 157.4 K at 1 atm. The transition was reported to be second-order. 
Carlson and Westrum redetermined the heat capacity of very pure methanol samples to 
determine the thermodynamic parameters for the phase transition, Figure P17.1.1 Crystal I 
readily super-cools, so heat capacity data for this phase is available below the equilibrium phase 
transition temperature. Is the transition first or second order? 
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Figure P17.1: Heat capacity data for 99.98 mol% methanol near the solid-solid phase 
transition at 157.4 K. 
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Answer:  The heat capacity is discontinuous and slowly varying at temperatures less than and 
greater than the solid-solid phase transition temperature. In other words, there are no pre-
transition effects. The transition is first-order. 
 
 
24.  NiCl2 has a solid-state magnetic phase transition at 52 K. The low temperature phase is anti-
ferromagnetic, and the high temperature phase is paramagnetic. Antiferromagnetic phases are an 
ordered lattice of unpaired electrons that alternate spin-up and spin-down. In the absence of an 
external magnetic field, paramagnetic phases also have an equal, or nearly equal, number of 
electrons spin-up and spin-down, distributed at random. The paramagnetic phase is at higher 
entropy at a given finite temperature. A plot of the heat capacity as a function of temperature is 
shown below.3 Characterize this solid-state phase transition. 
 

 

 

 

 
 
antiferromagnetic:   
 
ferromagnetic:          
 
paramagnetic:           

 
Answer:  The transition is lambda-type, second-order. Extensive pre-transition effects are seen 
approaching the critical temperature from both the high and low temperature side of the 
transition. Experimental uncertainty prevents the determination of the heat capacity at the critical 
temperature. Therefore, it is usually impossible to determine if the heat capacity is finite or if the 
heat capacity diverges to infinity at the critical temperature. Refrigerator magnets are 
ferromagnetic. The degree of ordering for ferro- and antiferromagnetic substances decreases with 
increasing temperature. Increasing the temperature provides thermal energy that increases the 
probability of a spin flip that decreases the order compared to the perfect zero-Kelvin phase. 
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Chapter 18 Problems: Ideal Solutions  
 
 
1.  The volume of a solution of methanol in water is less than the corresponding sum of the pure 
components. The solution temperature rises upon mixing. (a). Does this solution show positive or 
negative deviations from ideality? (b). Are the forces better described as A-B > A-A, B-B or 
rather A-B < A-A, B-B? (c). Is the vapor pressure of the solution greater than or less than 
predicted using Raoult’s Law? (d). Is the escaping tendency of methanol from the solution 
greater than or less than that predicted using Raoult’s Law? (e). Is the boiling point of the 
solution greater than or less than predicted using Raoult’s Law? (f). Which is larger, the pure 
vapor pressure of methanol or the Henry’s Law constant of methanol in water? 
 
 
Answers: (a). Negative deviations; the combined volume is less than the corresponding sum of 
the pure components. (b). A-B > A-A, B-B; the forces are favorable in solution. (c). The partial 
vapor pressures of each component and the total vapor pressures are less than predicted by 
Raoult’s Law. (d). The escaping tendency is measured by the vapor pressure; the escaping 
tendency of methanol from the solution is less than predicted by Raoult’s Law. (e). Since the 
vapor pressures are less, the solution must be heated to a higher temperature to have the total 
vapor pressure of the solution equal to ambient pressure, as compared to the Raoult’s Law 
prediction. (f). P*

B > kH,B, as is diagrammed in Figure 18.3.3a for negative deviations from 
ideality. 
 
 
2.  A 2.412 m solution of ethanol in water containing 1000.00 g of solvent has a total volume of 
1133.08 mL. The partial molar volume of ethanol in this solution is 53.890 mL mol-1. Calculate 
the partial molar volume of water in this solution. 
 
 
Answer:  The number of moles of solute in a solution containing 1000.00 g of solvent is: 
 

 nB = mB (1 kg) 
 

For a 2.412 m solution containing 1000.00 g of solvent, nB= 2.412 mol. Using Eq. 18.1.3: 

 V = V– A nA + V– B nB 

 1133.08 mL = V– A 1000.0 g/18.0153 g mol-1 + 53.890 mL mol-1(2.412 mol) 

 V– A = (1133.08 mL – 129.98 mL)(18.0153 g mol-1/1000.0 g) = 18.0711 mL mol-1 

 
 
3.  The density of a solution can be accurately determined by measuring the vibration frequency 
of a U-shaped tube filled with the solution. The volume of a solution containing 1 kg of solvent 
can be determined from the density of the solution. (a). Show that: 
 

 V1kg = 
nAMA + nBMB

d  = 
1000 g + mB (1 kg)MB

d  
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where MA is the molar mass of the solvent, MB is the molar mass of the solute, mB is the 
molality of the solute, and d is the density of the solution. 
(b). The density of a 5.4266 m solution of ethanol in water is 0.96808 g mL-1 at 25C. The partial 
molar volume ethanol in this solution is 54.183 mL mol-1. Calculate the partial molar volume of 
water in this solution. 
 
 
Answer:  (a). The number of moles of solute in a solution containing 1000.00 g of solvent is: 
nB = mB (1 kg). The total mass of the solution, solute plus solvent, is nAMA + nBMB. The volume 
of the solution is the mass divided by the density: 
 

 V1kg = 
mass solution

density of solution = 
nAMA + nBMB

d  = 
1000 g + mB (1 kg)MB

d  
 

For the particular solution in this problem with MB = 46.06904 g mol-1 for ethanol: 
 

 V1kg = 
1000.00 g + 5.4266 m (1 kg)(46.06904 g mol-1)

0.96808 g mL-1  = 1291.214 mL 
 

Using Eq. 18.1.3 to find the partial molar volume of the solvent: 

 V = V– A nA + V– B nB 

 1291.214 mL = V– A 1000.0 g/18.0153 g mol-1 + 54.183 mL mol-1(5.4266 mol) 

 V– A = (1291.214 mL – 294.029 mL)(18.0153 g mol-1/1000.0 g) = 17.9646 mL mol-1 

 
 
4.  The relationship between density and the volume of solution that contains 1 kg of solvent is 
(derived in Problem 3): 
 

 V1kg = 
nAMA + nBMB

d  = 
1000 g + mB (1 kg)MB

d  
 

The density at 25C as a function of the concentration of p-toluenesulfonic acid in water is given 
below. The molar mass of p-toluenesulfonic acid is 172.205 g mol-1. Calculate the partial molar 
volumes of p-toluenesulfonic acid and water at 2.0000 m at 25C.1 
 

mB (mol kg-1) 0.0000 0.5000 1.0000 2.0000 3.0000 4.0003 4.5005 
d (g mL-1) 0.99707 1.02159 1.04334 1.07970 1.10846 1.13178 1.14187 

 
 
Answer:   The plan is to calculate V1kg for each solution and fit the results to a cubic polynomial 
in the molality. Then Eq. 18.1.8 is used to find the partial molar volume of the solute and Eq. 
18.1.3 is used to find the partial molar volume of the solvent, as in Example 18.1.1. 
   A spreadsheet was set up to do the calculations. The V1kg vs. mB values were fit to a cubic 
polynomial using the 4-parameter version of the “Non-Linear Least Squares” applet on the 
textbook Web site or the companion CD. The applet allowed the determination of the 
uncertainties of the fit parameters. The fit parameters were entered into the spreadsheet and Eq. 
18.1.8 was used to calculate the partial molar volumes: 
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 V– B = 






V

mB T,P,nA

kg-1 = 3(-0.0221) m2 + 2(0.708) m + 119.81 mL mol-1 

 
 MA 18.0153 g mol-1  

 MB 172.205 g mol-1  
 a -0.0221  0.0152  
 b 0.708  0.1  
 c 119.81  0.19       
mB 
(mol kg-1) d (g mL-1) V1kg (mL) 

VB 
(mL mol-1) 

VA 
(mL mol-1) 

0.0000 0.99707 1002.939 119.810 18.068 
0.5000 1.02159 1063.149 120.501 18.068 
1.0000 1.04334 1123.512 121.160 18.058 
2.0000 1.07970 1245.17 122.377 18.023 
3.0000 1.10846 1368.218 123.461 17.976 
4.0003 1.13178 1492.226 124.413 17.917 
4.5005 1.14187 1554.475 124.840 17.883 

 

 

 

y = -0.0221x3 + 0.7076x2 + 
119.81x + 1003

1000

1100

1200

1300

1400

1500

1600

0.00 2.00 4.00
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kg
) (

m
L)

mB (mol kg-1)
 

 

 
The partial molar volumes of the solvent are then calculated using Eq. 18.1.3: 
 

 V1kg = V– A 
1000 g

MA
 + V– B mB (1 kg) 

 

and solving for the partial molar volume of the solvent, for example at 2.000 m: 
 

 V– A = 
[V1kg – V– B mB (1 kg)]MA

1000 g   

       = 
[1245.17 mL – 122.377 mL mol-1(2.000 mol kg-1)(1 kg)]18.0153 g mol-1

1000 g  

       = 18.023 mL mol-1 

 

Notice that as the partial molar volume of p-toluenesulfonic acid increases that the partial molar 
volume of water decreases, as required by the Gibbs-Duhem relationship. One caution, however: 
a cubic curve fit isn’t statistically justified with only seven data points. The original literature 
reference had more data points, but some points were dropped to make the problem more 
tractable for this homework. Never-the-less, the results here are sufficiently close to the literature 
values. 
 
 
5.  Prove the relationship for the partial molar volume in Eqs. 18.1.10: 
 

 Given  V = nA V*
A+ nB 

V show that    V– B = V + mB 





 V

mB T,P,nA

 

 
 
Answer:  Using the definition of partial molar volume from Eq. 18.1.8 and the volume in terms 
of the apparent molar volume gives: 
 

 V– B = 






V

nB T,P,nA

 = 






 nAV*

A

nB T,P,nA

 + 






 nB 

V
nB T,P,nA
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The first term is zero because nA and the pure molar volume of the solvent are constants. Using 
the product rule for the second term gives: 
 

 V– B = V + nB 






V

nB T,P,nA

 
 

We can change the independent variable to molality by using the definition, mB = nB/wA, with 
the mass of solvent, wA, a constant: 
 

 V– B = V + nB 






V

mB T,P,nA





mB

nB T,P,nA

 = V + 
nB

wA
 






V

mB T,P,nA





nB

nB T,P,nA

 
 

 V– B = V + mB 





 V

mB T,P,nA

 

 
 
6.  The apparent molar volume of sucrose in water is given by the following power series 
expansion.2 
 

 V =  V
– o-

B + RT [ ½ A mB + 1/3 B m2
B + ¼ C m3

B + 1/5 D m4
B ] 

 

where V
– o-

B is the partial molar volume of the solute at infinite dilution, and A, B, C, and D are 
constants and R is in units of L atm K-1 mol-1. All five coefficients are determined using non-
linear least squares curve fitting of experimental data. (a). Find the partial molar volume of the 
solute as a function of V

– o-
B, A, B, C, and D. (b). The fit coefficients for sucrose at 25C are: V

– o-
B = 

0.21149 L mol-1, A = 1.107x10-4 kg mol-1 atm-1, B = -1.64x10-5 kg3 mol-3 atm-1, C = 1.15x10-6 
kg4 mol-4 atm-1, and D = 0. Find the partial molar volume of 0.01000 m sucrose at 25C. 
 
 
Answer:  (a). Using Eqs. 18.1.10 and the given power series expansion of the apparent molar 
volume, the derivative gives: 
 

 V– B = V + mB 





 V

mB T,P,nA

 

     = V + mB RT [ ½ A + 2/3 B mB + 3/4 C m2
B + 4/5 D m3

B ] 
 

Substituting in the power series for V: 
 

    V– B = V
– o-

B + RT[½AmB + 1/3Bm2
B + ¼Cm3

B + 1/5Dm4
B] + RT[½A mB + 2/3Bm2

B + 3/4Cm3
B + 4/5Dm4

B] 

 V– B = V
– o-

B + RT [A mB + B m2
B + C m3

B + D m4
B ] 

 

(b). Using the given fit coefficients and mB = 0.0100 m gives: 
 

 V– B = 0.21149 L mol-1 + 0.082058 L atm K-1mol-1(298.15 K)∙ 
  [ 1.107x10-4 (0.01000) + (-1.64x10-5) (0.01000)2 + 1.15x10-6 (0.01000)3 ]atm-1 

 V– B = 0.21152 L = 211.52 mL 
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This partial molar volume was used in Example 18.4.8. The density of pure sucrose is dpure = 
1.588 g mL-1. The partial molar volume of sucrose is not far from the pure molar volume, 
V*

B = MB/dB,pure = 342.30 g mol-1/1.588 g mL-1 = 215.5 mL. The pure molar volume could have 
been used for Example 18.4.8 without excessive error, since the concentration dependent term is 
so large. 
 
 
7.  Calculate the entropy and Gibbs energy of mixing of 0.80 moles of H2O(l) and 0.20 moles of 
ethanol at 298.15 K. Assume an ideal solution. 
 
 
Answer:  Using Eqs. 18.2.10 and 18.2.11 or 16.8.16: 
 

 mixS = – ntotR 
i=1

ns

 xi ln xi = – 1.00 mol(8.3145 J K-1 mol-1)[0.80 ln 0.80 + 0.20 ln 0.20] 

         = 4.16 J K-1 

 

 mixG = – T mixS = – 298.15 K(4.16 J K-1)(1 kJ/1000 J) = -1.24 kJ mol-1 

 
 
8.  Ethanol from the fermentation of corn or other sources of biomass has been proposed as a 
large scale replacement for petroleum based transportation fuels. For use in transportation fuels, 
ethanol must contain less than 0.7% water. Calculate the minimum energy necessary to produce 
one mole of ethanol, with a concentration of 99.3% ethanol by volume at 25C, from a 
fermentation broth containing 15% by volume ethanol. Assume ideal behavior. Compare this 
minimum separation requirement to the Gibbs energy of combustion of ethanol. The density of 
ethanol is 0.789 g mL-1. 
 
 
Answer:  The molar mass of ethanol is 46.07 g mol-1. Assuming a total volume of 100 mL, 15% 
by volume corresponds to mole amounts: nEtOH = 15 mL(0.789 g mL-1)/46.07 g mol-1 = 
0.257 mol and nH2O = 85 mL(0.9971 g mL-1)/18.02 g mol-1 = 4.70 mol. The mole fractions are: 
 

 xEtOH = 
0.257 mol

4.70 mol + 0.257 mol = 0.0518 and   xH2O = 1 – 0.0518 = 0.948 
 

After the separation, 100 mL of 99.3% ethanol by volume corresponds to nEtOH = 99.3 mL(0.789 
g mL-1)/46.07 g mol-1 = 1.701 mol and nH2O = 0.7 mL(0.9971 g mL-1)/18.02 g mol-1 = 
0.039 mol. The mole fractions are: 
 

 xEtOH = 
1.701 mol

0.039 mol + 1.701 mol = 0.978 and   xH2O = 1 – 0.978 = 0.022 
 

For the 15% solution, one mole of ethanol is contained in ntot = 1 mol/xEtOH = 1/0.0518 = 
19.31 mol of total solution. For the 99.3% solution, one mole of ethanol is contained in ntot = 
1 mol/xEtOH = 1/0.978 = 1.02 mol of total solution. The Gibbs energy of mixing, using Eqs. 
18.2.10* and 18.2.11*, for the 15% ethanol solution is: 
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 mixS = – ntotR 
i=1

ns

 xi ln xi 

          = – 19.31 mol(8.314 J K-1 mol-1)[ 0.0518 ln 0.0518 + 0.948 ln 0.948] 
          = 32.7 J K-1 

 

 mixG = – T mixS = – 298.15 K(32.7 J K-1)(1 kJ/1000 J) = -9.76 kJ  (15 % v/v) 
 

The Gibbs energy of mixing for the 99.3% ethanol solution is: 
 

 mixS = – ntotR 
i=1

ns

 xi ln xi  

          = – 1.02 mol(8.314 J K-1 mol-1)[ 0.978 ln 0.978 + 0.022 ln 0.022] 
          = 0.897 J K-1 

 

 mixG = – T mixS = – 298.15 K(0.897 J K-1)(1 kJ/1000 J) = -0.267 kJ (99.3 % v/v) 
 

The Gibbs energy to prepare one mole of ethanol is then the difference: 
 

 G = -0.267 kJ – (-9.76 kJ) = 9.49 kJ 
 

The molar Gibbs energy of combustion of ethanol is: 
 

 CH3CH2OH (l) + 7/2 O2 (g)    2 CO2 (g)  + 3 H2O (l) units 
    fG      -174.78         0     -394.36 -237.13 kJ mol-1 

 

 combG = [2(-394.36) + 3(-237.13)] – [-174.78] kJ mol-1 = -1325.33 kJ mol-1 
 

The ideal minimum Gibbs energy for the separation is a small fraction of the Gibbs energy of 
combustion, suggesting that biomass conversion to ethanol is an excellent candidate for 
replacing petroleum. However, distillation and zeolite based drying of ethanol are inefficient 
processes. All energy inputs need to be considered as well as soil depletion and especially water 
use. Forest and agricultural waste and hemi-celluose, a bi-product of the paper industry, are good 
candidates for conversion to ethanol. 
 
 
9.  At 50.0C the vapor pressure of pure hexane and pure heptane are 0.534 bar and 0.188 bar, 
respectively. The two liquids form nearly an ideal solution. (a) For a solution with a mole 
fraction of 0.670 heptane, calculate the total vapor pressure and the mole fraction of each 
component in the vapor phase.3 (b) The total vapor pressure of a heptane-hexane solution is 
0.405 bar. Calculate the mole fraction of heptane in the solution, the partial vapor pressures of 
each component, and the mole fractions in the vapor phase. 
 
 
Answer:  (a). Use an “X” subscript for hexane and a “P” subscript for heptane: P *

X = 0.534 bar, 
P*

P = 0.188 bar, xP = 0.670, xX = (1 – xP) = 0.330. The total pressure, using Raoult’s law for both 
components, Eq. 18.2.7*, is: 
 Ptot = xX P*

X + xP P*
P = 0.330(0.534 bar) + 0.670(0.188 bar) = 0.302 bar 

 

Using Dalton’s Law of partial pressures for the vapor phase with, PP = yP Ptot, Eq. 18.4.1*: 
 

 yP = PP/Ptot = xP P*
P/Ptot = 0.670(0.188 bar)/0.302 bar = 0.417 
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 and yX = 1 – yP = 1 – 0.417 = 0.583 
 

As a check we note that the vapor is richer than the solution in the more volatile component, 
hexane, as expected. The literature value for the total pressure is 0.293 bar, so the solution shows 
small negative deviations from ideality.3 

(b). This part of the problem works in the opposite direction as in part (a). Using Eq. 18.2.8*, 
xX = (1 – xP), and solving for xP: 
 

 Ptot = xX P*
X + xP P*

P = (1 – xP) P*
X + xP P*

P = P*
X + xP (P*

P – P*
X) 

 xP = 
Ptot – P*

X

P*
P – P*

X
 

 

and for Ptot = 0.405 bar: 
 

 xP = 
0.405 – 0.534
0.188 – 0.534 = 0.373 and xX = 1 – xP = 0.627 

 

Using Raoult’s Law for both components in solution, the partial vapor pressures are: 
 

 PX = xX P*
X = 0.627(0.534 bar) = 0.335 PP = xP P*

P = 0.373(0.188 bar) = 0.070 
 

As a check on the calculations, we should verify the total pressure as the sum of the partial vapor 
pressures from the last calculation, Ptot = PX+ PP = 0.335 + 0.070 = 0.405, as given. Finally, 
using Dalton’s Law for each component in the vapor phase, the vapor phase mole fractions are, 
Eq. 2.1.10: 
 

 yX = PX/Ptot = 0.335/0.405 = 0.827 and yP = 1 – yX = 0.173 
 

As a check we note that the vapor is richer than the solution in the more volatile component, 
hexane, as expected. The literature value for the mole fraction of heptane in this solution is xP = 
0.358 for only a 4% error, caused by the assumption of ideal behavior.3 
 
 
 
10. At 30.0C the vapor pressure of pure toluene and pure benzene are 36.7 and 118.2 torr, 
respectively. The two liquids form a nearly ideal solution. (a) For a solution containing 50.0 
mole % of toluene, calculate the total vapor pressure and the mole fraction of each component in 
the vapor phase. (b) What is the composition of a solution of benzene and toluene that will boil 
at 30.0C at a pressure of 50.0 torr? 
 
 
Answer:  (a). Use a “T” subscript for toluene and a “B” subscript for benzene: P*

T = 36.7 torr, P*
B 

= 118.2 torr, xT = 0.500, xB = 0.500. The total pressure, using Raoult’s law for both components, 
is, Eq. 18.2.7*: 
 

 Ptot = xT P*
T + xB P*

B = 0.500(36.7 torr) + 0.500(118.2 torr) = 77.5 torr 
 

We use Dalton’s law of partial pressures for the vapor phase with, PT = yT Ptot, Eq. 18.4.1*: 
 

 yT = PT/Ptot = xT P*
T/Ptot = 0.500(36.7 torr)/77.5 torr = 0.237 

 and yB = 1 – yT = 1 – 0.237 = 0.763 
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As a check, we note that the vapor is richer in the more volatile component, benzene, than the 
liquid, as expected. 
(b). This part of the problem corresponds to a reduced pressure distillation. If the solution is 
boiling, the vapor pressure is equal to the ambient pressure, Ptot = 50 torr: 
 

 Ptot = xT P*
T + xB P*

B = 50 torr 
 

Substituting in the pure vapor pressures and noting that xB = 1 – xT: 
 

 Ptot = 50 torr = xT(36.7 torr) + (1 – xT)(118.2 torr) 
gives xT = 0.837  and  xB = 1 – xT = 0.163 
 
 
 
11.  2-Propanol and 2-methylpropanol form an ideal solution. (a). Calculate the composition of 
the solution and vapor that boils at 90.0C and an ambient pressure of 1.00 bar. The standard 
boiling point of pure 2-propanol is 82.2C and the enthalpy of vaporization at the standard 
boiling point is 43.61 kJ mol-1. The standard boiling point of pure 2-methyl-propanol is 107.7C 
and the enthalpy of vaporization is 46.26 kJ mol-1. (b). What is the highest purity attainable from 
a single-plate distillation starting with the composition in Part (a)? 
 
 
Answer:  The plan is to use the Clausius-Clapeyron equation to calculate the pure vapor 
pressures at 90.0C. Example 18.4.3 then describes the remaining steps to find the corresponding 
compositions in Figure 18.4.2. 
   Using Eq. 17.1.14 for 2-propanol, with T*

b = 355.4 K at 1 bar, gives the vapor pressure at 
90.0C, 363.2 K, as: 
 

 P2 = P1 e
– 

∆trHm

R ( )1
T2

 – 
1
T1  = 1 bar e

– 
43.61x103 J mol-1

8.3145 J K-1 mol-1( )1
363.2 K – 

1
355.4 K  = 1.374 bar 

 

and for 2-methyl-propanol, with T*
b = 380.9 K: 

 

 P2 = 1 bar e
– 

46.26 J mol-1

8.3145 J K-1 mol-1( )1
363.2 K – 

1
380.9 K  = 0.491 bar 

 

   Let A be 2-propanol. Using Eq. 18.2.8* with the total vapor pressure of 1 bar gives the 
composition of the solution from: 
 

 Ptot = xAP*
A + (1 – xA)P*

B = xA(1.374 bar) + (1 – xA)(0.491 bar) = 1 bar 
 

Solving for the solution concentration of A:   xA = 0.576. 
 

The vapor phase concentration is calculated using Eq. 18.4.1*: 
 

 yA = PA/Ptot = xAP*
A/Ptot = 0.576(1.374 bar)/1.00 bar = 0.791 

 

These points are consistent with Figure 18.4.2. (b). For a distillation, if the initial pot 
concentration is xA = 0.576, the solution boils at 90.0C in equilibrium with the vapor at yA = 
0.791. In other words, starting with xA = 0.576, the highest purity that may be achieved for 
2-propanol in a single-plate distillation is 79.1 mol%, but only for the first drop of distillate. 
Continued distillation produces distillate with lower purity. 
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12.  The standard state Gibbs energy of formation of methanol in the gas phase at 25C is 
-161.96 kJ mol-1. The Henry’s Law constant is kpc = 4.51x10-3 bar L mol-1. (a). Calculate the 
standard state Gibbs energy of formation of aqueous methanol at 25C. (b). Calculate the 
concentration of methanol in an aqueous solution given an equilibrium vapor pressure for 
methanol above the solution of 0.0100 bar (1.00 kPa or 7.50 torr). 
 
 
Answer:  (a). Follow Example 18.3.1. The small Henry’s Law constant shows that methanol is 
very soluble in water. Methanol-water hydrogen bonds contribute to the stability of the solution. 
The corresponding Gibbs energy of desolvation is given by Eqs. 18.3.3†: 
 

 desolGpc = – RT ln kpc = – 8.3145 J K-1 mol-1(298.15 K)(1 kJ/1000 J) ln 4.51x10-3 
     = 13.39 kJ mol-1 

 

Noting that solG = – desolGpc gives the standard state Gibbs energy of formation for aqueous 
methanol as: 
 

 fG(aq) = fG(g) + solG = -161.96 kJ mol-1 + (-13.39 kJ mol-1) = -175.35 kJ mol-1 
 

(b).  Using Eq. 18.3.3†, PB = kpc cB: 
 

 cB = PB/kpc = 0.0100 bar/4.51x10-3 bar L mol-1 = 2.22 M 
 

The concentration of methanol in water must be quite large, 2.22 M (~7% by weight), to 
establish a vapor pressure of 0.0100 bar (7.5 torr). This concentration assumes ideal-dilute 
behavior, and so is a lower limit, since negative deviations from ideality are expected. 
 
 
 
13.  The vapor pressure of heptane in solution with 1-bromobutane is given in the table below, at 
50C.3 Calculate the Henry’s Law constants, kH, kcc, and kpc, for heptane. The data is plotted in 
Figure 18.3.1. The density of 1-bromobutane at 25C is 1.276 g mL-1 and the molar mass is 
137.02 g mol-1. Assume the density is roughly independent of temperature for this small 
temperature difference. 
 

x(bromobutane) 0 0.1171 0.2362 0.3329 0.4323 0.5182 0.5836 0.6333 
Pvap(heptane, torr) 140.0 125.8 110.6 98.4 86.1 74.8 66.4 59.6 
x(bromobutane) 0.6588 0.7123 0.7935 0.8805 0.9521 1 
Pvap(heptane, torr) 57.3 49 37.2 23.3 9.6 0 

 
 
Answer:  The plan is to fit the vapor pressure data to a cubic polynomial with a constant 
coefficient of zero, and then follow Example 18.3.2. Alternatively the data could be carefully 
plotted and then a straight edge used to extrapolate the dilute solution behavior to xA = 1. 
   The mole fraction of heptane and vapor pressure in bar were calculated using the following 
spreadsheet and fit to a cubic polynomial using the “Non-linear least Squares Applet,” on the 
textbook Web site or companion CD, y = a x3 + b x2 + c x + d. The d-parameter was fixed at 
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zero, since the vapor pressure goes to zero at xA = 0. The Henry’s Law constant is the value of 
the dilute solution line extrapolated to xA = 1. The c-fit coefficient is the Henry’s Law constant, 
kH,A = c = 0.2654  0.0038 bar. 
 

 

xbutylbromide Pvap (torr)   xheptane Pvap (bar) 
0 140 1 0.1867 

0.1171 125.8 0.8829 0.1677 
0.2362 110.6 0.7638 0.1475 
0.3329 98.4 0.6671 0.1312 
0.4323 86.1 0.5677 0.1148 
0.5182 74.8 0.4818 0.0997 
0.5836 66.4 0.4164 0.0885 
0.6333 59.6 0.3667 0.0795 
0.6588 57.3 0.3412 0.0764 
0.7123 49 0.2877 0.0653 
0.7935 37.2 0.2065 0.0496 
0.8805 23.3 0.1195 0.0311 
0.9521 9.6 0.0479 0.0128 

1 0 0 0 
 

 

 

y = 0.0759x3 - 0.1538x2 + 0.2654x

0.00
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kH

 
 

 

Then substituting Eq. 2.2.16 for the mole fraction into Eq. 18.3.1† gives the conversion: 
 

 PA = kH,A xA = kH,A 
cA (1 L)





1000 mL dsoln

MA

 = kpc,A cA  with kpc,A = 
kH,A (1 L)





1000 mL dsoln

MA

 

 

Assuming the density of the solution is the density of the solvent, 1-bromobutane, gives: 
 

 kpc,A = 
0.2654 bar (1 L)





1000 mL 1.276 g mL-1

137.02 g mol-1

 = 
0.2654 bar L
9.313 mol  = 0.0285 bar L mol-1 = 2.85 Pa m3 mol-1 

 

The unitless Henry’s Law constant uses concentration in the gas phase as well as the solution 
phase: 
 

 kcc,A = 
kH

9.313 mol L-1 RT = 
0.2654 bar

9.313 mol L-1(0.083145 bar L K-1mol-1)(323.15 K) = 1.06x10-3 
 

The units for R are chosen to cancel the units for kH. 
   Note that a “quick and dirty” approach for calculating the Henry’s Law constant is to calculate 
the slope using the data point with the lowest concentration: kH  0.0128 bar/0.0479  0.27 bar. 
 
 
14.  The Henry’s Law constants, kH, for O2 and N2 in water at 25C are 4.40x104 bar and 
8.68x104 bar, respectively. Calculate the equilibrium solubility of O2 and N2 in water at 25C in 
units of molarity and ppm by weight. Find the ratio of O2 to N2 in moles. Assume that air is 20.0 
mole % O2 and 80.0 mole % N2 at a total pressure of 1.00 bar. 
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Answer:  The plan is to convert the gas phase mole fractions to partial pressures, convert kH to 
kpc, and then find the equilibrium concentrations. The concentrations are then converted to ppm. 
   Using Dalton’s Law for the gas phase gives, PO2 = yO2 P = 0.20 bar and PN2 = yN2 P = 0.80 bar. 
We next convert kH to kpc using Eq. 18.3.6†. For O2: 
 

 kpc,O2 = 
kH

55.34 mol L-1 = 
4.40x104 bar
55.34 mol L-1 = 795.1 bar L mol-1 

 

and cO2 = PO2/kpc,O2 = 0.20 bar/795.1 bar L mol-1 = 2.5x10-4 M 
 

In ppm, assuming the density of the solution is the density of pure water: 
 

 cO2 = 2.5x10-4 mol L-1(1 L)(32.0 g mol-1)( 1 L/1000 mL)/0.9971 g mL-1 (1x106 ppm) 
       = 8.0 ppm 
 

For N2: 

 kpc,N2 = 
kH

55.34 mol L-1 = 
8.68x104 bar
55.34 mol L-1 = 1568. bar L mol-1 

 

and cN2 = PN2/kpc,N2 = 0.80 bar/1568. bar L mol-1 = 5.1x10-4 M 
 

 cN2 = 5.1x10-4 mol L-1(1 L)(28.02 g mol-1)( 1 L/1000 mL)/0.9971 g mL-1 (1x106 ppm) 
       = 14. ppm 
 

The mole ratio of oxygen to nitrogen in equilibrium in solution at 25C is: 
 

 nO2/nN2 = 2.5x10-4 M/5.1x10-4 M = 0.49  ½ 
 
 
15.  The Henry’s Law constant for CO2 can be expressed using the concentration of dissolved 
CO2, only, or the concentration of CO2 and carbonic acid: 
 

 k 'pc,CO2 = 
PCO2

cCO2
   kpc,CO2 = 

PCO2

cCO2 + cH2CO3
 

 

The equilibrium constant for the dehydration of carbonic acid is about 650:4 

 

 H2CO3 (aq)  CO2 (aq) + H2O (l)  K = 650 
 

The Henry’s Law constant for CO2 in sea water at 25C is pkpc,CO2 = -1.53.4 Show that kpc,CO2  
k 'pc,CO2, within experimental error. 
 
 
Answer:  Doing the logarithmic conversion for pkpc,CO2 gives kpc,CO2 = 0.0295  0.0007, or 2.4% 
error. Equivalently, the result should be expressed with two significant figures: kpc,CO2 = 0.0295, 
which agrees with the normal significant figure rules. The relationship between the two forms of 
the Henry’s Law constant is given by: 
 

 k 'pc,CO2 = kpc,CO2 



cCO2 + cH2CO3

cCO2
 

 

We next need to find (cCO2 + cH2CO3)/cCO2 . The equilibrium expression for the dehydration of 
carbonic acid is: 
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 K = 
cCO2

cH2CO3
  and  cH2CO3 = cCO2/K giving     



cCO2 + cH2CO3

cCO2
 = 1 + 1/K 

 

Since K is large, K = 650, the predominant form for CO2 in aqueous solution at equilibrium is as 
dissolved CO2, not carbonic acid. The relationship between the two forms of the Henry’s Law 
constant is then: 
 

 k 'pc,CO2 = kpc,CO2 (1 + 1/K) = kpc,CO2 (1 + 1/650) = kpc,CO2 1.0015 
 

The two constants differ by 0.15%, which is negligible compared to the experimental uncertainty 
in kH,PC. Note, however, that the total solubility of all carbonate species, CT = cCO2+ cH2CO3 + 
cHCO3- + cCO32-, increases with pH and is significantly larger than cCO2 alone near neutral pH (see 
Section 6.1). 
 
 
16.  Show that the temperature dependence of the chemical potential for an ideal constituent is 
given by: (µA/T)P,nA,nB

 = – S–A = – S*
A+ R ln xA, where S*

A is the pure molar entropy of the 
substance A and the concentration in the solution is xA. 
 
 
Answer:  The plan is to use the same reasoning that we used to derive Eq. 18.2.12*, except 
finding temperature derivative. 
   The temperature dependence of the chemical potential for a component in solution is given by 
the partial molar entropy, Eqs. 18.1.17-18.1.18: 
 

 






µA

T P,nA,nB

= – S–A 

 

Using Eq. 18.2.9* for the concentration dependence of the chemical potential for an ideal 
component, A(xA) = *

A + RT ln xA, and the product rule gives: 
 

    – S–A = 






µA

T P,nA,nB

= 






(µ*

A + RT ln xA)
T P,nA,nB

     (ideal) 

 = 






µ*

A

T P,nA,nB

+ RT 





 ln xA

T P,nA,nB

+ R ln xA 





T

T P,nA,nB

   (ideal) 

 

The derivative of ln xA is zero because xA is constant when nA and nB are constant: 
 

 – S–A = 






µ*

A

T P,nA,nB

+ R ln xA = – S*
A + R ln xA     (ideal) 

 

The slope of the chemical potential versus temperature curve is – S *
A + R ln xA, as shown in 

Figure 18.4.5. Or finally, the partial molar entropy of an ideal constituent is: 
 

 S–A = S*
A – R ln xA        (ideal) 

 

The entropy of mixing for an ideal solution follows directly from this last equation. 
 
 



365 
Chapter 18: Ideal Solutions 

 

17. The partial molar entropy of a constituent in an ideal solution, at constant temperature and 
pressure, is S–i = S*

i – R ln xi, where S*
i is the pure molar entropy of the substance i and the 

concentration of i in the solution is xi. (See the previous problem for a proof of this equation.) 
Show that the entropy of mixing of an ideal binary solution is mixS = – ntotR (xA ln xA + xB ln xB) 
at constant temperature and pressure. 
 
 
Answer:  The plan is to adapt the derivation for the Gibbs energy of mixing, Eqs. 16.8.6, 
16.8.11-16.8.13. 
   Let S2 be the final entropy for the solution and S1 be the initial total entropy for the two pure 
constituents with nA moles of A with nB moles of B: 
 

 mixS = S2 – S1 = (nA S
–

A + nB S
–

B) – (nAS*
A + nBS*

B) = nA(S–A – S*
A) + nB(S–B – S*

B) 
 

Using S–A = S*
A – R ln xA and S–B = S*

B – R ln xB for the two ideal constituents gives: 
 

 mixS = – nA R ln xA – nB R ln xB 
 

The pure molar entropy terms cancel. Let ntot = nA + nB, with xA = nA/ntot and xB = nB/ntot. 
Dividing and multiplying each term by ntot and factoring out the common factor of – ntotR gives: 
 

 mixS = – ntotR 



nA

ntot
 ln xA + 

nB

ntot
 ln xB  

 mixS = – ntotR (xA ln xA + xB ln xB)     (18.2.10*) 
 

which is the analogous expression to Eq. 16.8.14 for ideal gas mixing. 
 
 
18. Show that the Raoult’s Law and Henry’s Law standard states for a solute are related by: 
 

 †
B(l) = *

B(l) + RT ln kH,B/P*
B 

 
 
Answer:  The definitions of the standard states applied to the solute, B, are: 
 

 *
B(l) = B(g) + RT ln P*

B/P      (Raoult, pure) (18.2.2) 
 †

B(l)  B(g) + RT ln kH,B/P      (Henry, solute) (18.3.9†) 
 

Subtracting Eq. 18.2.2 from Eq. 18.3.9† gives: 
 

 †
B(l) – *

B(l) = B(g) + RT ln kH,B/P –  B(g) – RT ln P*
B/P 

 †
B(l) – *

B(l) = RT ln kH,B/P*
B 

 

Adding *
B(l) to both sides of the last equation gives: †

B(l) = *
B(l) + RT ln kH,B/P*

B. 

 
 
19.  Using the binary liquid-vapor phase diagram shown below, (a). what would be recovered 
from the distillate and from the pot for an exhaustive fractional distillation, starting with the 
solution with composition x1. (b). Does this solution show positive or negative deviations from 
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ideality. Discuss the forces that act in solution as compared to the forces that act in the pure 
liquids. 
 
 
 
 
 
 
 
 
 
 
 
 
Answer:  (a). Starting from a solution with concentration greater than the azeotropic 
concentration, the more volatile component (lower boiling point) is pure A. Pure A would be 
recovered from the distillate and azeotrope would be recovered from the pot. 
   (b). Deviations from ideality are judged from the perspective of the vapor pressure. This 
system has a maximum boiling azeotrope; the solution temperature must be increased above the 
pure boiling points of either pure A or B to attain a vapor pressure equal to the ambient pressure. 
The azeotrope is harder to vaporize than pure A or pure B. The solution shows strong negative 
deviations from ideality: A-B >> A-A, B-B. 
 
 
 
20. When 640. mg of naphthalene is dissolved in 40.0 g of chloroform, the boiling point of the 
solution is 0.455°C higher than that of pure solvent (T*

A = 61.2°C). Calculate (a) the molal 
boiling point elevation constant, and (b) the molar enthalpy of vaporization of chloroform. 
 
 
Answer:  The molar mass of naphthalene is MNaph = 128.2 g mol-1 and chloroform is Mchloroform = 
119.37 g mol-1. This problem is a colligative properties problem with T = Kb mB. (a). In this 
equation mB is the solute molality: 
 

 mB = 
nB

wsolvent
 = 

0.640 g (1 mol/128.2 g mol-1)
0.0400 kg  = 0.1248 mol kg-1 = 0.1248 m 

 

Solving for the molal boiling point elevation constant gives: 
 

 Kb = 
T
mB

 = 
0.455 K

0.1248 mol kg-1 = 3.646 K kg mol-1 
 

(b). The molal boiling point elevation constant is related to the enthalpy of vaporization of the 
solvent by Eqs. 18.4.14†: 
 

 Kb = 
RT*

A
2 MA (1 kg)

vapHA (1000 g)
 

 

T *
bA 

T *
bB 

T 

0 1 

xA, yA  

liquid 

vapor cst. P 

xaz x1 

Tmax 
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where all the quantities are related to properties of the pure solvent. Solving for the enthalpy 
change: 
 

 vapHA  =  
RT*

A
2 MA (1 kg)

Kb(1000 g)   =  
8.314 J K-1 mol-1(334.4 K)2(119.37 g mol-1)(1 kg)

3.646 K kg mol-1(1000 g)  

              = 3.044x104 J mol-1 = 30.4 kJ mol-1 
 
 
21.  The freezing point depression of a solution of 1.433x10-3 g of butanol in 1.000 g of water is 
0.035588 K.5 Calculate the molar mass of butanol. The enthalpy of fusion of water is 
6.008 kJ mol-1 at 273.15 K. (b). The freezing point depression of a solution of 2.951x10-3 g of 
butanol in 1.000 g of water is 0.07300 K. Calculate the molar mass of butanol again and 
compare. 
 
 
Answer:  (a). From Eqs. 18.4.19†, the cryoscopic constant for water is: 
 

 Kf  






RT*

m
2MA (1 kg)

1000 g fusHA
 = 



8.3145 J K-1mol-1(273.15 K)2(18.0153 g mol-1) (1 kg)

1000 g (6.008x103 J mol-1)  

      = 1.861 mol-1 kg K 
 

The concentration is given by: 
 

 T  Kf mB  and     mB = TKf = 0.035588 K/1.861 mol-1 kg K = 0.019123 mol kg-1 
 

Then using the given masses, the molality and molar mass of the solute are related by: 
 

 mB = 
wB/MB

wA
 = 

1.433x10-3 g /MB

1.000 g (1 kg/1000 g)  giving MB = 74.94 g mol-1 
 

The literature molar mass of butanol is 74.15 g mol-1. 
(b). Repeating the calculations with the more concentrated solution gives: 
 

 mB = 0.07300 K/1.861 mol-1 kg K = 0.039226 mol kg-1 
 

 mB = 
wB/MB

wA
 = 

2.951x10-3 g /MB

1.000 g (1 kg/1000 g)  giving MB = 75.23 g mol-1 
 

For an ideal solution, parts (a) and (b) would give the same result. Butanol-water solutions show 
small but significant deviations from ideal behavior. The more dilute result is potentially more 
accurate, since the solution is closer to an ideal solution, but the freezing point depression is less 
precise since it is a smaller value. 
 
 
22.  A sample of benzene has a freezing point of 3.44C. Calculate the purity of the benzene in 
mole %. Assume the solution is ideal and the impurities are insoluble in solid benzene. The 
standard melting point of pure benzene is 5.46C and the enthalpy of fusion is 10.59 kJ mol-1 at 
the standard melting point. 
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Answer:  The plan is to use Eq. 18.4.16† with benzene as the solvent. The solution freezing point 
is 276.59 K, the pure freezing point is 278.61 K, andT = (278.61 – 276.59 K) = 2.02 K 
   The freezing point depression is most conveniently given in terms of the mole fraction of the 
solvent using Eq. 18.4.16† with: 
 

 K ' = 



fusHA

R T*
m

2  = 



10.59x103 J mol-1

8.3145 J K-1 mol-1(278.61 K)2  = 0.016408 K-1 
 

 ln xA = K ' T = -0.016408 K-1(2.02 K)  giving  xA = 0.967 
 

The purity is 96.7 mol%. See the next problem for the DSC method that is used when the pure 
substance standard melting point and enthalpy of fusion are not known. 
 
 
23.  A DSC melting curve was determined for a sample of tetracosane, C24H50. The sample 
weight was 2.21 mg. Partial areas were determined and are reported in the table below, in 
arbitrary units (as shown schematically in Figure 18.4.7). The total area under the melting curve 
was 7.351, which corresponds to 0.3919 J. Find the pure melting point, molar enthalpy of fusion, 
and mol % impurity for the sample. The molar mass of tetracosane is 338.66 g mol-1. 
 

T (K) 322.39 322.44 322.51 322.58 
Partial area 1.450 1.669 2.122 2.866 

 
 
Answer:  The plan is to determine fusHA using the total area under the melting curve, sample 
mass, and molar mass. The fraction of the sample melted, F, is given by the ratio of the partial 
area to the total area under the melting curve. The pure melting point and freezing point 
depression are found from a plot of melting point versus 1/F. Eq. 18.4.16† for the freezing point 
depression gives the mole fraction of the solvent, with tetracosane as the solvent. 
   The molar enthalpy of fusion is given by the total area under the melting curve in joules and 
then converting to the molar quantity: 
 

 fusHA = H/nA = 
0.3919 J (338.66 g mol-1)

2.21x10-3 g  (1kJ/1000 J) = 60.05 kJ mol-1 
 

The plot was set-up using the following spreadsheet: 
 

total area 7.351    

 
part.are
a F 1/F T (K) 

 1.45 0.197252 5.069655 322.39 

 1.669 0.227044 4.404434 322.44 

 2.122 0.288668 3.464185 322.51 

 2.866 0.389879 2.564899 322.58 
 

slope -0.07572 322.7735 intercept 
± 0.000537 0.002141 ± 
r2 0.9999 0.001017 s(y) 
F 19917.64 2 df 
ssreg 0.020598 2.07E-06 ssresid 

 
 

 

 

y = -0.07572x + 322.77347

322.35
322.40
322.45
322.50
322.55
322.60
322.65
322.70
322.75
322.80

0 2 4 6

T (K)

1/F
 



369 
Chapter 18: Ideal Solutions 

 

 
 

   The intercept is the pure melting point and the slope is the freezing point depression, T, 
Figure 18.4.7c. The freezing point depression is given directly in terms of the mole fraction of 
the solvent using Eq. 18.4.16† as: 
 

 ln xA = – 



fusHA

R T*
m

2  T 
 

with 



fusHA

R T*
m

2  = 



60.05x103 J mol-1

8.3145 J K-1 mol-1(322.774 K)2  = 0.069323 K-1 
 

 ln xA = -0.069323 K-1(0.07572 K)  giving  xA = 0.9948 
 

The purity is 99.48 mol%, using propagation of errors to determine the final number of 
significant figures. 
 
 
24.  Prove that the dependence of the freezing point of a solution on the concentration of the 
solvent is given by (start with the chemical potentials of the pure solvent and the solution): 
 

 ln xA = – 
∆fusHA

R  



1

T – 
1

T*
m  

 
 
Answer:  At equilibrium the chemical potential of the pure solid is equal to the chemical potential 
of the solvent in solution. Assuming an ideal dilute solution gives PA = xA P*

A: 
 

 *
A(s) = A(xA) = *

A(l) + RT ln xA       1 
 

Solving for the logarithm of the concentration: 
 

 ln xA =   
*

A(s) – *
A(l)

RT          2 
 

The Gibbs energy of fusion is given by ∆fusGA = *
A(l) – *

A(s). For example for aqueous 
solutions the ∆fusGA corresponds to the transition written as H2O (s)  H2O(l), with the liquid 
phase being the “products” and the solid phase the “reactants.” Substitution of ∆fusGA into Eq. 2 
gives: 
 

 ln xA =  – 
∆fusGA(T)

RT       (solution)  3 
 

For comparison for a pure solution, xA = 1 and the melting point is the pure solvent melting 
point, T = T*

m; substitution into Eq. 3 gives for the pure solvent: 
 

 ln 1  =  – 
∆fusGA(T *m)

RT*
m

      (pure solvent)  4 
 

Subtracting Eq. 4 from Eq. 3: 
 

 ln 
xA

1   =  – 
∆fusGA(T)

RT  +  
∆fusGA(T*

m)
RT*

m
       5 
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Expanding the Gibbs energy in terms of the enthalpy and entropy changes for the phase 
transition gives: 
 

 ln xA = – 



∆fusHA(T)

RT  – 
∆fusSA(T)

R  + 



∆fusHA(T*

m)
RT*

m
 – 

∆fusSA(T*
m)

R    6 
 

Assuming the temperature change for the phase transition is small, we can assume that ∆fusHA 
and ∆fusSA are constant over the temperature range and cancelling the entropy terms gives: 
 

 ln xA = – 
∆fusHA(T)

RT  + 
∆fusHA(T*

m)
RT*

m
  = – 

∆fusHA

R  



1

T – 
1

T*
m     7 

 
 
25.  Polyvinyl alcohol is often used in lecture demonstrations to make “slime.” A 4.00% by mass 
solution of polyvinyl alcohol was placed in an osmometer. The height of the solution above the 
surface of the pure water at equilibrium was 21.6 cm at 25.0C. Assume the density of the 
solution is that of pure water. Calculate the approximate molar mass of the polyvinyl alcohol and 
the average number of monomers, n, linked in the polymer. [Hint: Polyvinyl alcohol is 
CH3CH(OH)[CH2CH(OH)]n-2CH2CH2OH, so use –CH2CH(OH)- for the monomer molar mass.] 
 
 
Answer:  The osmotic pressure is given by Eq. 1.3.2 and h = 21.6 cm = 0.216 m: 
 

  = dgh = 0.9971 g mL-1(1 kg/1000 g)(1x106mL/1 m3)(9.8067 m s2)(0.216 m) 
    = 2.112x103 Pa = 0.02112 bar 
 

Using Eq. 18.4.30†, since this is such a dilute solution, gives the concentration as: 
 

 cB = /RT = 
0.02112 bar

0.083145 bar L mol-1 K-1 298.15 K = 8.52x10-4 mol L-1 
 

The solution concentration is used to calculate the molar mass from the definition of molarity: 
 

 cB = nB/Vsoln = wB/MB/Vsoln  or solving for MB: MB = wB/cB/Vsoln 
 

were wB is the mass of solute in a volume of solution, Vsoln. Assume 100.0 g of solution. The 
mass of the solute is wB= 4.00 g and the volume of the solution is 
Vsoln = wsoln/dsoln = 100.0 g/0.9971 g mL-1 (1 L/1000 mL) = 0.1003 L giving: 
 

 MB = wB/cB/Vsoln = 4.00 g/8.52x10-4 mol L-1/0.1003 L = 4.68x104 g mol-1 
 

The monomer weight, -CH2CH(OH)-, is 44.06 g mol-1, neglecting the difference in mass 
between the two ends. The average number of monomers per polymer molecule is then: 
 

 n = 4.68x104 g mol-1/44.06 g mol-1 = 1062. = 1.06x103 
 

The large molecular mass is not at all unusual for commercial polymers. Even though the 
solution concentration is quite small, 8.52x10-4M, the osmotic pressure is easily measured to 
high precision. 
 
 



371 
Chapter 18: Ideal Solutions 

 

26.  Osmotic pressure is used to determine the molar mass of polymers. However, Eq. 18.4.30† 
assumes ideal behavior. For real solutions, Eq. 18.4.30† gives an effective molar mass. For 
careful determinations, the effective molar mass of a sample is determined at several 
concentrations and extrapolated to zero concentration, where Eq. 18.4.30† becomes exact. The 
osmotic pressure of a sample of polystyrene in toluene was determined at several concentrations 
at 25C. Find the molar mass of the polystyrene sample.6 

 

CB (g L-1) 2.60 5.16 6.54 9.19 
 (Pa) 9.80 32.0 51.0 107. 

 
 
Answer: Eq. 18.4.30† was used to determine the effective molar concentration, cB = /RT, and 
the effective molar mass was determined using the definition of molarity: 
 

 cB = nB/Vsoln = wB/MB/Vsoln  or solving for MB: MB = wB/cB/Vsoln 
 

were wB is the mass of solute in a volume of solution, Vsoln. The concentrations in the table are 
given in g mol-1, CB. Assume 1.000 L of solution. The mass of the solute is wB= CB(1 L): 
 

 MB = CB(1 L)/cB/1 L = CB/cB 
 

The calculations were implemented in a short spreadsheet: 
 

CB (g L-1)  (Pa) cB (mol L-1) Meff (g mol-1) 
2.6 9.8 3.953E-06 6.576E+05 

5.16 32 1.291E-05 3.997E+05 
6.54 51 2.057E-05 3.179E+05 
9.19 107 4.317E-05 2.129E+05 
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The linear intercept gives the molar mass, MB = 8.x105 g mol-1. If more data points are available, 
a non-linear curve fit is appropriate and provides better accuracy.6 The large change in effective 
molar mass with concentration shows significant deviations from ideality, even at these low 
concentrations. 
 
 
27.  A 0.1000 m aqueous urea solution and pure water are separated by a membrane that is 
impermeable to urea and permeable to water, at 25C and 1 bar. Calculate the chemical potential 
of urea in the solution, relative to the standard state chemical potential, at equilibrium. The 
density of the solution is 0.99873 g mL-1and the data necessary to obtain partial molar volume is 
given in Example 18.1.1. 
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Answer:  Using Eq. 2.2.13, the mole fraction of 0.1000 m urea is xB = 1.7983x10-3. For a dilute 
solution of a non-electrolyte, the partial molar volume of the solvent is well approximated by the 
pure molar volume, V*

A = MA/dA,pure = 18.069 mL. The osmotic pressure in terms of the mole 
fraction of solute is given by Eq. 18.4.27†: 
 

  = xB RT/V*
A = 1.7983x10-3(0.083145 bar L K-1 mol-1)(298.15 K)/0.018069 L 

    = 2.467 bar 
 

For the partial molar volume of the solute using Eq. 18.1.8 at 0.1000 m gives: 
 

 V– B = 






V1kg

mB T,P,nA

kg-1 = 3(-1.9934x10-3) m
2
B + 2(9.03779x10-2) mB + 44.36388 

      = 3(-1.9934x10-3)(0.1)2 + 2(9.03779x10-2)(0.1) + 44.36388 = 44.382 mL mol-1 
 

For the solute, Eq. 18.4.24†gives the chemical potential at equilibrium with P = : 
 

 B(xB,P+) = †
B(l,P) + RT ln xB + BV– B 

         = †
B(l,P) + 8.3145 J K-1 mol-1(298.15 K) ln 1.7983x10-3 

        + 2.467 bar(44.382 mL mol-1)(1x105Pa/1bar)(1 m3/1x106 mL) 
        = †

B(l,P) + (-15.67 kJ mol-1) + 0.011 kJ mol-1 

 

The concentration dependent term dominates the change in chemical potential for the solute 
compared to the standard state. On the other hand, for the solvent, which occurs on both sides of 
the membrane, the concentration dependent term and the osmotic pressure term cancel at 
equilibrium. 
 
 
28.  Calculate the chemical potential of water in a 0.200 M solution of sucrose at 10.00 bar and 
25C. The partial molar volume of water in this solution is well approximated by the pure molar 
volume. 
 
 
Answer:  The plan is to use Eq. 18.4.30† to calculate the equilibrium osmotic pressure and then 
Eq. 18.4.31 to find the chemical potential of the solvent. 
   The equilibrium osmotic pressure is given by Eq. 18.4.30†: 
 

  = cB RT = 0.200 mol L-1(0.083145 L bar K-1 mol-1)(298.15 K) = 4.96 bar 
 

The partial molar volume of water in this dilute solution is not far from the pure molar volume, 
V*

A = MA/dA,pure = 18.0153 g mol-1/0.997045 g mL-1 = 18.069 mL mol-1.The chemical potential 
for water as the solvent is then given by Eq. 18.4.31: 
 

 A(xA,P+P) = *
A(l,P) + (P – )V– A 

  = *
A(l,P) + ( – 4.96 bar) 18.069 mL mol-1 (1x105 Pa/1 bar)(1 m3/1x106 mL) 

  = *
A(l,P) + (9.11 J mol-1) 

 

The chemical potential of pure water is just the Gibbs energy per mole. The standard state Gibbs 
energy of formation of water is -237.13 kJ mol-1, so the effect of the pressure is small. However, 
the difference is not negligible since the 10 bar applied pressure corresponds to a hydrostatic 
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head of 102 m and the osmotic pressure corresponds to 51 m. Small differences in chemical 
potential correspond to large differences in osmotic pressure. 
 
 
29.  Starting with the expression for the chemical potential of the solvent in an ideal-dilute 
solution, prove Eq. 18.4.15†. 
 
 
Answer:  The freezing point or melting point of a solution is the equilibrium phase transition 
temperature giving A(xA) = *

A(s). Using Raoult’s Law for the solvent, the chemical potential of 
the solvent in solution is given by Eq. 18.2.9*: 
 

 *
A(s) = A(xA) = *

A(l) + RT ln xA 
 

The molar Gibbs energy of fusion of the pure solvent at temperature T is given by ∆fusGA(T) = 
*

A(l) – *
A(s). Solving for the concentration of the solvent that gives the solution freezing point at 

temperature T gives: 
 

 ln xA = 
*

A(s) – *
A(l)

RT  = – 
∆fusGA(T)

RT
 

 

For the pure solvent, xA = 1, and the equilibrium temperature is the melting point of the pure 
solvent at the ambient pressure, T = T *

m: 
 

 ln 1 = – 
fusGA(T*

m)
RT*

m
 

 

We can compare the solution to the pure solvent by subtracting the last two equations: 
 

 ln 
xA

1  = – 
∆fusGA(T)

RT  + 
∆fusGA(T*

m)
RT*

m
 

 

We can separate enthalpy and entropy effects using ∆fusGA(T) = ∆fusHA(T) – T ∆fusSA(T): 
 

 ln xA = – 



fusHA(T)

RT  – 
fusSA(T)

R  + 



fusHA(T*

m)
RT*

m
 – 
fusSA(T*

m)
R  

 

where fusHA is the enthalpy of fusion of the solvent. The change in freezing point is typically 
only a few degrees. Assuming that ∆fusHA and ∆fusSA are constant over this small temperature 
range results in the cancellation of the entropy terms: 
 

 ln xA = – 
fusHA

RT  + 
fusHA

RT*
m

 
 

Collecting terms gives exactly the same results as for boiling point elevation, except for a change 
in sign: 
 

 ln xA = – 
fusHA

R  



1

T – 
1

T*
m

   (ideal solvent, cst. P, fusHB & fusSB) 
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30.  Consider the solubility of a pure solid, B, in a solvent at temperature T. Assume that the 
solution is ideal-dilute and at constant pressure. (a). Show that:  *

B(s) = †
B(l) + RT ln xB. 

(b). The standard state Gibbs energy of solution of the pure solid at temperature T is defined as: 
solGB(T) = †

B(l) – *
B(s). Show that the solubility of the solute is: ln xB = –solGB(T)/RT. 

(c). At reference temperature To the solubility is xBo. Show that the temperature dependence of 
the solubility is given by: 
 

 ln 
xB

xBo
 = – 

solHB
R  



1

T – 
1
To

    (ideal-dilute, cst. P)      P18.29.1† 

 
 
Answer:  The plan is to set the chemical potential of pure solute B equal to its chemical potential 
in solution. The steps in the derivation parallel Eqs. 18.4.2†-18.4.8†, but focus on the solute. 
(a). At equilibrium, the chemical potential of a solute is equal to the solute’s chemical potential 
in solution, *

B(s) = B(xB). The chemical potential of the solute is given by Eq. 18.3.10†, 
assuming an ideal-dilute solution: 
 

 *
B(s) = B(xB) = †

B(l) + RT ln xB 
 

where xB is the solubility, the concentration that is in equilibrium with the pure solid. The 
difference in standard states is the standard state Gibbs energy of solution, solGB = †

B(l) – *
B(s) 

at temperature T. Solving for the solubility gives: 
 

 ln xB = [*
B(s) – †

B(l)]/RT = –solGB(T)/RT 
 

At reference temperature To the solubility is xBo.  
 

 ln xBo = –solGB(To)/RTo 
 

The difference in solubilities at T and To is then: 
 

 ln xB – ln xBo = –solGB(T)/RT + solGB(To)/RTo 
 

The Gibbs energy of solution can be split into enthalpic and entropic terms: 
 

 solGB = solHB – TsolSB 
 ln xB/xBo = –solHB(T)/RT + solSB(T)/R + solHB(To)/RTo – solSB(To)/R 
 

Assuming that solHB and solSB are constant over the temperature range, the entropy terms 
cancel: 
 

 ln 
xB

xBo
 = – 

solHB
R  



1

T – 
1
To

    (ideal-dilute, cst. P, solHB & solSB) 
 

Solubility is another example of General Pattern 4: Exponential Temperature Dependence, 
e-E/RT, and may be rearranged in the same ways. 
 
 
31.  (a). Show that for small changes in temperature, T  T – To, Eq. P18.29.1† reduces to: 
 

 xB = xBo + 



solHB xBo

RT2
o

 T 
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(b). Show that this equation and LeChâtelier’s Principle are consistent. 
 
Answer:  The plan is to parallel the approximations in Eqs. 18.4.9†-18.4.14† and General Pattern 
. 
(a). Set T  T – To. Following General Pattern 4, Eq. 3.5.13, for small changes in 
temperature, TTo  T2

o. Substitution into Eq. P18.29.1† gives: 
 

 ln 
xB

xBo
 = – 



solHB

R  



To – T

T To
= 



solHB

RT2
o

 T 
 

For small changes in temperature, the change in solubility is small and xB/xBo  1. Using the 
Taylor series approximation, Table 1.5.3, ln x  x – 1 near xo  1 gives: 
 

 
xB

xBo
 – 1 = 



solHB

RT2
o

 T 
 

Solving for xB: 
 

 xB = xBo + 



solHB xBo

RT2
o

 T    (ideal-dilute, small T) 
 

(b). If the enthalpy of solution is endothermic, the constant in parentheses is positive and the 
solubility increases with an increase in temperature. Think of the equilibrium solubility as a 
chemical reaction, B(s)  B(xB). According to LeChâtelier’s Principle, a reaction shifts in the 
endothermic direction with an increase in temperature. Increasing solubility corresponds to a 
shift to the right. The last equation and LeChâtelier’s Principle are consistent. 
 
 
32.  Many binary solid-liquid phase diagrams are more complex than Figure 18.4.11. Some 
systems show the formation of a stable binary compound in the solid phase. Compounds 
typically have simple stoichiometries, such as A2B, that are stabilized by strong intermolecular 
forces, like hydrogen bonding, or favorable crystal packing forces. The compound components 
are not covalently bound, and the compound doesn’t exist in the liquid phase. An example of a 
compound in the phase diagram for NaCl in water is the dehydrate, NaCl(H2O)2. The solid-
liquid phase diagram for a system with a stable solid-state compound, A2B, is shown below. 
Analyzing a phase diagram that shows compound formation can be simplified by treating the 
compound as a hypothetical pure substance and dividing the phase diagram to either side as 
separate binary systems. Describe the phase transitions that occur along the cooling curve at the 
indicated composition, x1. 
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Answer:  Start at high temperature, with solution only, point a. When the temperature drops to 
point b, solid compound A2B begins to crystallize out of solution. The solution, which is also 
called the melt, becomes richer in B and the freezing point decreases. When the temperature 
drops to the eutectic temperature, between pure B and A2B, solid A2B begins to crystallize out of 
solution. The temperature remains constant until all the solution has solidified. The bulk 
composition is then at point d. 
 
 
 
 
 
 
 
 
 
 
 
33.  Relate the changes in the slopes of the segments on the cooling curve, Figure 18.4.12, and 
the widths of the peaks on the DSC melting curve, Figure 18.4.13, to the variances of the system 
at constant pressure. Discuss segments b-c and c-d. 
 
Answer:  The corresponding regions and variances are diagrammed, below. For segment b-c the 
solution is in equilibrium with pure solid A. The variance of the system is f ' = 1. One intensive 
variable may be changed independently. For example, for a chosen composition, with freezing 
point of the solution is fixed. In segment b-c on the cooling curve, the temperature decreases as 
the solution become richer in B. The freezing point is depressed with increasing concentration of 
B in the solution. The corresponding melting peak in the DSC melting curve is broad. However, 
once the solution reaches the eutectic composition, the variance drops to f ' = 0, there are no 
independent variables. The temperature must then be fixed at the eutectic temperature. The 
cooling curve becomes flat at the eutectic temperature and the DSC melting peak at the eutectic 
temperature is narrow, comparable to the width of the melting peak of a pure substance. (The 
width of the eutectic melting peak is determined by instrument response times and the 
temperature scan rate.)  
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34.  The following DSC melting thermograms were obtained from a range of starting 
compositions of Sn and Pb. The compositions are given as % by mass. The baselines of the 
thermograms are offset for clarity. Sketch the binary solid-liquid phase diagram. Use % by mass 
Sn as the composition axis, instead of mole fraction; % by mass gives a more convenient plot for 
this system.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Answer:  The sharp, low temperature transitions for the mixtures occur at the eutectic 
temperature. An easy way to think of building the phase diagram is to tilt the thermograms on 
their sides and replot them along the composition axis. Then connecting the melting temperatures 
by lines delineates the two-phase regions. 
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dqP
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35.  Find the variance for a gas in equilibrium with an aqueous solution of the gas. Give an 
expression for the general differential of the Gibbs energy, the change in Gibbs energy at 
constant temperature, and the change in Gibbs energy at constant temperature and pressure. 
Discuss the independent variables. 
 
 
Answer:  The two components are H2O and the gas, c = 2. The two phases are the solution and 
the vapor, p = 2. The variances using Eq. 18.5.6 are: 
 

 f = c – p + 2 = 2 at constant T:  f ' = 1  and at constant T & P:   f " = 0 
 D = c + p = 4    D ' = 3        D " = 2 
 

Call the gas M; examples include methanol, CH4, CHCl3, O2, and N2. The change in Gibbs 
energy for a general process written in terms of all the possible terms is: 
 

    dG = – S dT + V dP + H2O(xH2O) dnH2O,l + H2O(g) dnH2O,g + M(xM) dnM,l + M(g) dnM,g 
          (with 4 independent) 
 

The Gibbs Phase Rule points out that since the chemical potentials of each component are equal 
in the liquid and vapor, in addition to xH2O + xM = 1 and yH2O + yM = 1, there are only two degrees 
of freedom for the intensive variables. An equivalent way of noting this decrease in variance is 
that at equilibrium the vapor pressure of water is determined by Raoult’s Law and the vapor 
phase pressure of the dissolved gas is given by Henry’s Law. Following the allowed variance and 
arbitrarily focusing on the solution: 
 

 dG = – S dT + V dP + H2O(xH2O)dnH2O + M(xM)dnM   (D = 4) 
 dG =   V dP + H2O(xH2O)dnH2O + M(xM)dnM   (cst.T: D ' = 3) 
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 dG =    H2O(xH2O)dnH2O + M(xM)dnM   (cst. T&P: D " = 2) 
 

where dnH2O = dnH2O,l + dnH2O,g and dnM = dnM,l + dnM,g (the chemical potential of the 
components in each phase are equal, so it doesn’t matter which phase the components are in for 
calculating the overall Gibbs energy). The final expression for dG can often be written in various 
equivalent ways; however, f and D provide a check that you haven’t included dependent terms. 
 
 
36.  Two partially miscible liquids, A and B, form a two-phase liquid system at equilibrium. One 
phase is mostly A with a small amount of B and the other phase is mostly B with a small amount 
of A. Consider only the liquid phases. Give an expression for the general differential of the 
Gibbs energy, the change in Gibbs energy at constant temperature, and the change in Gibbs 
energy at constant temperature and pressure. Discuss the independent variables. Most non-polar 
organic liquids and water are examples of this type of behavior; small amounts of water dissolve 
in the organic layer and small amounts of organic substance dissolve in the aqueous layer. 
 
 
Answer:  The two components are A and B, c = 2. The two phases are the solution rich in A, the 
α phase, and the solution rich in B, the  phase, so that p = 2. The variances are using Eq. 18.5.6: 
 

 f = c – p + 2 = 2 at constant T:  f ' = 1  and at constant T & P:   f " = 0 
 D = c + p = 4    D ' = 3        D " = 2 
 

The change in Gibbs energy for a general process written in terms of all the possible terms is: 
 

    dG = – S dT + V dP + A(xA,α) dnA,α + A(xA,) dnA, + B(xB,α) dnB,α + B(xB,) dnB, 
          (with 4 independent) 
 

with xA,α the concentration of A in the alpha phase and xA, the concentration of A in the beta 
phase. The Gibbs Phase Rule points out that since the chemical potentials of each component are 
equal in both liquid phases, in addition to xA,α + xB,α = 1, and xA, + xB, = 1, there are only two 
degrees of freedom for the intensive variables. 
 

 dG = – S dT + V dP + A(xA,α)dnA + B(xB,α)dnB   (D = 4) 
 dG =   V dP + A(xA,α)dnA + B(xB,α)dnB   (cst.T: D ' = 3) 
 dG =    A(xA,α)dnA + B(xB,α)dnB   (cst. T&P: D " = 2) 
 

where dnA = dnA,α + dnA, and dnB= dnB,α + dnB, are the changes in total moles of A and B in 
both phases (the chemical potential of the components in each phase are equal, so it doesn’t 
matter which phase the components are in for calculating the overall Gibbs energy). The final 
expression for dG can often be written in various equivalent ways; however, f and D provide a 
check that you haven’t included dependent terms. 
 
 
37.  A system containing three components is univariant. How many phases are present? 
 
 
Answer:  The Gibbs Phase Rule, Eq. 18.5.6, determines the variance. For a univariant system, f = 
1, and with c = 3: 
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 f = c – p + 2 
 1 = 3 – p + 2  giving   p = 4 
 
 
38.  Show that for a pure substance the largest number of phases that can coexist is three. 
 
 
Answer:  For a pure substance c = 1. Since there are no composition variables, the only intensive 
variables are the temperature and pressure and the variance is f = 2. The Gibbs Phase Rule, Eq. 
18.5.6, then determines the phases: 
 
 f = c – p + 2 
 2 = 1 – p + 2  giving p = 3 
 
 
39.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a). A champagne toast was used to celebrate the final stages of the construction of a 
transportation tunnel under the Thames River in London, in November 1827.8 The celebration 
fell flat because at the higher ambient pressure in the tunnel, the Henry’s Law solubility of the 
CO2 in the wine increased, making the champagne taste flat. Participants also suffered gastric 
distress upon regaining ground level. This event is a practical example of Henry’s Law. 
 

(b). Soft drinks may be kept from “defizzing” by pumping air into the empty space above the soft 
drink in a partially filled bottle. 
 

(c). Consider a two-phase region for a binary solid-liquid equilibrium system at constant 
pressure, with solution in equilibrium with pure solid A, Figure 18.4.12. At a fixed temperature, 
the solution composition may be any value along the tie line. 
 

(d). A solution has a minimum freezing point (the eutectic temperature) because at the minimum 
temperature, the both the solute and the solvent have limited solubility in solution. 
 

(e). The theory of ideal-dilute solutions doesn’t take solute-solvent forces into account. 
 

(f). The boiling point is elevated and the freezing point is depressed in a dilute solution of 
methanol in water. 
 

(g). Two phases cannot be in equilibrium unless all components occur in each phase. 
 
 
Answers: (a). False: Henry’s Law, pCO2 = kH,CO2 xCO2, depends on the partial pressure of CO2, not 
the total pressure. The partial pressure of CO2 at equilibrium in a bottle of champagne is near 6 
atm. The partial pressure of CO2 in ambient air is 0.0003 atm.9 The increased ambient pressure at 
the bottom of the tunnel does not significantly increase the CO2 partial pressure in the 
atmosphere, compared to the 6 atm equilibrium partial pressure. Rather, the effect is caused by 
the kinetics of bubble formation. The kinetics of nucleation and bubble growth as the bubble 
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rises in the solution is dependent on total pressure.9 The correct statement is: the equilibrium 
solubility of CO2 in beverages is essentially independent of total applied pressure of air. 
However, please see Eq. 17.1.30 for extreme changes in total pressure. 
 

(b). False: pumping air into the empty space in a partially filled bottle increases the total 
pressure, but the partial pressure of CO2 remains essentially unchanged. The partial pressure of 
CO2 in the atmosphere is negligible in this regard, at 0.0003 atm. Henry’s Law, 
pCO2 = kH,CO2 xCO2, depends on the partial pressure of CO2, not the total pressure. The increase in 
total pressure does decrease the rate of bubble nucleation and bubble growth, but the equilibrium 
is unaffected. In addition, 80% of the transfer of CO2 into the gas phase is by direct transfer from 
the surface of the solution (for further information see part (a) and Ref. 9). The correct statement: 
bottle-top pressure pumps do not prevent “defizzing” of soft drinks at equilibrium. 
 

(c).  False: the solution composition is at the solution end of the tie line, on the freezing point 
coexistence curve. The solid-phase composition is at the solid-phase end of the tie lie, which is 
pure A. The solution composition is fixed at a single value, subject to the system temperature. 
The corrected statement is: the overall system composition, zB, may be any value along the tie 
line.  
 

(d).  True: thinking of the system from the perspective of freezing point depression, as the 
temperature of the solution is lowered, the solvent freezes out of solution. As the solute 
concentration increases the freezing point is depressed further. However, at some low 
temperature the solute also crystallizes out of solution, because the solute has limited solublility 
in the solution. At the eutectic temperature, both solute and solvent crystallize out of solution. 
 

(e).  False: The Henry’s Law constant is the hypothetical vapor pressure of pure solute, assuming 
the forces are the same as between the solute and solvent. So, the solute-solvent forces are 
explicitly accounted for, in the dilute solution limit. Another way of seeing that the solute-
solvent forces are carefully accounted for is to note that the Henry’s Law constant for the solute 
is extrapolated from very dilute solution, where the only forces that affect the solute are the 
solute-solvent forces. Ideal-dilute solution theory does not take into account the concentration 
dependent changes as the forces shift from the solute-solvent forces in very dilute solution to 
solute-solute forces in pure solute, as xB  1. The concentration dependent effects are resolved 
by the definition of activity in the next chapter. The correct statement is: ideal-dilute solution 
theory accounts for solute-solvent forces in the dilute solution limit, for which the only forces are 
the solute-solvent interaction. 
 

(f). False/True:  The freezing point is depressed in dilute methanol solutions. However, methanol 
is a volatile solute, so the colligative laws don’t apply to the vapor above methanol-water 
solutions. Instead the binary liquid-vapor phase diagram is applicable, Figure 18.4.2, with water 
the less volatile component having the higher boiling point. At equilibrium the vapor pressures 
of methanol and water add, so the boiling point is lower for methanol-water solutions than pure 
water. The correct statement is: the boiling point is lowered and the freezing point is depressed in 
a dilute solution of methanol in water. 
 

(g). True with a qualification: if two phases are in contact and a component occurs in one phase 
but not the other, then a concentration gradient will exist, and the component will diffuse into the 
other phase. The flux continues until the chemical potential of the component is equal in both 
phases. However, to be careful a qualification should be added: In the absence of a physical 
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constraint, two phases cannot be in equilibrium unless all components occur in each phase. A 
semi-permeable membrane is such a constraint. 
 
 
40.  For many binary solid-liquid systems, the two solids are partially miscible. The solid phases 
consist of a phase rich in A with small amounts of B, the α phase, and a phase rich in B with 
small amounts of A, the  phase. Cooling a solution of A and B, with an initial concentration 
greater than the eutectic composition, freezes out solid α. Cooling a solution of A and B, with an 
initial concentration less than the eutectic composition, gives solid . Below the eutectic 
temperature, solid  and solid α are in equilibrium. The compositions of the two solid phases 
depend on temperature. The phase diagram for a binary solid-liquid system with partial 
miscibility is shown below, at constant pressure. Describe the phases in equilibrium in each part 
of the phase diagram. Give the variance, f ', for each accessible region of the phase diagram. 
 
 
 
 
 
 
 
 
 
 
 
Answer:  The plan is to base the description on Figure 18.5.2a and the Gibbs Phase Rule, Eq. 
18.5.6. The experiment is at constant pressure, so we use f '. 
   At high temperatures, only the liquid phase exists, as a solution of A and B. With only one 
phase, p = 1 and f ' = c – p + 1 =  2 + 1 – 1 = 2. The temperature can vary over a wide range for 
each composition.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the solid-liquid two-phase regions, with the solid and liquid in equilibrium, p = 2 and the 
variance at constant pressure is f ' = 2 – 2 + 1 = 1. On the left side of the phase diagram the 
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solution is in equilibrium with the solid rich in B, solid . On the right side the solution is in 
equilibrium with the A rich solid, solid α. At the eutectic temperature, the liquid phase, solid , 
and solid α co-exist and p = 3 giving f ' = 2 – 3 + 1 = 0. The eutectic temperature is an invariant 
point at constant pressure. Below the eutectic temperature, solid  and solid α are in equilibrium. 
The specific concentrations for the two solid phases are temperature dependent. The cross-
hatched areas are not accessible starting from a homogeneous solution of A and B. 
 
 
41.  For many binary solid-liquid systems, the two solids are partially miscible. The solid phases 
consist of a phase rich in A with small amounts of B, the α phase, and a phase rich in B with 
small amounts of A, the  phase. Below the eutectic temperature, solid  and solid α are in 
equilibrium. The compositions of the two solid phases depend on temperature. The phase 
diagram for a binary solid-liquid system with partial miscibility is shown below, at constant 
pressure. Describe the phase changes that occur as the solution starting at point a is cooled to 
below the eutectic temperature, point e. 
 
 
 
 
 
 
 
 
 
 
Answer:  Cooling the solution of A and B starting at point a, the first phase change occurs when 
the temperature reaches the freezing point of the solution, point b. At point b, the solution is in 
equilibrium with solid α, with the composition given by the right side of the tie line at point f, in 
the diagram below. As solid α freezes out of solution, the solution composition becomes richer in 
B; the solution composition moves to the left on the co-existence curve and the freezing point of 
the solution decreases. The temperature continues to drop until the eutectic temperature is 
reached, point c. At the eutectic temperature, solid  crystallizes out of solution along with solid 
α. The temperature remains constant (the eutectic point is an invariant point at constant 
pressure), until the solution has completely frozen into a heterogeneous mixture of crystallites of 
solid α and solid . The compositions of the two solid phases are at the ends of the tie line at the 
eutectic temperature, points g and h.  
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Below the eutectic temperature, the combined concentration of the solid phases is equal to the 
original solution concentration, point d, but no single phase has the composition at point d. The 
system continues to cool to point e. As the solution cools below the eutectic temperature, the 
composition of the solid phases at equilibrium change. However, establishing equilibrium is a 
very slow process in the solid state. 
 
 
42.  Consider a binary solid-liquid system with components that are completely immiscible in the 
solid phase, Figure 18.4.11. Below the eutectic temperature, only pure solid A and pure solid B 
are present. The general form of the Gibbs Phase Rule, f = c – p + 2, does not apply to this region 
because the components A and B don’t occur in all the phases. Determine the variance in the 
two-phase solid region below the eutectic temperature for immiscible components. 
 
 
Answer:  There are only two intensive variables in the solid two-phase region: T and P. The 
concentrations are fixed, since the phases are pure. For the solid A phase xA = 1 and for the solid 
B phase xB = 1. The variance is then f = 2, accounting for the temperature and pressure variation. 
At constant pressure, f ' = 1, and the system is univariant. Only the temperature may be varied at 
constant pressure. Please see Problems 39-40 for the more realistic case of partial miscibility. 
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Chapter 19 Problems: Real Solutions  
 
 
1. A solution of solvent A and solute B has relative forces A-A, B-B < A-B. Are the activity 
coefficients for the solvent less than one or greater than one? 
 
 
Answer:  The A-B forces are favorable giving negative deviations from ideality and A < 1 for 
the solvent. We always assume a Raoult’s Law standard state for the solvent. 
 
 
2. The partial pressure of acetone over a solution of acetone in ether at 30°C is 0.120 bar at 
xacetone = 0.200. The partial pressure of ether at this same concentration is 0.713 bar. Calculate the 
activity coefficients for ether and acetone given that vapor pressure of pure acetone is 0.377 bar 
and of pure ether is 0.861 bar. 
 
 
Answer:  On a Raoult’s Law standard state basis, Eqs. 19.1.5 and 19.1.7, with P*

acetone = 0.377 bar 
and P*

ether = 0.861 bar, the activities are: 
 

 aA = PA/P
A
 = 0.120/0.377 = 0.318   A = aA/xA = 0.318/0.200 = 1.59 

 

 aE = PE/P
E
 = 0.713/0.861 = 0.828   E = aE/xE = 0.828/0.800 = 1.04 

 
 
3. The pure vapor pressure of substance A is 28.2 torr. The mole fraction of A in the vapor above 
a solution is 0.0432 while the mole fraction of A in the solution is 0.672. Calculate the activity 
coefficient for A in this solution on a Raoult’s Law basis. The total vapor pressure is 760.0 torr. 
 
 
Answer:  The plan is to use Dalton’s Law to find the partial vapor pressure of A and then aA = 
PA/P

A. 
   Dalton’s Law gives the partial vapor pressure of A in the gas phase: 
 

 PA = yA P = 0.0432 (760 torr) = 32.8 torr 
 

On a Raoult’s Law standard state basis, Eqs. 19.1.5 and 19.1.7 give: 
 

 aA = PA/P
A
 = 32.8/28.2 = 1.16   A = aA/xA = 1.16/0.672 = 1.73 

 

Vapor phase composition data is easily obtained using gas-phase UV or IR absorption 
spectroscopy or gas chromatography. 
 
 
4. Under what circumstances can the activity coefficient of the solvent be greater than one, but in 
the same solution, the activity coefficient of the solute be less than one (or visa versa)? 
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Answer:  The situation is likely when a Raoult’s Law standard state is used for the solvent and a 
Henry’s Law standard state is used for the solute. For example, if the solvent activity coefficient 
is greater than one, the solution has positive deviations from ideality, as in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
From the figure, for the solvent A, PA > PRa

A
oult  giving A > 1. For the solute B, PB < PHe

B
nry giving 

B < 1. At intermediate concentration, the behavior of each component is intermediate between 
Raoult’s Law (for example, positive deviations) and Henry’s Law (corresponding negative 
deviations). 
 
 
5. (a). Calculate the activity coefficient for B at xB =0.667 with a Raoult's Law and a Henry's 
Law standard state. (b). Characterize the relative forces, AB versus (AA+ BB)/2. (c). Find the 
vapor pressure of pure B and the Henry’s Law constant for B from the plot. Find the Raoult’s 
Law and Henry’s Law predictions for the vapor pressure of B at xB =0.667. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Answer:  The plan is to note that PA = 15.0 torr, PB = 64.0 torr, PRa

B
oult = 86.7 torr, and PHe

B
nry = 

33.4 torr at xB = 1 – xA = 0.667. 
 

(a).  Using Eq. 19.1.9 for a Raoult’s Law standard state gives: 
 

 B = PB/PRa
B

oult = 64.0/86.7 = 0.738 
 

   Using Eq. 19.1.16 for a Henry’s Law standard state gives: 
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 B = PB/PHe
B

nry = 64.0/33.4 = 1.92 
 

At this intermediate concentration, the behavior of B is intermediate between Raoult’s Law (with 
negative deviations) and Henry’s Law (with positive deviations), as expected. 
 

(b).  Because the vapor pressures are less than the Raoult’s Law predictions, this solution shows 
negative deviations from ideality; |AB| > |(AA+ BB)/2|. 
   It is best to deal with magnitudes, since the forces are all attractive, AB, AA, BB < 0. Using 
simple solution theory, noting Eq. 19.6.4, then AB is more favorable than  (AA+ BB) so that AB 
< (AA+ BB)/2 gives solG < 0. 
 

(c).  Visually, the vapor pressure of B at xB = 1 is P*
B = 130. torr. The Raoult’s Law prediction is: 

 

 PRa
B

oult = xB P*
B = 0.667(130. torr) = 86.7 torr  as shown in the figure. 

 

Visually, from the intersection of the Henry’s Law line at xB = 1, kH,B = 50.0 torr. The Henry’s 
Law prediction is: 
 

 PHe
B

nry = xB kH,B = 0.667(50.0 torr) = 33.4 torr  as shown in the figure. 
 
 
6.  The partial vapor pressure of heptane above a solution of heptane and 1-bromobutane was 
0.0885 bar for a heptane mole fraction of 0.4164. The vapor pressure of pure heptane is 0.187 
bar. The Henry’s Law constant for heptane was determined in Problem 18.13 to be kH,heptane = 
0.265 bar. Calculate the activity coefficients on both a Raoult’s Law and Henry’s Law basis. 
 
 
Answer:  On a Raoult’s Law standard state basis, Eqs. 19.1.5 and 19.1.7 give: 
 

 aA = PA/P
A
 = 0.0885/0.187 = 0.473   A = aA/xA = 0.473/0.4164 = 1.14 

 

The solution has positive deviations from ideality, overall. On a Henry’s Law standard state 
basis, using Eq. 19.1.14 for heptane as the solute B: 
 

 aB = PB/kH,B = 0.0885/0.265 = 0.334  B = aB/xB = 0.334/0.4164 = 0.802 
 

The vapor pressure of heptane is less than that predicted from the dilute solution environment. 
The behavior of heptane is intermediate between Raoult’s Law (positive deviations) and Henry’s 
Law (negative deviations) as you might expect since the solution is intermediate in 
concentration. 
 
 
7.  The freezing point depression for a 10.00 % by weight solution of acetone in water is 3.29C. 
Calculate the activity, activity coefficient, and osmotic coefficient. Calculate the osmotic 
pressure of the solution at 25C assuming the activity coefficient and osmotic coefficient are 
constant over the given temperature range and the partial molar volume of the solvent is the pure 
molar volume. The molar mass of acetone is 58.05 g mol-1. The enthalpy of fusion of water is 
6.008 kJ mol-1. 
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Answer:  We follow Example 19.1.2. The mole fraction of the solvent, assuming 100.0 g of 
solution, is: 
 

 xA = 
90.00 g/MA

90.00 g/MA + 10.00 g/MB
 = 

90.0 g/18.0153 g mol-1

90.0 g/18.0153 g mol-1 + 10.00 g/58.05 g mol-1 = 

0.96667 
 

The molality of the solute, assuming 100.0 g of solution, is: 
 

 mB = 
10.00 g/MB

90.00 g (1 kg/1000 g) = 
10.0 g/58.05 g mol-1

90.0 g (1 kg/1000 g) = 1.914 m 
 

Using Eq. 19.1.4 with the melting point of the solution, T = 273.15 K – 3.29 K = 269.86 K, and 
assuming a constant enthalpy of fusion: 
 

 ln aA = – 
fusHA

R  



1

T – 
1

T*
m

 = – 
6.008x103 J mol-1

8.3145 J K-1 mol-1 



1

269.86 K – 
1

273.15 K  = -0.032252 

 aA = 0.96826 
 

The activity coefficient is A = aA/xA = 0.96826/0.96667 = 1.00164. 
The osmotic coefficient is given by Eq. 19.1.20 or directly using Eq. 19.1.23: 
 

  = – (55.51 mol kg-1 ln aA)/mB = 
fusHA

R mB/(55.51 mol kg-1) 



1

T – 
1

T*
m

 

    = – 55.51(-0.032252)/1.914 m 
    = 0.93538 
 

The osmotic coefficient has a larger difference from one than the activity coefficient, as 
designed. 
   The pure molar volume of water is V*

A = MA/dA,pure = 18.069 mL = 0.018069 L. The osmotic 
pressure can be calculated from Eq. 18.4.23† with the activity substituted or Eq. 19.1.24 using 
the osmotic coefficient: 
 

  V– A = – RT ln aA = – 0.083145 bar L K-1 mol-1(298.15 K)(-0.032252)   giving 
  = 44.25 bar  alternatively: 

  V– A = RT  mB/(55.51 mol kg-1)    giving    = 44.25 bar 
 

The ideal prediction using Eq. 18.4.26† is 46.5 bar, which corresponds to a 5% error neglecting 
the activity coefficient. Electrolyte solutions show much larger deviations from ideality.  
 
 
8.  The freezing point depression for a 10.00 % by weight solution of MgCl2 in water is 7.91C. 
Calculate the activity, activity coefficient, and osmotic coefficient. Calculate the osmotic 
pressure of the solution at 25C assuming the activity coefficient and osmotic coefficient are 
constant over the given temperature range and the partial molar volume of the solvent is the pure 
molar volume. The molar mass of MgCl2 is 95.23 g mol-1. The enthalpy of fusion of water is 
6.008 kJ mol-1. 
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Answer:  We follow Example 19.1.2 with mB = mMgCl2 and = 3. The mole fraction of the 
solvent, assuming 100.0 g of solution, is: 
 

 xA = 
90.00 g/MA

90.00 g/MA + 3(10.00 g/MB) = 
90.0 g/18.0153 g mol-1

90.0 g/18.0153 g mol-1 + 3(10.00 g/95.23 g mol-1) 

     = 0.94068 
 

The molality of the solute particles, assuming 100.0 g of solution, is: 
 

 mB = 3 



10.00 g/MB

90.00 g (1 kg/1000 g)  = 3 



10.0 g/95.23 g mol-1

90.0 g (1 kg/1000 g)  = 3.5003 m 
 

Using Eq. 19.1.4 with the melting point of the solution, T = 273.15 K – 7.91 K = 265.24 K, and 
assuming a constant enthalpy of fusion: 
 

 ln aA = – 
fusHA

R  



1

T – 
1

T*
m

 = – 
6.008x103 J mol-1

8.3145 J K-1 mol-1 



1

265.24 K – 
1

273.15 K  = -0.078891 

 aA = 0.92414 
 

The activity coefficient is A = aA/xA = 0.92414/0.94068 = 0.98242. 
The osmotic coefficient is given by Eq. 19.1.20 or directly using Eq. 19.1.23: 
 

  = – (55.51 mol kg-1 ln aA)/mB = 
fusHA

R mB/(55.51 mol kg-1) 



1

T – 
1

T*
m

 

    = – 55.51(-0.078891)/3.5003 m 
    = 1.2511 
 

The osmotic coefficient has a larger difference from one than the activity coefficient, as 
designed. 
   The pure molar volume of water is V*

A = MA/dA,pure = 18.069 mL = 0.018069 L. The osmotic 
pressure can be calculated from Eq. 18.4.23† with the activity substituted or Eq. 19.1.24 using 
the osmotic coefficient: 
 

  V– A = – RT ln aA = – 0.083145 bar L K-1 mol-1(298.15 K)( -0.078891)  = 108.2 bar 

  V– A = RT  mB/(55.51 mol kg-1)   = 108.2 bar 
 

The ideal prediction using Eq. 18.4.26† is 83.9 bar, which corresponds to a 22% error neglecting 
the activity coefficient. 
 
9.  Eqs. 18.4.8†, 18.4.15†, and 19.1.4 assume the phase transition enthalpy of the solvent is 
constant. For careful determinations of the activity with large freezing point changes, the 
temperature dependence of the enthalpy of fusion should be taken into account:  fusHA(T) = 
fusHA(T*

A) + fusCp,A (T – T*
A). Use this temperature dependence to find a better approximation to 

Eq. 19.1.4 by completing the following steps. 
(a). At equilibrium for a solid-liquid phase transition, the equivalence of the chemical potentials 
gives *

A(s) = *
A(l) + RT ln xA, which is the analog to Eq. 18.4.2†. Convert the last equation into 

the corresponding equation for a real solution. The Gibbs energy of fusion for the pure solvent is 
fusGA = *

A(l) – *
A(s). Use the Gibbs-Helmholtz relationship, Eq. 16.3.12, to show: 
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 ln aA

T P
 = 
fusHA

RT2  

 

(b). Use the temperature dependence of the enthalpy to integrate this last equation from T*
A to T. 

Note that aA = 1 and ln aA = 0 at the pure standard melting point T*
A. The result is: 

 

 ln aA = – 





fusHA(T*

A) – fusCp,A T*
A

R  



1

T – 
1

T*
A

 + 
fusCp,A

R  ln(T/T*
A
) 

 
 
Answer:  (a). To convert the ideal solution equation to a real solution, we simply replace xA with 
aA. The difference in the chemical potentials gives: fusGA = *

A(l) – *
A(s) = – RT ln aA. Then the 

Gibbs-Helmholtz expression, Eq. 16.3.12, gives: 
 

 











fusGA

T
T P

 = – 
fusHA

T2  

 

Since ln aA = –fusGA/RT, dividing both sides of the last equation by –R gives: 
 

 






 ln aA

T P
 = 
fusHA

RT2  
 

(b). Integrating this last equation from T*
A to T and using fusHA(T) = fusHA(T*

A) + fusCp,A (T – 
T*

A): 
 

 ln aA(T*
A)

ln aA(T)    d ln aA = 



T*
A

T

 
fusHA(T*

A)
RT2  dT + 





T*
A

T

 
fusCp,A

RT  dT – 




T*
A

T

 
fusCp,A T*

A

RT2  dT 

 

Since at the pure standard melting point, aA = 1 and ln aA = 0, the integral on the left is just ln aA 
at the final temperature. The first integral on the right gives the standard form of the equation, 
Eq. 18.4.15†. The remaining two terms are the corrections: 
 

 ln aA =  – 
fusHA(T*

A)
R  



1

T – 
1

T*
A

 + 
fusCp,A

RT  ln(T/T*
A
) + 

fusCp,A T*
A

R  



1

T – 
1

T*
A

 
 

Combining the first and last terms on the right gives the final result: 
 

 ln aA = – 





fusHA(T*

A) – fusCp,A T*
A

R  



1

T – 
1

T*
A

 + 
fusCp,A

R  ln(T/T*
A
) 

 

For water, fusHA(T*
A) = 6.008 ± 0.004 kJ mol-1, T*

A = 273.15 K, and fusCp,A = 38.1 ± 0.2 J K-1 
mol-1. Substituting these values into equation 13 gives: 
 

 ln aA = 529.16 



1

T – 
1

273.15  + 4.583 ln(T/273.15) 
 

So the result is actually easy to use. 
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10.  Freezing point depression and boiling point elevation are used to determine the activity of 
the solvent at the measured phase transition temperature for the solution. We usually need to 
know the activity at 25C. Find an expression for the temperature dependence of the activity of a 
substance by completing the following steps. (a). The chemical potential of the solvent in 
solution is A(xA) = 
*

A(l) + RT ln aA, Eq. 19.1.3. The partial molar Gibbs energy of solution for the solvent is 
solḠA = A(xA) – *

A(l). Use the Gibbs-Helmholtz relationship, Eq. 16.3.12, to show: 
 

 






 ln aA

T P
 = – 

solH̄A

RT2  

 

where solH̄A is the partial molar enthalpy of solution. (b). Integrate this equation from T1 to T2. 
Assume the enthalpy of solution is constant over the temperature range. Show that the result is: 
 

 ln



aA(T2)

aA(T1)
 = – 






solH̄A

R  



1

T2
 – 

1
T1

 

 
 
Answer:  The plan is to use the same approach as the last problem, which is also based on the 
Gibbs-Helmholtz equation. 
(a). The difference in the chemical potentials gives: fusḠA = A(xA) – *

A(l) = RT ln aA. Then the 
Gibbs-Helmholtz expression, Eq. 16.3.12, gives: 
 

 
















solḠA

T
T P

 = – 
solH̄A

T2  

 

Since ln aA = solḠA/RT, dividing both sides of the last equation by R gives: 
 

 






 ln aA

T P
 = – 

solH̄A

RT2  

 

(b). Integrating this last equation from T1 to T2 and assuming fusH̄A is independent of 
temperature gives: 
 

 ln aA(T1)

ln aA(T2)   d ln aA = – 




T1

T2

 
solH̄A

RT2  dT 

 

 ln



aA(T2)

aA(T1)
 = 





solH̄A

R  



1

T2
 – 

1
T1

 
 

For an ideal solution solH̄A is zero, and the activity is then temperature independent. For real 
solutions, for narrow temperature ranges, the change in activity is often small. For large changes 
in temperature correction terms may be added to take into account the temperature dependence 
of the enthalpy of solvation, analogous to the approach in the last problem. 
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11.  The osmotic coefficient for aqueous n-propanol solutions is:  – 1 = a mB
3 + b mB

2 + c mB, 
with:  a = -4.73 kg3 mol-3,  b = 2.21 kg2 mol-2, and  c = -0.365 kg mol-1 at 0C, where mB is the 
molality of n-propanol. Determine the activity coefficients for n-propanol and water at 0.100 m. 
 
 
Answer: Doing the integral in Eq. 19.1.26 with the cubic polynomial gives: 
 

 ln mB = (m) – 1 + 



0

m

 



a mB

2 + b mB

mB
 d mB = (m) – 1 + 

a
3 m3 + 

b
2 m2 + c m 

 

For a 0.100 m solution:  (m) – 1 = -4.73 m3 + 2.21 m2 + (-0.365) m = -0.1913 
 

 ln mB = (-0.1913) +(-4.73) m3/3 + 2.21 m2/2 + (-0.365) m = -0.04616 
 

giving mB = 0.955 on a molal basis. For water, using Eq. 19.1.21, the activity is: 
 

 ln aA = –  mB/55.51 mol kg-1 = (1 – 0.1913) 0.100 mol kg-1/55.51 mol kg-1 = 1.457x10-3 

 aA = 1.001 
 

The mole fractions for n-propanol and water are given by Eq. 2.2.13: 
 

 xB = 
0.100 mol kg-1 (1 kg)

55.51 mol + 0.100 mol kg-1 (1 kg) = 1.7982x10-3  and xA= 1 – xB = 0.99820 
 

giving the activity coefficient for water as xA = aA/xA = 1.001/0.99820 = 1.003. 
 
 
12.  Find the overall solution activity in terms of the mean ionic activity coefficient and the 
solution molality, m, for: (a). KNO3, (b). CaCl2, (c). LaCl3, (d). CuSO4. 
 
 
Answer:  (a). Using Eq. 19.4.9, m+ = m- = m for a 1:1 electrolyte: 
 

 a(KNO3) = a+ a- = 






2

± m+ m-

m2  = 






2

± m2

m2  = 2
±
 (m/m)2 

 

(b).  Using Eq. 19.4.16, m+ = mCa2+ = m and  m- = mCl- = 2m for a 1:2 electrolyte: 
 

 a(CaCl2) = aCa2+ a 2
Cl

- = 






3

± (m) (2m)2

m3  = 4 3
±
 (m/m)3 

 

(c).  For LaCl3, m+ = mLa3+ = m and  m- = mCl- = 3m for a 1:3 electrolyte: 
 

 a(LaCl3) = aLa3+ a 3
Cl

- = 






4

± (m) (3m)3

m4  = 27 4
±
 (m/m)4 

 

(d). Using Eq. 19.4.9 for CuSO4, m+ = m- = m for a 1:1 electrolyte: 
 

 a(CuSO4) = a+ a- = 






2

± m+ m-

m2  = 






2

± m2

m2  = 2
±
 (m/m)2 
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13.  Find the ionic strength in terms of the molality, m, for the following strong electrolytes 
dissolved in pure water:  (a). CaCl2, (b). LaCl3, (c). CuSO4 (neglect any hydrolysis). 
 
 
Answer:  Using Eq. 19.4.22: 
 

 (a). For CaCl2, z+ = 2, z- = -1, mCa2+ = m and mCl- = 2 m: 

  I = ½  z2
i 

mi

m = ½ [(2)2 m + (-1)2 (2m)]/m = 3 m/m 

 

 (b). For LaCl3, z+ = 3, z- = -1, mLa3+ = m and mCl- = 3 m: 

  I = ½  z2
i 

mi

m = ½ [(3)2 m + (-1)2 (3m)]/m = 6 m/m 

 

 (b). For CuSO4, z+ = 2, z- = -2, mCu2+ = m and mSO42- = m: 

  I = ½  z2
i 

mi

m = ½ [(2)2 m + (-2)2 (m)]/m = 4 m/m 

 

Why did we specify that hydrolysis should be neglected? The sulfate ion can hydrolyze by: 
 

 SO4
2- + H2O  HSO4

- + OH-    Kb = Kw/Ka,2 = 9.71x10-13 

 

However, this equilibrium won’t have a significant effect on the ionic strength. The hydrolysis 
will make the solution slightly basic, however. 
 
 
14.  Write the solubility product equilibrium expressions for the sparingly soluble salts: (a). 
Ag2CrO4, (b). Cr(OH)3, (c). Ca3(PO4)2. 
 
 
Answer:  Let ms be the moles of salt dissolved per kg of solvent. Using Eq. 19.4.16: 
(a). For Ag2CrO4, m+ = mAg+ = 2ms and m- = mCrO42- = ms for a 2:1 electrolyte: 
 

 Ksp = (aAg+)2 aCrO4
2- = 







3

± (2ms)2
 (ms)

m3  = 4 3
±
 (ms/m)3 

 

(b). For Cr(OH)3, m+ = mCr3+ = ms and  m- = mOH- = 3ms for a 1:3 electrolyte: 
 

 Ksp = aCr3+ a 3
OH

- = 






4

± (ms) (3ms)3

m4  = 27 4
±
 (ms/m)4 

 

(c). For Ca3(PO4)2, m+ = mCa2+= 3ms and m- = mPO43- = 2ms for a 3:2 electrolyte: 
 

 Ksp = (aCa2+)3 (aPO43-)2 = 






5

± (3ms)3
 (2ms)2

m5  = 108 5
±
 (ms/m)5 
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15.  Calculate the mean ionic activity coefficient for a 0.100 m aqueous solution of CaCl2 at 
25C using the Debye-Hückel approximation. 
 
 
Answer:  The ionic strength for CaCl2 is given in Problem 2a as I = 3 m/m. For the given 
concentration: 
 

 I = 3 m/m = 0.300 
 

For CaCl2 , z+ = 2 and z- = -1. Using Eq. 19.4.23: 
 

 ln ± = -1.171 |z+ z-| I½ = -1.171 |(2)(-1)| (0.300)½ = -1.2828 
or log ± = -0.509 |z+ z-| I½ = -0.509 |(2)(-1)| (0.300)½ = -0.55758 
 

  giving  ± = 0.277. 
 
 
16.  Mercury pollution is an increasing problem in northern lakes. The source of the mercury is 
primarily coal combustion. Mercury compounds can be carried long distances by atmospheric 
aerosols. Calculate the solubility of mercury(I)chloride, Hg2Cl2, in pure water and in 0.0100 m 
KNO3, Ksp = 1.2x10-18. Remember that the dissociation is given by: 
 

 Hg2Cl2 (s)  Hg2
2+ + 2 Cl- 

 
 
Answer:  For Hg2

2+, z+ = 2, and for Cl- z- = -1. For this 1:2 electrolyte, m+ = mHg22+ = m and m- = 
mCl- = 2m. In pure water the ionic strength is given by: 
 

 I = ½  z2
i 

mi

m = ½ [(2)2 m + (-1)2 (2m)]/m = 3 m/m 

 

However, we don’t know the concentration of dissolved Hg2Cl2. We can estimate the solubility 
by neglecting the activity coefficients: 
 

 Ksp  [Hg2
2+][Cl-]2 = (ms/m)(2ms/m)2 = 4 ms

3 
 

giving  ms/m  (1.2x10-18/4)1/3  6.694x10-7 
 

With this approximate concentration, the ionic strength is I = 3 m/m = 2.008x10-6. Using the 
Debye-Hückel approximation gives the mean ionic activity coefficient: 
 

 ln ± = -1.171 |z+ z-| I½ = -1.171 |(2)(-1)| (2.008x10-6)½ = -3.319x10-3 

or log ± = -0.509 |z+ z-| I½ = -0.509 |(2)(-1)| (2.008x10-6)½ = -1.443x10-3 
 

giving  ± = 0.997. The solubility in pure water is then: 
 

 Ksp = (aHg22+) (aCl-)2 = 






3

±
(ms) (2ms)2

m3  = 4 3
±
 (ms/m)3 

 

giving  ms = m (1.2x10-18/4/(0.997)3)1/3 = 6.714x10-7 m 
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The effect of the non-ideality is well within the limits of the experimental uncertainty. However, 
with the non-participating electrolyte, the ionic strength will be dominated by the 0.0100 m 
KNO3: 
 

 I = ½ [(2)2 mHg22+ + (-1)2 (2mCl-) + (1)2 mK+ + (-1)2 mNO3
-]/m = 0.0100 

 I = ½ [(2)2 6.7x10-7 + (-1)2 2 (6.7x10-7) + (1)2 0.0100 + (-1)2 0.0100]/m = 0.0100 
 

[For a 1:1, uni-positive-uni-positive electrolyte the ionic strength is equal to the molality.] The 
mean ionic activity coefficient in 0.0100 m KNO3 is then: 
 

 ln ± = -1.171 |z+ z-| I½ = -1.171 |(2)(-1)| (0.0100)½ = -0.2342 

or log ± = -0.509 |z+ z-| I½ = -0.509 |(2)(-1)| (0.0100)½ = -0.1018 
 

giving  ± = 0.791. The solubility in 0.0100 m KNO3 is then: 
 

 ms = m (1.2x10-18/4/(0.791)3)1/3 = 8.46x10-7 m 
 
 
17. Write the acid dissociation equilibrium expressions in terms of the concentration of the 
undissociated acid, mHA, the H+ concentration, mH+, and the mean ionic activity coefficient, for 
the weak acids: (a). CH3COOH, acetic acid (HOAc),  (b). H2S (for the first dissociation only). 
 
 
Answers:  The plan is to write the expression as you would for General Chemistry with [H+], [A-

], and [HA] and then replace the concentrations by activities. The activity based acid dissociation 
constant is Ka. The acid dissociation constant written in terms of concentrations is called the 
effective equilibrium constant, Ka,eff, which is ionic strength dependent. 
 

(a). For the dissociation:  HOAc (aq)  H+ + OAc- , mH+ = m+ = m- : 
 

 Ka,eff = 
[H+] [OAc-]

[HOAc]   Ka = 
(aH+)(aOAc-)

aHOAc
 = 
2
 (m+/m)(m-/m)

mHA/m  = 
2
 (mH+/m)2

mHA/m  
 

Note that if the analytical concentration of the weak acid is mHA,o then at equilibrium 
mHA = mHA,o – mH+. The final pH = – log aH+ = – log( mH+). 
 

(b) For the dissociation:  H2S (aq)  H+ + HS- , again mH+ = m+ = m- (neglecting further 
dissociation): 
 

 Ka,eff = 
[H+] [HS-]

[H2S]   Ka,1 = 
(aH+)(aHS-)

aH2S
 = 
2
 (m+/m)(m-/m)

mH2A/m  = 
2
 (mH+/m)2

mH2A/m  
 

If the analytical concentration of the weak acid is mH2A,o then at equilibrium mH2A = mH2A,o – 
mH+. 
 
 
18.  Using Eqs. 19.5.12, 19.5.18 and 19.5.19, derive Eq. 19.5.20. 
 
 
Answer:  The charge density is written in terms of  by substituting Eq. 19.5.19 into Eq. 19.5.18: 
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 i(r) = – 
i(r)e2

kT
 

j=1

s

 z2
j 

Nj 

V  = – ro i(r) 2 

 

Dividing by (r) = or for a uniform permittivity gives: 
 

 
i(r)
(r)

 = – 2 i(r) 

 

and then substitution into Eq. 19.5.12 gives: 
 

 
1
r

 
2(r i(r))

r2  = 2 i(r) 

 

Multiplying both sides of this equation by r gives Eq. 19.5.20: 
 

 
2(r i(r))

r2  = 2 (r i(r)) 

 
 

19.  Show that i(r) = 
C
r  e

–r
is the solution to the Eq. 19.5.20.

 
 

Answer:  With (r i(r)) = C e
–r

, taking the second derivative on the left-hand side of Eq. 19.5.20 
gives: 
 

 
2(r i(r))

r2  = 
2(C e

-r
)

r2  = 2 C e
-r

 = 2 (r i(r)) 

 

The result is the right-hand side of Eq. 19.5.20, proving that i(r) is a solution to the equation. 
 
 
20.  (a). Starting with Eq. 19.5.19, for an aqueous solution containing one pure electrolyte, show 
that: 


2 = 
e2 1000 L m-3 do NA m

ro kT
 




z

2
+ 

m+

m + z
2
-  

m -

m     P19.20.1 
 

(b).  Given the definition of ionic strength in Eq. 19.5.25, show from Eq. P19.20.1 that: 
 

 = 
2 e2 1000 L m-3 do NA m

ro kT
  I1/2      P19.20.2 

 

(c).  Starting with Eq. P19.20.2 and rD = 1/, prove that Eq. 19.5.7 gives the Debye length for 
aqueous solutions of unipositive-uninegative electrolytes, at concentration m molal, at 298.15 K. 
In Eq. 19.5.7 the constant is given as 305 pm; in your answer give the constant to at least four 
significant figures. 
(d).  Find the Debye length for a 0.0100 m and 0.100 m solution of KCl. 
 



398 

 

 
Answer:  (a).  From Eq. 19.5.23, solving for the concentration ratio: 

Nj

V = 1000 L m-3 d NA mj 

where d is the density of the solution. In dilute solution, the density of the solution is 
approximately the density of the pure solvent, d  do. The standard state concentration is 
introduced by multiplying and dividing each term in the concentration sum by m. Substituting 
for the cationic and anionic terms for N+/V and N-/V in in terms of the molalities gives Eq. 
P19.20.1. 
 

(b).  From the definition of ionic strength, (z2
+
 m+/m + z2

- 
m -/m) = 2I, then taking the square 

root of Eq. P19.20.1 gives Eq. P19.20.2. 
 

(c).  The Debye length is rD =1/. For a unipositive-uninegative electrolyte I = m/m. Using 
e = 1.602177x10-19 C, d = 0.997048 g/cm3, 1 g/cm3 = 1 kg L-1, o = 8.85419x10-12 J-1C2m-1, r = 
78.54, k = 1.38066x10-23 J K-1, and T = 298.15K in Eq. P19.20.2 gives: 
 

  rD =1/ = 
304.73 pm
(m/m)½  

 

(d).  At m = 0.0100 m, rD = 3050 pm = 30.5 Å while at 0.100 m, rD = 964. pm = 9.64 Å. 
 
 
21.  Taking the limit as r  0 of Eq. 19.5.27 using l'Hôpital's rule, prove that the electric 
potential at the central ion caused by the ionic atmosphere is given by Eq. 19.5.28. 
 
 
22.  Plot the screened Coulomb potential for a 0.0100 m and 0.100 m NaCl solution. 
 
 
23.  (a). Show that the charge density for the screened Coulomb potential can be written in terms 
of  as: 
 

 i(r) = – 
qi 2

4 r
 e–r 

 

(b). Find the maximum of the radial probability distribution for the charge density, 4r2i, in 
terms of . 
 
 
Answer:  The charge density is written in terms of  by substituting Eq. 19.5.19 into Eq. 19.5.18: 
 

 i(r) = – 
i(r)e2

kT
 

j=1

s

 z2
j 

Nj 

V  = – ro i(r) 2 

 

The screened Coulomb potential is given by Eq. 19.5.22; substitution gives: 
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 i(r) =  – ro 2 
qi

4or r
 e–r = – 

qi 2

4 r
 e–r 

 

This result shows that the charge density has a sign opposite to the central charge. In other 
words, the charge density surrounding a cation is net negative. The radial probability distribution 
for the charge density is given by multiplying this last equation by 4r2: 
 

 4r2i(r) = – qi 2 r e–r 
 

The maximum in the radial probability function is given by taking the derivative using the 
product rule: 
 

 
d 4r2i(r)

dr  = – qi 2 [r (–)e–r + e–r] = 0 
 

which gives the radius of maximum probability, rD, the Debye length. Dividing by all the common 
factors gives: 
 

 [– rD + 1] = 0  or  = 1/rD 
 

as given in Eq. 19.5.7. 
 
 
24.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a).  The ionic halo of an ion contains only ions of opposite charge. 
 

(b).  For a simple symmetric solution, the activity coefficient of the solute depends only on the mole 
fraction of the solvent. The deviatons from ideality are dominated by changes in solvent-solvent forces. 
 

(c).  For a fixed ionic strength, as the relative permittivity of the solvent increases, the Debye length 
increases, because the counter ions in the ionic halo are less tigthly held. 
 
 
Answers: (a). False: the ionic atmopshere of a ion is determined by ions of both charges, from all sources, 
including supporting electrolytes and buffers. Near a central cation, the concentration of anions is 
greater than the bulk and the concentration of cations is less than the bulk, but both are present, 
Eq. 19.5.17. The correct statement is: The neighborhood near an ion is dominated by ions of 
opposite charge. 
 

(b).  False: While Eq. 19.2.7 is written only as a function of the mole fraction of the solvent, xA + 
xB = 1, so the mole fractions of the solvent and solute are directly related. Using xA = 1 – xB 
gives: 
x2

A = (1 – xB)2 = 1 – 2 xB + x2
B   and the activity coefficient: 

 ln B = 
a

RT x2
A = 

a
RT (1 – 2 xB + x2

B) 
 

The dependence of ln B on the concentration of B is quite strong. For example, starting with a 
solution with xB = 0.001 and xA = 0.999, doubling the concentration of B only changes the 
solvent concentration to xA = 0.998, or a 0.2% change. The probability of a B-B contact, x2

B, is 
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quite small for dilute solution, but increases rapidly with increasing solute concentration. The 
correct statement is: For the solute in dilute solution, A-B forces dominate. As the solute 
concentration increases, for moderate concentrations, B-B forces dominate the change in activity 
coefficient for the solute. 
 

(c). True:  Solvents, or solvent mixtures, with high relative permittivity provide enhanced 
dielectric screening, weakening the ionic interactions. The counter ions around a central ion are 
less tightly held, expanding the ionic atmosphere. Electrostatic interactions are weaker in water 
than in hexane. One common binding motif in protein-substrate binding is the formation of salt 
bridges. Salt bridges are ion pairs commonly formed from positive and negative charged amino 
acid sidechains. Salt bridges are not stabilizing in aqueous solution. However, salt bridges that 
form in the interior of a protein are in a low permittivity environment that strengthens the 
electrostatic interaction. The relative permittivity inside a globular protein is often estimated as 
~4. 
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Chapter 20 Problems: Chemical Equilibrium  
 
 

1.  Determine rG at 298.2 K for the reaction:  AgCl (s)  Ag+ (aq) + Cl- (aq). The Ksp for AgCl 
is 1.8x10-10. 
 
 
Answer:  Using rG = – RT ln Ka: 
 

 rG = – 8.314x10-3 kJ K-1 mol-1 (298.2 K) ln 1.8x10-10 = 55.63  0.13 kJ mol-1 
 

assuming Ksp = 1.8x10-10  0.1x10-10. Using significant figure rules you would expect only two 
significant figures in the result. 
 
 
2.  Nitrogen dioxide forms a dimer in the equilibrium: 2 NO2 (g)  N2O4 (g). The standard state 
reaction Gibbs energy for the dimerization of NO2 is -4.77 kJ mol-1 at 298.2 K. In a reaction 
mixture, the partial pressure of NO2 is 0.332 bar and of N2O4 is 0.986 bar. Is the reaction at 
equilibrium, and if not what is the spontaneous direction for the reaction? 
 
 
Answer:  The plan is to calculate the equilibrium constant from rG and then calculate the 
reaction quotient, Q, and compare. 
   The equilibrium constant is given by: 
 

 Kp = e–rG/RT = e–(-4.77x103 J mol-1)/(8.314 J K-1mol-1 298.2 K) = 6.848 
 

The reaction quotient is: Q = 
PN2O4/P

(PNO2/P)2 = 
0.986
0.3322 = 8.945 

 

Finally, Q > Kp; the reaction is not at equilibrium and the spontaneous direction is to the left, 
towards increased reactant, NO2. 
 
 
3.  Under standard conditions, one of the steps in the photosynthetic production of glucose does 
not occur spontaneously: 
 

 fructose-6-P + glyceraldehyde-3-P  erythrose-4-P + xyulose-5-P 
 

where rG°' = +6.28 kJ mol-1 at 298.2 K. The “P” indicates the phosphorylated form of the 
sugar; fructose-6-P is fructose-6-phosphate. Can this reaction take place spontaneously in a 
chloroplast where the concentrations are:  [fructose-6-P ] = 53.0x10-5 M,  [glyceraldehyde-3-P] = 
3.20x10-5 M,  [erythrose-4-P] = 2.00x10-5 M, and [xyulose-5-P] = 2.10x10-5 M ? 
 
 
Answer:  The prime for rG°' indicates pH = 7, the “biochemist’s standard state.” The reaction 
Gibbs energy under non-standard state conditions is given by Eq. 20.1.10: 
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 rG = rG° + RT ln Q = rG° + RT ln






[erythrose-4-P]/c [xyulose-5-P]/c

[fructose-6-P ]/c [glyceraldehyde-3-P]/c  
 

where c = 1 M, the standard state concentration. Substituting the given values: 
 

  rG = +6.28 kJ mol-1 + 8.314 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 



(2.00x10-5)(2.10x10-5)

(53.0x10-5)(3.20x10-5)  

         = +6.28 – 9.17 kJ mol-1 = -2.89 kJ mol-1 

 

The reaction is spontaneous under these conditions. 
 
 
4.  At 298.15 K the rG° for the dissociation of water to H+ and OH- is 79.89 kJ mol-1. 
Calculate rG for the reaction conditions specified below. 
 

 H2O (l)  H+ (aq, aH+ = 1.005x10-7) + OH- (aq, aOH- = 1.005x10-7) 
 
 
Answer:  The reaction Gibbs energy under non-standard state conditions is given by Eq. 20.1.10: 
 

 rG = rG° + RT ln Q = rG° + RT ln[(aH+)(aOH-)] 
        = 79.89 kJ/mol + 8.3145 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln(1.010x10-14) 
        = 79.89 – 79.888 kJ mol-1 = 0 
 

The reaction conditions correspond to pH = 7.00, which is the equilibrium state for pure water at 
298.15 K: Kw = 1.01x10-14 at 298.15 K on a molal concentration basis. The reaction Gibbs 
energy at equilibrium should be zero. 
 
 
5.  In rivers and lakes, bacteria catalyze the oxidation of Fe(II) to Fe(III): 
 

 4 Fe2+ + O2(g) + 4 H+   4 Fe3+ + 2 H2O 
 

with fG(Fe2+) = -78.90 kJ mol-1, fG(Fe3+) = -4.70 kJ mol-1, and fG(H2O) = -237.13 kJ mol-1. 
Calculate the reaction Gibbs energy for mFe2+ = 1.00x10-6 m, mFe3+ = 1.00x10-5m, 
PO2 = 0.200 bar, mH+ = 1.00x10-6 m at 298.15 K (neglect activity coefficients). 
 
 
Answer:  The standard state reaction Gibbs energy is given by rG = [products] – [reactants]: 
 

 rG = [2(-237.13 kJ mol-1) + 4(-4.70 kJ mol-1)] – [4(-78.90 kJ mol-1) + (0) + 4(0)] 
          = -177.46 kJ mol-1 
 

The reaction Gibbs energy under non-standard state conditions is given by Eq. 20.1.10: 
 

 rG = rG° + RT ln Q = rG° + RT ln






(mFe3+/m)4

(mFe2+/m)4 (PO2/P) (mH+/m)4  
 

where m = 1 m, the standard state concentration. Substituting the given values: 
 

rG = -177.46 + 8.3145 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln



(1.00x10-5)4

(1.00x10-6)4(0.200)(1.00x10-6)4  
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    = -177.46 kJ mol-1 + 163.80 kJ mol-1 = -13.66 kJ mol-1 

 

Note that the reaction pH can have a large influence of the spontaneity for redox reactions if the 
stoichiometric coefficient for the H+ ion is large, as it is in this case. 
 
 

6.  The equilibrium constant for the dissociation  N2O4 (g)  2 NO2 (g) is Kp = 0.146 at 298.2 K. 
Assume that the initial amount of N2O4 is 0.300 mol with no initial NO2. Find the equilibrium 
partial pressures for the dissociation assuming that the reaction is run under constant pressure 
conditions at (a) 0.500 bar and at (b) 5.00 bar. (c). Does the shift in equilibrium position with 
applied pressure agree with LeChâtelier’s Principle? 
 
 
Answer:  The plan is to set up a table to calculate the mole fractions and partial pressures of N2O4 
and NO2 based on the extent of the reaction, . The equilibrium expression is then constructed in 
terms of , and the expression is solved for . This problem is very similar to Example 20.2.1. 
      Let the initial moles of N2O4 be “a.” The total moles at equilibrium will be: 
 

 ntot = (a –) + 2  = a +         1 
 

Next, a table for the moles of each reactant and product is constructed. Then the mole fractions 
using Yi = ni/ntot and the equilibrium partial pressures using Dalton’s Law of pressures, Pi = Yi P, 
are calculated: 
 

  N2O4 (g)  2 NO2 (g) 
 moles   a –    2 
 

     Yi   
a – 
a +   

2
a +  

 

     Pi   
a – 
a +  P 

2
a +  P        2 

 

where P is the total applied pressure. The equilibrium expression (law of mass action) is: 
 

 Kp = 
(PNO2/P)2

PN2O4/P
 =  







2

a + 

2







a –

a + 

 (P/P) = 
42

(a + )(a – )
 (P/P) = 

42

a2 – 2 (P/P)  3 

 

Notice the similarity to Eq. 20.2.7. To solve for the extent, divide both sides of the last equation 
by (P/P): 
 

 
42

a2 – 2 = 
Kp

(P/P) = Kx         4 
 

The last equality results since Kp = Kx (P/P)rng  with rng = 1 for this dissociation. The solution 
to Eq. 4 is: 
 

  = 



Kx

4+Kx

½
 a          5 
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(a).  For P = 0.5 bar:   Kx = 0.292   and    = 



0.292

4+0.292

½
 0.300 mol = 0.07825 mol 

 

which gives a degree of dissociation of  = /ntot = 0.261. The partial pressures using Eqs. 2 are: 
 

 PN2O4 =  
a – 
a +  P = 

0.300 – 0.07825

0.300 + 0.07825
 P = 0.2931 bar 

and PNO2 = 
2

a +  P= 
2(0.07825)
a + 0.07825

 P = 0.2069 bar 
 

(b).  For P = 5.00 bar:   Kx = 0.0292   and    = 



0.0292

4+0.0292

½
 0.300 mol = 0.02554 mol 

 

which gives a degree of dissociation of  = /ntot = 0.085. The partial pressures using Eqs. 2 are: 
 

 PN2O4 =  
a – 
a +  P = 

0.300 – 0.07825

0.300 + 0.07825
 P = 4.215 bar 

and PNO2 = 
2

a +  P= 
2(0.07825)
a + 0.07825

 P = 0.7845 bar 
 

(c). For a reaction with rng = 1, the equilibrium extent should decrease with an increase in 
pressure, thus favoring the side of the reaction with the fewer moles of gas. The decrease in the 
degree of dissociation with pressure for this problem shows the expected result. 
 
 
7.  Calculate the equilibrium partial pressures at 298.2 K for the dimerization of NO2: 
2 NO2 (g)  N2O4 (g). The standard state reaction Gibbs energy for the dimerization of NO2  is 
-4.77 kJ mol-1 at 298.2 K. Assume the initial amount of NO2 is 0.300 moles at a constant total 
pressure of 1.00 bar. [Hint: you may use successive approximations to solve for the equilibrium 
position.] 
 
 
Answer:  The plan is to set up a table to calculate the mole fractions and partial pressures of NO2 
and N2O4 based on the extent of the reaction, . The equilibrium expression is then constructed in 
terms of , and the expression is solved for . The equilibrium constant is given by: 
 

 Kp = e–rG/RT = e–(-4.77x103 J mol-1)/(8.314 J K-1mol-1 298.2 K) = 6.848 
 

   Let the initial moles of NO2 be “a.” The total moles at equilibrium will be: 
 

 ntot = (a – 2 ) +  = a –  
 

Next, set up a table for the moles of each reactant and product, the mole fractions using Yi = 
ni/ntot, and the equilibrium partial pressures using Dalton’s Law of pressures, Pi = Yi P, with P 
the total pressure: 
 

  2 NO2 (g)    N2O4 (g) 
 moles   a – 2      
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     Yi   
a – 2
a –    


a –  

 

     Pi   
a – 2
a –   P 


a –  P 

 

The equilibrium expression (law of mass action) is: 
 

 Kp = 
PN2O4/P

(PNO2/P)2 =  








a – 







a – 2

a – 

2 (P/P)-1 = 
(a – )
(a – 2)2 (P/P)-1 =  

a – 2

(a – 2)2 (P/P)-1   1 

 

with P = 1 bar specified in the problem. This expression can be solved exactly using the 
quadratic expression: 
 

 (4K+1) 2 – (4K+1) a + Ka2 = 0    giving  = 







1  
1

4K+1  
a
2 = 0.1218 mol 

 

However, successive approximations is often more time efficient. Using the values given: 
 

 Kp = 
0.300  – 2

(0.300 – 2)2 = 6.848          2 
 

As a basis for successive approximations, we need to solve this last equation for  in terms that 
also involve . Two examples will show the idea. Solving the last equation for : 
 

 (0.300 – 2)2 = 
0.300  – 2

6.848
  or 0.300  – 2 = 6.848 (0.300 – 2)2    3 

 

giving:  = ½ 







0.300 – 



0.300  – 2

6.848

½
 or  = 0.300  – 6.848 (0.300 – 2)2   4 

 

The next step is to guess an initial value. The extent of the reaction may vary from 0 to 0.300/2 
moles. A short spreadsheet was written based on the first iteration formula in Eqs. 4 with an 
initial guess of 0.05 mol, below. The update formula for  in C8 is “=($C$3-SQRT(B8*($C$3-
B8)/$C$4))/2”. The last column calculates the equilibrium constant using Eq. 2 with the updated 
value of  to check for accuracy. The approximation converges in three iterations. This update 
formula works for guesses from  = 1.0x10-5 to 0.2999 mol. The range of initial guesses that 
leads, or converges, to the correct answer is called the convergence interval. Guesses outside the 
convergence interval either diverge or oscillate around the correct value. 
 

A1 B C D 
2    
3 a= 0.3  
4 Kp= 6.848  
5    
6 guess updated giving 
7 extent extent Q 
8 0.05 0.128638 12.0764 
9 0.128638 0.121632 6.739764 

10 0.121632 0.121857 6.852015 
11 0.121857 0.121849 6.847854 
12 0.121849 0.121849 6.848005 
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The second update formula from Eqs. 4 converges over the interval [0.115, 0.19]. Some 
rearrangements of Eq. 2 do not lead to update formulas that converge on the final result for any 
initial guess. The disadvantage of the successive approximations approach is that several 
rearrangements may need to be tried to find an update formula that converges rapidly. 
   For  = 0.1218 mol the corresponding partial pressures are: 
 

 PNO2 = 
a – 2
a –   P = 



0.300 – 2(0.1218)

0.300 – 0.1218
 1.00 bar = 0.3164 bar 

 

 PN2O4 = 


a –  P = 



0.1218

0.300 – 0.1218
 1.00 bar = 0.6835 bar 

 

Checking the final results against the equilibrium constant gives Kp = 0.6835/(0.3164)2 = 6.838 
 

Method 2:   A clever way to approach this problem is to first assume the reaction goes to 
completion, giving the moles of N2O4 as 0.150 mol. Then reversing the reaction gives the form 
of a dissociation: N2O4 (g)  2 NO2 (g) with Kp' = 1/Kp = 1/6.848 = 0.1460. Then using Problem 
6  Eq. 3, above: 
 

 Kp' = Kx (P/P) = 
4 2

a2 – 2 (P/P) = 
4 2

0.1502 – 2 = 0.1460 
 

where “a” is now the amount of N2O4. Solving for the extent at equilibrium for the new direction 
gives  = 0.0282 mol, which results in the same final partial pressures as the more direct method. 
 
 
8.  Calculate the equilibrium partial pressures and the degree of dissociation for the reaction: 
 

 SO2Cl2 (g)  SO2 (g) + Cl2 (g) 
 

The equilibrium constant is Kp = 2.78 at 110C. Assume a constant total pressure of 0.500 bar 
with 2.00 moles of SO2Cl2, only, initially placed in the reaction vessel. 
 
 
Answer:  The plan is to note that the reaction is a A (g)  B (g) + C (g) dissociation, for which 
Eq. 20.2.7 and 20.2.8 apply. 

   Since rng = 1 and Kp = Kx (P/P)rng, Kx = 2.78/0.500 = 5.56. Using Eqs. 20.2.7 and 20.2.8 
with the given parameters: 
 

 Kx = 
2

2.002 – 2 = 5.56   and    = 



Kx

1+Kx

½
 a = 



5.56

1 + 5.56

½
 2.00 mol = 1.841 mol 

 

We can check the result by substituting back in to calculate the resulting equilibrium constant 
given the extent of the reaction: 
 

 check  Kx = 
2

2.002 – 2 = 
1.8412

2.002 – 1.8412 = 5.55 
 

which is close enough given round-off error. The degree of dissociation for this stoichiometry is 
then: 
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  = /a = 1.841/2.00 = 0.920 
 

or 92% dissociated at equilibrium. 
 
 
9.  Consider a gas phase dissociation with the stoichiometry A (g)  B (g) + C (g). (a). Show that 
the equilibrium expression can be directly expressed in terms of the degree of dissociation as: 
 

 Kp = 
2

1 – 2 (P/P)        P20.9.1 
 

(b). Solve for the degree of dissociation. 
 
 
Answer:  At equilibrium: 
 

  A (g)       B (g) + C (g) 
      moles: a –                 giving   ntot = a –  + +  = a +  
 

 Yi: 
a – 
a +        


a +         


a +  

 

 Pi: 
a – 
a +  P       


a +  P       


a +  P 

 

where ntot is the total moles of gases, Pi = Yi P, and the total pressure is P. Substitution of the 
mole fractions into Kx gives: 
 

 Kp = 
(PB/P) (PC/P)

(PA/P)  = 








a +  







a + 







a – 

a + 

 (P/P) = 
2

a2 – 2 (P/P)    1 

 

This result is the corresponding expression to Example 20.2.1, in terms of pressures. Eq. 1 can be 
expressed in terms of the degree of dissociation. Divide the numerator and denominator by the 
initial amount of reactant squared, a2. Then use the definition of the degree of dissociation for 
this reaction,  = /a: 
 

 Kp = 
(/a)2

1 – (/a)2 (P/P) = 
2

1 – 2 (P/P)       2 
 

The total moles of gas is then determined by ntot = a +  = a(1 + ). 
(b). To solve for the degree of dissociation, divide both sides of the last equation by (P/P): 
 

 
2

1 – 2 = 
Kp

(P/P) = Kx         3 
 

The last equality results since Kp = Kx (P/P)rng  with rng = 1 for this dissociation. The solution 
to Eq. 3 is: 
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  = 



Kx

1+Kx

½
          4 

 
 
10.  For the reaction H2S (g)  H2 (g) + ½ S2 (g) the degree of dissociation of H2S is 0.305 at 
1125C and 1.00 bar total pressure. Calculate Kp at 1125C. 
 
 
Answer:  To determine the equilibrium expression for the reaction, let the initial moles of H2S be 
“a” and the extent of the reaction be . The total moles at equilibrium is: 
 

 ntot = (a – ) + + ½  = a + ½  
 

Next, set up a table for the moles of each reactant and product, the mole fractions using Yi = 
ni/ntot, and the equilibrium partial pressures using Dalton’s Law of pressures, Pi = Yi P, with P 
the total pressure: 
 

  H2S (g)          H2 (g)   +   ½ S2 (g) 
     moles a –           ½  
 

     Yi  
a – 

a + ½  


a + ½  
½ 

a + ½  
 

     Pi  
a – 

a + ½  P  


a + ½  P 
½ 

a + ½  P 
 

The equilibrium expression (law of mass action) then simplifies to: 
 

 Kp = 
(PH2/P) (PS2/P)½

(PH2S/P)  = 








a + ½   






½ 

a + ½ 

½
 (P/P)½







a – 

a + ½ 

 = 








a –   






½ 

a + ½ 

½
 (P/P)½ 

 

Divide the numerator and denominator of each expression in parentheses by the initial moles of 
H2S and then substitute the definition of the degree of dissociation, α = /a: 
 

 Kp = 



α

1 – α  



½ α

1 + ½ α

½
(P/P)½ 

 

Substituting the given degree of dissociation: 
 

 Kp = 



0.305

1 – 0.305  



½ 0.305

1 + ½ 0.305

½
 1.00½ = (0.4388)(0.1323)½ = 0.160 

 
 
11.  The Kp and Kx based equilibrium expressions are convenient to use for reactions at constant 
pressure. Kc based expressions are convenient for reactions at constant volume. Consider 
dissociation with the stoichiometry: A (g)  B (g) + C (g). Set up the Kp expression in terms of 
the extent of the reaction, , as in Example 20.2.1. Show that the Kp expression reduces to: 
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 Kc = 
(x/cº)2

cAo/cº – x/cº 
 

where cAo is the initial concentration of A and x is the final concentration of B and C. Assume 
the reaction is run at constant volume. 
 
 
Answer:  The total moles of gas in the reaction mixture is:  ntot = a –  + +  = a + . The 
concentration of a constituent in the reaction mixture is ci = ni/V, with ni moles of constituent i 
and V the total volume. The total pressure is determined by the total moles of gas: 
 

 P = ntot RT/V = (a + ) RT/V       1 
 

with the total volume V held constant. We next lay out the equilibrium state in terms of moles, 
mole fractions, and partial pressures. In the last step we substitute Eq. 1 for the total pressure and 
cancel the common factor: 
 
      A (g)  B (g) + C (g) 
 moles:  a –              
 

        Xi:  
a – 
a +    


a +   


a +  

 

        Pi:  
a – 
a +  (P/P) 


a +  (P/P) 


a +  (P/P) 

 

        Pi:  
a – 

V  (RT/P)    

V (RT/P)    


V (RT/P)    2 

 

The Kp expression is then: 
 

 Kp = 
(PB/P) (PC/P)

(PA/P)  =
(/V) (/V)
(a – )/V

 (RT/P)      3 
 

Let cAo be the initial concentration of A with cAo = a/V and let x be the final concentration of B 
and C with x = /V. Substitution of these definitions into Eq. 3 gives: 
 

 Kp = 
x2

cAo – x  (RT/P)         4 
 

Multiply and divide through each concentration term by cº and collect terms to ensure that the 
concentration based equilibrium constant is unitless: 
 

 Kp  =
(x/cº)2

cAo/cº – x/cº  (cº RT/P) = Kc (cº RT/P)     5 
 

Note that the result agrees with Kp = Kc (cº RT/P)rng  with rng = 1 for this reaction. Dividing 
Eq. 5 by (cº RT/P): 
 

 Kc = 
(x/cº)2

cAo/cº – x/cº         6 
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In other words, at constant volume, the position of equilibrium can be determined by solving the 
Kp or Kc expressions. Eq. 6 is the form for the equilibrium expression most commonly used in 
General Chemistry texts for this type of problem. 
 
 
12.  Calculate the equilibrium partial pressures and the degree of dissociation for the reaction: 
 

 SO2Cl2 (g)  SO2 (g) + Cl2 (g) 
 

The equilibrium constant is Kp = 2.78 at 110.C. Assume the reaction starts with 2.00 moles of 
SO2Cl2, only, initially placed in the reaction vessel with an initial pressure of 0.500 bar. Assume 
the reaction runs at constant volume (see Problem 8 for the constant pressure version of this 
problem). 
 
 
Answer:  The plan is to convert the initial amount of SO2Cl2 to the equivalent concentration and 
then use Kc = (x/cº)2/(cAo/cº – x/cº). [In General Chemistry, you allowed Kc to have units and 
then Kc = x2/(cAo – x).] 
   For the given conditions, the volume and initial concentration of SO2Cl2 are: 
 

 V = nSO2Cl2 RT/P = 2.00 mol(0.08314 L bar K-1 mol-1)(383.15 K)/0.500 bar = 127.4 L 
 

 cAo = nSO2Cl2/V = 2.00 mol/127.4 L = 0.01570 mol L-1 

 

Then using concentrations at equilibrium: 
 

 SO2Cl2 (g)  SO2 (g) + Cl2 (g) 
    ci: cAo – x  x    x 
 

   Kc = 
(x/cº)2

cAo/cº – x/cº    (x/cº)2 + Kc x/cº – Kc cAo/cº = 0 x/cº = 
–Kc  K

2
c + 4 Kc cAo/cº
2  

 

Using Kp = Kc (cº RT/P)rng  and rng = 1 for this reaction: 
 

 Kc = 
2.78 (1 bar)

0.08314 L bar mol-1(383.15 K)(1 mol L-1) = 0.08726 = 
(x/cº)2

0.01570 mol L-1 – x/cº 
 

 x = 0.013585 mol L-1 
 cSO2Cl2 = (cAo – x) = (0.01570 – 0.013585 mol L-1) = 0.00211 mol L-1 
 

Giving the final amounts and partial pressures: 
 

 nSO2Cl2 = (cAo – x) V = (0.00211 mol L-1) 127.4 L = 0.2690 mol 
 PSO2Cl2 = (cAo – x) RT = 0.00211 mol L-1(0.08314 L bar K-1 mol-1)(383.15 K) = 0.067 bar 
 nSO2 = nCl2 = x V = 1.73 mol 
 PSO2 = PCl2 = x RT = 0.433 bar 
 

The final pressure is P = PSO2Cl2 + PSO2 + PCl2 = 0.933 bar and the degree of dissociation is: 
 

  = nSO2/ nSO2Cl2,o = 1.73 mol/2.00 mol = 0.865 
 

or equivalently:  = (nSO2/V)/(nSO2Cl2,o/V) = x/cAo = 0.013585 mol L-1/0.01570 mol L-1 = 0.865. 
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Notice that the degree of dissociation is less than Problem 8, with a constant total pressure. The 
smaller degree of dissociation for the constant volume process is consistent with LeChâtelier’s 
Principle, given rng = 1 and the corresponding increase in pressure for this reaction. (See 
Problem 11 for more information on constant volume reactions.) 
 
 
13.  For the reaction BeSO4(s)  BeO (s) + SO3 (g), Kp = 1.71x10-19 at 400.0 K and 9.70x10-11 at 
600.0 K. (a). Predict, without doing the numerical calculation, if the reaction is endothermic or 
exothermic. (b). Calculate rH° for this temperature range and rG° and rS° at 400.0 K. 
 
 
Answer:  The plan is to use LeChâtelier’s Principle for part (a) and the integrated form of the 
van 't Hoff equation for two data points, Eq. 20.1.28, for part (b). Then the thermodynamic 
parameters are calculated using rG = –RT ln Kp and rG = rH – T rS at 400.0 K. 
 

(a). The equilibrium constant increases with temperature. In other words, the position of 
equilibrium shifts to the right, the forward direction, with an increase in temperature. The 
forward direction for the reaction, as written, must then be the endothermic direction. 
(b). From Eq. 20.1.28, assuming rH is constant over the temperature range: 
 

 ln 
Kp,T2

Kp,T1

 = – 
rH

R 



1

T2
 – 

1
T1

 

 

 ln 
9.70x10-11

 1.71x10-19 = – 
rH

8.314 J K-1 mol-1



1

600.0 K – 
1

400.0 K  
 

 ln 
9.70x10-11

 1.71x10-19 = – 
rH

8.314 J K-1 mol-1 (0.0016667 – 0.0025000) 
 

 20.156 = – 
rH

8.314 J K-1 mol-1 (-8.333x10-4 K-1) 
 

 rH = 2.011x105 J mol-1 = 201.1 kJ mol-1 
 

Remember to carry at least one extra significant figure than allowed for the (1/T2 – 1/T1) term to 
avoid round-off error. The standard state reaction Gibbs energy and entropy at 400 K are then: 
 

 rG = –RT ln Kp = – 8.3145 J K-1 mol-1 (400.0 K) (1kJ/1000 J) ln 1.71x10-19 
          = 143.7 kJ mol-1 
 

 rS = 
rH – rG

T  = 
(201.1 kJ mol-1 – 143.7 kJ mol-1)(1000 J/1 kJ)

400.0 K  = 144. J K-1 mol-1 

         = 1.4x102 J K-1 mol-1 
 
 
14.  The autoprotolysis constant for water, Kw, is the equilibrium constant for the reaction: 
 

    Kw 

 H2O (l)    H+ (aq) + OH- (aq) 
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The temperature dependence for Kw is given in the table, below.1 (a). Assume rH° is constant. 
Calculate rH° for this temperature range and rG° and rS° at 298.2 K. (b). Neutral pH is the 
pH that gives aH+ = aOH-. Calculate the pH of a neutral solution at each temperature. 
 

T (C) 0.0 10.0 25.0 35.0 40.0 
Kw 1.15x10-15 2.97x10-15 1.01x10-14 2.07x10-14 2.88x10-14 

 
 
Answer:  First, don’t forget to convert to kelvins. Eq. 20.1.31 shows a plot of ln Kw versus 1/T 
gives a slope of –rH°/R: 
 

 

Kw T (K) 1/T (K-1) ln K 
1.15E-15 273.15 0.003661 -34.399 
2.97E-15 283.15 0.003532 -33.4502 
1.01E-14 298.15 0.003354 -32.2262 
2.07E-14 308.15 0.003245 -31.5086 
2.88E-14 313.15 0.003193 -31.1784 

 
slope -6878.66 -9.18538 intercept 
± 85.91525 0.292248 ± 
r2 0.999532 0.033738 s(y) 
F 6410.131 3 df 
ssreg 7.296323 0.003415 ssresid 

 

 

 

-35

-34

-33

-32

-31

0.0031 0.0033 0.0035 0.0037

ln
 K

w

1/T  (K-1)
 

 

 
The corresponding rH° is: 
 

 rH° = -8.3145 J K-1 mol-1 (-6878.66 K-1)(1kJ/1000 J) = 57.2  0.7 kJ mol-1 
 

From the data table at 298.15 K:  
 

 rG = –RT ln Kw = – 8.3145 J K-1 mol-1 (298.15 K) (1kJ/1000 J) ln 1.01x10-14 
          = 79.89 kJ mol-1 
 

 rS = 
rH – rG

T  = 
(57.2 kJ mol-1 – 79.89 kJ mol-1)(1000 J/1 kJ)

298.15 K   

          = -76.1  2.3 J K-1 mol-1 
 

Notice that there is noticeable upward curvature to the plot, showing that the reaction enthalpy is 
temperature dependent for this range of temperatures. A more accurate estimation of rS would 
result from a curve fit to Eq. 20.1.36. 
(b). From the equilibrium expression: Kw= (aH+)(aOH

-), or pKw = pH + pOH. For a neutral 
solution pH = pOH. Neutral pH is then given by pKw/2: 
 

T (C) 0.0 10.0 25.0 35.0 40.0 
Kw 1.15x10-15 2.97x10-15 1.01x10-14 2.07x10-14 2.88x10-14 

pH=pOH 7.47 7.26 7.00 6.84 6.77 
 

Notice that a neutral solution at body temperature is not pH = 7. 
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15.  In the last problem for the autoprotolysis of water, we assumed that the reaction enthalpy 
was temperature independent. Assume the temperature dependence of the reaction enthalpy is 
given by rHT = rHo + rCp T, with rCp = -186.6  2.7 J K-1 mol. The temperature dependence 

of ln K is then just the first two terms of Eq. 20.1.36: 
 

 ln K = – 
rHo
RT  + 

rCp

R  ln T + c 
 

where c is a constant. Calculate rH° , rG°, and rS° at 298.2 K. A more complete table for the 
autoprotolysis constant for water, Kw, is given in the table, below.1 [Hint: subtract rCp ln T from 
both sides of the above equation and plot (ln K – rCp ln T) along the vertical axis.] 
 

T (°C) 0.0 5.0 10.0 15.0 20.0 25.0 30.0 
Kw 1.15x10-15 1.88x10-15 2.97x10-15 4.57x10-15 6.88x10-15 1.01x10-14 1.46x10-14 

 

T (°C) 35.0 40.0 45.0 50.0 100.0 150.0 
Kw 2.07x10-14 2.88x10-14 3.94x10-14 5.31x10-14 5.43x10-13 2.3x10-12 

 
 
Answer:  As we did in the last problem, convert the temperature to kelvins and calculate ln Kw at 
each temperature. Then subtract rCp ln T from both sides of the above equation and plot (ln K – 
rCp ln T) along the vertical axis and 1/T along the horizontal axis: 
 

 ln K – 
rCp

R  ln T  =  – 
rHo
RT  + c 

 

T(°C) K T (K) 1/T 
ln K -Cp/R ln 
T 

0 1.15E-15 
273.1

5 
0.00366

1 91.505 

5 1.88E-15 
278.1

5 
0.00359

5 92.404 

10 2.97E-15 
283.1

5 
0.00353

2 93.261 

15 4.57E-15 
288.1

5 0.00347 94.085 

20 6.88E-15 
293.1

5 
0.00341

1 94.880 

25 1.01E-14 
298.1

5 
0.00335

4 95.643 

30 1.46E-14 
303.1

5 
0.00329

9 96.385 

35 2.07E-14 
308.1

5 
0.00324

5 97.101 

40 2.88E-14 
313.1

5 
0.00319

3 97.793 

45 3.94E-14 
318.1

5 
0.00314

3 98.462 

50 5.31E-14 
323.1

5 
0.00309

5 99.110 

100 5.43E-13 
373.1

5 0.00268 104.664 

150 2.30E-12 
423.1

5 
0.00236

3 108.930 
 

 

y = -13407x + 140.61
R² = 1

90

95

100

105

110

115

0.002 0.0025 0.003 0.0035 0.004

ln
 K

 -


C p
/R

 ln
(T

)

1/T (K-1)
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slope 

-
1
3
4
0

7.
4 140.607 intercept 



6.
7
2
2
9
2
6 

0.02186
9 ± 

r2 

0.
9
9
9
9
9
7 

0.00850
9 s(y) 

F 

3
9
7
7
1
7
3 11 df 

ssreg 

2
8

7.
9
8
2
9 

0.00079
6 ssresid 

 
The curve fit results give: 
 

 rHo = –R slope = 111.48  0.05 kJ mol-1 
 

The corresponding reaction enthalpy at room temperature is: 
 

 rHT = rHo + rCp T = 111.48 kJ mol-1 – 186.6 J K-1 mol-1(298.15 K)(1 kJ/1000 J) 

          = 55.85  0.81 kJ mol-1 
 

which matches the literature value of 55.84 kJ mol-1. From the Kw table at 298.15 K: 
 

 rG = –RT ln Kw = – 8.3145 J K-1 mol-1 (298.15 K) (1kJ/1000 J) ln 1.01x10-14 
          = 79.89 kJ mol-1 
 

 rS = 
rH – rG

T  = 
(55.85 kJ mol-1 – 79.89 kJ mol-1)(1000 J/1 kJ)

298.15 K   

         = -80.6  2.7 J K-1 mol-1 
 

The literature value for the reaction entropy is -80.66 J K-1 mol-1. The agreement of our values 
with the literature should be considered to be fortuitous given the parameter uncertainties. 
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16.  In the atmosphere NO and NO2 approach equilibrium (see Ch. 5 Problems 10-12): 
 

 NO (g) + ½ O2 (g)  NO2(g) 
 

Because NO and NO2 are rapidly interconverted, the concentration of NO and NO2 in the 
atmosphere are usually combined and quoted as [NOx]. The equilibrium constant is Kp = 
1.168x105 at 335.15 K and 4075. at 400.15 K. (a). Calculate the standard state reaction enthalpy 
at the average temperature, assuming the reaction enthalpy is constant over the temperature 
range. (b). Calculate the standard state reaction Gibbs energy and entropy at 335.15 K. (c). The 
molar constant pressure heat capacities are 29.844 J K-1 mol-1 for NO, 29.355 J K-1 mol-1 for O2, 
and 37.20 J K-1 mol-1 for NO2. Calculate rH, rS, and rG at 298.15 K. 
 
 
Answer:  The plan is to use Eq. 20.1.28 to solve for rH at the average temperature and rG = 
– RT ln Kp to find rG at 335.15 K. rS at 335.15 K is calculated from rG = rH – T rS. 
Then rCp is used with Eqs. 8.5.5 and 13.3.7 to find rH and rS at 298.15 K. Finally, rG at 
298.15 K is calculated from rG = rH – T rS. 
(a). Using the van 't Hoff equation for two data points, Eq. 20.1.28: 
 

 ln 
Kp,T2

Kp,T1

 = – 
rH

R 



1

T2
 – 

1
T1

 

 

 ln 
4075.

1.168x105 = – 
rH

8.3145 J K-1 mol-1



1

400.15 K – 
1

335.15 K  
 

 -3.3556 = – 
rH

8.3145 J K-1 mol-1 (0.00249906 – 0.00298374) 
 

 -3.3556 = – 
rH

8.3145 J K-1 mol-1 (-4.8468x10-4 K-1) 
 

 rH = -5.7564x104 J mol-1 = -57.564 kJ mol-1       at average temperature 367.65 K 
 

(b). At 335.15 K:  rG = – RT ln Kp: 
 

    rG = –8.3145 J K-1mol-1(1 kJ/1000 J)(335.15 K) ln 1.168x105 = -32.515 kJ mol-1 

 

    rS = 
rH – rG

T  = 
(-57.564 kJ mol-1 – (-32.515 kJ mol-1))(1000 J/1 kJ)

335.15 K  = -74.742 J K-1 mol-1 
 

(c). The reaction change in heat capacity is: 
 

 rCp = [37.20] – [29.844 + ½ (29.355)] J K-1 mol-1 = -7.322 J K-1 mol-1 
 

The reaction enthalpy corrected to 298.15 K from the average temperature for the experiment is: 
 

 rH
o
298 K = rH

o
367 K + rCp T 

    = -57.564 kJ mol-1 + (-7.322 J K-1 mol-1)(1 kJ/1000 J)(298.15 K – 367.65 K) 
    = -57.055 kJ mol-1 
 

The reaction entropy at 298.15 K corrected from 335.15 K is: 
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 rS
o
298 K = rS

o
367 K + rCp ln(T2/T1) 

   = -74.742 J K-1 mol-1 + (-7.322 J K-1 mol-1)(1 kJ/1000 J) ln(298.15/335.15) 
   = -74.742 + 0.8565 J K-1 mol-1= -73.885 J K-1 mol-1 
 

The final standard state reaction Gibbs energy is then: 
 

 rG = rH – T rS = -57.055 kJ mol-1 – (298.15 K)(-73.885 J K-1 mol-1)(1 kJ/1000 J) 
 rG = -35.03 kJ mol-1 

 
 
17.  The density at equilibrium for gas phase reaction mixtures can be used to calculate the 
equilibrium constant for the chemical reaction. Consider a gas phase dissociation with the 
stoichiometry A (g)  B (g) + C (g), giving at equilibrium (see Problem 9): 
 

 Kp = 
2

a2 – 2 (P/P) = 
(/a)2

1 – (/a)2 (P/P) = 
2

1 – 2 (P/P)   (P20.9.1) 
 

Assume only A is initially placed in the reaction vessel. The total moles of gas is then 
determined by ntot = a +  = a(1 + ). Now consider the density of the gas mixture. The total 
mass of the reaction mixture is constant, w = aMA, where MA is the molar mass of reactant A. 
However, the total moles of gas changes as the reaction progresses, if rng  0. For a reaction at 
constant temperature and pressure, the change in moles of gas will cause a change in volume as 
the reaction progresses from the initial state. The density of the reaction gas mixture at 
equilibrium, assuming each constituent is ideal, is given by the ideal gas law: 
 

 d = w/Veq = 
aMA

ntot RT/P = 
a MA

a(1 + ) RT/P
 = 

1
1 +  



MA P

RT    P20.17.1 
 

   COCl2 dissociates according to the reaction:  COCl2 (g)  CO (g) + Cl2 (g). The density of the 
reaction mixture at equilibrium at 724. K and 1.00 bar total pressure is 1.16 g L-1. Calculate the 
degree of dissociation, Kp, and rG at 724. K. 
 
 
Answer:  The plan is to use Eq. P20.17.1 to find , and then use Eq. 20.2.7 with Kp = Kx P/Pº 
and  = /a to find Kp. Finally rG = – RT ln Kp. 
   Solving Eq. P20.17.1 for the degree of dissociation gives: 
 

  = 



MA P

d RT  – 1 = 



98.91 g mol-1 1.00 bar

1.16 g L-1 0.08314 bar L K-1 mol-1 724. K  – 1 = 0.4166 
 

The equilibrium expression is then given by Eq. 20.2.7. Then, Kp = Kx (P/P)rng with rng = 1 
for this dissociation. Substituting Kp = Kx P/Pº,  = /a and P = 1.00 bar gives: 
 

 Kp = 
2

1 – 2 (P/P) = 
0.41662

1 – 0.41662 = 0.2100 
 

See Problem 9 and Eq. P20.9.1 for a complete derivation of this last equation. 
 

 rG = – RT ln Kp = – 8.314 J K-1 mol-1 (724. K)(1 kJ/1000 J) ln 0.2100 = 9.39 kJ mol-1 
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18.  The density of an equilibrium mixture of N2O4 (g) and NO2 (g), at 1.00 bar pressure, is 
3.62 g L-1 at 15.C. Only N2O4 was initially placed in the reaction vessel. Calculate Kp and rG 
at 15.C. [Hint: write the equilibrium expression in terms of the degree of dissociation.] 
 
 
Answer:  The reaction is the dissociation of N2O4: 
 

 N2O4 (g)  2 NO2 (g) 
 

See Problem 6 for the derivation of the equilibrium expression: 
 

 Kp = 
42

a2 – 2 (P/P)        1 
 

The degree of dissociation for this stoichiometry is  = /a. Dividing the numerator and 
denominator of the last equation by a2 gives: 
 

 Kp = 
4(/a)2

1 – (/a)2 (P/P) = 
42

1 – 2 (P/P)      2 
 

The total moles of gas is ntot = a +  = a(1 + ). Now consider the density of the gas mixture. The 
total mass of the reaction mixture is constant, w = a MA, where MA is the molar mass of reactant 
A. The total moles of gas changes as the reaction progresses if rng  0, giving a change in 
volume. The density of the reaction gas mixture at equilibrium, assuming each constituent is 
ideal, is given by the ideal gas law, Veq = ntot RT/P: 
 

 d = w/Veq = 
aMA

ntot RT/P = 
a MA

a(1 + ) RT/P
 = 

1
1 +  



MA P

RT    3 
 

where MA is the molar mass of reactant A, Veq is the total volume at equilibrium, and P is the 
total applied pressure. Substituting in the given values and solving Eq. 3 for the degree of 
dissociation: 
 

  = 



MA P

d RT  – 1 = 



92.02 g mol-1 1.00 bar

 3.62 g L-1 0.08314 bar L K-1 mol-1 288.2 K  – 1 = 0.06082 
 

The equilibrium constant is then given by Eq. 2 and P = 1.00 bar: 
 

 Kp = 
42

1 – 2 (P/P) = 
4(0.06082)2

1 – 0.060822 = 0.01485 
 

 rG = – RT ln Kp = – 8.314 J K-1 mol-1 (1 kJ/1000J)(288.2 K) ln 0.01485 
          = 10.1 kJ mol-1 
 
 
19.  Create an Excel spreadsheet based on Eq. 20.1.21 to reproduce Figure 20.1.1. Assume the 
total pressure is constant at 1.00 bar and the standard state chemical potentials of A, B, C, and D 
are 6.24, 5.64, 2.78, and 2.22 kJ mol-1, respectively. Assume 1.00 mol for A and B initially, with 
no C and D. 
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Answer:  The spreadsheet used to produce Figures 20.1.1 and 20.1.2 is shown below. 
 

species  A B C D       
chem.potential  6.24 5.64 2.78 2.22 kJ/mol      
stoichiometry  -1 -1 1 1       
initial mol  1 1 0 0 mol      
             
T= 298.2 K R= 8.314 J/K/mol RT= 2.4792 kJ/mol    
Kp= 16.039  Ptot= 1 bar        
             
 (mol) nA nB nC nD PA PB PC PD Q rG G(pure) G (kJ) 

0 1 1 0 0 0.5 0.5 0 0 0  11.88 8.443 
0.1 0.9 0.9 0.1 0.1 0.45 0.45 0.05 0.05 0.0123 -17.775 11.192 6.143 
0.2 0.8 0.8 0.2 0.2 0.4 0.4 0.1 0.1 0.0625 -13.754 10.504 4.586 
0.3 0.7 0.7 0.3 0.3 0.35 0.35 0.15 0.15 0.1837 -11.081 9.816 3.350 
0.4 0.6 0.6 0.4 0.4 0.3 0.3 0.2 0.2 0.4444 -8.890 9.128 2.354 
0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 1 -6.880 8.44 1.566 
0.6 0.4 0.4 0.6 0.6 0.2 0.2 0.3 0.3 2.25 -4.870 7.752 0.978 
0.7 0.3 0.3 0.7 0.7 0.15 0.15 0.35 0.35 5.4444 -2.679 7.064 0.598 
0.8 0.2 0.2 0.8 0.8 0.1 0.1 0.4 0.4 16 -0.006 6.376 0.458 
0.9 0.1 0.1 0.9 0.9 0.05 0.05 0.45 0.45 81 4.015 5.688 0.639 

1 0 0 1 1 0 0 0.5 0.5   5 1.563 
 

The top section specifies the reaction stoichiometry for A + B  C + D, the given chemical 
potentials, and the initial conditions. The chemical potentials give the standard state reaction 
Gibbs energy using Eq. 15.4.17 and the equilibrium constant using Eq. 20.1.14 as Kp = 16.0. The 
partial pressures are determined by Dalton’s Law of partial pressures, Pi = Yi P, and then: 
 

 Q = 
(PC/P) (PD/P)
(PA/P) (PB/P)   rG = RT ln(Q/Kp)  G(pure) = ni i 

 

and the Gibbs energy for each value of  from Eq. 20.1.21. Notice that the minimum occurs for 
 = 0.80 where Q = Kp = 16.0. 
 
 
20.  Dissociations with the stoichiometries A  B + C and A  2 B have significantly different 
equilibrium positions, given the same equilibrium constant and initial conditions. (a). First, 
assume the equilibrium constant for both reactions is Kp = 1.33 and the initial moles of reactant 
is 1.00 mol, with no initial products at 1.00 bar total pressure. Calculate the degree of 
dissociation for each reaction. (b). Qualitatively sketch diagrams of the form in Figure 20.1.1 and 
discuss the effect of the entropy of mixing in determining the difference in equilibrium position 
for the two reaction stoichiometries. (See also Problems 6, 8, and 9.) 
 
 

Answer:  (a). Since rng = 1 for both reactions, Kp = Kx (P/P)rng. Given the total pressure of 
1.00 bar, Kp = Kx. Using Eq. 20.2.8 with  = /a, the degree of dissociation for the reaction 
A  B + C is given by Problem 9 Eq. 4: 
 

 A  B + C   = 



Kx

1+Kx

½
 = 



1.33

1 + 1.33

½
 = 0.756 
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Using Problem 6 Eq. 5 for the reaction A  2 B, the degree of dissociation is given by: 
 

 A  2 B   = 



Kx

4+Kx

½
 = 



1.33

4 + 1.33

½
 = 0.500 

 

The extent of the reaction is significantly less for the stoichiometry A  2 B. Why does this 
difference occur, even though the equilibrium constants are the same and rng = 1 for both 
reactions? 
 

(b). The difference in extent results because the reaction A  B + C has a favorable entropy and 
Gibbs energy of mixing for the products, while A  2 B does not. Since both reactions have the 
same equilibrium constant, the standard state reaction Gibbs energies are the same, 
rG = -RT ln Kp. Sketches for the Gibbs energy versus reaction extent, corresponding to Figure 
20.1.1, for the two reactions are shown below. Neither case has entropy of mixing for the 
reactants. There is a favorable entropy and Gibbs energy of mixing for intermediate reaction 
extents, so that the reactions don’t run to completion in either case. The favorable entropy of 
mixing for the products pulls the position of equilibrium further to the right towards products for 
the A  B + C case. 
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A rough sketch for this problem is sufficient; however, see the next problem for the Excel 
spreadsheet used to construct these figures. 
 
 
21.  Derive an expression for the Gibbs energy for the dissociation A  B + C as a function of 
the extent of the reaction. Your derivation will parallel Eqs. 20.1.16-20.1.21, but for the new 
stoichiometry. Create an Excel spreadsheet based on your expression to produce a plot similar to 
Figure 20.1.1. Assume the total pressure is constant at 1.00 bar and the standard state chemical 
potentials of A, B, and C are 6.00, 2.95, and 2.34 kJ mol-1, respectively. Assume 1.00 mol for A 
initially, with no B and C. 
 
 

Answer:  The initial amount of the reactant is nAo. Assume that we start with only reactant so that 
nBo = 0 and nCo = 0. From the stoichiometry for this example, the mole amounts are: 
 

 nA = nAo –  , nB =  ,   nC =        1 
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The Gibbs energy at any point during the reaction is just the sum of the Gibbs energies for each 
product and reactant: 
 

 G = nA µA + nB µB + nC µC      (cst. T&P) 2 
 

   G = nA [µA + RT ln




PA

P ] + nB [µB + RT ln




PB

P ] + nC [µC+ RT ln




PC

P ] 

                (cst. T&P, ideal gas) 3º 
 

The partial pressures are expressed in terms of the mole fractions using Dalton’s Law of partial 
pressures, Pi = Yi P, with P the total pressure, Yi = ni/n, and  n =  ni. Collecting terms, as we did 
for Eqs. 20.1.17-20.1.19, gives: 
 

 G = (nA µA + nB µB + nC µC) 
  + nA RT ln YA + nB RT ln YB + nC RT ln YC  

  + nA RT ln




P

P  + nB RT ln




P

P  + nC RT ln




P

P        (cst. T&P, ideal gas)    4º 
 

Using Eq. 20.1.20, n = nA + nB + nC, and G(pure) = (nA µA + nB µB + nC µC), we can simplify Eq. 
4 to: 

 G = G(pure) + nRT (YA ln YA + YB ln YB + YC ln YC) + nRT ln



P

P  

               (cst. T&P, ideal gas)     5º 
 

The spreadsheet used to produce Figures 20.1.1 and 20.1.2 is shown below, but with the new 
stoichiometry and chemical potentials. 
 

species  A B C  rG    
chem.potential 6 2.95 2.34 kJ/mol -0.71 kJ/mol  
stoichiometry -1 1 1      
initial mol 1 0 0 mol     
          
T 298.2 K R 8.31 J/K/mol RT= 2.47923 kJ/mol 
Kp =  1.332  Ptot= 1.00 bar     
          
 (mol) nA nB nC Ptot PA PB PC G(pure) G (kJ) 

0 1 0 0 1 1 0 0 6.000 6 
0.1 0.9 0.1 0.1 1.1 0.818 0.091 0.091 5.929 4.292 
0.2 0.8 0.2 0.2 1.2 0.667 0.167 0.167 5.858 3.277 
0.3 0.7 0.3 0.3 1.3 0.538 0.231 0.231 5.787 2.531 
0.4 0.6 0.4 0.4 1.4 0.429 0.286 0.286 5.716 1.971 
0.5 0.5 0.5 0.5 1.5 0.333 0.333 0.333 5.645 1.559 
0.6 0.4 0.6 0.6 1.6 0.25 0.375 0.375 5.574 1.281 

0.65 0.35 0.65 0.65 1.65 0.212 0.394 0.394 5.539 1.191 
0.7 0.3 0.7 0.7 1.7 0.176 0.412 0.412 5.503 1.133 

0.75 0.25 0.75 0.75 1.75 0.143 0.429 0.429 5.468 1.110 
0.8 0.2 0.8 0.8 1.8 0.111 0.444 0.444 5.432 1.126 
0.9 0.1 0.9 0.9 1.9 0.053 0.474 0.474 5.361 1.296 

0.985 0.015 0.985 0.985 1.99 0.008 0.496 0.496 5.301 1.697 
1 0 1 1 2 0 0.5 0.5 5.290 1.853 

 
The top section specifies the reaction stoichiometry for A  B + C, the given chemical potentials, 
and the initial conditions. The chemical potentials give the standard state reaction Gibbs energy 
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using Eq. 15.4.17 and the equilibrium constant using Eq. 20.1.14º as Kp = 1.33. The partial 
pressures are determined by Dalton’s Law of partial pressures, Pi = Yi P, and then: 
 

 G(pure) =  ni i = (nA µA + nB µB + nC µC) 
 

The Gibbs energy for each value of  is determined from Eq. 5. Notice that the minimum occurs 
for   0.75 as shown in Problem 20a. The plot of the Gibbs energy is shown in Problem 20. 
 
 
22.  Calculate the pH and degree of dissociation of 0.100 m acetic acid in water at 25C using the 
Debye-Hückel approximation and Ka = 1.75x10-5. (The acid dissociation constant is determined 
on a molal basis. Neglect the autoprotolysis of water.) Compare to the degree of dissociation 
calculated neglecting activity coefficients. 
 
 
Answer:  The dissociation is given by: HOAc (aq)     H+  +  OAc-. Assume that the activity 
coefficient for undissociated acetic acid is one, since acetic acid is neutral. The analytical 
(nominal, undissociated) concentration of the weak acid is mA. The activities for the ions are 
 aH+ =  mH+/m and aOAc- =  mOAc-/m. However, by the 1:1 stoichiometry and neglecting the 
autoprotolysis of water, mH+ = mOAc-. Let x = mH+ = mOAc-. The value of x is the extent of the 
reaction measured as a molality. The acid dissociation reaction is: 
 

  HOAc           H+     +    OAc- 
   molality: mA– x  x       x 
   activity: (mA– x)/m  x/m        x/m 
 

 Ka = 
(aH+)(aOH-)

aA
 = 


2
 (x/m)2

(mA – x)/m giving   K
eff
a  = 

x2

mA – x   1 
 

where for convenience, we define the effective equilibrium constant as K
eff
a  = Ka/

2
 m. Solving 

for x gives: 
 

 x2 + K
eff
a  x – K

eff
a  mA = 0   x = 

–K
eff
a   (K

eff
a )2 + 4 K

eff
a  mA

2  2 
 

Neglecting activity coefficients, K
eff
a   Ka and using the given values: 

 

 x = 
–1.75x10-5  (1.75x10-5)2 + 4(1.75x10-5)(0.100)

2  = 1.314x10-3 m (ideal) 3º 
 

Only the positive root gives a positive concentration. The Debye-Hückel approximation depends 
on the ionic strength. However, the exact concentration of the ions is not known. However, since 
the degree of dissociation is so small, the activity coefficients will be close to one. We can use 
the ion concentrations that we calculate neglecting activity coefficients to approximate the ionic 
strength. Using the definition of ionic strength, Eq. 19.4.22: 
 

 I = ½  z2
i 

mi

m = ½ [(1)2 m + (-1)2 m]/m = m/m = 1.314x10-3   4 
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This result is expected for a uni-positive:uni-negative electrolyte: I = m/m. The mean ionic 
activity coefficient is calculated using Eq. 19.4.23: 
 

 ln ± = -1.171 |z+ z-| I½ = -1.171 |(1)(-1)| (1.314x10-3)½ = -0.04245   5 
or log ± = -0.509 |z+ z-| I½ = -0.509 |(1)(-1)| (1.314x10-3)½ = -0.01845   6 
 

giving ± = 0.9584 and K
eff
a  = Ka/

2
 m = 1.75x10-5/(0.9584)2 = 1.905x10-5 m. The molal extent 

using Eq. 2 is: 
 

 x = 
–1.905x10-5  (1.905x10-5)2 + 4(1.905x10-5)(0.100)

2  = 1.371x10-3 m  7 
 

Given that x = mH+, the pH is calculated from the activity: 
 

 aH+ =  mH+/m = 0.9584 (1.371x10-3) = 1.314x10-3 

 

 pH = – log aH+ = 2.88 
 

and the degree of dissociation is:  = x/mA = 0.0137 or 1.37% dissociated. The degree of 
dissociation neglecting activity coefficients, using Eq. 3º, is  = 0.0131 for a 4% error. 
 
 
23.  Calculate the pH and degree of hydrolysis of 0.100 m ammonia in water at 25C using the 
Debye-Hückel approximation and Kb = 1.78x10-5. (The hydrolysis constant is determined on a 
molal basis. Neglect the autoprotolysis of water.) Compare to the degree of hydrolysis calculated 
neglecting activity coefficients. 
 
 
Answer:  The hydrolysis is given by: NH3 (aq) + H2O  NH

+
4 + OH-. Assume that the activity 

coefficient for ammonia is one, since ammonia is neutral. The analytical (nominal, 
undissociated) concentration of the weak base is mB. The activities for the ions are 
aNH4+ =  mNH4+/m and aOH- =  mOH-/m. However, by the 1:1 stoichiometry and neglecting 
the autoprotolysis of water, mNH4+ = mOH-. Let x = mNH4+ = mOH-. The value of x is the extent of 
the reaction measured as a molality. The hydrolysis reaction is: 
 

  NH3 (aq) + H2O       NH
+
4    +    OH- 

   molality: mB– x    x        x 
   activity: (mB– x)/m   x/m        x/m 
 

 Kb = 
(aNH4+)(aOH-)

aB
 = 


2
 (x/m)2

(mB – x)/m giving   K
eff
b  = 

x2

mB – x   1 
 

where for convenience, we define the effective equilibrium constant as K
eff
b  = Kb/

2
 m. Solving 

for x gives: 
 

 x2 + K
eff
b  x – K

eff
b  mB = 0   x = 

–K
eff
b   (K

eff
b )2 + 4 K

eff
b  mB

2  2 
 

Neglecting activity coefficients, K
eff
b   Kb and using the given values: 
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 x = 
–1.78x10-5  (1.78x10-5)2 + 4(1.78x10-5)(0.100)

2  = 1.325x10-3 m (ideal) 3º 
 

Only the positive root gives a positive concentration. The Debye-Hückel approximation depends 
on the ionic strength. However, the exact concentration of the ions is not known. However, since 
the degree of hydrolysis is so small, the activity coefficients will be close to one. We can use the 
ion concentrations that we calculate neglecting activity coefficients to approximate the ionic 
strength, Eq. 3º. Using the definition of ionic strength, Eq. 19.4.22: 
 

 I = ½  z2
i 

mi

m = ½ [(1)2 m + (-1)2 m]/m = m/m = 1.325x10-3    4 

 

This result is expected for a uni-positive:uni-negative electrolyte: I = m/m. The mean ionic 
activity coefficient is calculated using Eq. 19.4.23: 
 

 ln ± = -1.171 |z+ z-| I½ = -1.171 |(1)(-1)| (1.325x10-3)½ = -0.04263   5 
or log ± = -0.509 |z+ z-| I½ = -0.509 |(1)(-1)| (1.325x10-3)½ = -0.01853   6 
 

giving ± = 0.9583 and K
eff
b  = Ka/

2
 m = 1.78x10-5/(0.9583)2 = 1.938x10-5 m. The molal extent is: 

 

 x = 
–1.938x10-5  (1.938x10-5)2 + 4(1.938x10-5)(0.100)

2  = 1.382x10-3 m  7 
 

Given that x = mOH- the pOH is calculated from the activity: 
 

 aOH- =  mOH-/m = 0.9583 (1.382x10-3) = 1.324x10-3 
 

 pOH = – log aOH- = 2.878 and pH = 13.995 – 2.878 = 11.12 
 

and the degree of hydrolysis is:  = x/mB = 0.0138 or 1.38%. The degree of hydrolysis 
neglecting activity coefficients, using Eq. 3º, is  = 0.0132 for a 4% error. 
 
 
24.  The Ksp for PbCl2 in water is 1.70x10-5. (a). Calculate the solubility of PbCl2 in pure water. 
(b). Show that the solubility of a 1:2 electrolyte with charges z+ = 2 and z- = -1 in a m-molal 
solution of NaNO3 (or other uni-positive : uni-negative non-participating electrolyte) is given by: 
 

 ms = 100.509|z+ z-| (m/mº)½
 



Ksp

4

1/3
 

 

Use the Debye-Hückel approximation at 25ºC for the activity coefficients. Calculate the 
solubility of PbCl2 in 0.100 m KNO3. 
Answer:  The dissolution is  PbCl2 (s)  Pb2+ (aq) + 2 Cl- (aq). Assume PbCl2 is the only source 
of Cl- ions, giving mCl- = 2 mPb2+ = 2ms. The equilibrium expression is given by: 
 

 Ksp = (aPb2+)(aCl-)2 = 
3
± (mPb2+/mº)(mCl-/mº)2 = 

3
± (ms/mº)(2 ms/mº)2 = 4 

3
± (ms/mº)3      1 

 

(a). For PbCl2 in pure water, first assume the activity coefficient is equal to one: 
 

 ms  (1.70x10-5/4)1/3 mº = 0.01620 m      (ideal)       2º 
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We can use this concentration to approximate the ionic strength: 
 

 I = ½  z2
i 

mi

m = ½ [(2)2 ms + (-1)2 2 ms]/m = 3 ms/m = 0.04859       3 

 

and the mean-ionic activity coefficient for PbCl2 is: 
 

 log ± = -0.509 |z+ z-| I½ = log ± = -0.509 |(2)(-1)| (0.04859)½ = 0.5965       4 
 

The solubility in pure water is  ms = 






Ksp

4
3
±

1/3
 mº  



1.70x10-5

4(0.5965)3

1/3
  0.0272 m      5 

 

For more accurate calculations this new estimate of the solubility should be used in the spirit of 
successive approximations to calculate a new ionic strength, activity coefficient, and then more 
accurate solubility. Given that Ksp is uncertain to 6%, our current result is sufficient for 
comparison with part b. 
 

(b). Assume that the ionic strength is dominated by the non-participating electrolyte. For a  
uni-positive : uni-negative electrolyte the ionic strength is given by the molality, I = m/mº. The 
Debye-Hückel approximation correspondingly gives the activity coefficient of the sparingly 
soluble salt as: 
 

 log ± = -0.509 |z+ z-| I½ giving    ± = 10-0.509|z+ z-| (m/mº)½
   6 

 

Solving for the solubility gives: ms = 






Ksp

4
3
±

1/3
 = 100.509|z+ z-| (m/mº)½

 



Ksp

4

1/3
  7 

 

For the specific case of PbCl2 (s) in 0.100 m KNO3, I = 0.100: 
 

 ms = 100.509|(2)(-1)| (0.100)½
 



Ksp

4

1/3
mº = (2.098)(0.01620 m) = 0.0340 m  8 

 

or 210% of the ideal solubility, Eq. 2º, and 125% of the solubility in pure water, Eq. 5. The 
corresponding mean ionic activity coefficient in 0.100 m KNO3 works out to ± = 

10-0.509|(2)(-1)| (0.100)½
 = 0.309. 

 
 
25.  The Ksp for PbCl2 in aqueous solution is 1.70x10-5 on a molal basis at 298.15 K. (a). 
Calculate the Ksp of PbCl2 in pure water on a molarity concentration basis. (b). Calculate the Ksp 
of PbCl2 on a molarity basis in a 0.200-M solution of KNO3, assuming a very dilute solution. 
The density of 0.200 M KNO3 is 0.9905 g mL-1. 
 
 
Answer:  (a). For the solubility equilibrium PbCl2 (s)  Pb2+ (aq) + 2 Cl- (aq): r = [1 + 2] – [0] 
= 3, since the reactant is a solid. The solution is dilute, which allows the use of Eq. 20.3.12. 
Assume the solution density is the density of pure water at the same temperature, 
d 25

H2O = 0.99705 g mL-1, Table 2.2.1: 
 

 Kc = Km (dsoln/1 g ml-1)r = 1.70x10-5(0.99705)3 = 1.685x10-5 
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or only a 0.9% change. 
(b). However, for the solubility in 0.200 M KNO3: 
 

 Kc = Km (dsoln/1 g ml-1)r = 1.70x10-5(0.9905)3 = 1.652x10-5 
 

for a 3% difference. 
 
 

26.  The hydrolysis of ammonia is given by: NH3 (aq) + H2O  NH
+
4 + OH- with Kb = 1.78x10-5 

at 25C on a molal basis. Calculate Kb on a molarity concentration basis. The density of 0.100 M 
ammonia is 0.994 g mL-1 at 25C 
 
 
Answer:  For the hydrolysis r = [1 + 1] – [1] = 1, since water is kept on a mole fraction basis 
with XH2O  1. Use of Eq. 20.3.12 with the solution density gives only a 0.6% difference in 
equilibrium constants: 
 

 Kc = Km (dsoln/1 g ml-1)r = 1.78x10-5(0.994) = 1.769x10-5 
 
 
27.  Nimodipine is a dihydropyridine calcium channel blocker that was developed for the 
treatment of high blood pressure: 
 

 

N
H
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O
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This class of calcium channel blockers are antagonists that block the flow of Ca2+ ions out of 
cardiac muscle cells. A receptor site for nimodipine is found in the plasma membrane of striated 
muscle tissue, or sarcolemma. Isolated sarcolemma membranes were used in a binding study 
with tritium-labeled nimodipine. Tritiated-nimodipine was incubated with the purified 
membranes in the absence of Ca2+ ion and then filtered. The concentration of bound nimodipine 
was determined by liquid scintillation counting of the membranes trapped on the filters. Consider 
the membrane bound protein receptor as the host and nimodipine as the guest. The concentration 
of bound guest as a function of the total concentration of guest is given in the table below.2 The 
effective concentration of the host membrane receptors is [H]o = 9.3  0.4 pmol L-1. 
 

[G]o (pmol L-1) 0.468 0.9 1.92 6.75 10.3 21.9 53.4 105.4 
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[HG] (pmol L-1) 0.134 0.234 0.468 1.606 2.21 4.12 6.09 6.93 

 
 
Answer:  The plan is to determine the association constant from the Scatchard plot using Eq. 
20.5.14. The free guest concentration is given by solving the mass balance: [G] = [G]o – [HG]. 
The degree of association for the host is given by HG = [HG]/[H]o. A spreadsheet was 
developed to calculate [G], HG, and HG/[G] to form the Scatchard plot: 
 

  [H]o =  9.3 pmol L-1 
     
[G]o (pmol L-1) [HG] (pmol L-1) [G] (pmol L-1) HG HG/[G] (pmol-1 L) 

0.468 0.134 0.334 0.0144 0.04314 
0.9 0.234 0.666 0.0252 0.03778 

1.92 0.468 1.452 0.0503 0.03466 
6.75 1.606 5.144 0.1727 0.03357 
10.3 2.21 8.09 0.2376 0.02937 
21.9 4.12 17.78 0.4430 0.02492 
53.4 6.09 47.31 0.6548 0.01384 

105.4 6.93 98.47 0.7452 0.00757 

 
 

slope -0.0411598 0.0401616 intercept 
 0.003408 0.0013577 ± 
r2 0.9605001 0.0026033 s(y) 
F 145.89902 6 df 
ssregression 0.0009888 4.0664E-05 ssresidual 
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The association constant determined by the slope is 0.0412 pmol-1 L or: 
 

 K = 0.0412 pmol-1 L 



1000 pmol

1 nmol  = 41.2 nmol-1 L = 41.2  3.4 nM-1 
 

Even though the effective host concentration is very uncertain, you can verify by changing [H]o 
that the association constant that is determined from the slope is unaffected by the value of the 
total host concentration. The intercept should also give the association constant, but the value is 
strongly dependent on the total host concentration. 
 
 
 
 
28.  Leukotriene-B4 is important in activating the inflammatory response:3 
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OH

OOHOH

 
 

Developing leukotriene-B4 antagonists may be helpful in managing chronic obstructive 
pulmonary disease, severe asthma, rheumatoid arthritis, inflammatory bowel disease, and cystic 
fibrosis. A receptor site for leukotriene-B4 is a membrane bound protein in polymorphonuclear 
leukocytes, PMNLs. Isolated PMNL membranes were used in a binding study with radio-iodine 
labeled leukotriene-B4. The leukotriene was incubated with the purified membranes and then 
filtered. The concentration of bound leukotriene was determined by liquid scintillation counting 
of the membranes trapped on the filters. Consider the membrane bound protein receptor as the 
host and leukotriene-B4 as the guest. The concentration of bound guest as a function of the total 
concentration of guest is given in the table below.3 The effective concentration of the host 
membrane receptors is [H]o = 33  12 pmol L-1. 

 
[G]o (pmol L-1) 8.33 16.7 38.7 86.4 183 322 401 464 1000 2080 
[HG] (pmol L-1) 0.56 1.26 2.66 5.19 9.67 14.3 14.3 16.8 21.7 27.8 

 
 
Answer:  The plan is to determine the association constant from the Scatchard plot using Eq. 
20.5.14. The free guest concentration is given by solving the mass balance: [G] = [G]o – [HG]. 
The degree of association for the host is given by HG = [HG]/[H]o. A spreadsheet was 
developed to calculate [G], HG, and HG/[G] to form the Scatchard plot: 
 
 

  [H]o =  33 pmol L-1 
     
[G]o (pmol L-1) [HG] (pmol L-1) [G] (pmol L-1) HG HG/[G] (pmol-1 L) 

8.33 0.56 7.77 0.0170 0.00218 
16.7 1.26 15.44 0.0382 0.00247 
38.7 2.66 36.04 0.0806 0.00224 
86.4 5.19 81.21 0.1573 0.00194 
183 9.67 173.33 0.2930 0.00169 
322 14.3 307.7 0.4333 0.00141 
401 14.3 386.7 0.4333 0.00112 
464 16.8 447.2 0.5091 0.00114 

1000 21.7 978.3 0.6576 0.00067 
2080 27.8 2052.2 0.8424 0.00041 

 
The curve fit results are: 
 

slope -0.0024546 0.0023768 intercept 
 0.0001532 6.6721E-05 ± 
r2 0.9697631 0.00012796 s(y) 
F 256.57729 8 df 
ssregression 4.2011E-06 1.3099E-07 ssresidual 

 
 

 

 

0

0.001

0.002

0.003

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000


H

G
/[

G
] (

pm
ol

-1
L)

HG
 

 



428 

 

The association constant determined by the slope is 0.00245 pmol-1 L or: 
 

 K = 0.00245 pmol-1 L 



1000 pmol

1 nmol  = 2.45 nmol-1 L = 2.45  0.15 nM-1 
 

Even though the effective host concentration is very uncertain, you can verify by changing [H]o 
that the association constant that is determined from the slope is unaffected by the value of the 
total host concentration. The intercept should also give the association constant, but the value is 
strongly dependent on the total host concentration. 
 
 

29.  The organic dye eosin binds to the protein lysozyme. Binding to lysozyme quenches the 
fluorescence of the protein at 340 nm.4 If IH is the fluorescence intensity of the free form of 
lysozyme and IHG is the fluorescence intensity of the bound form of the protein, then the 
observed intensity is the mole fraction weighted average: 
 

 Iobs = H IH + HG IHG = (1 – HG) IH + HG IHG = (IHG – IH) HG + IH P20.29.1 
 

where H is the mole fraction of the free host protein, H = nH/(nH + nHG) = [H]/[H]o, and HG is 
the mole fraction of the guest-host complex, HG = nHG/(nH + nHG) = [HG]/[H]o. Solving Eq. 
P20.29.1 for the degree of association gives: 
 

 HG = 
[HG]
[H]o

 = 
IH – Iobs

IH – IHG
        P20.29.2 

 

The fluorescence intensity of free lysozyme in buffer alone is IH = 1.541. The fluorescence 
intensity, Iobs, as a function of the concentration of eosin with [H]o = 3.00x10-6 M lysozyme in 
each solution is:4 

 

[G]o (M) 5.00x10-6 10.0x10-6 20.0x10-6 50.0x10-6 
Iobs 1.198 1.064 0.855 0.494 

 

The fluorescence intensities are relative and in arbitrary units, which makes fluorescence 
intensity effectively unitless. Calculate the association constant of eosin with lysozyme. Assume 
that the fluorescence of lysozyme is negligible in the bound form, IHG  0. [Hints: a Scatchard 
plot is not appropriate for this experiment, because the free eosin concentration is not known. 
There is only one unknown, so use of a curve fitting program is not necessary. Using “goal seek” 
in a spreadsheet format is useful for finding the optimum value for an adjustable parameter in a 
non-linear equation.] 
 
 

Answer:  The plan is to use Eq. 20.5.22 for calculating the degree of association. A spreadsheet is 
constructed and then “goal seek” is used to find the value of K[H]o that best fits the data. 
   The spreadsheet is reproduced below. The raw data is in the first two columns. The guest-host 
ratio is then calculated, r = [G]o/[H]o, where the guest is eosin and the host is lysozyme. The 
degree of association is then determined from the fluorescence intensities: 
HG = (IH – Iobs)/(IH – IHG). A value of K[H]o is guessed. Eq. 20.5.22 is then used to calculate the 
fit value for the degree of association based on the guessed value of K[H]o, in the fifth column. 
The formula is: “=((1+$G$3*(1+E6))-SQRT((1+$G$3*(1+E6))^2-4*$G$3^2*E6))/2/$G$3.” The last column is 
the squared residual (HG – HG fit)2, which is used to judge the agreement of the experimental and 
modeled value based on the current guess for K[H]o. The overall goodness of fit is determined by 
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the sum of squared residuals in cell H12. The “goal seek” option under Data: What-if-analysis is 
then used to minimize the sum of squared residuals: 
 

  
 

A1 B C D E F G H 
2  IHG = 0     
3  [H]o= 3.00E-06 M K[H]o= 0.141  
4        
5  [G]o (M) Iobs r=[G]o/[H]o HG HG fit residual2 
6  0 1.541 0.0000 0.0000 0.0000 0 
7  5.00E-06 1.198 1.6667 0.2226 0.1739 0.002371 
8  1.00E-05 1.064 3.3333 0.3095 0.2996 9.878E-05 
9  2.00E-05 0.855 6.6667 0.4452 0.4664 0.0004529 
10  5.00E-05 0.494 16.6667 0.6794 0.6925 0.0001716 
11        
12      ssresidual 3.095E-03 
13      s(y)= 0.0278 

 

The final optimized value is K[H]o = 0.141 or K = 4.70x104. Biochemists often quote the results 
as dissociation constants and neglect to divide by the standard state concentrations in the 
equilibrium expression, which gives the dissociation constant with units: KD = 1/K = 2.13x10-5 = 
21. M. A standard goodness of fit criterion is the standard deviation of the y values, sy or s(y). 
The y values in this problem are the HG values and sy = ssresidual/(n-1). See the next problem 
for the error analysis. 
 
 
30.  Finding the optimum value for a single adjustable parameter in a non-linear equation is 
easily handled using the “goal seek” option in a spreadsheet, rather than using non-linear least 
squares curve fitting programs. However, the spreadsheet approach makes the determination of 
the uncertainty of the final fit value more involved than using non-linear least squares curve 
fitting algorithms. However, least squares curve fitting programs are often set up to fit two or 
more adjustable parameters, not just one parameter. The uncertainty for fitting procedures for a 
single parameter are easily handled using the following approach. 
   The general formula for propagation of errors for the two-parameter function f(x,y) is 
(Appendix 1): 
 

 2f = 



∂f

∂x

2

y
 2x + 



∂f

∂y

2

x
 2y 

 

Consider a non-linear function f(b,x), with the adjustable parameter b and independent variable 
x. The adjustable parameter is often an equilibrium constant and the x variable is a concentration 
or a mole ratio (see the previous problem). Let the value of the measured observables at a series 
of x values be y1 = f(b,x1), y2 = f(b,x2), y3 = f(b,x3), … for n values of x. The y values are often 
absorbances, fluorescence intensities, or chemical shifts. The uncertain variables are the yi 
values. The uncertainty in the fit parameter, b, is then given by: 
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 2b = 



∂b

∂y1

2
 2y1 + 



∂b

∂y2

2
 2y2 + ... 

 

with the sum over all n data points. If we assume that the derivatives are all approximately equal, 
then the last equation reduces to: 
 

 2b  



∂b

∂y

2
 
i=1

n

 2yi  or 



2b

n–1   



∂b

∂y

2
 





i=1

n
 2yi

n–1  

 

Dividing both sides of the equation by n–1 converts the uncertainties to variances, sb and sy. 
Taking the square root and inverting the derivative gives: 
 

  sb   
1





∂y

∂b

 sy 

 

where (y/b) is approximately evaluated numerically as the change in a typical y value for a 
small change in the fit parameter: 
 

 



∂y

∂b  = 
f(b+b,x) – f(b,x)

b
 

 

where x is a typical x-value and b is a small change in the fit parameter. The derivative is easily 
calculated by finding the y-value for the optimal b-value , f(b,x), and then changing b by a small 
amount and finding the new y-value, f(b+b,x). 
   Using these last two equations, find the uncertainty in the association constant for the previous 
fluorescence quenching problem. 
 
 
Answer:  For the last problem the yi values are the experimental HG values. The adjustable 
parameter is b = K[H]o. The x values are the eosin concentrations. Focus on data point 3 for x = 
2.00x10-5 M eosin as a typical value, in the spreadsheet in the last problem. The fit value for 
HG,3 is 0.4664 with b = K[H]o= 0.141. Now change b to 0.142. The new value of HG,3 is 
0.4681. The derivative is then: 
 

 



∂y

∂b  = 
f(b+b,x) – f(b,x)

b
 = 

0.4681 – 0.4664
0.001  = 1.70 

 

The standard deviation of the y values from spreadsheet cell H13 is sy = 0.0278, at the optimum 
value for K[H]o = 0.141. The estimate for the uncertainty in the variable parameter b = K[H]o is 
then: 
 

 b   
1





∂y

∂b

 sy =  
1

1.70 (0.0278) = 0.0164    or    
0.0164
0.141  100% = 11.6% 

 

Giving the uncertainty in the association constant as K = 4.7x104  0.5x104. The dissociation 
constant is KD = 1/K = 2.13x10-5 0.25x10-5. 
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31.  NMR is an important technique for measuring formation constants in guest-host chemistry. 
For example, if a given proton in the host shows a chemical shift difference between the free and 
bound forms, then the chemical shift of the proton is strongly concentration dependent. The 
dependence is due to changes in the mole fractions of the free and bound forms. Assume the 
reactions are rapid on the NMR time scale: rate > 1/o with o the resonance frequency. If H is 
the chemical shift of the free form of the host and HG is the chemical shift of the bound form of 
the host, then the observed chemical shift is the mole fraction weighted average, assuming the 
reactions are rapid: 
 

 obs = H H + HG HG 
 

where H is the mole fraction of the free host, H = nH/(nH + nHG) = [H]/[H]o, and HG is the 
mole fraction of the guest-host complex, HG = nHG/(nH + nHG) = [HG]/[H]o. Given that H + HG 
= 1, the observed chemical shift reduces to: 
 

 obs = (1 – HG) H + HG HG = (HG – H) HG + H 
 

The mole fraction of the bound guest-host complex is calculated by Eq 20.5.22: 
 

 obs = (HG – H) 





(1+K[H]o (1+r)) – (1+K[H]o (1+r))2 – 4K2[H]o

2 r
2K[H]o

 + H 
 

Although somewhat daunting looking, this equation is easily used in non-linear curve fitting with 
the “Nonlinear Least Squares Curve Fitting” applet on the text Web site and the companion CD. 
In particular, the guest and host can be a hydrogen-bonded pair. NMR is an important technique 
in studies of hydrogen bonding. 
   The formation of the hydrogen bond between the sterically crowded alcohol, below, and 
pyridine has been studied:5 

 

CH3

CH3

CH3

CH3

CH3 CH3

OH

H
N  

 
 2,2,4,4-tetramethyl-pentan-3-ol pyridine 
 
Consider the alcohol as the host and pyridine as the guest. The chemical shift of the alcohol 
hydrogen is given in the table, below, as a function of the concentration of pyridine in benzene 
solution. The alcohol concentration is fixed in each solution at 0.100 M. The chemical shift of 
the free alcohol is H = 1.105 ppm. The chemical shift difference, (HG – H), and K[H]o are 
treated as the two variable parameters in the curve fitting. The binding constant is expected to be 
1, since the formation of a single hydrogen bond is a weak interaction. 
 

[G]o (M) 0 0.136 0.271 0.543 0.814 1.628 3.799 
obs (ppm) 1.105 1.594 2.000 2.630 3.111 3.970 4.901 

 
 



432 

 

Answer:   The guest/host ratios, r, are calculated using the spreadsheet below and the r and obs 
values are used in non-linear curve fitting using the “Nonlinear Least Squares Curve Fitting” 
applet on the text Web site and the companion CD. The fit function is listed in the applet as: 
 

 a{(1+b(1+x)) - sqrt[(1+b(1+x))^2 - 4(b^2)x]}/2b + c 
 

where a = HG – H, b = K[H]o, and c = H. The c value is treated as a fixed constant, c = 1.105 
ppm. If initial guesses of a = 8 and b = 0.1 are used, the fit doesn’t converge. After this first 
attempt, the non-converged fit values are listed by the applet as a = 4.96 and b = 0.8754, which 
are used as guesses for a second attempt that does converge. The results are listed and plotted 
below. 
 
 
 
 
 
 
 
 
 
 

 

[G]o (M) r obs (ppm) 
0 0.000 1.105 

0.136 1.357 1.594 
0.271 2.713 2.000 
0.543 5.427 2.630 
0.814 8.140 3.111 
1.628 16.281 3.970 
3.799 37.989 4.901 
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======================   Results   ========================= 
 a= 4.9609 +- 0.043 
 b= 0.087502 +- 0.000062 
______________________ Output Data _________________________ 
     x              y         y(fit)   residual 
  -0.0        1.105      1.102    0.003   
   1.357      1.594      1.59388  0.00012 
   2.713      2.0        2.00167 -0.00167 
   5.427      2.63       2.63642 -0.00642 
   8.14       3.111      3.10462  0.00638 
  16.281      3.97       3.97322 -0.00322 
  37.989      4.901      4.89762  0.00338 
------------------------------------------------------------ 
 sum of squared residuals= 0.0001156 
 stand. dev. y values= 0.004808 
 correlation between a & b= -0.9949 

 
The value for the binding constant is K = b/[H]o = 0.08750/0.100 = 0.875. 
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   The between fit parameters correlation is very large, at -0.9949. Large between fit parameters 
correlations are a typical problem in guest-host chemistry for weak interactions. Authors support 
their results by independent measurements of the chemical shift of the completely complexed 
species, and by independent repetitions of the experiment.5 Even so, there are often large 
inconsistencies between laboratories for the values of binding constants. The uncertainty 
obtained from the least squares fitting procedure underestimates the true uncertainty of the 
binding constant (you can prove this to yourself by changing the first chemical shift at [G]o = 0 
to 1.102 ppm and noting the difference in K, for example). Titration calorimetry is often used as 
an independent and, in most cases, more accurate method for determining binding constants. 
However, titration calorimetry is not applicable for all reactions. 
 
 
32.  Derive Eq. 20.5.23. 
 
 
Answer:  The plan is to recast the equilibrium expression in terms of [H]o, [G]o, and free guest, 
[G] using the mass balance. Then the equilibrium expression is used to solve for [G]. 
   The mass balance equations are given by Eqs. 20.5.3 and 20.5.15: 
 

 [H]o = [H] + [HG]        (20.5.3) 
 [G]o = [G] + [HG]        (20.5.15) 
 

Solving Eq. 20.5.15 for the complex concentration, [HG]: 
 

 [HG] = [G]o – [G]            1 
 

Solving Eq. 20.5.3 for the free host concentration and then using Eq. 1 for [HG] gives: 
 

 [H] = [H]o – [HG] =[H]o – [G]o + [G]          2 
 

Substitution of the mass balances into the equilibrium expression, Eq. 20.5.1, results in: 
 

 K = 
[G]o – [G]

([H]o – [G]o + [G])[G] = 
[G]o – [G]

([H]o – [G]o)[G] + [G]2       3 
 

Cross-multiplying and rearranging gives a quadratic expression: 
 

 K[G]2 + (1 + K([H]o – [G]o)) [G] – [G]o = 0         4 
 

Substitution of the coefficients into the quadratic formula gives: 
 

 [G] = 
–(1+K([H]o–[G]o)) ± (1+K([H]o–[G]o))2 + 4K[G]o

2K        5 
 

Only the positive root gives meaningful concentrations. To express [G] as a function of the mole 
ratio of the guest and host, multiply and divide the equilibrium constant by [H]o to give: 
 

 [G] = 
–(1+K[H]o (1–[G]o/[H]o)) + (1+K[H]o (1–[G]o/[H]o))2 + 4K[H]o [G]o/[H]o

2K[H]o/[H]o
      6 

 

The mole ratio of the guest to host is r  [G]o/[H]o giving: 
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 [G] = [H]o 





–(1+K[H]o (1–r)) + (1+K[H]o (1–r))2 + 4K[H]o r

2K[H]o
     (20.5.23) 

 
 
33.  Derive Eq. 20.5.24. 
 
 
Answer:  The plan is to recast the equilibrium expression in terms of [H]o, [G]o, and free host, 
[H] using the mass balance. Then the equilibrium expression is used to solve for [H]. 
   The mass balance equations are given by Eqs. 20.5.3 and 20.5.15: 
 

 [H]o = [H] + [HG]        (20.5.3) 
 [G]o = [G] + [HG]        (20.5.15) 
 

Solving Eq. 20.5.3 for the complex concentration, [HG]: 
 

 [HG] = [H]o – [H]            1 
 

Solving Eq. 20.5.15 for the free guest concentration and then using Eq. 1 for [HG] gives: 
 

 [G] = [G]o – [HG] = [G]o – [H]o + [H]         2 
 

Substitution of the mass balances into the equilibrium expression, Eq. 20.5.1, results in: 
 

 K = 
[H]o – [H]

[H] ([G]o – [H]o + [H]) = 
[H]o – [H]

([G]o – [H]o)[H] + [H]2       3 
 

Cross-multiplying and rearranging gives a quadratic expression: 
 

 K[H]2 + (1 + K([G]o – [H]o)) [H] – [H]o = 0         4 
 

Substitution of the coefficients into the quadratic formula gives: 
 

 [H] = 
–(1+K([G]o–[H]o)) ± (1+K([G]o–[H]o))2 + 4K[H]o

2K        5 
 

Only the positive root gives meaningful concentrations. To express [G] as a function of the mole 
ratio of the guest and host, multiply and divide the equilibrium constant by [H]o to give: 
 

 [H] = 
–(1+K[H]o ([G]o/[H]o– 1)) + (1+K[H]o ([G]o/[H]o– 1))2 + 4K[H]o

2K[H]o/[H]o
     6 

 

The mole ratio of the guest to host is r  [G]o/[H]o giving: 
 

 [H] = [H]o 





–(1+K[H]o (r–1)) + (1+K[H]o (r–1))2 + 4K[H]o

2K[H]o
     (20.5.24) 

 
 
34.  An alternative form for the concentration of the guest-host complex often encountered in 
biochemical studies is based on the dissociation equilibria: 
 

 HG  H + G   KD = 
[H] [G]
[HG]  
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where KD is the dissociation constant. The relationship to the association constant and Eq. 20.5.1 
is KD = 1/K. (a). Show that the guest-host concentration is given by: 
 

 [HG] = 
([H]o +[G]o +KD) – ([H]o +[G]o +KD)2 – 4 [H]o [G]o

2  
 

(b). Find the relationship in terms of the guest-host ratio, r = [G]o/[H]o. 
 
 
Answer:  The plan is to recast the equilibrium expression in terms of [H]o, [G]o, and the guest-
host complex, [HG], using the mass balance. Then the equilibrium expression is used to solve for 
[HG]. 
   The mass balance equations are given by Eqs. 20.5.3 and 20.5.15: 
 

 [H]o = [H] + [HG]        (20.5.3) 
 [G]o = [G] + [HG]        (20.5.15) 
 

Solving Eqs. 20.5.3 and 20.5.15 for the free host and free guest concentrations: 
 

 [H] = [H]o – [HG] 
 [G] = [G]o – [HG] 
 

Substitution of the mass balances into the dissociation equilibrium expression results in: 
 

 KD = 
[H] [G]
[HG]  = 

([H]o – [HG])([G]o – [HG])
[HG]  = 

[H]o[G]o – ([H]o+[G]o)[HG] + [HG]2

[HG]  
 

Cross-multiplying and rearranging gives a quadratic expression: 
 

 [HG]2 – ([H]o + [G]o + KD) [HG] + [H]o [G]o = 0 
 

Substitution of the coefficients into the quadratic formula gives: 
 

 [HG] = 
([H]o +[G]o +KD) – ([H]o +[G]o +KD)2 – 4 [H]o [G]o

2  
 

Only the negative root gives meaningful concentrations. To express [HG] as a function of the 
mole ratio of the guest and host, factor out [H]o to give: 
 

 [HG] = [H]o  
(1 +[G]o/[H]o +KD/[H]o) – (1 +[G]o/[H]o +KD/[H]o)2 – 4 [G]o/[H]o

2  
 

The mole ratio of the guest to host is r  [G]o/[H]o giving: 
 

 [H] = [H]o 





(1+ r + KD/[H]o) – (1 + r + KD/[H]o)2 – 4 r

2  
 

The fit parameters for non-linear least-square curve fitting are a = [H]o and b = KD/[H]o. 
 
 
35. Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true, but too 
restrictive, give the more general statement. 
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(a). The relationship rG = –RT ln Kp shows that rG is the reaction Gibbs energy at 
equilibrium. 
(b). The position of equilibrium for a constant volume process is determined by the extent of 
the reaction, . 
(c). The position of equilibrium is unaffected by addition of an inert gas, such as helium, since 
the inert gas will not participate in the reaction. 
(d). The position of equilibrium for the reaction types 2A  B + C and A + B  C + D will be 
the same if the equilibrium constants are the same. 
(e). The rate of the reaction 2A  B + C increases with temperature so the equilibrium 
position of the reaction shifts to the right with an increase in temperature. 
(f). The rate of the reaction 2A  B + C is fast so the equilibrium constant for the reaction is 
large. 

 
 
Answer: (a). False: The reaction Gibbs energy at equilibrium is zero. The standard state reaction 
Gibbs energy corresponds to each pure reactant and product under standard state conditions, P = 
1 bar. It is highly unlikely that the reaction will be at equilibrium with pure reactants and 
products for each substance at Pi = 1 bar, which is required to give rG = 0. 
(b). True but too restrictive: The statement is true for constant V, P, and T. The statement should 
be: The position of equilibrium is determined by the extent of the reaction, . 
(c). The effect of an inert gas depends on the conditions. The statement is true for a constant 
volume reaction and false for a constant pressure problem if rng  0. At constant pressure the 
addition of an inert gas changes the volume of the system, lowering the partial pressure for each 
gaseous reactant and product. The statement also neglects changes in activity coefficients and the 
changes in chemical potentials of solids, liquids, and solutions for large changes in total pressure. 
The statement should be: The position of equilibrium for a reaction at constant volume is 
unaffected by addition of an inert gas, for moderate changes in total pressure. 
(d). False: The reactant for 2A  B + C has no entropy of mixing while the reactants in A + B  
C + D do have an entropy of mixing. The favorable entropy of mixing for the reactants for 
A + B  C + D will lower the Gibbs energy of the reactants compared to the pure constituents 
and shift the position of equilibrium to the left compared to 2A  B + C. The statement should 
be: The position of equilibrium for the reaction 2A  B + C will be to the right of the position of 
equilibrium for A + B  C + D, assuming comparable equilibrium constants. 
(e). False: don’t confuse kinetic and equilibrium considerations. The equilibrium constant is the 
ratio of the forward and reverse overall reaction rates, Kp = kf/kr. Both forward and reverse 
reaction rates change with temperature. The equilibrium position can shift left or right with an 
increase in forward reaction rate. The correct statement is: The shift in equilibrium position with 
temperature is determined by the standard state reaction enthalpy. 
(f). False: don’t confuse kinetic and equilibrium considerations. The equilibrium constant is the 
ratio of the forward and reverse overall reaction rates, Kp = kf/kr. The reverse reaction rate can be 
faster than the forward reaction rate, which would make the equilibrium constant small. 
 
 

36.  The ITC titration of the enzyme ribonuclease A with the ligand 2'CMP is given in the table 
below. Consider ribonuclease A as the host and 2'CMP as the guest. The host concentration in 
the titration cell was 6.272x10-5 M, the guest concentration in the automated buret was 
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2.19x10-3 M, the titration cell volume was 1.4389 mL, and the titrant was added in 9.00 L 
increments. The association constant was determined to be 6.99x105 and the reaction enthalpy 
was -70.6 kJ mol-1 using non-linear curve fitting. (a). Calculate rGº  and rSº . (b). Use the fit 
values to reproduce the titration curve. Neglect any corrections for exclusion of material from the 
constant volume titration cell (as discussed in the addendum). [Hint: construct a spreadsheet 
using Eq. 20.5.22. Show the titration curve with the calculated and experimental values, for 
comparision.] 
 

i Vinj (L) 9 18 27 36 45 54 63 72 81 90 99 

q/ninj (kJ mol-1) -68.3 -67.3 -64.2 -56.3 -35.6 -14.6 -6.41 -3.61 -2.33 -1.64 -1.3 

 
 

Answer: (a). rGº = – RT ln K = -33.4 kJ mol-1 and: 
 

 rS = 
rH – rG

T  = 
(-70. 6 kJ mol-1 – (-33.4 kJ mol-1))(1000 J/1 kJ)

298.15 K  = -125. J K-1 mol-1 

 

which completes the thermodynamic characterization of the reaction. 
 

(b). The plan is to use Eqs. 20.6.3 and 20.6.4 to find [G]o and r = [G]o/[H]o. Eq. 20.5.22 is then 
used to find [HG]. Eqs. 20.6.5-20.6.7 are then used to calculate the enthalpy change per mole of 
added titrant at each step of the titration, which is compared to the experimental values. 
   The spreadsheet is: 
 

A1 B C D E F G H I J 
2          
3 host [H]o =  6.272E-05 M K= 6.99E+05    
4 titrant [G]o =  2.190E-03 M rH= -70600 J/mol   
5 cell Vcell =  1.4389 mL      
6 titrant add Vinj =  9 uL      
7          
8 volume titrant:         
9 i Vinj (L) [G]o r=[G]o/[H]o 1+K[H]o(1+r) factor [HG] (M) nHG,i (mol) qi (mJ) qi/ninj (kJ mol-1) 
10 9 1.37E-05 0.218 54.416 35.805 1.33E-05 1.92E-08 -1.352 -68.613 
11 18 2.74E-05 0.437 63.991 27.141 2.64E-05 1.88E-08 -1.325 -67.242 
12 27 4.11E-05 0.655 73.566 19.356 3.88E-05 1.79E-08 -1.262 -64.003 
13 36 5.48E-05 0.874 83.141 14.000 4.95E-05 1.54E-08 -1.085 -55.046 
14 45 6.85E-05 1.092 92.716 14.167 5.62E-05 9.68E-09 -0.684 -34.684 
15 54 8.22E-05 1.310 102.291 19.717 5.91E-05 4.14E-09 -0.292 -14.838 
16 63 9.59E-05 1.529 111.865 27.571 6.03E-05 1.77E-09 -0.125 -6.343 
17 72 1.10E-04 1.747 121.440 36.262 6.09E-05 9.10E-10 -0.064 -3.259 
18 81 1.23E-04 1.966 131.015 45.311 6.13E-05 5.42E-10 -0.038 -1.940 
19 90 1.37E-04 2.184 140.590 54.540 6.16E-05 3.56E-10 -0.025 -1.276 
20 99 1.51E-04 2.402 150.165 63.870 6.17E-05 2.51E-10 -0.018 -0.900 

 

The terms in Eq. 20.5.22 were separated to make the calculations easier and to provide the 
opportunity to check for mistakes. The factor term is:  factor = (1+K[H]o (1+r))2 – 4K2[H]o

2 r. 
 

The formulas are:  C10:  =B10/1000000*$D$4/$D$5*1000 
   D10: =C10/$D$3 
   E10: =1+$G$3*$D$3*(1+D10) 
   F10: =SQRT(E10^2-4*$G$3^2*$D$3^2*D10) 
   G10: =$D$3*((E10-F10)/2/$G$3/$D$3) 
   H10: =G10*$D$5/1000 
   H11: =(G11-G10)*$D$5/1000 
   I10: =H10*$G$4*1000 
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   J10: =(I10/1000000)/($D$6/1000000*$D$4) 
 

A plot of the modeled qi/ninj and experimental values is: 
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r = [G]o/[H]o  
 

The modeled values are shown with outlined symbols and the experimental values are shown 
with solid symbols. The discrepancies are in part caused by neglecting the volume exclusion 
corrections. 
 
37.  Eq. 20.5.22 can be used directly in non-linear curve fitting for finding association constants 
from ITC titration curves. The results for each step in an ITC experiment are given by Eqs. 
20.6.5-20.6.7. Consider the first two steps in the titration. The sum of the qi,m values for the first 
two steps gives, using Eqs. 20.6.6 and 20.6.7: 
 

 qtot = q1,m + q2,m = q2/ninj + q1/ninj = (nHG,2 + nHG,2) rHº/ninj 
 

Then using Eq. 20.6.5 the total calorimetric enthalpy is given in terms of [HG] as: 
 

 qtot = q1,m + q2,m = q2/ninj + q1/ninj = ([HG]2 – [HG]1 + [HG]1 – [HG]o) rHº Vcell/ninj 
 

 qtot = q1,m + q2,m = q2/ninj + q1/ninj = [HG]2 rHº Vcell/ninj 
 

since [HG]o = 0. Solving for [HG]2 rHº gives: 
 

 qtot ninj/Vcell = rHº [HG]2 
 

In a similar fashion, if we add the calorimetric enthalpies for the first n steps: 
 

 qtot ninj/Vcell = (q1,m + q2,m + …+ q2,n) ninj/Vcell = rHº [HG]n 
 

Eq. 20.5.22 can then be used to calculate the concentration of the host-guest complex: 
 

 qtot 



ninj

Vcell [H]o
 = rHº 






(1+K[H]o (1+r)) – (1+K[H]o (1+r))2 – 4K2[H]o

2 r
2K[H]o

 
 

where r is the guest-host ratio at the nth step of the titration. The two adjustable parameters for 
curve fitting are a = rHº and b = K[H]o. 
   Use the data in the last problem to find the association constant and reaction enthalpy for the 
binding of ribonuclease A with 2'CMP. 
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Answer:  The plan is to use Eqs. 20.6.3 and 20.6.4 to find [G]o and r = [G]o/[H]o. The value for 
qtot ninj/(Vcell [H]o) is then calculated as discussed in the problem introduction. The spreadsheet is: 
 

A1 B C D E F G 
2       
3 host [H]o =  6.272E-05 M   
4 titrant [G]o =  2.190E-03 M   
5 cell Vcell =  1.4389 mL   
6 titrant add Vinj =  9 uL   
7       
8 volume titrant:     
9 i Vinj (L) [G]o exp (kJ mol-1) qi/ninj (kJ mol-1) r=[G]o/[H]o qi  (J mol-1) 
10 9 1.37E-05 -68.3 -68.3 0.218 -1.492E+04 
11 18 2.74E-05 -67.3 -135.6 0.437 -2.961E+04 
12 27 4.11E-05 -64.2 -199.8 0.655 -4.364E+04 
13 36 5.48E-05 -56.3 -256.1 0.874 -5.593E+04 
14 45 6.85E-05 -35.6 -291.7 1.092 -6.371E+04 
15 54 8.22E-05 -14.6 -306.3 1.310 -6.690E+04 
16 63 9.59E-05 -6.41 -312.71 1.529 -6.830E+04 
17 72 1.10E-04 -3.61 -316.32 1.747 -6.908E+04 
18 81 1.23E-04 -2.33 -318.65 1.966 -6.959E+04 
19 90 1.37E-04 -1.64 -320.29 2.184 -6.995E+04 
20 99 1.51E-04 -1.3 -321.59 2.402 -7.023E+04 

 
The column labeled “exp” gives the experimental qi/ninj values from the calorimeter. The first 
qi/ninj column is the successive sum of the experimental enthalpies, qtot = (qi/ninj). The guest-
host ratio is calculated using Eq. 20.6.4. The last column is the value for qtot ninj/(Vcell [H]o) in 
units of joules per mol for the reaction. Cell G10 is: 
 

 “=D10*1000*$D$4*$D$6*0.000001/$D$5/0.001/$D$3”. 
 

The final two columns are used as input in non-linear curve fitting using the “Nonlinear Least 
Squares Curve Fitting” applet on the text Web site and the companion CD. The fit function is: 
 

 a{(1+b(1+x)) - sqrt[(1+b(1+x))^2 - 4(b^2)x]}/2b + c 
 

with fixed c = 0. The results are shown below. 
 

==================   Results   ===================== 
 a= -71422 +- 188 
 b= 39 +- 1.4 
__________________ Output Data ____________________ 
     x        y      y(fit)   residual 
   0.218   -14920.0     -15079.9659  159.9659  
   0.437   -29610.0     -29893.45311 283.45311 
   0.655   -43640.0     -43866.56378 226.56378 
   0.874   -55930.0     -55853.66829 -76.33171 
   1.092   -63710.0     -63439.95773 -270.04227 
   1.31    -66900.0     -66841.80936 -58.19064 
   1.529   -68300.0     -68357.87206  57.87206 
   1.747   -69080.0     -69146.2291   66.2291  
   1.966   -69590.0     -69621.5504   31.5504  
   2.184   -69950.0     -69934.19432 -15.80568 
   2.402   -70230.0     -70155.46303 -74.53697 
-------------------------------------------------- 
 sum of squared residuals= 253900 
 stand. dev. y values= 168 
 correlation between a & b= 0.9463 

 
The final results are rHº = -71.42  0.19 kJ mol-1 and  
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 K = [H]o b = 6.272x10-5 (39.) = 6.22x105  0.22x10-5 
 

Notice that the between fit parameter correlation is high, but acceptable, at 0.9463. The results 
deviate from the values listed in the last problem, K = 6.99x105 and rHº = -70.6 kJ mol-1, 
because we didn’t correct for exclusion of material from the constant volume titration cell (as 
discussed in the addendum). 
 
 
38.  Comparison of Eqs. 20.1.17 and 20.1.5 might at first seem conflicting: 
 

 G = nA µA + nB µB + nC µC + nD µD      (20.1.17) 
 rG = c µC + d µD – a µA – b µB      (20.1.5) 
 

Derive Eq. 20.1.5 from Eq. 20.1.17, thus showing that the two equations are consistent. [Hint: 
remember that the reaction Gibbs energy is the Gibbs energy for the products minus the Gibbs 
energy for the reactants.] 
 
Answer:  Write the reaction as:   a A + b B    c C  d D. We note using Eq. 3.1.4, dni = id, that 
as the reaction proceeds from reactants to products, for a given extent, ni changes from: 
 

 ni:  ni,o   ni,o + i          1 
 

where ni,o is the initial amount of constituent i. For the reaction run to completion: 
 

 : 0  1,  nA:   nA,o  nA,o – a  nB:   nB,o  nB,o – b 
   nC:   nC,o  nC,o + c  nD:   nD,o  nD,o + d   2 
 

Finally: rG = Gproducts(=1) – Greactants(=0). Substituting Eqs. 2 into Eq at  = 1 and 
 = 0 gives: 
 

       rG = Gproducts – Greactants  
       = [(nA,o– a)µA + (nB,o– b)µB + (nC,o+ c)µC + (nD,o+ d)µD] – [nA,o µA + nB,o µB + nC,o µC + nD,o µD] 
 

       rG = Gproducts – Greactants = [c µC + d µD] – [a µA + b µB] 
 

which is Eq. 20.1.5. 
   The alternative path is to note that both 20.1.17 and 20.1.5 result from integration of the total 
differential of the Gibbs energy, Eq. 20.1.2. Correspondingly, Eq. 20.1.17 is the Gibbs energy for 
the reaction mixture at some point during the reaction and rG is the change in Gibbs energy for 
the reaction of a-moles of A and b-moles of B to give c-moles of C and d-moles of D. Eq. 
20.1.17 is valid at any point during the reaction, while Eq. 20.1.5 corresponds to the change for 
the reaction run to completion. 
 
 
39.  Calculate the equilibrium constant for the anti- to gauche-conformers for dichloroethane 
from rGº and also the statistical approach. Use molecular mechanics to estimate of the 
difference in steric energy. Assume no significant change in vibrations between the two 
conformers. 
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Answer:  The MMFF94x gas phase steric energy difference for anti- and gauche-dichloroethane 
is -5.143 kJ mol-1. Using MM3, the difference is -4.325 kJ mol-1. Just as for butane, Example 
20.4.1, there are two equivalent gauche-conformers and one anti-conformer. The reaction 
entropy for the conformational change is, assuming no significant change in vibrations (or 
rotational constants): 
 

 rSº = Santi – Sgauche = R ln (1/2) = -5.763 J K-1 mol-1 
Then  rGº = Ganti – Ggauche = rHº – TrSº using the MMFF values gives: 
 

 rGº = -5.143 kJ mol-1 – (298.2 K)(-5.763 J K-1 mol-1)(1 kJ/1000 J) 
 rGº = -3.425 kJ mol-1 (MMFF)  or  -2.607 kJ mol-1 (MM3) 
 

giving: K = e–rGº/RT = 
[anti]

[gauche] = 3.981 (MMFF)  or   2.862 (MM3) 
 

The anti-conformer has the lowest energy, which we assign as anti = 0. Then the gauche-
conformer has an energy gauche = 5.143 kJ mol-1 above the anti-state using MMFF or gauche = 
4.325 kJ mol-1 using MM3. The table, below, gives the calculation for the probabilities using Eq. 
20.4%.1 and the MMFF steric energy difference at 298.15 K. 
 
 
 

Conformation i   (kJ mol-1) i/RT e–i/RT e–i/RT/q 

gauche 5.143 2.075 0.1256 0.1004 

gauche 5.143 2.075 0.1256 0.1004 
anti 0 0 1 0.7992 
   q=1.2512  

 
To calculate q we sum the weighting factors in column 4. Then we use q to calculate the 
probabilities in the last column. The ratio the anti- to gauche-probabilities is: 
 

 K = 
 probabilities for anti

 probabilities for gauche
 = 

0.7992

0.1004+ 0.1004
 = 3.981 (MMFF)    or    2.862 (MM3) 

 

There are roughly four molecules in the anti-conformation for every molecule in a gauche-
conformation at 25°C, using the MMFF results. 
 
 
40.  The dimer of methylvinylketone is shown below, at left. The bond with free rotation is 
marked. Consider only the axial conformer for the –CO–CH3 side chain. Calculate the 
equilibrium constant for the two low energy conformers. (b). Which face of the carbonyl is more 
susceptible to nucleophilic attack? Nucleophilic attack will be perpendicular to the trigonal plane 
of the sp2 hybridized carbon, as shown by the arrows for one possible conformation at right. 
According to Cram's rule, the less hindered side is most susceptible to attack by nucleophiles. 
You may use molecular mechanics, semi-empirical AM1, ab initio HF/6-31G*, or 
B3LYP/6-31G* density functional methods to determine the energies. 
 

i 

(k
J 

m
ol

-1
) 

0 

5 

pi = e–i/RT/q 

0.7992 

0.1004 
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Answer:  The plan is to first determine the low energy conformers about the side-chain C-C bond 
to the ring. A conformational search around this bond can be done or several possible starting 
conformations can be minimized. The less sterically hindered side of the low energy conformer 
is noted. Space filling models are helpful in looking at steric influences. 
   For this problem we will study just the axial conformer for the -CO-CH3 side chain. The 
energy differences and Boltzmann weighting factors are given below using gas phase 
MMFF94x, MM3, AM1, HF/6-31G(d), and B3LYP/6-31G(d). The starting structures for the 
molecular orbital calculations were the MMFF minimized conformers. The equilibrium constant 
is given for the reaction written as:  anti   syn , where the anti conformer is the low energy 
conformer: 
 

 K = [syn]/[anti] 
 

The anti-conformer has the O–C–C=O dihedral near -144º and the syn- near -4º using MMFF. 
 

 
high   
(kJ mol-1) 

low  
(kJ mol-1) 

  
(kJ mol-1)   e-/RT    q     p0     p1      K 

MMFF 81.7867 64.19009 17.5966 0.000826 1.000826 0.999175 0.000825 8.3x10-4 

MM3 61.8918 41.79398 20.0978 0.000301 1.000301 0.999699 0.000301 3.0x10-4 

AM1 -313.709 -319.661 5.95132 0.090639 1.090639 0.916894 0.083106 0.0906 
HF -1206787. -1206799. 11.6751 0.009005 1.009005 0.991075 0.008925 9.0x10-3 

B3LYP -1214304. -1214315. 10.4392 0.014826 1.014826 0.985390 0.014610 0.0148 

 
The favored direction of attack changes with conformation of the side chain. There are two low 
energy conformers; the lowest energy conformer of the axial isomer is shown below. The arrow 
shows the side of the carbonyl that is preferentially attacked by nucleophiles. 
 

O
O

 
 
 
41.  The next two problems develop a model for the equilibrium profile of NO in the lower 
troposphere. In the atmosphere, NO and NO2 approach equilibrium (see Problem 16 and Ch. 5 
Problems 10-12): 
 

 NO (g) + ½ O2 (g)  NO2(g)               P20.41.1 
 

In a given initial volume, let the number of moles of NO be “a”, the moles of O2 be “b”, and the 
moles of other gases in the atmosphere be “n”. These last contributions include primarily N2 with 
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small amounts of H2O vapor, CO2, and Ar. Assume that the initial amount of NO2 is zero and the 
reaction runs at constant total pressure, P. To help simplify the relationships for the mole 
fractions, define   /a as the fraction of NO oxidized, r  b/a, and q  n/a. Show that the 
equilibrium expression is: 
 

 Kp = 


1 –  






1 + r + q – /2

r – /2

½
 (P/P)–½            P20.41.2 

 

The concentration of NOx in the atmosphere is typically in the ppm range. Correspondingly, r 
and q are much larger than . Let PNO,o be the initial partial pressure of NO, before any oxidation 
occurs. Show that an excellent approximation is then: 
 

 Keff  


1 –       with  Keff = Kp 



r

r + q
½

 (P/P)½  (PNO,o << PO2, PN2)  P20.41.3 

 
 
Answer:  Assume that the initial amount of NO2 is zero. The total moles at equilibrium is then: 
 

 ntot = (a – ) + (b – /2) +  + n = a + b + n – /2     1 
 

The relationship of the mole amounts to the partial pressures is then: 
 

  NO (g)        +        ½ O2 (g)             NO2 (g) 
  moles:  a –             b – /2                
 

    Yi:      
a – 

a + b + n – /2
     

b – /2
a + b + n – /2

       


a + b + n – /2
 

 

    Yi:   
1 – 

1 + b/a + n/a – /2
   

b/a – /2
1 + b/a + n/a – /2

    


1 + b/a + n/a – /2
 

 

    Yi:      
1 – 

1 + r + q – /2
      

r – /2
1 + r + q – /2

       


1 + r + q – /2
   2 

 

To obtain the final listed mole fractions, we divided by the moles of a in the numerator and 
denominator and substituted  = /a to measure the degree of the reaction.  is the fraction of 
NO oxidized or alternatively the fraction of NO2 formed. We then define r  b/a and q  n/a. For 
the total pressure dependence, rng = -½. The equilibrium expression is then: 
 

 Kp = 
(PNO2/P)

(PNO/P)(PO2/P)½ = Kx (P/P)rng = 








1 + r + q – /2







1 – 

1 + r + q – /2
 






r – /2

1 + r + q – /2

½ (P/P)–½ 

      = 


1 –  






1 + r + q– /2

r – /2

½
 (P/P)–½        (P20.41.1) 

 

The maximum value of  is 1 for the reaction as written. The concentration of NO in the 
atmosphere is typically in the ppm range. Then r and q are much larger than . An excellent 
approximation is then to neglect the 1 and  terms to give: 
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 Kp  


1 –  



r + q

r
½

 (P/P)–½     (PNO,o << PO2, PN2) 3 
 

where PNO,o is the initial partial pressure of NO before oxidation. An effective equilibrium 
constant can then be defined to simplify the calculations: 
 

 Keff  


1 –   with Keff = Kp 



r

r + q
½

 (P/P)½   (P20.41.2) 
 

The effective equilibrium constant, Keff, is a constant at a given altitude. 
 
 
42.  Use Eq. P20.41.2 to determine the equilibrium partial pressure of NO up to an altitude of 
2000 m in the troposphere. Use the barometric formula, Eqs. 1.3.16 and 1.3.17, to estimate the 
total pressure as a function of altitude. Assume that r and q are constant with altitude (that is, the 
atmosphere is well-mixed before any oxidation occurs). Assume also that the temperature in the 
troposphere decreases 6.0 K per 1000 m: the environmental lapse rate is  = -0.006 K m-1. For 
the oxidation, Eq. P20.41.1, rG = -35.24 kJ mol-1 and rH = -57.07 kJ mol-1. Assume rH is 
constant over the temperature range. Assume the temperature is 298.15 K and the total pressure 
is 1.00 bar at sea level. The initial partial pressure at sea level for O2 is 0.200 bar and for NO is 
1.00x10-5 bar (10 ppm) before any oxidation. 
   The barometric formula is derived assuming the temperature is constant at each altitude. 
However, for a realistic model, we also need to take into account the decrease in temperature 
with altitude. An easy way to take both pressure and temperature effects into account is to use an 
average temperature of 282.7 K with the barometric formula to calculate the pressure profile in 
the atmosphere. Separately, the variation of temperature is then determined using  = -0.006 K 
m-1 starting at 298.2 K at sea level, h = 0. 
 
 
Answer:  The spreadsheet and the plot of the partial pressure of NO as a function of altitude are 
given below. The barometric formula, Eq. 1.3.16, is used with the average molar mass of air of 
28.8 g mol-1 and the average effective temperature in the lower troposphere of 282.7 K to 
calculate the pressure as a function of altitude in column D. The temperature profile in column E 
starts at 298.2 K and decreases -0.006 K m-1 as the altitude increases. The initial Kp at 298.2 K is 
calculated using Kp = e–rG/RT = 1.492x106. The Kp at decreasing temperature (increasing 
altitude) is calculated using Eq. 20.1.29 and listed in column F: 
 

 Kp,T2 = Kp,T1 e
–∆rH

R 



1

T2
 – 

1
T1  = 1.492x106 e

–(-5.707x104J mol-1)
8.314 J K-1 mol-1 



1

T2
 – 

1
298.2 K  

 

The molar ratio of O2 to NO is given by the initial conditions at sea level: 
 

 r = b/a = nO2,o/nNO,o = (nO2,o RT/V)/(nNO,o RT/V) = PO2,o /PNO,o 
   = 0.200/1.00x10-5 = 2.00x104 
 

where nNO,o is the initial amount of NO at sea level before any oxidation. The change in partial 
pressure of O2 during the reaction is negligible. The partial pressure of N2 and other minor 
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constituents in air at sea level is given by Dalton’s law of partial pressures: PN2 = Ptot – PO2 – PNO 
= (1.00 – 0.200 – 1.00x10-5) bar. The molar ratio of N2 to NO from the initial conditions at sea 
level is q = n/a = PN2/PNO = 8.00x104. The effective equilibrium constant at a given altitude is 
calculated using Eq. P20.41.2 assuming r and q are constant with altitude. The degree of 
reaction  = NO is then calculated using Eq. P20.41.2 in column H. The partial pressure of NO 
is then given in column I using Problem 41 Eq. 2 for the mole fraction of NO: 
 

 PNO(h) = 






1 – 

1 + r + q – /2
 P(h) 

 

where P(h) is the total pressure at the given altitude. Finally the accuracy of the calculation is 
checked by using the partial pressures to calculate Q at equilibrium, which should be equal to the 
equilibrium constant: 
 

 Q = 
(PNO2(h)/P)

(PNO(h)/P)(PO2(h)/P)½ 

 
 
 
 
 
 

A1 B C D E F G H I J 
2 Mair 28.8 g mol-1 rG -35.24 kJ mol-1    
3 T 282.7 K rH -57.07 kJ mol-1    
4 R 8.3145 J K-1 mol-1 Kp (298 K) 1.492E+06     
5 g 9.8067 m s-1 Po(NO) 1.00E-05 bar    
6 Po 1 bar Po(O2) 0.2 bar    
7  -0.006 K m-1 r= b/a = 2.00E+04     
8    q= n/a = 8.00E+04 (q+r/r)1/2 =  2.2361   
9         check Kp 
10  h P T (K) Kp Kp*(Pr/q+r)1/2 NO P(NO) Q 
11  0 1 298 1.492E+06 6.672E+05 0.999998501 1.50E-11 1.492E+06 
12  200 0.976 296.8 1.638E+06 7.236E+05 0.999998618 1.35E-11 1.638E+06 
13  400 0.953 295.6 1.799E+06 7.853E+05 0.999998727 1.21E-11 1.799E+06 
14  600 0.930 294.4 1.977E+06 8.530E+05 0.999998828 1.09E-11 1.977E+06 
15  800 0.908 293.2 2.175E+06 9.272E+05 0.999998921 9.80E-12 2.175E+06 
16  1000 0.887 292 2.395E+06 1.009E+06 0.999999009 8.79E-12 2.395E+06 
17  1200 0.866 290.8 2.639E+06 1.098E+06 0.999999089 7.88E-12 2.639E+06 
18  1400 0.845 289.6 2.910E+06 1.196E+06 0.999999164 7.06E-12 2.910E+06 
19  1600 0.825 288.4 3.212E+06 1.305E+06 0.999999234 6.32E-12 3.212E+06 
20  1800 0.806 287.2 3.547E+06 1.424E+06 0.999999298 5.66E-12 3.547E+06 
21  2000 0.786 286 3.922E+06 1.555E+06 0.999999357 5.06E-12 3.922E+06 
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Figure P20.42.1: Equilibrium Partial Pressure of NO as a function of Altitude in the 
Troposphere. 

 
The formulas are: D12: “=$C$6*EXP(-$C$2/1000*$C$5*C12/$C$4/$C$3)” 
   E12: “=E11+$C$7*(C12-C11)” 
   F12: “=$F$4*EXP(-$F$3*1000/$C$4*(1/E12-1/$E$11))” 
   G12: “=F12*SQRT(D12)/$H$8” 
   H12: “=G12/(1+G12)” 
   I12: “=(1-H12)/(1+$F$7+$F$8-H12/2)*D12” 
   J12: “=($F$5*D12-I12)/I12/SQRT(0.2*D12)” 
 

You can change the acceleration of gravity to zero to see the effect of temperature alone. The 
equilibrium shifts in the exothermic direction with increasing height, which favors NO2 at 
altitude. You can change  to zero to see the effect of pressure alone. The equilibrium shifts to 
the left with increasing height, which favors NO at altitude, although rG is so negative that 
NO2 remains the predominant species. 
 
 
43.  Consider the reaction A + B  C + D in solution from a thermodynamic perspective and 
from a kinetic perspective. The equilibrium constant is a function of the solution activities, but 
the rate law is conventionally written in terms of the concentrations: 
 

 Ka = 
aC aD

aA aB
    = 

1
V 

d
dt  = kf [A][B] – kr[C][D] 

 

(a). Use detailed balance to prove that the rate law is also expressible in terms of the solution 
activities: 
 

  = 
1
V 

d
dt  = kf' aA aB – kr' aC aB 

 

(b). Relate the two sets of rate constants, kf and kr with kf' and kr', given the activity coefficients 
for each species. 
 
 
Answer:  Detailed balance requires that the forward and reverse rates are equal for a reaction at 
equilibrium and that the ratio of the forward and reverse rate constants gives the equilibrium 
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constant. Since the true thermodynamic equilibrium constant must be specified in terms of 
activities, the equilibrium constant that results from the kinetic rate law must also be written in 
terms of activities: 
 

  = 
1
V 

d
dt  = kf' aA aB – kr' aC aB = 0  Ka = 

kf'
kr'

 = 
aC aD

aA aB
 

 

with aA = A [A], aB = B [B], etc. 
(b).  The rate constants for the reaction rate written in terms of concentration and in terms of 
activities are then related through the activity coefficients using: 
 

  = 
1
V 

d
dt  = kf' A B [A][B] – kr' C D [C][D] 

 

Comparing with the rate law in terms of concentrations gives: 
 

  = 
1
V 

d
dt  = kf' A B [A][B] – kr' C D [C][D] 

          

  = 
1
V 

d
dt  =     kf   [A][B]    –     kr    [C][D] 

 

to give:     kf = kf' A B   and    kr = kr' C D. 
 

In other words, by convention for concentration based kinetic expressions, the activity 
coefficients of the reactants and products are incorporated into the rate constants. The 
corresponding true thermodynamic equilibrium constant is given by: 
 

 Ka = 
kf'
kr'

 = 






C D

A B
 
kf

kr
 

 

As a case in point, we will use Debye-Hückel electrostatic theory to understand the kinetic salt 
effect in the chapter on molecular reaction dynamics. The energetic relationships are explored 
further in the next problem. 
 
 
44.  Challenge Problem: In the previous problem, we showed that the rate law for a reaction is 
best expressed in terms of activities, rather than concentrations, for consistency with detailed 
balance. However, by convention in concentration based kinetic expressions, the activity 
coefficients of the reactants and products are incorporated into the rate constants. The activity of 
a species deviates from the analytical concentration because of solute-solvent interactions. 
Rationalize the fact that solute-solvent interactions of the reactants and products have an effect 
on chemical reactions rates. However, be careful to separate thermodynamic and kinetic 
concerns. Assume that the kinetics follow Arrhenius behavior, and reason through the reaction 
profile, Figure 4.5.2. 
 
 
Answer:  We first must avoid using thermodynamic arguments to make a kinetic point. Consider 
a gas phase reaction and the same reaction in solution. For a particular example, assume an 
exothermic reaction and that the reactants and products are stabilized by solute-solvent forces 
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while the transition state is destabilized by solute-solvent forces, as shown in the following 
figure. 
 
 
 
 
 
 
 
 
 
 
 (a). gas phase    (b). in solution 
 
   We assume a constant volume process, so that the internal energy or Helmholtz energies are 
the appropriate thermodynamic variables. The parameters ofr the solution reaction are listed with 
primes, e.g. rU'. First take the thermodynamic perspective. rU and rU' are independent of 
the transition state energy, and clearly have an effect on the equilibrium constant through rA' = 
rU' –T rS'. The standard states are typically chosen as Henry’s Law standard states for the 
reactants and products, and therefore include solute-solvent interactions. rU' is changed, 
compared to the gas phase, if the reactants and products are stabilized by solute-solvent 
interactions to a different extent. Now take the kinetic perspective. 
   Detailed balance requires that Eaf – Ear = rU for the gas phase reaction and Eaf' – Ear' = rU' 
for the solution phase reaction. The rates of the reaction, forward and reverse are strong 
functions of the activation energies. There are four possibilities: 
   1.  For the particular example in the figure, if the reactants and products are stabilized by 
solute-solvent interactions and the transition state is destabilized, then the activation energies are 
increased and the reaction rates decrease. 
   2.  However, if the reactants and products are stabilized by solute-solvent interactions and the 
transition state is also stabilized to a similar degree, then the activation energies are little 
changed. 
   3.  Alternately, if the reactants and products are destabilized by solute-solvent interactions and 
the transition state is destabilized, then the activation energies are little changed. 
   4.  Or, the final possibility is if the reactants and products are destabilized by solute-solvent 
interactions and the transition state is stabilized, then the activation energies are decreased and 
the reaction rates increase. 
 

   In any event, the effect of solute-solvent forces is to change the energies of the reactants and 
products, which in turn changes the activation energy: Eaf = Etransition-state – Ereactants and 
Ear = Etransition-state – Eproducts . At thermodynamic equilibrium the transition-state energy cancels 
out: 
 

 rU = Eaf – Ear = (Etransition-state – Ereactants) – (Etransition-state – Eproducts) = Eproducts – Ereactants 
 

The activity coefficients then have an effect on both the thermodynamic equilibrium and the 
reaction rates through changes in energy or chemical potential of each reactant and product: 
 

 i = i  + RT ln ici 
 

reaction progress 

In
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y 

A + B 

C + D 

Eaf Ear 

rUo < 0 

reaction progress 
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rUo' < 0 
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   In summary, it matters little in the final effect if the rate law is written in terms of 
concentrations or activities; energetic interactions of the solutes with the solvent have an effect 
on the rates and equilibria of chemical reactions. 
 

  = 
1
V 

d
dt  = kf [A][B] – kr[C][D] or  = 

1
V 

d
dt  = kf' aA aB – kr' aC aB 

 

The kinetic changes are difficult to predict, however, because the effect of the solvent on the 
transition state must also be determined. Even if the transition state is traversed in a non-
equilibrium, purely dynamical way, the effective activation energy still depends on the energies 
of the reactants and products. The energies of the reactants and products are altered by 
interactions with the solvent. 
   One deficiency in our argument is that we have considered energetic issues and have ignored 
entropic considerations. Certainly, solvation effects can have large entropic contributions. 
Entropic contributions to reaction rate constants are expressed primarily through the pre-
exponential factor, A, in the Arrhenius expression k2 = A e–Ea/RT. Similar arguments can be 
framed through changes in the pre-exponential factors with entropic changes caused by 
solvation. The pre-exponential factor is referenced to the entropy of the reactants or products, for 
the forward and reverse reactions, respectively. 
 
 

45.  The temperature dependence of isomerization is conveniently followed by experimental 
techniques that have additive response of the two forms in equilibrium. The equilibrium constant 
of the two forms is given by: 
 

 A  B    with K = [B]/[A]      P20.45.1 
 

One example of an experimental technique with additive response is infrared spectroscopy. The 
wave number of an IR band is the mole fraction weighted average of the two forms: 

 ~obs = ~A xA + ~B xB     (additive response) P20.45.2 
 

where xA and xB are the mole fractions of A and B, respectively. The absorption wave numbers 
of the pure components are ~A and ~B, respectively. 
  (a).  Let the total analytical moles be a, with nA + nB = a, where nA and nB are the number of 
moles of A and B. The total volume of the solution is V. Show that the corresponding 
concentrations are related by [A] + [B] = [a], with concentrations in moles per liter. 
  (b).  Show that the observed wave number is given in terms of the concentrations as: 
 

 ~obs = ~A 
[A]
[a]  + ~B 

[B]
[a]      (additive response) P20.45.3 

 

  (c).  Using P20.43.1 show that the equilibrium concentrations are given by: 
 

 [A] =  
1

1+K [a]  [B] = 
K

1+K [a]      P20.45.4 
 

  (d).  Using Eqs. P20.43.2-P20.43-4, show that the equilibrium constant is determined by: 

 K = 
~obs – ~A

~B – ~obs
      (additive response) P20.45.5 
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Answer:  (a). The mole fractions and concentrations of the two forms are given by the numbers 
of moles of the two forms, nA and nB, and the total analytical moles, a: 
 

 xA= nA/a xB = nB/a   nA + nB = a and  xA + xB = 1 1 
 

 [A] = nA/V [B] = nB/V    [a] = a/V      2 
 

Substituting the concentrations into the mass balance, nA + nB = a, gives: 
 

 [A] + [B] = [a]          3 
 

(b).  The observed frequency can be written in terms of the concentrations of the two forms and 
the total analytical concentrations, [A], [B], [a], respectively using Eq. 20.45.2: 
 

 ~obs = ~A xA + ~B xB = ~A nA/a + ~B nB/a = ~A 
nA/V
a/V  + ~B 

nB/V
a/V     4 

 ~obs = ~A 
[A]
[a]  + ~B 

[B]
[a]        (P20.45.3) 5 

 

(c).  From the mass balance, Eq. 3, [A] = [a] – [B] giving the equilibrium constant as: 
 

 K = 
[B]

[a] – [B]   solving for [B] gives:   [B] = 
K

1+K [a]  (P20.45.4) 6 
 

Solving for [A] using the mass balance gives: 
 

 [A] = [a] – [B] = ( 1 – 
K

1+K ) [a] = 
1

1+K [a]    (P20.45.4) 7 
 

(d).  The observed frequency from Eqs. 5, 6, and 7 is then: 
 

 ~obs = ~A 
1

1+K + ~B 
K

1+K = 
 ~A + ~B K

1+K        8 
 

Cross multiplying by 1+K gives: 

 ~obs + ~obsK = ~A + ~B K or  K = 
~obs – ~A

~B – ~obs

   (P20.45.5) 9 

 

The last equation allows the equilibrium constants to be determined completely from the shift in 
the band frequency. 
 
 

46.  The infrared absorption of an intramolecular hydrogen-bonded amine (see Problem Ch. 
10.13: N-[2-(dimethylamino)ethyl]-N-methylguanidium ion) as a function of temperature is at: 
 

T (C) 25.0 30.0 35.0 40.0 45.0 

~obs (cm-1) 1520 1540 1548 1570 1573 
 

Equilibrium is established between the closed and open forms; the closed form is hydrogen-
bonded and the open form is not hydrogen-bonded: C  O. The wave number of the closed form 
is: ~C = 1505 cm-1 and the open form is ~O = 1580 cm-1. Using Eq. P20.45.5, determine the 
equilibrium constant and reaction Gibbs energy as a function of temperature. 
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Answer:  The plan is to note that the equilibrium constant for an isomerization is determined 
completely from the observed band shifts using Eq. P20.45.5, while the linearized form of the 
temperature dependence is: ln K = –rHº/RT + ln c. 
   A spreadsheet was set up using Eq. P20.45.5 using the association of C  O with A  B: 

 

T (K) 
obs 
(cm-1) K 1/T (K-1) ln K 

rG 
(kJ mol-1) 

298.15 1520 0.2500 0.003354 -1.38629 3.437 
303.15 1540 0.8750 0.003299 -0.13353 0.337 
308.15 1548 1.3438 0.003245 0.295464 -0.757 
313.15 1570 6.5000 0.003193 1.871802 -4.874 
318.15 1573 9.7143 0.003143 2.273598 -6.014 

 
slope -17704 58.0673 intercept 
 1846.3 5.99645 
r2 0.9684 0.30777 s(y) 
F 91.943 3 df 
ssreg 8.7092 0.28417 ssresid 

 

 

 

y = -17704x + 58.067
R² = 0.9684

-2

-1

0

1

2

3

0.0031 0.0032 0.0033 0.0034

ln
 K

1/T (K-1)

 
The reaction enthalpy is then determined from the slope of ln K vs. 1/T giving rHº = – slope(R) 
= 147.  15. kJ mol-1. The reaction Gibbs energies are then given by rGº = –RT ln K. Assuming 
an uncertainty of 2 cm-1 in the observed wave numbers, the uncertainty in the Gibbs energy is 
 0.005 kJ mol-1. The reaction enthalpy is much larger than the hydrogen bond strength since 
proton transfer reactions accompany the formation of the hydrogen bond and shifts in pH occur 
with the changes in temperature. 
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Chapter 21 Problems: Electrochemistry  
 
 
1.  Design an electrochemical cell with the net cell reaction:  Ag2S (s)  Ag+ (aq) + S2-(aq). 
 
 
Answer:  The plan is to use a sparingly soluble salt electrode. 
   The electrode for Ag2S as the sparingly soluble salt is the reduction at the cathode: 
 

 Ag2S (s) + 2 e-  2 Ag(s) + S2-    (cathode) 
 

Subtracting the last reaction from the overall reaction gives the reaction at the anode: 
 

 2 Ag  2 Ag+ (aq) + 2 e-      (anode) 
 

The corresponding cell diagram is: Ag|Ag2S(s)|S2-(aq)||Ag+(aq)|Ag 
This overall reactrion is not a redox reaction, but with suitable electrodes, the reaction can be 
easily studied using electrochemical cell measurements. 
 
 
2.  For the reaction involving the reduced and oxidized forms of cyctochrome-c: 
 

 2 cyctochrome-c(Fe2+) + pyruvate  2 cytochrome-c(Fe3+) + lactate 
 

Calculate the electrochemical cell voltage at 25°C if the lactate activity is 5.00 times the pyruvate 
activity and the cytochrome-c(Fe3+) activity is 10.0 times the cyctochrome-c(Fe2+) activity. For 
the pyruvate/lactate couple, Er ed = -0.19V. For the cytochrome-c(Fe3+),(Fe2+) couple Er ed = 
0.337V. Two electrons are transferred in the process. 
 
 
Answer:  The Nernst Equation,Eq. 21.18, for the cell, with z = 2, is: 
 

 Ecell = Ecell – 
0.02569 V

2  ln



(acc(Fe3+))2(alactate)

(acc(Fe2+))2(apyruvate)
= -0.527 V – 

0.02569 V
2  ln( )(10.0)2(5.00)  

 Ecell = -0.527 V – 0.02569 V/2 (6.215) = -0.607 V 
 
 
3.  Calculate the standard state cell voltage, standard state reaction Gibbs energy, and 
equilibrium constant at 25C for the reaction: Zn (s) + 2 Fe3+  Zn2+ + 2 Fe2+. 
 
 
Answer:  The cell reactions are given in Example 21.1.2. As written z = 2. The cathode is the 
reduction of Fe3+ to Fe2+, and the anode the oxidation of Zn to Zn2+. The cell potential is: 
 

 Ecell = ER – EL = Er ed(cathode) – Er ed(anode) = Er ed(Fe3+,Fe2+) – Ered(Zn2+,Zn) 
         = 0.771 V – (-0.762 V) = 1.533 V 
 

 rG = – z F Ecell = – 2(96485 C mol-1)(1.533 V)(1 kJ/1000 J) = -295.8 kJ mol-1 

 

Remember that cell potentials are intensive, so they don’t depend on the stoichiometric 
coefficients. Eqs. 21.1.9 give two equivalent ways to find the equilibrium constant: 
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 rG= -2.958x105 J mol-1 = – RT ln Ka = – 8.3145 J K-1 mol-1(298.15 K) ln Ka  

or Ecell = 1.533 V = 
RT
zF  ln Ka = 

0.02569 V
2  ln Ka 

 Ka = 6.78x1051 

 

A cell voltage of 1.533 V, which sounds small, corresponds to a very large reaction Gibb energy 
and equilibrium constant. 
 
 
4. Calculate the standard state cell voltage, standard state reaction Gibbs energy, and equilibrium 
constant at 25C for the reaction: 
 

 3 Cu (s) + 2 NO3
– (aq) + 8 H+ (aq)  3 Cu2+ (aq) + 2 NO (g) + 4 H2O (l) 

 
Answer:  The plan is to determine which half-reaction serves as the cathode and which the anode, 
and then rG = –zFEcell and either rG = –RT ln K  or Ecell = (RT/zF) ln K. 
   The half-reactions are: 
 

 anode:     Cu (s)  Cu2+  + 2 e–     Ered = 0.339 V 
 cathode:  NO3

– (aq) + 4 H+ (aq) 3e–  NO (g) + 2 H2O (l)  Ered = 0.955 V 
 

When balanced as given in this problem, z = 6 and the cell voltage is: 
 

 Ecell = ER – EL = Ered(cathode) – Ered(anode) = 0.955 V – 0.339 V = 0.616 V 
 

Giving:  rG = –zFEcell = –6(96485 C mol-1)(0.616 V) = -3.566x105 J mol-1 = -357. kJ mol-1 
 rG = –RT ln K = –8.3145 J K-1 mol-1(298.15 K) ln K       giving   K = 2.98x1062 

       or  Ecell = (RT/zF) ln K = (0.025693 V/6) ln K      giving    K = e6(0.616 V)/0.025693 V = 2.98x1062 

 

This reaction is commonly illustrated in General Chemistry texts and done as a lecture 
demonstration. The NO produced oxidizes in air to form red NO2 (g). A concentrated non-
oxidizing acid, such as HCl and H2SO4 is insufficient to dissolve the Cu metal in a penny. 
Instead an oxidizing acid, such as HNO3, is required. 
 
5.  For the cell Pt(H2, 1bar)| HCl(m)| AgCl| Ag with m = 0.011195 m, the cell potential is 
Ecell= 0.45861 V. The standard cell potential for the silver/silver chloride electrode is 
Er ed(Cl–,AgCl,Ag) = 0.2223 V at 25C. Calculate the mean ionic activity coefficient for 
0.011195 m HCl. 
 
 
Answer: The plan is to follow Example 21.2.4. 
   Using the Nernst equation, Eq. 21.1.8, for a unipositive-uninegative electrolyte, with aHCL = 
aH+ aCl- = ±

2 (m/m)2, gives: 
 

 Ecell = Ecell – (0.025693 V) ln ±
2 (m/m)

2 

 ln ± = 2(Ecell – Ecell)/0.025693 – ln m/m 
 ln ± = 2(0.2223 – 0.45861)/0.025693 – ln 0.011195 = -0.094769 
    or  ± = 0.910 
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6.  For the cell Zn|ZnSO4 (m)|PbSO4 (s)|Pb with m = 0.01000 m, the cell potential is 
Ecell= 0.55353 V. The standard cell potential is Ecell = 0.412 V at 25C. Calculate the mean ionic 
activity coefficient for 0.01000 m ZnSO4. 
 
 
Answer: The plan is to write the Nernst equation for the cell reaction to determine the 
dependence of the cell potential on the activity of the common electrolyte, ZnSO4. 
   The half-cell reactions are: 
 

 Zn (s)  Zn2+ + 2e- 
 PbSO4 (s) + 2e-  Pb (s) + SO4

2– 
       

 Zn (s) + PbSO4 (s)  Zn2+ + SO4
2– + Pb (s) 

 

The number of electrons transferred for unit extent is z = 2. The Nernst expression considering 
all reactants and products is 
 

 Ecell = Ecell – 
RT
2F ln



aZn2+ aSO42- aPb

aZn aPbSO4
 

 

The pure solids are at unit activity, giving: 
 

 Ecell = Ecell – 
RT
2F ln aZn2+ aSO42- 

 

For this 1:1 electrolyte, mZn2+ = mSO42- = m, where m is the analytical concentration of ZnSO4: 
 

 Ecell = Ecell – 
0.025693 V

2  ln ±
2 (m/m)

2 or    Ecell – Ecell = –0.025693 V ln ± m/m 

 ln ± = (Ecell – Ecell)/0.025693 – ln m/m 
 ln ± = (0.412 – 0.55353)/0.025693 – ln 0.01000 = -0.9033 
    or  ± = 0.405 
 

The Debye-Hückel approximation estimates ±  0.351 (Extended Debye-Hückel estimates 
±  0.463). 
 
 
7.  (a). Find the standard reduction potential for the Cl–/Hg2Cl2/Hg electrode from the following 
data for the cell potential of Pt|H2|HCl (m)|Hg2Cl2 (s)|Hg as a function of the concentration of 
HCl.1  Assume unit fugacity (pressure) for H2. (b). Calculate the mean ionic activity coefficient 
for 0.010947 m HCl.  
 

m (mol kg-1) 0.0016077 0.0030769 0.0050403 0.0076938 0.010947 
Ecell (V) 0.60080 0.56825 0.543665 0.522675 0.50532 

 
 
Answer:  The plan is to write the Nernst equation for the cell reaction to determine the 
dependence of the cell potential on the activity of the electrolyte, HCl.  
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(a). The half-cell reactions are: 
 

 ½ H2 (g)  H+ + e- 
 ½ Hg2Cl2 (s) + e-  Hg (s) + Cl– 
       

 ½ Hg2Cl2 (s) +½ H2 (g)  Hg (s) + H+ + Cl- 

 

The number of electrons transferred for unit extent is z = 1. The Nernst expression considering 
all reactants and products is 
 

 Ecell = Ecell – 
RT
F  ln







aHg aH+ aCl-

aHg2Cl2 f ½H2

 

 

The pure solid Hg2Cl2 and pure liquid Hg are at unit activity. We also assume that the H2 gas is 
at unit fugacity, giving: 
 

 Ecell = Ecell – 
RT
F  ln aH+ aCl- 

 

which is identical to Eq. 21.1.12. The extrapolation is then established following Eq. 21.1.17.  

An Excel spreadsheet was developed. The left-hand side of Eq. 21.1.17 is given in the column 
with the heading “LHS”. 

 

m (mol kg-1) Ecell (V) m½ LHS (V) 
0.0016077 0.6008 0.040096 0.270275 
0.0030769 0.56825 0.055470 0.271077 
0.0050403 0.543665 0.070995 0.271850 
0.0076938 0.522675 0.087714 0.272591 

0.010947 0.50532 0.104628 0.273355 
 

 

 

slope 0.04754 0.26842 intercept 
± 0.00098 0.00007 ± 
r2 0.99873 0.00005 s(y) 
F 2362.30 3 df 
ssreg 5.88E-06 7.47E-09 ssresid 

 

 

The data is plotted below. The standard hydrogen electrode reduction potential is defined as zero, 
giving the standard reduction potential for the Cl–/Hg2Cl2/Hg electrode as: 
 Ecell = Er ed(Cl–,Hg2Cl2,Hg) = 0.26842  0.00007 V. 
 

y = 0.0475x + 0.2684
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(b).  Eq. 21.1.14 holds for a 1:1 electrolyte with z = 1. For 0.010947 m HCl: 
 

 Ecell = Ecell – 
2RT

F  ln ± m/m   ln ± = 2(Ecell – Ecell)/0.025693 – ln m/m 

 ln ± = 2(0.26842 – 0.50532)/0.025693 – ln 0.010947 = -0.096435 
 ± = 0.908 
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8.  Tabulations of standard reduction potentials include temperature coefficients. The change in 
cell voltage with temperature for the Zn2+/Zn electrode is (Ered/T)P = 0.119 mV K-1 and for the 
Fe3+/Fe2+ electrode is 1.175 mV K-1. Calculate the reaction entropy at 25C for the reaction: 
Zn (s) + 2 Fe3+  Zn2+ + 2 Fe2+. Check this value by repeating the calculation using Third Law 
absolute entropies for the reactants and products taken from the Data Tables in the appendix. 
 
 
Answer:  The cell reactions are given in Example 21.1.2. As written z = 2. The cathode is the 
reduction of Fe3+ to Fe2+, and the anode is the oxidation of Zn to Zn2+. The overall temperature 
coefficient is given in the same way as the overall cell voltage, right – left, or cathode – anode: 
 

 (Ecell/T)P = 1.175 mV K-1 – 0.119 mV K-1 = 1.056 mV K-1 = 1.056x10-3 V K-1 
 

Using Eq. 21.1.6 gives:   






Ecell

T P
 = 
rS
zF  or: 

 rS = zF 






Ecell

T P
 = 2(96485 C mol-1)( 1.056x10-3 V K-1) = 203.8 J K-1 mol-1 

 

We can check this value using standard tabulations of the Third Law entropies. From the Data 
Tables in the appendix: 
 

  Zn (s)   +   2 Fe3+     Zn2+ +   2 Fe2+   units 
 S 41.63   -315.9         -112.1 -137.7  J K-1 mol-1 

 

 rS = [-112.1 + 2(-137.7)] – [41.63 + 2(-315.9)] J K-1 mol-1 = 202.7 J K-1 mol-1 
 

The agreement is within experimental uncertainties and significant figure restrictions. 
 
 
9.  A zinc metal electrode is placed in a 0.1000 m Zn(NO3)2 aqueous solution. A platinum metal 
electrode is placed in a solution containing 0.3000 m FeSO4 and 0.00100 m Fe2(SO4)3. Assign 
the anode and cathode to give a Galvanic cell and determine the cell voltage at 25C. Use the 
Debye-Hückel approximation to estimate the activity coefficients. 
 
 
Answer:  The plan is to follow Example 21.1.2. 
   Assume the cell is connected as given in Example 21.1.2. The corresponding cell potential is 
Ecell = ER – EL  = Er ed(Fe3+,Fe2+) – Er ed(Zn2+,Zn) = 0.771 – (-0.762) V = 1.533 V. The voltage is 
positive, so the anode and cathode are assigned properly in the example. (Otherwise, all we need 
do is switch the half-cells). The Nernst equation then gives the cell voltage with z = 2 for: 
 

 Zn (s) + Fe2(SO4)3 (0.00100 m)  Zn(NO3)2 (0.1000 m) + 2 FeSO4 (0.3000 m) 
 Zn (s) + 2 Fe3+ (0.00200 m)  Zn2+ (0.1000 m) + 2 Fe2+ (0.3000 m) 
 

For Fe3+, m+ = 2 m where m is the analytical concentration of Fe2(SO4)3, giving: 
 

 Ecell = Ecell – 
RT
zF  ln



 (aZn2+) (aFe2+)2

(aFe3+)2   
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       = Ecell – 
0.02569 V

2  ln






 (,Zn2+) (0.1000) (,Fe2+)2(0.3000)2

 (,Fe3+)2 (0.00200)2  
 

The Debye-Hückel approximation, Eqs. 19.4.22-19.4.23, is then used to estimate the mean ionic 
activity coefficients. For the 0.1000 m Zn(NO3)2 solution with m+ = m and m-= 2m, the ionic 
strength is: 
 

 I = ½  z2
i mi/m = ½[(2)2(0.100) +(-1)2(0.200)] = 0.3000 

and ln ± = -1.171 | z+ z- | I½ = -1.171 |(2)(-1)|(0.300)½ = -1.2828  and  ±,Zn2+ = 0.2772 
 

   For the cathode solution, the ionic strength includes both electrolytes: m+,Fe2+ = 0.3000 m, 
m+,Fe3+ = 0.00200 m, and m- = (0.3000 + 3(0.00100))m including the SO4

2- from both sources: 
 

 I = ½  z2
i mi/m = ½[(2)2(0.3000) + (3)3(0.00200) + (-2)2(0.30300)] = 1.2150 

and    ln ± = -1.171 | z+ z- | I½ = -1.171 |(2)(-2)|(1.2150)½ = -5.1630  and ±,Fe2+ = 5.7243x10-3 
 

   For Fe2(SO4)3, the cathode solution has the same ionic strength, giving the activity coefficient: 
 

 ln ± = -1.171 | z+ z- | I½ = -1.171 |(3)(-2)|(1.2150)½ = -7.7445  and ±,Fe3+ = 4.3310x10-4 

 

Giving the final cell potential:  
 

 Ecell = 1.533 V – 
0.02569 V

2  ln



 (0.2772) (0.1000) (5.7243x10-3)2(0.3000)2

( 4.3310x10-4)2 (0.00200)2  

 Ecell = 1.533 V – 
0.02569 V

2  ln(1.0895x105) 

 Ecell = 1.533 V –0.14899 V = 1.384 V 
 

Even though the Fe3+ concentration is much less than the Fe2+ concentration, the activity 
coefficient for Fe3+ is smaller since Fe3+ has a greater charge and since the cations share the same 
solution and have the same ionic strength. 
 
 
10.  Sparingly soluble salt electrodes have the effect of “inverting” the sensitivity of the electrode 
from the metallic cation to the counter anion. Show that the Pb2+|PbSO4(s)|Pb electrode can be 
used as a sulfate ion selective electrode. This electrode is the cathode in the lead-acid battery. 
 
 
Answer:  The half-reaction is : PbSO4 (s) + 2 e-  Pb (s) + SO4

2–. The Nernst equation for the 
electrode half-reaction is, from Eq. 21.1.7: 
 

 Ered = Ered(SO4
2-,PbSO4,Pb) – 

RT
2F ln(aSO42-) 

 

The cell potential measurement is directly related to the SO4
2– activity. 

 
 
11.  Calculate the solubility equilibrium constant for PbSO4 from standard reduction potentials at 
25C. Ignore the hydrolysis of SO4

2– to HSO4
–. 
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Answer:  The half-cell reaction for the PbSO4/Pb electrode and corresponding Nernst equation 
are: PbSO4 (s) + 2 e-  Pb (s) + SO4

2– with z = 2: 
 

 Ered = Ered(SO4
2–,PbSO4,Pb) – 

RT
2F ln aSO42-      1 

 

Alternately, the half-cell reaction can be considered as the two separate processes: 
 

 PbSO4 (s)  Pb2+ + SO4
2–  Ksp = aPb2+ aSO42-    2 

 Pb2+ + 2 e-  Pb (s)   Ered = Ered(Pb2+,Pb) – 
RT
2F ln



1

aPb2+
  3 

 

Solving the Ksp expression for the activity of the Pb2+ ion gives: aPb2+ = Ksp/aSO42-. Substituting 
for the Pb2+ activity into the Nernst equation for the Pb2+/Pb metal electrode, Eq. 3, gives: 
 

 Ered = Ered(Pb2+,Pb) – 
RT
2F ln(aSO42-/Ksp)      4 

 

Separating the factors in the logarithmic term gives: 
 

 Ered = Ered(Pb2+,Pb) – 
RT
2F ln(1/Ksp) – 

RT
2F ln aSO42–     5 

 

Comparing Eqs. 1 and 5 gives the standard reduction potential for the PbSO4/Pb electrode in 
terms of the Pb2+/Pb metal electrode: 
 

 Ered(SO4
2–,PbSO4,Pb) = Ered(Pb2+,Pb) – 

RT
2F ln(1/Ksp)     6 

 

Table 21.1.1 lists Ered(Pb2+,Pb) = -0.126 V and Ered(SO4
2-,PbSO4,Pb) = -0.3588 V. Substitution 

into Eq. 5 gives: 
 

 -0.3588 V = -0.126 V – 
0.02569 V

2  ln(1/Ksp) 
 

giving Ksp = e–2(-0.3588 – -0.126)/0.02569 = 1.35x10-8 
 

The literature value is Ksp = 6.3x10-7. For simplicity, we neglected to include the equilibrium 
HSO4

2–  SO4
2– + H+, which has the Ka,2 = 1.03x10-2. 

 
 
12.  Show that the standard cell potential for Ag| Ag+|| Br-| AgBr| Ag  is Ecell = (RT/zF) ln Ksp. 

The Ksp for AgBr is 5.0x10-13 at 25C. Calculate the cell voltage. Draw the physical cell. 
 
 
Answer:  The cell reactions are: 
 

 left, anode oxidation:  Ag (s)  Ag+ + e- 

 right, cathode, reduction: AgBr (s) + e-  Ag (s) + Br- 
          

  overall   AgBr (s)  Ag+ + Br- 
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The standard state cell potential is given by Ecell = ER – EL = Ered(cathode) – Ered(anode): 
 

 Ecell = Ered(Br-,AgBr,Ag) – Ered(Ag+,Ag) 
 

The standard reduction potential for the AgBr/Ag electrode can be written in terms of the 
Ag+/Ag electrode following Eq. 21.2.6 as: 
 

 = Ered(Ag+,Ag) – 
RT
zF  ln 

1
Ksp

 – Ered(Ag+,Ag) 
 

The standard reduction potentials cancel: 
 

 Ecell = 
RT
zF  ln Ksp 

 

Using the given Ksp with z = 1: 
 

 Ecell = 
RT
zF  ln Ksp = 0.02569 V ln 5.0x10-13 

         = -0.728 V 
 
 
13.  Given that the standard reduction potential for the reduction of oxygen is 1.229 V in acidic 
solution, calculate the standard reduction potential with a basic standard state, aOH- = 1: 
 

 acidic: O2 (g) + 4H+ + 4e-  2H2O   Ered = 1.229 V 
 basic: O2 (g) + 2 H2O (l) + 4 e-    Ered = ? 
 
 
Answer:  The plan is to note that the acidic standard state is for aH+ = 1 and the basic standard 
state is for aH+ = 1.008x10-14 since Kw = 1.008x10-14 at 25C. 
   The Nernst equation for the half reaction based on the acidic form is: 
 

 E = Ered – 
0.05917 V

4  log 
1

PO2 (aH+)4 
 

For the basic standard state PO2 = 1 bar and aOH- = 1, giving aH+ = 1.008x10-14: 
 

 Ered(basic) = 1.229 V + (0.05917 V) log aH+ 
       = 1.229 V + (0.05917 V) log 1.008x10-14 = 1.229 V – 0.8282 V = 0.401 V 
 

as listed in standard reduction tabulations. Note that this half-cell corresponds to the reverse of 
the oxidation of water. See the next problem for the reduction of water to H2 in basic solution. 
 
 
14.  Given that the standard reduction potential for the reduction of H+ is defined as 0 V in acidic 
solution, calculate the standard reduction potential for water with a basic standard state, aOH- = 1: 
 

 acidic: 2 H+ + 2e-  H2 (g)    Ered  0 V 
 basic: 2H2O + 2e-  H2 (g) + 2OH–   Ered = ? 
 
 

Ag+ 
Br- 

Ag 

AgBr 

Ag 
V 
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Answer:  The plan is to note that the acidic standard state is for aH+ = 1 and the basic standard 
state is for aH+ = 1.008x10-14 since Kw = 1.008x10-14 at 25C. Note also that the two half-
reactions are related by the addition of 2 OH– to each side of the acidic half-reaction. 
   The Nernst equation for the half reaction based on the acidic form is: 
 

 E = Ered – 
0.05917 V

2  log 
PH2

(aH+)2 
 

For the basic standard state PH2 = 1 bar and aOH- = 1, giving aH+ = 1.008x10-14: 
 

 Ered(basic) = 0 V + (0.05917 V) log aH+ 
       = 0 V + (0.05917 V) log 1.008x10-14 = 0 V – 0.8282 V = -0.8282 V 
 

as listed in standard reduction tabulations. Note that this half-cell corresponds to the reduction of 
water under acidic and basic conditions. See the previous problem for the oxidation of water. 
 
 
15.  The standard reduction potential for the reduction of hypochlorite is +0.890 V under basic 
conditions, aOH- = 1. Calculate the standard reduction potential for hypochlorous acid with an 
acidic standard state, aH+ = 1. The Ka for HClO is 3.0x10-8 and Kw = 1.008x10-14 at 25C. Notice 
that the products are different under acidic and basic conditions: 
 

 basic:  OCl– + H2O (l) + 2 e-  Cl– + 2 OH–   Ered = +0.890 V 
 acidic: 2 HOCl + 2 H+ + 2 e-  Cl2 (g) + 2 H2O (l)  Ered = ? 
 
 
Answer:  The plan is to use the standard reduction potential of Cl2 to give the desired chlorine 
species as the product, then note the acidic standard state is for aH+ = 1. The hydrogen ion and 
hydroxide ion activities are related by the product aH+ aOH- = Kw with Kw = 1.008x10-14 at 25C. 
   The standard potential for the reduction of ClO– to Cl2 is obtained by converting the reduction 
potentials to reaction Gibbs energies and subtracting: 
       Ered  rG 
   2 OCl– + 2 H2O (l) + 4 e–  2 Cl– + 4 OH–        +0.890 V     rG = – 4 FEred = -343.5 kJ mol-1 
– {Cl2 (g) + 2 e–  2 Cl–}         + 1.359V  –{rG = – 2 FEred = -262.2 kJ mol-1} 
             

   2 OCl– + 2 H2O (l) + 2 e–  Cl2 + 4 OH–      rG = – 2 FEred = -81.3 kJ mol-1 
 

The final cell potential for the combined half-cells is:  Ered = –(-81.3 kJ mol-1/2F) = 0.421V 
   The Nernst equation for the half reaction based on the basic form is: 
 

 E = Ered (basic) – 
0.05917 V

2  log 
PCl2 (aOH–)4

(aOCl–)2  
 

The activity at the basic standard state for the hypochlorite ion is aOCl- = 1. The hydroxide 
activity in terms of H+ is given as aOH- = Kw/aH+. The activity in terms of hypochlorus acid is 
given by: 
 

 Ka = 
aH+ aOCl–

aHOCl
  or aOCl–= 

Ka aHOCl

aH+
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Substitution of the activities for the hypochlorite ion and hydroxide ion give the basic solution 
Nernst equation as: 
 

 E = Ered (basic) – 
0.05917 V

2  log 
PCl2 (Kw/aH+)4

(Ka aHOCl/aH+)2  

     = Ered (basic) – 
0.05917 V

2  log 
PCl2 Kw

4

Ka
2 (aHOCl)2 (aH+)2 

 

For the acidic standard state PCl2 = 1 bar, aHOCl = 1, and aH+ = 1: 
 

 Ered(acidic) = Ered (basic) – 
0.05917 V

2  log(Kw
4/Ka

2) 

       = 0.421V – (0.05917 V) log[(1.008x10-14)2/(3.0x10-8)] 
       = 0.421V + 1.211 V = 1.630 V 
 

as listed in standard reduction potential tabulations. 
 
 
16.  Calculate the equilibrium membrane potential across a proton and water permeable 
membrane that separates a 0.00100 m and a 0.0100 m aqueous HCl solution (pH 3 and 2). 
Assume ideal dilute solutions with the partial molar volume of the solvent approximated as the 
pure molar volume V– H2O = V*

H2O = 18.069 mL mol-1. The partial molar volume at infinite dilution 
for the proton is V– H+ = -0.28 mL mol-1 (based on V– HCl = 17.82 mL mol-1).2,3 What fraction of the 
electric potential difference is driven by the osmotic pressure gradient? [If you calculate the 
osmotic pressure using molar concentrations, assume the density of the HCl solutions is 
1.00 g mL-1.] 
 
 
Answer:  The plan is to note that the osmotic pressure is given by Eq. 18.4.26† (or Eq. 18.4.30†) 
and the membrane potential by Eq. 21.2.13. 
   The more exact expression for osmotic pressure is based on the mole fraction of the solvent, 
Eq. 18.4.26†. The solvent mole fractions are given by Eq. 2.2.15: 
 

 xH2O (0.001 m) = 1 – xH+ – xCl-  1 – 2 
mHCl (1 kg)
55.51 mol  = 1 – 3.603x10-5 

 xH2O (0.010 m) = 1 – 3.603x10-4 

 

Neglecting the activity coefficients for the solvent, the osmotic pressure is given by: 

 Peq =  = – RT/V– A ln(aA,in/aA,out) 

             = –0.083145 L bar K-1 mol-1(298.15 K)/0.018069 L mol-1 ln(0.999676) 
               = 0.445 bar = 4.45x104 Pa 
 

Substitution into Eq. 21.2.13 gives: 

  = in – out = – 
1

z+F RT ln(aH+,in/aH+,out) – V– H+ 

  = (0.01 m) – (0.001 m) 
      = – 0.025693 V ln 10 – 4.45x104 Pa (-0.28 mL mol-1)(1 m3/1x106 mL) 
      = –0.05916 V + 0.0125 V = -0.0467 V 
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The majority of the potential difference is driven by the direct concentration difference. The 
osmotic pressure contribution is 17% in magnitude. Note that Eq. 21.2.13 holds only if the 
membrane is permeable to just one ion. 
   Using Eq. 22.2.11 and assuming the density of the solutions is 1.00 g mL-1, the molality and 
molarity are equal to three significant figures for these dilute solutions. Since HCl is a 1:1 strong 
electrolyte, the osmotic pressure is then: 
 

  = (cin – cout) RT = (0.0200 – 0.00200 mol L-1)(0.083145 bar L K-1 mol-1)(298.15 K) 
    = 0.446 bar = 4.46x104 Pa 
 

which is within experimental error of the more approximate value used above. Using mole 
fractions, however, avoids needing to know the density of the solutions. The density of 0.0100 m 
HCl is approximately 1.000 g mL-1, whereas pure water at 25C is 0.99705 g mL-1. 
 
 
17.  Give the oxidation states of chlorine in the species in the Latimer diagram, Eq. 21.4.1. 
 
 
Answer:  The oxidation states are listed in parentheses: 
 

            1.226 V          1.157 V           1.674 V  1.630 V      1.360 V 
 ClO4

–  ClO3
–  HClO2  HOCl  Cl2  Cl– 

 (+7)  (+5)  (+3)  (+1)  (0)      (-1) 
   |  1.458 V   | 
 
 
18.  Give the oxidation states of nitrogen in the species in the Latimer diagram, Eq. 21.4.8. 
 
 
Answer:  The oxidation states are listed in parentheses: 
 

      0.955 V    
   | 0.773 V     1.108 V      0.984 V |   1.587 V   1.769 V 0.274 V 
NO3

–  NO2(g)   HNO2   NO  N2O  N2  NH4
+ 

(+5)  (+4)        (+3)            (+2)        (+1)    (0)  (-3) 
   |     1.244 V        | 
 

Nitrogen is such a chemically and environmentally interesting element because nitrogen has the 
widest range of observed oxidation states for any non-metallic element. By comparison, only one 
oxidation state for phosphorus is environmentally significant, which in PO3

4
– and its polymers is 

+5. 
 
 
19.  The Latimer diagram for nitrogen oxides in given in Eq. 21.4.8. Is NO stable with respect to 
disproportionation under standard conditions at 25C? What are the products of the 
disproportionation? 
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Answer:  NO is unstable with respect to disproportionation under standard conditions at 25C. 
The right-hand standard reduction potential is greater than the left-hand standard reduction 
potential giving either HNO2 or NO-

3 as the oxidized product. For HNO2 and N2O as products: 
 

            0.984 V         1.587 V 
 HNO2   NO  N2O  4 NO (g) + H2O  2 HNO2 + N2O (g) 
             Ecell = ER – EL = Ered(NO,N2O) – Ered(HNO2,NO) > 0 
 

For NO-
3 and N2O as products: 

 

          0.955 V       1.587 V 
 NO-

3   NO  N2O  8 NO (g) + H2O NO-
3 + 3 N2O + 2H+ 

             Ecell = ER – EL = Ered(NO,N2O) – Ered(NO-
3,NO) > 0 

 
 
20.  The Latimer diagram for manganese in acidic solution is given below at 25C. Find the 
standard reduction potential for the reduction of permanganate ion, MnO4

–, to Mn2+ from the 
potentials listed. 
 

  0.56 V      2.26 V            0.90 V           1.56 V         -1.182 V 
 MnO4

–   MnO4
2–     MnO2 (s)   Mn3+  Mn2+  Mn (s) 

     |  1.692 V  | 1.230 V  | 
 
 
Answer:  The following two half cells add to give the desired reaction. The Gibbs energies add to 
give the Gibbs energy of the overall reaction: 
 

       Ered  rG 
             

MnO4
– + 4 H+ + 3e-     MnO2 (s) + 2 H2O  1.69 V    rG = – 3 FEred = -489.2  kJ mol-1 

MnO2 (s) + 4 H+ + 2e-  Mn2+ + 2 H2O  1.23 V    rG = – 2 FEred = -237.4 kJ mol-1 
             

MnO4
– + 8H+ + 5e-       Mn2+ + 4H2O      rG = – 5 FEred = -726.6 kJ mol-1 

 

After adding the Gibbs energies, the overall voltage is given by solving rG = – 5 FEred: 
 

 Ered = 
G
– 5 F = 

-726.6x103 J mol-1

– 5 (96485 C mol-1)  = 1.51 V   with  1 J = 1 C V 

 
 
21.  The Latimer diagram for manganese in acidic solution is given below at 25C. (a). Give the 
best oxidizing agent under standard conditions. (b). Give the best reducing agent. (c). Is Mn(s) a 
good oxidizing agent? (d). What are the products of the disproportionation of Mn3+ ? 
 
  0.56 V      2.26 V             0.90 V  1.56 V        -1.182 V 
 MnO4

–   MnO4
2–     MnO2 (s)   Mn3+  Mn2+  Mn (s) 

     |  1.692 V  | 1.230 V  | 
 
Answers:  (a). Give the best oxidizing agent under standard conditions: the most positive 
reduction potential is for MnO4

2– . (b). Give the best reducing agent: the most negative reduction 
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potential is for Mn2+ +2e-  Mn, so Mn (s) is the best reducing agent.  (c). Is Mn (s) a good 
oxidizing agent? No, metals don’t have negative oxidation states in aqueous solution. For 
example, to act as an oxidizing agent a half reaction might be Mn (s) + e–  Mn– . (d). What are 
the products of the disproportionation of Mn3+ ? The products are the species on either side of 
Mn3+ giving the answers as MnO2 (s) and Mn2+. 
 
 
22.  Is chlorate ion a better oxidizing agent in acidic or basic solution? The product is either 
HClO2 or ClO2

– in acidic or basic solution, respectively. 
 
 
Answer:  The plan is to compare the Latimer diagrams in Eqs. 21.4.1 and 21.4.2. 
   Under standard state conditions, and at pH close to standard state, the standard reduction 
potential for ClO3

– is greater in acidic solution (1.157 V) than basic solution (0.271 V). Chlorate 
ion is a better oxidizing agent in acidic solution. 
 
 
23.  Given the following standard reduction potentials, construct the Latimer diagram: 
 

       Er ed (V) 

 BrO4
– + 2H+ + 2e-  BrO3

– + H2O  1.745 V 
 BrO3

– + 5H+ + 4e-  HBrO + 2H2O  1.491 V 
 BrO3

– + 6H+ + 5e-  ½ Br2 (l) + 3H2O 1.510 V 
 HOBr + H++ e-  ½ Br2 (l) + H2O  1.584 V 
 Br2 (l) + 2e-  2Br–    1.078 V 
 
 
Answer:  The highest oxidation state is listed at the left of the diagram by convention: 
 

    1.745 V 1.491 V 1.584 V       1.078 V 
acidic solution:  BrO4

–   BrO3
–   HOBr   Br2  Br– 

         |  1.510 V        | 
 
 
24.  The Latimer diagram for oxygen under acidic conditions is given below at 25C. The 
Latimer diagram for chlorine is given in Eq. 21.4.1. Which chlorine species are stable in aqueous 
solution at pH 0. Assume the solution is deoxygenated. 
 

    -0.125 V  1.51 V 
  |––––––  HO2 ––––––|   |   | 
  |         0.695 V  |     1.763 V 
 O2    H2O2  H2O 
  |  1.2291 V  | 
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Answer:  The plan is to note that the only solvent related species in significant concentration in 
deoxygenated acidic solution are H2O and H+. We should consider the oxidation and reduction of 
each chlorine containing species. However, ClO4

– can’t be oxidized and Cl– can’t be reduced. 
   The two possible water decompositions are the reverse of the reduction half-reactions: 
 

 O2 (g) + 4H+ + 4e-  2 H2O  Ered  = 1.2291 V 

 H2O2 + 2 H+ + 2e- O  Ered  = 1.763 V 
 

and the third possible half-reaction in aqueous solution is the reduction of H+: 
 

 2H+ + 2e-  (g)   Ered  = 0.000 V 
 

The oxidation of water occurs at the anode and the reduction of H+ occurs at the cathode. The 
possible anode and cathode reactions involving chlorine species are conveniently summarized by 
the Latimer diagram: 
 

            1.226 V          1.157 V           1.674 V  1.630 V      1.360 V 
 ClO4

–  ClO3
–  HClO2  HOCl  Cl2  Cl– 

   |  1.458 V   | 
 

For example consider chlorate ion, ClO3
–. Chlorate can be oxidized or reduced giving the 

following possibilities: 
 

 Ecell =             Ecathode          –          E anode 

 Ecell = 






1.157 V (ClO3

–)
1.458 V (ClO3–)

0.00 V (H+)
  – 







1.226 V (ClO3–)

1.2291 V (H2O)
1.763 V (H2O)

 > 0 

 

The maximum voltage results from choosing the largest standard reduction potential for the 
cathode and the smallest reduction potential for the anode. ClO3

– is unstable with respect to 
diproportionation: Ecell  = 1.458 – 1.226 V = 0.232 V. In addition, ClO3

– is a sufficiently strong 
oxidizing agent to oxidize water to give Cl2 and O2: Ecell  = 1.458 – 1.2291 V = 0.229 V . 
Thermodynamically the disproportionation is favored over the oxidation of water, however the 
kinetics of these processes is likely to determine the actual distribution of products. Overall then: 
 

 unstable with respect to disproportionation: ClO3
–, HClO2 

 oxidize water to O2: ClO3
–, HClO2, HOCl, Cl2 (Ered > 1.2291 V) 

 reduce water to H2: none    (Ered< 0) 
 

Based on the listed half-reactions, the only thermodynamically stable species in aqueous 1.0 M 
H+ are perchlorate and chloride ions: ClO4

– and Cl–. 
 
25.  The Latimer diagram for oxygen under acidic conditions is given in the previous problem. 
The Latimer diagram for manganese is given in Problem 20. Which manganese species are stable 
in aqueous solution at pH 0. Assume the solution is deoxygenated. 
 
 
Answer:  Referring to the previous problem, the two possible water decompositions are the 
reverse of the reduction half-reactions: 
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 O2 (g) + 4H+ + 4e-  2 H2O  Er ed  = 1.2291 V 

 H2O2 + 2 H+ + 2 e- O  Er ed  = 1.763 V 
 

and the third possible half-reaction in aqueous solution is the reduction of H+: 
 

 2H+ + 2e-  (g)   Er ed  = 0.000 V 
 

The oxidation of water occurs at the anode and the reduction of H+ occurs at the cathode. The 
possible anode and cathode reactions involving manganese species are conveniently summarized 
by the Latimer diagram: 
 

  0.56 V      2.26 V          0.90 V           1.56 V      -1.182 V 
 MnO4

–   MnO4
2–     MnO2 (s)   Mn3+  Mn2+  Mn (s) 

     |  1.692 V  | 1.230 V  | 
 

For example consider MnO2. MnO2 can be oxidized or reduced giving the following 
possibilities: 
 

 Ecell  =             Ecathode          –          E anode 

 Ecell  = 






0.90 V (MnO2)

1.230 V (MnO2)
0.00 V (H+)

  – 






2.26 V (MnO2)

1.2291 V (H2O)
1.763 V (H2O)

 > 0 

 

The maximum voltage results from choosing the largest standard reduction potential for the 
cathode and the smallest reduction potential for the anode. MnO2 is stable with respect to 
diproportionation; for one example: Ecell  = 1.230 – 1.692 V = -0.462 V. However, MnO2 is just 
strong enough of an oxidizing agent to oxidize water to give Mn2+ and O2: Ecell  = 1.230 – 1.2291 
V = 0.001 V. This small potential corresponds to an equilibrium constant of Ka = 1.1. Overall 
then: 
 

 unstable with respect to disproportionation: MnO4
2–, Mn3+ 

 oxidize water to O2: MnO4
–, MnO4

2–, MnO2, Mn3+  (Ered > 1.2291 V) 

 reduce water to H2: Mn     (Ered< 0) 
 

Based on the listed half-reactions, the only thermodynamically stable species in aqueous 
1.0 M H+ is Mn2+. 
 
 
26.  Calculate the concentration polarization for Zn2+ + 2 e-  Zn (s) operating as the cathode 
with co = [Zn2+]o = 1.00x10-4 M, electrode area 5.00 cm2, a depletion layer of 0.200 mm, 
298.2 K, and the electrode current at 10.00 amp. The limiting ionic conductivity of Zn2+ is + = 
10.56 mS m2 mol-1. Neglect the activity coefficients. 
 
 
Answer:  Using Eq. 21.3.14, the ionic diffusion coefficient for Zn2+ ions at infinite dilution is: 
 

 D = 
RT
F2  

i

|zi|
 = 

8.3145 J K-1 mol-1(298.15 K)
(96485 C mol-1)2  

10.56 x10-3 S m2 mol-1

2  = 1.406x10-9 m2 s-1 
 

The concentration in mol m-3 is given by: co = 1.00x10-4 mol L-1 (1000 L/1 m3) = 0.100 mol m-3. 
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The electrode area in m2 is: A = 5.00 cm2 (1m/100 cm)2 = 5.00x10-4 m2. 
 
Using 21.3.12 to find the limiting current gives: 
 

      i,max = 
zi FDA

  co = 
(2)(96485 C mol-1)(1.406x10-9 m2 s-1)(5.00x10-4 m2)

0.200x10-3 m  0.100 mol m-3 

    = 6.783x10-5 amp 
 

Using Eq. 21.3.13, neglecting the activity coefficients, gives: 
 

  = 
0.02569 V

2  ln



1 – 

10.00x10-6 amp
6.783x10-5 amp  = 

0.02569 V
2  (-0.1595) = -0.00205 V 

 
 
27.  Calculate the depletion layer thickness for a Zn2+ + 2 e-  Zn (s) electrode operating as the 
cathode with bulk concentration co = [Zn2+]o = 1.00x10-5 M and electrode area 1.00 cm2, at 
298.2 K, if the electrode current is 10.00 amp and the overvoltage is -0.0200 V. The limiting 
ionic conductivity of Zn2+ is + = 10.56 mS m2 mol-1. Neglect the activity coefficients. 
 
 
Answer:  Using Eq. 21.3.14, the ionic diffusion coefficient for Zn2+ ions at infinite dilution is: 
 

 D = 
RT
F2  

i

|zi|
 = 

8.3145 J K-1 mol-1(298.15 K)
(96485 C mol-1)2  

10.56 x10-3 S m2 mol-1

2  = 1.406x10-9 m2 s-1 
 

The concentration in mol m-3 is: co = 1.00x10-5 mol L-1 (1000 L/1 m3) = 0.0100 mol m-3. 
The electrode area in m2 is: A = 1.00 cm2 (1m/100 cm)2 = 1.00x10-4 m2. 
Using 21.3.11, neglecting activity coefficients, gives: 
 

 co zi FDA = 0.0100 mol m-3(2)(96485 C mol-1)(1.406x10-9 m2 s-1)(1.00x10-4 m2) 
       = 2.713x10-10 amp m 

 

  = 
RT
ziF

 ln





1 – 
 i

cozi FDA  

 -0.0200 V = 
0.02569 V

2  ln





1 – 
(10.00x10-6 amp)
2.713x10-10 amp m  

 

Giving the diffusion depletion layer thickness as: 
 

 0.2108 = (1 – (3.686x104 m-1)) or   = 2.141x10-5 m = 0.0214 mm 
 
 
28.  (a).  What is the concentration of the electroactive species at the surface of the electrode in a 
Galvanic cell when the electrode current is equal to the limiting current?  (b). Roughly sketch the 
concentration profile of the electroactive species in an unstirred solution for a Galvanic cell at 
two different times: a time shortly after current first flows and at a later time. (c). Give two ways 
to decrease concentration polarization. 
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Answer: (a). At the limiting current, the surface concentration is zero. (b). The concentration 
profiles for short and long times are sketched below. (c). For a given current, increasing the bulk 
concentration, the electrode area, and vigorous stirring decreases concentration polarization. 
Stirring decreases the thickness of the depletion layer by convection. 
 
 
 
 
 
 
 
 
 
 

 short time after initiation of current  long times 
 
 
29.  The Pourbaix diagram for manganese is shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a). Circle the point on the diagram that corresponds to the standard reduction potential for the 
Mn2+, Mn couple and the point for the MnO2, Mn2+ couple. 
(b). Is the reaction that takes you from the Mn2+ region of the diagram to the MnO2 region of 
the diagram pH dependent? How do you know from the diagram? 
(c). Look up the standard reduction potential and the balanced half-cell reaction for the MnO2, 
Mn2+ couple. Verify the pH dependence that you found in part (b). 
(d). Label the vertical axis of the diagram with several pE values so that you can read the 
vertical axis using either volts or pE. 
(e). What is the H+ activity and the electron activity (calculated from the pE) where Mn2+, 
Mn(OH)2 (s), and Mn(s) are all three at equilibrium? 

x 

 c 
(M) 

co 

0 
cs 

 

+ 

Cu2+  

x 

 c 
(M) 

co 

0 

cs 

 

+ 

Cu2+  

 

 
b 

a 

30 
 
 
 
20 
 
 
 
10 
 
 

 
0 
 
 
 
-10 
 
 
 
-20 
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pE 
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(H
M

nO
2- ) 

M
n(

O
H

) 3
- 

MnO4
2-  

(green) 

Mn(OH)2 (s)  
(cream colored) 

Mn3O4  
       (reddish brown) 

Mn (s) 

MnO4
- (purple) 

Mn2O3 (s) 
               (dark brown) 

MnO2 (s)  
      (black) 

pH 

E (V) 

 2.2 
 

 2.0 
 

 1.8 
 

 1.6 
 

 1.4 
 

 1.2 
 

 1.0 
 

 0.8 
 

 0.6 
 

 0.4 
 

 0.2 
 

    0 
 

-0.2 
 

-0.4 
 

-0.6 
 

-0.8 
 

-1.0 
 

-1.2 
 

-1.4 
 

-1.6 
 

-1.8 
-2   -1     0     1     2     3    4     5     6     7     8     9   10   11   12   13   14   15  16 
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(f). Is Mn metal stable in water or will Mn metal react with water? 
 
Answer:  (a). The standard reduction potential for the Mn2+, Mn couple is labeled (a) and the 
point for the MnO2, Mn2+ couple is labeled (b) in the diagram above. 
(b). The reduction of MnO2 to Mn2+ is pH dependent. The line between the two regions has a 
finite slope. 
(c). The reduction potential and balanced half-cell reaction for the MnO2, Mn2+ couple is pH 
dependent, since the half-reaction involves H+: 
 

 MnO2 (s) + 4 H+ + 2e-  Mn2+ + 2H2O   Er ed = 1.230 V 
 

(d). Given pE = 30.00, EH = 0.05917 V pE = 1.78 V. The pE axis is included on the plot, above. 
(e). The EH and pH where Mn2+, Mn(OH)2 (s), and Mn(s) are all three at equilibrium, as read 
from the figure, is Er ed(Mn2+, Mn) = -1.18 V and pH = 7.6. The corresponding pE is -19.94. The 
H+ activity is aH+ = 10-pH = 2.5x10-8, the electron activity is ae- = 10-pE = 8.71x1019. 
(f). The Mn metal region of the diagram lies completely below the dotted line for the reduction 
of water to form hydrogen gas. Mn metal is not stable in aqueous solution and reacts with water 
with the Mn2+, Mn couple at the anode: 
 

 Mn + 2H+  Mn2+ + H2 (g)  Ecell = Ered(cathode) – Ered(anode) = 1.182 V 
 
 
30.  Show that the pH dependence of the solubility of Fe(OH)2 is governed by the equilibrium 
expression: K2 = aFe2+/(aH+)2 with K2 = Ksp/Kw

2 = 7.9x10-16/(1.01x10-14)2 = 7.7x1012 for the 
reaction: 
 

 Fe(OH)2 (s) + 2 H+  Fe2+
 + 2 H2O 

 

Calculate the equilibrium pH assuming aFe2+ = 1.00 and verify the value on Figure 21.4.2. 
 
 
Answer: The plan is to combine the Ksp expression for Fe(OH)2 with the Kw expression for the 
autoprotolysis of water. 
   The solubility and autoprotolysis equilibria are given by: 
 

          Ksp     Kw 
 Fe(OH)2 (s)    Fe2+ + 2 OH–       H2O    H+ + OH– 
 

When reactions add, the equilibrium constants multiply. Reversing the last reaction and 
multiplying by two with addition to the solubility equilibrium gives the overall reaction: 
 

 Fe(OH)2 (s)    Fe2+ + 2 OH–   K = Ksp 

 2 H+ + 2 OH–    2 H2O   K = 1/K2
w 

       

 Fe(OH)2 (s) + 2 H+    Fe2+ + 2 H2O  K2 = Ksp/K2
w 

 

The designation as K2 is arbitrary and simply references reaction 2 in Eq. 21.4.14. The 
equilibrium expression is then: 

 K2 = Ksp/K2
w = 

aFe2+

(aH+)2 
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At aFe2+ = 1.00 the pH is then:             pH = –½ log



aFe2+

K2
 = 6.44 

 
 
31.  Show that the pH dependence of the solubility of Fe(OH)3 is governed by the equilibrium 
expression: K3 = aFe3+/(aH+)3 with K3 = Ksp/Kw

3 = 1.6x10-39/(1.01x10-14)3 = 1.55x103 for the 
reaction: 
 

 Fe(OH)3 (s) + 3 H+  Fe3+
 + 3 H2O 

 

Calculate the equilibrium pH assuming aFe3+ = 1.00 and verify the value on Figure 21.4.2. 
 
 
Answer: The plan is to combine the Ksp expression for Fe(OH)3 with the Kw expression for the 
autoprotolysis of water. 
   The solubility and autoprotolysis equilibria are given by: 
 

          Ksp     Kw 
 Fe(OH)3 (s)    Fe3+ + 3 OH–       H2O    H+ + OH– 
 

When reactions add, the equilibrium constants multiply. Reversing the last reaction and 
multiplying by three with addition to the solubility equilibrium gives the overall reaction: 
 

 Fe(OH)3 (s)    Fe3+ + 2 OH–   K = Ksp 

 3 H+ + 3 OH–    3 H2O   K = 1/K3
w 

       

 Fe(OH)3 (s) + 3 H+    Fe3+ + 3 H2O  K3 = Ksp/K3
w 

 

The designation as K3 is arbitrary and simply references reaction 3 in Eq. 21.4.14. The 
equilibrium expression is then: 

 K3 = Ksp/K3
w = 

aFe3+

(aH+)3 

At aFe3+ = 1.00 the pH is:             pH = – 1/3 log



aFe3+

K3
 = 1.06 

 
 
32.  Find the slopes of the cell potential versus pH for the reaction lines in the Pourbaix diagram, 
Figure 21.4.2, for: 
 

(a). Fe(OH)3 (s) + 3H+ + e-  Fe2+
 + 3 H2O    and (b). Fe(OH)2 (s) + 2 H+ + 2 e-  Fe (s) + 2 H2O 

 

Qualitatively verify the relative magnitudes of the slopes shown in the diagram. 
 
 
Answer:  The plan is to start with the Nernst equation for the Fe3+, Fe2+ couple for the first half-
reaction and then the Fe2+, Fe couple for the second half-reaction. The metal-ion activities are 
given by Eqs. 21.4.17 and 21.4.16, respectively. 
(a).  For Fe(OH)3, the reduction half-reaction is Fe3+ + e-  Fe2+ with the Nernst equation: 
 

 E = E red(Fe3+,Fe2+) – (0.05917 V) log 
aFe2+

aFe3+
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The activity of Fe3+ is given by Eq. 21.4.17 (see also the previous problem), aFe3+ = K3 (aH+)3 : 
 

 E = E red(Fe3+,Fe2+) – (0.05917 V) log 
aFe2+

K3 (aH+)3 

    = [E red(Fe3+,Fe2+) – (0.05917 V) log 1/K3 ] – (0.05917 V) log 
aFe2+

(aH+)3 
 

Assuming that aFe2+ = 1.00 gives: 
 

 E = E red(Fe(OH)3,Fe2+) – 3(0.05917 V) pH 
 

The slope for the reduction of Fe(OH)3 is –3(0.05917 V) = -0.1775 V 
(b).  For Fe(OH)2, the reduction half-reaction is Fe2+ + 2e-  Fe (s) with the Nernst equation: 
 

 E = E red(Fe2+,Fe) – 
0.05917 V

2  log 
1

aFe2+
 

 

The activity of Fe2+ is given by Eq. 21.4.16 (see also Problem 29), aFe2+ = K2 (aH+)2 : 
 

 E = E red(Fe3+,Fe2+) – (0.05917 V) log 
1

K2 (aH+)2 

    = [E red(Fe2+,Fe) – 
0.05917 V

2  log 1/K2 ] – 
0.05917 V

2  log 
1

(aH+)2 

    = E red(Fe(OH)2,Fe) – (0.05917 V) pH 
 

The slope for the reduction of Fe(OH)2 is –0.05917 V. Note in Figure 21.4.2 that the slope of line 
4, for Fe(OH)3 reduction, is three times that of line 7, for Fe(OH)2 reduction. As a short-cut, note 
the slope is given by –0.05917 np/z, where np is the number of protons in the balanced reaction as 
reactants. 
 
 
33.  The Pourbaix diagram for chromium is shown below. 
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(a). Circle the point on the diagram that corresponds to the standard reduction potential for the 
Cr2O2

7
–, Cr3+ couple and the point for the Cr3+, Cr2+ couple. 

(b). Is the reaction that takes you from the CrO2
4

– region of the diagram to the Cr(OH)3 region 
of the diagram pH dependent? How do you know from the diagram? 
(c). Look up the standard reduction potential and the balanced half-cell reaction for the CrO2

4
–, 

Cr(OH)3 couple. Verify the pH dependence that you found in part (b). 
(d). Calculate the pE that corresponds to EH = 2.20 V. 
(e). What is the H+ activity and the electron activity where Cr2O2

7
–, CrO2

4
–, and Cr(OH)3 (s) are 

all three at equilibrium? 
(f). Is Cr2+ ion stable in water or will Cr2+ ion react with water? If there is a reaction, give the 
balanced reaction in acidic solution and the standard cell voltage. 

 
 
Answer:  (a). The standard reduction potential for the Cr2O2

7
–, Cr3+ couple is labeled (a) and the 

point for the Cr3+, Cr2+couple is labeled (b) in the diagram above. 
(b). The reduction of CrO2

4
– to Cr(OH)3 is pH dependent. The line between the two regions has a 

finite slope. 
(c). The reduction potential and balanced half-cell reaction for the CrO2

4
–, Cr(OH)3 couple is pH 

dependent, since the half-reaction involves OH–, giving the pH dependence from 
pH = 14 – pOH: 
 

 CrO2
4

– + 4 H2O + 3e-  Cr(OH)3 (s) + 5 OH–   Er ed = -0.12 V 
 

Notice that the line for this reaction gives the voltage at pH = 14 as Er ed = -0.12 V. 
(d). Given EH = 2.20 V, pE = EH/0.05917 V = 37.181. 
(e). The EH and pH where Cr2O2

7
–, CrO2

4
–, and Cr(OH)3 (s) are all three at equilibrium, as read 

from the figure at point c, is EH = +0.54 V and pH = 7.3. The corresponding pE is 9.1. The H+ 
activity is aH+ = 10-pH = 5x10-8, the electron activity is ae- = 10-pE = 7.5x10-10. 
(f). The Cr2+ region of the diagram lies completely below the line for the reduction of water to 
form hydrogen gas. The Cr2+ ion not stable in aqueous solution and reacts with water with the 
Cr3+, Cr2+ couple at the anode: 
 

 2 Cr2+ + 2H+  2 Cr3+ + H2 (g)  Ecell = Er ed(cathode) – Er ed(anode) = 0.42 V 
 

Note also that Cr metal is also not stable in water. How do you explain the use of chromium 
electroplating to resist corrosion on metal automobile parts? Chromium metal reacts with oxygen 
in air to form a tough oxide coating, Cr2O3, that acts as a kinetic barrier for the reduction of 
water by the underlying metal to give hydrogen gas. 
 
 
34.  Find the slope of the pE vs. pH line for the reduction of Cr2O2

7
– to Cr3+. Compare to the 

Pourbaix diagram in the Problem 33. 
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Answer:  The plan is to write the Nernst equation for the Cr2O2
7

–, Cr3+  couple. 
   The balanced half-cell is: 
 

 Cr2O2
7

– + 14 H+ + 6 e- 2 Cr3+ + 7 H2O   Er ed = 1.36 V 
 

giving the Nernst equation:  E = Er ed(Cr2O2
7

–, Cr3+) – 
0.05917 V

6  log 
(aCr3+)2

aCr2O72- (aH+)14 

Separating out the pH dependent term gives: 
 

E = Ered(Cr2O2
7

–, Cr3+) – 
0.05917 V

6  log 
(aCr3+)2

aCr2O72-
 – 

14(0.05917 V)
6  log 

1
aH+

 

   = Ered(Cr2O2
7

–, Cr3+) – 
0.05917 V

6  log 
(aCr3+)2

aCr2O72-
 – 

14(0.05917 V)
6  pH 

 

The slope of the EH vs. pH curve is then –14(0.05917 V)/6 = -0.1381 V, which is the steepest pH 
dependence in the figure. As a short-cut, note the slope is given by –0.05917 np/z, where np is the 
number of protons in the balanced reaction as reactants. 
 
 
35.  Calculate the equilibrium pH for the conversion of dichromate to chromate with aCr2O72- = 
aCrO42- = 1.00: 
 

 Cr2O2
7

– + H2O    2 CrO2
4

– + 2 H+ 

 

Compare to the chromium Pourbaix diagram in the Problem 33. Note the following equilibrium 
constants: 
 

 HCrO–
4  

  H+ + CrO2
4

–    Ka2 = 3.2x10-7 

 2 HCrO–
4  

  Cr2O2
7

– + H2O   Kassoc = 40. 
 
 
Answer:  The plan is to combine the acid dissociation reaction and the association to give the 
overall dissociation process, written in terms of the H+ activity. 
   When reactions add, the equilibrium constants multiply. Doubling the acid dissociation, 
reversing the association, and adding the resultant equilibria gives the desired dissociation: 
 

 2 HCrO–
4  

  2H+ + 2 CrO2
4

–    K = K2
a2 

 Cr2O2
7

– + H2O     2 HCrO–
4   K = 1/Kassoc 

      

 Cr2O2
7

– + H2O    2 CrO2
4

– + 2 H+  K = K2
a2/Kassoc = (3.2x10-7)2/40. = 2.56x10-15 

 

The equilibrium expression is then:  K2
a2/Kassoc = 

(aCrO42-)2(aH+)2

aCr2O72-
 

Assuming aCr2O72- = aCrO42- = 1.00 gives the equilibrium H+ activity as: 
 

 aH+ = K2
a2/Kassoc = 5.05x10-8     or    pH = 7.30 

 

Note the vertical line separating Cr2O2
7

– and CrO2
4

– in the chromium Pourbaix diagram in Problem 
33 is at pH = 7.30. 
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36.  Find the slopes of the cell potential versus pH for the reaction lines in the chromium 
Pourbaix diagram, Problem 33, for: 
 

  (a).    Cr(OH)2 (s) + 2 H++ 2e-  Cr (s) + 2 H2O 
  (b).    Cr(OH)3 (s) + H+ + 1 e-  Cr(OH)2 (s) + H2O 
 

Qualitatively verify the relative magnitudes of the slopes shown in the diagram. 
 
 
Answer:  The plan is to start with the Nernst equation for the Cr2+, Cr couple for the first half-
reaction and then the Cr3+, Cr2+ couple for the second half-reaction. The metal-ion activities are 
obtained using solubility equilibria, in the same way as Eqs. 21.4.17 and 21.4.16, respectively. 
(a).  For Cr(OH)2, the reduction half-reaction is Cr2+ + 2e-  Cr (s), with the Nernst equation: 
 

 E = E red(Cr2+,Cr) – 
0.05917 V

2  log 
1

aCr2+
      1 

 

The solubility and autoprotolysis equilibria are given by (see Problem 29): 
 

     Ksp(Cr(OH)2)     Kw 
 Cr(OH)2 (s)    Cr2+ + 2 OH–       H2O    H+ + OH–   2 
 

Reversing the autoprotolysis reaction and multiplying by two with addition to the solubility 
equilibrium gives the overall reaction: 
 

 Cr(OH)2 (s)    Cr2+ + 2 OH–   K = Ksp(Cr(OH)2) 
 2 H+ + 2 OH–    2 H2O   K = 1/K2

w 
       

 Cr(OH)2 (s) + 2 H+    Cr2+ + 2 H2O  K2 = Ksp(Cr(OH)2)/K2
w   3 

 

The equilibrium expression is then: 
 

 K2 = Ksp(Cr(OH)2)/K2
w = 

aCr2+

(aH+)2  with  aCr2+ = K2 (aH+)2   4 
 

Substitution of the Cr2+ activity into the Nernst equation, Eq. 1, gives: 
 

 E = E red(Cr2+,Cr) – 
0.05917 V

2  log 
1

K2 (aH+)2      5 

    = [E red(Cr2+,Cr) – 
0.05917 V

2  log 1/K3 ] – 
0.05917 V

2  log 
1

(aH+)2   6 

    = E red(Cr(OH)2,Cr) – (0.05917 V) pH      7 
 

The slope for the reduction of Cr(OH)2 is -0.05917 V. 
 
(b).  For Cr(OH)3, the reduction half-reaction is Cr3+ + e-  Cr2+ with the Nernst equation: 
 

 E = E red(Cr3+,Cr2+) – (0.05917 V) log 
aCr2+

aCr3+
      8 

 

The activity of Cr2+ is given by Eq. 4. To obtain the activity of Cr3+, the solubility and 
autoprotolysis equilibria are given by (see Problem 30): 
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    Ksp(Cr(OH)3)     Kw 
 Cr(OH)3 (s)    Cr3+ + 3 OH–       H2O    H+ + OH–   9 
 

Reversing the autoprotolysis and multiplying by three with addition to the solubility equilibrium 
gives the overall reaction: 
 

 Cr(OH)3 (s)    Cr3+ + 2 OH–   K = Ksp(Cr(OH)3) 

 3 H+ + 3 OH–    3 H2O   K = 1/K3
w 

       

 Cr(OH)3 (s) + 3 H+    Cr3+ + 3 H2O  K3 = Ksp(Cr(OH)3)/K3
w   10 

 

The equilibrium expression is then: 
 

 K3 = Ksp(Cr(OH)3)/K3
w = 

aCr3+

(aH+)3  with aCr3+ = K3 (aH+)3   11 
 

Substitution of the Cr2+ and Cr3+ activities, Eqs. 4 and 11, into the Nernst equation, Eq. 8, gives: 
 

     E = E red(Cr3+,Cr2+) – (0.05917 V) log 
Ksp(Cr(OH)2)/K2

w (aH+)2

Ksp(Cr(OH)3)/K3
w (aH+)3    12 

        = [E red(Cr3+,Cr2+) – (0.05917 V) log(Kw Ksp(Cr(OH)2)/Ksp(Cr(OH)3)) ] – (0.05917 V) log 
1

aH+
 

        = E red(Cr(OH)3,Cr(OH)2) – (0.05917 V) pH      13 
 

The slope for the reduction of Cr(OH)3  to Cr(OH)2 is –0.05917 V, which is the same as for 
Cr(OH)2. Note in the chromium Pourbaix diagram in Problem 33, the slopes of the lines 
separating the Cr(OH)3, Cr(OH)2, and Cr (s) regions are equal and the dependence on pH is weak 
compared to the other pH dependent boundaries. 
 
 

37.  Calculate the equilibrium pH for the conversion of Cr(OH)3 to Cr(OH)-4 with aCr(OH)4- = 1.00: 
 

 Cr(OH)3 (s) + OH–    Cr(OH)-4 
 

Compare to the chromium Pourbaix diagram in Problem 33. Note the following solubility 
product and cumulative formation equilibrium constants: 
 

 Cr(OH)3 (s)    Cr3+ + 3 OH–   Ksp = 1.6x10-30 

 Cr3+ + 4 OH–    Cr(OH)-4   K4 = 8.x1029 
 
 
Answer:  The plan is to add the reactions and multiply the equilibrium constants. 
   Simply adding the given reactions gives: 
 

 Cr(OH)3 (s)    Cr3+ + 3 OH–   Ksp = 1.6x10-30 

 Cr3+ + 4 OH–    Cr(OH)-4   K4 = 8.x1029 
      

 Cr(OH)3 (s) + OH–    Cr(OH)-4  K = Ksp K4 = 1.6x10-30 8.x1029 = 1.28 
 

The equilibrium expression is: Ksp K4 = 
aCr(OH)4-

aOH-  
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For aCr(OH)4- = 1.00 the hydroxide ion activity is:  aOH- = 
1

Ksp K4
 = 0.78 

The corresponding pH is 13.9, as shown in the Pourbaix diagram in Problem 33. The problem 
could also have been solved directly in terms of the hydrogen ion activity: 
 

 Cr(OH)3 (s)    Cr3+ + 3 OH–   Ksp = 1.6x10-30 

 Cr3+ + 4 OH–    Cr(OH)-4   K4 = 8.x1029 
 H2O    H+ + OH–    Kw = 1.008x10-14 

      

 Cr(OH)3 (s) + H2O    Cr(OH)-4 + H+  K = Ksp K4 Kw 
 

with the equilibrium expression:   K = Ksp K4 Kw = aCr(OH)4- aH+ 
 

and Ksp K4 Kw = 1.6x10-30 8.x1029 1.008x10-14 = 1.29x10-14 
 
 
38.  Challenge Problem:  Find the slope of the cell potential vs. pH line for the reduction of 
CrO2

4
– to Cr(OH)-4. Compare to the chromium Pourbaix diagram in Problem 33. 

 
 
Answer:  The plan is to write the Nernst equation for the CrO2

4
–, Cr(OH)3 couple and then 

rearrange using the equilibrium expression for Cr(OH)3 (s) + OH–    Cr(OH)–
4. 

   The tabulated standard reduction half-cell in basic solution is: 
 

 CrO2
4

– + 4 H2O + 3e-  Cr(OH)3 (s) + 5 OH–   Ered = -0.12 V 
 

giving the Nernst equation:  E = Ered(CrO2
4

–, Cr(OH)3) – 
0.05917 V

3  log 
(aOH-)5

aCrO42-
 

The conversion from solid Cr(OH)3 to Cr(OH)-4 is through the equilibria (see previous problem): 
 

 Cr(OH)3 (s)    Cr3+ + 3 OH–   Ksp = 1.6x10-30 

 Cr3+ + 4 OH–    Cr(OH)-4   K4 = 8.x1029 
      

 Cr(OH)3 (s) + OH–    Cr(OH)-4  K = Ksp K4 = 1.6x10-30 8.x1029 = 1.28 
 

The corresponding equilibrium expression is: Ksp K4 = 
aCr(OH)4-

aOH-  

Solving this last equation for the hydroxide activity gives:  aOH- = 
aCr(OH)4-
Ksp K4

 

Substituting this expression for one of the hydroxide activities in the Nernst equation introduces 
the dependence on the Cr(OH)-4 activity: 
 

 E = Ered(CrO2
4

–, Cr(OH)3) – 
0.05917 V

3  log 
aCr(OH)4- (aOH-)4

Ksp K4 aCrO42-
 

 

Using aOH- = Kw/aH+ introduces the hydrogen ion activity: 
 

 E = Ered(CrO2
4

–, Cr(OH)3) – 
0.05917 V

3  log 
K4

w aCr(OH)4-
Ksp K4 aCrO42-(aH+)4 

 

Separating out the pH dependent term gives: 
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 E = Ered(CrO2
4

–, Cr(OH)3) – 
0.05917 V

3  log 
K4

w aCr(OH)4-
Ksp K4 aCrO42-

  – 
4(0.05917 V)

3  log 
1

aH+
 

     = Ered( CrO2
4

–, Cr(OH)3) – 
0.05917 V

3  log 
K4

w aCr(OH)4-
Ksp K4 aCrO42-

  – 
4(0.05917 V)

3  pH 
 

The slope of the EH vs. pH curve is then –4(0.05917 V)/3 = -0.0789 V, which is shown in the 
chromium Pourbaix diagram. 
   As noted in Problems 31 and 33, as a short-cut, the slope is given by –0.05917 np/z, where np is 
the number of protons in the balanced reaction as reactants. Starting with the balanced reaction in 
basic solution, converting Cr(OH)3 to Cr(OH)-4, and adding H+ ions to both sides gives: 
 

 CrO2
4

– + 4 H2O + 3e-  Cr(OH)-4 + 4 OH– 

  + 4 H+        + 4 H+         

 CrO2
4

– + 4 H+ + 3e-  Cr(OH)-4 (s) 
 

giving np/z = 4/3. This last half-cell is a bit misleading, since it applies in basic solution where 
aH+  10-14, but the result is rigorous and useful for this purpose. 
 
 
39.   The construction of a Frost diagram is straight-forward from the Latimer diagram. The 
corresponding half-reactions are written with the number of electrons transferred equal to the 
change in oxidation state. For the nitrogen example, Figure 21.4.3: 
 

Ox. 
States 

Reaction Ered (V) zEred  (V) 
ref. to N2 

+5+4 NO3
– + 2H+ + e–  NO2 (g) + H2O 0.773 6.221 

+4+3 NO2 (g) + H+ + e–  HNO2 1.108 5.448 
+3+2 HNO2 + H+ + e–  NO (g) + H2O 0.984 4.340 
+2+1 NO (g) + H+ + e–  ½ N2O + ½ H2O 1.587 3.356 
+1  0 ½ N2O + H+ + e–  ½ N2 + ½ H2O 1.769 1.769 
         0 N2 (g) 0 0 
  0-1 ½ N2 (g) + 2H+ + H2O + e–  NH3OH+  -1.83 1.83 
 -1-2 NH3OH+ + ½ H+ + e–  ½ N2H5

+ + H2O 1.40 0.43 
 -2-3 ½ N2H5

+ + 3/2 H+ + e– NH4
+ 1.250 -0.82 

 
Cell potentials don’t add for a sequence of electron transfer reactions, but Gibbs energies do. For 
a given half-reaction i, rGi  = –ziFEred,i. The sum starts with the element as the reference, with 
oxidation number i = 0. For species j with oxidation number zj and standard reduction potential 
to the reference Er ed,j, the sum of the half-cell Gibbs energies is equivalent to a sum of ziEred,i 
values. With N2 as the reference oxidation state: 
 

 zj Ered,j = – 


i = 0

j

 rGi

F   = – (Gj  – G N2)/F = 
i = 0

j

 zi Ered,i   (j > reference) 
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In other words, the zi Ered,i values are added, starting at the element, as in the table above. The 
equation holds for oxidation numbers greater than the reference. For oxidation numbers less than 
the reference, the Gibbs energies of the given oxidation state and the reference are given in the 
opposite order from the sum: 
 

 


i = 0

j

 rGj

F   = (G N2 – Gj )/F      (j < reference) 
 

because N2 is on the reactant side of the reaction arrows instead of the product side. An overall 
negative sign is needed for the sum, as applied in the table above: 
 

 zj Ered,j = – (Gj  – G N2)/F = – 
i = 0

j

 zi Ered,i    (j < reference) 

 

   The Latimer diagram for phosphorous at 25C is given below. 
 

  -0.933 V         0.380 V      -0.499 V  -0.508 V   -0.063 V 

  H3PO4  H4P2O6  H3PO3  H3PO2  P4  PH3 
 

(a). Construct the Frost diagram. 
(b).  What is the most stable oxidation state for phosphorus under standard state conditions in 
aqueous solution? 
(c).  Which species are good reducing agents? What species can act as oxidizing agents? 
(d).  Which species are unstable with respect to disproportionation? 
 
 
Answer: (a).  The Latimer diagram and corresponding oxidation states are:4 

 

  -0.933 V         0.380 V       -0.499 V     -0.508 V -0.063 V 

  H3PO4 –– H4P2O6 –– H3PO3 –– H3PO2 –––– P4 –––– PH3 
    (+5)  (+4)           (+3)        (+1)      (0)  (-3) 
 

The successive zE values add starting from P4 as the reference. The zE and reaction Gibbs 
energies add as follows: 
 

 ox. state Ered (V) zE° (V) G (kJ mol-1) 
H3PO4 5 -0.933 -2.059 -198.7 
H4P2O6 4 0.38 -1.126 -108.6 
H3PO3 3 -0.499 -1.506 -145.3 
H3PO2 1 -0.508 -0.508 -49.0 
P4 0 0 0 0.0 
PH3 -3 -0.063 0.189 18.2 
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(b).  The most stable oxidation state for phosphorus under standard state conditions in aqueous 
solution is +5, for H3PO4. 
(c).  All species except for H3PO4 are good reducing agents. Phosphorus acid can act as a 
reducing agent if H3PO4 is the product. The only species that can act as an oxidizing agent is 
pyrophosphorous acid, H4P2O6, but only with H3PO3 as a product. 
(d).  Using the Latimer diagram, H4P2O6 and P4 are unstable with respect to disproportionation. 
The Frost diagram can also be used for the prediction. If the zE value for a species lies above 
the line joining the adjacent oxidized and reduced forms, then the species is unstable with respect 
to disproportionation. The zE value for H4P2O6 lies above the line joining the values for H3PO4 
and H3PO3, making H4P2O6 unstable with respect to disproportionation. The zE value for P4 lies 
above the line joining the values for H3PO2 and PH3, making P4 unstable with respect to 
disproportionation. 
 
 
40.  The Latimer diagram for carbon at pH 7 and 25C is shown below.4 Draw the Frost diagram 
for carbon. The zE and chemical potential of the element is usually set to zero, as the reference. 
However, since elemental carbon will not appear in your diagram, use CO2 as the reference. 
 

    -0.486 V    -0.004 V  
  |     |    | 
  | -0.528 V     -0.443 V |   -0.177 V          0.169 V | 
 CO2 (g)  HCOOH  CH2O  CH3OH  CH4 (g) 
  |    -0.383 V  |  | 
  |         | 
  |    -0.2448 V    | 
 

 
Answer:  The oxidation states are determined for each species as: 
 

    -0.486 V    -0.004 V  
  |     |    | 
  | -0.528 V     -0.443 V |   -0.177 V          0.169 V | 
 CO2 (g)  HCOOH  CH2O  CH3OH  CH4 (g) 
 (+4)      (+2)          (0)           (-2)           (-4) 
  |    -0.383 V  |  | 
  |         | 
  |    -0.2448 V    | 
 

The Gibbs energy for CO2 is set to 0 kJ mol-1. The sums and plot are completed in the following 
spreadsheet: 
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 oxid. state E'red zE (V) G(kJ mol-1)
CO2 (g) 4 0 0 0 
HCOOH 2 -0.528 1.056 101.9 
CH2O 0 -0.443 1.943 187.5 
CH3OH -2 -0.177 2.297 221.6 
CH4 (g) -4 0.169 1.960 189. 1 
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For example, the values for acetaldehyde, CH2O, are given by: 
 

 –  ziEi  = 0 + 2(0.528 V) + 2(0.443 V) = 1.943 V 
 GCH2O = F (– ziEi ) = 96485(1.943 V) = 187.5 kJ mol-1 
 

CO2 has the minimum chemical potential of carbon containing species. Any chemical 
conversions of CO2 require the input of energy. CO2 is at the bottom of the chemical reactivity 
ladder. The conversion of CO2 to acetaldehyde, CH2O, is representative of the process of 
photosynthesis (see the next problem). 
 
 
41.  The Latimer diagram for carbon is given in the previous problem. In this problem, we make 
the connection between biological processes and the corresponding redox potentials. 
Acetaldehyde, CH2O, and glucose have the same empirical formula; glucose is (CH2O)6. Cell 
potentials and reaction Gibbs energies for acetaldehyde are representative of glucose and glucose 
polymers, on a per carbon atom basis. Similarly, formic acid, HCOOH, and methanol, CH3OH, 
are representative of organic acids and alcohols, respectively, on a per carbon atom basis. Use 
the standard reduction potentials in the Latimer diagram for carbon to find the half-cell potentials 
and reaction Gibbs energies at pH 7 for the following representative biological processes, written 
as reduction half-cells: 
 

   (a). Methane fermentation:   CO2 (g) + 8 H+ + 8 e-  CH4 (g) + 2 H2O 
   (b). Fermentation:   CH2O (l) + 4 H+ + 4 e-  CH3OH (l) 
   (c). Photosynthesis: CO2 (g) + 4 H+ + 4 e-  CH2O( l) 
 
 
Answer:  The half-cell potentials are directly given by individual steps in the Latimer diagram: 
 

   (a). Methane fermentation:   CO2 (g) + 8 H+ + 8 e-  CH4 (g) + 2 H2O 
  Ered = -0.2448 V  rG = – zFEred = -189.0 kJ mol-1 
 

   (b). Alcoholic fermentation:   CH2O (l) + 4 H+ + 4 e-  CH3OH (aq) 
  Ered = -0.177 V  rG = – zFEred = -68.31 kJ mol-1 
 

   (c). Photosynthesis: CO2 (g) + 4 H+ + 4 e-  CH2O (aq) 
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  Ered = -0.486 V  rG = – zFEred = -188.0 kJ mol-1 
 

In biological systems, these reactions are catalyzed by microbes, and in the case of 
photosynthesis by photosynthetic microbes and plants. 
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Chapter 22 Problems: Linear Non-equilibrium Thermodynamics 
 
1. For a closed system and PV work only, describe why the second, lost-work term in Eq. 22.1.5 
always gives the change in entropy production as greater than zero for an isothermal process 
(established by contact of the system with the surroundings acting as a constant temperature 
bath). 
 
 
Answer:  The plan is to apply the reasoning in Sec. 13.1 to Eq. 22.1.5: 
 

 
dStot

dt  = 



1

T  
1

Tsurr
 
đq
dt  + 



P

T  
Pext

T  
dV
dt  

 

   The second term involving P, Pext, and V relates the pressure of the system, P, to the external 
pressure, Pext. The difference in pressure, P – Pext, is the pressure gradient between the system 
and the surroundings. This PV term is always positive for a spontaneous process. For an 
isothermal process, with the system in contact with the surroundings acting as a constant 
temperature reservoir, T = Tsurr giving the first term as zero. Assume the pressure of the system is 
greater than the external pressure. The pressure gradient is then positive, P – Pext > 0. Our 
experience shows that the system will expand in a spontaneous process giving dV > 0. The 
product of (P – Pext)/T and dV is positive. Now, consider a process with the system pressure less 
than the external pressure, P < Pext. The system will contract in a spontaneous process giving dV 
< 0. However, the pressure gradient is also negative, P – Pext < 0, so the product of (P – Pext)/T 
and dV is still positive. In either case, the entropy increases for these spontaneous isothermal 
processes, dS > 0. On the other hand, if the system pressure and the external pressure are equal, 
the pressure gradient is zero and the entropy change is zero, dS = 0, for an isothermal process. 
With no pressure gradient, the system is at equilibrium and no process occurs. 
   The second term is often called the lost work term. The PdV portion gives the work done by a 
reversible process. The PextdV portion gives the actual work done by the spontaneous process. 
The difference, PdV – PextdV, is always positive. The difference is the lost work between the 
reversible and real process. In other words, to “pay” for an increase in entropy, some work is 
lost. 
 
 
2. Reproduce Figure 22.1.1. Use the parameters in the caption and assume that the heat capacity 
of coffee is that of pure water. Assume a density of 1.00 g mL-1. 
 
 
Answer:  The plan is to use Eq. 7.2.18 to find the temperature difference and Eq. 22.1.7 to find 
the entropy production as a function of time. 
   For convenience in the following table the entropy production is converted to mJ K-1 s-1 to 
enable a common axis with T. The formula for the temperature difference in D10 is: 
 =($D$6-$G$6)*EXP(-$G$4/$G$3*C10) 
The formula for the entropy production in E10 is: 
 =$G$4*($D$6-$G$6)^2/$G$6^2*EXP(-2*$G$4/$G$3*C10)*1000 
The total entropy is determined by finite difference integration. F9 is set to zero. F10 is: 
 =F9+E9*(C10-C9)/1000 
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where E9 is the height of the current “rectangle” and C10-C9 is the width of the rectangle and 
the integral is the sum of the areas of the preceding rectangles. F11 and subsequent cells in the 
column continues the pattern: F11 is: 
 =F10+E10*(C11-C10)/1000 
 

A1 B C D E F G H 

2        
3  K 1.14 J s-1 K-1 m-1 Cp 836.8 J K-1 
4  A 0.015 m2 KA/ 5.7 J K-1s-1 
5   3.00E-03 m    
6  To 310 K Tsurr 298 K 
7        
8 t (min) t (sec) T (K) dStot/dt (mJ K-1 s-1) Stot (J K-1)   
9 0 0 12.000 9.243 0.000   
10 0.5 30 9.782 6.142 0.277   
11 1 60 7.974 4.081 0.462   
12 1.5 90 6.500 2.712 0.584   
13 2 120 5.299 1.802 0.665   
14 2.5 150 4.320 1.198 0.719   
15 3 180 3.521 0.796 0.755   
16 3.5 210 2.870 0.529 0.779   
17 4 240 2.340 0.351 0.795   

 
 
5. With reference to Table 13.7.1, evaluate the entropy production for isothermal reversible, 
isothermal irreversible, adiabatic reversible, adiabatic irreversible, and a constant pressure 
expansion of an ideal gas. For the irreversible expansions, assume a constant external pressure, 
Pext. Assume a closed system with no chemical reactions. In each case, specify the forces and 
fluxes that are zero in each case. 
 
Answer:  Consider first dStot and the overall change in the total entropy for a process. The forces 
are determined by the temperature and pressure gradients. The processes are summarized in the 
table below. 

For an isothermal process the temperature gradient is zero: 



1

T  
1

Tsurr
 = 0 

For an adiabatic process, đq = 0 and the heat flux is then zero, đq/dt = 0. 

For a reversible process, P = Pext and the pressure gradient is zero: 



P

T  
Pext

T  = 0 

For an isothermal expansion of an ideal gas against a constant external pressure, P/T = nR/V: 
 

 dStot = 



P

T  
Pext

T  dV = 
P
T dV – 

Pext

T  dV = 
nR
V  dV– 

Pext

T  dV 

and the PV work term integrates for an overall process to give: 

  dStot = 



V1

V2

 
nR
V  dV – 




V1

V2Pext

T  dV = nR ln 
V2

V1
  

PextV
T

  (isothermal, P = Pext) 

 

For an adiabatic expansion of an ideal gas against a constant external pressure, dU = đw. For any 
process in an ideal gas dU = CvdT. Then for a constant external pressure, Cv dT = – Pext dV. 
Solving for dV: 
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 dV = – 
Cv

Pext
 dT 

 

Using this last equation and P/T = nR/V in the entropy production gives: 
 

 dStot = 



P

T  
Pext

T  dV = 
P
T dV – 

Pext

T  dV = 
P
T dV – 

Cv

Pext
 
Pext

T  dT = 
P
T dV – 

Cv

T  dT 
 

Integrating gives:  Stot = nR ln 
V2

V1
 + Cv ln 

T2

T1
    (irr.adiabatic) 

Finally for the last process, a constant pressure expansion for a change in temperature from T1 to 
T2, the pressure gradient is zero leaving: 
 

 dStot = 



1

T  
1

Tsurr
 đq 

 

For an ideal gas at constant pressure đq = đqp = Cp dT giving: 
 

 dStot = 



Cp

T   
Cp

Tsurr
 dT 

 

Integrating the result for a constant Tsurr gives: 
 

 Stot = 



T1

T2

 
Cp

T  dT – 



T1

T2

 
Cp

Tsurr
 dT = Cp ln 

T2

T1
 – 

Cp

Tsurr
 T   (cst. P = Pext) 

 

For the entropy production, instead of integrating over the complete process, the evolution of 
entropy is followed as a function of time: 
 

 
dStot

dt  = 



1

T  
1

Tsurr
 
đq
dt  + 



P

T  
Pext

T  
dV
dt  

 

The result depends on the heat flux as a function of time and the volume change as a function of 
time. However, the final results are the same as given in the table and as derived above. 
Reversible processes give no entropy production. For an adiabatic process the heat flux is zero. 
For constant volume processes in closed systems the entropy production is entirely from the heat 
flux. 
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Entropy and the Surroundings – Ideal Gas 
 

System Surroundings Universe     dSuniv = dS + dSsurr 

dS  =  
dU
T   + 

P
T dV dSsurr = 

dq
Tsurr

 dStot = 






1

T  
1

Tsurr
 đq + 







P

T  
Pext

T  dV 

S = CV ln 
T2

T1
  + nR ln 

V2

V1
 Ssurr = 

q
Tsurr

 
Stot = S +Ssurr  

S = CP ln 
T2

T1
 - nR ln 

P2

P1
 

  

 

System Surroundings Universe     dSuniv = dS + dSsurr 

Isothermal reversible 
T = Tsurr  

S = nR ln 
V2

V1
 

Ssurr = S Stot = 0 
 
 
 
 
 
 

 
Isothermal irreversible 
T = Tsurr               Pext = cst 

S = nR ln 
V2

V1
 

 
 
 

Ssurr = 
PextV

T
 Suniv = nR ln 

V2

V1
 

PextV
T

 
 
 
 
 
 
 
 

 

Adiabatic reversible 

S = CV ln 
T2

T1
  + nR ln 

V2

V1
 

    = 0 

Ssurr = 0 Stot = 0 

 
Adiabatic irreversible 
Pext = cst 

S = CV ln 
T2

T1
  + nR ln 

V2

V1
 

CV (T2-T1) = - Pext(V2-V1) 
 

Ssurr = 0
Stot = CV ln 

T2

T1
  +nR ln 

V2

V1
 

 
 
 

      dV = – 
Cv

Pext
 dT

Constant P = Pext 

S = CP ln 
T2

T1
  

Ssurr = - 
CPT
Tsurr

 Stot = CP ln 
T2

T1
 – 

CPT
Tsurr

 

 

dStot = 
1
T  

1
Tsurr

 đq + 
P
T  

Pext

T  dV 

0 0 

P, T 

Tsurr = T 

dq 

Pext = cst 

dStot = 
1
T  

1
Tsurr

 đq + 
P
T  

Pext

T  dV 

0 

dStot  =  
1
T  

1
Tsurr

 đq + 
P
T  

Pext

T  dV 

0 0 

P, T dq =0 

Pext = P 

P, T dq =0 

Pext = cst 

dStot  =  
1
T  

1
Tsurr

 đq + 
P
T  

Pext

T  dV 

 0 

P, T 

Tsurr = T 

dq 

Pext = P 

P, T dq 

Pext = P 


