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Chapter 9: Using the First Law 
 
 
1. Write the total differential for V given as a function of the independent variables U and T. 
 
 
Answer:  Given V(U,T) then from Addendum Sec. 7.11, Eq. 7.11.13: 
 

 dV = 






V

U T
 dU + 







V

T U
 dT 

 

These partial derivatives are not so strange as they may first appear. The first can simply be 
inverted to give the fundamental derivative: (V/U)T = 1/(U/V)T. For the second, a process at 
constant energy corresponds to a process in an isolated system. 
 
 
2.  Write the total differential for the new function G with independent variables T and P. 
 
 
Answer:  Given G(T,P) then from Addendum Sec. 7.11, Eq. 7.11.13: 
 

 dG = 






G

T P
 dT + 







G

P T
 dP 

 

We will use this equation often where G is the Gibbs Energy. 
 
 
3.  Determine if the following total differential is exact:  dF = 3y2 dx + 6xy dy 
 
 
Answer:  The general form of the total differential of F(x,y) is given by Eq. 9.1.5. Matching the 
terms in dx and dy identifies the coefficients: 
 

 






F

x y
 =  3y2   and 







F

y x
 = 6xy 

 

The mixed partials are: 
 

 








y





F

x y x
 =  







(3y2)

y x
 and 









x





F

y x y
 = 







(6xy)

x y
 

 

Completing the indicated derivatives gives: 
 

 








y





F

x y x
 =  6y   and 









x





F

y x y
 = 6y 

 

The mixed partials are equal, so the differential is exact and F(x,y) is a state function. Integrating 
either of these partial derivatives gives: F = 3xy2 + c, where c is a constant. Compare the 
differential given in this problem with Example 9.1.2. 
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4. We showed that the differential in Example 9.1.1 is exact: 
 

 dV = 
nR
P  dT – 

nRT
P2  dP  with     







V

T P
 = 

nR
P  and 







V

P T
 = 

– nRT
P2  

 

Separately integrate these partial derivatives to find V. Do indefinite integrals. 
 
 

Answer:  From 






V

T P
 = 

nR
P   V =  dV=  

nR
P  dT =  

nRT
P  + constant 

 

and from 






V

P T
 = 

– nRT
P2   V =  dV=  

– nRT
P2  dP =  

nRT
P  + constant 

 

Both coefficients in the differential are consistent with the same function of V, which is the ideal 
gas law to within a constant. In this sense the differential is “complete.” The same information 
about the original function is available from either partial derivative. Integrating either gives the 
original function. You couldn’t get the same result for an inexact differential. An inexact 
differential is incomplete without the specification of the path of integration. 
 
 
5. Find the partial derivative of the enthalpy with respect to volume at constant temperature from 
dH = dU + PdV + VdP. Express the result in terms of Cv, Cp, , T, (U/V)T, and (H/P)T. 
 
 
Answer: From H  U + PV, dH = dU + PdV + VdP. Now, take the derivative with respect to V at 
constant T: 

 






H

V T
 = 







U

V T
 + P







V

V T
 + V







P

V T
 

Note that 






U

V T
= internal pressure and since 







V

V T
= 1: 

 






H

V T
 = 







U

V T
 + P + V







P

V T
 

Also remember that 






P

V T
 = 

-1
VT

 where T is the isothermal compressibility. 

 






H

V T
 = 







U

V T
 + P – 

1
T

 

This equation shows the relationship of the partial derivative to fundamental properties of the 
system. 
 
 
6. Show that Eq. 9.4.12, dH = dU + nR dT or H =  U + nRT, is consistent with CP = CV + 
nR, which is true for an ideal gas. 
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Answer:  Remember the definitions of the heat capacities: 






U

T V
= Cv and 







H

T P
 = Cp. To find 

(H/T)P, “divide” dH = dU + nRdT by dT at constant P: 
 

 






H

T P
 = 







U

T P
 + nR 







T

T P
       1 

Substituting the definition of Cp, and using (T/T)P = 1 in Eq. 1 gives: 
 

 Cp = 






U

T P
 + nR        2 

 

To find (U/T)P, identify P as the “misplaced” variable and work through the total differential 
of dU, U(V,T): 
 

 dU = 






U

T V
dT + 







U

V T
dV       3 

 

Divide both sides of the equation by dT and specify constant P: 
 

 






U

T P
 = 







U

T V
+ 






U

V T





V

T P
       4 

 

(Remember that we derived this equation in our derivation of Cp–Cv, Eq. 9.4.5). Since (U/V)T 
= 0 for an ideal gas, substitution into Eq. 4 and the definition of Cv gives: 
 

 






U

T P
 = Cv          5 

Then substitution of Eq. 5 into Eq. 2 gives: 
 

 Cp = Cv + nR         6 
 
Alternative Answer:  Starting with H =  U + nRT, remember that for an ideal gas for any 
process, H = Cp T and U = Cv T. Substituting gives Cp T = Cv T + nRT. Division by T 
gives Cp = Cv + nR. 
 
 

7. Show that 






H

V T
 = 







U

V T
 for an ideal gas in a closed system. 

 
 
Answer:  Using the results of Problem 5: 
 

 






H

V T
 = 







U

V T
 + P + V







P

V T
 

 

Note that for an ideal gas, P = nRT/V and: 
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





P

V T
 = 

–nRT
V2  

Substitution gives: 

 






H

V T
 = 







U

V T
 + P + V



–nRT

V2  

The V cancels in the last term to give –nRT/V, which is –P: 

  






H

V T
 = 







U

V T
 + P + –P = 







U

V T
 

 
 

8. Show that 






H

P T
 = (–nRT/P2)







U

V T
   for an ideal gas in a closed system. 

 
 
Answer:  Substituting the definition of enthalpy, H U + PV, into (∂H/∂P)T gives: 
 

 



∂H

∂P T
 = 



∂U

∂P T
 + 



∂(PV)

∂P T
 

 

From the ideal gas law PV = nRT, with n a constant for a closed system: 
 

 



∂H

∂P T
 = 



∂U

∂P T
 + 



∂(nRT)

∂P T
 

 

However, for an isothermal process T is constant and the second term is zero. We can use the 
chain rule to relate (∂U/∂P)T to (∂U/∂V)T: 
 

 



∂H

∂P T
 = 



∂U

∂V T
 



∂V

∂P T
 

 

Using the ideal gas law in the form V = nRT/P gives (∂V/∂P)T = –nRT/P2 and then substitution 
into the last equation gives: 
 

 



∂H

∂P T
 = (–nRT/P2) 



∂U

∂V T
  

 
 
9.  Find H in terms of U for a gas that obeys the Virial-type equation of state at constant 
volume: 

 PV = nRT(1 + B 
n
V) 

We will assume that B is a constant (the second Virial coefficient is actually temperature 
dependent). Use this result to find the change in enthalpy for heating one mole of water vapor 
starting at a pressure of 23.8 torr from an initial temperature of 298.2K to a final temperature of 
373.2 K. Assume the volume is constant for the process. Assume CV = 6/2 nR and B = –425 cm3 
mol-1 (roughly the value for water at 373 K).1 Compare with Example 9.3.2. 
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Answer:  The plan is to use Eq. 9.3.10 and the Virial Equation in terms of the density: 

 PV = nRT(1 + B 
n
V)        1 

Since V is constant, substitution of Eq. 1 into Eq. 9.4.10 gives: 
 

 H =  U + (PV) = U + nRT + (n2RB/V)T    2 
 

   Next we need to find the volume of the gas. As a first approximation we can use the ideal gas 
law and the initial state to get the volume. Converting pressure units gives: 
 

 P = 23.8 torr =  0.03132 atm = 3.173x103 Pa     3 
and then: 
 V = 1.00 mol(8.314 J K-1 mol-1)(298.2 K)/3.173x103 Pa = 0.7814 m3 4 
 

Is this ideal value close enough or do we need to use the Virial equation to get the volume? How 
big is the correction to the volume from the Virial equation? We can use a successive 
approximations approach. We can substitute the V from the ideal gas law into the right-hand side 
of Eq. 1 and then solve for the corrected volume. Solving for V with: 
 

 B = –425. cm3 mol-1 = –0.425 L mol-1 = –4.25x10-4 m3 mol-1  5 

 V  nRT(1 + B 
n
V)/P        6 

but   B 
n
V = –4.25x10-4 m3 mol-1(1 mol)/0.7814 m3 = 5.4x10-4    7 

is negligible compared to 1. So the ideal gas equation of state will do fine for calculating the 
volume. 
   Then as in Example 9.3.2: 
 

  U = CvT = 6/2 nR T = 6/2 (1.00 mol )(8.314 J mol-1K-1)(373.2-298.2K) 
 U = 1.871 kJ         8 
 

Substitution of this value of the internal energy change into Eq 2. gives: 
 

 H = 1.87 kJ + (1.00 mol)(8.314x10-3 kJ mol-1 K-1) (373.2-298.2K)  
     + (1.00 mol)2(8.314 x10-3 kJ mol-1 K-1)(-4.25x10-4 m3 mol-1)(373.2-298.2K)/0.7814 m3 
 H = 1.871 kJ + 0.624 kJ – 0.000339 kJ = 2.495 kJ 
 

So for water vapor under these circumstances, the correction for non-ideality is negligible. We 
did assume that B was a constant, however. At 298.2 K, B is significantly more negative than the 
given value, which would make this correction larger. Eq. 2 is useful in geological circumstances 
where water vapor pressures are much higher and have a decisive effect on the types of minerals 
that are formed. Constant volume conditions are often appropriate for geological processes and 
computer simulations. 
 
 
10.  Show that: 
 

 






H

T V
 = Cv + nR + 

n2RB
V  
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for a gas that obeys the Virial-type equation of state: 

 PV = nRT(1 + B 
n
V) 

Assume that B is a constant (the second Virial coefficient is actually temperature dependent). 
Compare the result to the last problem. 
 
 
Answer:  Using the definition of the enthalpy: H  U + PV: 
 

 






H

T V
 = 







U

T V
 + 







(PV)

T V
 

 

with PV = nRT(1 + B 
n
V) gives: 

 

 






(PV)

T V
  =  nR(1 + B 

n
V)  =  nR + 

n2RB
V  

 

Substitution back into (H/T)V gives the final result: 
 

 






H

T V
 = Cv + nR + 

n2RB
V  

 

since (U/T)V = Cv. For a constant volume process and assuming B is a constant over the 
temperature range gives the integrated result: 
 

 H = CvT + nRT + (n2RB/V)T 
 

as we saw in the last problem. 
 
 
11.  In Section 9.3 for the isothermal reversible expansion of an ideal gas, which is Path 1 in 
Figure 9.3.1, we integrated dH = dU + d(PV)  to prove that H = U. Integrate: 
 

 dH = dU + P dV + V dP       (9.2.5) 
 

directly for an isothermal reversible process and show the result also gives H = U. In other 
words, assuming an ideal gas at constant temperature, substitute P = nRT/V and V = nRT/P and 
then integrate. Compare the integral to Eq. 9.3.10. 
 
 
Answer:   Integrating Eq. 9.2.5: 
 

 H1

H2dH = U1

U2dU + V1

V2PdV + P1

P2VdP     (closed) 1 
 

We need to be very careful about the P in PdV and the V in VdP. The P and V are not constant, 
as they are in Eq. 9.3.18. Assuming an ideal gas, at constant temperature P = nRT/V and V = 
nRT/P. Substituting into Eq. 1 and integrating: 
 

 H = U + 



V1

V2nRT
V dV + 




P1

P2nRT
P dP   (closed, ideal gas, cst. T) 2 
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First note that since the process is isothermal, T is a constant, factors out of the integrals, and 
gives: 
 

 H = U + nRT



V1

V2 1
VdV + nRT




P1

P21
PdP  (closed, ideal gas, cst. T) 3 

and integrating gives: 
 

 H = U + nRT ln



V2

V1
 + nRT ln



P2

P1
   (closed, ideal gas, cst. T) 4 

 

However, for an ideal gas, 
 

 



P2

P1
 = 



V1

V2
          5 

 

Substituting Eq. 5 into Eq. 4 gives 
 

 H = U + nRT ln



V2

V1
 + nRT ln



V1

V2
 = U + nRT ln



V2

V1
 – nRT ln



V2

V1
  6 

 

The last two terms cancel giving: 
 

 H = U      (closed, ideal gas, cst. T) 7 
 

Once again we find that H is independent of the path and integrating dH = dU + d(PV) or dH = 
dU + P dV + V dP is equivalent. The choice of the form of the differential to use is just 
dependent on convenience. 
 
 

12.  Given that: 






H

P T
 = 0, show that 







H

V T
 = 0. 

 
 
Answer:  Since the enthalpy is usually considered a function of the independent variables P and 
T, the “misplaced” variable is the derivative with respect to V. Using the chain rule: 
 

 






H

V T
 = 







H

P T
 






P

V T
 

 

Using the given partial derivative (H/P)T = 0: 
 

 






H

V T
 = 0 

 
 
13.  We will prove in a later chapter that the internal pressure for a Van der Waals gas is given 
by: 
 

 






U

V T
 = 

an2

V2  
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Find Cp – Cv for a Van der Waals gas. 
 
 
Answer:  From Eq. 9.4.7: 
 

 Cp – Cv = 














U

V T
 + P  







V

T P
       1 

 

For a Van der Waals gas:  P = 
nRT

(V – nb) – 
an2

V2 , which upon substitution into Eq. 1 gives: 
 

 Cp – Cv = 



an2

V2  + 
nRT

(V – nb) – 
an2

V2  






V

T P
 = 

nRT
(V – nb) 






V

T P
   2 

 

The remaining partial derivative is difficult to find directly. Notice however that the inverse is 
easier. Solving the Van der Waals equation for T: 
 

 T = 
1

nR 



P + 

an2

V2 (V – nb)       3 
 

Using the product rule: 
 

 






T

V P
 = 

1
nR 









P + 

an2

V2  + (V – nb) 



–2an2

V3      4 

 

We will do a bit of algebra below, but it is sufficient for our purposes to simply divide Eq. 2 by 
Eq. 4 to get the final result: 
 

 Cp – Cv  = nR 

nRT
(V – nb)











P + 

an2

V2  + (V – nb) 



–2an2

V3

     5 

 

In the denominator we can substitute for the first term: 
 

 



P + 

an2

V2  = 
nRT

(V – nb)         6 
 

to give: 
 

Cp – Cv  = nR 

nRT
(V – nb)











nRT

(V – nb)  + (V – nb) 



–2an2

V3

  =  nR 
1





1 + 

(V – nb)2

nRT  



–2an2

V3

 7 

 

Notice that when a = 0, that this last equation reduces to Cp– Cv = nR, which is the correct result 
for an ideal gas. 
 
 
14.  For CO2, JT = 1.11 K bar-1 and Cp,m for CO2 is 37.11 J K-1mol-1. Calculate the change in 
enthalpy per mole of CO2 for an isothermal process for a change in pressure of 1.00 bar. Assume 
that both JT and Cp are constant over the pressure range. 
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Answer:  The process corresponds to the partial derivative (H/P)T. The value of this partial 
derivative is given by the Joule-Thompson coefficient: 
 

 JT = – 
1

Cp
  






H

P T
 or equivalently 







H

P T
 = – JT Cp  

 

Integration assuming a constant JT and Cp gives: 
 

 H = – JT Cp P 
 

Substitution of the values for this problem gives: 
 

 H = – 1.11 K bar-1(37.11 J K-1mol-1) (1.00 bar) = -41.2 J mol-1 
 

For an ideal gas, the change would be zero since the process is isothermal. 
 
 
15.  Determine the “misplaced” variable for (H/V)T and express the result in terms of Cv, Cp, 
, T, (U/V)T, and (H/P)T. 
 
 
Answer:  The partial derivative that is required is (H/V)T. Substituting the definition of 
enthalpy, H  U + PV, gives using the product rule: 
 

 






H

V T
 = 







(U + PV)

V T
 = 







U

V T
 + P 







V

V T
 + V 







P

V T
   1 

 

Given that (V/V)T = 1 and from Eq. 7.6.14: 
 

 






V

P T
 = – V T or the inverse:  







P

V T
 = 

–1
V T

    2 

 

Substituting Eq. 2 into Eq. 1 gives: 
 

 






H

V T
 = 







U

V T
 + P – 

1
T

 

 

Everything on the right-hand side is in the form of a fundamental partial derivative or can be 
obtained from the equation of state of the substance. Compare this problem to Problem 5. 
 
 
16.  Show that for an ideal gas Cv is not a function of the volume of the system and that Cp is not 
a function of the pressure of a system. In other words show that, for a closed system: 
 

 






Cv

V T
= 0   







Cp

P T
 = 0 

 
 
Answer: (a). The definition of the constant volume heat capacity is: 
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 Cv = 






U

T V
 

 

Substitution into the partial derivative with respect to V, above, gives: 
 

 






Cv

V T
 = 









V





U

T V T
  =  









T





U

V T V
 

 

The order of differentiation can be reversed because U is a state function. The fact that mixed 
partials are equal is the basis of the Euler criterion for exactness for state functions. For an ideal 
gas, (U/V)T = 0, giving: 
 

 






Cv

V T
 = 0 

 

In other words Cv is not a function of volume for an ideal gas. 
(b).  The definition of the constant pressure heat capacity is: 
 

 Cp = 






H

T P
 

 

Substitution into the partial derivative with respect to V, above, gives: 
 

 






Cp

P T
 = 









P





H

T P T
  =  









T





H

P T P
 

 

The order of differentiation can be reversed because H is a state function. For an ideal gas, 
(H/P)T = 0, giving: 
 

 






Cp

P T
 = 0 

 

In other words Cp is not a function of pressure for an ideal gas. 
 
 

17.  Show that 






H

T V
= CP + 







H

P T








. 

 
 
Answer:  We can get a hint of how to proceed by substituting in the definition of Cp and also that 
/T = (P/T)V. Correspondingly we need to show that: 
 

 






H

T V
= 






H

T P
 + 







H

P T





P

T V
 

 

Since we normally consider H(P,T) and not H(V,T), we can consider the “misplaced” variable 
the constant V specification. Notice that given H(P,T) the total differential of H is: 
 

 dH = 






H

T P
 dT + 







H

P T
 dP 
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Notice that the partials in this total differential also occur in the relationship we are trying to 
derive. Simply “dividing” this last equation by dT and specifying constant V for any new partial 
derivative gives: 
 

 






H

T V
= 






H

T P
 





P

P V
+ 






H

P T





P

T V
 = 







H

T P
 + 







H

P T





P

T V
 

 

Using the definition of the constant pressure heat capacity, Cp = (H/T)P, and the result from 
Eq. 7.6.21, that is /T = (P/T)V, gives: 
 

 






H

T V
= CP + 







H

P T








 

 

Notice that it is often helpful to “work backwards” from the original statement of the problem. 
Working “backwards” can help give you hints on how to proceed. Just remember to present the 
full derivation in the “forward” direction as we did here. 
 
 
18.  The Joule-Thomson coefficient is JT = (T/P)H. Show that the corresponding coefficient 
for constant internal energy processes is given by: 
 

 






T

V U
  = – 

1
Cv

  






U

V T
 

 
 
Answer:  Starting with (T/V)U, the “misplaced” variable is the constant internal energy. Since 
U is held constant, we can set the total differential ofU equal to zero. As normal we consider 
U(V,T), in other words the independent variables for U are V and T: 
 

 dU = 






U

V T
 dV + 







U

T V
 dT = 0 

 

Subtracting the volume dependent term from both side sof the equality: 
 

 






U

T V
 dT = – 







U

V T
 dV 

 

“Dividing” both sides of the equation by dV and applying constant U: 
 

 






T

V U
  =  – 







U

V T







U

T V

 

 

Using the definition of the constant volume heat capacity: Cv = 






U

T V
 

gives the final result: 
 

 






T

V U
  = – 

1
Cv

  






U

V T
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This result is an example of the Euler chain relationship. 
 
 
19.  Rewrite Figure 9.7.1 for the partial derivatives: 
 

 






U

T P
  







T

U V
  







U

P T
  







U

T P
  







T

V U
 

 
 
Answer:  The partial derivative conversions are shown below: 
 







U

T P
= 






H

T P
 – P 







V

T P
 = Cp + PV 

            U = H – PV 

         






T

U V
 = 

1







U

T V

 = 
1

Cv
 

 

      H  U + PV 
 

           definition     invert 
   misplaced numerator        misplaced numerator 
 

 

            






U

T P
     







T

U V
 

 

   






U

P T
  







U

T P
      







T

V U
 

 

   misplaced denominator         misplaced constant variable misplaced constant variable 
 chain rule        total differential, dU    total differential, dU=0 
 

    






U

P T
  = 







U

V T
 






V

P T
 

     






U

P T
 = 







U

V T
 (VT) 

dU =






U

V T
dV + 







U

T V
dT 







U

T P
=






U

V T





V

T P
 + 







U

T V
 

          =  






U

V T
 V + Cv 

dU =






U

V T
dV + 







U

T V
dT = 0 

   






T

V U
= 

– 






U

V T

  






U

T V

 = 
– 






U

V T

Cv
 

 

Figure P.1:  Partial Derivative Conversion. Partial derivative manipulations to convert 
unknown partial derivatives to those involving Cv, Cp, , T, (U/V)T, and (H/P)T. 

 
 
20.  One mole of an ideal diatomic gas at 200. K is compressed in a reversible adiabatic process 
until its temperature reaches 300. K. Given that Cv,m = 5/2R, calculate q, w, U, and H. 
 
 
Answer:  For a reversible adiabatic expansion of an ideal gas q = 0, which gives U = w. In 
addition, U = Cv T andH = Cp T for any process in an ideal gas: 
 

 U = Cv T = 5/2 nRT  = 5/2 (1 mol)(8.314 J K-1 mol-1)(300. – 200. K) = 2078. J 
 U = 2.08 kJ  = w 
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With Cp–Cv = nR, Cp = 7/2 nR: 
 

 H = Cp T = 7/2 nRT  = 7/2 (1 mol)(8.314 J K-1 mol-1)(300. – 200. K) = 2910. J 
 H = 2.91 kJ 
 
 
21. Calculate q, w, U, and H for a reversible isothermal expansion of 10.0 mol of an ideal 
diatomic gas. The initial pressure is 5.00 bar, and the temperature is 298.2 K. The final pressure 
is 1.00 bar. Assume Cv = 5/2 nR (equipartition neglecting vibration). 
 
 
Answer:  The plan is to use T=0, q = –w, U = H = 0 for an isothermal expansion of an ideal 
gas. For a reversible isothermal expansion in an ideal gas, w = – nRT ln(V2/V1). 
   Using P2V2= P1V1 to relate the work to the pressure change gives Eq. 9.8.25: 
 

 w = – nRT ln(V2/V1) = – nRT ln(P1/P2) = nRT ln(P2/P1) 
 w = 10.0 mol(8.3145 J K-1 mol-1)(1 kJ/1000 J)(298.15 K) ln(1.00/5.00) = -39.9 kJ 
 q = – w = 39.9 kJ 
 
 
22.  Calculate q, w, U, and H for an isothermal expansion of 10.0 mol of an ideal diatomic gas 
against a constant external pressure of 1.00 bar. The final pressure of the gas is equal to the 
external pressure, P2 = Pext. The initial pressure is 5.00 bar, and the temperature is 298.2 K. 
Assume Cv = 5/2 nR (equipartition neglecting vibration). 
 
 
Answer:  The plan is to use T=0, q = –w, U = H = 0 for an isothermal expansion of an ideal 
gas. For an irreversible expansion, w = – PextV. 
   The initial and final volumes are calculated from the ideal gas equation of state: 
 

 V1 = (10.0 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(5.0 bar) = 49.58 L 
 V2 = (10.0 mol)(0.083145 L bar K-1 mol-1)( 298.15 K)/(1.00 bar) = 247.9 L 
 

The work done is:  w = – PextV: 
 

 w = –(1.00 bar)(1x105Pa/1 bar)(247.9 – 49.58 L)(1 m3/1000 L) = -19.8 kJ 
 q = – w = 19.8 kJ 
 

Notice that the magnitude of the work done is significantly less than the reversible case in the 
last problem, because the gas is expanding against a constant external pressure. 
 
 
23.  The volume of 1.00 mol of an ideal diatomic gas exactly doubles in a reversible adiabatic 
expansion. The initial pressure is 5.00 bar and the initial temperature is 298.2 K. Calculate q, w, 
U, and H. Use the constant volume heat capacity for water vapor, Cv = 25.3 J K-1 mol-1. 
 
 
Answer:  The plan is to use Eq. 9.8.13 to find the final temperature, and then for an adiabatic 
expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. 
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   Using the heat capacity for water Cv/nR = 25.3 J K-1 mol-1/8.314 J K-1 mol-1 = 3.04. From Eq. 
9.8.13: 
 

 



T2

T1

Cv/nR
 = 



V1

V2
 giving    T2 = T1 



V1

V2

1/3.04
 

 T2 = 298.15 K (½)0.3286 = 298.15 K(0.7963) = 237.4 K 
 w = U = Cv T = (1.00 mol)(25.3 J K-1 mol-1)(237.4 – 298.15 K) = -1537. J 
 w = U = -1.54 kJ 
 

Assuming ideal gas behavior Cp = Cv + nR = 25.3 + 8.314 J K-1 mol-1 = 33.6 J K-1 mol-1: 
 

 H = Cp T = (1.000 mol)(33.6 J K-1 mol-1) (237.4 – 298.15 K) = -2041. J 
       = -2.04 kJ 
 

The temperature difference is -60.8 K, so you might expect only 2 significant figures in the 
result. But a quick propagation of errors treatment allows 3 significant figures for U, with T = 
-60.79  0.18 K based on 3 significant figures in the heat capacity. On a test, however, when you 
don’t have time to do an error analysis, it would be safest to report only 2 significant figures in 
the final U and H. The heat capacity limits the number of significant figures to no more than 
three. 
 
 
24. Calculate q, w, U, and H for a reversible adiabatic expansion of an ideal diatomic gas. The 
initial volume is 50.0 L, the initial pressure is 5.00 bar, and the initial temperature is 298.2 K. 
The final volume is 157.8 L. Assume Cv = 5/2 nR (equipartition neglecting vibration). 
 
 
Answer:  The plan is to use Eq. 9.8.13 to find the final temperature, and then for an adiabatic 
expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. 
   The number of moles of gas is calculated from the ideal gas equation of state: 
 

 n = PV/RT = 5.00 bar 50.0 L/0.083145 J K-1 mol-1/298.15 K = 10.08 mol 
 

Using the equipartition predicted heat capacity, neglecting vibrations, Cv = 5/2 nR, gives Cv/nR = 
5/2. From Eq. 9.8.13: 
 

 



T2

T1

Cv/nR
 = 



V1

V2
 giving    T2 = T1 



V1

V2

2/5
 

 T2 = 298.15 K 



50.0

157.8

2/5
 = 298.15 K(0.6315) = 188.3 K 

 w = U = Cv T = 5/2 (10.08 mol)(8.3145 J K-1 mol-1)(188.3 – 298.15 K) 
     = -23.0 kJ 
 

Assuming ideal gas behavior Cp = Cv + nR = 7/2 nR: 
 

 H = Cp T = 7/2 (10.08 mol)(8.3145 J K-1 mol-1)(188.3 – 298.15 K) = -32.2 kJ 
 
 



15 
Ch. 9: Using the First Law 

25.  Calculate the initial and final volume, q, w, U, and H for a reversible adiabatic expansion 
of 2.000 mol of an ideal monatomic gas. The initial pressure is 10.00 bar and the initial 
temperature is 298.2 K. The final pressure is 1.000 bar. Use the heat capacities predicted by 
equipartition. Verify that Eqs. 9.8.19 and 9.8.21, P2 V2

 = P1V1
, give the same result. 

 
 
Answer:  For an adiabatic expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. 
For a monatomic gas Cv = 3/2 nR and Cp = Cv + nR = 5/2 nR. Using Eq. 9.8.19 to determine the 
final temperature: 
 

 



T2

T1

Cp/nR
 = 



P2

P1
 and T2 = T1 (P2/P1)2/5 = 298.15 K(1.000/10.00)2/5 

 T2 = 118.70 K 
 

 U = Cv (T2- T1) = 3/2 (1.000 mol)(8.314 J K-1 mol-1)(118.70 – 298.15 K) 
 U = -2238. J 
 

 H = Cp (T2- T1) = 5/2 (1.000 mol)(8.314 J K-1 mol-1)(118.70 – 298.15 K) 
 H = -3730. J 
 

The initial and final volumes are determined from the ideal gas equation of state: 
 

 V1 = (1.000 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(10.00 bar) = 2.4790 L 
 V2 = (1.000 mol)(0.083145 L bar K-1 mol-1)(118.70 K)/(1.000 bar) = 9.8689 L 
 

Alternatively, for the final volume,  = Cp/Cv = 5/3 and using P2V2
 = P1V1

: 
 

 V2 = V1(P1/P2)1/ = 2.4790 L(10.00/1.000)3/5 = 9.8689 L 
 
 
26. Calculate the initial and final volume, q, w, U, and H for a reversible adiabatic expansion 
of an ideal diatomic gas. The initial pressure is 5.000 bar and the initial temperature is 298.2 K 
for 10.00 moles. The final pressure is 1.000 bar. Assume Cv = 5/2 nR (equipartition neglecting 
vibration). 
 
 
Answer:  The plan is to use Eq. 9.8.19 to calculate the change in temperature for the reversible 
adiabatic expansion. Then, for an adiabatic expansion of an ideal gas, q = 0, U = w, U = Cv 
T, H = Cp T. 
   Assuming ideal gas behavior Cp = Cv + nR = 7/2 nR. For a reversible expansion, the change in 
temperature is given by Eq. 9.8.19: 
 

 



T2

T1

Cp/nR
 = 



P2

P1
 and T2 = T1 (P2/P1)2/7 = 298.15 K(1.000/5.000)2/7 

 T2 = 188.25 K 
 

 U = Cv (T2- T1) = 5/2 (10.000 mol)(8.314 J K-1 mol-1)(188.25 – 298.15 K) 
 w = U = -22.844 kJ 
 

 H = Cp (T2- T1) = 7/2 (10.000 mol)(8.314 J K-1 mol-1)(188.25 – 298.15 K) 
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 H = -31.982 kJ 
 

The initial and final volumes are determined from the ideal gas equation of state: 
 

 V1 = (10.000 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(5.000 bar) = 49.579 L 
 V2 = (10.000 mol)(0.083145 L bar K-1 mol-1)(154.43 K)/(1.000 bar) = 128.40 L 
 

Alternatively, for the final volume, using P2V2
 = P1V1

: 
 

 V2 = V1(P1/P2)1/ = 49.579 L(5.000/1.000)5/7 = 156.52 L 
 

Notice that the magnitude of the work done is significantly less than the corresponding 
isothermal expansion in Problem 21, since the temperature drops, causing the pressure to 
decrease, decreasing the pressure against which the gas expands. 
 
 
27.  Calculate the final pressure, initial and final volume, q, U, and H for a reversible 
adiabatic expansion of an ideal diatomic gas that does -10.00 kJ of work in the process. The 
initial pressure is 10.00 bar and the initial temperature is 298.2 K for 10.00 moles. Assume Cv = 
5/2 nR (equipartition neglecting vibration). 
 
 
Answer:  The plan is to calculate the final temperature from w = U = Cv T, and from the final 
temperature the final pressure is calculated from Eq. 9.8.19. 
   For an adiabatic expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. Solving 
for the change in temperature from the work specified: 
 

 w = U = Cv T = -10000. J 
giving: 
 -10000. J =  5/2 (10.00 mol)(8.3145 J K-1mol-1)(T2 – 298.15 K) 
 T2 = 250.04 K 
 H = Cp (T2- T1) = 7/2 (10.000 mol)(8.314 J K-1 mol-1)( 250.04 – 298.15 K) 
 H = -14.00 kJ 
 

   Assuming ideal gas behavior Cp = Cv + nR = 7/2 nR. For a reversible expansion, the change in 
temperature and pressure are related by Eq. 9.8.19: 
 

 



T2

T1

Cp/nR
 = 



P2

P1
 and P2 = P1 (T2/T1)7/2 = 10.0 bar(250.04 K /298.15 K)7/2 

 P2 = 5.4015 bar 
 

The initial and final volumes are determined from the ideal gas equation of state: 
 

 V1 = (10.000 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(10.00 bar) = 24.790 L 
 V2 = (10.000 mol)(0.083145 L bar K-1 mol-1)(250.04 K)/(5.4015 bar) = 38.488 L 
 

Alternatively, for the final volume, using P2V2
 = P1V1

: 
 

 V2 = V1(P1/P2)1/ = 24.790 L(10.00/5.4015)5/7 = 38.488 L 
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Ch. 9: Using the First Law 

The temperature drops less in this problem as compared to Example 9.8.1c, the magnitude of the 
work done per mole is less, and w = U = Cv T. The work comes at the expense of the internal 
energy, since less work is done the internal energy change is less. 
 
 
28. Calculate the initial and final volume, q, w, U, and H for an adiabatic expansion of an 
ideal diatomic gas against a constant external pressure, with the final pressure of the gas equal to 
the external pressure, P2 = Pext. The initial pressure is 5.000 bar and the initial temperature is 
298.2 K for 10.00 moles. The external pressure is 1.000 bar. Use the heat capacities predicted by 
equipartition, neglecting vibration. 
 
 
Answer:  For an adiabatic expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. 
For an adiabatic irreversible expansion against a constant external pressure of Pext: 
 

 U = Cv (T2- T1) U = w = - Pext (V2 –V1)    1 
 

Solve these two expressions simultaneously for T2 gives: 
 

 Cv (T2 – T1) = - Pext (V2 – V1)       2 
 

For the final state to be in equilibrium with the surroundings, P2 = Pext. Then for an ideal gas V2 
= nRT2/P2 = nRT2/Pext: 
 

 Cv (T2- T1) = - Pext 



nRT2

Pext
 - 

nRT1

P1
      3 

 

Divide both sides of the equation by nR: 
 

 
Cv

nR (T2- T1) = - Pext 



T2

Pext
 - 

T1

P1
 = - T2 + 

Pext

P1
 T1     4 

 

Collecting terms in T2 and T1: 
 

 



Cv

nR + 1  T2 = 
Cv

nR T1 + 
Pext

P1
 T1       5 

 

Solving for T2: 
 

 T2 = 




Cv

nR + 
Pext

P1





Cv

nR + 1
 T1        6 

 

For a diatomic gas, neglecting vibrations, Cv/nR = 5/2: 
 

 T2 = 




5/2 + 

1.000 bar
5.000 bar

( )5/2 + 1
 298.2 K      7 

 

 T2 = 230.00 K 
 U = Cv (T2- T1) = 5/2 (10.000 mol)(8.314 J K-1 mol-1)(230.00 – 298.15 K) 
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       = -14.17 kJ 
 

Using Cp = Cv + nR = 5/2 nR + nR = 7/2 nR: 
 

 H = Cp (T2- T1) = 7/2 (10.000 mol)(8.314 J K-1 mol-1)(230.00 – 298.15 K) 
       = -19.83 kJ 
 

The initial and final volumes are determined from the ideal gas equation of state: 
 

 V1 = (10.000 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(5.000 bar) = 49.579 L 
 V2 = (10.000 mol)(0.083145 L bar K-1 mol-1)(230.00 K)/(1.000 bar) = 191.23 L 
 

The work is given by w = U = -14.17 kJ, or checking for consistency: 
 

 w = - PextV = - (1.000 bar)(1x105 Pa/1 bar)(191.23 – 49.579 L)(1 m3/1000 L)= 
     = -14.17 kJ 
 

The magnitude of the work is less than the reversible expansion, Problem 26, as expected, since 
the gas is expanding against a constant external pressure. The magnitude of the work is much 
less than Problem 21, because in addition to being irreversible, the temperature also decreases. 
 
 
29. Consider an adiabatic expansion against a constant external pressure, Pext, with the final 
pressure of the gas equal to the external pressure. The initial pressure is 10.00 bar and the initial 
temperature is 298.2 K for 10.00 moles of an ideal diatomic gas. Calculate the external pressure 
that is required for -10.00 kJ of work to be done by the gas. Calculate the final temperature, 
volume, q, U, and H. Use the heat capacities predicted by equipartition, neglecting vibration. 
 
 
Answer:  For an adiabatic expansion of an ideal gas, q = 0, U = w, U = Cv T, H = Cp T. 
For an adiabatic irreversible expansion against a constant external pressure of Pext: 
 

 U = Cv (T2- T1) U = w = - Pext (V2 –V1)    1 
 

Solve these two expressions simultaneously for Pext to give: 
 

 Cv (T2 – T1) = - Pext (V2 – V1)       2 
 

For the final state to be in equilibrium with the surroundings, P2 = Pext. Then for an ideal gas V2 
= nRT2/P2 = nRT2/Pext: 
 

 Cv (T2- T1) = - Pext 



nRT2

Pext
 - 

nRT1

P1
      3 

 

Divide both sides of the equation by nR: 
 

 
Cv

nR (T2- T1) = - Pext 



T2

Pext
 - 

T1

P1
 = - T2 + 

Pext

P1
 T1     4 

 

Collecting terms in T2 and T1: 
 

 



Cv

nR + 1  T2 = 
Cv

nR T1 + 
Pext

P1
 T1       5 
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Ch. 9: Using the First Law 

Solving Eq. 5 for Pext = P2: 
 

 



Cv

nR + 1  
T2

T1
 - 

Cv

nR = 
Pext

P1
       6 

 

 Pext = P1 









Cv

nR + 1
T2

T1
 - 

Cv

nR        7 
 

For a diatomic gas, neglecting vibrations, Cv/nR = 5/2. Solving for the final temperature from the 
work gives: 
 

 w = U = Cv (T2 – T1) 
 -10000. J = 5/2 (10.00 mol)(8.314 J K-1 mol-1)(T2 – 298.15 K) 
 T2 = 250.04 K 
 

The constant pressure for the expansion from Eq. 7 is: 
 

 Pext = P1 



( )5/2 + 1

250.04 K
298.15 K - 5/2  

 

 Pext = 4.3525 bar 
 

The initial and final volumes are determined from the ideal gas equation of state: 
 

 V1 = (10.000 mol)(0.083145 L bar K-1 mol-1)(298.15 K)/(10.00 bar) = 24.790 L 
 V2 = (10.000 mol)(0.083145 L bar K-1 mol-1)(250.04 K)/(4.3525 bar) = 47.765 L 
 

Using Cp = Cv + nR = 5/2 nR + nR = 7/2 nR: 
 

 U = w = -10000. J = -10.00 kJ 
 H = Cp (T2 – T1) = 7/2 (10.000 mol) (8.314 J K-1 mol-1)(250.04 – 298.15 K) 
       = -14.00 kJ 
 
Notice that the change in temperature for this problem is the same as in Problem 27, since w = 
U = CvT for an adiabatic process, reversible or irreversible. 
 
 
30. The relationships of the variables that are being held constant for the partial derivative 
transformation in Eq. 9.4.5 are sketched Figure 9.10.1. (a). Sketch the corresponding 
relationships for the transformation: 
 

 






H

T V
=  







H

P T





P

T V
+ 






H

T P
 

 

(b). Rewrite this expression in terms of the fundamental properties, Cv, Cp, , T, and JT, and 
integrate the resulting expression assuming that the temperature range is sufficiently narrow that 
the system properties are constant. 
 
 
Answer:  The change in state for the constant volume path may simply be accomplished using a 
constant temperature path followed by a constant pressure path. 
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The direct path is shown as a straight line because, assuming an ideal gas with P = nRT/V: 
 

 






P

T V
 = 

nR
V   gives a linear relationship at cst. V:    dP = 

nR
V  dT 

 

(b).The two-step path is a more convenient way of accomplishing the same change in state, since 
the values of the partial derivatives are available from experiment; which are tabulated in the 
form of Joule-Thomson coefficients and constant pressure heat capacities. Using Eq. 9.6.10, Eq. 
7.6.16, and the constant pressure heat capacity, Eq. 7.8.24: 
 

 






H

T V
=  







H

P T





P

T V
+ 






H

T P
 = – Cp JT 









T
 + Cp 

 
If these system properties are all constant then the infinitesimals may be replaced by finite 
differences (Sec. 9.3): 
 

 
H
T

 = – Cp JT 








T
 + Cp 

 

Direct Path 

Two-step Path 

P 

T 

T1, P1 

T2,P2 





∂H

∂P
T
 





∂H

∂T
V
 





∂H

∂T P
 


