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Chapter 9: Using the First Law 
 

Calculate q, w, ∆U, and ∆H for a reversible adiabatic expansion in a closed system for 
one mole of an ideal monatomic gas. The initial pressure is 10.0 bar, the initial 
temperature is 298.2 K, and the final pressure is 1.00 bar. 

 
 
   The principles underlying the First Law have a firm mathematical foundation. We should take 
advantage of the underlying structure of the mathematics to help us find the solutions for 
difficult problems. Calculus provides a cohesive structure and guidance for studying chemical 
processes. Thermodynamics is a very practical discipline. The success of thermodynamics 
should be judged by its ability to uncover useful insights into physical phenomena. The goal in 
this chapter is to gain experience in the manipulative techniques so that we can instead focus on 
the chemical phenomena. We often study processes for ideal gases. Using ideal gases acts as a 
point of comparison for non-ideal systems and allows us to concentrate on fundamental 
principles and not confounding details. Ideal gas approximations are surprisingly often 
sufficiently accurate for many purposes. The techniques developed in this chapter are generally 
useful and will help us build a theory of chemical reactivity. 
 
9.1 State Functions Have Exact Differentials 
 

   The internal energy is the heat transfer at constant volume. This result suggests that the internal 
energy is best considered a function of the independent variables V and T. We symbolize this 
choice of independent variables by: U(V,T). For a closed system, with PV-work only, the total 
differential of the internal energy can be immediately written based on the general form in Eq. 
7.11.13 as: 
 

 dU = 






∂U

∂T V
 dT +







∂U

∂V T
 dV    (closed, PV-work)  (7.11.14)  9.1.1 

 

because the internal energy is a state function (see also Eq. 7.11.14). The definition of the 
constant volume heat capacity, Eq. 7.8.7, is (∂U/∂T)V = Cv, which upon substitution into Eq. 
9.1.1 gives: 
 

 dU = Cv dT + 






∂U

∂V T
 dV     (closed, PV-work) 9.1.2 

 

The differential of the internal energy is exact, as discussed in Addendum Sec. 7.11. The 
differential is a function of the state of the system only. The differential of the internal energy 
can be integrated knowing only the initial and final states of the system, without information on 
the path of the process. 
   The enthalpy is the heat transfer at constant pressure, which suggests that the enthalpy is best 
considered a function of independent variables P and T, H(P,T). The total differential of the 
enthalpy for a closed system, with PV-work only, is also exact: 
 

 dH = 






∂H

∂T P
 dT + 







∂H

∂P T
 dP     (closed, PV-work) 9.1.3 

 

Using the definition of the constant pressure heat capacity, Eq. 7.8.24, (∂H/∂T)P = Cp, gives: 
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 dH = Cp dT + 






∂H

∂P T
 dP     (closed, PV-work) 9.1.4 

 

Eqs. 9.1.1-9.1.4 can be integrated for any general process, once the values for the partial 
derivatives are known. Cv, Cp, (∂U/∂V)T, and (∂H/∂P)T are partial derivatives that characterize 
the system under study. In particular, (∂U/∂V)T, and (∂H/∂P)T play comparable roles, for 
processes at constant V and P, respectively. One of the major goals of this chapter and successive 
chapters is to understand these important parameters. The distinction between state functions and 
path functions on the one hand and exact and inexact differentials on the other is particularly 
useful, in this regard. 
 
Mixed Partials Are Equal: The Euler Criterion for Exactness:  Exact differentials are easy to 
integrate; however, the path must be specified for inexact differentials. Given an expression in 
differential form, can you determine if the differential is exact? The general form for the total 
differential of a state function of two variables x and y is given by Eq. 7.11.13 as: 
 

 dF = 






∂F

∂x y
 dx + 







∂F

∂y x
 dy        9.1.5 

 

The Euler Criterion  for exactness is that the mixed partial derivatives are equal: 
 

 






∂

∂y





∂F

∂x y x
 = 






∂

∂x





∂F

∂y x y
      (exact)  9.1.6 

 

This relationship is also called Cauchy’s criterion for integrability, or the cross derivative 
equality test. Several examples will help to clarify the test for exactness. 
 
 
              

Example 9.1.1: 

Determine if the following total differential is exact:   dV = 
nR
P  dT – 

nRT
P2  dP 

 
 
Answer:  The total differential of the volume is given by Eq. 7.11.11. Matching the terms in dP 
and dT identifies the coefficients: 
 

 dV  = 






∂V

∂T P
 dT + 







∂V

∂P T
 dP              (7.11.11) 

   ↓         ↓ 

 dV =   
nR
P  dT    –  

nRT
P2  dP 

 

giving 






∂V

∂T P
 = 

nR
P  and 







∂V

∂P T
 = 

– nRT
P2  

 

The mixed partials are: 
 



371 
 

 






∂

∂P
 






∂V

∂T P T
 = 






∂

∂P
 






nR

P T
 and 







∂

∂T





∂V

∂P T P
 =  







∂

∂T




– nRT

P2
P
 

 

Completing the indicated derivatives gives: 
 

 






∂

∂P
 






∂V

∂T P T
 = – 

nR
P2   and 







∂

∂T





∂V

∂P T P
 =  – 

nR
P2   

 

The mixed partials are equal, so the differential is exact and V(P,T) is a state function. Thinking 
of this problem in another way, for an ideal gas V = nRT/P, and the total differential is given by 
Eq. 7.11.11 with the explicit derivatives (∂V/∂T)P = nR/P and (∂V/∂P)T = – nRT/P2. The total 
differential given in the original problem is the result of differentiation of the equation of state of 
the gas. The partial derivatives are both consistent with V = nRT/P. 
 
              

Example 9.1.2: 
Determine if the following total differential is exact:  dF = 3y2 dx + 6xy2 dy 
 
 
Answer:  The general form of the total differential of F(x,y) is given by Eq. 9.1.5. Matching the 
terms in dx and dy identifies the coefficients: 
 

 






∂F

∂x y
 =  3y2   and 







∂F

∂y x
 = 6xy2 

 

The mixed partials are: 
 

 






∂

∂y





∂F

∂x y x
 =  







∂(3y2)

∂y x
 and 







∂

∂x





∂F

∂y x y
 = 






∂(6xy2)

∂x y
 

 

Completing the indicated derivatives gives: 
 

 






∂

∂y





∂F

∂x y x
 =  6y   and 







∂

∂x





∂F

∂y x y
 = 6y2 

 

The mixed partials are not equal, so the differential is inexact and F(x,y) is a path function. There 
is no possible function F(x,y) with the explicit derivatives (∂F/∂x)y = 3y2 and (∂F/∂y)x = 6xy2. 
 
              

 
 
The identification of Eqs. 9.1.1-9.1.4 as exact differentials and U and H as state functions allows 
a wide variety of problems to be easily solved. In addition we can relate changes in internal 
energy to changes in enthalpy through the definition of the enthalpy and the differentials in Eqs. 
7.8.19-7.8.21, dH = dU + d(PV) =dU + PdV + VdP. You may not have experience with 
differentials. The next two sections are designed to help you become more comfortable with 
differential expressions and to expand on the important concept of the path independence of state 
functions. 
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9.2  Differentials: A differential is a derivative “waiting to happen.” 
 

   In this section we will practice manipulating state functions from their definitions. The 
definition of enthalpy, H ≡ U + PV, is in a form that we will see often, and the manipulation of 
the definition of enthalpy will be analogous to problems that we will see later. H ≡ U + PV is a 
simple statement; however, what we really want to know is how enthalpy changes for a process, 
∆H. For example, how does enthalpy change when we change the temperature, or the pressure, 
or the volume of a system? Let’s start with a cup of coffee on your desk and ask how the 
enthalpy changes with a change in temperature for a constant pressure process. Consider then 
that enthalpy is a function of temperature and pressure, H(T,P), and find the derivative with 
respect to temperature from H ≡ U + PV: 
 

 






∂H

∂T P
 = 






∂U

∂T P
 + 






∂(PV)

∂T P
        9.2.1 

 

and then using the product rule: 
 

 






∂H

∂T P
 = 






∂U

∂T P
 + P







∂V

∂T P
 + V







∂P

∂T P
       9.2.2 

 

For a constant pressure process the last derivative is zero since pressure is a constant. However, 
now let’s change the problem, and ask what would happen if the volume was held constant 
instead of the pressure. Constant volume processes result from placing the sample in a rigid 
container, like a calorimeter bomb. For a change in temperature for a constant volume process, 
the pressure wouldn’t remain constant, so Eq. 9.2.2 won’t work anymore. For a constant volume 
process we could consider enthalpy as a function of temperature and volume, H(T,V), and redo 
the derivative with respect to temperature: 
 

 






∂H

∂T V
 = 






∂U

∂T V
 + P







∂V

∂T V
 + V







∂P

∂T V
       9.2.3 

 

We could also ask how the enthalpy changes with pressure for a constant temperature process 
and redo the derivative again. The number of equations is starting to increase and it is getting 
difficult to focus on the underlying ideas. Instead, we could focus on the differential. Notice in 
Eqs. 9.2.2 and 9.2.3 that the “numerators” are the same. For an infinitesimal process for a closed 
system the differential is given as: 
 

 dH = dU + d(PV)        (7.8.19) 9.2.4 
 

or using the product rule for differentiation 
 

 dH = dU + P dV + V dP       (7.8.20) 9.2.5 
 

Notice that the “numerators” in Eq. 9.2.1 are the same as Eq. 9.2.4 and the “numerators” in Eqs. 
9.2.2 and 9.2.3 are the same as the differential in Eq. 9.2.5. The power of differentials is that they 
are valid no matter which of T, V, or P is changing. Notice that we use the product rule for 
differentials in the same fashion as for normal derivatives, since a differential is really an 
intermediate step in finding the derivative. From the differential, we can form the derivatives for 
H directly, by essentially “dividing” by the infinitesimal for the desired independent variable. Of 
course, since these are partial derivatives, we also need to keep track of all the constant variables. 
This “division” process is frowned upon by mathematicians, but works generally none-the-less. 
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For example, dividing Eq. 9.2.5 by dT at constant P gives Eq. 9.2.2, which we derived directly 
without any tricks. Dividing Eq. 9.2.5 by dT at constant V gives Eq. 9.2.3. A problem we haven’t 
tackled yet is the pressure dependence of the enthalpy at constant temperature. Using the 
differential, Eq. 9.2.5, and “dividing” by dP at constant T gives: 
 

 






∂H

∂P T
 = 






∂U

∂P T
 + P







∂V

∂P T
 + V







∂P

∂P T
       9.2.6 

 

In other words, you can think of a differential as a derivative “waiting to happen.” The advantage 
of working with differentials is that differentials have properties that help to simplify many 
problems, regardless of the independent variable. One important property of the differential of a 
state function is that they are easy to integrate. 
 
              

Example 9.2.1 
(a). Find the differential for a new state function A defined as A ≡ U – TS. (b). From the 
differential find the derivative of A with respect to T at constant V. 
 
Answer:  (a). Using the product rule for differentiation: dA = dU – T dS – S dT. 
(b). Then dividing by dT at constant V gives: 
 

 






∂A

∂T V
 = 






∂U

∂T V
 – T







∂S

∂T V
 – S







∂T

∂T V
 

 

Remember that 






∂U

∂T V
 = Cv and note that the derivative of T with respect to T is just one, so this 

equation simplifies to 

 






∂A

∂T V
 = Cv – T







∂S

∂T V
 – S 

              

 
 
9.3  Integrating Differentials: A differential is an integral “waiting to happen.” 
 

   A differential is a derivative “waiting to happen.” But, a differential is also an integral “waiting 
to happen.” This dual use gives differentials an important central role in helping us solve 
problems. The differential tells us the variable for the integration. For example, for a reversible 
expansion at constant pressure: 
 

 ⌡⌠V1

V2 P dV = P(V2 – V1)      (cst. P)  9.3.1 
 

Without the dV, the integral is meaningless. For a general state function, F, the integral: 
 

 ⌡⌠F1

F2dF = F2 – F1  = ∆F         9.3.2 
 

can always be done, and always gives the change in that state function for the process, because 
dF is exact. Using enthalpy as an example, let’s do some example integrals. 
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Enthalpy Change with Volume at Constant Pressure:  Starting with Eq. 9.2.5, for a constant 
pressure process, dP = 0, and: 
 

 dH = dU + P dV       (closed, cst. P)  (7.8.21) 9.3.3 
 

Since P is constant, for a change in volume from V1 to V2, this equation integrates to: 
 

 ⌡⌠H1

H2dH = ⌡⌠U1

U2dU + ⌡⌠V1

V2PdV      (closed, cst. P)  9.3.4 

 ∆H = ∆U + P∆V      (closed, cst. P) (7.8.17) 9.3.5 
 
Enthalpy Change with Pressure for Constant Volume:  Starting with Eq. 9.2.5, for a constant 
volume process, dV = 0, and: 
 

 dH = dU + V dP       (closed, cst. V) 9.3.6 
 

Since V is constant, for a change in pressure from P1 to P2, this equation integrates to: 
 

 ⌡⌠H1

H2dH = ⌡⌠U1

U2dU + ⌡⌠P1

P2VdP      (closed, cst. V) 9.3.7 

 ∆H = ∆U + V∆P      (closed, cst. V) 9.3.8 
 

Note that in Chapter 7 we defined enthalpy to be useful for a constant pressure process, where qP 
= ∆H. This last example is a constant volume process. ∆H no longer gives the heat transfer, 
instead qv = ∆U, but we can still calculate the change in enthalpy. 
 
 
             

Example 9.3.1 
Calculate the change in enthalpy for a constant volume process where the pressure for one mole 
of an ideal gas is increased from 1.00 bar to 2.00 bar starting at an initial temperature of 298.2 K. 
Assume that the gas is diatomic with Cv = 5/2 nRT, from Equipartition without vibration. 
 
 
Answer:  The volume of the gas can be obtained from the ideal gas law and starting conditions: 
 

 V = nRT/P  = 1.000 mol (8.314 J mol-1 K-1)(298.2 K)/(1.00x105 Pa) = 0.02479 m3 
 

The final temperature can be obtained from the final state: 
 T = PV/nR = 2.00 x105 Pa (0.02479 m3)/1.00 mol/8.314 J mol-1 K-1 = 596.4 K 
which should not be surprising. Since the pressure increased by a factor of two, the temperature 
should increase by a factor of two. The internal energy change is: 
 ∆U = Cv∆T = 5/2 (1.000 mol)(8.314 J mol-1 K-1) (596.4 – 298.2 K) = 6198. J 
Then using Eq. 9.3.8: 
 ∆H = ∆U + V∆P = 6198. J + 0.02479 m3 (2.00x105 – 1.00x105 Pa) = 
      =  6198. J + 2479. J = 8677. J = 8.677 kJ 
 

To help verify the result, we could also have done this problem using Cp = Cv + nR = 7/2 nR and 
then using ∆H = Cp∆T = 7/2 (1.000 mol)(8.314 J mol-1 K-1) (596.4 – 298.2 K) = 8.677 kJ 
giving the same result. 
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General Processes for Changing P and V:  Now we need to work with dH = dU + d(PV) or all 
three terms in dH = dU + PdV + VdP, since P and V both change. Consider a process from V1, 
P1 to V2, P2 in a closed system. The easiest way to proceed is to integrate Eq. 9.2.4 directly: 
 

 ⌡⌠H1

H2dH = ⌡⌠U1

U2dU + ⌡⌠P1V1

P2V2d(PV)     (closed) 9.3.9 

 ∆H = ∆U + (P2V2 – P1V1) = ∆U + ∆(PV)         (closed)  (7.8.16)  9.3.10 
 

This equation is true for any closed system. For the specific case of an ideal gas we can calculate 
∆(PV) from the ideal gas law, Eq. 7.8.28°: 
 

 ∆(PV) = P2V2 – P1V1= (nRT2) – (nRT1) = nR∆T  (closed, ideal gas) 9.3.11° 
 

Substituting this final result into Eq. 9.3.10 gives Eq. 7.8.29°: 
 

 ∆H = ∆U + nR∆T     (closed, ideal gas)  (7.8.29°)  9.3.12° 
 

This equation holds for any general closed process for an ideal gas. 
 
Isothermal Processes:  Now, let’s assume we have an isothermal process in a closed system, 
Figure 9.3.1. Both P and V change. Since enthalpy is a state function, the change in enthalpy will 
be independent of the path. Therefore, we can choose any convenient path in doing the integral. 
We will do the problem with two different paths to give us practice in working with differentials 
and also to verify that H is a state function. This general process will be invaluable as we 
introduce additional state functions. 
 
 
 
 
 
 
 
 
 
 

Figure 9.3.1: An isothermal process from V1, P1 to V2, P2 can be done by two different paths. 
Path 1 is an isothermal reversible process, and Path 2 is a constant pressure step followed by 
a constant volume step. ∆H is a state function and is independent of the path. 

 
 
Path 1: Isothermal Reversible Expansion:   Consider an isothermal reversible process from V1, 
P1 to V2, P2 in a closed system, path 1 in Figure 9.3.1. Both Eqs. 9.3.10 and 9.3.12° apply, ∆H = 
∆U + ∆(PV), where P and V both change along path 1. For this specific isothermal expansion, 
∆T = 0, which then gives: 
 

 ∆H = ∆U      (closed, ideal gas, cst. T) 9.3.13° 
 

The result is that for a closed system for an isothermal process for an ideal gas, the internal 
energy and enthalpy changes are the same. 
 

P 

V 

V1, P1 

V2,P2 

V2, P1 

Path 1 

Path 2 

i 
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Path 2: Constant Pressure Then Constant Volume:   Let’s choose a different path and integrate 
dH = dU + PdV + VdP. Choose a two-step process, Figure 9.3.1 path 2. The first step is a 
constant pressure process at P1, followed by the second step at constant volume at V2. Let the 
intermediate state be signified by Ui or Hi. For the first step ∆H1 is calculated from: 
 

 ⌡⌠H1

Hi dH = ⌡⌠U1

Ui dU + ⌡⌠V1

V2P1dV     (closed, cst. P)  9.3.14 
 

The integrand for this volume integral, P1, is a constant and factors out: 
 

 ∆H1 = ∆U1 + P1(V2 – V1)     (closed, cst. P)  9.3.15 
 

For the second constant volume step, ∆H2 is given by: 
 

 ⌡⌠Hi

H2dH = ⌡⌠Ui

U2dU + ⌡⌠P1

P2V2dP     (closed, cst. V) 9.3.16 
 

 ∆H2 = ∆U2 + V2(P2 – P1)     (closed, cst. V) 9.3.17 
 

The overall change is the sum of the two steps, ∆U =  ∆U1 + ∆U2, and then adding Eqs. 9.3.15 
and 9.3.17 to get the overall change for the process gives: 
 

 ∆H = ∆U + P1(V2 – V1) + V2(P2 – P1)    (closed) 9.3.18 
 

or more succinctly: 
 

 ∆H = ∆U + P1 ∆V + V2 ∆P      (closed) 9.3.19 
 

This result looks very different from Eq. 9.3.10. However, notice that multiplying out the terms 
in Eq. 9.3.18 gives: 
 

 ∆H = ∆U + P1V2 – P1V1 + P2V2 – P1V2    (closed) 9.3.20 
 

and cancelling the P1V2 terms gives: 
 

 ∆H = ∆U + P2V2 – P1V1= ∆U + ∆(PV)    (closed) 9.3.21 
 

This last equation gives the same result as path 1, Eq. 9.3.10. The enthalpy change is 
independent of the path as we expected; the direct and two-part path give the same result. 
 
 

              

Example 9.3.2: 
Calculate the change in enthalpy for heating of one mole of water vapor from an initial 
temperature of 298.2K to a final temperature of 373.2 K at constant volume. Water vapor even at 
pressures near its equilibrium vapor pressure at room temperature is amazingly close to an ideal 
gas. Assume that the water vapor is an ideal gas and that Cv = 6/2 nR, which is appropriate for 
water (translation and rotation only for a non-linear molecule). 
 
 
Answer:  Use Eq. 9.3.12°. Then the internal energy change for any process at constant volume is: 
 

 ∆U = Cv∆T = 6/2 nR ∆T = 6/2 (1.00 mol )(8.314 J mol-1K-1)(373.2 – 298.2K) = 1.87 kJ 
 

Now from Eq. 9.3.12°, ∆H = ∆U + nR(T2 – T1): 
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 ∆H = 1.87 kJ + (1.00 mol)(8.314 J mol-1 K-1)(1 kJ/1000J)(373.2-298.2K)  
 ∆H = 1.87 kJ + 0.624 kJ = 2.49 kJ 
 

              

 
 

   In summary, what did we learn from these four simple problems? First, we practiced 
integrating differentials. Second, we showed that ∆H was independent of the path we chose. 
Third, these examples show how to do the integrals properly; now we can avail ourselves of 
some short cuts. Short cuts are good, if you are careful to make sure they are valid! For example, 
starting with the differential dH = dU + d(PV) the infinitesimals can be rigorously converted to 
finite differences, ∆H = ∆U +∆(PV), as proven by Eq. 9.3.10. In other words we are safe to 
change the “d” into a “∆.” However, for the differential dH = dU + P dV + V dP, we need to be 
more careful. For a constant pressure process at pressure P, dP = 0, and Eq. 9.2.5 simplifies to 
Eq. 9.3.3, dH = dU + P dV, and the integrated result is Eq. 9.3.5: ∆H = ∆U + P∆V. Once again 
for the constant pressure process we can just change the “d” into a finite “∆.” If the pressure isn’t 
constant, Eq. 9.2.5 must be integrated for the specific process. In general,  
 

an infinitesimal can be integrated directly to a finite difference if the integrand is a constant. 
 

   We shouldn’t dwell on incorrect solutions. But, one in particular is instructive. Starting with a 
general process with dH = dU + PdV + VdP, it would be incorrect to write 
 

 ∆H ?= ∆U + P∆V + V∆P (incorrect!!) 
 

since both the pressure and volume can change. Instead, we showed that, from Eq. 9.3.19: 
 

 ∆H = ∆U + P1∆V + V2∆P      (closed)        (9.3.19) 
 

Even though we derived Eq 9.3.19 for a two step process, the equation is valid in general since H 
is a state function and is independent of the path. 
 
 

              

Example 9.3.3 
Calculate the change in enthalpy, using Eq. 9.2.5, for an isothermal process using a two-step 
path. The first step is a constant volume process from V1, P1 to V1, P2 and the second step is a 
constant pressure process from V1, P2 to V2, P2. Draw this process on a graph such as in Figure 
9.3.1. 
 
 

Answer:   The path is shown in Figure 9.3.2. 
 
 
 
 
 
 
 
 
   Figure 9.3.2: A constant volume first step and a constant pressure second step. 

P 

V 

V1, P1 

V2,P2 V1, P2 

Path 1: Isothermal reversible 

Path 3 
i 
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   For the first step the integral is: 
 

 ⌡⌠H1

Hi dH = ⌡⌠U1

Ui dU + ⌡⌠P1

P2V1dP         9.3.22 

 ∆H1 = ∆U1 + V1(P2 – P1)        9.3.23 
 

and the second, constant pressure step gives: 
 

 ⌡⌠Hi

H2dH = ⌡⌠Ui

U2dU  + ⌡⌠V1

V2P2dV        9.3.24 

 ∆H2 = ∆U2 + P2(V2 – V1)        9.3.25 
 

Adding Eqs. 9.3.23 and 9.3.25 gives: 
 

 ∆H = ∆U + V1(P2 – P1) + P2(V2 – V1)       9.3.26 
 

which should also be compared with Eq. 9.3.19. Multiplying and cancelling terms gives: 
 

 ∆H = ∆U + P2V1 – P1V1 + P2V2 – P2V1 = ∆U + ∆(PV)    9.3.27 
 

as before. 
 
              

Example 9.3.4 
Given that A ≡ U – TS is a state function, find the differential in terms of the definition. Can you 
always integrate the definition to give ∆A = ∆U – ∆(TS) ? Can you always integrate to give 
∆A = ∆U – T∆S? 
 
 
Answer:  The differentials are dA = dU – d(TS) and dA = dU –TdS –SdT. ∆A = ∆U – ∆(TS) is 
always true, however, ∆A = ∆U – T∆S is only true for an isothermal process. For example, for a 
constant S process dA = dU –SdT, which integrates to ∆A = ∆U – S∆T. 
 

              

 
 
This section shows that the internal energy and enthalpy changes for processes are directly 
related by H ≡ U + PV, after some straight-forward manipulations. Are Cv and Cp similarly 
related and are (∂U/∂V)T, and (∂H/∂P)T related? 
 
9.4  The Constant Volume and Constant Pressure Heat Capacities are Related 
 

The constant volume and constant pressure heat capacities are fundamental properties of a 
substance: 
 

 Cv = 






∂U

∂T V
      Cp = 







∂H

∂T P
       (7.8.7, 7.8.24) 

 

Are Cv and Cp independent or are they related? The constant pressure and constant volume heat 
capacities are related through the definition of the enthalpy. Substituting H ≡ U + PV into the 
expression for Cp gives: 
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 Cp = 






∂H

∂T P
 = 






∂(U + PV)

∂T P
 = 






∂U

∂T P
 + P 







∂V

∂T P
     9.4.1 

 

The difference between the constant pressure and constant volume heat capacities is given by: 
 

 Cp – Cv = 






∂U

∂T P
 + P 







∂V

∂T P
 – 






∂U

∂T V
       9.4.2 

 

We have not yet encountered the first partial derivative, (∂U/∂T)p. We can relate this new partial 
derivative to the constant volume heat capacity using the total differential of the internal energy 
with V and T taken as the independent variables: 
 

 dU = 






∂U

∂T V
 dT + 







∂U

∂V T
 dV        9.4.3 

 

“Dividing” both sides of the equation by dT at constant P gives the partial derivative we are 
looking for: 
 

 






∂U

∂T P
 = 






∂U

∂T V
 
dT
dT + 







∂U

∂V T
 
dV
dT     (cst. P)  9.4.4 

 

where dT/dT is equal to one and the new derivative is at constant pressure: 
 

 






∂U

∂T P
 = 






∂U

∂T V
 + 






∂U

∂V T
 






∂V

∂T P
       9.4.5 

 

This last equation determines the change in internal energy for a constant pressure process. The 
equation is useful in its own right, but for our present problem, substituting Eq. 9.4.5 into Eq. 
9.4.2 gives: 
 

 Cp – Cv = 






∂U

∂T V
+ 






∂U

∂V T
 






∂V

∂T P
 + P 







∂V

∂T P
 – 






∂U

∂T V
     9.4.6 

 

The (∂U/∂T)v terms cancel giving: 
 

 Cp – Cv = 














∂U

∂V T
 + P  







∂V

∂T P
        9.4.7 

 

This important equation relates the constant pressure and constant volume heat capacities and is 
valid for any system. This expression also provides useful insight into the meaning of (∂U/∂V)T. 
When adding two numbers, the units must be the same; the units for (∂U/∂V)T must then be the 
units of pressure. The measured pressure of the system is P; so what pressure does (∂U/∂V)T 
correspond to? 
   Consider the expansion of a gas as the temperature is increased. The derivative, (∂V/∂T)P, 
determines the increase in volume of the system. The mechanical work done by the gas during 
the expansion is w = –P dV = – P (∂V/∂T)P dT. This second term in the sum in Eq. 9.4.7 
therefore accounts for the mechanical work of expansion. The first term, (∂U/∂V)T dV = 
(∂U/∂V)T (∂V/∂T)P dT, is the increase in the internal energy necessary to overcome the 
intermolecular forces between the gas molecules as the volume increases. As the gas expands, 
the distances between the molecules increase, which increases the potential energy of the 
molecular attractions. The molecular attractions are less favorable, higher in energy. The 
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separation of the molecules then requires the conversion of some random thermal energy into 
intermolecular potential energy, increasing the constant pressure heat capacity. The partial 
derivative (∂U/∂V)T is called the internal pressure. The stronger the intermolecular forces, the 
larger the internal pressure. Liquids and solids have large internal pressures. Since an ideal gas 
has no intermolecular forces, the internal pressure for an ideal gas is zero: 
 

 






∂U

∂V T
 = 0        (ideal gas) 9.4.8° 

 
For an Ideal Gas, Cp – Cv = nR:   We can now determine the heat capacity difference for an 
ideal gas. For an ideal gas V = nRT/P and (∂V/∂T)P = nR/P. Since (∂U/∂V)T = 0, for an ideal gas, 
Eq. 9.4.7 reduces to: 
 

 Cp – Cv = P 






∂V

∂T P
 = P (nR/P) = nR     (ideal gas) 9.4.9° 

 

For example, for a monatomic gas, using Equipartition, Cv = 3/2 nR, and Cp= Cv + nR = 5/2 nR. 
For a diatomic gas, Table 8.8.1, neglecting the vibration, Cv = 5/2 nR and Cp= Cv + nR = 7/2 nR. 
The ratio of Cp to Cv can be measured using several experimental techniques (see Sec. 9.8): 
 

 γ ≡ 
Cp

Cv
           9.4.10 

 

This heat capacity ratio is also useful on theoretical grounds. The ratio arises naturally when 
constant pressure and constant volume processes are compared. Assuming the ideal heat capacity 
relationship, Cp– Cv = nR, for a monatomic ideal gas, γ = Cp/Cv = (5/2 nR)/(3/2 nR) ≈ 5/3. For a 
diatomic ideal gas, neglecting vibrations, γ = (7/2 nR)/(5/2 nR) ≈ 7/5 = 1.40. For example, N2 has 
nearly the ideal ratio at 20°C with γ = 1.403, but near the boiling point γ = 1.470 because of 
increased effects of intermolecular forces at the higher density.1 

   To calculate Cp – Cv for real gases, liquids, and solids, the value of (∂U/∂V)T must be known. 
The experimental determination of (∂U/∂V)T is discussed in Section 9.6. However, returning to 
Eq. 9.4.7, the mechanical derivative (∂V/∂T)P is given by the coefficient of thermal expansion, 
Eq. 7.6.8, with (∂V/∂T)P = Vα. The coefficient of thermal expansion for a liquid or a solid is 
quite small, suggesting that Cp ≈ Cv. We often use this approximation in the absence of 
experimental information. However, even though α is small for a liquid or a solid, (∂U/∂V)T can 
be quite large and the constant pressure and constant volume heat capacities for liquids and 
solids can differ by more than 40%.2 Clearly, we need to know more about the internal pressure, 
(∂U/∂V)T. 
 
9.5  The Internal Pressure of An Ideal Gas Is Zero, (∂∂∂∂U/∂∂∂∂V)T = 0 
 

The conclusion that (∂U/∂V)T = 0 for an ideal gas provides an important simplification. The total 
differential of the internal energy, Eq. 9.1.2, simplifies to: 
 

 
        (closed, PV-work, ideal gas) 9.5.1° 
 

dU = Cv dT + 






∂U

∂V T
 dV  = Cv dT 

0 
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The corresponding partial derivative for the enthalpy, from Eq. 9.1.3, can be related to (∂U/∂V)T 
using the definition of the enthalpy, H ≡ U + PV: 
 

 






∂H

∂P T
 = 






∂(U + PV)

∂P T
 = 






∂U

∂P T
 + 






∂(PV)

∂P T
      9.5.2 

 

Since PV = nRT for an ideal gas, the last term is zero. The derivative (∂U/∂P)T, in Eq. 9.5.2, can 
be related to the internal pressure using the chain rule: 
 

 
            (closed, ideal gas) 9.5.3° 
 
For an ideal gas, both (∂H/∂P)T = 0 and (∂U/∂V)T = 0. The total differential of the enthalpy then 
reduces to: 
 

 
        (closed, PV-work, ideal gas) 9.5.4° 
 
In other words, the internal energy and enthalpy of an ideal gas depend only on temperature. For 
the special case of an ideal gas, dU = CvdT and dH = Cp dT apply to all processes in a closed 
system, including constant volume, constant pressure, adiabatic, and of course isothermal where 
dU = dH = 0. 
   We will do several example problems using these relationships in Sec. 9.8. However, for real 
gases, we still need to know (∂H/∂P)T and (∂U/∂V)T. These important partial derivatives can be 
measured experimentally using the Joule-Thomson expansion. 
 
9.6  The Joule-Thompson Expansion Determines the Internal Pressure for a Real Gas 
 

The total differentials of U and H determine the results of gas phase processes, Eqs. 9.1.1-9.1.4. 
For a general process, the important partial derivatives (∂U/∂V)T and (∂H/∂P)T need to be 
determined. These derivatives are important fundamental properties of a substance. The Joule-
Thomson expansion measures (∂H/∂P)T by expanding a gas through a porous barrier and 
measuring the temperature change. 
 
 

 






∂H

∂P T
 = ? 

 
 
 
 

Figure 9.6.1: Joule-Thomson expansion through a porous frit. The pressures on both sides of 
the frit are constant; high pressure on the left and low pressure on the right. The initial 
position of the pistons is shown by the outlined disks. 

 
 
The Joule-Thomson expansion, Figure 9.6.1, is done in an insulated cylinder, giving an adiabatic 
expansion, q = 0. The two halves of the expansion cylinder are separated by a porous disk, or 

n    P1 

 

V1 T1 

n    P2 

 

V2 T2 

P   high P   low 

insulated: q = 0 







∂H

∂P T
 = 






∂U

∂V T
 






∂V

∂P T
 = 0 

0 

dH = Cp dT + 






∂H

∂P T
 dP = CpdT 

0 
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other flow restriction. The pressure on the left is held at a high constant value by a piston that 
advances, forcing gas through the porous barrier. The gas expands into the right-hand chamber 
where a second piston advances maintaining a constant lower pressure. In actual practice the 
right-hand, low pressure portion of the cylinder is often at atmospheric pressure. During the 
expansion, the gas may heat or cool, depending on the initial temperature of the gas. Let the 
number of moles of gas that passes through the porous barrier be n, with the initial state on the 
left-hand side given by P1, V1, and T1. After expansion of n moles of gas through the flow 
restriction, the state is given by P2, V2, and T2. Work is done on the gas as the gas is compressed 
on the high-pressure side as given by wleft = P1V1. The gas does work, wright = – P2V2, as it 
expands through the porous disk on the low-pressure side. The total work is the sum of the work 
on both sides: 
 

 w = P1V1 – P2V2       (cst. P1&P2) 9.6.1 
 

Since the expansion is adiabatic the internal energy change is given by the work: 
 

 ∆U = U2– U1 = q + w = w      (adiabatic) 9.6.2 
 

Substituting Eq. 9.6.1 for the work into Eq. 9.6.2 gives: 
 

 U2– U1 = P1V1 – P2V2         9.6.3 
 

Rearranging this last expression by grouping the parameters for the final state on the left and the 
initial state on the right gives: 
 

 U2 + P2V2 = U1 + P1V1        9.6.4 
 

The definition of the enthalpy is H ≡ U + PV. Substitution of this definition for the initial and 
final state in Eq. 9.6.4 shows that the enthalpy of the gas is constant during a Joule-Thomson 
expansion: 
 

 H2 = H1            (adiabatic, cst. P1&P2) 9.6.5 
 

The Joule-Thomson expansion is a particularly unusual expansion, since the expansion is at 
constant enthalpy. The temperatures of the gas are measured before and after the expansion, and 
the Joule-Thomson expansion coefficient is defined as: 
 

 µJT ≡ 






∂T

∂P H
 = 

T2 – T1

P2 – P1
    limit ∆P → 0      9.6.6 

 

If the gas cools µJT > 0 and if the gas heats up µJT < 0. The cooling effect is the basis for 
refrigeration and air-conditioners. However, we began this section by asking if the value for the 
partial derivatives (∂U/∂V)T or (∂H/∂P)T might be measured experimentally. The relationship of 
these important partial derivatives to the Joule-Thomson coefficient is not obvious. Notice that 
µJT is in a very unusual form, since the enthalpy is the variable that is held constant. We can 
recast (∂T/∂P)H into a more useful form by focusing on the total differential of the enthalpy: 
 

 dH = 






∂H

∂P T
 dP + 







∂H

∂T P
 dT = 0       9.6.7 

 

where dH = 0, because the enthalpy is held constant for the partial derivative. (∂T/∂P)H can then 
be constructed by dividing both sides of Eq. 9.6.7 by dP at constant H: 
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





∂H

∂P T
 + 






∂H

∂T P
 






∂T

∂P H
 = 0        9.6.8 

 

This last equation is then solved for (∂T/∂P)H: 
 

 






∂T

∂P H
 = 

– 






∂H

∂P T

  






∂H

∂T P

         9.6.9 

 

Notice that this last equation is just the result of applying the Euler Chain relationship, Eq. 
7.11.20, to (∂T/∂P)H. Eq. 9.6.9 shows that experimental measurements of µJT determine the value 
of (∂H/∂P)T: 
 

 µJT = 






∂T

∂P H
 = – 

1
Cp

 






∂H

∂P T
   







∂H

∂P T
 = – Cp µJT   9.6.10 

 

(∂H/∂P)T can then be used to calculate (∂U/∂V)T, see Example 9.7.2. 
   The Joule-Thomson coefficient can be positive or negative. Each gas is characterized by an 
inversion temperature, TI, Table 9.5.1. If the initial temperature is greater than the inversion 
temperature, then the temperature of the gas increases upon a Joule-Thomson expansion. If the 
initial temperature is less than the inversion temperature, the gas cools upon expansion. 
 
 

Table 9.5.1: Joule-Thomson inversion temperatures, where µJT = 0 
 

Gas TI  (K) 
O2 764 
N2 621 
H2 202 
He 40 

 
 
   Along with considerable theoretical utility, the Joule-Thomson expansion is important for 
home and auto air conditioners, kitchen refrigerators, and laboratory cold traps, where the gas is 
usually a fluorinated hydrocarbon or butane. Expansion of gaseous carbon dioxide from the 
vapor space above liquid carbon dioxide in a high pressure cylinder can be used in cooling. A 
carbon dioxide based fire-extinguisher produces a cold stream of CO2 that smothers and cools 
flammable substances. The Joule-Thomson expansion is also used in the production of cryogenic 
liquids. 
 
Cryogenic Liquids are Produced Using the Joule-Thompson Expansion:   Liquid oxygen, 
nitrogen, hydrogen, and helium are commonly used industrial cryogenic liquids that are 
produced by Joule-Thomson gas liquefiers, Figure 9.6.2. A compressor is used to establish a 
flow of high pressure gas. The gas at high pressure is forced through a small orifice, cooling the 
gas by a Joule-Thomson expansion. After passing through the flow-restriction, the cooled gas 
returns to the compressor through the outer portion of a concentric tube with the high-pressure 
gas flowing in the opposite direction. The counter flow of the cool gas lowers the temperature of 
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the gas on the high pressure side. When the temperature after the expansion drops below the 
boiling point of the substance, liquid forms, which is collected in a reservoir that can be emptied 
periodically. After return, the gas passes though the compressor to begin the process again. The 
compression of the gas increases the temperature, so the high-pressure stream is passed through a 
heat exchanger to cool the gas. The operation of your home refrigerator is essentially identical. 
The heat exchange coils for home refrigerators and window air conditioners are visible on the 
back of the appliance. 
   The normal boiling point of liquid helium is 4.2 K. Liquid helium is used to keep the solenoids 
for high field NMR and MRI magnets below the super-conducting transition temperature. To 
produce liquid helium, the gas must first be cooled below its inversion temperature, 40 K. The 
most common and economical cryogenic liquid is liquid nitrogen. The normal boiling point of 
liquid nitrogen is 77 K, which is not sufficient to cool helium below its inversion temperature. 
The temperature of a liquid may be decreased by attaching a vacuum pump to the vapor space 
above the liquid. The rapid evaporation of the liquid requires energy, ∆vapH, thus lowering the 
temperature of the liquid. To cool the helium before the Joule-Thomson expansion, a vacuum 
pump is used to lower the temperature of a bath of liquid nitrogen that is placed around the heat 
exchanger. 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.5.2: Joule-Thomson gas liquefier. The gas must initially be below its inversion 
temperature. 

 
 
   We now have the information needed to calculate the change in internal energy and enthalpy 
for any process in any closed system, by using Eqs. 9.1.1-9.1.3. The system is characterized by 
the values of the partial derivatives: Cv, Cp, α, κT, (∂U/∂V)T, and (∂H/∂P)T. We can also relate Cv 
to Cp and (∂U/∂V)T to (∂H/∂P)T. These results are quite an accomplishment. Along the way 
however, we have worked through many derivations, which might be a bit bewildering at first. 
The focus is on providing the background necessary for you to derive these relationships on your 
own. You might wonder if some general guidance for approaching thermodynamic problems can 
be provided. 
 
9.7 Partial Derivative Conversion: A General Procedure 
 

Thermodynamic problems can often be recast in terms of a partial derivative, which is then 
integrated for a given process. For example: “calculate the change in internal energy for one 
mole of an ideal diatomic gas that is heated from 298.2 K to 310.2 K at a constant pressure of 
1.00 bar,” is determined by the partial derivative (∂U/∂T)P, Figure 9.7.1. Each problem must 

Compressor 

Gas 
Liquid 

Heat 
exchanger 
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specify the process, the result desired, and the system. In this example, the process is a change in 
temperature at constant pressure, the result is the change in internal energy, and the system is an 
ideal diatomic gas. Next the value of the derivative must be found and then integrated for the 
specified process. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.7.1:  Many thermodynamics problems reduce to integrating a specific partial 
derivative. Each problem must specify the process, the result desired, and the system. 

 
   This example would be easy if the process were at constant volume, for then (∂U/∂T)V = Cv 
and ∆U = Cv ∆T. However, the example problem is at constant pressure. How do you proceed if 
the partial derivative is not in a form that is easy to integrate? There is a general procedure for 
reducing a partial derivative to a relationship that is written in terms of values that are readily 
available through experiment. The procedure uses the six partial derivative relationships 
discussed in Addendum 7.11: Partial Derivative Transformations. The goal is to recast a given 
partial derivative into terms that are related to Cv, Cp, α, κT, (∂U/∂V)T, and (∂H/∂P)T. These 
values are available from data tables or the equation of state for the substance. The first step is to 
determine the “misplaced variable.” In our example problem with (∂U/∂T)P, the misplaced 
variable is the variable that is held constant, P, since U is normally considered a function of V 
and T, not P and T. Consider the following five possibilities for the “misplaced variable,” which 
are also summarized in Figure 9.7.2:  
 

(1). Misplaced Numerator: For (∂H/∂T)V, the specified independent variables are V and T. One 
choice for the misplaced variable is then H, since the independent variables for H are 
usually considered to be P and T, H(P,T). The given partial may be reduced to a relationship 
involving the internal energy, which is usually considered a function of V and T, U(V,T). 
Whenever you need to relate a function of H to a function of U, the definition H ≡ U + PV is 
useful. Substitution of H ≡ U + PV into the partial derivative gives: 

 

 






∂H

∂T V
 = 






∂(U + PV)

∂T V
 = 






∂U

∂T V
 + 






∂P

∂T V
V = Cv + 

α
κΤ

 V     9.7.1 
 

where the last substitutions use Eqs. 7.8.7 and 7.6.16 to recast the results into parameters 
that are commonly tabulated or available from the equation of state. 

(2). Misplaced Numerator: For (∂T/∂H)P, the misplaced variable is the T, since the numerators 
in all the standard partial derivatives involve either a potential energy function, U or H in 
this case, or V, as in α, κT. The set of variables is consistent with H(P,T). The given partial 

  Calculate the change in internal energy for one mole of an ideal diatomic gas 
 
                 system 

      






∂U

∂T P
 =  ? 

            the process 
 
that is heated from 298.2 K to 310.2 K at a constant pressure of 1.00 bar. 
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may be transformed using inversion, Eq. 7.11.17, and the definition of the heat capacity, Eq. 
7.8.24: (∂T/∂H)P = 1/(∂H/∂T)P = 1/Cp. 

(3). Misplaced Denominator: For (∂H/∂V)T, the misplaced variable is the V, since the 
independent variables for H are usually considered to be P and T, H(P,T). The chain rule, 
Eq. 7.11.18, may be used to express the desired partial derivative in terms of (∂H/∂P)T: 

 

 






∂H

∂V T
 = 






∂H

∂P T
 






∂P

∂V T
 = 






∂H

∂P T
 






1

−VκT
       9.7.2 

 

where the last substitution used the definition of κT from Eqs. 7.6.9. Notice that the chain 
rule was useful, because the constant variable didn’t need to be changed. 

 
 







∂H

∂T V
 = 






∂U

∂T V
 + 






∂P

∂T V
V = Cv + 

α
κΤ

 V          






∂T

∂H P
 = 

1







∂H

∂T P

 = 
1
Cp

 

 

      H ≡ U + PV 
 

           definition     invert 
   misplaced numerator        misplaced numerator 
 

 

            






∂H

∂T V
     







∂T

∂H P
 

 

   






∂H

∂V T
  







∂H

∂T V
      







∂T

∂P H
 

 

   misplaced denominator         misplaced constant variable misplaced constant variable 
 chain rule        total differential, dH    total differential, dH=0 
 

   






∂H

∂V T
 = 






∂H

∂P T
 






∂P

∂V T
 

    






∂H

∂V T
= 






∂H

∂P T
 






1

−VκT
 

dH = 






∂H

∂P T
dP + 







∂H

∂T P
dT 







∂H

∂T V
=  






∂H

∂P T





∂P

∂T V
+ 






∂H

∂T P
 

          = 






∂H

∂P T
 
α
κΤ

 + Cp 

dH = 






∂H

∂P T
dP + 







∂H

∂T P
dT = 0 

   






∂T

∂P H
= 

– 






∂H

∂P T

  






∂H

∂T P

 = 
– 






∂H

∂P T

Cp
 

 

Figure 9.7.2:  Partial Derivative Conversion. Partial derivative manipulations to convert 
unknown partial derivatives to those involving Cv, Cp, α, κT, (∂U/∂V)T, and (∂H/∂P)T. 

 
 

(4). Misplaced Constant Variable:  For (∂H/∂T)V, the misplaced variable can also be 
considered to be the constant volume restriction, since the independent variables for H are 
usually considered to be P and T, H(P,T). Eq. 7.11.23 is one of two transformations that 
change the variable being held constant. The derivation begins with the total differential of 
the thermodynamic potential in terms of the customary independent variables, H(P,T): 

 

 dH = 






∂H

∂P T
dP + 







∂H

∂T P
dT        9.7.3 
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 “Division” by dT at constant V gives: 
 

 






∂H

∂T V
=  






∂H

∂P T





∂P

∂T V
+ 






∂H

∂T P
        9.7.4 

 

 






∂H

∂T V
= 






∂H

∂P T
 
α
κΤ

 + Cp        9.7.5 
 

where the last substitutions use Eqs. 7.8.16 and 7.6.24 to recast the results into parameters 
that are commonly tabulated or available from the equation of state. This example and 
example 1 are both for (∂H/∂T)V; the choice of transformation depends on the information 
that is available. 

(5). Misplaced Constant Variable:  For (∂T/∂P)H, the misplaced variable is the constant 
enthalpy restriction. In this case the set of variables is conventional, H(P,T), but the order of 
appearance is scrambled from the normal case of a potential energy function in the 
numerator. The Euler Chain relationship, Eq. 7.11.20, is useful in these cases. The 
relationship was derived earlier, Eq. 9.6.9. 

 

Notice that these transformations are completely general; no approximations are necessary. After 
the transformation, integration using parameters specific to the specified system gives the result. 
 
 
              

Example 9.7.1: 
Calculate the change in internal energy for one mole of an ideal diatomic gas that is heated from 
298.2 K to 310.2 K at a constant pressure of 1.00 bar. Assume a constant heat capacity. 
 
 
Answer:  Figure 9.7.1 shows the implied partial derivative to be (∂U/∂T)P. The “misplaced” 
variable is the restriction to constant P, since internal energy is conventionally considered to 
have independent variables V and T. Reference to Figure 9.7.2 suggests working through the 
total differential dH and dividing by dT at constant P. The result is given by Eqs. 9.5.3-9.5.5. 
Using the definition of the constant volume heat capacity, Eq. 7.8.7, (∂U/∂T)V = Cv and the fact 
that for an ideal gas (∂U/∂V)T = 0 gives: 
 

 






∂U

∂T P
 = 






∂U

∂V T
 






∂V

∂T P
 + 






∂U

∂T V
 = Cv     (ideal gas) 9.7.6° 

 

In the absence of any specific information concerning the value of the heat capacity, assume the 
equipartition result; Cv = 5/2 nR for a diatomic gas, neglecting vibration: 
 

 ∆U = Cv∆T = 5/2 R (310.2 – 298.2 K) = 249. J mol-1 
 

The internal energy and enthalpy change for an ideal gas depends only on the temperature and is 
independent of the change in pressure or volume. 
 
              

Example 9.7.2: 
Given (∂U/∂V)T find (∂H/∂P)T. 
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Answer:  There are two choices for the “misplaced” variable, H and P. Whenever you need to 
relate a function of H to a function of U, the definition H ≡ U + PV is useful, which suggest 
trying H in the numerator of (∂H/∂P)T as the misplaced variable, Figure 9.7.2 top-left. 
Substituting H ≡ U + PV into (∂H/∂P)T: 
 

 






∂H

∂P T
 = 






∂(U + PV)

∂P T
 = 






∂U

∂P T
 + 






∂(PV)

∂P T
 =  







∂U

∂P T
 + P 







∂V

∂P T
 + V 







∂P

∂P T
 

 

using the product rule. The derivative (∂U/∂P)T is not in standard form, since internal energy is 
usually considered a function of independent variables V and T. The “misplaced” variable in 
(∂U/∂P)T is the P in the denominator, Figure 9.7.2 bottom-left. (∂U/∂P)T can be related to the 
internal pressure using the chain rule, Eq. 7.11.18: 
 

 






∂H

∂P T
 = 






∂U

∂V T
 






∂V

∂P T
+ P 







∂V

∂P T
 + V 







∂P

∂P T
= 














∂U

∂V T
 + P  







∂V

∂P T
 + V  9.7.7 

 

The derivation is complete because only “fundamental” partial derivatives remain. We will show 
that each term on the right can be evaluated using the equation of state of the substance in Chapt. 
16. In this example, we started by choosing H in the numerator as the “misplaced” variable, but 
choosing P in the denominator works as well. There are usually multiple ways of deriving 
thermodynamic relationships (which enhances student grades on tests). 
 
              

 
 
   Now that we have more thoroughly discussed the theoretical background of thermodynamics, 
we should put these new tools to use for some example problems. To avoid complications that 
might obscure the important points we focus on an ideal gas. 
 
9.8 The First Law and Ideal Gases 
 

   The First Law of thermodynamics is the primary tool for “balancing the books” on the 
interconversions of heat and work, dU = đq + đw. What are the heat and work transfers, the 
change in internal energy, and the change in enthalpy for ideal gas expansions? In the following 
examples we determine q, w, ∆U, and ∆H for isothermal and adiabatic, reversible and 
irreversible expansions in a closed system for an ideal gas. One immediate general simplification 
for an ideal gas is the internal energy and enthalpy only depend on temperature, Eqs. 9.5.1° and 
9.5.4°, because (∂U/∂V)T = 0 and (∂H/∂P)T = 0. Assuming constant heat capacities over the 
given temperature range, then the total differentials simplify to: 
 

 dU = Cv dT ∆U = Cv ∆T dH = Cp dT ∆H = Cp ∆T (ideal gas, cst. Cv&Cp)  9.8.1° 
 
For Isothermal Expansions of an Ideal Gas, đq = – đw:   Consider an isothermal expansion of an 
ideal gas from V1, P1 to V2, P2. From Eqs. 9.8.1°, for an isothermal process in a closed system 
∆U = 0 and ∆H = 0. We can then directly relate the heat and work transfer using the First Law, 
dU = đq + đw = 0, giving: 
 

 đq = – đw and  q = – w         (closed, isothermal, ideal gas) 9.8.2° 
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For an isothermal reversible process the work is given by Eq. 7.4.6° so that: 
 

 w = – nRT ln 
V2

V1
    and   q = – w = nRT ln 

V2

V1
      (isothermal reversible, ideal gas) 9.8.3° 

 

If the problem is given with changes in pressure instead of changes in volume, then we can use 
the ideal gas law to relate the volumes and pressures by: 
 

 
P2V2

P1V1
 = 

nRT2

nRT1
 = 

T2

T1
           (closed, ideal gas) 9.8.4° 

 

which for an isothermal expansion, T2 = T1, gives: 
 

 P2V2 = P1V1 or 
P2

P1
 = 

V1

V2
            (closed, isothermal, ideal gas) 9.8.5° 

 

   Next, consider an irreversible isothermal expansion against a constant external pressure, Pext. 
From Eq. 7.4.4, the work is given by w = – Pext ∆V. These results are summarized in Table 9.8.1. 
 
For Adiabatic Expansions dU = đw:   For an adiabatic expansion, đq = 0, and then for any closed 
system: 
 

 dU = đw or  ∆U = w    (closed, adiabatic) 9.8.6 
 

Now consider a reversible adiabatic expansion of an ideal gas in a closed system. Eqs. 9.8.1° 
relate the change in internal energy and enthalpy to the change in temperature. If the temperature 
change for the expansion is given, then w = ∆U = Cv∆T is easily calculated. However, how do 
we proceed if the change in volume or pressure is specified? In addition to dU = CvdT, for a 
reversible process, Pext = P, and the work becomes: 
 

 dU = đw = – P dV     (closed, adiabatic reversible) 9.8.7 
 

We can solve dU = Cv dT and dU = – P dV simultaneously to find the change in temperature: 
 

 Cv dT = – P dV     (closed, adiabatic reversible) 9.8.8 
 

Using the ideal gas law relates the pressure and temperature: 
 

 Cv dT = – 
nRT
V  dV       (closed, adiabatic reversible, ideal gas) 9.8.9° 

 

Dividing both sides of this last equation by T separates the variables, giving: 
 

 Cv 
dT
T  = – nR 

dV
V          (closed, adiabatic reversible, ideal gas) 9.8.10° 

 

Integrating both sides of the last equation, assuming a constant heat capacity: 
 

 Cv ⌡⌠T1

T2
 
dT
T  = – nR ⌡⌠V1

V2
 
dV
V        (closed, adiabatic reversible, ideal gas, cst. Cv) 9.8.11° 

 

results in: 
 

 Cv ln 
T2

T1
 = – nR ln 

V2

V1
       (closed, adiabatic reversible, ideal gas, cst. Cv) 9.8.12° 
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Dividing by nR and exponentiation of both sides of this equation gives: 
 

 






T2

T1

Cv
/nR

 = 






V1

V2
        (closed, adiabatic reversible, ideal gas, cst. Cv) 9.8.13° 

 

and cross multiplication relates the final and initial states directly: 
 

 V2T2

Cv/nR = V1T1

Cv/nR       (closed, adiabatic reversible, ideal gas, cst. Cv) 9.8.14° 
 

Given the change in volume for the process, Eq. 9.8.13° or 9.8.14° is solved for the change in 
temperature. For a monatomic gas, Cv/nR = 3/2 and for a diatomic gas, neglecting the vibration, 
Cv/nR = 5/2, Table 8.8.1. 
   If, instead, the pressure change for the adiabatic reversible expansion is specified we can take a 
similar approach. Choosing P and T as the independent variables, the enthalpy is the natural 
choice as the basis for our calculations, instead of the internal energy. The total differential of the 
enthalpy is given by Eq. 9.3.5, dH = dU + PdV + VdP. However, for an adiabatic reversible 
process from Eq. 9.8.7, dU = – PdV, giving (Eq. 7.8.31): 
 

 dH = dU + PdV + VdP = V dP   (closed, adiabatic, reversible) 9.8.15 
 

Solving dH = V dP and dH = Cp dT simultaneously and using V = nRT/P gives: 
 

 Cp dT = V dP = 
nRT

P  dP       (closed, adiabatic, reversible, ideal gas) 9.8.16° 
 

Separating variables, by dividing by T, and integrating as before gives: 
 

 Cp 
dT
T  = 

dP
P   and Cp ⌡⌠T1

T2
 
dT
T  = nR ⌡⌠P1

P2
 
dP
P  

           (closed, adiabatic reversible, ideal gas, cst. Cp) 9.8.17° 
with the final result: 
 

 Cp ln 
T2

T1
 = nR ln 

P2

P1
        (closed, adiabatic reversible, ideal gas, cst. Cp) 9.8.18° 

 

Dividing by nR and exponentiation gives the corresponding result to Eq. 9.8.13°: 
 

 






T2

T1

Cp
/nR

 = 






P2

P1
         (closed, adiabatic reversible, ideal gas, cst. Cp) 9.8.19° 

 

This relationship is used to solve for the change in temperature if the change in pressure is given. 
   The relationship P2V2 = P1V1 is particularly useful for an isothermal process. Can we derive a 
similar relationship for reversible adiabatic processes? How are P and V related for a reversible 
adiabatic expansion? The ratio of the constant pressure and constant volume heat capacities is 
defined as γ ≡ Cp/Cv, Eq. 9.5.9. The heat capacity ratio is found by dividing Eq. 9.8.18° by Eq. 
9.8.12°: 
 

 γ = 
Cp

Cv
 = 

ln( )P2/P1

ln( )V1/V2

         (closed, adiabatic reversible, ideal gas, cst. Cp) 9.8.20° 

 

Cross multiplication by ln(V1/V2) and exponentiation gives the relationship between P and V: 
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 γ ln 
V1

V2
 = ln 

P2

P1
    and   







V1

V2

γ
 = 






P2

P1
   giving   P2 V2

γ = P1V1
γ 

            (closed, adiabatic reversible, ideal gas, cst. Cp) 9.8.21° 
 

These expressions apply for gases that obey the ideal gas law equation of state, but do not 
necessarily follow the ideal gas heat capacity relationship Cp– Cv = nR. The relationship P2 V2

γ = 
P1V1

γ is particularly useful for comparing the changes for reversible isothermal and adiabatic 
expansions, Figure 9.8.1 and Table 9.8.1. For example, for an adiabatic expansion for a 
monatomic gas, P2 V2

5/3 = P1 V1
5/3, but for the isothermal process P2V2 = P1V1. The pressure 

drops more during an adiabatic expansion because the volume dependence is greater, 5/3 > 1. 
 
 

Table 9.8.1: Thermodynamic balance sheet for ideal gas expansions in a closed system. 
 

Process PV relationship q w ∆U ∆H 
isothermal 
reversible 
 

P2V2 = P1V1 q = – w 
w = – nRT ln 

V2

V1
 

0 0 

isothermal 
irreversible 
 

Pext = cst 
P2V2 = P1V1 

q = – w w = – Pext ∆V 0 0 

adiabatic 
reversible 
 
 

 

(T2/T1)
Cv/nR = V1/V2 

(T2/T1)
Cp/nR = P2/P1 

P2V2
γ= P1V1

γ 

0 w = ∆U = Cv ∆T ∆U = Cv ∆T ∆H = Cp ∆T 

adiabatic 
irreversible 

Pext = cst 
Cv ∆T = – Pext ∆V 

0 w = ∆U = – Pext ∆V ∆U = Cv ∆T ∆H = Cp ∆T 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.8.1: An adiabatic expansion does less work than an isothermal expansion for a given 
change in volume, because the temperature decreases during an adiabatic expansion. 

 
 
For an isothermal expansion the heat and work are equal in magnitude, đq = – đw, which shows 
the work is “paid for” by an equal transfer of heat from the surroundings. For an adiabatic 
process đq = 0, so the work is at the expense of the internal energy, đw = dU; the work in an 
adiabatic process is “paid for” by a decrease in the internal energy of the gas. The decrease in 
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internal energy for an adiabatic process results in a temperature decrease. An adiabatic expansion 
does less work than an isothermal expansion, for a given change in volume, because the 
temperature decreases. Therefore the pressure for the adiabatic expansion decreases more than an 
isothermal expansion, giving less area under the PV curve and less work. 
   Now, consider an irreversible adiabatic expansion against a constant external pressure, Pext. 
Once again the work is given by w = ∆U = Cv∆T and w = – Pext ∆V. We can solve both of these 
equations simultaneously for the change in temperature: 
 

 Cv∆T = – Pext ∆V        (closed, adiabatic, ideal gas, cst. Pext&Cv) 9.8.22° 
 

Explicitly in terms of the initial and final states: 
 

 Cv(T2 – T1) = – Pext(V2 – V1)        (closed, adiabatic, ideal gas, cst. Pext&Cv) 9.8.23° 
 

This equation is solved for the final temperature if the initial and final volumes are specified. 
What if the initial and final pressures are given instead? Assume that the expansion is complete 
when the final pressure is equal to the external pressure, P2 = Pext. Substituting the ideal gas law 
for the final and initial states, V2 = nRT2/P2, and V1 = nRT1/P1: 
 

 Cv(T2 – T1) = – Pext





nRT2

Pext
 – 

nRT1

P1
       (closed, adiabatic, ideal gas, cst. Pext&Cv) 9.8.24° 

 
 
              

Example 9.8.1: 
Calculate q, w, ∆U, and ∆H for isothermal and adiabatic, reversible and irreversible expansions 
in a closed system for 1.000 mol of an ideal monatomic gas. In each case, the initial pressure is 
10.00 bar, the initial temperature is 298.2 K, and the final pressure is 1.000 bar. For the 
irreversible expansions, the gas expands against a constant external pressure of 1.000 bar. 
 
 
Answer:   For the isothermal expansion, ∆T = 0 so that ∆U = ∆H = 0 and q = – w. 
(a). The work in an isothermal reversible expansion is given as, Eq. 7.4.6°: 
 

 w = – nRT ln 
V2

V1
 with P2V2 = P1V1  or   

V2

V1
 = 

P1

P2
  giving: 

 

 w = – nRT ln 
P1

P2
 = nRT ln 

P2

P1
   (isothermal reversible, ideal gas) 9.8.25° 

 w = (1.000 mol)(8.314 J K-1 mol-1)(298.2 K) ln 
1.000 bar
10.00 bar = -5710. J 

 q = – w = 5710. J    (isothermal reversible, ideal gas) 
 

The work is negative because the gas expands against the surroundings doing work. 
(b). Now consider the irreversible expansion against the constant external pressure. The initial 
and final volumes are given by the ideal gas law at constant T : 
 

 V1 = nRT1/P1 = (1.000 mol)(0.08314 L bar mol-1K-1)(289.2 K)/10.00 bar = 2.479 L 
 V2 = nRT1/P2 = (1.000 mol)(0.08314 L bar mol-1K-1)(289.2 K)/1.00 bar = 24.79 L 
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When the pressure drops in an isothermal process by a factor of ten, the volume increases by a 
factor of ten. The work is: 
 

 w = – Pext∆V = 1.000 bar(1.00x105 Pa/1bar)(24.79 – 2.479 L)(1 m3/1000 L) = -2231. J 
 q = – w = 2231. J    (isothermal irreversible, ideal gas) 
 

The work for the irreversible process is smaller in magnitude because the system expands against 
a constant external pressure; a reversible process gives the maximum work. 
   For an adiabatic expansion, q = 0, ∆U = Cv∆T, ∆H = Cp∆T, w = ∆U. 
(c). For the reversible adiabatic process, since the pressure change is specified, we can use Eq. 
9.8.19 with Cp = Cv + nR = 5/2 nR for a monatomic gas: 
 

 






T2

T1

5
/2
 = 






P2

P1
  or   







T2

298.2 K

5
/2
 = 






1.000 bar

10.000 bar 
 

 T2 = 298.2 K (0.1)2/5 = 118.7 K 
 

The temperature drops as expected because the system does work at the expense of the internal 
energy. With the final temperature established: 
 

 w = ∆U = Cv∆T = 3/2 nR (T2 – T1) =  3/2 (1.000 mol)(8.314 J K-1 mol-1)(118.7 – 298.2K) 
 w = ∆U = -2238. J       (adiabatic reversible, ideal gas) 
 ∆H = Cp∆T = 5/2 (1.000 mol)(8.314 J K-1 mol-1)(118.7 – 298.2K) = -3731. J 
 

The work for the adiabatic reversible process is smaller in magnitude than the isothermal case, as 
expected, because the temperature decreases. 
(d). Finally, for the irreversible adiabatic expansion against the constant external pressure, we 
apply Eq. 9.8.24° to find the change in temperature, with Cv = 3/2 nR: 
 

 3/2 nR (T2 – T1) = – Pext





nRT2

Pext
 – 

nRT1

P1
 

The nR factors cancel giving: 
 

 3/2 (T2 – 298.2 K) = – 1.000 bar






T2

1.000 bar – 
298.2 K

10.00 bar = – T2 + 29.82 K 

 5/2 T2 = 3/2(298.2 K) + 29.82 K 
 T2 = 190.8 K 
 

The temperature doesn’t drop as much as the reversible case, because the gas does less work. 
With the final temperature established, we proceed as for the reversible case: 
 

 w = ∆U = Cv∆T = 3/2 (1.000 mol)(8.314 J K-1 mol-1)(190.8 – 298.2K) 
 w = ∆U = -1339. J      (adiabatic irreversible, ideal gas, cst. Pext) 
 ∆H = Cp∆T = 5/2 (1.000 mol)(8.314 J K-1 mol-1)(190.8 – 298.2K) = -2232. J 
 

The irreversible adiabatic expansion does the least work of the four cases, as expected. The 
results for the four processes are summarized in Table 9.8.2. 
      Isothermal and adiabatic expansions provide good examples of the use of the First Law in 
practical problems. Reversible isothermal and adiabatic processes will also play a central role in 
developing the thermodynamic definition of entropy, in Chapter 11. 
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Table 9.8.2: Expansion of one mole of an ideal monatomic gas at 298 K from 10 → 1 bar. 
 

process (10 bar→1 bar) T2 q w    ∆U    ∆H 
isothermal reversible 298.2 K 5710. J -5710. J 0 0 
isothermal, cst. Pext 298.2 K 2231. J -2231. J 0 0 
adiabatic reversible 118.7 K 0 -2238. J -2238. J -3731. J 
adiabatic, cst. Pext 131.2 K 0 -1339. J -1339. J -2232. J 

 
              

 
 
In this chapter we have focused on the consequences of the First Law of thermodynamics. The 
concept of conservation of energy is a pivotal idea in many areas in science. Conservation of 
energy plays an important role in shaping our world on many scales (see Sec. 1.4). 
 
9.9 Efficient Organisms Have a Competitive Advantage: Ecology 
 

   One of the central tenants in ecology is: organisms that gather and use energy efficiently are 
more likely to survive. Energy is typically in short supply and competition for energy shapes the 
relationships within an ecosystem. For example, trees and other plants compete for sunlight in 
dense forests. Trees in a rain forest grow tall. The ability of an organism to harvest and use 
energy efficiently provides a survival benefit and a competitive advantage. 
   The energy requirements of an organism determine the role of the organism is its biological 
niche. Autotrophs use sunlight or inorganic substances as energy sources to produce the 
molecules necessary for cell maintenance, growth, and reproduction. Heterotrophs obtain energy 
by feeding on other organisms. The loss of energy to metabolic activity limits the energy that is 
available to higher trophic levels.30 Organisms higher up the food chain therefore have 
diminished available energy, and typically also have a greater impact on the environment. 
   The production and use of energy in ecosystems and in the human community are governed by 
the First Law of Thermodynamics. The conservation of energy results in competition among 
various organisms in an ecosystem. The energy needs of societies also are in competition. The 
flow of energy through an ecosystem and the flow of energy through a human society have much 
in common. Organisms evolve to increase efficiency; our society must also evolve to increase 
our efficiency in energy production and consumption. 
   Thermodynamics provides the fundamental structure for developing new energy technologies 
and energy public policy. Key ingredients in energy policy encourage increased energy 
efficiency and conservation. However, the First Law alone is insufficient to determine the 
efficiency of a process. Inefficient and efficient uses of energy obey the First Law. Efficiency, 
spontaneity, and the position of equilibrium are closely related concepts. We next develop the 
ideas central for determining the efficiency and spontaneity of physical processes. 
 
9.10 Summary – Looking Ahead 
 

   The structure of physical phenomena is modeled by mathematical relationships that make 
problems easy to solve and often highlight interrelationships that are surprising and unexpected. 
For example, Eq. 9.4.5 gives the change in internal energy with temperature for a process at 
constant pressure: 
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





∂U

∂T P
 = 






∂U

∂T V
 + 






∂U

∂V T
 






∂V

∂T P
       (9.4.5) 

 

The result is expressed in partial derivatives that relate the fundamental properties of the system 
under study. The values of these partial derivatives are available from tables of data or from the 
equation of state. This expression is not obvious. In fact you might wonder how a change in 
temperature for a constant pressure process can be related to partial derivatives at constant 
volume and constant temperature. The relationship is rigorous and completely general and a 
result of the path independence of state functions. The change in state for the constant pressure 
path may simply be accomplished using a constant volume path followed by a constant 
temperature path, Figure 9.10.1. The two-step path is simply a more convenient way of 
accomplishing the same change in state. 
 
 
 
 
 
 
 
 
 
 

Figure 9.10.1: A constant pressure process from T1, V1 to T2, V2 can be done by two different 
paths. Path 1 is the direct one-step path, and Path 2 is a constant volume step followed by a 
constant temperature step. ∆U is a state function and is independent of the path. 

 
The key to reconciling the various conditions in Eq. 9.4.5 is to realize that the pressure, volume, 
temperature, and internal energy are all related. Any two may be chosen as the independent 
variables, and then the remaining two are determined through the equation of state and the First 
Law. The structure of calculus keeps track of the interrelationships for us. The structure of 
thermodynamics often provides surprising, unexpected, and useful results. 
   We now have the necessary background in thermodynamics to develop the criteria for 
spontaneous processes and determine the position of equilibrium. 
 
 

Chapter Summary 
 

1. The total differential of a state function is exact. 

2. An exact differential may be integrated knowing only the initial and final states of the system. 

3. The Euler Criterion for exactness is that mixed partials are equal. Given F a state function: 

 dF = 






∂F

∂x y
 dx + 







∂F

∂y x
 dy   and   







∂

∂y





∂F

∂x y x
 = 






∂

∂x





∂F

∂y x y
 

4. Differentials are formed using the normal rules of differentiation. For a function with the 
definition G = F + xy, the differential is  dG = dF + d(xy) and dG = dF + xdy + ydx 

Path 1 

Path 2 

V 

T 

T1, V1 

T2,V2 





∂U

∂V
T
 





∂U

∂T
P
 





∂U

∂T V
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5. Differentials can be converted to partial derivatives by dividing by the infinitesimal of the 
independent variable and specifying all other variables constant. For dG = dF + xdy + ydx, the 
partial derivative with respect to x at constant y is: 

 






∂G

∂x y
= 






∂F

∂x y
+ x







∂y

∂x y
+ y







∂x

∂x y
 

6. The differentials of state functions can always be directly integrated: 

 ⌡⌠F1

F2dF = F2 – F1 = ∆F 

7. As a short cut, an infinitesimal can be integrated directly to a finite difference if the integrand 
is a constant. For dG = dF + x dy with G and F state functions and x held constant:  

 ∆G = ∆F + x ∆y 

8. Enthalpy and internal energy are related by the definition H ≡ U + PV giving differentials: 
dH = dU + d(PV) or dH = dU + P dV + V dP. In general for a finite process: 

 ∆H = ∆U + ∆(PV) 
For a constant pressure process: 
 ∆H = ∆U + P∆V      (constant pressure) 
For a constant volume system: 
 ∆H = ∆U + V∆P      (constant volume) 
For a closed system for an ideal gas:  
 ∆(PV) = nR∆T      (closed, ideal gas) 
 ∆H = ∆U + nR∆T      (closed, ideal gas) 
For an isothermal process for an ideal gas: 
 ∆H = ∆U       (isothermal ideal gas) 

9. The changes in internal energy and enthalpy with temperature are: 

 






∂U

∂T V
 = Cv       and   







∂H

∂T P
 = Cp 

 






∂U

∂T P
 = 






∂U

∂V T
 






∂V

∂T P
 + 






∂U

∂T V
   and     







∂H

∂T V
=  






∂H

∂P T





∂P

∂T V
+ 






∂H

∂T P
 

10. The constant pressure and constant volume heat capacities are related by: 

 Cp – Cv = 














∂U

∂V T
 + P  







∂V

∂T P
 

11. Since an ideal gas has no intermolecular forces, the internal pressure for an ideal gas is zero: 

 






∂U

∂V T
 = 






∂H

∂P T
 =0       (ideal gas) 

12. For an ideal gas, Cp – Cv = nR. 

13. The heat capacity ratio γ ≡Cp/Cv is accessible through experiment. For an ideal monatomic 
gas γ = 5/3. 

14. The internal energy and enthalpy of an ideal gas depend only on temperature: dU = CvdT and 
dH = Cp dT  apply to all processes in a closed system for an ideal gas. 

15. The Joule-Thomson expansion coefficient is defined as:  µJT ≡ 






∂T

∂P H
 = – 

1
Cp

 






∂H

∂P T
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16. The internal pressure, (∂U/∂V)T, and (∂H/∂P)T are related by: 

 






∂H

∂P T
 = 














∂U

∂V T
 + P  







∂V

∂P T
 + V 

17. Cv, Cp, α, κT, (∂U/∂V)T, and (∂H/∂P)T are the fundamental partial derivatives that 
characterize the system. 

18. Table 9.8.1 summarizes the First Law relationships for reversible and irreversible, isothermal 
and adiabatic ideal gas expansions in a closed system. 

19. For an isothermal expansion the work is “paid for” by an equal transfer of heat from the 
surroundings: P2V2 = P1V1. 

20. For an adiabatic process the work is at the expense of the internal energy, which results in a 

temperature decrease: Cv ln T2/T1
 = – nR ln V2/V1

,  (T2/T1
)

Cv/nR = V1/V2
,  and  P2 V2

γ = P1V1
γ. 

21. An adiabatic expansion does less work than an isothermal expansion, for a given change in 
volume, because the temperature decreases. 

22. One of the central tenants in ecology is: organisms that use energy efficiently are more likely 
to survive. 

23. Autotrophs use sunlight or inorganic substances as energy sources to produce the molecules 
necessary for cell maintenance, growth, and reproduction. Heterotrophs obtain energy by 
feeding on other organisms. The loss of energy to metabolic activity limits the energy that is 
available to higher trophic levels. 

24. A strength of thermodynamics is that non-obvious interrelationships are often uncovered. 
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Problems 
 

1. Write the total differential for V given as a function of the independent variables U and T. 
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2.  Write the total differential for the new function G with independent variables T and P. 
 

3.  Determine if the following total differential is exact:  dF = 3y2 dx + 6xy dy 
 

4. We showed that the differential in Example 9.1.1 is exact: 
 

 dV = 
nR
P  dT – 

nRT
P2  dP  with     







∂V

∂T P
 = 

nR
P  and 







∂V

∂P T
 = 

– nRT
P2  

 

Separately integrate these partial derivatives to find V. Do indefinite integrals. 
 

5. Find the partial derivative of the enthalpy with respect to volume at constant temperature from 
dH = dU + PdV + VdP. Express the result in terms of Cv, Cp, α, κT, (∂U/∂V)T, and (∂H/∂P)T. 
 

6. Show that Eq. 9.4.12°, dH = dU + nR dT or ∆H =  ∆U + nR∆T, is consistent with CP = CV + 
nR, which is true for an ideal gas. 
 

7. Show that 






∂H

∂V T
 = 






∂U

∂V T
 for an ideal gas in a closed system. 

 

8. Show that 






∂H

∂P T
 = (–nRT/P2)







∂U

∂V T
   for an ideal gas in a closed system. 

 

9.  Find ∆H in terms of ∆U for a gas that obeys the virial-type equation of state: 

 PV = nRT(1 + B 
n
V) 

We will assume that B is a constant (the second virial coefficient is actually temperature 
dependent). Use this result to find the change in enthalpy for the expansion of one mole of water 
vapor starting at a pressure of 23.8 torr from an initial temperature of 298.2K to a final 
temperature of 373.2 K. Assume the volume is constant for the process. Assume Cv = 6/2 nR and 
B = –425 cm3 mol-1 (roughly the value for water at 373 K).1 Compare with Example 9.3.2. 
 

10.  Show that:  






∂H

∂T V
 = Cv + nR + 

n2RB
V  

for a gas that obeys the virial-type equation of state: PV = nRT(1 + B 
n
V) 

Assume that B is a constant (the second virial coefficient is actually temperature dependent). 
Compare the result to the last problem. 
 

11.  In Section 9.3 for the isothermal reversible expansion of an ideal gas, which is Path 1 in 
Figure 9.3.1, we integrated dH = dU + d(PV)  to prove that ∆H = ∆U. Integrate: 
 

 dH = dU + P dV + V dP       (9.2.5) 
 

directly for an isothermal reversible process and show the result also gives ∆H = ∆U. In other 
words, assuming an ideal gas at constant temperature, substitute P = nRT/V and V = nRT/P and 
then integrate. Compare the integral to Eq. 9.3.18. 
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12.  Given that:  






∂H

∂P T
 = 0, show that 







∂H

∂V T
 = 0. 

 

13.  We will prove in a later chapter that the internal pressure for a Van der Waals gas is: 
 

 






∂U

∂V T
 = 

an2

V2 
 

Find Cp – Cv for a Van der Waals gas. 
 
14.  For CO2, µJT = 1.11 K bar-1 and Cp,m for CO2 is 37.11 J K-1mol-1. Calculate the change in 
enthalpy per mole of CO2 for an isothermal process for a change in pressure of 1.00 bar. Assume 
that both µJT and Cp are constant over the pressure range. 
 

15.  Determine the “misplaced” variable for (∂H/∂V)T and express the result in terms of Cv, Cp, 
α, κT, (∂U/∂V)T, and (∂H/∂P)T. 
 

16.  Show that for an ideal gas Cv is not a function of the volume of the system and that Cp is not 
a function of the pressure of a system. In other words show that, for a closed system: 
 

 






∂Cv

∂V T
= 0   







∂Cp

∂P T
 = 0 

 

17.  Show that 






∂H

∂T V
= Cp + 







∂H

∂P T





α

κΤ
 

 

18.  The Joule-Thomson coefficient is µJT = (∂T/∂P)H. Show that the corresponding coefficient 
for constant internal energy processes is given by: 
 

 






∂T

∂V U
  = – 

1
Cv

  






∂U

∂V T
 

 

19.  Rewrite Figure 9.7.1 for the partial derivatives: 
 

 






∂U

∂T P
  







∂T

∂U V
  







∂U

∂P T
  







∂U

∂T P
  







∂T

∂V U
 

 

20.  One mole of an ideal diatomic gas at 200. K is compressed in a reversible adiabatic process 
until its temperature reaches 300. K. Given that Cv,m = 5/2R, calculate q, w, ∆U, and ∆H. 
 

21. Calculate q, w, ∆U, and ∆H for a reversible isothermal expansion of 10.0 mol of an ideal 
diatomic gas. The initial pressure is 5.00 bar, and the temperature is 298.2 K. The final pressure 
is 1.00 bar. Assume Cv = 5/2 nR (equipartition neglecting vibration). 
 

22.  Calculate q, w, ∆U, and ∆H for an isothermal expansion of 10.0 mol of an ideal diatomic gas 
against a constant external pressure of 1.00 bar. The final pressure of the gas is equal to the 
external pressure, P2 = Pext. The initial pressure is 5.00 bar, and the temperature is 298.2 K. 
Assume Cv = 5/2 nR (equipartition neglecting vibration). 
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23.  The volume of 1.00 mol of an ideal diatomic gas exactly doubles in a reversible adiabatic 
expansion. The initial pressure is 5.00 bar and the initial temperature is 298.2 K. Calculate q, w, 
∆U, and ∆H. Use the constant volume heat capacity for water vapor, Cv = 25.3 J K-1 mol-1. 
 

24. Calculate q, w, ∆U, and ∆H for a reversible adiabatic expansion of an ideal diatomic gas. The 
initial volume is 50.0 L, the initial pressure is 5.00 bar, and the initial temperature is 298.2 K. 
The final volume is 157.8 L. Assume Cv = 5/2 nR (equipartition neglecting vibration). 
 

25.  Calculate the initial and final volume, q, w, ∆U, and ∆H for a reversible adiabatic expansion 
of 2.000 mol of an ideal monatomic gas. The initial pressure is 10.00 bar and the initial 
temperature is 298.2 K. The final pressure is 1.000 bar. Use the heat capacities predicted by 
equipartition. Verify that Eqs. 9.8.19° and 9.8.21°, P2 V2

γ = P1V1
γ, give the same result. 

 

26. Calculate the initial and final volume, q, w, ∆U, and ∆H for a reversible adiabatic expansion 
of an ideal diatomic gas. The initial pressure is 5.000 bar and the initial temperature is 298.2 K 
for 10.00 moles. The final pressure is 1.000 bar. Assume Cv = 5/2 nR (equipartition neglecting 
vibration). 
 

27.  Calculate the final pressure, initial and final volume, q, ∆U, and ∆H for a reversible 
adiabatic expansion of an ideal diatomic gas that does -10.00 kJ of work in the process. The 
initial pressure is 10.00 bar and the initial temperature is 298.2 K for 10.00 moles. Assume Cv = 
5/2 nR (equipartition neglecting vibration). 
 

28. Calculate the initial and final volume, q, w, ∆U, and ∆H for an adiabatic expansion of an 
ideal diatomic gas against a constant external pressure, with the final pressure of the gas equal to 
the external pressure, P2 = Pext. The initial pressure is 5.000 bar and the initial temperature is 
298.2 K for 10.00 moles. The external pressure is 1.000 bar. Use the heat capacities predicted by 
equipartition, neglecting vibration. 
 

29. Consider an adiabatic expansion against a constant external pressure, Pext, with the final 
pressure of the gas equal to the external pressure. The initial pressure is 10.00 bar and the initial 
temperature is 298.2 K for 10.00 moles of an ideal diatomic gas. Calculate the external pressure 
that is required for -10.00 kJ of work to be done by the gas. Calculate the final temperature, 
volume, q, ∆U, and ∆H. Use the heat capacities predicted by equipartition, neglecting vibration. 
 

30. The relationships of the variables that are being held constant for the partial derivative 
transformation in Eq. 9.4.5 are sketched Figure 9.10.1. (a). Sketch the corresponding 
relationships for the transformation: 
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(b). Rewrite this expression in terms of the fundamental properties, Cv, Cp, α, κT, and µJT, and 
integrate the resulting expression assuming that the temperature range is sufficiently narrow that 
the system properties are constant. 
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