Physical Chemistry Table of Contents	
Chapter 1: Chemical Reactivity	1
1.1 Chemical Reactivity	2
Thermodynamics	2
The System and the Surroundings	2
The State of the System and Processes	3
1.2 Spontaneity and Irreversibility	3
Spontaneous and Equilibrium Processes	3
Irreversible and Reversible Processes	8
Time and Equilibrium	9
Kinetics, Thermodynamics, and Non-equilibrium Thermodynamics	10
 1.3 Chemical Reactivity–The State of the System Volume Pressure Ideal Gas Equation of State The Barometric Formula Describes the Variation of Pressure with Height General Pattern <i>gol</i>: Simple Exponential Processes: df = – a f dx 	10 10 11 13 15 17
1.4 Summary – Looking Ahead	20
The Reach of Chemistry: From the Beaker to Interacting Global Systems	20
1.5 Addendum: A Very Brief Review of Calculus	22
Derivatives	22
Product Rule	22
Quotient Rule	24
The Chain Rule	25
Substitution	25
Inversion	25
Integrals	25
Taylor Series	26
Chapter 2: Concentrations and Partial Pressures	33
2.1 Gas Phase Concentrations and Partial Pressures	33
2.2 Concentrations of Solutions	36
2.3 Molecules in Motion—Mass Transport	40
<i>Fluxes measure flow</i>	40
<i>Concentration Gradients Are Reduced by Diffusion</i> (Fick's First Law, mass fluxes)	41
2.4 Experimental Determination of Concentration: Some Tools of the Trade	44
Absorption Spectroscopy (light fluxes)	44
Emission Spectroscopy	48
Conductivity (charge fluxes)	51
2.5 Generalized Flux-Force Relationships	53
General Pattern \$2 : Generalized Flux-Force relationships: J _i = L _i X _i	54
2.6 Absorbance of Mixtures	55
General Pattern Ø3: The Matrix Solution of Simultaneous Linear Equations	58
2.7 Summary—The Goal of Physical Chemistry	60
2.8 Addendum: Brief Introduction to Matrix Algebra	60
General Properties of Matrices	60
Matrix Inverses	63
Calculating determinants	65

Chapter 3: Kinetics	75
3.1 The Rate Law Expresses the Concentration Dependence of the Rate of the Reaction	77
The Expression of Chemical reactions	77
The Time Course for the Reaction is Determined Experimentally	78
 3.2 Determining the Rate Law: Integrated Rate Laws and Half-Times Ist Order Reactions Ist Order Reaction Half-Times Boundary Conditions 2nd Order Reactions 2nd Order Reaction Half-Times The Effect of Reaction Stoichiometry Isolation Method and Pseudo-Order Reactions Determining the Reaction Order Half-time Methods 2nd Order – Two Reactants	78 78 80 81 82 83 83 84 85 87 91
3.3 The Differential Method is Based Directly on the Rate Law	94
Initial Rate Determinations	94
The Rate as a Function of the Concentration from the Time Course	95
3.4 Progress Towards Equilibrium	97
Opposed Reactions	97
Opposed, First Order	98
3.5 Temperature Dependence of Reaction Rates	100
General Pattern §24 : Exponential Temperature Dependence: e ^{-E/RT}	102
Alternatives to Arrhenius Behavior	105
3.6 Fast Reaction Techniques	106
Stopped Flow	106
Flash Photolysis	107
Chemical Relaxation	108
3.7 Summary – Looking Ahead	112
Chapter 4: Kinetic Mechanisms	125
Building a Plausible Mechanism	125
4.1 A Mechanism is a Sequence of Elementary Steps	126
Parallel Mechanism – Competitive Reactions	127
The Finite Difference Approximation Allows the Numerical Integration of Rate Laws	130
The Kinetic Product Dominates Early in the Progress of a Reversible Parallel Reaction	131
Consecutive Reactions – Reactive Intermediates	132
 4.2 The Steady-State Approximation Simplifies Rate Laws	134
Consecutive Reactions	134
Reversible First-Step Mechanism — Nucleophilic Substitution, S _N I	135
Use the Pre-equilibrium Approximation When k ₂ is Small	136
S _N I General Case with the Steady-state approximation	137
At Steady-State All Elementary Steps Have the Same Net Rate	137
Reversible First-Step Mechanism — Michaelis-Menten Mechanism	138
4.3 Chain Mechanisms and Autocatalysis	143
In Autocatalysis, Products Catalyze the Reaction	146
4.4 Oscillating Reactions	148
Oscillating Reactions are Autocatalytic Reactions Far from Equilibrium	148
4.5 There Are Important Restrictions on Complete Mechanisms (Detailed Balance)	152
At Equilibrium the Forward and Reverse Reaction Rates are Equal	153
Cyclic Reaction Mechanisms Have an Important Constraint (cyclic enzyme mechanisms)	154
Catalysis Doesn't Change the Equilibrium Constant	156

Activation Energies for Elementary Steps Combine to Give the Overall Activation Energy Detailed Balance Provides Some Possible Mechanisms for Reverse Processes Detailed Balance is a Consequence of Microscopic Reversibility	158 159 162
4.6 Summary – Looking Ahead	163
Chapter 5: Photochemistry and Surface Chemistry 5.1 Photochemistry With the Light On: For Rapid Deactivation, a Photochemical Process Reaches a Steady-State With the Light Off: First-Order Competitive Processes Deactivate the Excited State	177 177 180 182
5.2 Stratospheric Ozone Depletion - Simulating Complex Mechanisms	184
5.3 Chemical Species Can Adsorb on Surfaces (Langmuir Adsorption)	187
5.4 Biomolecular Recognition can be Measured Using Surface Interactions (SPR) Association Phase Dissociation Phase	192 194 195
5.5 Solid Surfaces Can Catalyze Chemical Reactions <i>Product Inhibition</i>	196 197
5.6 Summary – Looking Ahead	199
5.7 Addendum: MatLab Files for the Chapman Ozone Mechanism	200
 Chapter 6: Applications of Reaction Mechanisms 6.1 Spatial Variation has an Important Influence on Chemical Kinetics Diffusion Changes the Concentration (Fick's second law) General Pattern φ5 Gaussian Distribution, e^{- x²/2σ²} Diffusion and Chemical Reactions Both Change the Concentration Interfacial Diffusion is Determined by the Boundary Conditions CO₂ Transport Across the Air/water Interface Couples Diffusion and Chemical Reactions Diffusion in Discontinuous Systems Can Be Approximated As a First-Order Process 	211 211 212 214 218 219 220 222
6.2 Box Models Pharmacokinetics Steady-State Box Models Dynamic Box Models	224 224 225 228
6.3 Linear Multiple-Box Models The Wei-Prater Method forMultiple Box Models General Pattern Ø6 Eigenvalue-Eigenvector Equations General Pattern Ø7 First-Order Box Models	229 229 231 237
6.4 Summary – Looking Ahead	239
Chapter 7: Heat and Work 7.1 Heat and Work Heat and Work are Transfers of Kinetic Energy We Experience Our Environment Through Transfers of Heat and Work	249 249 249 250
7.2 Thermal Energy Transfer—Heat Transfer Heat Transfer Can Be Measured Through Changes in Temperature Heat Transfer Depends on the Type of Process The Kinetics of Thermal Transfer	250 250 251 256
7.3 Differential Scanning Calorimetry is a Highly Sensitive Measure of Heat Flow	258
7.4 Work	262
7.5 Equations of State Specify the Mechanical Behavior of Systems Phase Diagrams Show the Behavior of Substances in Different Phases More Accurate Equations of State (Redlich-Kwong, Virial equation)	265 267 269
7.6 Partial Derivatives Are Derivatives Taken One Variable at a Time	272

The Coefficient of Thermal Expansion and the Isothermal Compressibility Describe the Mecha	nical Behavior of
Condensed Phases	274
7.7 The Zeroth Law of Thermodynamics Allows the Empirical Definition of Temperature	278
7.8 Heat and Work Are Path Functions, but Internal Energy Is a State Function	279
Internal Energy is Conserved	282
The Change in Internal Energy is the Heat Transfer at Constant Volume	282
The Change in Enthalpy is the Heat Transfer at Constant Pressure	283
7.9 Systems Do Many Different Kinds of Work	286
7.10 Summary – Looking Ahead	290
7.11 Addendum: Partial Derivatives	290
Partial Derivatives Are Derivatives Taken One Variable at a Time	290
Total Differentials Express the Change in the Function with Each Independent Variable	292
The Total Differential Can be Integrated Term-by-Term	293
Chapter 8: Thermochemistry	305
8.1 The Enthalpy and Internal Energy Changes for Phase Transitions	305
8.2 The Conditions for the Reaction Must Be Specified	306
Standard States for Constituents in Chemical Reactions	306
8.3 Relating Internal Energy and Enthalpy Changes for Chemical Reactions	307
8.4 Hess's Law is a Result of the First Law	309
The Enthalpy of Formation is for a Specific Reaction	309
Enthalpies of Combustion can be Accurately Determined	310
The Internal Energy and Enthalpy Changes for Chemical Reactions	312
8.5 Reaction Internal Energies and Enthalpies Depend on Temperature	314
General Pattern go8 Thermodynamic Relationships for Reactions ($\Delta_r X_i = \Sigma v_i X_i$)	318
8.6 Enthalpy of Solution	319
The Enthalpy of Formation of Species in Solution	319
The Enthalpy of Formation of Ionic Species are Independent At Infinite Dilution	320
$\Delta_r H^{\circ}(H^{+})$ is Defined as 0	320
8.7 Calorimetry	321
Oxygen Bomb Calorimeters are at Constant Volume	322
 8.8 Predicting Internal Energy, Enthalpy, and Heat Capacities The Ground State Electronic Energy can be Approximated as the Sum of the Bond Energies Molecular Mechanics Steric Energies and Bond Increments Provide Better Estimates for Entha Bonded Interactions Use Hookian Potentials Non-bonded Interactions include Van der Waals and Coulomb Interactions Electrostatic Interactions Protein Structure: Alpha Helices and Beta-Pleated Sheets 	325 325 alpies of Formation 328 331 332 335
8.9 The Equipartition Theorem Predicts the Internal Energy and Heat Capacity of Gases	337
 8.10 The Boltzmann Distribution-The Energy Difference Between Vibrational States is Usually to the Available Thermal Kinetic Energy The Boltzmann Distribution Determines the Distribution of Energy Only Low Energy Vibrations Contribute to the Heat Capacity 	Large Compared 339 340 342
 8.11 Normal Mode Analysis Determines the Frequencies of Molecular Vibrations	344
The Harmonic Oscillator–Oscillatory Motion at the Fundamental Vibration Frequency	344
Anharmonicity Decreases the Fundamental Vibration Frequency	351
Bond Energy, Steric Energy, Translation, Rotation, and Normal Mode Contributions Estimate	<i>the Internal</i>
Energy and Enthalpy of Formation	351
8.12 Summary – Looking Ahead	352

8.13 Addendum The Classical Harmonic Oscillator Normal Coordinates Show the Progression of the Vibration	352
 Chapter 9: Using the First Law 9.1 State Functions Have Exact Differentials Mixed Partials Are Equal: The Euler Criterion for Exactness 	369 369 370
9.2 Differentials: A differential is a derivative "waiting to happen."	372
 9.3 Integrating Differentials: A differential is an integral "waiting to happen." Enthalpy Change with Volume at Constant Pressure Enthalpy Change with Pressure for Constant Volume General Processes for Changing P and V Isothermal Processes Path 1: Isothermal Reversible Expansion Path 2: Constant Pressure Then Constant Volume 	373 374 374 375 375 375 375 376
9.4 The Constant Volume and Constant Pressure Heat Capacities are Related For an Ideal Gas $C_p - C_v = nR$	378 380
9.5 The Internal Pressure of An Ideal Gas Is Zero	380
9.6 The Joule-Thompson Expansion Determines the Internal Pressure for a Real Gas <i>Cryogenic Liquids are Produced Using the Joule-Thompson Expansion</i>	381 383
9.7 Partial Derivative Conversion: A General Procedure	384
9.8 The First Law and Ideal Gases For Isothermal Expansions of an Ideal Gas $dq = -dw$ For Adiabatic Expansions $dU = dw$	388 388 389
9.9 Efficient Organisms Have a Competitive Advantage: Ecology	394
9.10 Summary – Looking Ahead	394
 Chapter 10: Entropy, Temperature, and Heat Transfer 10.1 What is the Criterion for Spontaneity? 10.2 Energy is Transferred from a Hotter to a Colder Body Something Is Missing Energy is transferred from a Hotter to a Colder Body Thermodynamic Definition of Temperature 	401 401 403 403 404 404
10.3 Entropy, Energy Dispersal, and Internal Degrees of Freedom	409
10.4 Summary – Looking Ahead	411
10.5 Historical Footnote	411
Chapter 11: The Thermodynamic Definition of Entropy 11.1 Thermal Cycles Never Produce Work at 100% Efficiency Efficiency of Cyclic Processes - Carnot Cycles The Efficiency of a Reversible Carnot Cycle is Independent of the Working Substance The Second Law of Thermodynamics	415 415 416 418 420
 11.2 Maximum Efficiency of a Thermal Process Ideal Gas Reversible Carnot Cycle Practical Energy Production and Conservation Solar Energy Conversion Photosynthesis and Photovoltaic Energy Conversion Solar Thermal Cycles (H₂ production) 	420 420 422 424 424 425
11.3 Thermodynamic Definition of Entropy; Entropy Measures the Dispersal of Energy a. Entropy is a State Function for a General Cycleb. The Clausius Inequality Holds for Irreversible Cycles	427 429 430

c. The Clausius Inequality Compares a Real Process with the Matching Reversible Cycle	430
d. Entropy Always Increases for a Spontaneous Process in an Isolated System	432
11.4 Summary – Looking Ahead	432
Entropy and the Carnot Cycle	432
Chapter 12: The Statistical Definition of Entropy	437
12.1 Thermodynamic Properties are Average Values	437
12.2 Energy Dispersal is Measured by Changes in Entropy	439
Averages are Calculated Using Distribution Numbers	441
Microstates Have Equal a priori Probabilities	443
Statistical Weights Multiply for Composite Systems	443
Heat is Transferred from a Hotter to a Colder Body	444
The Equilibrium State is the Most Probable State	445
Entropy Always Increases for a Spontaneous Process in an Isolated System	447
12.3 Entropy is an Extensive State Function	447
12.4 Larger Number of Ways of Arranging the Microstates Larger Probability	449
Entropy and Probability $S = -k \Sigma p_i \ln p_i$	449
Residual Entropy at Absolute Zero Temperature	451
The Residual Entropy Can also be Calculated as the Entropy of Mixing	452
Relating Sums Over Molecular States to Sums Over System States in an Ensemble	453
Energy is Dispersed by Increasing the Number of Accessible Degrees of Freedom	455
Only Low Frequency Vibrations Contribute to the Entropy	455
Conformational Entropy	455
12.5 Boltzmann Distribution Gives the Equilibrium State	459
States with High Energy Are Less Probable than States with Low Energy	459
$\beta = 1/kT$	461
12.6 Entropy and Heat Transfer	465
The Thermodynamic Definition of Entropy	465
12.7 When Are Entropy and Disorder Related?	466
Energy is Dispersed by Increasing Spatial Dispersion	467
12.8 Summary – Looking Ahead	468
 12.9 Addendum: Probability, Sterling's Approximation, and Constrained Minimization Probabilities Add for the Occurrence of Events A OR B Probabilities Multiply for the Occurrence of Events A AND B Usually Order Doesn't Matter Permutations are the Rearrangements of the Order of a Series of Events Given N Choose n The Number of Ways of Arranging a Set of Distribution Numbers Sterling's Approximation for the Factorial of a Distribution Number is Valid for Large Sy The Method of Lagrange Multipliers is Used for Constrained Maximization 	469 469 470 471 471 472 stems 473 473
Chapter 13: Entropy and Applications	485
13.1 Entropy and Spontaneous, Irreversible Processes	485
Definition of Entropy	485
Entropy and Temperature	485
Combined First and Second Laws of Thermodynamics	486
Entropy and Spontaneity–The Clausius Inequality	487
 13.2 Applying the Thermodynamic Definition of Entropy Entropy and the Ideal Gas for Closed Systems Temperature as an Integrating Factor General System at Constant Volume or Pressure 13.3 Entropy Changes for Phase Transitions 	489 489 491 493 495
13.5 Encropy Changes for Finase Transitions	+25

At the Equilibrium Phase Transition Temperature Irreversible Phase Transitions	495 496
13.4 Absolute Entropies and the Third Law of Thermodynamics Debye Extrapolation Absolute Entropies Does the Third Law Really Work? Residual Entropies	498 499 499 500 501
13.5 Entropy Changes for the Surroundings	502
13.6 Entropy Changes for Chemical Reactions	503
13.7 Entropy Changes for the System and Surroundings and the Total Entropy Change	504
13.8 Summary – Looking Ahead	507
Chapter 14: Focusing on Chemical Reactivity 14.1 Chemical Potentials Express the Change in Energy for Open Systems	513 513
14.2 The Thermodynamic Components are an Independent Set of Chemical Constituents	514
 14.3 Constraints Provide Focus on Chemical Reactivity Physical Barriers Act as Constraints for Extensive Variables Constant Volume Irreversible Processes Can Be Studied Using Thermodynamics Closed Systems Have Constant Mole Amounts of Components Chemical Reactions in Closed Systems are Expressed in Terms of the Extent Internal Constraints for Chemical Reactions Phase Transitions are Equivalent to Chemical Reactions Intensive Variables are Constrained by Reservoirs The System and the Surroundings Form a Composite Isolated Systems Constrain the Internal Energy 	516 516 517 517 518 519 520 520 521 522
14.4 Other Forms of Work: Membrane potentials	522
14.5 Summary – Looking Ahead	523
Chapter 15: Spontaneity 15.1 Isolated Systems	529 529
15.2. Free Energy The Spontaneity Criterion at Constant T and V is the Helmholtz Energy The Spontaneity Criterion at Constant T and P is the Gibbs Energy	531 531 534
15.3 Gibbs Energy and Other Forms of Work (electochemical potential)	536
15.4 Applications of Helmholtz and Gibbs Energies Isothermal Processes The Change in Helmholtz Energy with Temperature at Constant Volume The Change in Gibbs Energy with Temperature at Constant Pressure Phase Transitions at Equilibrium Chemical Reactions and Gibbs Energy	538 539 540 541 542 542
15.5 Summary – Looking Ahead	546
Chapter 16. Foundations of Thermodynamics 16.1 Thermodynamic Potentials and Thermodynamic Forces	553 553
16.2 Changing Independent Variables Using Legendre Transformations	555
16.3 Thermodynamic Forces: May the Forces Be With You The Change in Gibbs Energy with Temperature Depends on the Enthalpy Change The Change in Entropy with Temperature Depends on the Heat Capacity	557 558 560
16.4 The Foundations of Thermodynamics Maxwell Relations Simplify Relationships Involving the Entropy	560 562

16.5 Thermodynamic Equations of State	565
16.6 Open Systems, Chemical Reactions, and Chemical Potential	567
16.7 Fugacity is the Chemically Effective Pressure	570
16.8 Gibbs Energy of Mixing	573
The Mixing of Ideal Gases is Always Spontaneous	574
16.9 Summary–Looking Ahead	576
Chapter 17: Phase Transitions in Pure Substances	585
17.1 The Chemical Potentials of the Phases are Equal at Equilibrium	585
Phase Transitions Minimize the Chemical Potential	585
The Chemical Potentials of the Two Phases are Equal Along the Coexistence Curve	588
The Change in Vapor Pressure with Temperature Depends on the Enthalpy Change	589
General Pattern gg : Exponential Temperature Dependence $dlnP/dT = \Delta_r H/RT^2$	591
The Melting Point can Increase or Decrease with Pressure	592
The Vapor Pressure of a Liquid Increases with Increasing Total Applied Pressure	594
17.2 Second Order Transitions Have a Discontinuity in the Heat Capacity with Temperature	595
First-Order Phase Transitions Have a Change in Enthalpy and Entropy	595
The Ehrenfest Criteria	596
Second-Order Transitions Show Pre-Transition Effects	597
The Nematic to Isotropic Phase Transition in Liquid Crystals is Mixed First and Second Order	598
Transitions in Phospholipid Bilayers are Cooperative Phase Change Data Storage Uses a First Order Transition from Crystalling to Amorphous Fou	599
	<i>ms</i>
17.3 Summary–Looking Ahead	600
hapter 18: Ideal Solutions	609
18.1 Concentration Dependence is Expressed by Partial Molar Quantities	609
Volumes Usually Don't Add in Making Solutions The Chamical Potential in Solution is a Dartial Molan Quantity	609 612
The Chemical Potential in Solution is a Partial Molar Quantity The Thermodynamics of Solutions is Based on Chemical Potentials	013 614
The Thermodynamics of Solutions is Dased on Chemical Tolenitals	014
18.2 Ideal Solutions Follow Raoult's Law	614
Partial Vapor Pressure is a Function of Concentration	614
Chemical Polentials Depend on Concentration	010
18.3 Ideal-Dilute Solutions	618
The Behavior of the Solute in Dilute Solution is Described by Henry's Law	618
Ideal-Dilute Solutions Assume a Raoult's Law Standard State for the Solvent and a Henry's Law for the Solute	w Standard State 622
18.4 Phase Transitions for Binary Mixtures	623
Raoult's Law is Used to Understand Distillation	623
Colligative Properties are a Function of the Concentration of the Solute	629
The Boiling Point is Elevated for an Ideal-Dilute Solution of a Non-volatile Solute	630
The Freezing Point is Depressed for an Ideal-Dilute Solution	632
Osmotic Pressure Results from Equilibrium across a Semi-Permeable Membrane	636
Phase Diagrams for Binary Solid-Solution Equilibrium	640
Boiling Point Elevation is Used in Making Hard Candy (Colligative Property Uses)	643
8.5 The Gibbs Phase Rule Determines the Number of Independent Variables	644
At Equilibrium the Chemical Potential of each Component is "Everywhere Equal"	644
Add One Extensive Independent Variable for Each Phase	647
18.6 Structure-Function Relationships and Solvation (QSAR and QSPR)	647
18.7 Summary – Looking Ahead	649

19.1 Activity is the Chemically Effective Concentration 663 The Activity of the Solven is Based on Rount's Law 665 Different Concentration Measures Can be Used for the Solute 666 Activities of the Solven is Based on Henry's Law 665 Different Concentration Measures Can be Used for the Solute 666 19.2 Excess Thermodynamic Properties Focus on Non-ideal Behavior 668 Solute-Solven Interactions Can be Studied Using the Glubs-Duhem Relationship 667 19.2 Excess Thermodynamic Properties Focus on Non-ideal Behavior 668 Solute-Solven Interactions Can be Studied Using the Glubs-Duhem Relations with Explicit Solvation 670 Structure Makers Decrease the Entropy of the Secondary Solvation Sphere 671 19.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions 673 19.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients 676 19.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions 673 19.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients 676 19.3 Pressure Deturbation Calorimetry Characterizes Solute-Solvent Interactions 679 10nic Activity Coefficients can be Approximated Using the Deby-Elucital Multiply 676 19.4 The Activities of Electrolyte Solutions and Decation Solution 683 10nic Activity C	Chapter 19: Real Solutions	663	
The Activity of the Solvet is Based on Raoult's Law663The Activity of the Solvet is Based on Harry's Law665Different Concentration Measures Can be Used for the Solute666Activities for Novlanile Solutes are Obtained Using the Gibbs-Duhem Relationship66719.2 Excess Thermodynamic Properties Focus on Nov-ideal Behavior668Simple Solutions Have an Imbalance in the A-A, B-B and A-B forces669Solute-Solvent Interactions Can be Studied Using Molecular Mechanics with Explicit Solvation 670571Structure Makers Decrease the Entropy of the Secondary Solvation Sphere67119.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions67319.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients676For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply676Ionic Strength Changes the Solubility Opsaringly Soluble Salts681Osnic Pressure Depends on Total Number of Ions in Solution683The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding690The Generalized Born Approximation Ions Subato69319.5 A Lattice Model for Simple Symmetric Solutions69319.6 Auttice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibrium70320.1 Gibbs Energy and Chemical Equilibrium704The Equilibria Mechanis Monetaria Principle71320.2 Gas Phase Chemical Equilibria and Le Chatelier	19.1 Activity is the Chemically Effective Concentration	663	
The Activity of the Solute is Based on Henry's Law 665 Different Concentration Measures Can be Used for the Solute 666 Activities for Non-Volatile Solutes are Obtained Using the Gibbs-Duhem Relationship 667 19.2 Excess Thermodynamic Properties Focus on Non-ideal Behavior 668 Simple Soluteins Have ann Imbalance in the A-A, B-B and A-B forces 669 Solute-Solvent Interactions Can be Studied Using Molecular Mechanics with Explicit Solvation 670 Structure Makers Decrease the Entropy of the Secondary Solvation Sphere 671 Hydropholic Hydration Results in Structure Making 672 673 19.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions 673 19.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients 676 Ionic Activity Coefficients can be Approximated Using the Debye-Hickel Approximation 679 Ionic Activity Coefficients can be Approximated Using the Doisson Equation 683 19.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation 683 19.5 Energy of Solvation is Moderated by Dielectric and Ionic Shielding 686 The Born Approximation Takes into Account the Size of the Solute 690 The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding 693 19.5 A Lattice Model	The Activity of the Solvent is Based on Raoult's Law	663	
Different Concentration Measures Can be Used for the Solute666Activities for Non-Volatile Solutes are Obtained Using the Gibbs-Duhem Relationship66719.2 Excess Thermodynamic Properties Focus on Non-ideal Behavior668Simple Solutions Have an Imbalance in the A-A, B-B and A-B forces669Solute-Solvem Interactions Can be Studied Using Molecular Mechanics with Explicit Solvation 670571By Tructure Makers Decrease the Entropy of the Secondary Solvation Sphere671Hydrophobic Hydration Results in Structure Making67219.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions67319.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients676For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply676Ionic Strength Changes the Solubility of Sparingly Soluble Salts681Osmotic Pressure Depends on Total Number of Ions in Solution683The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation683The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding680The Gibbs Energy of Solvation is Used for More Complex Molecules and Ions691The Guera Step of Enzymes Interact with Counter Ions and the Solute694Chapter 20: Chemical Equilibrium704The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.6 A Latice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy<	The Activity of the Solute is Based on Henry's Law	665	
Activities for Non-Volatile Solutes are Obtained Using the Gibbs-Duhen Relationship66719.2 Excess Thermodynamic Properties Focus on Non-ideal Behavior668Simple Solutions Have an Imbalance in the A-A, B-B and A-B forces669Solute-Solvent Interactions Can be Studied Using Molecular Mechanics with Explicit Solvation 670571Structure Makers Decrease the Entropy of the Secondary Solvation Sphere67119.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions67319.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients676For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply676Ionic Activity Coefficients can be Approximated Using the Debye-Hückel Approximation679Ionic Activity Coefficients can be Approximated Using the Debye-Hückel Approximation68319.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation68319.5 The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Born Approximation Takes into Account the Size of the Solute69319.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibrium704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature71220.2 Gas Phase Chemical Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemica	Different Concentration Measures Can be Used for the Solute	666	
19.2 Excess Thermodynamic Properties Focus on Non-ideal Behavior 668 Simple Solutions Have an Imbalance in the A-A, B-B and A-B forces 669 Solute-Solvent Interactions Can be Studied Using Molecular Mechanics with Explicit Solvation 670 Structure Makers Decrease the Entropy of the Secondary Solvation Sphere 671 19.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions 673 19.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients 676 For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply 676 Ionic Activity Coefficients can be Approximated Using the Debye-Hickel Approximation 679 Ionic Activity Coefficients can be Approximated Using the Debye-Hickel Approximation 683 19.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation 683 The Gibbs Energy of Solvation in al Electrical Work 683 The Gibbs Energy of Solvation in Used for More Complex Molecules and Ions 691 The Gubb Staregy of Solvation in Solutions 693 19.6 A Lattice Model for Simple Symmetric Solutions 693 19.6 A Lattice Model for Simple Symmetric Solutions 693 19.7 Summary – Looking Ahead 694 Chapter 20: Chemical Equilibrium 704 The Entropy and	Activities for Non-Volatile Solutes are Obtained Using the Gibbs-Duhem Relationship	667	
Simple Solutions Have an Imbalance in the A-A, B-B and A-B forces669Solute-Solvent Interactions Can be Studied Using Molecular Mechanics with Explicit Solvation 670Structure Makers Decrease the Entropy of the Secondary Solvation Sphere671Hydrophobic Hydration Results in Structure Making67219.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions67319.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients676For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply676Ionic Activity Coefficients can be Approximated Using the Debye-Hückel Approximation68319.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation68319.5 The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding69319.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibrian703704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704The Surfaces of Encyments of Higger Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704	19.2 Excess Thermodynamic Properties Focus on Non-ideal Behavior	668	
Solute-Solvent Interactions Can be Studied Using Molecular Mechanics with Explicit Solvation 670Structure Makers Decrease the Entropy of the Secondary Solvation Sphere671Hydrophobic Hydration Results in Structure Making67219.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions67319.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients676 <i>For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply</i> 676 <i>Ionic Activity Coefficients can be Approximated Using the Debye-Hückel Approximation</i> 68319.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation68319.5 The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Bibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Bibbs Energy of Solvation is Used for More Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields69419.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibria70320.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on Temperature711For Read Gases the Equilibria and the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature71320.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 T_{μ} , κ_{μ} , κ_{α} and K_{α} Differ if $\Delta_{\mu_{\pi}} \neq 0$ 71320.3 Eq	Simple Solutions Have an Imbalance in the A-A, B-B and A-B forces	669	
Structure Makers Decrease the Entropy of the Secondary Solvation Sphere671Hydrophobic Hydration Results in Structure Making67219.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions67319.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients676For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply676Ionic Activity Coefficients can be Approximated Using the Debye-Hückel Approximation679Ionic Strength Charges the Solubility of Sparingly Soluble Satts681Osmotic Pressure Depends on Total Number of Ions in Solution68319.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation683The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Born Approximation Takes into Account the Size of the Solute691The Generalized Born Approximated State Nore Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.6 A Lattice Model for Simple Symmetric Solutions69320.1 Gibbs Energy of Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Eutopy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium713Yar Ke, and K X, Differ If An, $\neq 0$ 71320.2 Gas Phase Chemical Equilibrium Constant is Written in Terms of Fugacities712	Solute-Solvent Interactions Can be Studied Using Molecular Mechanics with Explicit Solvation	670	
Hydrophobic Hydration Results in Structure Making67219.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions67319.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients676For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply676Ionic Activity Coefficients can be Approximated Using the Debye-Hückel Approximation679Ionic Strength Changes the Solubility of Sparingly Soluble Salts681Osmotic Pressure Depends on Total Number of Ions in Solution68319.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation68319.6 The Bibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Bibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding691The Generalized Born Approximation is Used for More Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.619.7 Summary – Looking Ahead694Chemical Equilibria70370120.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713May Kas and Kas Differ if $\Delta_{ng} \neq 0$ 71320.3 Gas Phase Chemical Equilibria and Le Chatelier's Principle713The Actroy and the Solvent Activity is Approximated by the Mole Fraction718 <td< td=""><td>Structure Makers Decrease the Entropy of the Secondary Solvation Sphere</td><td>671</td></td<>	Structure Makers Decrease the Entropy of the Secondary Solvation Sphere	671	
19.3Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions67319.4The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients676For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply676Ionic Activity Coefficients can be Approximated Using the Debye-Hickel Approximation679Ionic Strength Changes the Solubility of Sparingly Soluble Salts681Osmotic Pressure Depends on Total Number of Ions in Solution68319.5The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation and Electrical Work683The Both Approximation Takes into Account the Size of the Solute690The Generalized Born Approximation is Used for More Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.6A Lattice Model for Simple Symmetric Solutions69319.7Summary – Looking Ahead694Chapter 20: Chemical Equilibria70320.1Gibbs Energy and Chemical Equilibrium704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature711For Real Gases the Equilibria and Le Chatelier's Principle71320.2Gas Phase Chemical Equilibria and Le Chatelier's Principle71320.2Gas Phase Chemical Equilibria and Le Chatelier's Principle718In Equilibrium In Solution and Heterogeneous Equilibrium Constant716The Activity of Pure Cons	Hydrophobic Hydration Results in Structure Making	672	
19.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients676For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply676Ionic Activity Coefficients can be Approximated Using the Debye-Hickel Approximation679Ionic Strength Changes the Solubility of Sparingly Soluble Salts681Osmotic Pressure Depends on Total Number of Ions in Solution68319.5 The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Born Approximation Takes into Account the Size of the Solute690The Gubes Consensition Takes into Account the Size of the Solute691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical EquilibriaThe Equilibria70320.1 Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Opends on The Imperature711For Real Gases the Equilibria and Le Chatelier's Principle713 X_{μ} K_{v} and K_{v} Jüffer if $An_{\pi} \neq 0$ 71320.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle718The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction </td <td>19.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions</td> <td>673</td>	19.3 Pressure Perturbation Calorimetry Characterizes Solute-Solvent Interactions	673	
For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply676Ionic Activity Coefficients can be Approximated Using the Debye-Hückel Approximation679Ionic Strength Changes the Solubility of Sparingly Soluble Salts681Osmotic Pressure Depends on Total Number of Ions in Solution68319.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation683The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Born Approximation Takes into Account the Size of the Solute690The Generalized Born Approximation is Used for More Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibria703704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature710For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibrium Constant is Written in Terms of Fugacities71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant716The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute	19.4 The Activities of Electrolyte Solutions and Mean Ionic Activity Coefficients	676	
Ionic Activity Coefficients can be Approximated Using the Debye-Hilckel Approximation679Ionic Strength Changes the Solubility of Sparingly Soluble Salts681Osmotic Pressure Depends on Total Number of Ions in Solution68319.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation683The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Born Approximation Takes into Account the Size of the Solute690The Generalized Born Approximation is Used for More Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields69319.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibria70370320.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Energy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of EquilibriumThe Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713704The Energy and Kate Change the Value of the Equilibrium Constant716The Suffer if $A_{18} \neq 0$ 713704The Energy and Kates Change the Value of the Equilibrium Constant <td cols<="" td=""><td>For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply</td><td>676</td></td>	<td>For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply</td> <td>676</td>	For Electrolytes, the Chemical Potentials of the Ions Add and the Activities Multiply	676
Ionic Strength Changes the Solubility of Sparingly Soluble Salts681Osmotic Pressure Depends on Total Number of Ions in Solution68319.5 The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Born Approximation Takes into Account the Size of the Solute690The Generalized Born Approximation is Used for More Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.619.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibria70370320.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704The Real Gases the Equilibrium Constant Depends on Temperature709Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of EquilibriumThe Real Gases the Equilibria and Le Chatelier's Principle71320.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Plare Constitue	Ionic Activity Coefficients can be Approximated Using the Debye-Hückel Approximation	679	
Osmotic Pressure Depends on Total Number of Ions in Solution68319.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation683The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Born Approximation Takes into Account the Size of the Solven to Create Shaped Electric Fields69119.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibria70370320.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle71320.3 Equilibria in Solution and Heterogeneous Equilibrium Constant716The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Eduilibrium the Solvent Activity is Approximated by the Mole Fraction718To Chemical Equilibrium Constant72320.4 Gas Phase Chemical Equilibrium Constant are Expressed as P	Ionic Strength Changes the Solubility of Sparingly Soluble Salts	681	
19.5 The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation and Electrical Work686The Bibs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Born Approximation Takes into Account the Size of the Solute690The Generalized Born Approximation is Used for More Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chemical Equilibria70370120.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature709Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of EquilibriumThe Equilibrium Constant Depends on Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719	Osmotic Pressure Depends on Total Number of Ions in Solution	683	
The Gibbs Energy of Solvation and Electrical Work683The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Born Approximation Takes into Account the Size of the Solute690The Gubbs Energy of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibria70370320.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature709Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of EquilibriumThe Real Gases the Equilibria constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 K_p K_c and K_x Differ if $\Delta_{rls} \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at $pH = 7$ 72020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Bin	19.5 The Gibbs Energy of Solvation can be Approximated Using the Poisson Equation	683	
The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding686The Born Approximation Takes into Account the Size of the Solute690The Generalized Born Approximation is Used for More Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.619.6A Lattice Model for Simple Symmetric Solutions69319.7Summary – Looking Ahead694Chapter 20: Chemical Equilibria70370.120.1Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2Gas Phase Chemical Equilibria and Le Chatelier's Principle713K _p K _c and K _x Differ if $\Delta n_g \neq 0$ 71320.3Equilibria in Solution and Heterogeneous Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables71920.4Probabilities of Energy States Determine the Equilibrium Constant726Centerion Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5Sinding Isotherms Characterize Molecular Association726Centeral Patte	The Gibbs Energy of Solvation and Electrical Work	683	
The Born Approximation Takes into Account the Size of the Solute690The Generalized Born Approximation is Used for More Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.6 A Lattice Model for Simple Symmetric Solutions19.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chemical Equilibria70370120.1 Gibbs Energy and Chemical Equilibrium70320.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature709Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of EquilibriumThe Equilibrium Constant Depends on Temperature71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713K _p K _c , and K _x Differ if Δ , n _x ≠ 071320.3 Equilibria in Solution and Heterogeneous Equilibria716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718In Bilschemist's Standard State is at pH = 772020.4 Probabilities of Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern g10 : Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The	The Gibbs Energy of Solvation is Moderated by Dielectric and Ionic Shielding	686	
The Generalized Born Approximation is Used for More Complex Molecules and Ions691The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chemical Equilibria70370320.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature709Entropy and the Variation of K_p with Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 $K_{p'}$, $K_{c'}$ and K_x Differ if $\Delta_r g \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718In Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern g10 : Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization73120.7 Summary – Looking Ahead733	The Born Approximation Takes into Account the Size of the Solute	690	
The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric Fields19.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibria70370.1 Gibbs Energy and Chemical Equilibrium704704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704704704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704705709Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium709711For Real Gases the Equilibrium Constant Depends on Temperature71170771320.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 K_{pr} K_{cr} and K_x Differ if $\Delta_r g \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant71871671871871772020.4 Probabilities of Energy States Determine the Equilibrium Constant72371672372020.4 Probabilities of Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association72672720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization73171872772020.5 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization	The Generalized Born Approximation is Used for More Complex Molecules and Ions	691	
19.6 A Lattice Model for Simple Symmetric Solutions69319.7 Summary – Looking Ahead694 Chapter 20: Chemical Equilibria703 20.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Equilibrium Constant Depends on Temperature709Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of EquilibriumThe Equilibrium Constant Depends on Temperature709Entropy and the Variation of K_p with Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 K_p K_c , and K_x Differ if $\Delta_n_g \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern G10 : Saturation Binding (Scatchard, Langmuir)72120.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	The Surfaces of Enzymes Interact with Counter Ions and the Solvent to Create Shaped Electric	Fields	
19.7 Summary – Looking Ahead694Chapter 20: Chemical Equilibria70320.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium709Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium709Entropy and the Variation of K _p with Temperature709Entropy and the Variation of K _p with Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713K _p K _c and K _x Differ if Δ _{ng} ≠071320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern g10 : Saturation Binding (Scatchard, Langmuir)72120.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant <t< td=""><td>19.6 A Lattice Model for Simple Symmetric Solutions</td><td>693</td></t<>	19.6 A Lattice Model for Simple Symmetric Solutions	693	
Chapter 20: Chemical Equilibria70320.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium709Entropy and the Variation of K_p with Temperature709Entropy and the Variation of K_p with Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 $K_p, K_c, and K_x$ Differ if $\Delta_r n_g \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at $pH = 7$ 72020.4 Probabilities of Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern \emptyset 10: Saturation Binding (Scatchard, Langmuir)72120.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization73120.7 Summary – Looking Ahead733	19.7 Summary – Looking Ahead	694	
20.1 Gibbs Energy and Chemical Equilibrium704The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium709The Equilibrium Constant Depends on Temperature709Entropy and the Variation of K_p with Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 $K_p, K_c, and K_x$ Differ if $\Delta_r g \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern (p10: Saturation Binding (Scatchard, Langmuir)72120.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	Chapter 20: Chemical Equilibria	703	
The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy704The Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium709Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium709Entropy and the Variation of K_p with Temperature701For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 $K_p, K_c, and K_x$ Differ if $\Delta_{Ang} \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy States Determine the Equilibrium Constant72520.5 Binding Isotherms Characterize Molecular Association726General Pattern Golo : Saturation Binding (Scatchard, Langmuir)72120.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	20.1 Gibbs Energy and Chemical Equilibrium	704	
The Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of Equilibrium The Equilibrium Constant Depends on Temperature709Entropy and the Variation of K_p with Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 $K_p, K_c, and K_x$ Differ if $\Delta_{Ang} \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern go10 : Saturation Binding (Scatchard, Langmuir)72120.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	The Equilibrium Extent Depends on the Standard State Reaction Gibbs Energy	704	
The Equilibrium Constant Depends on Temperature709Entropy and the Variation of K_p with Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 K_p , K_c , and K_x Differ if $\Delta_r n_g \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at $pH = 7$ 72020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern (210: Saturation Binding (Scatchard, Langmuir))72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	The Entropy and Gibbs Energy of Mixing Play a Central Role in Determining the Position of Ed	quilibrium	
Entropy and the Variation of K_p with Temperature711For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 K_p, K_c , and K_x Differ if $\Delta_r n_g \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at $pH = 7$ 72020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern (p10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization73120.7 Summary – Looking Ahead733	The Equilibrium Constant Depends on Temperature	709	
For Real Gases the Equilibrium Constant is Written in Terms of Fugacities71220.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 $K_p, K_c, and K_x Differ if \Delta_r n_g \neq 071320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern 610: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization73120.7 Summary – Looking Ahead733$	Entropy and the Variation of K_p with Temperature	711	
20.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle713 K_{pr} K_c , and K_x Differ if $\Delta_r n_g \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at $pH = 7$ 72020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern Golo : Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	For Real Gases the Equilibrium Constant is Written in Terms of Fugacities	712	
K_{pr} K_c , and K_x Differ if $\Delta_r n_g \neq 0$ 71320.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant716The Choices for Standard States Change the Value of the Equilibrium Constant718The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at $pH = 7$ 72020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern (p10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	20.2 Gas Phase Chemical Equilibria and Le Chatelier's Principle	713	
20.3 Equilibria in Solution and Heterogeneous Equilibria716The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern ©10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	$K_p, K_c, and K_x Differ if \Delta_r n_g \neq 0$	713	
The Choices for Standard States Change the Value of the Equilibrium Constant716The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern ©10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant733	20.3 Equilibria in Solution and Heterogeneous Equilibria	716	
The Activity of Pure Constituents is 1718In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern ©10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant733	The Choices for Standard States Change the Value of the Equilibrium Constant	716	
In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction718The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern ©10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	The Activity of Pure Constituents is 1	718	
The Gibbs Phase Rule Determines the Number of Independent Variables719The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern ©10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	In Dilute Solution the Solvent Activity is Approximated by the Mole Fraction	718	
The Biochemist's Standard State is at pH = 772020.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern ©10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	The Gibbs Phase Rule Determines the Number of Independent Variables	719	
20.4 Probabilities of Energy States Determine the Equilibrium Constant723The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern ©10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	The Biochemist's Standard State is at $pH = 7$	720	
The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities72520.5 Binding Isotherms Characterize Molecular Association726General Pattern G10 : Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	20.4 Probabilities of Energy States Determine the Equilibrium Constant	723	
20.5 Binding Isotherms Characterize Molecular Association726General Pattern ©10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	The Reaction Gibbs Energy and Equilibrium Constant are Expressed as Probabilities	725	
General Pattern ©10: Saturation Binding (Scatchard, Langmuir)72720.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization The Steepness of the Titration Curve Determines the Equilibrium Constant73120.7 Summary – Looking Ahead733	20.5 Binding Isotherms Characterize Molecular Association	726	
20.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization731 <i>The Steepness of the Titration Curve Determines the Equilibrium Constant</i> 73220.7 Summary – Looking Ahead733	General Pattern \varphi10 : Saturation Binding (Scatchard, Langmuir)	727	
The Steepness of the Titration Curve Determines the Equilibrium Constant73220.7 Summary – Looking Ahead733	20.6 Isothermal Titration Calorimetry Does a Complete Thermodynamic Characterization	731	
20.7 Summary – Looking Ahead 733	The Steepness of the Titration Curve Determines the Equilibrium Constant	732	
	20.7 Summary – Looking Ahead	733	
20.8 Addendum: Dilution Corrections for Titration Calorimetry 734	20.8 Addendum: Dilution Corrections for Titration Calorimetry	734	

Chapter 21: Electrochemistry	751
21.1 Electrochemical Cells	751
Oxidation Occurs at the Anode and Reduction Occurs at the Cathode	751
A Spontaneous Process Gives a Positive Cell Potential	754
Cell Potentials Depend on Concentration and Pressure (Nernst Equation)	757
Electrochemical Cells Are Used to Determine Activity Coefficients	759
Dead Batteries Are at Equilibrium	761
21.2 Electrochemical Cells Can Be Used to Study Non-Redox Reactions	762
Sparingly Soluble Salt Electrodes Allow the Study of Solubility Equilibria	762
Concentration Cells and Ion Selective Electrodes Convert Concentration Differences to Elec	trode Potentials
Membrane Potentials Depend on Concentration Differences and Osmotic Equilibrium	764
21.3A Closer Look at Electrodes: Chemical Potential	765
Chemical Potential and Electrode Potential	765
Depletion of the Electroactive Species at the Electrode Surface Polarizes the Electrode	766
21.4 Free Energy Relationships in Redox and Acid-Base Reactions	769
Latimer Diagrams Summarize Redox Information	769
Pourbaix Diagrams Summarize Redox and Acid-Base Speciation	771
Frost Diagrams Display the Thermodynamic Stability of the Oxidation States for an Element	775
21.5 Summary – Looking Ahead	776
Chapter 22: Linear Non-equilibrium Thermodynamics	787
22.1 Fluxes Create Entropy: Entropy Production	787
Fluxes are Driven by Thermodynamic Forces	787
Chemical Potential Gradients Drive Chemical Reactions	790
Entropy Production is Localized in the System	791
22.2 Entropy Production for Chemical Reactions is a Flux-Force Relationship	792
22.3 Summary – Looking Ahead	793
Appendix 1: Propagation of Errors	797
Appendix 2: Least Squares Curve Fitting	800
Appendix 3: Data Section	803
Table 7.5.1: Van der Waals coefficients	803
Table 7.5.3: Redlich-Kwong coefficients	803
Table 7.6.1: The coefficient of thermal expansion and isothermal compressibility at 25°C.	803
Table 8.1.1: Thermodynamic Properties of Phase Transitions at 1 atm.	804
Table 8.4.1: Thermodynamic Properties of Inorganic Substances and Aqueous Inorganic and	
Organic Solutions at 298.15 K.	807
Table 8.4.2: Thermodynamic Properties of Organic Substances at 298.15 K.	816
Table 8.4.3: Enthalpies of Combustion at 298.15 K.	820
Figure 16.7.1: (c). Fugacity Coefficient from the Law of Corresponding States.	823
Table 18.3.1: Henry's Law constants and Gibbs energies of desolvation.	824
Table 21.1.1: Standard Reduction Potentials at 25°C.	825