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Chapter 9: Using the First Law

Calculate g, wAU, andAH for a reversible adiabatic expansion in a clasgsddem for
one mole of an ideal monatomic gas. The initiaspoee is 10.0 bar, the initial
temperature is 298.2 K, and the final pressure(8 bar.

The principles underlying the First Law haverenfmathematical foundation. We should take
advantage of the underlying structure of the matta® to help us find the solutions for
difficult problems. Calculus provides a cohesiveicture and guidance for studying chemical
processes. Thermodynamics is a very practicalglisel The success of thermodynamics
should be judged by its ability to uncover usefigights into physical phenomena. The goal in
this chapter is to gain experience in the manipedatechniques so that we can instead focus on
the chemical phenomena. We often study processésefa gases. Using ideal gases acts as a
point of comparison for non-ideal systems and adlos to concentrate on fundamental
principles and not confounding details. Ideal ggsraximations are surprisingly often
sufficiently accurate for many purposes. The teghes developed in this chapter are generally
useful and will help us build a theory of chemiczdctivity.

9.1 State Functions Have Exact Differentials

The internal energy is the heat transfer attemisolume. This result suggests that the internal
energy is best considered a function of the inddeenvariables V and T. We symbolize this
choice of independent variables by: U(V,T). Fotased system, with PV-work only, the total
differential of the internal energy can be immeeliaivritten based on the general form in Eq.
7.11.13 as:

du :(G_U)V dT 6_U)T dv (closed, PV-work) (7.11.14) 9.1.1

oT ov
because the internal energy is a state functiends® Eqg. 7.11.14). The definition of the
constant volume heat capacity, Eq. 7.8.79/dT)y = C,, which upon substitution into Eq.
9.1.1 gives:

du =G dT +(8—U) dv (closed, PV-work)  9.1.2

oV )t

The differential of the internal energy is exastdsscussed in Addendum Sec. 7.11. The
differential is a function of the state of the gystonly. The differential of the internal energy
can be integrated knowing only the initial and fistates of the system, without information on
the path of the process.

The enthalpy is the heat transfer at constaggure, which suggests that the enthalpy is best
considered a function of independent variablesdPTarH(P,T). The total differential of the
enthalpy for a closed system, with PV-work onlyaliso exact:

oH oH
dH _(GTJP dT +(6P)po (closed, PV-work)  9.1.3

Using the definition of the constant pressure lagtcity, Eq. 7.8.249(/0T)p = G, gives:
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dH =G dT +@—E)T dP (closed, PV-work) 9.1.4
Egs. 9.1.1-9.1.4 can be integrated for any gemeagless, once the values for the partial
derivatives are known.,CC,, (U/0V)t, and @H/0P)r are partial derivatives that characterize
the system under study. In particul@)(dV)+, and OH/OP); play comparable roles, for
processes at constant V and P, respectively. Otiteeahajor goals of this chapter and successive
chapters is to understand these important parasadtee distinction between state functions and
path functions on the one hand and exact and iheiéerentials on the other is particularly
useful, in this regard.

Mixed Partials Are Equal: The Euler Criterion fox&ctness Exact differentials are easy to
integrate; however, the path must be specifiednfexact differentials. Given an expression in
differential form, can you determine if the diffat&l is exact? The general form for the total
differential of a state function of two variablesmd y is given by Eq. 7.11.13 as:

oF oF
dF '(axjy dx +(aij dy 9.1.5
TheEuler Criterion for exactnesss that the mixed partial derivatives are equal:
0 (oF d (0F
(ay GXDX - (ax ayDy (exact) 9.1.6

This relationship is also called Cauchy’s criterfonintegrability, or the cross derivative
equality test. Several examples will help to clatife test for exactness.

Example 9.1.1:

o : : - R RT
Determine if the following total differential is agt: dV :n? dT —n—Pz— dP

Answer The total differential of the volume is given By. 7.11.11. Matching the terms in dP
and dT identifies the coefficients:

oV oV
dv ‘(aT)p dT ’{aP)T dP (7.11.11)

1 |

nR nRT
dv = = dT ——Pz—dP

- ov nR ov —nRT
giving ﬁp=? and $T=—P2—

The mixed partials are:
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apl5rhl =) ena (ap= o+

Completing the indicated derivatives gives:

BE-E - ()-8

oP\aT o)r~ TP and lotlor)r o™ “F?

The mixed partials are equal, so the differenfiaxact and V(P,T) is a state function. Thinking
of this problem in another way, for an ideal gas WRT/P, and the total differential is given by
Eq. 7.11.11 with the explicit derivativedW/dT)e = nR/P anddV/dP); = — nRT/B. The total

differential given in the original problem is thesult of differentiation of the equation of stafe o
the gas. The partial derivatives are both condisté¢h V = nRT/P.

Example 9.1.2:
Determine if the following total differential is agt: dF = 3§dx + 6xy dy

Answer The general form of the total differential okBy() is given by Eq. 9.1.5. Matching the
terms in dx and dy identifies the coefficients:

(%) = 3y and (S—QX: 6XY

The mixed partials are:

) -0, e (2000

0y\0X )y Jx oy ox\ay 0x
Completing the indicated derivatives gives:
0 (0F 0 (0F
> axDx = oy and (33 D o

The mixed partials are not equal, so the diffeedmsi inexact and F(x,y) is a path function. There
is nopossible function F(x,y) with the explicit derinags @F/0x), = 3y and QF/dy), = 6xy-.

The identification of Egs. 9.1.1-9.1.4 as exactedédntials and U and H as state functions allows
a wide variety of problems to be easily solvedadidition we can relate changes in internal
energy to changes in enthalpy through the defimitibthe enthalpy and the differentials in Egs.
7.8.19-7.8.21, dH = dU + d(PV) =dU + PdV + VdP. Yioay not have experience with
differentials. The next two sections are desigmeleip you become more comfortable with
differential expressions and to expand on the itgmbrconcept of the path independence of state
functions.
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9.2 Differentials: A differential is a derivative “waiting to happen.”

In this section we will practice manipulatingtet functions from their definitions. The
definition of enthalpy, HE U + PV, is in a form that we will see often, ahé tmanipulation of
the definition of enthalpy will be analogous to Ipiems that we will see later. #U + PV is a
simple statement; however, what we really wantrtovk is how enthalpy changes for a process,
AH. For example, how does enthalpy change when wegghthe temperature, or the pressure,
or the volume of a system? Let’s start with a ctipadfee on your desk and ask how the
enthalpy changes with a change in temperature ¢onatant pressure process. Consider then
that enthalpy is a function of temperature andgures H(T,P), and find the derivative with
respect to temperature from=HJ + PV:

@%L:G#L+G%?%p 9.2.1

and then using the product rule:

oH ouU ov oP

(aT)P - (OT)P ¥ aT)P ¥ V(aT)P 9.2.2
For a constant pressure process the last deriviatzero since pressure is a constant. However,
now let’'s change the problem, and ask what woufipha if the volume was held constant
instead of the pressure. Constant volume processak from placing the sample in a rigid
container, like a calorimeter bomb. For a changemmperature for a constant volume process,
the pressure wouldn’t remain constant, so Eq. ¥212t work anymore. For a constant volume

process we could consider enthalpy as a functigaroperature and volume, H(T,V), and redo
the derivative with respect to temperature:

oH ouU ov oP
(aT)v B (OTJV ¥ aT)v ¥ V(OT)v 923
We could also ask how the enthalpy changes withspire for a constant temperature process
and redo the derivative again. The number of eqnatis starting to increase and it is getting
difficult to focus on the underlying ideas. Instea@ could focus on the differential. Notice in

Egs. 9.2.2 and 9.2.3 that the “numerators” ares#ime. For an infinitesimal process for a closed
system the differential is given as:

dH =dU + d(PV) (7.8.19)9.2.4
or using the product rule for differentiation
dH=dU+PdV +VdP (7.8.20)9.2.5

Notice that the “numerators” in Eqg. 9.2.1 are tams as Eq. 9.2.4 and the “numerators” in EgQs.
9.2.2 and 9.2.3 are the same as the differentiagird.2.5. The power of differentials is that they
are valid no matter which of T, V, or P is changiNgtice that we use the product rule for
differentials in the same fashion as for normald@gives, since a differential is really an
intermediate step in finding the derivative. Frdra tifferential, we can form the derivatives for
H directly, by essentially “dividing” by the infitesimal for the desired independent variable. Of
course, since these are partial derivatives, weraded to keep track of all the constant variables.
This “division” process is frowned upon by matheigians, but works generally none-the-less.
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For example, dividing Eq. 9.2.5 by dT at constagives Eq. 9.2.2, which we derived directly
without any tricks. Dividing Eq. 9.2.5 by dT at stant V gives Eq. 9.2.3. A problem we haven't
tackled yet is the pressure dependence of thelpgthconstant temperature. Using the
differential, Eq. 9.2.5, and “dividing” by dP atregiant T gives:

oH oU ov oP
(anT - (GP)T * GP)T * V(GPJT 9.2.6
In other words, you can think of a differentialeaderivative “waiting to happen.” The advantage
of working with differentials is that differentialeave properties that help to simplify many

problems, regardless of the independent variabte. i@portant property of the differential of a
state function is that they are easy to integrate.

Example9.2.1
(a). Find the differential for a new state functidmlefined as A= U — TS. (b). From the
differential find the derivative of A with respetct T at constant V.

Answer: (a). Using the product rule for differentiatiadA = dU — T dS — S dT.
(b). Then dividing by dT at constant V gives:

(G_A) _ (G_Uj @) a_T)

oT)y —\0T)y, 0T, Tl

Remember tha(t—gLTJ) = C, and note that the derivative of T with respect tg just one, so this
v

equation simplifies to

0A) _ 0S
(aT)v_CV_ aT)v_S

9.3 Integrating Differentials: A differential is an integral “waiting to happen.”

A differential is a derivative “waiting to happé But, a differential is also an integral “waigin
to happen.” This dual use gives differentials apantant central role in helping us solve
problems. The differential tells us the variabletfee integration. For example, for a reversible
expansion at constant pressure:

f‘v’z P dV = P(\— Vi) (cst. P) 9.3.1
1
Without the dV, the integral is meaningless. Fgeaeral state function, F, the integral:
[dF=R-R =4F 9.3.2
1

can always be done, and always gives the chantpaitrstate function for the process, because
dF is exact. Using enthalpy as an example, let'saine example integrals.
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Enthalpy Change with Volume at Constant Pressi8tarting with Eq. 9.2.5, for a constant
pressure process, dP = 0, and:

dH=dU + P dVv (closed, cst. P) (7.8.2B.3.
Since P is constant, for a change in volume frontoW,, this equation integrates to:
[MdH = [du + [V2Pdv (closed, cst. P) 9.3.4
Hi Up Vi
AH =AU + PAV (closed, cst. P)(7.8.17) 9.3.5

Enthalpy Change with Pressure for Constant Volur@tarting with Eq. 9.2.5, for a constant
volume process, dV =0, and:

dH=dU+VdP (closed, cst. V) 9.3.6
Since V is constant, for a change in pressure fpto P, this equation integrates to:
Hz _ (U2 P
ledH _fuldu +fP12VdP (closed, cst. V) 9.3.7
AH =AU + VAP (closed, cst. V) 9.3.8

Note that in Chapter 7 we defined enthalpy to efuldor a constant pressure process, where g
= AH. This last example is a constant volume proasidsno longer gives the heat transfer,
instead ¢ =AU, but we can still calculate the change in enthalp

Example9.3.1

Calculate the change in enthalpy for a constanirmel process where the pressure for one mole
of an ideal gas is increased from 1.00 bar to BdiGstarting at an initial temperature of 298.2 K.
Assume that the gas is diatomic with€°/, nRT, from Equipartition without vibration.

Answer The volume of the gas can be obtained fromdkaligas law and starting conditions:
V = nRT/P =1.000 mol (8.314 J midk)(298.2 K)/(1.00x10Pa) = 0.024F m*

The final temperature can be obtained from thd Btete:

T = PV/nR = 2.00 x10Pa (0.024F m*)/1.00 mol/8.314 J mdIK™* = 5964 K
which should not be surprising. Since the presguneased by a factor of two, the temperature
should increase by a factor of two. The intern@rgy change is:

AU = C,AT = 5/2 (1.000 mol)(8.314 J mibK™) (596.4 — 298.2 K) = 69J
Then using Eq. 9.3.8:

AH =AU + VAP = 6198. J + 0.02479%(2.00x16 — 1.00x18 Pa) =

= 618.J+2479.J=867J=8.67kJ

To help verify the result, we could also have dtime problem using £= C, + nR = 7/2 nR and
then usingAH = GAT = 7/2 (1.000 mol)(8.314 J midbK™) (596.4 — 298.2 K) = 8.67kJ
giving the same result.
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General Processes for Changing P andNow we need to work with dH = dU + d(PV) or all
three terms in dH = dU + PdV + VdP, since P andbthizhange. Consider a process from V
P1 to Vs, P in a closed system. The easiest way to procetedingegrate Eq. 9.2.4 directly:

Haz — U2 PoV o
) L dH = ) L.du + ) o, dPV) (closed) 9.3.9
AH =AU + (P2 — BVy) = AU +A(PV) (closed) (7.8.16) 9.3.10

This equation is true for any closed system. Fersipecific case of an ideal gas we can calculate
A(PV) from the ideal gas law, Eq. 7.8°28

A(PV) =RV, - RVi= (nRT,) — (nNRTy) = nRAT (closed, ideal gas) 9.311
Substituting this final result into Eq. 9.3.10 gVEeq. 7.8.29
AH =AU + nRAT (closed, ideal gas) (7.87299.3.12

This equation holds for any general closed protmsan ideal gas.

Isothermal ProcessedNow, let’'s assume we have an isothermal proceaslosed system,
Figure 9.3.1. Both P and V change. Since enthaystate function, the change in enthalpy will
be independent of the path. Therefore, we can eang convenient path in doing the integral.
We will do the problem with two different pathsdive us practice in working with differentials
and also to verify that H is a state function. Tdesmeral process will be invaluable as we
introduce additional state functions.

A Vl, F1 i V21 Pl
P

Path 1

V2! PZ

.
>

v
Figure 9.3.1: An isothermal process from ¥, to V,, P, can be done by two different paths.
Path 1 is an isothermal reversible process, anu Pet a constant pressure step followed by
a constant volume stefiH is a state function and is independent of tha.pat

Path 1: Isothermal Reversible Expansioi©onsider an isothermal reversible process fvfam
P1 to V,, P, in a closed system, path 1 in Figure 9.3.1. Bajh.2.3.10 and 9.3.12pply,AH =
AU + A(PV), where P and V both change along path 1. lkerspecific isothermal expansion,
AT = 0, which then gives:

AH =AU (closed, ideal gas, cst. T) 9.313

The result is that for a closed system for an motfal process for an ideal gas, the internal
energy and enthalpy changes are the same.
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Path 2: Constant Pressure Then Constant Volurhet’s choose a different path and integrate
dH =dU + PdV + VdP. Choose a two-step processrei§.3.1 path 2. The first step is a
constant pressure process gtfBllowed by the second step at constant volumé& ak et the
intermediate state be signified by H. For the first ste@H; is calculated from:

) :‘ldH = BildU + ://fPldV (closed, cst. P) 9.3.14
The integrand for this volume integral, B a constant and factors out:

AH; =AU; + P(V2— Va) (closed, cst. P) 9.3.15
For the second constant volume si#i; is given by:

[ :ide = :Zdu +f Efvzdp (closed, cst. V) 9.3.16

AH; = AU, + V(P2 — PY) (closed, cst. V) 9.3.17

The overall change is the sum of the two st&ps= AU; + AU,, and then adding Egs. 9.3.15
and 9.3.17 to get the overall change for the pgeses:

AH =AU + Pl(Vz — V]_) + V2(P2 - P]_) (Closed) 9.3.18
or more succinctly:
AH =AU + P,AV + V, AP (closed) 9.3.19

This result looks very different from Eq. 9.3.1Qwkver, notice that multiplying out the terms
in Eq. 9.3.18 gives:

AH =AU +PV,-PV:+PV,-PRV, (closed) 9.3.20
and cancelling the,N', terms gives:
AH =AU + PV, — PV1= AU + A(PV) (closed) 9.3.21

This last equation gives the same result as pdfy19.3.10. The enthalpy change is
independent of the path as we expected; the direttwo-part path give the same result.

Example 9.3.2:

Calculate the change in enthalpy for heating of mieée of water vapor from an initial
temperature of 298.2K to a final temperature of.3&3at constant volume. Water vapor even at
pressures near its equilibrium vapor pressureahr@mperature is amazingly close to an ideal
gas. Assume that the water vapor is an ideal gashent G = °, nR, which is appropriate for
water (translation and rotation only for a non-nenolecule).

Answer Use Eq. 9.3.12 Then the internal energy change for any processrestant volume is:
AU = CAT =%,nRAT = 6/2 (1.00 mol )(8.314 J mtK™)(373.2 — 298.2K) = 1.87 kJ
Now from Eq. 9.3.12 AH =AU + nR(T; — Ty):
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AH = 1.87 kJ+ (1.00 mol)(8.314 J mdIK™)(1 kJ/1000J)(373.2-298.2K)
AH = 1.87 kJ + 0.624 kJ = 2.49 kJ

In summary, what did we learn from these foor@e problems? First, we practiced
integrating differentials. Second, we showed tktdtwas independent of the path we chose.
Third, these examples show how to do the integmadperly; now we can avail ourselves of
some short cuts. Short cuts are good, if you arefuleto make sure they are valid! For example,
starting with the differential dH = dU + d(PV) thdinitesimals can be rigorously converted to
finite differencesAH = AU +A(PV), as proven by Eq. 9.3.10. In other words wesafe to
change the “d” into af.” However, for the differential dH = dU + P dV +dP, we need to be
more careful. For a constant pressure proces®sasyre P, dP = 0, and Eq. 9.2.5 simplifies to
Eg. 9.3.3, dH = dU + P dV, and the integrated tasutq. 9.3.5AH = AU + PAV. Once again
for the constant pressure process we can just ehtaed'd” into a finite A.” If the pressure isn’t
constant, Eq. 9.2.5 must be integrated for theiBpgrocess. In general,

|an infinitesimal can be integrated directly torité difference if the integrand is a consthnt.

We shouldn’t dwell on incorrect solutions. Bome in particular is instructive. Starting with a
general process with dH = dU + PdV + VdP, it wolddincorrect to write

AHZAU + PAV + VAP (incorrect!!)
since both the pressure and volume can changeabhstve showed that, from Eq. 9.3.19:
AH =AU + PAV + V,AP (closed) (9.3.19)

Even though we derived Eq 9.3.19 for a two steggss, the equation is valid in general since H
is a state function and is independent of the path.

Example 9.3.3

Calculate the change in enthalpy, using Eq. 9farsan isothermal process using a two-step
path. The first step is a constant volume process V1, P; to V;, P, and the second step is a
constant pressure process from B to V,, P.. Draw this process on a graph such as in Figure
9.3.1.

Answer The path is shown in Figure 9.3.2.

A Vi F
=]
Path 1: Isothermal reversible
Path 3
Vi, P VP, R

>

Figure 9.3.2: A constant volume first step armbastant pressure second step.
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For the first step the integral is:

Hi _ (Ui P,
JdH = [ dU + [(VidP 9.3.22
AH; = AU; + V(P — R) 9.3.23
and the second, constant pressure step gives:
[iidH = [7du + [VPadv 9.3.24
H; U; V,
AH, =AU, + PZ(VZ — Vl) 9.3.25
Adding Egs. 9.3.23 and 9.3.25 gives:
AH =AU + Vl(Pz— Pl) + Pz(Vz - V]_) 9.3.26
which should also be compared with Eq. 9.3.19. ilying and cancelling terms gives:
AH =AU + RV;— PV + RV, - RBV;=AU + A(PV) 9.3.27
as before.
Example9.3.4

Given that A= U — TS is a state function, find the differentraterms of the definition. Can you
always integrate the definition to gi\ = AU —A(TS) ? Can you always integrate to give
AA = AU — TAS?

Answer The differentials are dA = dU — d(TS) and dAB dTdS —SATAA = AU —A(TS) is
always true, howevefA = AU — TAS is only true for an isothermal process. For exandpr a
constant S process dA = dU —SdT, which integratég\t= AU — SAT.

This section shows that the internal energy ankdadpy changes for processes are directly
related by HE U + PV, after some straight-forward manipulatiofge G, and G similarly
related and ar@{/oV)r, and fH/0P)r related?

9.4 The Constant Volume and Constant Pressure He@lapacities are Related

The constant volume and constant pressure heatitiapare fundamental properties of a
substance:

CV:@—?)V cp:@—;')P (7.8.7, 7.8.24)

Are C, and G independent or are they related? The constansymesind constant volume heat
capacities are related through the definition eféhthalpy. Substituting HU + PV into the
expression for ggives:
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(&)= (5, = (), ()
CP‘(aT)P‘( T e \aT)e T PET)s 9.4.1

The difference between the constant pressure amgtantt volume heat capacities is given by:

o) o(2, 8,

We have not yet encountered the first partial gene, U/0T), We can relate this new partial
derivative to the constant volume heat capacitggithe total differential of the internal energy
with V and T taken as the independent variables:

oU oU
du _(OTJV dT +(8V)T dv 9.4.3

“Dividing” both sides of the equation by dT at ctargt P gives the partial derivative we are
looking for:

oU oU\ dT (oU) dV

(GTJP - (OT)V dt " (OV)T dT (cst. P) 9.4.4
where dT/dT is equal to one and the new derivasia constant pressure:

oU oU oU\ (oV

(GTJP B (OT)V * (GV)T (aij 9.4.5

This last equation determines the change in intemergy for a constant pressure process. The
equation is useful in its own right, but for ouepent problem, substituting Eq. 9.4.5 into Eq.
9.4.2 gives:

oU oU\ (oV oV oU
G-G= (6T)V+ (av)T (6T)p * P(aT)P - (6T)V 9.4.6
The @U/dT), terms cancel giving:
oU oV
C,-C-= KaV)T + P} (aT)p 9.4.7

This important equation relates the constant pressod constant volume heat capacities and is
valid for any system. This expression also proviggsful insight into the meaning afy/oV)r.
When adding two numbers, the units must be the straeunits for U/0V)+ must then be the
units of pressure. The measured pressure of themsys P; so what pressure do@d/pV)
correspond to?

Consider the expansion of a gas as the temperatincreased. The derivativé\(dT)p,
determines the increase in volume of the systera.mé&chanical work done by the gas during
the expansion isw =—P dV = -®/0dT)pdT. This second term in the sum in Eq. 9.4.7
therefore accounts for the mechanical work of expan The first term,dU/oV)+ dV =
(0U/oV)+ (0V/0T)pdT, is the increase in the internal energy necgssasvercome the
intermolecular forces between the gas moleculéseagolume increases. As the gas expands,
the distances between the molecules increase, witokases the potential energy of the
molecular attractions. The molecular attractioreslass favorable, higher in energy. The
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separation of the molecules then requires the gsioreof some random thermal energy into
intermolecular potential energy, increasing thestamt pressure heat capacity. The partial
derivative pU/0V)+ is called thenternal pressure. The stronger the intermolecular forces, the
larger the internal pressure. Liquids and solideeHarge internal pressures. Since an ideal gas
has no intermolecular forces, the internal presiuran ideal gas is zero:

oU

(W)T =0 (deal gas)  9.48

For an Ideal Gas, £— G, = nR We can now determine the heat capacity diffegefor an
ideal gas. For an ideal gas V = nRT/P ahd/§T)r = nR/P. SincedU/dV)+ = 0, for an ideal gas,
Eq. 9.4.7 reduces to:

V

C-GC = P(a—) =P (nR/P) =nR (ideal gas) 9.4.9
T e

For example, for a monatomic gas, using Equipartts, = %, nR, and G= C, + nR =/>nR.

For a diatomic gas, Table 8.8.1, neglecting theatibn, G =°,nR and G= C, + nR ="/>nR.

The ratio of G to G, can be measured using several experimental taobsigee Sec. 9.8):

yz% 9.4.10

This heat capacity ratiois also useful on theoretical grounds. The rati®ea naturally when
constant pressure and constant volume processesrapared. Assuming the ideal heat capacity
relationship, G- C, = nR, for a monatomic ideal gas; G/C, = (/> nR)/{/> nR)= /3. For a
diatomic ideal gas, neglecting vibratiogs; (/> nR)/C/» nR)= /s = 1.40. For example, Mhas
nearly the ideal ratio at 2Q withy = 1.403, but near the boiling point 1.470 because of
increased effects of intermolecular forces at ilggdr density.

To calculate - G, for real gases, liquids, and solids, the valu@bfdV)t must be known.
The experimental determination @lJ/oV)+ is discussed in Section 9.6. However, returning to
Eq. 9.4.7, the mechanical derivatié/(0T)p is given by the coefficient of thermal expansion,
Eq. 7.6.8, withq@V/0T)p = Va. The coefficient of thermal expansion for a liqoida solid is
quite small, suggesting thap € C,. We often use this approximation in the absence of
experimental information. However, even thowgts small for a liquid or a solidg{/oV)+ can
be quite large and the constant pressure and cangtiime heat capacities for liquids and
solids can differ by more than 40%€learly, we need to know more about the internesgure,
(0U/oV)r.

9.5 The Internal Pressure of An Ideal Gas Is Zerd@U/oV)t = 0

The conclusion thab{U/dV)+ = 0 for an ideal gas provides an important singaifon. The total
differential of the internal energy, Eq. 9.1.2, plifies to:

0
0
du =G dT +Egg1 dv =G, dT (closed, PV-work, ideal gas) 9.5.1
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The corresponding partial derivative for the emilgafrom Eq. 9.1.3, can be related 8J(0V)
using the definition of the enthalpy,sHU + PV:

8- ()5

Since PV = nRT for an ideal gas, the last termei®zThe derivativedU/dP), in Eqg. 9.5.2, can
be related to the internal pressure using the atodén

0
oH d Y :
(GP)T = %T (GP)T =0 (closed, ideal gas) 9.5.3

For an ideal gas, botldl/oP); = 0 and §U/dV)+ = 0. The total differential of the enthalpy then
reduces to:

0
0
dH =G dT {Z%l dP = GdT (closed, PV-work, ideal gas) 9.5.4

In other words, the internal energy and enthalpgroideal gas depend only on temperature. For
the special case of an ideal gas, dU,gTCand dH = GdT apply to all processeés a closed
system, including constant volume, constant pressuiabatic, and of course isothermal where
dUu=dH=0.

We will do several example problems using thretstionships in Sec. 9.8. However, for real
gases, we still need to knodH/0P); and pU/dV)+. These important partial derivatives can be
measured experimentally using the Joule-Thomsoaresipn.

9.6 The Joule-Thompson Expansion Determines thetiernal Pressure for a Real Gas

The total differentials of U and H determine thsulés of gas phase processes, Egs. 9.1.1-9.1.4.
For a general process, the important partial daviea @U/0V)t and @H/0P)r need to be
determined. These derivatives are important fundéah@roperties of a substance. The Joule-
Thomson expansion measuréblfoP)r by expanding a gas through a porous barrier and
measuring the temperature change.

insulated: g =0

( \ \
1 1
fh7 =l e =
LVAT tVeT
C 7} Y}
P high P low

Figure 9.6.1: Joule-Thomson expansion through aysofrit. The pressures on both sides of
the frit are constant; high pressure on the leftlaw pressure on the right. The initial
position of the pistons is shown by the outlineskdi

The Joule-Thomson expansion, Figure 9.6.1, is doae insulated cylinder, giving an adiabatic
expansion, g = 0. The two halves of the expansytinder are separated by a porous disk, or
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other flow restriction. The pressure on the letiédd at a high constant value by a piston that
advances, forcing gas through the porous barries.gas expands into the right-hand chamber
where a second piston advances maintaining a garietaer pressure. In actual practice the
right-hand, low pressure portion of the cylindeofen at atmospheric pressure. During the
expansion, the gas may heat or cool, dependingemitial temperature of the gas. Let the
number of moles of gas that passes through theupdrarrier be n, with the initial state on the
left-hand side given by,PV3, and T. After expansion of n moles of gas through th&flo
restriction, the state is given by, ®/», and §. Work is done on the gas as the gas is compressed
on the high-pressure side as given y w P1V1. The gas does work, iy = — BV, as it
expands through the porous disk on the low-pressdee The total work is the sum of the work
on both sides:

w=PVi— PV, (cst. 2P,) 9.6.1
Since the expansion is adiabatic the internal gnelngnge is given by the work:

AU=U—~U=q+w=w (adiabatic) 9.6.2
Substituting Eq. 9.6.1 for the work into Eq. 9.§i%es:

Ur— U =PV1-PRPV, 9.6.3

Rearranging this last expression by grouping thrarpaters for the final state on the left and the
initial state on the right gives:

U, +BPV,=U + PV, 9.6.4

The definition of the enthalpy is #U + PV. Substitution of this definition for theitial and
final state in Eq. 9.6.4 shows that the enthalpthefgas is constant during a Joule-Thomson
expansion:

Hy=H (adiabatic, cst #P,)  9.6.5

The Joule-Thomson expansion is a particularly uausxpansion, since the expansion is at
constant enthalpy. The temperatures of the gasiaasured before and after the expansion, and
the Joule-Thomson expansion coefficient is defiaed

_(oT) To—-T1 . .
uJT=(aP)H _—Pz— 9 limitAP - O 9.6.6

If the gas coolsgl;r > 0 and if the gas heats ppr< 0. The cooling effect is the basis for
refrigeration and air-conditioners. However, we drethis section by asking if the value for the
partial derivativesdU/dV)+ or (O0H/0P)r might be measured experimentally. The relationship
these important partial derivatives to the JoulesBon coefficient is not obvious. Notice that
Myt is in a very unusual form, since the enthalpyes\tariable that is held constant. We can
recast §T/0P), into a more useful form by focusing on the toiffiedential of the enthalpy:
oH oH

=2 4p o2 470
where dH = 0, because the enthalpy is held con&iattte partial derivative dT/0P)y can then
be constructed by dividing both sides of Eq. 918, dP at constant H:
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OH)  (9H) (aT
(GP)T * (aij(aij =0 9.6.8

This last equation is then solved foiT (0P )4:

()
(O_Tj __\0P)r
G
0T Jp
Notice that this last equation is just the restiiplying the Euler Chain relationship, Eq.

7.11.20, todT/0P)y. EqQ. 9.6.9 shows that experimental measuremenits-aetermine the value
of (0H/0P)y:

aT 1 (3H oH
Hor = (GP)H G (GP)T (apjT ==Cpolyr 9.6.10

(0H/0P)r can then be used to calculad®(0V)+, see Example 9.7.2.

The Joule-Thomson coefficient can be positivaegative. Each gas is characterized by an
inversion temperature,,TTable 9.5.1. If the initial temperature is gredkan the inversion
temperature, then the temperature of the gas isesagpon a Joule-Thomson expansion. If the
initial temperature is less than the inversion terafure, the gas cools upon expansion.

9.6.9

Table 9.5.1: Joule-Thomson inversion temperatwesyep;r =0

Gas T (K)
O, 764
N> 621
H, 202
He 40

Along with considerable theoretical utility, theule-Thomson expansion is important for
home and auto air conditioners, kitchen refrigesgtand laboratory cold traps, where the gas is
usually a fluorinated hydrocarbon or butane. Expanef gaseous carbon dioxide from the
vapor space above liquid carbon dioxide in a higisgure cylinder can be used in cooling. A
carbon dioxide based fire-extinguisher producesla stream of C@that smothers and cools
flammable substances. The Joule-Thomson exparsieao used in the production of cryogenic
liquids.

Cryogenic Liquids are Produced Using the Joule-Tpsom Expansian Liquid oxygen,

nitrogen, hydrogen, and helium are commonly usddstrial cryogenic liquids that are
produced by Joule-Thomson gas liquefiers, FiguBe29A compressor is used to establish a
flow of high pressure gas. The gas at high pressumced through a small orifice, cooling the
gas by a Joule-Thomson expansion. After passirayiitr the flow-restriction, the cooled gas
returns to the compressor through the outer podfanconcentric tube with the high-pressure
gas flowing in the opposite direction. The courfitaw of the cool gas lowers the temperature of
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the gas on the high pressure side. When the tetoperater the expansion drops below the
boiling point of the substance, liquid forms, whistcollected in a reservoir that can be emptied
periodically. After return, the gas passes thoughdompressor to begin the process again. The
compression of the gas increases the temperatutee high-pressure stream is passed through a
heat exchanger to cool the gas. The operation wf lyome refrigerator is essentially identical.
The heat exchange coils for home refrigeratorsveindow air conditioners are visible on the

back of the appliance.

The normal boiling point of liquid helium is 4k Liquid helium is used to keep the solenoids
for high field NMR and MRI magnets below the supenducting transition temperature. To
produce liquid helium, the gas must first be codietbw its inversion temperature, 40 K. The
most common and economical cryogenic liquid isilqutrogen. The normal boiling point of
liquid nitrogen is 77 K, which is not sufficient tmol helium below its inversion temperature.
The temperature of a liquid may be decreased bglatig a vacuum pump to the vapor space
above the liquid. The rapid evaporation of theiligrequires energy\apH, thus lowering the
temperature of the liquid. To cool the helium beftite Joule-Thomson expansion, a vacuum
pump is used to lower the temperature of a batlyoid nitrogen that is placed around the heat
exchanger.

Heat
exchange

Compresso ..
|

Figure 9.5.2: Joule-Thomson gas liquefier. Thergast initially be below its inversion
temperature.

We now have the information needed to calculaechange in internal energy and enthalpy
for any process in any closed system, by using £4s1-9.1.3. The system is characterized by
the values of the partial derivatives;, C,, a, Ky, (U/0V)t, and @H/OP)r. We can also relate,C
to G, and PU/dV)+ to (H/0P)r. These results are quite an accomplishment. Albagvay
however, we have worked through many derivatiorsclvmight be a bit bewildering at first.
The focus is on providing the background necesatryou to derive these relationships on your
own. You might wonder if some general guidanceafgproaching thermodynamic problems can
be provided.

9.7 Partial Derivative Conversion: A General Procedre

Thermodynamic problems can often be recast in t@fragpartial derivative, which is then
integrated for a given process. For example: “dateuthe change in internal energy for one
mole of an ideal diatomic gas that is heated fr@8.2 K to 310.2 K at a constant pressure of
1.00 bar,” is determined by the partial derivaii@e/oT)p, Figure 9.7.1. Each problem must
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specify the process, the result desired, and tsiey In this example, the process is a change in
temperature at constant pressure, the result ishizuege in internal energy, and the system is an
ideal diatomic gas. Next the value of the derivativust be found and then integrated for the
specified process.

Calculate the change in internal energydioe mole of an ideal diatomic gas
— 7 — 7

~ —~

v system

(G_U) = ?
0T pe—

T the process \
A

e N\ I ~N
that is heated from 298.2 K to 310.2 K at a corigtegssure of 1.00 bar.

Figure 9.7.1: Many thermodynamics problems redagstegrating a specific partial
derivative. Each problem must specify the procemsresult desired, and the system.

This example would be easy if the process wecemstant volume, for thedy/dT)y = C,
andAU = C, AT. However, the example problem is at constantsormes How do you proceed if
the partial derivative is not in a form that ise&sintegrate? There is a general procedure for
reducing a partial derivative to a relationshipt ikawritten in terms of values that are readily
available through experiment. The procedure usesithpartial derivative relationships
discussed in Addendum 7.1Rartial Derivative Transformationsrhe goal is to recast a given
partial derivative into terms that are related {p @, a, K, (0U/0V)1, and §H/0P);. These
values are available from data tables or the eguaii state for the substance. The first step is to
determine the “misplaced variable.” In our exangigblem with fU/0T)p, the misplaced
variable is the variable that is held constansifGe U is normally considered a function of V
and T, not P and T. Consider the following five gibgities for the “misplaced variable,” which
are also summarized in Figure 9.7.2:

(). Misplaced Numerator~or @H/0T)y, the specified independent variables are V andnie
choice for the misplaced variable is then H, sitheeindependent variables for H are
usually considered to be P and T, H(P,T). The gpamial may be reduced to a relationship
involving the internal energy, which is usually satered a function of V and T, U(V,T).
Whenever you need to relate a function of H torecfion of U, the definition H= U + PV is
useful. Substitution of & U + PV into the partial derivative gives:

oH) _(d(U+PV)) (oU Py o
(OT)V _( oT jv - (OT)V ¥ (aijV =Gt KTV 9-7.1

where the last substitutions use Eqgs. 7.8.7 and&t6 recast the results into parameters
that are commonly tabulated or available from tipga¢ion of state.

(2). Misplaced Numerator~or @T/0H)p, the misplaced variable is the T, since the nutnesa
in all the standard partial derivatives involvéheita potential energy function, U or H in
this case, or V, as im, Kt. The set of variables is consistent with H(P,THe Diven partial
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may be transformed using inversjdty. 7.11.17, and the definition of the heat cdpaEq.
7.8.24: 0T/0H)p = 1/@H/0T)p = 1/G,.

(3). Misplaced Denominatoi~or @H/dV)+, the misplaced variable is the V, since the
independent variables for H are usually considévdze P and T, H(P,T). The chain rule
Eq. 7.11.18, may be used to express the desirédlmherivative in terms ofoH/0P)::

v), =[50, (), =), ()
GVT_ GPT 6VT_ aPT—VKT o
where the last substitution used the definitiorpfrom Eqgs. 7.6.9. Notice that the chain
rule was useful, because the constant variablétdidad to be changed.

oH oU oP 1
(aT)v ‘(aTj (aT) V=G ( ) (_H) Co
H=U + PV
definition invert
misplaced numerator misplaced numerator

E
wh G, (&,

misplaced denominator misplaced constant variable misplaced constant variable

chain rule total differential, dH totdifferential, dH=0

Al

oH OH) (0P oH oH oH oH

v =Gl (vl o =[G om (G lar an=(3g) ame (G oo

wh= Gk (ke ol ). (50), (50

oV )7 0P/t \-Vkr1 T )y~ \aP)7\0T )y \aT oTY \0P)r \9P)t
oH) o (ap) oH) -~ G

(anT KT G (GTJP

Figure 9.7.2: Partial Derivative Conversion. Rarierivative manipulations to convert

unknown partial derivatives to those involving C,, a, kt, (0U/0V)+, and @H/0P)r.

(4). Misplaced Constant VarialleFor @H/dT)y, the misplaced variable can also be
considered to be the constant volume restrictimeesthe independent variables for H are
usually considered to be P and T, H(P,T). Eg. 23 is one of two transformations that
change the variable being held constant. The desivlegins with the total differential of
the thermodynamic potential in terms of the custynradependent variables, H(P,T):

oH oH
dH = (GP) dP (GT) dT 9.7.3
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“Division” by dT at constant V gives:

oH) _ (9H) (9P) (oH
(GT)\/' (aP)T(aTjV-'- (aT)p 9.7.4

oH oH) «a

(aT)v_ (aP)T Kr ' G 975
where the last substitutions use Eqgs. 7.8.16 ah@4'to recast the results into parameters
that are commonly tabulated or available from tipgagion of state. This example and
example 1 are both fodlfl/oT)y; the choice of transformation depends on the mé&dion
that is available.

(5). Misplaced Constant VariakleFor @T/0P)4, the misplaced variable is the constant

enthalpy restriction. In this case the set of \#des is conventional, H(P,T), but the order of
appearance is scrambled from the normal case ofem{al energy function in the

numerator. The Euler Charelationship, Eq. 7.11.20, is useful in these sathe
relationship was derived earlier, Eq. 9.6.9.

Notice that these transformations are completeheg®; no approximations are necessary. After
the transformation, integration using parameteesi$ip to the specified system gives the result.

Example 9.7.1:
Calculate the change in internal energy for oneeneblan ideal diatomic gas that is heated from
298.2 Kto 310.2 K at a constant pressure of 1&0i0Assume a constant heat capacity.

Answer Figure 9.7.1 shows the implied partial derivatie be §U/0T)p. The “misplaced”
variable is the restriction to constant P, sinderimal energy is conventionally considered to
have independent variables V and T. Referencegor€&i9.7.2 suggests working through the
total differential dH and dividing by dT at const&h The result is given by Eqgs. 9.5.3-9.5.5.
Using the definition of the constant volume heatawaty, Eq. 7.8.7,0U/0T)y = C, and the fact
that for an ideal ga®J/dV)+ = 0 gives:

oU oU\ (oV oU , o
(8T)p = (6V)T (8T)p + (GT)V =C, (ideal gas) 9.7%
In the absence of any specific information conaegrihe value of the heat capacity, assume the
equipartition result; €=/, nR for a diatomic gas, neglecting vibration:

AU = CAT =%/, R (310.2 — 298.2 K) = 249. J niol

The internal energy and enthalpy change for an gisadepends only on the temperature and is
independent of the change in pressure or volume.

Example 9.7.2:
Given @U/oV)+ find (0H/0P)y.
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Answer There are two choices for the “misplaced” vaeabl and P. Whenever you need to
relate a function of H to a function of U, the ahtfion H= U + PV is useful, which suggest
trying H in the numerator oBH/0P); as the misplaced variable, Figure 9.7.2 top-left.

Substituting He U + PV into H/0P)r:
agpvz) B (au) (avj (ap)
+( oP )r 6PT+P aPT+V oP)t

5o =5 )
oP)r oP )t 0Pt

using the product rule. The derivatidJ{dP); is not in standard form, since internal energy is
usually considered a function of independent vdeml and T. The “misplaced” variable in
(0U/0P)r is the P in the denominator, Figure 9.7.2 bottefh-[0U/0P); can be related to the
internal pressure using the chain rule, Eq. 7.11.18

oH oU\ (aoV oV oP oU oV
(aP)T B (anT (aP)T-'- P(anT tv (aP)T_ KaV)T " P} (8P)T tv 1.1
The derivation is complete because only “fundaméptatial derivatives remain. We will show
that each term on the right can be evaluated ubmgquation of state of the substance in Chapt.
16. In this example, we started by choosing H enribmerator as the “misplaced” variable, but

choosing P in the denominator works as well. Tlageeusually multiple ways of deriving
thermodynamic relationships (which enhances stugiexttes on tests).

Now that we have more thoroughly discussedhberetical background of thermodynamics,
we should put these new tools to use for some ebeaprpblems. To avoid complications that
might obscure the important points we focus ondaali gas.

9.8 The First Law and Ideal Gases

The First Law of thermodynamics is the primagltfor “balancing the books” on the
interconversions of heat and work, dWe+dw. What are the heat and work transfers, the
change in internal energy, and the change in gngtfal ideal gas expansions? In the following
examples we determine g, MJ, andAH for isothermal and adiabatic, reversible and
irreversible expansions in a closed system fodaaligas. One immediate general simplification
for an ideal gas is the internal energy and enthaipy depend on temperature, Egs. .51id
9.5.4, becausedU/dV)t = 0 and §H/0P)r = 0. Assuming constant heat capacities over the
given temperature range, then the total differémgamplify to:

du=GdT AU=CAT dH=GdT AH=GAT (ideal gas, cst. &Cp) 9.8.T
For Isothermal Expansions of an Ideal Gag,= —dw: Consider an isothermal expansion of an
ideal gas from Y, P, to V,, P.. From Egs. 9.87] for an isothermal process in a closed system

AU = 0 andAH = 0. We can then directly relate the heat anckwi@nsfer using the First Law,
dU =dq +dw = 0, giving:

dq = —dw and g=-w (closed, isothermal, idesd)g 9.8.2
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For an isothermal reversibfrocess the work is given by Eq. 7456 that:
a Vo a _ Vo : . . 5
w =—-nRT In\T1 and q=-w=nRT Iv—l (isothermal reversible, ideal gas) 998.3
If the problem is given with changes in pressustaad of changes in volume, then we can use

the ideal gas law to relate the volumes and pressoy:

PV, _ nRT, _ L ;
PV, nRT," T, (closed, ideal gas) 9.8.4

which for an isothermal expansion, 3 Ty, gives:

P Vi
Pi™ V2

Next, consider an irreversibksothermal expansion against a constant extereabpre, B
From Eq. 7.4.4, the work is given by w = sRV. These results are summarized in Table 9.8.1.

P,Vo=PRV; or (closed, isothermal, ideal gas) 9.8.5

For Adiabatic Expansions dU &w: For an adiabatic expansiaig = 0, and then for anglosed
system:

dU =dw or AU =w (closed, adiabatic)  9.8.6

Now consider a reversibkdiabatic expansion of an ideal gas in a closstesy. Egs. 9.871

relate the change in internal energy and enthalplye change in temperature. If the temperature
change for the expansion is given, then M#¥= CAT is easily calculated. However, how do

we proceed if the change in volume or pressurpasiied? In addition to dU =,@T, for a
reversible processg= P, and the work becomes:

du =dgw=-P dV (closed, adiabatic reversible) 9.8.7
We can solve dU =T and dU = — P dV simultaneously to find the aj@im temperature:
C,dT=-PdVv (closed, adiabatic reversible).®.8
Using the ideal gas law relates the pressure angeasature:
RT . : . .
C, dT = _nT dv (closed, adiabatic reversible, ideal gas).8.9
Dividing both sides of this last equation by T sepes the variables, giving:
dT dVv : . : .
CVT =— nRV (closed, adiabatic reversible, ideal ga9)8.10
Integrating both sides of the last equation, assgraiconstant heat capacity:
dT dVv . . . .
- nR Vel (closed, adiabatic reversible, ideal gas,@&3 9.8.1T
T1 T Vi \

results in:

T V . . . .
C/lIn T_i =-nR Inv—i (closed, adiabatic reversible, ideal gas,@&3 9.8.12
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Dividing by nR and exponentiation of both sidesho$ equation gives:

Cv
Tp) MR _(Vy : : . .
T, =V, (closed, adiabatic reversible, ideal gas,G) 9.8.13
and cross multiplication relates the final andiahistates directly:

Cv Cv
VT, /R=\yT, /R (closed, adiabatic reversible, ideal gas,@&3 9.8.14

Given the change in volume for the process, Eq192&r 9.8.14 is solved for the change in
temperature. For a monatomic gagin® =/, and for a diatomic gas, neglecting the vibration,
C./nR =°/,, Table 8.8.1.

If, instead, the pressure change for the ad@abatersible expansion is specified we can take a
similar approach. Choosing P and T as the indepgn@eiables, the enthalpy is the natural
choice as the basis for our calculations, instddbeointernal energy. The total differential oéth
enthalpy is given by Eqg. 9.3.5, dH = dU + PdV + VéPwever, for an adiabatic reversible
process from Eg. 9.8.7, dU = — PdV, giving (Eq.318:

dH =dU + PdV + VdP =V dP (closed, adiabatavarsible) 9.8.15
Solving dH =V dP and dH =4QIT simultaneously and using V = nRT/P gives:
RT . . . .
CodT =V dP _nP dP (closed, adiabatic, reversible, idea) g&s8.16

Separating variables, by dividing by T, and intéiggaas before gives:

dr _dp .dl_ o ~dP
GT =P and (;TlT—anPlP
(closed, adiabatic reversible, ideal, gat G) 9.8.17
with the final result:

T2 P, . . . .
Co In.l.—1 =nR InEl (closed, adiabatic reversible, ideal gag,G) 9.8.18

Dividing by nR and exponentiation gives the coroegping result to Eg. 9.8.13

T, Cp/nR P, . . . .
T =5, (closed, adiabatic reversible, ideal gag,G) 9.8.19

This relationship is used to solve for the chamgemperature if the change in pressure is given.
The relationship &, = P1V1 is particularly useful for an isothermaldocess. Can we derive a
similar relationship for reversible adiabatic pre®es? How are P and V related for a reversible
adiabatic expansion? The ratio of the constantspresand constant volume heat capacities is
defined ag = Cy/C,, Eq. 9.5.9. The heat capacity ratio is found wdiing Eq. 9.8.18 by Eq.

9.8.12:
(p )
C In 2/P1

y=g =
Cv |n(V1/V2)

Cross multiplication by In(WV2) and exponentiation gives the relationship betweamd V:

(closed, adiabatic reversible, ideal gag, G) 9.8.20
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V P VY (P .
ylnv—izlnﬁ and (V_j :(ﬁ) giving BV, =PV,

(closed, adiabatic reversible, ided, gat. G) 9.8.2F

These expressions apply for gases that obey tlaégds law equation of state, but do not
necessarily follow the ideal gas heat capacityti@iahip G- C, = nR. The relationship,R/," =
P.V1' is particularly useful for comparing the changasréversible isothermal and adiabatic
expansions, Figure 9.8.1 and Table 9.8.1. For elgrfgr an adiabatic expansion for a
monatomic gas, &/5>° = P, V3, but for the isothermal processV2 = P,V1. The pressure
drops more during an adiabatic expansion becaeseolime dependence is greatésr> 1.

Table 9.8.1: Thermodynamic balance sheet for igaslexpansions in a closed system.

Process PV relationship q w AU AH
isothermal P,V,=PV; =—w _ V>, 0 0
reversible W =—nRT I

isothermal Psy = cst g=—w w=—RuAV 0 0

irreversible PV, =PV,

adiabatic (TZ/Tl)CV/nR = VIV, 0 w=AU=C,AT AU=C,AT AH=GAT
reversible Cry

(TATy) ™=PRJ/P;

PV.'= PV,

adiabatic = P =cst 0 w=AU=-RsAV AU=CAT AH=GAT
irreversible C,AT = - R4AV

isotherme
PV,= PV,

v v ©
Figure 9.8.1: An adiabatic expansion does less wWwak an isothermal expansion for a given
change in volume, because the temperature decréaseg an adiabatic expansion.

For an isothermal expansion the heat and work gualen magnitudejq = —dw, which shows
the work is “paid for” by an equal transfer of h&aim the surroundings. For an adiabatic
processiq = 0, so the work is at the expense of the inteenargy,dw = dU; the work in an
adiabatic process is “paid for” by a decrease énitibernal energy of the gas. The decrease in
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internal energy for an adiabatic process resultstemperature decrease. An adiabatic expansion
does less work than an isothermal expansion, fiven change in volume, because the
temperature decreases. Therefore the pressuresfadiabatic expansion decreases more than an
isothermal expansion, giving less area under thedVe and less work.

Now, consider an irreversibégliabatic expansion against a constant extereakpre, R
Once again the work is given by wAt) = CAT and w = — B:AV. We can solve both of these
eguations simultaneously for the change in tempezat

CAT = - RyxAV (closed, adiabatic, ideal gas, csi&fC,) 9.8.22
Explicitly in terms of the initial and final states
C(T2a—T1) == Rx(V2— V1) (closed, adiabatic, ideal gas, cgi&l,) 9.8.23

This equation is solved for the final temperatdite initial and final volumes are specified.
What if the initial and final pressures are givestead? Assume that the expansion is complete
when the final pressure is equal to the externedgure, P= P,y Substituting the ideal gas law
for the final and initial states,)\= nNRT,/P,, and M = nRTy/Py:

nRT, nRT]_)

C(T,—T) =- ng( Pow ~ P1 (closed, adiabatic, ideal gas, cgi&fZ,) 9.8.24

Example 9.8.1:

Calculate g, wAU, andAH for isothermal and adiabatic, reversible andviersible expansions
in a closed system for 1.000 mol of an ideal mom&tayas. In each case, the initial pressure is
10.00 bar, the initial temperature is 298.2 K, #ralfinal pressure is 1.000 bar. For the
irreversible expansions, the gas expands agacmistant external pressure of 1.000 bar.

Answer For the isothermal expansiakil = 0 so thahU =AH =0 and g = — w.
(a). The work in an isothermal reversilebepansion is given as, Eq. 7.4.6

V . V, P ..
w=—nRT In\Ti with PV, = PV, or V_i:E; giving:

P P
w =—-nRT In;l =nRT In;i (isothermal reversible, ideal gas) 9.8.25
1.000 bar
- B -1 e
w = (1.000 mol)(8.314 J Kmol™)(298.2 K) IN75 00 bar ~2710- J

g=-w=5710.J (isothermal reversible, idyz)

The work is negative because the gas expands agfaensurroundings doing work.
(b). Now consider the irreversibéxpansion against the constant external pressbeeinitial
and final volumes are given by the ideal gas lasoatstant T

V1 = nRTY/P; = (1.000 mol)(0.08314 L bar mtk ™)(289.2 K)/10.00 bar = 2.479 L
V> = NRT/P, = (1.000 mol)(0.08314 L bar mtk *)(289.2 K)/1.00 bar = 24.79 L
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When the pressure drops in an isothermal processfégtor of ten, the volume increases by a
factor of ten. The work is:

W = — ReAV = 1.000 bar(1.00xT0Pa/1bar)(24.79 — 2.479 L)(13M000 L) = -2231. J
=—-w=2231.J (isothermal irreversible aildgas)

The work for the irreversible process is smallemiagnitude because the system expands against
a constant external pressure; a reversible prapess the maximum work.

For an adiabatic expansion, q MY = CAT, AH = GAT, w =AU.
(c). For the reversibladiabatic process, since the pressure changedsisgd, we can use Eq.
9.8.19 with G = C, + nR =/, nR for a monatomic gas:

(T_ﬂs’z _ (Bi) ( T, V2. ( 1.000 ba
TJ ~\P Of {208.2k/ ~\10.000b
T,=298.2K (0.13°=118.7 K

The temperature drops as expected because thensysés work at the expense of the internal
energy. With the final temperature established:

W =AU = CAT =%, nR (T, — T1) = %, (1.000 mol)(8.314 J Kmol?)(118.7 — 298.2K)
w =AU =-2238. J (adiabatic reversible, ideal)gas
AH = CAT =%/, (1.000 mol)(8.314 J Kmol*)(118.7 — 298.2K) = -3731. J

The work for the adiabatic reversible process iallnin magnitude than the isothermal case, as
expected, because the temperature decreases.

(d). Finally, for the irreversibladiabatic expansion against the constant extpreakure, we

apply Eq. 9.8.2%to find the change in temperature, with=/, nR:

The nR factors cancel giving:

T 298.2 K
3, (T, —298.2 K) = — 1.000 '”(Fi.ooé a7 1000 bat = — T2+ 29-82K
*l, To = 31,(298.2 K) + 29.82 K
T,=190.8 K

The temperature doesn’t drop as much as the rélersase, because the gas does less work.
With the final temperature established, we proaeetbr the reversible case:

w =AU = CAT =%, (1.000 mol)(8.314 J Kmol*)(190.8 — 298.2K)
w =AU =-1339. J (adiabatic irreversible, idead,gzst. Rx)
AH = CAT =%/, (1.000 mol)(8.314 J Kmol™*)(190.8 — 298.2K) = -2232. J

The irreversible adiabatic expansion does the lgast of the four cases, as expected. The
results for the four processes are summarized lneTa8.2.

Isothermal and adiabatic expansions provateigxamples of the use of the First Law in
practical problems. Reversible isothermal and atialprocesses will also play a central role in
developing the thermodynamic definition of entroppyChapter 11.
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Table 9.8.2: Expansion of one mole of an ideal nmméc gas at 298 K from 10 1 bar.

procesg10 bar-1 bar) Tz q w AU AH
isothermal reversible 298.2K 5710.J -5710.J 0 0
isothermal, cst. & 298.2K 2231.J -2231.J 0 0
adiabatic reversible 118.7 K 0 -2238.J -2238.J 7313J
adiabatic, cst. & 131.2K 0 -1339.J -1339.J -2232.J

In this chapter we have focused on the consequeriche First Law of thermodynamics. The
concept of conservation of energy is a pivotal ideaany areas in science. Conservation of
energy plays an important role in shaping our woridnany scales (see Sec. 1.4).

9.9 Efficient Organisms Have a Competitive Advantag: Ecology

One of the central tenants in ecology is: orgausi that gather and use energy efficiently are
more likely to survive. Energy is typically in sheupply and competition for energy shapes the
relationships within an ecosystem. For examplestand other plants compete for sunlight in
dense forests. Trees in a rain forest grow talé ahbility of an organism to harvest and use
energy efficiently provides a survival benefit amdompetitive advantage.

The energy requirements of an organism deterthimeole of the organism is its biological
niche. Autotrophs use sunlight or inorganic substaras energy sources to produce the
molecules necessary for cell maintenance, growith reproduction. Heterotrophs obtain energy
by feeding on other organisms. The loss of enavgyétabolic activity limits the energy that is
available to higher trophic levei Organisms higher up the food chain therefore have
diminished available energy, and typically alsoéawreater impact on the environment.

The production and use of energy in ecosysterdsrathe human community are governed by
the First Law of Thermodynamics. The conservatiben@rgy results in competition among
various organisms in an ecosystem. The energy redesigieties also are in competition. The
flow of energy through an ecosystem and the flowredrgy through a human society have much
in common. Organisms evolve to increase efficiemty;society must also evolve to increase
our efficiency in energy production and consumption

Thermodynamics provides the fundamental stredimr developing new energy technologies
and energy public policy. Key ingredients in engpglicy encourage increased energy
efficiency and conservation. However, the First Llawne is insufficient to determine the
efficiency of a process. Inefficient and efficierstes of energy obey the First Law. Efficiency,
spontaneity, and the position of equilibrium amesely related concepts. We next develop the
ideas central for determining the efficiency andrgpneity of physical processes.

9.10 Summary — Looking Ahead

The structure of physical phenomena is modejeshéithematical relationships that make
problems easy to solve and often highlight intetrehships that are surprising and unexpected.
For example, Eq. 9.4.5 gives the change in inteznalgy with temperature for a process at
constant pressure:



395

oU oU oU\ (oV

(6T)p = (6T)V ¥ (av)T (6T)p (9.4.5)
The result is expressed in partial derivatives takdte the fundamental properties of the system
under study. The values of these partial derivataue available from tables of data or from the
equation of state. This expression is not obvitugact you might wonder how a change in
temperature for a constant pressure process cagldbed to partial derivatives at constant
volume and constant temperature. The relationshijgorous and completely general and a
result of the path independence of state functidhs.change in state for the constant pressure
path may simply be accomplished using a constdotve path followed by a constant

temperature path, Figure 9.10.1. The two-step isadlmply a more convenient way of
accomplishing the same change in state.

A TV,

\ Path :
5
)
ov -
Path2

Ty, V4 oU
<a_T)\/ N
T —
Figure 9.10.1: A constant pressure process fronvito T,, V, can be done by two different
paths. Path 1 is the direct one-step path, andZPiatl constant volume step followed by a
constant temperature stéJ is a state function and is independent of tha.pat

The key to reconciling the various conditions in Bd.5 is to realize that the pressure, volume,
temperature, and internal energy are all relatey. o may be chosen as the independent
variables, and then the remaining two are deternineugh the equation of state and the First
Law. The structure of calculus keeps track of titerrelationships for us. The structure of
thermodynamics often provides surprising, unexmkcad useful results.

We now have the necessary background in thernardics to develop the criteria for
spontaneous processes and determine the positemudibrium.

Chapter Summary

1. The total differential of a state function isaek
2. An exact differential may be integrated knowamdy the initial and final states of the system.
3. The Euler Criterion for exactness is that migadials are equal. Given F a state function:

oF oF 0 (OF 0 (OF
dF _(axjy dx +(aYJx dy and (ay ax)ij - (ax ayjjy

4. Differentials are formed using the normal rudéslifferentiation. For a function with the
definition G = F + xy, the differential is dG = dFd(xy) and dG = dF + xdy + ydx
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5. Differentials can be converted to partial dermxes by dividing by the infinitesimal of the
independent variable and specifying all other \@ea constant. For dG = dF + xdy + ydx, the
partial derivative with respect to x at constaig:y

(5= (5e) 43, (30
ox )y \0xJy Xaxy 0X )y

6. The differentials of state functions can alwbgdirectly integrated:
[PdF =R~ R =AF
F1
7. As a short cut, an infinitesimal can be integgadirectly to a finite difference if the integrand
is a constant. For dG = dF +dy with G and F state functions and x held constant
AG =AF + xAy

8. Enthalpy and internal energy are related byd#fenition H= U + PV giving differentials:
dH =dU + d(PV) ordH =dU + P dV + V dP. In gerlda a finite process:

AH =AU +A(PV)
For a constant pressure process:

AH =AU + PAV (constant pressure)
For a constant volume system:

AH =AU + VAP (constant volume)
For a closed system for an ideal gas:

A(PV) = nRAT (closed, ideal gas)

AH =AU + nRAT (closed, ideal gas)
For an isothermal process for an ideal gas:

AH =AU (isothermal ideal gas)

9. The changes in internal energy and enthalpy teithperature are:
oU oH
(aT)V =G and (aT)p = Cp

(57 =(&7), () + ), e Gl - Go5m, 57,

10. The constant pressure and constant volumechpatities are related by:

==&, + 7| &)

11. Since an ideal gas has no intermolecular fotbesnternal pressure for an ideal gas is zero:

@_\%T - @_EJT =0 (ideal gas)

12. For an ideal gas,,G G, = nR.

13. The heat capacity ratyo=C,/C, is accessible through experiment. For an idealatwmic
gasy = /.

14. The internal energy and enthalpy of an idealdgpend only on temperature: dU s@T and
dH =G dT apply to all processés a closed system for an ideal gas.

T 1 (oH
15. The Joule-Thomson expansion coefficient isngefias: pyr = (%)H =-C (S_P)T
P
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16. The internal pressur@/dV)+, and OH/0P); are related by:

213, %,

17. G, G, a, K1, (QU/0V)t, and @H/0P); are the fundamental partial derivatives that
characterize the system.

18. Table 9.8.1 summarizes the First Law relatigpssfor reversible and irreversible, isothermal
and adiabatic ideal gas expansions in a closedrmyst

19. For an isothermal expansion the work is “paid by an equal transfer of heat from the
surroundings: i/, = PV;.

20. For an adiabatic process the work is at themsg of the internal energy, which results in a

Cv

temperature decrease; I8 T2/7, = —nR InVahy, (Tefr) ™=V, and BV = PV

21. An adiabatic expansion does less work thas@hérmal expansion, for a given change in
volume, because the temperature decreases.

22. One of the central tenants in ecology is: oiggan that use energy efficiently are more likely
to survive.

23. Autotrophs use sunlight or inorganic substaasesnergy sources to produce the molecules
necessary for cell maintenance, growth, and remtomiu Heterotrophs obtain energy by
feeding on other organisms. The loss of energydtabolic activity limits the energy that is
available to higher trophic levels.

24. A strength of thermodynamics is that non-obsimterrelationships are often uncovered.
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Problems

1. Write the total differential for V given as anfttion of the independent variables U and T.
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2. Write the total differential for the new furati G with independent variables T and P.
3. Determine if the following total differentia exact: dF = 3ydx + 6xy dy

4. We showed that the differential in Example 9i&.éxact:

nR nRT : V) _nR dvV) -—nRT
dV—PdT——PrdP with (OT)p_P and (aP)T__PZ_

Separately integrate these partial derivativegi ¥. Do indefinite integrals.

5. Find the partial derivative of the enthalpy widispect to volume at constant temperature from
dH = dU + PdV + VdP. Express the result in term€gfC,, a, kr, (AU/dV), and OH/0P)r.

6. Show that Eq. 9.4.22dH = dU + nR dT oAH = AU + nRAT, is consistent with &= C, +
nR, which is true for an ideal gas.

oH

ouU . .
7. Show thaEaV)T = (GV)T for an ideal gas in a closed system.

oH ouU . .
8. Show thaE—) = (—nRT/Fg)(—) for an ideal gas in a closed system.
oP/; A

9. FindAH in terms ofAU for a gas that obeys the virial-type equatiostate:
Pv:nRTu,FQ%

We will assume that B is a constant (the secondldpefficient is actually temperature
dependent). Use this result to find the changathapy for the expansion of one mole of water
vapor starting at a pressure of 23.8 torr fromratnal temperature of 298.2K to a final
temperature of 373.2 K. Assume the volume is congta the process. Assumg €%, nR and

= —425 cm mol™* (roughly the value for water at 373 KCompare with Example 9.3.2.

2
\%

10. Show that:(a—H) =C,+nR +n
oT )y

for a gas that obeys the virial-type equation afestPV = nRT(1 + Qr/l)

Assume that B is a constant (the second virialfaoent is actually temperature dependent).
Compare the result to the last problem.

11. In Section 9.3 for the isothermal reversib{pansion of an ideal gas, which is Path 1 in
Figure 9.3.1, we integrated dH = dU + d(PV) toverthatAH = AU. Integrate:

dH=dU +PdV +VdP (9.2.5)

directly for an isothermal reversible process amulsthe result also give’sH = AU. In other
words, assuming an ideal gas at constant temperauiostitute P = nRT/V and V = nRT/P and
then integrate. Compare the integral to Eq. 9.3.18.
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: [oH) _ oH) _
12. Given that.(aP)T =0, show thaEanT =0.

13. We will prove in a later chapter that the inté pressure for a Van der Waals gas is:

2,

Find G, — G, for a Van der Waals gas.
14. For CQ, yy7r = 1.11 K bar* and G for CO is 37.11 J Kmol™. Calculate the change in

enthalpy per mole of C{or an isothermal process for a change in pressuted0 bar. Assume
that bothy;r and G are constant over the pressure range.

15. Determine the “misplaced” variable foH{0V)t and express the result in terms Qf G,
a, Kr, (0U/0V) 1, and @H/OP)r.

16. Show that for an ideal gas i§ not a function of the volume of the system #rat G, is not
a function of the pressure of a system. In otheldeshow that, for a closed system:

ac) _ a_ng .
(avjfo (ap ;-0

oH OH) (a
17, showind 2] -, +(29) (&)

18. The Joule-Thomson coefficientug = (0T/0P)y. Show that the corresponding coefficient
for constant internal energy processes is given by:

), =2 3V
vy ~ C v/t
19. Rewrite Figure 9.7.1 for the partial derivasy

7 M v VR R R

0T )p oU )y 0P/t 0T )p oV)y

20. One mole of an ideal diatomic gas at 200. &mpressed in a reversible adiabatic process
until its temperature reaches 300. K. Given tha €°/,R, calculate g, wAU, andAH.

21. Calculate g, wAU, andAH for a reversible isothermal expansion of 10.0 ofan ideal
diatomic gas. The initial pressure is 5.00 bar, @nedtemperature is 298.2 K. The final pressure
is 1.00 bar. Assume,G °/» nR (equipartition neglecting vibration).

22. Calculate g, wAU, andAH for an isothermal expansion of 10.0 mol of araldgatomic gas
against a constant external pressure of 1.00 Ibar filfial pressure of the gas is equal to the
external pressureR Py The initial pressure is 5.00 bar, and the tentpegas 298.2 K.
Assume G = >/, nR (equipartition neglecting vibration).
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23. The volume of 1.00 mol of an ideal diatomis gaactly doubles in a reversible adiabatic
expansion. The initial pressure is 5.00 bar andrtiti@l temperature is 298.2 K. Calculate g, w,
AU, andAH. Use the constant volume heat capacity for wagor, G = 25.3 J K mol™.

24, Calculate g, wAU, andAH for a reversible adiabatic expansion of an idigalomic gas. The
initial volume is 50.0 L, the initial pressure i96 bar, and the initial temperature is 298.2 K.
The final volume is 157.8 L. Assume €%/, nR (equipartition neglecting vibration).

25. Calculate the initial and final volume, q,A), andAH for a reversible adiabatic expansion
of 2.000 mol of an ideal monatomic gas. The inpigssure is 10.00 bar and the initial
temperature is 298.2 K. The final pressure is 1100 Use the heat capacities predicted by
equipartition. Verify that Egs. 9.8.1@nd 9.8.21, P, V' = PVY", give the same resullt.

26. Calculate the initial and final volume, q,AW), andAH for a reversible adiabatic expansion
of an ideal diatomic gas. The initial pressure.@08 bar and the initial temperature is 298.2 K
for 10.00 moles. The final pressure is 1.000 basulne G=">/,nR (equipartition neglecting
vibration).

27. Calculate the final pressure, initial and fvaume, g,AU, andAH for a reversible
adiabatic expansion of an ideal diatomic gas tbasd10.00 kJ of work in the process. The
initial pressure is 10.00 bar and the initial tenapere is 298.2 K for 10.00 moles. Assumeg=C
*/, NR (equipartition neglecting vibration).

28. Calculate the initial and final volume, q,AW), andAH for an adiabatic expansion of an

ideal diatomic gas against a constant externabpreswith the final pressure of the gas equal to
the external pressure; P Pox. The initial pressure is 5.000 bar and the inteahperature is

298.2 K for 10.00 moles. The external pressured®@bar. Use the heat capacities predicted by
equipartition, neglecting vibration.

29. Consider an adiabatic expansion against aaonskternal pressuregg with the final
pressure of the gas equal to the external presEheeinitial pressure is 10.00 bar and the initial
temperature is 298.2 K for 10.00 moles of an idigaiomic gas. Calculate the external pressure
that is required for -10.00 kJ of work to be dogete gas. Calculate the final temperature,
volume, gAU, andAH. Use the heat capacities predicted by equipamtitneglecting vibration.

30. The relationships of the variables that aradpéield constant for the partial derivative
transformation in Eq. 9.4.5 are sketched Figur®.9.1(a). Sketch the corresponding
relationships for the transformation:

(57~ Gehlaml 57
6TV_ 6PT6TV an
(b). Rewrite this expression in terms of the fundatal properties, £ G, a, Kr, andpyr, and

integrate the resulting expression assuming tleatdimperature range is sufficiently narrow that
the system properties are constant.
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