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Chapter 8: Thermochemistry 
 
Except for nuclear energy, chemical fuels are the densest sources of energy for transportation, 
space heating, cooking, and industrial production. Alcohols are possible choices for large scale 
energy storage. Determine the enthalpy of combustion and formation of methanol. 
 
   The First Law of thermodynamics provides a careful accounting of the transfers of heat and 
work for a system. Energy is conserved; energy is neither created nor destroyed. However, 
energy can be converted from one form to another: among heat, work, and internal energy. At 
times we are interested in obtaining the maximum amount of heat from a process, and we wish to 
minimize the PV work that is done. Space heating, cooking, and many industrial processes 
require large amounts of heat. At other times we are interested in obtaining the maximum 
amount of work from a process, and we wish to minimize the heat produced. For batteries, fuel 
cells, and chemical synthesis we wish to waste as little energy as possible as heat. 
Thermochemistry is the study of heat transfer in phase transitions and chemical reactions. 
   The experimental branch of thermochemistry is calorimetry. Calorimetry plays a fundamental 
role in the understanding of chemical transformations, ecology, and energy technology. Millions 
of chemical compounds are known. We need to be able to assess the potential of every substance 
for fulfilling new uses. The experimental determination of thermodynamic parameters is a time 
consuming process. Computational techniques have been developed to estimate the internal 
energy and enthalpy changes for chemical processes when the experimental parameters are 
unknown. 
   Organisms need energy to provide warmth, shelter, and food. Energy production and 
consumption are central aspects of the functioning of society. The efficient production of energy 
provides independence and minimizes global pollution and climate change. Thermochemistry 
shows the interrelationships that govern what we can do to insure energy independence and 
responsible stewardship of the environment. 
 
8.1 The Internal Energy and Enthalpy Changes for Phase Transitions 
 

   For a phase transition in a closed system at constant pressure, the heat transfer is given by the 
enthalpy change. For example, the heat transfer per mole for the constant pressure vaporization 
of water at one bar pressure and 298.15 K is given by the enthalpy of vaporization: 
 

 H2O (l) → H2O (g)    ∆vapH = 44.01 kJ mol-1  8.1.1 
 

The internal energy change for the phase transition can be calculated using the definition of the 
enthalpy, Eq. 7.8.16, ∆H = ∆U + ∆(PV). Specifically for vaporization at constant pressure: 
 

 ∆vapH = Hvap – Hliq    ∆vapU = Uvap – Uliq   ∆vap(PV) = P(Vvap – V liq) (cst. P)  8.1.2 
 

For calculating ∆vap(PV), the molar volume of the vapor is much larger than the molar volume of 
the liquid, so the volume of the liquid can be neglected. In addition, treating the vapor as an ideal 
gas is usually sufficiently accurate for most purposes (see Problem 7.6). Assuming the phase 
transition takes place at constant temperature with these approximations gives: 
 

 ∆vap(PV) = PVvap = ng RT     (ideal gas, cst. T&P) 8.1.3° 
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where ng is the number of moles of vapor in the balanced equation. Combining Eqs. 7.8.16, 
8.1.2, and 8.1.3° relates ∆vapH and ∆vapU: 
 

 ∆vapH = ∆vapU + ng RT    (ideal gas, cst. T&P)  8.1.4° 
 

   Phase transitions that have a non-zero enthalpy are called first-order phase transitions. Eqs. 
8.1.2-8.1.4º apply to all first-order phase transitions, ∆trH = ∆trU + ng RT, which include: 
 

 General transition:       α → β  ∆trH   = Hβ – Hα 
 Melting or fusion:  solid → liquid  ∆fusH = Hliq – Hsolid 
 Sublimation:  solid → vapor  ∆subH = Hvap – Hsolid 

 Vaporization:  liquid→ vapor  ∆vapH = Hvap – Hliq   8.1.5 
 

Tabulations of transition enthalpies are in Appendix Data Section Table 8.1.1. For melting 
transitions the change in volume is determined by the change in density from the solid to the 
liquid, which is quite small. Except for very high pressures, ∆tr(PV) = PM(1/dliq – 1/dsolid) is 
negligible for melting transitions. Notice that phase transitions can also be considered as 
chemical reactions. The reactant for Eq. 8.1.1 is liquid water and the product is water vapor. The 
relationships that we derive for chemical reactions and phase transitions are interchangeable. 
 
 
             

Example 8.1.1: 
The molar enthalpy of vaporization of water at 298.15 K is ∆vapH = 44.01 kJ mol-1. Calculate the 
molar internal energy of vaporization, assuming a constant pressure of 1.00 bar. 
 
 
Answer:  Using Eq. 8.1.4 gives: 
 

   ∆vapU = ∆vapH – ng RT 
  = 1 mol(44.01 kJ mol-1) – 1 mol(8.314 J K-1 mol-1)(1 kJ/1000 J)(298.15 K) 
  = 44.01 kJ – 2.48 kJ = 41.53 kJ 
 

Since this result is for one mole, we can also write the units as ∆vapUm = 41.53 kJ mol-1. Why is 
the internal energy of vaporization less than the enthalpy change? At constant pressure ∆H = ∆U 
+ P∆V. The system expands, pushing back the atmosphere upon vaporization. The work done is 
given by w = – P∆V, assuming the pressure is held constant by maintaining contact of the system 
with the surroundings. So the enthalpy change exceeds the internal energy change by the 
negative of the work against the surroundings. Since the process is at constant temperature, the 
extra energy must be supplied by the surroundings: qp = ∆vapH = ∆vapU + P∆V. 
 
             

 
 

8.2 The Conditions for the Reaction Must Be Specified 
 

Standard States for Constituents in Chemical Reactions:   For a chemical reaction in a closed 
system at constant pressure, the heat transfer is given by the enthalpy change, assuming no non-
PV work exchange with the surroundings. For example, in Eqs. 1.4.2, we discussed the 
formation of nitric acid and the role of nitric acid in acid deposition. Nitric oxide is formed 
during high temperature combustion processes, principally in internal combustion engines. Nitric 
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oxide is rapidly oxidized in air to form an equilibrium mixture with NO2, and the reaction of NO2 
with water gives nitric acid: 
 

    ½ N2 (g, 1bar) + ½ O2 (g, 1bar) → NO (g, 1bar)          ∆rH° = 90.25 kJ mol-1  8.2.1 
 

    NO (g, 1 bar) + ½ O2 (g, 1 bar) → NO2 (g, 1 bar)          ∆rH° = -57.05 kJ mol-1  8.2.2 
 

    3 NO2 (g, 1bar) + H2O (l) → 2 HNO3 (l) + NO (g, 1bar)      ∆rH° = -71.66 kJ mol-1  8.2.3 
 

The reaction enthalpies are at 298.15 K. The oxidation of N2 in air is endothermic, while the 
oxidation of NO and the reaction of NO2 with water are exothermic. The internal energy or 
enthalpy change for a chemical reaction is symbolized as ∆rU and ∆rH to highlight the 
connection between the heat transfer and the specific reaction process. As we discuss the 
thermochemistry of these reactions, we must be careful to specify the state of each reactant and 
product. The state of aggregation, solid, liquid, or gas, must be specified. The reaction enthalpy 
for Eq. 8.2.3 is different if the water reacts as a gas: 
 

  3 NO2 (g, 1bar) + H2O (g) → 2 HNO3 (l) + NO (g, 1bar)    ∆rH° = -115.67 kJ mol-1  8.2.4 
 

The difference between Eqs. 8.2.3 and 8.2.4 is the enthalpy of vaporization of water, Eq. 8.1.1. 
For solids, the crystalline form is also important; reactions of C(graphite) and C(diamond) have 
different enthalpies. 
   The internal energy and enthalpy changes for gases are strong functions of pressure; so the 
pressure must be specified for all gaseous species. The standard state pressure is defined as: Pº = 
1 bar. Internal energies and enthalpies under standard conditions are listed as ∆rU° and ∆rH°. The 
pressure of liquids and solids need not be specified if the pressures are near 1 bar. The weak 
pressure dependence of the enthalpy for condensed phases was discussed in Example 7.8.2. Note 
that there is no standard temperature. The internal energy and enthalpy changes for chemical 
reactions can be strong functions of temperature. 
   The reaction in Eq. 8.2.3 gives pure liquid nitric acid. However, the reaction to give an aqueous 
solution is even more exothermic: 
 

 3 NO2 (g, 1bar) → 2 HNO3 (ai) + NO (g, 1bar)          ∆rH° = -138.18 kJ mol-1  8.2.5 
 

The reaction enthalpy quoted is for all reactants and products in their standard states. The 
standard state for species in solution is unit concentration. For electrolytes, the “ai” standard state 
corresponds to complete dissociation.1 We use the “aq” designation for aqueous species that are 
not at standard state. In solution, the thermodynamic contribution of a substance to the enthalpy 
is determined by the activity of the substance. The activity of a species in solution is the 
“chemically effective concentration.” We will discuss the relationship between concentration, 
activity, and activity based standard states in Chapter 19.  
   With the conditions of the reaction carefully specified, we are now ready to consider the 
reaction internal energy and enthalpy. 
 
8.3 Relating Internal Energy and Enthalpy Changes for Chemical Reactions 
 

Internal energy and enthalpy changes for a chemical reaction can be related using the definition 
of the enthalpy, Eq. 7.8.16, ∆H = ∆U + ∆(PV). The derivation parallels the steps for phase 
transitions, Eqs. 8.1.1-8.1.4°. Consider oxidation of NO, Eq. 8.2.2: 
 

 NO (g, 1 bar) + ½ O2 (g, 1 bar) → NO2 (g, 1 bar)     (8.2.2) 
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Once again, treating any gases involved in the reaction as ideal is usually sufficiently accurate 
for most purposes. The change in the (PV) product at constant temperature is given by: 
 

 ∆r(PV) = ∆r(ng RT) = ∆rng RT    (ideal gas, cst. T&P)  8.3.1° 
 

where ∆rng is the number of moles of gaseous products minus the number of moles of gaseous 
reactants. For Eq. 8.2.2, the difference is ∆rng = [1] – [1 + ½] = -½. Combining Eqs. 7.8.16 and 
8.3.1° gives: 
 

 ∆rH = ∆rU + ∆rng RT     (ideal gas, cst. T&P)  8.3.2° 
 

   For reactions involving liquids and solids, the volume of the gaseous reactants and products is 
much larger than the corresponding volume of the condensed phases, so the volume of any 
liquids and solids can be neglected (see Problem 7.6). Consider Eq. 8.2.3: 
 

 3 NO2 (g, 1bar) + H2O (l) → 2 HNO3 (l) + NO (g, 1bar) 
 

The difference in moles of gases is ∆rng = [1] – [3] = -2, giving ∆rH = ∆rU – 2 RT. 
   With the conditions of the reaction carefully specified and the reaction internal energy and 
enthalpy in hand, we can now ask if relationships exist among the heat transfers for different 
coupled chemical reactions. 
 
 
             

Example 8.3.1: 
The internal energy of combustion of methanol can be determined using bomb calorimetry, 
∆combU° = -725.27 kJ mol-1 at 298.2 K. Calculate the enthalpy of combustion of methanol at 
298.2 K. 
 
 
Answer:   The balanced reaction for the combustion of methanol is: 
 

 CH3OH (l) + 
3/2 O2 (g, 1bar) → CO2 (g, 1bar) + 2 H2O (l)    8.3.3 

 

Eq. 8.3.2° gives the relationship between the reaction internal energy and enthalpy. The change 
in the number of moles of gases is ∆rng = [1 mol] – [3/2 mol] = -½ mol. Note that the liquids are 
not included. The result for one mole is: 
 

 ∆combH° = ∆combU° + ∆rng RT 
     = -725.27 kJ – ½ mol(8.314 J K-1 mol-1)(1 kJ/1000 J)(298.2 K) 
     =  -725.27 kJ – 1.240 kJ 

 ∆combH° = -726.51 kJ 
 

Since the reaction is for one mole, the units are also ∆combH° = -726.51 kJ mol-1. Why is the 
enthalpy of combustion more negative than the internal energy change? Consider the reaction 
run at constant pressure. Since there are fewer moles of product gases than reactant gases, the 
system contracts during the reaction. The surroundings therefore does PV work on the system, w 
= – P∆V > 0, giving P∆V < 0. At constant pressure ∆H = ∆U + P∆V. So the enthalpy change is 
more negative than the internal energy change by the negative of the work. This example shows 
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that if we are interested in the heat transferred for a chemical reaction at constant pressure, we 
also need to keep track of the PV work. 
 
             

 
 
8.4 Hess’s Law is a Result of the First Law 
 

Consider the direct formation of NO2 from N2: 
 

 ½ N2 (g, 1bar) + O2 (g, 1bar) → NO2 (g, 1 bar)  ∆rH° = ? 
 

Can we combine the reaction enthalpies from Eqs. 8.2.1 and 8.2.2 to find the reaction enthalpy 
for this reaction? Reaction internal energies and enthalpies are state functions, by the First Law 
of thermodynamics. The changes are independent of the path. Therefore, the change in enthalpy 
for the two-step production of NO2,with NO as an intermediate, should give the same enthalpy 
change as the direct, one-step process: 
 

    ½ N2 (g, 1bar) + ½ O2 (g, 1bar) → NO (g, 1bar)         ∆rH° = 90.25 kJ mol-1  (8.2.1) 
 

     NO (g, 1 bar) + ½ O2 (g, 1 bar) → NO2 (g, 1 bar)         ∆rH° = -57.05 kJ mol-1  (8.2.2) 
            

     ½ N2 (g, 1bar) +   O2 (g, 1bar) → NO2 (g, 1 bar)         ∆rH° = 33.20 kJ mol-1  8.4.1 
 

If two chemical reactions are added the enthalpies also add. This observation was first made by 
Germain Henri Hess in about 1840, before the general form of the First Law had been proposed. 
But, we now realize that Hess’s Law is a consequence of the path independence of 
thermodynamic state functions. Another ramification of the path independence is if a reaction is 
reversed, the sign of the internal energy and enthalpy also reverses; reversing Eq. 8.2.1 gives: 
 

  NO (g, 1bar) → ½ N2 (g, 1bar) + ½ O2 (g, 1bar)         ∆rH° = -90.25 kJ mol-1  8.4.2 
 

Since internal energy and enthalpy are extensive, if we multiply a reaction by a constant, the 
internal energy and enthalpy are also multiplied by the same value: 
 

    N2 (g, 1bar) + O2 (g, 1bar) → 2 NO (g, 1bar)         ∆rH° = 180.50 kJ  mol-1  8.4.3 
 

   The internal energy and enthalpy changes for chemical reactions are useful information for 
many purposes. The value of Hess’s Law is that we can predict the energy changes for reactions 
that may not be possible in the laboratory. We can combine the enthalpy changes for known 
reactions to give the values for reactions that can’t be studied directly. An important question 
then arises as to how to tabulate information on reactions in the most efficient way. One 
approach might be to tabulate the absolute internal energy or enthalpy of each pure substance. In 
each of the previous examples, however, note that we only determine the change in enthalpy for 
each process. The First Law pertains only to internal energy changes: ∆U = q + w. The heat and 
work transfers are inherently changes in energy. There is no experimental way to establish an 
absolute internal energy or enthalpy of a substance. How do we tabulate thermochemical 
information in the most useful and efficient manner? 
 
    The Enthalpy of Formation is for a Specific Reaction:   In practical applications, we always 
determine the change in internal energy and enthalpy for a chemical reaction; the absolute 
parameters are never necessary. Therefore, we are free to establish by convention any arbitrary 
reference point that is convenient, Figure 8.4.1. 
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 (a).     (b). 
 

Figure 8.4.1: An arbitrary reference point may be chosen if only energy differences are 
needed. (a) The reference point is arbitrarily chosen as the elements in their standard states. 
(b). A different reference point is chosen, but the enthalpy differences remain the same. 

 
 
   The enthalpy of formation for a substance is defined as the reaction enthalpy for the 
formation of one mole of substance from the constituent elements in their standard states. For 
example Eq. 8.2.1 is just such a reaction: 
 

 ½ N2 (g, 1bar) + ½ O2 (g, 1bar) → NO (g, 1bar) ∆fH° = 90.25 kJ mol-1  8.4.4 
 

while Eqs. 8.2.2 and 8.2.3 are not. The reaction enthalpy that corresponds to the formation 
reaction is symbolized as ∆fH, and if the reaction is run under standard conditions, at 1 bar, then 
the value is ∆fH°. If the state of aggregation of a reactant or product is not specified, the most 
stable state at the given temperature and pressure is assumed. For example, near atmospheric 
pressure the most stable state for water is liquid and for carbon is graphite. It is important to 
realize that a ∆fH° relates to a specific reaction. For another example, the standard state enthalpy 
of formation of methanol is the reaction enthalpy for the formation reaction: 
 

 C (graph) + 2 H2 (g, 1bar) + ½ O2 (g, 1bar) → CH3OH (l) ∆rH = ∆fH°  8.4.5 
 

The implication of this choice for the reference is that the standard state enthalpy of formation of 
any element is defined as zero. Tabulations are in Appendix Data Section Tables 8.4.1-8.4.3.1-4 

 
Enthalpies of Combustion can be Accurately Determined:   It is usually not possible to measure 
enthalpies of formation directly. Rather, for many substances, the enthalpy of combustion is the 
most accurate experimental measurement that can be made. Combustion of organic compounds 
gives CO2 (g), H2O (l), N2 (g), and SO2 (g) as products. Tabulated values are in Data Section 
Table 8.4.3. For example, the enthalpy of combustion of methanol is given by Example 8.3.1: 
 

  CH3OH (l) + 
3/2 O2 (g, 1bar) → CO2 (g, 1bar) + 2 H2O (l)      ∆combH° = -726.51 kJ mol-1 8.4.6 

 

This large exothermic enthalpy of combustion would make methanol a good transportation fuel, 
if methanol could be made without fossil fuels. The combustion of methanol can be used to 
calculate the enthalpy of formation of methanol using Hess’s Law. 
 
 
 

½ N2 + O2 

NO (g) + ½ O2 (g) 

NO2 (g) 

90.25 kJ 

-57.05 kJ 

0 

H (kJ) 

½ N2 + O2 

NO (g) + ½ O2 (g) 

NO2 (g) 

90.25 kJ 

-57.05 kJ 

0 

H (kJ) 

33.20 

90.25 

43.20 

100.25 

10.00 

33.20 kJ 33.20 kJ 
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Example 8.4.1: 
Calculate the enthalpy of formation of methanol from the enthalpy of combustion for methanol, 
∆combH° = –726.51 kJ mol-1. The enthalpy of formation of CO2 (g) is ∆fH° (CO2) = -393.51 kJ 
mol-1 and for H2O (l) is ∆fH° (H2O) = -285.83 kJ mol-1. 
 
 
Answer:   The reactions that correspond to the enthalpy of formation of CO2 (g) and H2O (l) are: 
 

    C (graph) + O2 (g, 1bar) → CO2 (g, 1bar)        ∆fH° (CO2) = -393.51 kJ mol-1  8.4.7 
    H2 (g, 1bar) + ½ O2 (g, 1bar) → H2O (l)        ∆fH° (H2O) = -285.83 kJ mol-1  8.4.8 
 

The goal is to find the enthalpy change for the formation reaction, Eq. 8.4.10. Reversing Eq. 
8.4.6 for one mole, adding in the formation reaction for CO2, and adding in twice the formation 
reaction for H2O gives: 
 

    CO2 (g, 1bar) + 2 H2O (l)   → CH3OH (l) + 
3/2 O2 (g, 1bar)  –∆combH° =   726.51 kJ mol-1 

    C (graph) + O2 (g, 1bar)   → CO2 (g, 1bar)            ∆fH°(CO2) = -393.51 kJ mol-1 
    2 H2 (g, 1bar) + O2 (g, 1bar) → 2 H2O (l)          2 ∆fH°(H2O) = -571.66 kJ mol-1 
                    

    C (graph) + 2 H2 (g, 1bar) + ½ O2 (g, 1bar) → CH3OH (l)         ∆rH° = -238.66 kJ mol-1 

 

The final reaction is the formation reaction: ∆rH° = ∆fH° 
 
             

 
 
The addition and subtraction of chemical reactions becomes cumbersome for complex processes. 
An equivalent and computationally efficient approach for finding the reaction enthalpy is to use: 
 

 ∆rH = ∑
i=1

ns

 νi ∆fHi         8.4.9 

 

where νi are the stoichiometric coefficients for the reaction and the ∆fHi values are the molar 
enthalpies of formation for each reactant and product. The sum extends over the ns constituents 
for the reaction. Remember that the stoichiometric coefficients are positive for products and 
negative for reactants, Section 3.1. If the reaction is run under standard state conditions then Eq. 
8.4.9 can be written: 
 

 ∆rH° = ∑
i=1

ns

 νi ∆fHi°       ( P° = 1 bar) 8.4.10 

 

A colloquial way of presenting this equation is ∆rH = [Σproducts] – [Σreactants], which 
highlights that we always take the enthalpies of the products minus the reactants. 
 
 
             

Example 8.4.2: 
Calculate the enthalpy of formation from the enthalpy of combustion for methanol, ∆combH° = 
-726.51 kJ mol-1. The enthalpy of formation of CO2 (g) is ∆fH° (CO2) = -393.51 kJ mol-1 and for 
H2O (l) is ∆fH° (H2O) = -285.83 kJ mol-1 (Additional values in the Appendix Data Section). 
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Answer:  An efficient way to work problems of this type is to set up a table of enthalpies of 
formation. The enthalpy of combustion of methanol corresponds to Eq. 8.4.6: 
 

 CH3OH (l) + 
3/2 O2 (g, 1bar) → CO2 (g, 1bar) + 2 H2O (l) units: 

  ∆fHi°      x  0  -393.51 -285.83 kJ mol-1 
 

The enthalpy of formation of O2 (g) at 1 bar is zero, because it is an element in its standard state. 
For this particular reaction ∆rH° = ∆combH° = -726.51 kJ mol-1. Using Eq. 8.4.10 for the 
combustion of methanol, ∆rH = [Σproducts] – [Σreactants]: 
 

 -726.51 kJ mol-1 = [-393.51 kJ mol-1 + 2(-285.83 kJ mol-1)] – [ x +3/2(0) ] 
 

Solving for x gives the enthalpy of formation of methanol:  x = ∆fH° = -238.66 kJ mol-1. 
Remember to use the stoichiometric coefficients for each participant; enthalpies are extensive. 
             

 
 
The Internal Energy and Enthalpy Changes for Chemical Reactions   The general form for Eq. 
8.4.9 occurs so often, we should explore the relationships involved. If we could establish an 
absolute reference point for the enthalpy of a substance, the enthalpy change for a reaction would 
simply be: 
 

 ∆rH = ∑
i=1

ns

 νi Hi          8.4.11 

 

where the Hi are the absolute molar enthalpies for each reactant and product. This last equation is 
theoretically allowable, but for practical circumstances we need to choose a reference point. For 
example consider the reaction enthalpy for the oxidation of nitric oxide, Eq. 8.2.2. Using the 
absolute form in Eq. 8.4.11 for this reaction gives: 
 

 NO (g, 1 bar) + ½ O2 (g, 1 bar) → NO2 (g, 1 bar)     (8.2.2) 
 

 ∆rH = HNO2 – HNO – ½ HO2        8.4.12 
 

However, using Eq. 8.4.9, which references the enthalpies of formation to the elements in their 
standard states, gives instead: 
 

 ∆rH = ∆fHNO2 – ∆fHNO – ½ ∆fHO2       8.4.13 
 

We need to show that Eqs. 8.4.12 and 8.4.13 are equivalent. First, we can write the formation 
reactions in absolute form. Applying Eq. 8.4.11 to the formation of NO2, Eq. 8.2.2, and NO, Eq. 
8.2.1, gives: 
 

 ∆fHNO2 = HNO2 – ½ HN2 – HO2        8.4.14 
 ∆fHNO  = HNO –  ½ HN2 – ½ HO2       8.4.15 
 

Note also that by definition ∆fHO2 = 0. Substituting Eqs. 8.4.14-8.4.15 into the relative version, 
Eq. 8.4.13, gives: 
 

 ∆rH =  ∆fHNO2  –   ∆fHNO         –  ½ ∆fHO2           (8.4.13) 
 ∆rH = [ HNO2 – ½ HN2 – HO2]   – [(HNO – ½ HN2 – ½ HO2]  –  0   8.4.16 
 ∆rH = HNO2 – HNO – ½ HO2 
 



313 
 

The terms for the elements cancelled giving Eq. 8.4.17. We gave a proof for a particular 
example, but it can be shown generally that Eqs. 8.4.9 and 8.4.11 are equivalent. We can choose 
any arbitrary reference point, as long as we are consistent. The diagram in Figure 8.4.2 will help 
to depict the relationships in Eq. 8.4.13. We set up an indirect path that gives the same change in 
enthalpy as the direct reaction. In the indirect path, each reactant is decomposed into its elements 
in their standard states. The elements from each reactant are combined and then reformed into 
the products of the reaction. The net change is given by Eq. 8.4.13. 
 

 
 
 
 
 
 
 
 
 
 

Figure 8.4.2: Since enthalpy is a state function, the change for the reaction is independent of 
the path. 

 
   Note that when we calculate the enthalpy change for a reaction, the conditions for each reactant 
and product are kept constant. How can we run a reaction with constant partial pressures? For the 
example reaction, NO (g, 1 bar) + ½ O2 (g, 0.2 bar) → NO2 (g, 1 bar), the ∆rH is the reaction 
enthalpy with all partial pressures held constant. Consider a large flask with many moles each of 
NO, O2, and NO2, Figure 8.4.3. The reaction enthalpy, ∆rH, corresponds to the change in 
enthalpy when one mole of NO reacts with a half mole of O2 to give one mole of NO2. However, 
since the mole change is such a small fraction of the total amounts, the partial pressure of each 
constituent remains constant. 
 

 
 
 
 
 
 
 
 

Figure 8.4.3: The reaction enthalpy, ∆rH, corresponds to constant partial pressures. 
 

The reaction enthalpy, ∆rH, is the change in enthalpy for unit extent in so large an amount 
of the reaction that the partial pressures of the constituents remain unchanged. 

 

   An alternate and equivalent perspective is to consider the change in enthalpy for a small 
change in extent of the reaction, say 0.0001 mole, and then divide the resulting change in 
enthalpy by the number of moles, ∆H/0.0001 mol = ∆rH. The result is a per mol quantity, and 
since the change in extent of the reaction is so small, the partial pressures of the constituents 

– ∆fHNO 

½ N2 + ½ O2  +  ½ O2  →     ½ N2 + O2 

∆fHNO2 
 

NO      +  ½ O2   →  NO2 
∆rH 

– ½ ∆fHO2 

∆rH = ∆fHNO2 – ∆fHNO – ½ ∆fHO2 

1 mol NO + ½ mol O2 
          → 1 mol NO2 

P(NO)  = 1 bar 
P(O2)    = 0.2 bar 
P(NO2) = 1 bar 
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remain constant, in the limit of infinitesimal changes. Mathematically, the change in enthalpy for 
infinitesimal changes in the amounts of reactants and products is: 
 

 dH = ∑
i=1

ns

 Hi dni        (cst. T&P) 8.4.17 

 

or in terms of the extent of the reaction, Eq. 3.1.4, with dni = νi dξ: 
 

 dH = ∑
i=1

ns

 νi Hi dξ       (cst. T&P) 8.4.18 

 

The change in extent for the reaction enthalpy is one mole by convention. Since the Hi are 
constant, the integral of this last equation from ξ = 0 to 1mol gives Eq. 8.4.11. The change in 
extent in Eq. 8.4.18, dξ, is a common factor for each term in the sum. Dividing both sides of the 
equation by dξ gives: 
 

 






∂H

∂ξ T,P
 = ∑

i=1

ns

 νi Hi = ∆rH      (cst. T&P) 8.4.19 

 

where the last equality is from Eq. 8.4.11. Dividing dH by dξ puts the reaction enthalpy on a per 
mole basis, even though the change in extent of the reaction is infinitesimal. 
 

The reaction enthalpy is the derivative of the enthalpy with respect to the extent of the reaction. 
 

The approaches in Figure 8.4.3 and in Eq. 8.4.19 are equivalent ways of understanding the 
meaning of the derivative. We will use similar reasoning often. 
   The reaction enthalpy as defined by Eq. 8.4.9 or 8.4.11 corresponds to unit extent, ξ = 1 mol, 
for the reaction as written. The units of the reaction enthalpy are kJ mol-1. These units hold even 
if none of the stoichiometric coefficients are unity. For example, for ξ = 1 mol: 
 

     4 Fe (s) + 3 O2 (g, 1 bar) → 2 Fe2O3 (s, hematite)     ∆rH° = -1648.4 kJ mol-1  8.4.20 
 

where four moles of iron react with three moles of oxygen to give two moles of iron oxide. The 
reaction enthalpy is specific to a given specific reaction stoichiometry. 
   Standard state reaction enthalpies are at a specific constant pressure of 1 bar. However, 
standard state reaction enthalpies and reactions in general still depend on temperature. We often 
control the outcome of chemical reactions by changing the temperature. 
 
8.5 Reaction Internal Energies and Enthalpies Depend on Temperature 
 

The enthalpy changes for phase transitions and chemical reactions depend on temperature. The 
temperature variation depends on the heat capacities of the products and reactants. We can 
determine the temperature dependence by using a thermodynamic cycle. Thermodynamic cycles 
exploit the path independence of the underlying state function. For example, consider the simple 
reaction R → P. Assume that we know the reaction enthalpy at temperature T1. We require the 
reaction enthalpy at some new temperature T2. For example, T1 is often 298.2 K, and the 
corresponding reaction enthalpy, ∆rHT1, is often calculated from enthalpies of formation obtained 
from standard tables. To calculate the new reaction enthalpy at T2, we start with the reactant at 
T2 and then heat or cool the reactant to T1, Figure 8.5.1. The change in enthalpy for this heating 
or cooling step is given by ∆H = Cre

p (T1 – T2), assuming a constant heat capacity for the reactant, 
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Cre
p. The temperature difference is (T1 – T2), because we start at T2 and change the temperature to 

T1, where we know the reaction enthalpy. The reaction is then run at T1, giving the known 
enthalpy change ∆rHT1. Then the product of the reaction is cooled or heated back to the desired 
final temperature T2 with the corresponding enthalpy change ∆H = Cpr

p (T2 – T1), where Cpr
p is the 

heat capacity for the product. 
 
    ∆rHT1 
  T1: R     →   P 
   ↑    | 
        Cre

p (T1 – T2)       Cpr
p (T2 – T1) 

    | ∆rHT2  ↓ 

  T2: R →   P 
 

Figure 8.5.1: Enthalpy is a state function, and is therefore independent of the path. A three-
step process with the reaction run at T1 is equivalent to the direct process at T2. 

 
 
The overall change is given by the sum for the three processes: 
 

 ∆rHT2 = Cre
p (T1 – T2) + ∆rHT1+ Cpr

p (T2 – T1)    (cst. Cre
p &  Cpr

p)   8.5.1 
 

Because the enthalpy change is independent of the path, the indirect, three-step process gives the 
same result as the direct reaction at T2. To highlight the relationship of Figure 8.5.1 to cyclic 
processes we can start with the reactant at T2 and run the processes around a cycle, Figure 8.5.2. 
To complete the cycle, we run the reaction at T2 backwards. 
 
    ∆rHT1 
  T1: R    →  P 
   ↑    | 
        Cre

p (T1 – T2)       Cpr
p (T2 – T1) 

    | – ∆rHT2  ↓ 
  T2: R ←  P 
 

Figure 8.5.2: Thermodynamic cycle to determine the reaction enthalpy at T2 from the 
reaction enthalpy at T1. The change in enthalpy around the cycle is zero. 

 
 
Summing the enthalpy changes around the cycle gives o∫dH = 0: 
 

 Cre
p (T1 – T2) + ∆rHT1+ Cpr

p (T2 – T1) – ∆rHT2 = 0   (cst. Crep &  Cpr
p)   8.5.2 

 

This last equation can be solved for ∆rHT2 to give Eq. 8.5.1. Either approach, Figure 8.5.1 or 
Figure 8.5.2, can be considered a thermodynamic cycle. 
   Eq. 8.5.1 is often rearranged to factor out a common term of (T2 – T1): 
 

 ∆rHT2 = ∆rHT1 + (Cpr
p – Cre

p) (T2 – T1)      (cst. Crep  &  Cpr
p)  8.5.3 

 

The difference in the heat capacities, with products minus reactants, is defined as: 
 

  ∆rCp ≡ Cpr
p – Cre

p         8.5.4 
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Substitution of this definition into Eq. 8.5.3 gives: 
 

 ∆rHT2 – ∆rHT1 = ∆rCp ∆T      (cst. Crep &  Cpr
p)  8.5.5 

 

The term on the left side of the equals sign is the change in reaction enthalpy for the temperature 
change ∆T. If the change in temperature is infinitesimal, Eq. 8.5.5 becomes: 
 

 d∆rH = ∆rCp dT         8.5.6 
 

The integral of this equation from T1 to T2 gives Eq. 8.5.5. This result is called Kirchhoff's Law, 
which was established in 1858. So far we have worked with a simple stoichiometry. What 
happens in the general case? 
   Consider the general reaction, νa A + νb B → νc C + νd D. The reaction enthalpy is given by: 
 

 ∆rH = νc HC + νd HD – νa HA – νb HB       8.5.7 
 

The temperature derivative of the reaction enthalpy is then given by: 
 

 






∂∆rH

∂T P
 = νc 






∂HC

∂T P
 + νd 






∂HD

∂T P
– νa 






∂HA

∂T P
– νb 






∂HB

∂T P
    8.5.8 

 

The partial derivatives in this last equation are just the molar constant pressure heat capacities for 
each product and reactant: 
 

 






∂∆rH

∂T
P
 = νc Cp,m(C) + νd Cp,m(D) – νa Cp,m(A) – νb Cp,m(B)    8.5.9 

 

The differences, products minus reactants, for the heat capacities is the general version of Eq. 
8.5.4, giving: 
 

 






∂∆rH

∂T
P
 = ∆rCp         8.5.10 

 

This last equation rearranges to Eq. 8.5.6, which shows that Eq. 8.5.6 also holds for the general 
case. For the most general case, using the notation from Eq. 8.4.11: 
 

 ∆rCp = ∑
i=1

ns

 νi Cp,i         8.5.11 

 

The integrated form of Eq. 8.5.10 is Eq. 8.5.5, assuming constant heat capacities. For practical 
problems we sometimes need to know the reaction enthalpy for very high or low temperatures. 
For example, we might be studying reactions in the stratosphere, or in high temperature 
geological systems, or high temperature processes in the chemical industry. For extreme 
temperature differences, we can no longer assume constant heat capacities. 
   To integrate Eq. 8.5.10 for large temperature differences, we need to keep track of the heat 
capacity terms on a substance-by-substance basis. For example, for reactants A and B we use the 
power series expansions of the heat capacities from Eq. 7.2.10, keeping just three terms for 
convenience: 
 

 Cp(A) = a(A) + b(A) T + c(A) T2       8.5.12 
and Cp(B) = a(B) + b(B) T + c(B) T2        8.5.13 
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where, for example, a(A) is the power series expansion coefficient for reactant A from Table 
7.2.3. Similar heat capacity expansions hold for the products. The change in the heat capacity for 
the reaction is: 
 

 ∆rCp = ∆ra + ∆rb T + ∆rc T2        8.5.14 
 

with: 
 ∆ra = νc a(C) + νd a(D) – νa a(A) – νb a(B)       8.5.15 
 ∆rb = νc b(C) + νd b(D) – νa b(A) – νb b(B)       8.5.16 
 ∆rc = νc c(C) + νd c(D) – νa c(A) – νb c(B)       8.5.17 
 ∆rd = νc d(C) + νd d(D) – νa d(A) – νb d(B)       8.5.18 
 

Substitution of Eq. 8.5.14 into Eq. 8.5.6 gives: 
 

 d∆rH = (∆ra + ∆rb T + ∆rc T2) dT       8.5.19 
 

Integrating between T1 and T2 gives: 
 

 ∆rHT2 – ∆rHT1 = ⌡⌠T1

T2
 (∆ra + ∆rb T + ∆rc T2) dT     8.5.20 

 

Solving for the new reaction enthalpy in terms of the reference reaction enthalpy gives: 
 

 ∆rHT2 = ∆rHT1 + ∆ra (T2 – T1) + 
∆rb
2  (T2

2 – T2
1) + 

∆rc
3  (T3

2 – T3
1)   8.5.21 

 
 
             

Example 8.5.1: 
The oxidation of NO and the subsequent conversion of NO2 to nitric acid, Eqs. 8.2.2-8.2.3, are 
important steps in the cyclic destruction of ozone in the stratosphere, see Chapter 5 Problem 10. 
Nitric acid forms hydrates at the low temperatures during the Antarctic winter. The surfaces of 
nitric acid hydrates are possible catalysts that accelerate the formation of the Antarctic ozone 
hole, Eq. 1.4.3. The temperature in the stratosphere ranges from about 190. K to 270. K. The 
reaction enthalpy for Eq. 8.2.2 is given at 298.15 K. Calculate the reaction enthalpy for the 
oxidation of NO at 220. K. 
 
 

Answer:  The reaction is: 
 

 NO (g, 1 bar) + ½ O2 (g, 1 bar) → NO2 (g, 1 bar) units: 
  Cp,m 29.844  29.355      37.2   J K-1 mol-1 
 

The difference in heat capacity for the reaction is ∆rCp = [Σproducts] – [Σreactants]: 
 

 ∆rCp = [37.2 J K-1 mol-1] – [29.844 J K-1 mol-1 + ½ 29.355 J K-1 mol-1] 
         = -7.32 J K-1 mol-1 

 

Eq. 8.5.5 gives: 
 

 ∆rHT2 = ∆rHT1 + ∆rCp ∆T 
 ∆rHT2 = -57.05 kJ mol-1 + (-7.32 J K-1 mol-1)(1 kJ/1000 J)(220. K – 298.2 K) 
 ∆rHT2 = -57.05 kJ mol-1 – 0.573 kJ mol-1 = -56.50 kJ mol-1 
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The sensitivity of chemical reactions to changes in temperature varies greatly with reaction 
stoichiometry. Often the heat capacities of the reactants and products roughly cancel giving weak 
temperature dependence. However, the approximate cancellation of heat capacities, as in this 
example, doesn’t always occur. 
             

 
 
   Eqs. 8.5.6 and 8.5.10 are examples of a general pattern that we will use repeatedly. These 
equations show that it is easy to convert a thermodynamic relationship that applies to a pure 
substance to an equivalent relationship for a chemical reaction. 
 
 
             
General Pattern ℘℘℘℘8 Thermodynamic Relationships for Reactions (∆rX = Σ νi Xi) 
The heat capacity of a pure substance is defined by Eq. 7.8.24. Comparison of the relationship 
for a pure substance to the result for a chemical reaction, Eq. 8.5.10, shows the correspondence: 
 

 pure substance:   chemical reaction: 
 

 






∂H

∂T P
 = Cp    







∂∆rH

∂T
P
 = ∆rCp    8.5.22 

 

The derivation in Eqs. 8.5.7-8.5.10 establishes this relationship. Going forward, we can use this 
general pattern to establish the thermodynamic relationships for other partial derivatives. In 
effect, we start with the result for a pure substance and then simply insert the ∆r to convert to a 
relationship for a chemical reaction. For example, the temperature dependence of the change in 
internal energy for a chemical reaction at constant volume can be determined from Eq. 7.8.7: 
 

 pure substance:   chemical reaction: 
 
 
 
            8.5.23 
 
The reaction changes for any function can be expressed in general form, analogous to Eq. 8.4.11: 
 

 ∆rX = ∑
i=1

ns

 νi Xi          8.5.24 
 

where Xi is the molar value of the parameter for each of the ns constituents in the reaction. For 
example, the reaction internal energy can be written as: 
 

 ∆rU = ∑
i=1

ns

 νi Ui          8.5.25 
 

and the corresponding heat capacity difference for the reaction is given by: 
 

 ∆rCv = ∑
i=1

ns

 νi Cv,i         8.5.26 

            ℘℘℘℘8 
 
 







∂ U

∂T V
 =  Cv 






∂∆rU

∂T V
 = ∆rCv 

∆r 
∆r 
↓ 

↓ 
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Many of the applications of thermodynamics are for processes in solution. We next discuss how 
to determine the enthalpy of formation of substances in solution. 
 
8.6  Enthalpy of Solution 
 

The formation of a solution can be written as a chemical reaction. The heat evolved or absorbed 
when making a solution depends on the concentration of the final solution. Standard reference 
tables give the enthalpies for the solution when one mole of solute is added to a given number of 
moles of solvent. For example, the enthalpy of solution for HCl in water is given as:1 

 

 HCl (g) +     H2O (l) → HCl (aq, 1 mol H2O)  ∆solH = -29.24 kJ mol-1 

 HCl (g) + 5  H2O (l) → HCl (aq, 5 mol H2O)  ∆solH = -63.467 kJ mol-1 
 HCl (g) + 50 H2O (l) → HCl (aq, 50 mol H2O) ∆solH = -73.049 kJ mol-1 
 HCl (g) + ∞ H2O (l) → HCl (aq, ∞ H2O)  ∆solH = -74.852 kJ mol-1 8.6.1 
 

The last value corresponds to the enthalpy of solution extrapolated to infinite dilution. For non-
electrolytes at infinite dilution, there are no interactions between the molecules of the solute. For 
electrolytes at infinite dilution, there are no interactions among the anions and cations. The mole 
amounts can be converted to concentrations. For example, for 50 mol of H2O, xHCl = 0.01961 and 
mHCl = 1.110 M. These enthalpies of solution are commonly called integral enthalpies of 
solution, because they are the total heat transfer for making the solution at the given 
concentration. 
 

The Enthalpy of Formation of Species in Solution:   To calculate the enthalpy of formation of a 
substance in solution, the enthalpy of solution is added to the enthalpy of formation of the pure 
substance using Hess’s Law: 
 

   ½ H2 (g) + ½ Cl2 (g) → HCl (g)         ∆fH° = -92.307 kJ mol-1 

   HCl (g) + 50 H2O (l) → HCl (aq, 50 mol H2O)      ∆solH = -73.049 kJ mol-1 
               

   ½ H2 (g) + ½ Cl2 (g) + 50 H2O (l) → HCl (aq, 50 mol H2O)    ∆fH = -165.356 kJ mol-1 
 

and at infinite dilution: 
 

   ½ H2 (g) + ½ Cl2 (g) + ∞ H2O (l) → HCl (aq, ∞H2O)  ∆fH = -167.159 kJ mol-1 8.6.2 
 

   The standard state enthalpy of formation of a substance in solution corresponds to unit 
concentration. For strong electrolytes the standard state is listed as the “ai” value in reference 
tables and is numerically equal to the infinite dilution enthalpy change, Eq. 8.6.2: 1 
 

   ½ H2 (g) + ½ Cl2 (g) → HCl (ai)    ∆fH°(ai) = -167.159 kJ mol-1 8.6.3 
 

For electrolytes, the products are the ions that exist at infinite dilution. The “ai” standard state 
assumes the electrolyte is completely dissociated and there are no interactions among the cations 
and anions. We will discuss standard states in more detail in Chapter 19. For weak electrolytes a 
distinction must be made. At infinite dilution, a weak electrolyte is completely dissociated. 
Consider acetic acid: 
 

   2 C (graph) + 2 H2 (g, 1 bar) + O2 (g) + ∞ H2O (l) → H+
 (aq, ∞ H2O) + CH3COO– (aq, ∞ H2O) 

           ∆fH° = -486.01 kJ mol-1 8.6.4 
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However, for a solution at unit concentration (actually activity), acetic acid is only 0.4% 
dissociated: 
 

 CH3COOH (aq) →← H+ (aq) + CH3COO– (aq)  Ka = 1.75x10-5   8.6.5 
 

The predominant form of 1.0 m acetic acid is as undissociated CH3COOH. The standard state for 
undissociated weak electrolytes is at unit concentration with “no further dissociation,” and is 
signified as “ao”. In other words, the “ao” enthalpy of formation is for undissociated CH3COOH, 
not 0.4% dissociated acetic acid nor dissociated ions: 
 

   2 C (graph) + 2 H2 (g, 1 bar) + O2 (g) → CH3COOH (ao) ∆fH°(ao) = -485.76 kJ mol-1 8.6.6 
 

Conversely, the infinite dilution standard state enthalpy for acetic acid is ∆fH°(CH3COOH, ai) = 
∆fH°(H+, ao) + ∆fH°(CH3COO–, ao) and is numerically equal to the infinite dilution enthalpy 
change, Eq. 8.6.4, given CH3COOH (ai) = H+ (ao) + CH3COO– (ao): 
 

   2 C (graph) + 2 H2 (g, 1 bar) + O2 (g) → CH3COOH (ai) ∆fH°(ai) = -486.01 kJ mol-1 8.6.7 
 

The standard state enthalpy change of dissociation, Eq. 8.6.5, is then ∆rH° = ∆fH(ai) – ∆fH°(ao) 
= 0.25 kJ mol-1. As another example, H2S is a diprotic acid: 
 

 H2S (aq) →← H+ (aq) + HS– (aq) 
 

 HS– (aq) →← H+ (aq) + S2– (aq)        8.6.8 
 

The “ao” standard states are for undissociated H2S, undissociated HS–, and unhydrolyzed S2–. 
The “ai” standard state for H2S is for the ions that exist at infinite dilution: ∆fH°(H2S, ai) = 
2∆fH°(H+, ao) + ∆fH°(S2–, ao). For strong electrolyte ions, the “ai” and “ao” standard states are 
equivalent, ∆fH°(K+, ao) = ∆fH°(K+, ai) and ∆fH°(Cl–, ao) = ∆fH°(Cl–, ai). 
 
The Enthalpies of Formation of Ionic Species are Independent At Infinite Dilution:   For 
electrolytes, you might wonder if enthalpies of formation for ions can be tabulated. In general, 
the enthalpies of ions in solution are dependent on the interactions between all the ions in 
solution. Therefore, the enthalpies of formation for ions depend on the identities of the counter 
ions and cannot be separated. However, at infinite dilution no interactions occur between ions 
because the ions are so far apart. For the specific case of infinite dilution, the individual ionic 
enthalpies of formation can be tabulated, Table 8.6.1. These values are commonly found in 
standard reference sources and in the appendix data section.1-4 However, it is impossible to make 
a solution containing just cations or just anions. Such a solution would not be electrically neutral. 
In addition, the enthalpy of formation for electrolytes is always given as a change in enthalpy, 
based on the formation reaction from the constituent elements in their standard states. Therefore, 
there is no experimental way of determining the absolute enthalpy of formation of an ion, only 
changes in enthalpy can be measured for electrically neutral solutions. However, as we noted 
before, since we only need changes in enthalpy in practical problems, we are free to choose an 
arbitrary reference point. 
 
∆fH°(H+) is Defined as 0:   To determine the enthalpy of formation of an ion in solution, we 
choose to define the enthalpy of formation of H+ as zero: ∆fH°(H+, ao) ≡ 0. For example, using 
this definition, the reaction in Eq. 8.6.3 gives the enthalpy of formation of chloride ions: 
 

 ½ H2 (g) + ½ Cl2 (g) → H+
 (ao) + Cl–(ao)       ∆fH°(Cl–, ao) = -167.159 kJ mol-1 8.6.9 
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Table 8.6.1(DS): Enthalpy of formation of ionic species.1 ∆fH°(H+, ao) ≡ 0 
 

species ∆fH°(ao) species ∆fH°(ao) 
Na+ -240.12 NO3

– -207.36 
K+ -252.38 Cl– -167.159 
Ca2+ -542.83 S2– 33.1 
Fe2+ -89.1 CH3COO– -486.01 
Fe3+ -48.5 OH– -229.994 

 (DS): Additional Values in the Appendix Data Section 
 
 

Table 8.6.1 lists additional values. Though the enthalpy of formation of electrolyte solutions at 
moderate concentrations depend on the specific cations present and the concentration, the infinite 
dilution values are often a good starting approximation for calculating reaction enthalpies.  
 
 
             

Example 8.6.2 
Use the values in standard reference tables1 to calculate the reaction enthalpy for the 
neutralization reaction: 
 

 HCl (aq, 0.500 m) + NaOH (aq, 0.500 m) → H2O (l) + NaCl (aq, 0.500 m) 
 

Use the values specific to the given concentrations and also estimate the reaction enthalpy from 
ionic enthalpies of formation. 
 
 

Answer:   The tabular values in Ref. 1 at 110 moles of H2O correspond to 0.504 m, which is 
close enough to the given conditions: 
 

 HCl (aq, 0.504 m) + NaOH (aq, 0.504 m) → H2O (l)  +   NaCl (aq, 0.504 m) 
  ∆fH° -165.356          -469.834   -285.83       -407.066 kJ mol-1 

 

Using Eq. 8.4.10, ∆rH° = [Σproducts] – [Σreactants] = -57.71 kJ mol-1. 
Alternatively, using the infinite dilution enthalpies of formation for the individual ions, the 
contributions of the spectator ions cancel leaving, Table 8.6.1: 
 

 H+ (ao) + OH- (ao)  →  H2O (l) units: 
  ∆fH°  0   -229.99 -285.83 kJ mol-1 
 

Once again using Eq. 8.4.10: ∆rH° =  -55.84 kJ mol-1. 
This result is called the enthalpy of neutralization of water. The estimated enthalpy of 
neutralization from the ionic contributions at infinite dilution differs from the more accurate 
value by 3.2%. The ionic contributions give a reasonable first approximation. 
 
             

 
 
8.7  Calorimetry 
 

There are many different types of calorimeters. We will focus on oxygen bomb calorimeters. 
Each type shares some common characteristics. All calorimetry experiments have two basic steps: 
the first is to determine the heat capacity of the calorimeter and the second is to use this heat 



322 
 

capacity to determine the heat of reaction for the compound of interest. A general outline of a 
calorimetric experiment is: 
 

 1. Determine the heat capacity of the calorimeter: Ccal = qcal/∆Tcal 

  a. with qcal from a known reaction: qcal = – qv = –∆U or qcal = – qp = –∆H 

  b. or with qcal from Joule heating: qcal = ⌡⌠V I dt 

 2. Determine the internal energy or enthalpy for the reaction in the calorimeter: 
  a. with qcal = Ccal ∆Treact  and qreact  = – qcal 

  b. giving qreact = qv = ∆U  or qreact = qp = ∆H 
 3. Convert to molar terms for unit extent: ∆rU = ∆U/n  or  ∆rH = ∆H/n 
 4. Relate ∆rU and ∆rH:  ∆rH = ∆rU + ∆rng RT 
 5. Calculate ∆fH° from ∆rH. 
 

Step 5 is not necessary for many purposes. There are three general classes of reaction 
calorimeters: insulated, isoperibol, and adiabatic. Insulated calorimeters isolate the reaction vessel 
from the surroundings using just an insulating barrier. The static-jacket style bomb calorimeters 
used in many undergraduate physical chemistry labs is of this type. Isoperibol calorimeters 
provide a jacket surrounding the reaction vessel that is held at constant temperature. This constant 
temperature environment decreases thermal fluctuations and noise in the measurements allowing 
higher sensitivity. In some isoperibol calorimeters the constant temperature is maintained by a 
large constant temperature bath, regulated at ±0.001°C or better. In isoperibol bomb calorimeters, 
the jacket is maintained at constant temperature by circulating water. To maintain constant 
temperature, the heating rate of the circulating bath is adjusted to account for the heat flux from 
the reaction vessel during the combustion reaction. Adiabatic calorimeters use a temperature 
controlled shield surrounding the reaction vessel that is heated or cooled electronically to match 
the temperature of the reaction vessel. Adiabatic shields are discussed in Section 7.2. Isothermal 
titration calorimeters for use in biochemical reaction studies are often based on adiabatic 
calorimeters, which give the highest sensitivity. 
 
Oxygen Bomb Calorimeters are at Constant Volume:   The enthalpy of combustion of a 
compound is determined in an oxygen bomb calorimeter, Figure 8.7.1. Bomb calorimeters are 
also used to find the "caloric" content of foods. Biologists use bomb calorimeters to determine the 
energy content of foods and feces for ecological field studies. Bomb calorimeters are also widely 
used in energy industries. The combustion process is initiated by passing a brief electrical current 
through a fuse wire that is in contact with the sample. The bomb is charged with 30 atm of 
oxygen to ensure complete combustion. The bomb sits in a calorimeter pail that is filled with 
water. The temperature of the water is measured by an electronic thermometer with 0.0001°C 
resolution. 
   Bomb calorimeters are constant volume systems; therefore the direct result of bomb calorimetry 
experiments is the internal energy change of the reaction: ∆U = qv. In most bomb calorimeters, a 
substance with a known internal energy of combustion is used to determine the heat capacity of 
the calorimeter. The internal energy of combustion of benzoic acid is precisely known. The heat 
transferred to the calorimeter from the combustion of benzoic acid is 
 

 qcal = nbz ∆combU = wbz ∆combUs     (cst. V) 8.7.1 
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where nbz is the number of moles, ∆combU is the molar internal energy of combustion, wbz is the 
mass, and ∆combUs is the internal energy of combustion per gram of benzoic acid. ∆combUs for 
benzoic acid1 is -26.436 kJ g-1. If the change in temperature of the calorimeter is ∆Tcal for the 
combustion of benzoic acid, the heat capacity of the calorimeter, Ccal, is: 
 

 Ccal = 
qcal

∆Tcal
        (cst. V) 8.7.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.7.1: Isoperibol oxygen bomb calorimeter. The bomb is filled with oxygen at 30 atm 
to ensure complete combustion. One side of the fuse wire is connected to the body of the 
bomb. 

 
 
   The calorimeter consists of the bomb, thermometer, stirrer, calorimeter pail, and water in 
addition to the products of the combustion, which are CO2 (g) and H2O (l). In other words, the 
calorimeter includes everything that is heated by the combustion reaction. Having calculated the 
heat capacity of the calorimeter, the reaction of interest can be studied. 
   If the change in temperature for the combustion of nsample moles of compound is ∆Treact then the 
heat transferred to the calorimeter during the reaction is: 
 qcal = Ccal ∆Treact        (cst. V) 8.7.3 
 

The heat lost by the reaction is given by the heat gained by the calorimeter, qreact = – qcal. Then 
since the reaction is at constant volume, qreact = qv: 
 

 ∆combU = 
qv

nsample
       (cst. V) 8.7.4 

 

The internal energy of combustion from Eq. 8.7.4 is at the temperature and pressure of the 
calorimeter. The internal energy of combustion at 298.2 K a can be calculated using Eq. 8.5.23. 
The corrections to 298.2 K and the corrections to 1 bar pressure are often less than the 
experimental uncertainty.5-7 For nitrogen containing compounds in actual experiments a mixture 
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of N2 and aqueous nitric acid are produced and for sulfur containing compounds a mixture of SO2 
and aqueous sulfuric acid are produced in the bomb. The data is corrected to give the value for the 
production of only N2 (g) and SO2 (g).5-7 
   The standard state enthalpy of combustion is then calculated from the standard state internal 
energy of combustion, as in Example 8.3.1. The enthalpy of formation of the compound is finally 
calculated using Hess's Law, as in Example 8.4.2. 
   A typical plot of the temperature as a function of time for an insulated or isoperibol calorimeter 
is shown in Figure 8.7.2. The temperature before ignition of the bomb is usually not constant. The 
temperature will decrease if the calorimeter is warmer than the surroundings, and the temperature 
will increase if the calorimeter is colder than the surroundings. The temperature drift is linear for 
short time intervals and small temperature differences. Under these conditions, Newton's Law of 
Cooling, Eq. 7.2.18, can be expanded in a power series and only the first two terms retained. The 
result gives a linear drift of the temperature (see Problem 10). The calorimeter also has a stirrer in 
the pail surrounding the bomb. The stirrer does work, and in the process heats the water in the 
pail. After ignition the temperature increases approximately exponentially, according to Newton’s 
Law of Cooling. The temperature usually doesn't reach a constant value, because the temperature 
slowly drifts towards the temperature of the surroundings after the reaction is complete. If the 
temperature after the reaction is higher than the surroundings the temperature decreases, and vice 
versa. 
   The errors in the determination of ∆T caused by temperature drift before and after the reaction 
can be minimized by an extrapolation procedure. Least squares fits are done for the interval of 
linear drift before ignition and the interval of linear drift after the maximum temperature is 
attained. The line before ignition is extrapolated forwards and the line after the reaction is 
complete is extrapolated backwards. The ∆T is then the difference between these two extrapolated 
lines. However, at what time should the temperature difference be measured? Experiments at the 
National Institute of Standards and Technology (NIST) show that the most accurate time is when 
the temperature reaches 63% of its final value, Figure 8.7.2.8 The factor of 63% is approximate 
and results from Eq. 7.2.18 and (1 – e–1) = 0.63. Let To be the temperature at the time of ignition, 
to, and Tmax be the maximum temperature. The time, te, is selected when the temperature is 
To + 0.63*(Tmax – To). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.7.2. A typical thermogram for bomb calorimetry. The extrapolation minimizes errors 
caused by temperature drift before and after the reaction. 
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   There are over 100 million substances registered in Chemical Abstracts. The accurate 
experimental thermodynamic characterization of each of these compounds is impossible. 
However, as we search for solutions to challenges in human health, energy production, and 
environmental issues, we need to know as much as possible about every known compound and 
compounds yet to be synthesized. The prediction of the internal energy, enthalpy, and heat 
capacities for substances is a central goal of physical chemistry. 
 
8.8  Predicting Internal Energy, Enthalpy, and Heat Capacities 
 

Thermodynamics is said to be “model free;” thermodynamic theories hold independently of how 
we interpret the underlying structure and properties of matter. Thermodynamics was developed 
largely before the concepts of atoms and molecules were widely accepted by the scientific 
community. However, taking a molecular view helps us to understand the meaning of internal 
energy and allows us to predict the thermodynamic properties of substances that have not been 
studied in the laboratory. 
   We will focus first on an ideal gas. In an ideal gas the molecules are independent of each other 
because there are no intermolecular forces. We will add molecular interactions in later chapters 
so that we can discuss real gases and condensed phases. The energy of a mole of an ideal gas is 
the energy of a single molecule multiplied by Avogadro’s number. We need to build the system 
containing one mole of molecules from the ground up. We start first with the ground state 
electronic structure to predict the internal energy of the molecule at absolute zero, U(0). The 
contribution of the ground state is temperature independent. We then add temperature dependent 
terms for the motional degrees of freedom of the molecule, which are translation, rotation, and 
vibration, and contributions from any accessible excited electronic states: 
 

 U = U(0) + εtrans + εrot + εvib + εelect     (ideal gas) 8.8.1° 
 

The temperature dependent electronic term, εelect, is zero for molecules lacking low lying 
electronic excited states. Few molecules have low lying electronic excited states. The U(0) term 
is determined subject to the chosen reference point. As noted in Sec. 8.4, only differences in the 
internal energy may be measured and not absolute values, so an arbitrary reference is chosen as 
the energy of the elements in their standard states. The relationship between the enthalpy and 
internal energy is given by Eq. 8.1.4° with ng = 1 mol, H = U + RT. The enthalpy is then 
determined using Eq. 8.8.1º: 
 

 H = U(0) + εtrans + εrot + εvib + εelect + RT    (ideal gas) 8.8.2° 
 

Note also at absolute zero, RT = 0, giving H(0) = U(0). The ground state electronic energy of a 
molecule is best determined using quantum mechanical techniques, however an empirical 
method based on the concept of bond enthalpies is easy and useful. Bond enthalpies are based 
solely on atom-atom connectivity. The ground state electronic energy is the sum of the prediction 
based on bond enthalpies, εbond, and the steric energy, which takes the conformation of the 
molecule into account: 
 

 H(0) = U(0) = εbond + εsteric        8.8.3° 
 
The Ground State Electronic Energy can be Approximated as the Sum of the Bond Energies:   
One empirical way of determining the ground state electronic energy is to use bond enthalpy 
calculations. The internal energy or enthalpy of a molecule is assumed to be an additive function 
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of the energy of individual bonds, Table 8.8.1. For example, the assumption is that a C–H bond 
in methane has the same energy as in an aldehyde, –(O=)C–H, or an olefin –C=C–H. Bond 
energies can be calculated from spectroscopic gas-phase dissociation energies. The general 
process is: 
 

 AB (g) → A (g) + B (g)        8.8.4 
 

The bond enthalpy at 0 K, ∆rH°(0), is also called the bond dissociation energy, Do(A–B). For 
example, for methane the experimental successive bond dissociation enthalpies are: 
 

 CH4 (g)  → CH3  + H  ∆rH° = 432 kJ mol-1 

 CH3 (g) → CH2   + H  ∆rH° = 469 kJ mol-1 
 CH2 (g) → CH     + H  ∆rH° = 422 kJ mol-1 
 CH  (g) → C(g)   + H  ∆rH° = 339 kJ mol-1 
          

 CH4 (g) → C(g)  + 4 H  ∆rH° = 1662 kJ mol-1     8.8.5 
 

The four C–H bonds in methane must be equivalent, which gives the bond dissociation enthalpy 
for a C–H bond in methane as ∆rH° = 1662/4 = 416 kJ mol-1. The average value over many types 
of compounds for the bond dissociation enthalpies for several types of bonds is given in Table 
8.8.1. In general triple bonds are stronger than double bonds, which in turn are stronger than 
single bonds. The ∆rH° for a reaction is given by Σ ∆rH°(bonds broken) – Σ ∆rH°(bonds formed). 
Bond enthalpies pertain to reactions where all species are in the gas phase. One difficulty is that 
the enthalpy of sublimation for graphite to give gas phase carbon atoms is not experimentally 
measureable. This important parameter is calculated indirectly and has a large uncertainty; 
however, the uncertainty is negligible relative to the assumption of the additivity of the bond 
enthalpies over many different chemical environments. 
 
 

Table 8.8.1. Bond Enthalpies, ∆rH°(A-B)  (kJ mol-1).9 
 

 H C N O 
H 436    
C 412 348 – 

518 –…a 

614 = 
839 ≡ 

  

N 391 305 – 
615 = 
891 ≡ 

163 – 
418 = 
945 ≡ 

 

O 463 358 – 
745 = 
1070 ≡ 

201 – 
607 = 

146 – 
498 = 

C (graph) → C (g)          ∆rH° = 716.7 kJ mol-1 
(a). –… aromatic 

 
 
For example, the enthalpy of formation of acetaldehyde, CH3–CH=O, is calculated as: 
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  2 C(graph) + 2 H2 (g) + ½ O2 (g)  →  CH3–CH=O (g)   8.8.6 
 

 #   Bonds Broken    #   Bonds Formed 
 2  C (graph)  2 (716.7 kJ mol-1) 1 C=O     745 kJ mol-1 
 2  H-H    2 (436 kJ mol-1) 4 C-H  4(412 kJ mol-1) 
 ½ O=O ½ (498 kJ mol-1) 1 C-C     348 kJ mol-1 
 total      2554.4 kJ mol-1  – total     2741 kJ mol-1  =  -187. kJ mol-1 

 
The experimental value for the ∆fH° of acetaldehyde is -166.19 kJ mol-1, so the value derived 
from bond dissociation enthalpies is not accurate, but a useful starting point none-the-less. 
 
 
              

Example 8.8.1: 
Calculate the molar enthalpy of formation of toluene (methylbenzene) using bond dissociation 
enthalpies and compare with the literature experimental values. 
 
 
Answer: The enthalpy of formation of toluene, (C6H6)–CH3, is calculated as: 
 

  7 C(graph) + 9/2 H2 (g) →  (C6H6)–CH3 (g)     8.8.7 
 

 #   Bonds Broken    #   Bonds Formed 
 7    C (graph)   7(716.7 kJ mol-1) 6 C–…C  6(518 kJ mol-1) 
 9/2  H–H 9/2(436. kJ mol-1) 1 C–C     348 kJ mol-1 
      9 C–H  9(412 kJ mol-1) 
 total     6978.9 kJ mol-1  – total     7164 kJ mol-1  =  185. kJ mol-1 
 

The experimental value in the gas phase is +50.0 kJ mol-1. Bond energy predictions for 
conjugated molecules are particularly inaccurate, unless bond energies for appropriate partial- 
order bonds are known. 
             

 
 

   To improve on predictions based on bond dissociation energies, the chemical environment of a 
given bond needs to be taken into account. Quantum mechanical calculations are the best way to 
predict ground state electronic energies, but a number of extensions of the bond energy concept 
have also been developed. One approach is based on bond increments that are additive 
parameters for specific types of bonds and chemical environments.10 Bond increments are easy to 
implement in computational algorithms. This approach is taken in the MM2/MM3/MM4 series 
of molecular mechanics programs.11,12 The MM3 bond increments for saturated hydrocarbons are 
given in Table 8.8.2. The bond increments are optimized to reproduce the enthalpy of formation 
for a wide variety of compounds when used in conjunction with steric energy calculations (see 
below). This listing is a small subset of the necessary parameters. Notice that two different 
values for the C–C bond energy are used, depending on the chemical environment, sp3–sp3 or 
sp3–sp2. Some increments, such as the C–H terms, are for a given bond enthalpy contribution and 
some increments are corrections for environment effects, such as the RCH3 methyl correction. 
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Table 8.8.2: MM3 bond increments for hydrocarbons, kJ mol-1.13 

 

Bond contributions: 
C–H C–C (sp3–sp3) C–C (sp3–sp2) C=C (sp2–sp2) 
-19.205 10.238 -0.753 110.583 

 

Environment contributions: 
RCH3 (methyl) R3CH (iso) R4C (neo) R2C=C (iso alkene) 
4.37 -10.99 -27.79 -8.414 

 
 
The bond energy calculation for acetaldehyde from MM3 with energies in kJ mol-1 is: 
 

 #   Bond or Structure    Each        Total     
 1   C–C sp3–sp2 C=O  -15.452   -15.452 
 3   C–H Aliphatic  -19.205   -57.614 
 1   C–H Aldehyde  -19.205   -19.205 
 1   C=O   -90.793   -90.793 
 1   Me-Carbonyl      3.615      3.615 
      εbond = -179.45 kJ mol-1   8.8.8 
 

The enthalpy of formation based on bond energies provides an estimate of U(0) and H(0). Bond 
energies alone are not accurate predictions for enthalpies of formation. The conformation of the 
molecule and associated steric energy has an important contribution to the ground state energy. 
 
Molecular Mechanics Steric Energies and Bond Increments Provide Better Estimates for 
Enthalpies of Formation:   The steric energy is the energy due to the three-dimensional 
conformation of the molecule. Steric interactions change the ground state energy, Eq. 8.8.3º. 
Molecular mechanics provides a method to estimate the steric energy. The interactions 
comprising the steric energy include the stretching or compressing of bonds from their 
equilibrium lengths and angles, torsional effects of twisting about single bonds, Van der Waals 
attractions or repulsions, and electrostatic interactions between partial charges.11,12 The steric 
energy of a molecule is the sum of the energies of the interactions: 
 

 εsteric = εstr + εbend + εstr-bend + εoop + εtor + εVdW + εele     8.8.9 
 

The bond stretching, bending, stretch-bend, out-of-plane, and torsion interactions are called 
bonded interactions because the interactions result from distortions of chemical bonds. The Van 
der Waals and electrostatic (qq) interactions are between non-bonded atoms. The sum of all the 
interactions is called the force field for the molecule. We consider first the bonded interactions. 
 
Bonded Interactions Use Hookean Potentials:   The potential energy term εstr represents the 
energy required to stretch or compress a bond between two atoms, i and j, Figure 8.8.1. A bond 
can be modeled as a spring with equilibrium length, ro, and the energy required to stretch or 
compress the bond can be approximated by using the Hooke’s Law potential: 
 

 εstr = ½ kstr,ij (rij - ro)
2         8.8.10 

 

where kstr,ij is the stretching force constant for the bond and rij  is the distance between the two 
atoms. The stronger the bond the larger the force constant. 
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Figure 8.8.1.  Bond stretch quadratic potential. 

 
 
   The potential energy term εbend is the energy required to bend a bond from its equilibrium 
angle, θo. Again this distortion can be modeled by a spring, and the energy is given by the 
Hookean potential with respect to angle: 
 

 εbend = ½ kbend,ijk (θijk - θo)
2        8.8.11 

 

where kbend,ijk is the bending force constant and θijk is the bond angle, Figure 8.8.2a. 
 
 
 
 
 
 
 
 
 
     (a). bond bending    (b).  stretch-bend interaction 
 

Figure 8.8.2. (a). Bond bending, (b). Stretch-bend interaction: as the bond bends to smaller 
angle, the lowest energy bond length increases. 

 
 
The stretch and bend are not independent; the stretching and bending motions interact. The 
stretch-bend interaction potential, εstr-bend, accordingly takes into account the observation that 
when a bond is bent to smaller angles, the two associated lowest energy bond lengths increase, 
Figure 8.8.2b: 
 

 εstr-bend = ½ ksb,ijk (rij – ro) (θijk – θo)       8.8.12 
 

where ksb,ijk is the stretch-bend force constant for the bond between atoms i and j with the bend 
between atoms i, j, and k. 
   The potential energy term εoop is the energy required to deform a planar group of atoms from 
its equilibrium angle, ωo, which is usually equal to zero.13 This out-of-plane force field term is 
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necessary for sp2 hybridized atoms, and some small ring systems. The energy is given by the 
Hookean potential with respect to planar angle: 
 

 εoop = ½ koop,ijkl (ωijkl  – ωo)
2        8.8.13 

 

where koop,ijkl is the bending force constant and ωijkl  is the bond angle, Figure 8.8.3. The out-of-
plane term is also called the improper torsion in some force fields. Most force fields use oop 
terms for the carbonyl carbon and the amide nitrogen in peptide bonds in proteins, which are 
planar, Figure 8.8.4.14 

 
 
 
 
 
 
 
 
 
 

Figure 8.8.3. Out-of-plane bending. 
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Figure 8.8.4: (a). The amino acids in proteins are attached through peptide bonds. (b). The 
peptide bond is planar and requires out-of-plane bending terms. 

 
 
   The term εtor is the potential energy of rotation about bonds. Torsional energies are usually 
important only for single bonds because double bonds are too rigid to permit rotation. Torsional 
interactions are modeled by the potential: 
 

 εtor = ½ ktor,1 (1 + cos φ) + ½ ktor,2 (1 + cos 2φ) + ½ ktor,3 (1 + cos 3φ)  8.8.14 
 

The angle φ is the dihedral angle about the bond, Figure 8.8.5a. The constants ktor,1, ktor,2, and 
ktor,3 are the torsional force constants for one-fold, two-fold, and three-fold rotational barriers, 
respectively. The torsional potential for H–C(sp3)–C(sp3)–H from the commonly used Merck 
Molecular Force Field, MMFF, is:15-17 

 

 εtor = 0.594 (1 + cos φ) – 2.900 (1 + cos 2φ) + 0.657 (1 + cos 3φ) kJ mol-1  8.8.15 
 

The three-fold term, which is the last term in 3φ, is important for sp
3
 hybridized systems.11 The 

two-fold term, in 2φ, is the lower curve in Figure 8.8.5b and is the dominant torsional interaction 
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for H–C–C–H. The torsional interaction summed over all pairs of H-atoms for ethane gives a 
symmetric three-fold potential, Figure 8.8.5c. 
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Figure 8.8.5: (a). Definition of the dihedral angle, φ. (b). Torsional potential for H–C–C–H 
for the separate one, two, and three-fold terms. (c). Total torsional interaction for ethane. 

 
 
   To summarize the bonded force field terms, when molecular interactions stretch, compress, or 
bend bonds from the equilibrium lengths and angles, the bonds resist the change with an energy 
given by the potential functions, Eqs. 8.8.10-8.8.15, summed over all bonds. When the bonds 
cannot relax back to their equilibrium positions, the steric energy increases. When the different 
units of distance and angle are considered, the force constants have relative sizes: 
 

  Stretch >> bend > stretch-bend ~ out-of-plane > torsion 
 

It is difficult to stretch, easier to bend, and very easy to twist a single bond. 
 
Non-bonded Interactions include Van der Waals and Coulomb Interactions:  Van der Waals 
interactions, which are responsible for the liquefaction of non-polar gases like O2 and N2, also 
govern the energy of interaction of non-bonded atoms within a molecule. These interactions 
contribute to the steric interactions and are often the most important factors in determining the 
overall molecular conformation. Such interactions are extremely important in determining the 
three-dimensional structure of many biomolecules, especially proteins. The Van der Waals 
interaction between closed-shell atoms and non-polar molecules is called the induced dipole-
induced dipole interaction or the dispersion interaction. 
   A plot of the Van der Waals energy as a function of distance between two hydrogen atoms is 
shown in Figure 8.8.6. When two atoms are far apart, an attraction is felt. When two atoms are 
very close together, a strong repulsion is present. Although both attractive and repulsive forces 
exist, the repulsions are often the most important for determining the conformations of 
molecules. One expression for the Van der Waals dispersion energy is: 
 

 εVdW,ij = – 
A
rij

6 + 
B

rij
12         8.8.16 
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where A and B are constants dependent upon the two atoms and rij is the distance separating the 
two nuclei. This equation is also called the Lennard-Jones potential or the 6-12 potential, 
referring to the exponents for rij. Since, by definition, lower energy is more favorable, the –A/r6 
term is the attractive part and the +B/r12 term is the repulsive part of the interaction. For two 
hydrogen atoms in a molecule:12 

 

 A = 294.5 kJ mol-1 Å6  B = 2.63x104 kJ mol-1 Å12 

 
 

 
 

Figure 8.8.6:  Van der Waals dispersion interactions between two hydrogen atoms in a 
molecule, such as H2O2 or CH3–CH3, De = 0.8146 kJ mol-1, re = 2.376 Å, and σHC = 2.117 Å. 

 
 
 

   Two additional equivalent and commonly used forms of the Lennard-Jones potential are: 
 

 εVdW,ij = De 




– 2 






re

rij

6
 + 





re

rij
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σHC
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 + 






σHC

rij

12
    8.8.17 

 

Where De is the minimum energy, re is the minimum energy distance, and σHC is the sum of the 
hard-core Van der Waals radii of the two atoms. When looking for close contacts between atoms, 
it is best to use the hard-core Van der Waals diameter, σHC. This distance is the point where the 
Van der Waals potential is zero. When two atoms are closer than σHC, strong repulsions are 
present. The hard core diameter and the minimum energy distance are related by σHC = 2–1/6 re. 
 

Electrostatic Interactions:  If bonds in the molecule are polar, the atoms carry partial 
electrostatic charges. The electrostatic interactions are represented by the Coulomb potential: 
 

 εele,ij = 
c Qi Qj

4πεr rij
          8.8.18 

 

where Qi and Qj are the unitless partial atomic charges for atoms i and j separated by a distance 
rij , and εr is the relative dielectric constant. The constant c is a units conversion constant; 
c = NA e2/εo/1000 J kJ-1/1x10-10 m Å-1 = 17459.2 kJ mol-1Å. The Coulomb potential for a unit 
positive and negative charge is shown in Figure 8.8.7a and the Coulomb potential for the 
hydrogens in H2O2 is shown in Figure 8.8.7b. 
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Figure 8.8.7: (a) Coulomb attraction of a positive and a negative charge. (b) Coulomb 
repulsion of the two hydrogens in H2O2, with the charge on the hydrogens Q1 = Q2 = 0.40. 

 
 
Like charges raise the steric energy, while opposite charges lower the energy. For gas phase 
calculations εr is set to1. Larger values of εr are used to approximate the dielectric effect of 
intervening solute or solvent atoms in solution. For water εr is 78.54. For the interior of a protein 
εr is often taken as 4. 

   To summarize the non-bonded force field terms, the Van der Waals and electrostatic potential 
functions represent the non-bonded interactions between pairs of atoms i and j. The non-bonded 
interactions also govern the intermolecular interactions in complexes. A full force field 
determines the steric energy by summing these potentials over all non-bonded pairs of atoms in 
the molecule. Finally, the full steric energy including bonded and non-bonded terms is given by 
the sum over all atoms: 
 

   εsteric = ∑
r

 ½ kstr,ij (rij - ro)
2 + ∑

θ
 ½ kbend,ijk (θijk - θo)

2 + ∑
r

 ∑
θ

 ½ ksb,ijk (rij - ro) (θijk - θo) 

   + ∑
ω

 ½ koop,ijkl (ωijkl  – ωo)
2 + ∑

φ
 ∑
n = 1

3

 ½ ktor,n (1 + cos nφ) + ∑
i

 ∑
j > i

 








– 
A
rij

6 + 
B

rij
12 + 

c Qi Qj

4πεr rij
 8.8.19 

 

where the sum over r symbolizes all bonded pairs of atoms i, j. The sum over θ symbolizes all 
bends for atoms i, j, and k. The sum over ω symbolizes all out-of-plane angles, and the sum over 
φ symbolizes all torsions for atoms i–j–k–l. 
   One of the major goals of molecular mechanics is to determine the low energy conformations 
of a molecule or complex. Geometry optimization is the process of varying each bond length 
and angle to minimize the steric energy of the molecule. The minimum steric energy 
conformation is the most stable conformation, which is called the global minimum. 
   All the potential functions involve a force constant or interaction constant. These constants are 
derived empirically. That is, the constants are adjusted by trial-and-error so that the geometry of 
a number of well-known compounds is properly predicted. These constants are then used to 
calculate the structures of new compounds. The accuracy of these constants is critical to 
molecular mechanics calculations. Unfortunately, no single best set of force constants is 
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available because of the diversity of types of compounds and uses for molecular mechanics. 
Many force fields are in current use; each force field uses a different set of force constants. 
   Different force fields also use additional terms. For example, force fields add terms to the 
bonded interactions to better approximate the real potential function of a chemical bond, Figure 
8.8.8a. These additional terms take into account anharmonicity, which is a result of the fact that 
given enough vibrational energy, bonds break. Purely quadratic potentials have steep "walls" that 
prevent bond dissociation, Figure 8.8.1. Cubic terms are added to purely quadratic potentials, as 
in Eq.8.8.7, to adjust for anharmonicity:11 

 

 εstr = ½ kstr,ij (rij – ro)
2 – ½ kstr,ij Cs (rij – ro)

3    (anharmonic) 8.8.20 
 

where Cs is the cubic stretch constant. For example, in MM2 for a C(sp3)–C(sp3) bond, kstr is 
1325 kJ mol-1 and the cubic stretch constant is 2.00 Å-1, Figure 8.8.8b. Some force fields, 
including MMFF, add a quartic term, 7/12 (½ kstr,ij Cs

2) (rij – ro)
4, to help improve the potential for 

large rij.
14,15 

 

    
  (a).       (b). 
 

Figure 8.8.8: (a). Realistic potential energy curve for C–C bond stretching, which shows 
anharmonicity. The asymptotic limit at the dissociation energy, De, corresponds to breaking 
the C–C bond. (b). Comparison of the harmonic potential, Eq. 8.8.10, for short distances with 
Eq. 8.8.20, which includes the (r – ro)

3 cubic term to correct for anharmonicity. 
 
 

   Another example of the differences between force fields is that MM3 uses the Buckingham 
potential instead of the Lennard-Jones equation for the Van der Waals interaction. The general 
form of the Buckingham potential for the dispersion interaction is: 
 

 εVdW,ij = De 






6

α–6
 e

–α(rij-ro)/ro – 
α

α–6
 





ro

rij

6
      8.8.21 

 

This potential uses the r6 attractive part of the Lennard-Jones functional form, Eq. 8.8.16. The 
exponential part of the Buckingham potential matches the repulsive part of the Lennard-Jones 6-
12 potential best with an α of 14-15. However, MM3 uses a “softer” more realistic repulsion 
with α = 12.5. 
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Protein Structure: Alpha Helices and Beta-Pleated Sheets:   One important use of molecular 
mechanics is the determination of the secondary and tertiary structure of proteins. Two examples 
of secondary structural motifs are the alpha-helix and the beta-pleated sheet, Figure 8.8.9. The 
secondary structure of proteins is stabilized by a network of hydrogen bonds. The network of 
hydrogen bonds in the alpha-helix are between the C=O carbonyl oxygen on one amino acid and 
the NH hydrogen on the amino acid four residues further along the backbone. The hydrogen 
bonds in the beta-pleated sheet structure are between the parallel chains. The tertiary structure  
of a protein is determined by the spatial relationships of the secondary elements. In other words, 
the tertiary structure describes the spatial relationships of the alpha-helices, beta-pleated sheets, 
and peptide turn regions of the protein. The proper functioning of a protein is dependent on 
folding the protein into the proper secondary and tertiary conformation. A typical protein has 
tens of millions of possible low energy conformations, but only one or a few conformations 
correspond to the active, native protein. Structural biology is the study of protein and nucleic 
acid structure and function. Molecular mechanics plays a central role in structural biology and 
biochemistry in predicting the proper folding of proteins and refining experimental structures 
from X-ray crystallography and NMR. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a).         (b). 
 

Figure 8.8.9: (a). In the alpha-helix secondary structure, hydrogen bonds between amino acid 
(i) and (i+4) stabilize the structure. (b). In the beta-pleated sheet secondary structure, inter-
strand hydrogen bonds stabilize the sheet. See Sec. 10.3 for another view of the alpha-helix. 

 
 
   The secondary structure of a protein is determined by the dihedral angles in the backbone of 
the protein, Figure 8.8.10. The C-alpha carbon is the backbone carbon with the amino acid side 
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chain. ψ is defined by the N-C(α)-C-N dihedral and φ is defined between the carbonyl carbons in 
the dihedral C-N-C(α)-C. 
 

O

N

O

N

R

N

H

H
R

H
ψ φ

 

 
 
 
(a). 

R =  glycine  –H 
 alanine  –CH3 

 aspartic acid –CH2–C(=O)OH 
 cysteine –CH2–SH 
 glutamic acid –CH2–CH2–C(=O)OH 
 glutamine –CH2–CH2–C(=O)NH2 

 phenylalanine –CH2–φ 
 serine  –CH2–OH 
 valine  –CH(CH3)2 

(b). 
Figure 8.8.10:  (a). The backbone dihedral angles in a peptide. The peptide is shown in the 
all-trans conformation, ψ = 180º and φ = 180º. (b). Several side-chains for common amino 
acids. There are 20 commonly occurring amino acids in proteins. 

 
 

The average values in the alpha helix are ψ = -47° and φ = -57° and for beta-pleated sheet 
structures the backbone angles are near ψ = 135° and φ = -140°. 
   Is the alpha-helix stable without the hydrogen bonding network? The conformational energy of 
the alanylalanine dipetide as a function of the backbone dihedral angles is shown in Figure 
8.8.11. This plot is called a Ramachandran plot.18 
 

 
 

Figure 8.8.11: Ramachandran plot for alanylalanine dipeptide. Region I is near the typical 
angles for an alpha-helix, region II is an alternate helical structure, region III is near the 
typical dihedrals for a beta-pleated sheet secondary structure. 

 
 

I 

II III 
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The plot was constructed using molecular mechanics steric energies for the complete ranges of 
the backbone dihedral angles. The region labeled I corresponds to low energy conformations 
near the expected angles for an alpha-helix. Therefore, the hydrogen bond network is not 
necessary to stabilize the alpha-helix. The region labeled III is near the expected angles for the 
beta-pleated sheet. So the beta-pleated sheet secondary structure conformation is also 
intrinsically stable without the aid the hydrogen bond network. These observations have 
important implications for the early stages of protein folding, before the hydrogen bond network 
is formed. The region labeled II corresponds to an alternate helical structure. 
   The structure of proteins is far from static. Molecules are in constant motion and motions play 
a critical role in chemical reactivity. The molecular mechanics based steric energy and the bond 
increments give an estimate of U(0) and H(0), which are at absolute zero K. The temperature 
dependent terms for the thermally excited motional degrees of freedom in Eq. 8.8.1° are added to 
bring the molecules to room temperature. 
 
8.9  The Equipartition Theorem Predicts the Internal Energy and Heat Capacity of Gases 
 

The Equipartition Theorem  was the historical basis for the first attempts to theoretically predict 
the thermodynamic properties of substances. The basis for the Equipartition theorem is the 
observation that the internal energy of monatomic gases is 3/2 nRT, except at temperatures near 
absolute zero. Near room temperature, monatomic gases have only translational energy, and the 
translational kinetic energy has three components, in the x, y, and z directions. The three 
components of the kinetic energy of translation are: 
 

    εtrans,x = ½ mυx
2 = px

2/2m     εtrans,y = ½ mυy
2 = py

2/2m   εtrans,z = ½ mυz
2 = pz 

2/2m 8.9.1 
 

where υ is the velocity and p is the momentum in the x, y and z directions. The mass of the 
molecule is m. The total translational kinetic energy of the gas is εtrans = εtrans,x+ εtrans,y + εtrans,z. 
Each quadratic term in the total energy of a substance is called a degree of freedom. Monatomic 
gases have three translational degrees of freedom. Comparison with the experimental internal 
energy of 3/2 nRT suggests that each degree of freedom contributes ½ nRT to the internal energy 
of the gas. In addition, from Eq. 7.8.7, the heat capacity of a monatomic gas is Cv = (∂U/∂T)v = 
3/2 nR. The Equipartition theorem then predicts that each degree of freedom contributes ½ RT to 
the molar internal energy and ½ R to the molar heat capacity, Table 8.9.1. 
 
 

Table 8.9.1: Molar Heat Capacity Predictions from Equipartition, Cv (J K-1 mol-1). 
 

Species translation rotation vibration total total – vib experiment experiment 
Ar 3/2 R   3/2 R 3/2 R 12.5 J K-1  3/2 R 
N2 

3/2 R 2/2 R 2/2 R 7/2 R 5/2 R 20.8  5/2 R 
Cl2 

3/2 R 2/2 R 2/2 R 7/2 R 5/2 R 25.6 6/2 R 
CO2 

3/2 R 2/2 R 4(2/2 R) 13/2 R
 5/2 R 28.5 6.9/2 R

 

O3 
3/2 R 3/2 R 3(2/2 R) 12/2 R 6/2 R 30.9 7.4/2 R 

H2O 3/2 R 3/2 R 3(2/2 R) 12/2 R 6/2 R 25.3 6.1/2 R 
 
 

   Polyatomic molecules have energy in translation, rotation, and vibration. Consider rotation 
first. Linear molecules have two degrees of freedom in rotation, because there are two non-zero 
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moments of inertia. The rotational energy is quadratic in the angular velocity about each axis; for 
rotation about the x-axis: 
 

 εrot,x = Jx
2/2Ix = ½ Ix ωx

2 εrot,y = Jy
2/2Iy = ½ Iy ωy

2  (linear)  8.9.2 
 

where Jx = Ix ωx is the angular momentum around the x-axis, ωx is the angular velocity about the 
x-axis, and Ix is the moment of inertia about the x-axis. Non-linear molecules have three degrees 
of freedom in rotation, because there are three non-zero moments of inertia. For a linear 
molecule, the third moment of inertia is zero because rotation about the internuclear axis does 
not move the nuclei, Figure 8.9.1. 
   Each vibration corresponds to two degrees of freedom, one for the kinetic energy and one for 
the potential energy. The potential energy of vibration is approximated using Hooke’s Law, 
Eq. 8.8.10. Hooke’s Law potentials are also called quadratic potentials because of the 
dependence on r2. The kinetic and potential energy of vibration are each a quadratic degree of 
freedom. The contribution of each vibration to the internal energy is therefore 2/2 RT. 
   For a diatomic molecule, with two rotational axes and one vibration, the predicted temperature 
dependent contribution to the internal energy is the sum for translation, rotation, and vibration: 
 

 U – U(0) = 3/2 RT   +   2/2 RT   +    2/2 RT  =  7/2 RT           (diatomic, equipartition) 8.9.3 
       translation  rotation         vibration 
 

The translational, rotational, and vibrational contributions to the internal energy are the energy of 
motion above the energy at 0 K. The corresponding heat capacity is Cv (diatomic) = 7/2 R. 
 
 

 translation    rotation   vibration 
 
 
 
 
 
 
 
 
 
 
 
 
 kinetic only      kinetic only      kinetic and potential 
 

Figure 8.9.1: Each quadratic term in the total energy of a molecule is called a degree of 
freedom. Each degree of freedom contributes ½ RT to the total molar internal energy. 

 
 

   For molecules larger than diatomics, we need to find the total number of vibrations. To 
calculate the energy of a molecule with N atoms we must specify 3N coordinates; we need to 
find the x, y, and z position of each atom in the molecule. Rather than specifying the x, y, and z 
coordinates of each atom, an equivalent approach is to specify the x, y, z coordinates of the 
center of mass of the molecule, the rotational angles around the x, y, and z axis, and the progress 
of each vibration. The translational energy of the molecule is determined by the motion of the 
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center of mass and therefore requires three coordinates. The rotational energy requires two 
coordinates, as angles, for a linear molecule and three coordinates for a non-linear molecule. The 
number of coordinates remaining gives the number of vibrations. Each vibration of a molecule is 
called a normal mode. The number of normal modes, n, for a linear molecule is given as: 
 

 n = 3N     –   3     –     2 =   3N – 5   (linear)  8.9.4 
        total  translation rotation        vibration 
 

and for a non-linear molecule as: 
 

 n = 3N        –      3     –     3 =   3N – 6   (non-linear) 8.9.5 
        total  translation rotation        vibration 
 

Normal modes will be discussed in more detail in Section 8.10. In particular, each normal mode 
acts as an independent harmonic oscillator. Carbon dioxide is a linear molecular and has 3(3) – 5 
= 4 normal modes. Ozone and water are bent triatomics and each has 3(3) – 6 = 3 normal modes, 
Table 8.9.1. The normal modes for a bent triatomic are shown in Figure 8.9.2. 
    The experimental values for the molar heat capacities of several substances are given in Table 
8.9.1. For ease of comparison the experimental value is also listed in multiples of ½ R in the last 
column. Note that the predictions based on the equipartition theorem, as shown in the column 
labeled “total,” are often too large. If the prediction is based on only translation and rotation, as 
shown in the column labeled “total-vib,” better agreement with the experimental values is found. 
The prediction based only on translation and rotation provides a lower bound and the prediction 
with vibration gives the limit at high temperature. The comparison shows that while translation 
and rotation obey the Equipartition predictions, the contributions from vibrations are less and 
often much less than expected. Why don’t vibrations contribute the full contribution expected 
from equipartition? 
 
 
 
 
 
 
 
 
     Symmetric stretch    Asymmetric stretch           Bend 
 

Figure 8.9.2: Normal modes of vibration for a bent triatomic; n = 3N – 6 = 3. 
 

 
8.10  The Boltzmann Distribution-The Energy Difference Between Vibrational States is 
Usually Large Compared to the Available Thermal Kinetic Energy 
 

   The energy states for translation, rotation, and vibration are not continuous. The energy states 
are quantized. Molecules may not have energies between the allowed energy states. An analogy 
is the steps on a ladder. You can stand on each successive step, but you can’t stand between the 
steps. For example, for vibration the allowed energy states are equally spaced, in the harmonic 
approximation, Figure 8.10.1. How much do vibrations contribute to the internal energy of 
molecules? Molecules gain energy through collisions. The energy available through collisions 
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increases with temperature and is given roughly by RT. The term RT is often called the 
available thermal kinetic energy, which at room temperature is: 
 

 RT = 8.314 J K-1 mol-1 (298.2 K) = 2.48 kJ mol-1   (T = 298.2 K) 8.10.1 
 

It is often convenient to work with the energy in wavenumbers, cm-1, since vibrational 
transitions are easily expressed in these units. The horizontal axis of IR spectrophotometers for 
the mid-infrared is 4000 cm-1 – 400 cm-1. The wavenumber of a transition is given as ν~ = 1/λ and 
the energy of the transition is ∆E = hc/λ = hcν~ per molecule, where h is Planck’s constant. On a 
per mole basis the energy is: 
 

 ∆E = NA hcν~ = (0.011963 kJ mol-1
 cm) ν~      8.10.2 

 

where NA is Avogadro’s number. Then RT in cm-1 is: 
 

 RT = 
8.314 J K-1 mol-1 (298.2 K)

NA hc  = 207.2 cm-1   (T = 298.2 K) 8.10.3 
 

As the available thermal kinetic energy approaches the difference in energy between the states, 
some molecules gain sufficient energy to be excited to the next energy state. As the temperature 
increases, the available thermal kinetic energy increases, and the populations of higher energy 
states increase. 
 

 
 
 
 
 
 
 

Figure 8.10.1: Boltzmann occupations for harmonic oscillator energy states at various 
temperatures. The energy spacing is 200 cm-1 or 2.39 kJ mol-1. RT = 207.2 cm-1 at 298.2 K. 

 
 

The Boltzmann Distribution Determines the Distribution of Energy:   The probability of a 
molecule occupying energy state i is given by the number of molecules in energy state i, ni, 
divided by the total number of molecules, N: 
 

 pi = 
ni

N           8.10.4 
 

The probability of occupying energy state i is determined by the Boltzmann distribution : 
 

 pi = 
ni

N = 
e
–εi/kT

q  = 
e
–εi/RT

q    (kT per molecule, RT per mole) 8.10.5 
 

where εi is the energy of state i, k is Boltzmann’s constant, and T is the absolute temperature. 
Boltzmann’s constant is just the gas constant on a per molecule basis instead of per mole, k = 
R/NA = 1.38066x10-23 J K-1. If the energy is given in J, then kT is used. If the energy is given in 
J mol-1 then RT is used to match the units. The q in the denominator is called the partition 
function. The partition function is the normalization constant, which ensures that the 
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probabilities sum over all the possible energy states to give one, Σ pi = 1. Summing Eq. 8.10.5 
over all possible energy states gives: 
 

 ∑
i

 pi = 

∑
i

 e
–εi/kT

q  = 1         8.10.6 

 

Solving for q gives the definition of the partition function: 
 

 q ≡ ∑
i

 e–εi/kT          8.10.7 

 

The e–εi/kT or e–εi/RT terms are called the Boltzmann weighting factors. This general form for the 
temperature dependence is outlined in General Pattern ℘4, Sec. 3.5. The probability of a 
molecule occupying a given energy state is directly proportional to the Boltzmann weighting 
factor. The partition function is the sum of the Boltzmann weighting factors over all energy 
states. Low energy states have a higher occupation than high energy states. The Boltzmann 
distribution for the harmonic oscillator at several different temperatures using Eq. 8.10.5 and 
8.10.7 is shown in Figure 8.10.1 for an energy spacing of 200 cm-1. The ratio of the number of 
molecules in two energy states is determined by the ratio of the Boltzmann weighting factors for 
the two states; dividing Eq. 8.10.4 for state j by Eq. 8.10.4 for state i gives: 
 

 
nj

ni
 = 

e–εj/kT

e–εi/kT
 = e

–∆ε
kT          8.10.8 

 

where nj is the number of molecules in state j, ni is the number of molecules in state i, and the 
energy difference is ∆ε = εj– εi. In effect, the argument of the exponential compares the energy 
difference to RT. If ∆ε >> RT all the molecules will be in the lower energy state. The population 
of the two energy states is equalized if RT >> ∆ε. Note that there may be more than one state 
with a given energy; Eqs. 8.10.4-8.10.8 apply to each individual state. We will derive the 
Boltzmann distribution in Chapter 12. However, the principles behind the Boltzmann distribution 
are useful in understanding many phenomena, so we will use the result without proof for now. 
   The Boltzmann distribution can also be applied to the case where the temperature is held 
constant and systems with different energy spacing are compared. The Boltzmann distribution at 
298.2 K for the vibrational energy states of a harmonic oscillator are shown in Figure 8.10.2 for 
several values of the fundamental vibration frequency. 
 

 
 
 
 
 
 
 
 

 

Figure 8.10.2: Boltzmann occupations for harmonic oscillator energy states at 298.2K. RT = 
207.2 cm-1 at 298.2 K. 
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If the energy spacing is much bigger than RT all molecules remain in the lowest energy state. If 
the energy state spacing is small compared to RT, many molecules occupy excited energy states. 
   The Boltzmann distribution provides a useful interpretation for the contribution of a degree of 
freedom to the internal energy and heat capacity. Thermal excitation of a molecule from one 
state to the next is “all or nothing.” A molecule can’t jump half-way. If the available thermal 
kinetic energy is much less than the energy state spacing, a small increase in temperature doesn’t 
provide sufficient energy for the molecule to change energy states and (∂U/∂T)v = 0. However, if 
the energy states are very close together a small change in temperature is readily absorbed as 
molecules are excited to higher energy states and then (∂U/∂T)v is large. If ∆ε >> RT, the degree 
of freedom contributes little to the internal energy and heat capacity. If ∆ε << RT, even a small 
change in available thermal energy resulting from a small temperature increase results in an 
increase in internal energy, which is the classical result (∂U/∂T)v = ½ R per degree of freedom. 
 

Only Low Energy Vibrations Contribute to the Heat Capacity:   The energy state spacing for 
translation and rotation is much smaller than RT at room temperature. Under these 
circumstances, translation and rotation behave essentially as if they had continuous energy states 
and then classical physics is applicable. The essentially classical behavior of degrees of freedom 
with small energy state spacing is the reason that the Equipartition theorem holds for translation 
and rotation. However, the typically large energy spacing for vibration results in only a partial 
contribution to the internal energy of the system. We will show in Chapt. 32 that the contribution 
of a vibration to the enthalpy is given by:19 
 

 Hvib – Hvib (0) = Uvib – Uvib (0) = εvib = 
NA hν e–hν/kT

1 – e–hν/kT
     8.10.9 

 

where ν is the frequency of the vibration. Eq. 8.10.9 is summed for each vibration in the 
molecule. This contribution to the enthalpy is plotted as a function of vibration frequency in 
Figure 8.10.3. 
 

 
Figure 8.10.3. Contribution of a vibration to the enthalpy of formation of a molecule, above 
U(0), at 298.2 K. 

 
 

Vibrations with energy state spacing greater than 500 cm-1 are too energetic compared to RT to 
make a significant contribution to the internal energy, enthalpy, and heat capacity. One effective 
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way to predict the vibrational contribution to the heat capacity of a substance is to count only the 
normal modes with vibrational energies less than 500 cm-1. 
   Internal rotations, that is torsional motions around freely rotating bonds, are the most common 
low frequency vibrations in molecules. The contribution of internal rotations to the enthalpy of 
formation is called the torsional increment and is estimated to be 0.36 kcal mol-1 or 1.51 kJ 
mol-1 for each internal rotation, taking into account anharmonicity.20 Counting the number of 
internal rotations then gives a quick, approximate estimate of the contribution of vibrations to the 
internal energy and enthalpy of formation. However by convention, the internal rotation of the 
methyl group is included in the bond increment calculation for the methyl group, so methyl 
rotations are not included in the count. For example, butane, CH3–CH2–CH2–CH3, has one 
additional internal rotation, other than the methyl group rotations; so the torsional increment for 
butane is 1.51 kJ mol-1. 
   In summary, the enthalpy of formation for a non-linear molecule, using Eqs. 8.8.2º and 8.8.3 
and the Equipartition contributions for translation and rotation, is then: 
 

 ∆fH° = εbond +  εsteric +   RT  + 3/2RT   + 3/2RT  +  εvib     (non-linear) 8.10.10 
    ∆(PV)   translation    rotation     ν~ < 500 cm-1 

 

This formula also assumes that there is only one low energy conformation of the molecule. If 
there are several low energy conformations then each must be added, weighted by the Boltzmann 
probability relative to the lowest energy conformation. This last equation is easy to apply if the 
frequencies of the normal modes are known. In the next section we develop the technique of 
normal mode analysis to predict the frequencies for the normal modes of vibration. 
 
              

Example 8.10.2: 
Use MM2 or MM3 to estimate the enthalpy of formation of acetaldehyde. 
 
 
Answer:  The bond energy calculation is in Eq. 8.8.6. The MM3 steric energy is calculated to be: 
 
 FINAL STERIC ENERGY IS      0.4521 KCAL/MOL. 
 

 COMPRESSION       0.0052 
 BENDING           0.0821 
 BEND-BEND        -0.0105 
 STRETCH-BEND      0.0046 
 VANDERWAALS 
  1,4 ENERGY      0.5805 
 

 TORSIONAL        -0.2099 
 TORSION-STRETCH   0.0000 
 DIPOLE-DIPOLE     0.0000 
 CHARGE-DIPOLE     0.0000 
 CHARGE-CHARGE     0.0000 
 

No torsional increments are required, since the methyl torsion is included in the bond increment 
calculation. The methyl torsion is the only low frequency vibration below 500 cm-1. Note that 
MM2/MM3 do not automatically add the torsional increments; torsional increments must be 
added to the final printed results. The final enthalpy of formation is -40.04 kcal mol-1 or 
-167.53 kJ mol-1, which is a significant improvement over the bond energy calculation in 
Eq. 8.8.6. The experimental value is -166.19 kJ mol-1. 
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8.11  Normal Mode Analysis: The Harmonic Approximation 
 

The vibrations of a molecule are given by its normal modes. Each absorption in a vibrational 
spectrum corresponds to a normal mode. The normal modes for a bent triatomic are shown in 
Figure 8.9.2. The four normal modes of carbon dioxide, Figure 8.11.1, are the symmetric stretch, 
the asymmetric stretch and two bending modes. 
 

 
 
 
 
 
     Symmetric stretch        Asymmetric stretch       Bend          Bend 
 

Figure 8.11.1. Normal Modes for a linear triatomic molecule. In the last bending vibration, 
the motion of the atoms is in and out of the plane of the paper. 

 
 
The two bending modes have the same energy and differ only in the direction of the bending 
motion. Modes that have the same energy are called degenerate. In the classical treatment of 
molecular vibrations, each normal mode is treated as a simple harmonic oscillator. 
   The characteristics of normal modes are: 
 

1. Each normal mode acts like a simple harmonic oscillator. 
2. A normal mode is a concerted motion of many atoms. 
3. The center of mass doesn’t move. 
4. All atoms pass through their equilibrium positions at the same time. 
5. Normal modes are independent in the harmonic approximation. 

 

The concerted motion of many of the atoms is a characteristic of normal modes; however, 
symmetry may require that a few atoms remain stationary for some normal modes. In the 
asymmetric stretch and the two bending vibrations for CO2, all the atoms move. However, in the 
symmetric stretch, to keep the center of mass constant, the center atom is stationary. The 
independence of normal modes means that normal modes don’t exchange energy. For example, 
if the symmetric stretch is excited, the energy stays in the symmetric stretch. 
   The background spectrum of air, Figure 8.11.2, shows the asymmetric and symmetric stretches 
and the bending vibration for water, and the asymmetric stretch and bending vibrations for CO2. 
These absorptions are responsible for the vast majority of the greenhouse effect. The symmetric 
stretch for CO2 doesn’t appear in the infrared; a Raman spectrum is needed to measure the 
frequency of the symmetric stretch (see Chapt. 27).  
   The normal modes are calculated using Newton’s equations of motion.21-24 Molecular 
mechanics and molecular orbital programs use the same normal mode calculation method. 
 

The Harmonic Oscillator–Oscillatory Motion at the Fundamental Vibration Frequency:   
Consider a mass m, supported on a spring with force constant k. Hooke’s Law for the restoring 
force for an extension, x = r – ro, is F = –k x. In other words, if the spring is stretched a distance 
x > 0, the restoring force is negative, which acts to pull the mass back to its equilibrium position. 
The potential energy for Hooke’s Law is obtained by integrating: 
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 F = – 
dV
dx

 = –kx          8.11.1 
 

to give V = ½ k x2 = ½ k(r – ro)
2, Eq. 8.8.11. In molecular mechanics and molecular orbital 

calculations, the force constant is not known directly. However, the force constant can be 
calculated from the second derivative of the potential energy: 
 

 k = 
d2 V
dx2            8.11.2 

 
 

 
 

Figure 8.11.2. The infrared spectrum of air. This spectrum is the background scan from an 
FT-IR spectrometer. 

 
 
The Hooke’s Law force is substituted into Newton’s Law: 
 

 F = ma   or  m 
d2x
dt2

 = –kx       8.11.3 
 

and solved to obtain the extension as a function of time (Addendum Sec. 8.12): 
 

 x(t) = A sin(2πνot)         8.11.4 
 

where νo is the fundamental vibration frequency and A is the amplitude of the vibration. Taking 
the second derivative of the extension gives: 
 

 
d2x
dt2

 = –4π2ν2
o x          8.11.5 

 

Substituting Eq. 8.11.5 back into Eq 8.11.3 gives: 
 

 – 4π2ν2
o m x = –kx         8.11.6 
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which is the basis for the classical calculation of the normal modes of a molecule. 
 
Normal Mode Analysis Determines the Frequencies of Molecular Vibrations:   For molecules the 
x, y, z coordinates of each atom must be specified. The coordinates are: 
 

 Atom 1: X1, Y1, Z1,   Atom 2: X2, Y2, Z2,       for each atom…… 
 

The extensions are the differences in the positions and the equilibrium positions for that atom: 
 

 Atom i:  xi = Xi – Xi,eq  yi = Yi – Yi,eq  zi = Zi – Zi,eq   8.11.7 
 

Where Xi,eq, Yi,eq, and Zi,eq are the equilibrium (energy minimized) positions for atom i. 
Molecular mechanics or molecular orbital calculations are used to find the potential energy of the 
molecule as a function of the position of each atom, V(x1, y1, z1, x2, y2, z2, x3, y3, z3,...,xN,yN,zN). 
The second derivative of the potential energy can then be used to calculate the force constants 
using Eq. 8.11.2. However, there are now 3Nx3N possible second derivatives and their 
corresponding force constants. For example, 
 

 
∂2V
∂ x1

2 = k
11
xx          8.11.8 

 

is the change of the force on atom 1 in the x-direction when you move atom 1 in the x-direction. 
Similarly, 
 

 
∂2V

∂x1∂y2
 = k

12
xy          8.11.9 

 

is the change of the force on atom 1 in the x-direction when you move atom 2 in the y-direction. 
The various types of force constants are shown in Figure 8.11.3. 
 
 

∂2V
∂ x1

2 = k
11
xx  same atom same direction 

 

∂2V
∂ y1

2 = k
11
yy  same atom same direction 

 

∂2V
∂x1∂y1

 = k
11
xy same atom different directions 

 

∂2V
∂x1∂x2

 = k
12
xx different atom same direction 

 

∂2V
∂x1∂y2

 = k
12
xy different atom and direction 

 
Figure 8.11.3. Types of second derivatives and force constants 

 
 
These force constants are not the force constants for individual bonds, they are force constants 
for the motion of a single atom subject to all its neighbors, whether directly bonded or not. The 

1 2 

1 2 

1 2 

1 2 

1 2 
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complete list of these force constants is called the Hessian, which is a 3Nx3N matrix. The 
Hessian also plays a central role in energy minimization techniques. Eq. 8.11.6 is then applied 
for each force constant.21,23 

 

 – 4π2ν2
o m1x1 = –k

11
xx x1 – k

11
xy y1 – k

11
xz z1 – k

12
xx x2 – k

12
xy y2 –…– k

1N
xz  zN   8.11.10 

  

 – 4π2ν2
o m1y1 = –k

11
yx x1 – k

11
yy y1 – k

11
yz z1 – k

12
yx x2 – k

12
yy y2 –…– k

1N
yz  zN 

  : 

 – 4π2ν2
o m2x2 = –k

21
xx x1 – k

21
xy y1 – k

21
xz z1 – k

22
xx x2 – k

22
xy y2 –…– k

2N
xz  zN 

  : 

 – 4π2ν2
o mNzN = –k

N1
zx  x1 – k

N1
zy  y1 – k

N1
zx  z1 – k

N2
zx  x2 – k

N2
zy  y2 –…– k

NN
zz  zN 

 

In words, the right-hand sides of the above equations simply state that the total force on atom i is 
the sum of the forces of all the atoms on atom i, keeping track of the x, y, and z directions for 
each atom. There are a total of 3Nx3N terms on the right. All these terms are confusing. A 
simple example will help at this point. 
   Consider a symmetrical linear triatomic molecule that can only vibrate along the x-axis, Figure 
8.11.4. CO2 is a good environmentally significant example. 
 

 
 
 
 

Figure 8.11.4: A symmetrical triatomic molecule with vibrations limited along the 
internuclear axis. 

 
 

Because we have limited the vibrations to the x-axis, which is the internuclear axis, this model 
will provide the symmetric and asymmetric stretching modes, only. Eqs. 8.11.10 then reduce to: 
 

 – 4π2ν2
o m1x1= –k

11
xx x1 – k

12
xx x2 – k

13
xx x3       8.11.11 

 – 4π2ν2
o m2x2= –k

21
xx x1 – k

22
xx x2 – k

23
xx x3      8.11.12 

 – 4π2ν2
o m3x3= –k

31
xx x1 – k

32
xx x2 – k

33
xx x3       8.11.13 

 

since we only need to keep the x-terms. Several numerical techniques are available to solve 
linear sets of simultaneous equations. Conventionally, however, the problem is simplified by 
converting to mass-weighted coordinates: 
 

 x1
~

 = m1 x1   x2
~

 = m2 x2 , etc.      8.11.14 
 

and mass-weighted force constants: 
 

 k
~12

xx = 
k

12
xx

m1 m2
          8.11.15 

 

In the new mass weighted coordinates, Eqs. 8.11.11-8.11.13 become: 
 

x 
O1 C2 O3 
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 – 4π2ν2
o x1

~
 = – k

~11
xx x1

~
 – k

~12
xx x2

~
 – k

~13
xx x3

~
      8.11.16 

 – 4π2ν2
o x2

~
 = – k

~21
xx x1

~
 – k

~22
xx x2

~
 – k

~23
xx x3

~
      8.11.17 

 – 4π2ν2
o x3

~
 = – k

~31
xx x1

~
 – k

~32
xx x2

~
 – k

~33
xx x3

~
      8.11.18 

 

For example, we can show that Eq 8.11.16 is equivalent to Eq 8.11.11 by substituting Eqs. 
8.11.14 and 8.11.15 into Eq 8.11.16: 
 

 – 4π2ν2
o m1 x1 = –

k
11
xx

m1 m1
 m1 x1 – 

k
12
xx

m1 m2
 m2 x2 – 

k
13
xx

m1 m3
 m3 x3  8.11.19 

 

Multiplying both sides by m1 and canceling mass terms gives Eq 8.11.11. 
   Eqs. 8.11.16-8.11.18 are most easily written in the equivalent matrix form: 
 

 – 











k

11
xx

m1 m1
 

k
12
xx

m1 m2
 

k
13
xx

m1 m3

 
k

21
xx

m2 m1
 

k
22
xx

m2 m2
 

k
23
xx

m2 m3

 
k

31
xx

m3 m1
 

k
32
xx

m3 m2
 

k
~33

xx

m3 m3 
 








x1

~

x2
~

x3
~

 

 = –4π2ν2
o









x1

~

x2
~

x3
~

 

    8.11.20 

 

The mass-weighted force constants give a symmetric matrix; the corresponding off-diagonal 
elements are equal. Eq. 8.11.20 is an eigenvalue-eigenvector equation, see General Pattern ℘ 6, 
Sec. 6.3. The eigenvalues are the negative of the squared normal mode frequencies. The 
eigenvectors are the mass-weighted normal coordinate displacements (Addendum Sec. 8.12). 
 
 
              

Example 8.11.1: 
Find the normal mode frequencies for the symmetric and asymmetric stretch for CO2 using 
approximate force constants and Eq. 8.11.20. The experimental values are 1340 cm-1 for the 
symmetric stretch and 2349 cm-1 for the asymmetric stretch, Fig. 8.11.2. 
 
 

Answer:   First, consider the units for the fundamental vibration frequency. The fundamental 
vibration frequency for a harmonic oscillator is: 
 

 νo = 
1
2π 

k

m     or    4π2ν2
o = 

k

m        8.11.21 
 

with k in N m-1 an m in kg molecule-1. Normally, vibrational spectra are plotted verses 
wavenumber, instead of frequency. To convert to wavenumbers remember that νλ = c: 
 

   ν~ = 
1
λ      or ν  =  

c
λ  =  cν~        8.11.22 

 

Using ν~o in cm-1 and m in g mol-1, Eq. 8.11.21 becomes: 
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4π2c2 ν~2

o

1000 g/kg NA
 = 

k

m          8.11.23 
 

or solving for the frequency squared in wavenumbers gives a convenient conversion factor: 
 

 ν~2
o = 

k/m
5.8921x10-5         8.11.24 

 

   Next, we need all the force constants for Eq. 8.11.20. Some force constants are related by 
symmetry; since the left and right-hand sides of the CO2 molecule are the same: 
 

    By symmetry :  k
11
xx = k

33
xx  k

12
xx = k

23
xx     8.11.25 

 

The terms that exchange the atom labels are also equivalent, since atom 1 interacting with atom 2 
gives the same result as atom 2 interacting with atom 1. In matrix terms, these corresponding off-
diagonal terms are equal for a symmetric matrix: 
 

    Symmetric matrix: k
12
xx = k

21
xx  k

23
xx = k

32
xx     8.11.26 

 

These equivalences leave four force constants that we need to guess. First, focus on atom 1. By 
trial and error, a good guess for the force constant for moving atom 1 by stretching the C=O 
bond is: 
 

 k
11
xx = 1600 N m-1         8.11.27 

 

This force constant gives the restoring force, F = –kx, as atom 1 is moved. For moving atom 1 to 
the right, x > 0 in Figure 8.11.4, the restoring force is negative, pulling the atom back to its 
equilibrium position. That is, if atom 1 is forced forward to shorten the bond then atom 1 will try 
to move back to keep the bond length constant. Next, a reasonable guess for the force constant 
for atom 1 while moving atom 2 is: 
 

 k
12
xx = –k

11
xx          8.11.28 

 

Here the “12”-force constant is negative, and the restoring force, F = –kx, is positive. This 
positive force results because as you move atom 1’s neighbor, atom 1 will try to follow along in 
the same direction to keep the bond length constant. The absolute value of the two force 
constants is the same since moving either atom 1 or atom 2 has the same effect on the bond 
length and, therefore, the force on atom 1. Now focus on atom 2. We can guess that it is twice as 
hard to move atom 2 as it is to move atom 1, since moving atom 2 effects both bonds, on the left 
and on the right: 
 

 k
22
xx ≈ 2 k

11
xx = 3200 N m-1        8.11.29 

 

Finally, we will assume that atom 3 doesn’t affect atom 1 significantly because the two atoms 
aren’t directly bonded: 
 

 k
13
xx = 0           8.11.30 

 

Substituting Eqs 8.11.25-8.11.30 into Eq. 8.11.20 gives the mass-weighted force constant matrix. 
The row and columns correspond to the three different atoms, O1, C2, and O3, respectively. 
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  O1  C2        O3 
 

    

O1

C2

O3

    – 













1600
16 16

–
1600
16 12

 0

–
1600
12 16

3200
12 12

–
1600
12 16

 0 –
1600
16 12

1600
16 16

 = 









-100 115.47  0

115.47 -266.67 115.47

 0 115.47 -100

  8.11.31 

 

The “eigen” Web applet on the companion CD is available to solve the eigenvalue problem. 
Computer algebra programs like Maple and Mathematica are also handy for solving eigenvalue 
problems. The output of the “eigen” applet is shown below. The eigenvalues are listed with 
“E=.” The first eigenvector corresponds to the motion of the center of mass in the x-direction. 
The normal mode frequencies are calculated using the units conversion from Eq. 8.11.24. 
 

Eigenvector 1: E= -0.0009769 ≈ 0 → 
0.603024 
0.522229 
0.603024 
 
Eigenvector 2: E= -100   → 
-0.707107 
0 
0.707107 
 
Eigenvector 3: E= -366.669  → 
-0.369272 
0.852805 
-0.369272 

Center of mass motion in x-direction 
 
 
 

Symmetric stretch: 

ν~o = 
100

5.892x10-5  = 1303 cm–1 

 

Asymmetric stretch: 

ν~o = 
366.67

5.892x10-5  = 2495 cm–1 

 

   The three numbers below each eigenvalue are the normal coordinates. For example, the normal 
coordinates for the second eigenvector show atom 1 (-0.707) moving in the opposite direction as 
atom 3 (0.707), while atom 2 remains stationary (0). This normal mode is the symmetric stretch, 
since the oxygen atoms are moving in the opposite direction. In the asymmetric stretch, 
eigenvector 3, the oxygen atoms move backward while the carbon atom moves forward. For this 

example we have motion only in the x-direction, so there are only three coordinates listed, x for 
each atom. To display the motion of the atoms during the vibration, the atom coordinates are 
calculated for atom i in normal mode j as: 
 

 Xi = Xi,eq + 
xi
~

j

mi
 q Yi = Yi,eq + 

yi
~

j

mi
 q Zi = Zi,eq + 

zi
~

j

mi
 q   8.11.32 

 

where q = sin(2πνjt) and xi
~

j is the x-component of the normal coordinate for atom i and mode j. 
For example, for the asymmetric stretch for CO2 for the first O atom: 
 

 X1 = X1,eq + 
-0.369

16
 sin(2πνot)        8.11.33 

 

   You can tell that the first eigenvector is for the motion of the molecule as a whole because all 
the normal coordinates have the same sign, that is all the atoms are traveling in the same 
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direction. For fully three-dimensional problems, the first 5 eigenvalues, for linear molecules, or 6 
eigenvalues, for nonlinear molecules, correspond to translation and rotation. Some molecular 
orbital programs don’t list these first 5 or 6 eigenvalues. 
   How good is our simplified model? The symmetric stretch is low and the asymmetric stretch is 
high, for a combined error of about 5%. It doesn’t make sense to try to get the results to agree 
any better. Using a molecular mechanics or molecular orbital program is more accurate. 
              

 
 
Anharmonicity Decreases the Fundamental Vibration Frequency:   The proceeding normal mode 
analysis assumes all the vibrations are purely harmonic. Our treatment of molecular mechanics 
force fields shows that anharmonic corrections are often important. What is the effect of 
anharmonicity on vibrational spectra and normal mode calculations? For anharmonic vibrations, 
vibrational spectra include the fundamental transitions and also show overtones, sum, and 
difference bands. Overtones are at integer multiples of the fundamental frequency, nν~A. Sum and 
difference bands occur at ν~A + ν~B and ν~A – ν~B, respectively. Considering normal mode 
calculations, frequencies from ab initio molecular orbital calculations are normally multiplied by 
0.9 to correct for anharmonicity. For strong anharmonicity, including bond torsions that have low 
energy barriers, ring vibrations in large ring systems, and vibrations in hydrogen-bonded 
systems, a refined treatment is necessary.20 Unfortunately, such vibrations are often the most 
interesting, especially in studies of proteins and nucleic acids. Treating very flexible, low energy 
vibrations in biomolecules is an active area of current study.25-29 Vibrations play a central role in 
protein folding and protein flexibility.27-29 
 
Bond Energy, Steric Energy, Translation, Rotation, and Normal Mode Contributions Estimate 
the Internal Energy and Enthalpy of Formation:   In principle, every vibration, including internal 
rotations, contribute to the enthalpy. Following a normal mode analysis, it is very easy to 
calculate the enthalpy of formation of a substance using Eq. 8.10.9. Molecular mechanics and 
molecular orbital programs routinely do these calculations. For our present purposes, simply 
noting the low frequency vibrations and the internal rotations, in particular, are sufficient to 
understand the relative enthalpies of formation for substances. 
 
 
              

Example 8.11.2: 
Use normal mode analysis to decide if methylcyclohexane or norbornane has a higher 
contribution of vibrations toward the enthalpy of formation. Molecular mechanics or AM1 or 
PM3 molecular orbital calculations are sufficiently accurate for this qualitative analysis. 

H H

H

H

H

H

H

H

H

H

CH3

H
H

H

H

H
H

H

H

H

H

H

 
 methylcyclohexane       norbornane 
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Answer:  Using PM3 level molecular orbital calculations, the vibrational normal modes less than 
500 cm-1 are: 
 

 methylcyclohexane: 153, 214, 230, 317, 343, 428, 471, 476, 476 cm-1 

 norbornane:  201, 366, 436, 477 cm-1 
 

The rigid framework of the bicyclic form provides fewer low frequency normal modes giving 
norbornane a small contribution from vibrations towards the enthalpy of formation and heat 
capacity. However, norbornane is highly strained giving an overall higher steric energy and bond 
energy. The literature gas phase enthalpies of formation are -155. kJ mol-1 for 
methylcyclohexane and -55. kJ mol-1 for norbornane.3 

              

 
 

8.12  Summary—Looking Ahead 
 

   The experimental measurement of the heat transfer of phase transitions and chemical reactions 
is a central component in the application of thermodynamics to practical problems. The internal 
energy change is the heat transfer at constant volume and the enthalpy change is the heat transfer 
at constant pressure. If experimental measurements are unavailable, then predictions are made. 
   The conformation of a molecule often has a great effect on its reactivity. The effect of structure 
on reactivity is particularly important for large molecules, such as proteins and nucleic acids. 
Structure-function relationships are the heart of chemistry. Steric interactions include through-
bond distortions of the bond lengths and angles in the molecule and through-space Van der 
Waals and electrostatic interactions. Distortions from the equilibrium bond lengths and angles 
are always unfavorable, adding to the overall ground state energy. Through-space, non-bonded 
interactions can be favorable or unfavorable. Geometry optimization predicts the low energy 
conformations. The ground state energy at 0 K of the molecule is the sum of the bond energy and 
the steric energy. Equipartition provides the contributions of the thermal motions of translation 
and rotation. Normal mode analysis determines the low frequency vibrations that contribute to 
the internal energy and the enthalpy. 
   Reaction enthalpies are necessary for understanding the interrelationships that govern 
processes in energy technology, living cells, and ecosystems. Ecologists, nutritionists, and 
chemical engineers use calorimetry to monitor the flow of energy through an ecosystem, an 
organism, or through a society. The production and use of energy are governed by the First Law 
of Thermodynamics in any circumstance; energy in an isolated system is conserved. Except for 
nuclear energy, chemical fuels are the densest sources of energy for transportation, space 
heating, cooking, and industrial production. Glucose is the primary chemical fuel for organisms. 
Coal, oil, and natural gas are the primary chemical fuels for current societies. 
   We have not completed our development of the First Law and the theoretical methods that 
enable the use of the powerful idea of energy conservation. In the next chapter, we develop 
further the mathematical manipulations that allow us to solve problems in a general and useful 
way. We also apply the First Law to some additional practical problems that will lead to the 
criteria for spontaneous processes. In Chapter 15 we will consider work transfer. 
 

8.13  Addendum 
 

The Classical Harmonic Oscillator:  The Hooke’s Law force for a harmonic oscillator is 
F = – kx, where x is the displacement of the mass, m. To find the motion of an oscillator we need 
to integrate Newton’s second law for x as a function of time, x(t), Figure 8.13.1. 
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Figure 8.13.1:  A mass suspended by a spring undergoes sinusoidal motion with amplitude A. 
 
 
Newton’s second law relates the force and the acceleration, F = ma. Substituting the second 
derivative of the position for the acceleration and Hooke’s law for the force gives: 
 

 m 
d2x(t)

dt2  = –k x(t)         8.13.1 
 

There are many ways to solve differential equations; however, the easiest is to try to guess a 
solution. Experimental observation suggests that the mass will oscillate about its equilibrium 
position, x = 0, as a sinusoidal function of frequency ν. We therefore guess the functional form: 
 

 x(t) = A sin ct          8.13.2 
 

where A is the amplitude and c is a constant. The general approach for verifying our guess is to 
substitute the guess into the left-hand side of the differential equation and then the right-hand 
side of the differential equation and then check to see if the two sides agree (see Sec. 6.1). 
Beginning with the left-hand side, the first and second derivatives of the guessed solution are: 

 
dx(t)

dt  = A (cos ct) c         8.13.3 
 

 
d2x(t)

dt2  = – c2A sin ct         8.13.4 
 

Substituting the second derivative into the left-hand side of Eq. 8.13.1 gives: 
 

 m
d2x(t)

dt2  = – m c2A sin ct      (lhs)  8.13.5 
 

Now consider the right-hand side of Eq. 8.13.1. All we need do is multiply x(t) by –k: 
 

 –kx(t) = –kA sin ct       (rhs)  8.13.6 
 

Now we check to see if the left and right-hand sides can be made equal. Equating Eqs. 8.13.5 and 
8.13.6 gives: 
 

 – m c2A sin ct = –kA sin ct      (lhs =? rhs) 8.13.7 
 

Cancelling the common factors gives: 
 

 m c2 = k        (lhs =? rhs) 8.13.8 
 

This last equation fixes the value of the constant that gives a valid solution: 
 

 c = (k/m)½ giving  x(t) = A sin((k/m)½ t)     8.13.9 
 

x = 0 
A 

–A 

m

t 
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The frequency of the oscillation can be determined by comparing this last equation with the 
general form for a sinusoidal oscillation with frequency ν: 
 

 x(t) = A sin(2πν t)         8.13.10 
 

Comparison of Eqs. 8.13.9 and 8.13.10 gives the fundamental vibration frequency of the 
harmonic oscillator: 
 

 νo = 
1
2π 






k

m

½
          8.13.11 

 

The force and the potential energy of the harmonic oscillator are related by: 
 

 






∂V

∂x
 = –F and integration gives    V = – ⌡⌠F dx     8.13.12 

 

In words, the force is the negative of the gradient of the potential energy. Substituting Hooke’s 
law force into this last equation gives the potential energy for the harmonic oscillator: 
 

 V = ⌡⌠kx dx = ½k x2         8.13.13 
 

The total energy of the harmonic oscillator is the sum of the kinetic and the potential energy: 
 

 ε = εK + V = ½ mυx
2 + ½k x2        8.13.14 

 

which results in two quadratic terms, or in other words two degrees of freedom. To find the total 
energy of the harmonic oscillator we can determine the energy at any point in the oscillation, 
since the total energy is constant. Choosing the time when the oscillator is at its maximum 
extension, x(t) = A, gives zero kinetic energy and total energy: 
 

 ε =½kA2          8.13.15 
 

The energy of a classical harmonic oscillator is proportional to the amplitude squared. For a 
diatomic molecule the extension is given by x = (rij – ro), giving Eq. 8.8.10, and the mass of the 
object on the spring, m, is replaced by the reduced mass for the molecule: 
 

 µ = 
m1 m2

m1 + m2
          8.13.16 

 

where m1 and m2 are the masses of the two bonded atoms. 
 
Normal Coordinates Show the Progression of the Vibration:  We wish to show more clearly the 
relationship between Eqs. 8.11.16-8.11.18 and the normal coordinates, for the curious. First note 
that substituting Eq. 8.11.4 into Eq. 8.11.6 gives: 
 

 – 4π2ν2
o m A sin(2πνot) = – k A sin(2πνot)      8.13.17 

 

Dividing both sides by the sin(2πνt) gives: 
 

 – 4π2ν2
o m A = – k A         8.13.18 

 

In other words, the Eq. 8.11.6 applies equally to the time dependence of the vibration and just the 
amplitude of the vibration. Therefore Eqs. 8.11.11-8.11.13 and 8.11.16-8.11.18 allow us to solve 
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for the amplitudes of the vibrations, where xi, yi, zi can be read as the amplitudes of the 
oscillation in the x, y, and z directions for atom i. Similarly, xi

~
j, yi

~
j, zi

~
j are the corresponding mass 

weighted amplitudes for mode j. The time dependent values are then: 
 

 xi
~

j(t) = xi
~

j sin(2πνot) yi
~

j(t) = yi
~

j sin(2πνot) zi
~

j(t) =zi
~

j sin(2πνot)   8.13.19 
 

Dropping the “(t)” for convenience and converting back into non-mass weighted coordinates: 
 

 xij = 
xi
~

j

mi
 sin(2πνot) yij =  

yi
~

j

mi
 sin(2πνot) zij = 

zi
~

j

mi
 sin(2πνot)   8.13.20 

 

Converting from extensions into final coordinates using Eq. 8.11.7 gives Eq. 8.11.32. 
   Note that Eqs 8.11.16-8.11.18 involve four unknowns (ν, xi

~
, yi
~

, and zi
~

) but only three equations. 
To obtain unique solutions, some more information is necessary. We must add the requirement 
that the center of mass can’t move: 
 

 m1x1 + m2x2 + m3x3 = 0        8.13.21 
 

or equivalently in mass-weighted coordinates: 
 

 m1 x1
~

j + m2 x2
~

j + m3 x3
~

j = 0       8.13.22 
 

As we solve for each successive normal mode we also need to ensure that the vibrations don’t 
interact. Mathematically this requires that the normal modes are orthogonal. For each pair of 
normal modes p and q, with normal coordinates xi

~
p and xi

~
q, respectively, the orthogonality 

condition is: 
 

 x1
~

p x1
~

q + x2
~

p x2
~

q + x3
~

p x3
~

q = 0        8.13.23 
 

Taken together, Eqs 8.11.16-8.11.18 and Eqs. 8.13.22 and 8.13.23 provide the unique set of 
normal modes satisfying the desired characteristics set out in the introduction to Sec. 8.11. 
Solving these equations as an eigenvalue-eigenvector equation using Eq 8.11.20 automatically 
satisfies the requirement for orthogonality, Eq. 8.13.23. 
 
 
 

Chapter Summary 
 

1.  Phase transitions and the formation of solutions can be considered as chemical reactions: 
 ∆rH = ∆trH  or  ∆rH = ∆solnH. 
2.  For a phase transition, formation of a solution, or a chemical reaction in a closed system at 

constant pressure, the heat transfer is given by the enthalpy change. 
3.  The reaction enthalpy and internal energy are related by: 

 ∆rH = ∆rU + ∆rng RT  ∆rng = ∑ νi(g)  for all gas phase reactants and products 

4.  The reaction internal energy and enthalpy depend on the reaction conditions: 
The state of aggregation, solid, liquid, or gas. 
For solids, the crystalline form. 
For gases, the pressure. 
For species in mixtures, the concentration. 
The pressure of liquids and solids need not be specified for pressures near 1 bar. 
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5.  The standard states are Pº = 1 bar and in solution unit concentration. If the state of 
aggregation is not specified, the most stable state at the given temperature and pressure is 
assumed. 

6.  There is no standard temperature. 

7.  Hess’s Law is a consequence of the path independence of thermodynamic state functions: 
If chemical reactions are added, the internal energies and enthalpies add. 
If the direction for a reaction is reversed, the sign of the internal energy and enthalpy reverse. 
If a reaction is multiplied by a constant, the internal energy and enthalpy are also multiplied 

by the same constant, because internal energy and enthalpy are extensive. 

8.  There are no experimental methods to establish an absolute internal energy or enthalpy of a 
substance. Since only the changes in internal energy and enthalpy for a chemical reaction are 
needed, the reference point is arbitrary. 

9.  The enthalpy of formation for a substance is the reaction enthalpy for the formation of one 
mole of substance from the constituent elements in their standard states. The standard state 
enthalpy of formation of any element is defined as zero. 

10.  The reaction enthalpy in terms of the molar enthalpies of formation,∆fHi, is: 

 ∆rH = ∑
i=1

ns

 νi ∆fHi 

where νi are the stoichiometric coefficients and the sum extends over the ns constituents. 
11.  The enthalpy change for a reaction in terms of the absolute molar enthalpies for each 

reactant and product, Hi, is: 

 ∆rH = ∑
i=1

ns

 νi Hi 

12.  The reaction enthalpy, ∆rH, is the change in enthalpy for unit extent in so large an amount of 
the reaction that the partial pressures of the constituents remain unchanged. 

13.  The reaction enthalpy, ∆rH, is the derivative of the enthalpy with respect to the extent of the 
reaction. 

14.  The dependence of the reaction enthalpy on temperature is given by: 

 






∂∆rH

∂T
P
 = ∆rCp     with  ∆rCp = ∑

i=1

ns

 νi Cp,i 

15.  For temperature independent heat capacities: ∆rHT2 – ∆rHT1 = ∆rCp ∆T. In general: 

 ∆rHT2 = ∆rHT1 + ∆ra (T2 – T1) + 
∆rb
2  (T2

2 – T2
1) + 

∆rc
3  (T3

2 – T3
1) + 

∆rd
4  (T4

2 – T4
1) 

16.  At infinite dilution, for non-electrolytes there are no interactions between the molecules of 
the solute, for electrolytes there are no interactions among the anions and cations. 

17.  To calculate the enthalpy of formation of a substance in solution, the enthalpy of solution is 
added to the enthalpy of formation of the pure substance. 

18.  For electrolytes, the “ai” standard state corresponds to complete dissociation. The “ao” 
standard state for weak electrolytes is at unit concentration with no further dissociation; the 
weak electrolytes are completely undissociated or hydrolyzed. 
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19.  The enthalpies of formation of ionic species are independent at infinite dilution; the 
individual ionic enthalpies of formation can be tabulated. The enthalpy of formation of H+ is 
defined as zero: ∆fH°(H+,ai) ≡ 0. 

20.  Insulated calorimeters isolate the reaction vessel from the surroundings using an insulating 
barrier. Isoperibol calorimeters use a jacket surrounding the reaction vessel that is held at 
constant temperature. Adiabatic calorimeters use a temperature controlled shield that is 
maintained at the temperature of the reaction vessel. 

21.  Thermodynamics is “model free;” thermodynamic theories hold independently of how we 
interpret the underlying structure and properties of matter. 

22.  The enthalpy of formation of a substance is predicted using: 

 H = U(0) + εtrans + εrot + εvib + εelect + RT  with  H(0) = U(0) = εbond + εsteric 

where U(0) is temperature independent and can be approximated from bond enthalpy or bond 
increment calculations, giving εbond, and the molecular mechanics based steric energy. The 
thermally excited, temperature dependent terms include contributions from translation, 
rotation, vibration, and low-energy electronic excited states. 

23.  The ∆rH° for a reaction is given by Σ ∆rH°(bonds broken) – Σ ∆rH°(bonds formed), where 
the bond enthalpies, ∆rH°(A-B), are for the gas phase process: AB (g) → A (g) + B (g). 

24.  The steric energy of a molecule is the sum of the force field interactions: 

 εsteric = εstr + εbend + εstr-bend + εoop + εtor + εVdW + εele 

The bond stretching, εstr, bending, εbend, stretch-bend, εstr-bend, out-of-plane, εoop, and torsion 
interactions, εtor, are the bonded interactions. The Van der Waals, εVdW, and electrostatic, εele, 
interactions are between non-bonded atoms. The bonded interactions, excluding torsions, can 
be approximated by quadratic, Hookian potentials: 

εsteric = ∑
r

 ½ kstr,ij (rij - ro)
2 + ∑

θ
 ½ kbend,ijk (θijk - θo)

2 + ∑
r

 ∑
θ

 ½ ksb,ijk (rij - ro) (θijk - θo) 

              stretch         bend                     stretch-bend interaction 

 + ∑
ω

 ½ koop,ijkl (ωijkl  – ωo)
2 + ∑

φ
 ∑
n = 1

3

 ½ ktor,n (1 + cos nφ) + ∑
i

 ∑
j > i

 








– 
A
rij

6 + 
B

rij
12 + 

c Qi Qj

4πεr rij
 

  out-of-plane   torsion        Van der Waals dispersion    electrostatic 

25.  The Van der Waals dispersion potential energy is given by: 

 εVdW,ij = – 
A
rij

6+ 
B

rij
12 = De 




– 2 






re

rij

6
 + 





re

rij

12
 = 4De 








– 






σHC

rij

6
 + 






σHC

rij

12
 

where A is the strength of the attractive term, B is the strength of the repulsive term, De is the 
minimum energy, re is the minimum energy distance, and σHC is the hard-core Van der Waals 
diameter, σHC, with σHC = 2–1/6 re. 

26.  Geometry optimization is the process of adjusting each bond length and angle to minimize 
the steric energy of the molecule. The minimum steric energy conformation, the global 
minimum, is the most stable conformation. 

27.  Cubic and quartic terms are added to quadratic potentials to adjust for anharmonicity: 

 εstr = ½ kstr,ij (rij – ro)
2 – ½ kstr,ij Cs (rij – ro)

3 + 7/12 (½ kstr,ij Cs
2) ( rij – ro)

4 

where Cs is the cubic stretch constant. 
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28.  An alternative expression for the dispersion interaction is the Buckingham potential: 

 εVdW,ij = De 






6

α–6
 e

–α(rij-ro)/ro – 
α

α–6
 





ro

rij

6
 

The value of α controls the steepness of the repulsion, for MM3 α = 12.5. 

29.  The secondary structure of a protein is determined by the dihedral angles in the backbone of 
the protein. Typical values in the alpha helix are ψ = -47° and φ = -57° and for beta-pleated 
sheets, ψ = 135° and φ = -140°. 

30.  Each quadratic term in the total energy is called a degree of freedom. The Equipartition 
theorem predicts that each degree of freedom contributes ½ RT to the molar internal energy 
and ½ R to the molar constant volume heat capacity. 

31.  For a diatomic molecule, which have two rotational axes, the predicted temperature 
dependent contribution to the internal energy is: U – U(0) = 3/2 RT + 2/2 RT + 2/2 RT = 7/2 RT 
with vibration and 5/2 RT neglecting vibration, giving a lower bound. 

32.  The number of normal modes, n, for a linear molecule is n = 3N – 5 and for a non-linear 
molecule is n = 3N – 6. 

33.  The available thermal kinetic energy is RT = 2.48 kJ mol-1= 207.2 cm-1 at 298.2 K. 

34. The wavenumber of a transition is given as ν~ = 1/λ and the energy of the transition is: 

 ∆E = hcν~   per molecule   or   ∆E = NA hcν~ = (0.011963 kJ mol-1
 cm) ν~    per mole. 

35.  The probability of occupying energy state i is determined by the Boltzmann distribution: 

 pi = 
ni

N = 
e
–εi/kT

q  = 
e
–εi/RT

q     with  kT per molecule and RT per mole 

where εi is the energy of state i, k = R/NA is Boltzmann’s constant, and T in kelvins. 

36.  The partition function is the sum of the Boltzmann weighting factors over all energy states. 
The partition function is the probability normalization:   q ≡ ∑ e–εi/kT  

37.  Low energy states have a higher occupation than high energy states. The ratio of the number 
of molecules in two states with energy difference ∆ε = εj– εi is: 

 
nj

ni
 = 

e–εj/kT

e–εi/kT
 = e

–∆ε
kT  

38.  The Equipartition theorem holds for degrees of freedom with essentially continuous energy 
states. The typically large energy spacing for vibration results in only a partial contribution to 
the internal energy and heat capacity of the system. 

39.  The enthalpy of formation for a non-linear molecule near 298. K is: 

 ∆fH° = εbond + εsteric + RT + 3/2RT + 3/2RT + εvib      counting vibrations with ν~ <~ 500 cm-1. 
40.  The characteristics of normal modes are: 

Each normal mode acts like a simple harmonic oscillator. 
A normal mode is a concerted motion of many atoms. 
The center of mass doesn’t move. 
All atoms pass through their equilibrium positions at the same time. 
Normal modes are independent in the harmonic approximation. 
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41.  The classical equation of motion for a harmonic oscillator is: – 4π2ν2 m x = –kx, with the 
displacement x = r – ro = A sin(2πνot), where νo is the fundamental vibration frequency and 
A is the amplitude of the vibration. 

42.  The Hessian is the matrix of the second derivatives of the potential energy with respect to 
motion in the x, y , and z directions. For atoms i and j: 

 
∂2V

∂xi∂xj
 = k

ij
xx  

∂2V
∂xi∂yj

 = k
ij
xy   for all combinations of x, y, and z 

43.  The mass-weighted coordinates are: xi
~ = mi xi, yi

~ = mi yi, and zi
~ = mi zi, for each atom i 

and the mass-weighted force constants for atoms i and j are in the form: 

 k
~ij

xy= 
k

ij
xy

mi mj
 

44.  The equations of motion in terms of mass weighted coordinates are: 

 – 4π2ν2 x1
~

 = –k
~11

xx x1
~

 – k
~11

xy y1
~

 – k
~11

xz z1
~

 – k
~12

xx x2
~

 – k
~12

xy y2
~

 –…– k
~1N

xz  z
~

N 

 – 4π2ν2 y1
~

 = –k
~11

yx x1
~

 – k
~11

yy y1
~

 – k
~11

yz z1
~

 – k
~12
yx x2

~
 – k

~12
yy y2

~
 –…– k

~1N
yz  z

~
N 

  : 

 – 4π2ν2 x2
~

 = –k
~21

xx x1
~

 – k
~21

xy y1
~

 – k
~21

xz z1
~

 – k
~22

xx x2
~

 – k
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xy y2
~

 –…– k
~2N

xz  z
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N 

  : 

 – 4π2ν2 z
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N = –k
~N1

zx  x1
~

 – k
~N1

zy  y1
~

 – k
~N1

zx  z1
~

 – k
~N2

zx  x2
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 – k
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zz  z
~

N 

These equations are solved for the normal mode frequencies as an eigenvalue-eigenvector 

equation: – k
~
≈ x

~
~ = –4π2ν2 x

~
~ ,  with x

~
~ = (x

~
1, y

~
1, z

~
1, x

~
2, y

~
2, z

~
2,…., x

~
N, y

~
N, z

~
N)T. 

45.  For anharmonic vibrations, vibrational spectra include the fundamental transitions and also 
overtones, sum, and difference bands. 

 
℘℘℘℘8 General Pattern 8: Thermodynamic Relationships for Reactions:  The reaction changes for 
any function can be expressed in the general form: 

 ∆rX = ∑
i=1

ns

 νi Xi 

A relationship for a pure substance can be converted to a relationship for a chemical reaction by 
inserting ∆r before each extensive variable. 
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Problems: Thermochemistry 
 

1.  Verify the statement from Sec. 8.2 that the difference between Eqs. 8.2.3 and 8.2.4 is the 
enthalpy of vaporization of water, Eq. 8.1.1. 
 

2.(a). Write the chemical reaction that corresponds to the enthalpy of formation of urea, 
(NH2)2CO. (b). The enzyme urease catalyzes the hydrolysis of urea to ammonia and carbon 
dioxide. Using the data in the appendix, calculate the reaction enthalpy for the hydrolysis of urea 
to give gaseous ammonia and carbon dioxide, at standard state and at 298.15 K. 
 

3.  NaCl aerosols are created when bubbles burst at the surface of the ocean. However, NaCl in 
marine aerosols has a short lifetime. A natural source of sulfur in the atmosphere above the 
ocean is the production of H2S (g) from bacteria. H2S is oxidized by atmospheric oxygen to give 
sulfur trioxide, which then dissolves in water droplets to form highly concentrated sulfuric acid. 
The sulfuric acid reacts with NaCl to give HCl gas and aqueous NaHSO4. (a). Using the data in 
the appendix, calculate the reaction enthalpy for the reaction of NaCl (s), H2S (g), and 
atmospheric O2 through the following reactions, under standard conditions and at 298.15 K. 
 

  H2S (g, 1bar) + 2 O2 (g, 1bar) → SO3 (g, 1bar) + H2O (g, 1bar) 

  SO3 (g, 1 bar) + H2O (l) → H2SO4 (l) 
  NaCl (s) + H2SO4 (l) → HCl (g, 1bar) + Na+ (ao) + HSO–

4 (ao) 
 

(b). Combine the three reactions to show the overall process. Use the combined reaction to 
calculate the overall reaction enthalpy. Compare with the result in part (a). 
 

4.  Components of perfumes must be in the gas phase to be smelled. Monoterpines are common 
ingredients in perfumes and “essential oils,” Figure P8.1. Monoterpines are also found in health-
care products and the air in forests. Determine the enthalpy of formation for each listed 
monoterpine in the gas phase. The literature values for the enthalpy of formation of the solids or 
liquids are available from Lange's Handbook, the CRC, or Data Section Table 8.4.2. The 
enthalpies of vaporization or sublimation are in Data Section Table 8.1.1. 



362 
 

 

CH3

CH3

CH2 CH3

CH3 CH3

CH2

CH3 CH3

 
 camphene  α-pinene  β-pinene 
 

CH3

CH3 CH2

CH3

CH3 CH3

OH

CH3 H

CH3

CH3

H

OH

H

 
 limonene,  α-terpineol  menthol 
 

Figure P8.1:  Some monoterpine natural products. 

 
5.  Calculate the standard internal energy of formation at 298.2 K of liquid methyl acetate, 
C3H6O2, from its standard enthalpy of formation, which is -442.0 kJ mol-1 at 298.2 K.  
 
6.  The enthalpy of combustion of cyclopropane, C3H6, is -2091. kJ mol-1 at 298.2 K and 1.00 
bar. Given that ∆fH° for CO2= -393.509 kJ mol-1 and ∆fH° for  H2O(l)= -285.830 kJ mol-1, 
calculate the enthalpy of formation of cyclopropane. 
 
7.  The enthalpy of combustion at 298.2 K and 1.000 bar pressure for cyclohexane is -3953.0 kJ 
mol-1. Calculate the standard state enthalpy of formation at 298.2 K. 
 
8.  The Haber process is central to the production of fertilizers and many commodity chemicals: 
 

 ½ N2 (g) + 3/2 H2 (g) → NH3 (g) 
 

The kinetics for the reaction are unfavorable at room temperature. Calculate the enthalpy change 
for the reaction at 500. K. Use Table 7.2.3 to express the heat capacities as a cubic polynomial. 
 
9.  Yeasts convert glucose to ethanol. Calculate the change in enthalpy if one mole of glucose is 
converted to ethanol at 298.2 K: 
 

 C6H12O6 (s) → 2 CH3CH2OH (l) + 2 CO2 (g) 
 

[∆fH°(glucose) = -1274. kJ mol-1, ∆fH°(ethanol) = -277.69 kJ mol-1, ∆fH°(CO2) = -393.51 kJ 
mol-1] (For comparison the oxidation all the way to CO2 and H2O provides much more energy 
for the organism, but requires O2.) 
 

10.  The molar enthalpy of vaporization of water at 298.2 K is ∆vapH° = 44.01 kJ mol-1. Calculate 
the molar enthalpy of vaporization of water at the boiling point of water, 373.2 K. The Cp,m of 
water liquid is 75.29 J K-1 mol-1 and of water vapor is 33.58 J K-1 mol-1. 
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11.  Thermophilic bacteria operate at 80.0°C. Calculate the change in enthalpy for the reaction in 
the Problem 9 at 80.0°C. Cp for glucose is 209. J K-1mol-1, Cp for ethanol is 111.5 J K-1mol-1, and 
Cp for CO2 is 37.11 J K-1 mol-1. 
 
12.  Show that the temperature drift in a calorimetry experiment, before and after the reaction is 
complete, for short times and small temperature differences with the surroundings, is 
approximately linear. [Hint use Newton’s Law of Cooling.] 
 
13.  In Sec. 8.4 we used two different perspectives for envisioning a partial derivative. The first 
was based on making a very small change in the extent of a reaction and then normalizing the 
change in enthalpy to place the result on a per mole basis, ∆rH = (∂H/∂ξ)P = ∆H/∆ξ. The second 
model was to make a one mole change in the extent of the reaction, but in such a large quantity 
of reactants and products that the partial pressures remained essentially constant, Figure 8.4.3. In 
either perspective the constancy of the pressures was maintained for the partial derivative. 
Consider a solution containing nA moles of A and nB moles of B. The partial molar volume with 
respect to changes in the number of moles of A while keeping the number of moles of B constant 
is given as (∂V/∂nA)nB

. The resulting partial derivative is at constant concentration in the same 
way that the reaction enthalpy is at constant pressure for each reactant and product. Use both of 
the perspectives for envisioning partial derivatives to describe the meaning of the partial molar 
volume. 
 
14.  In Sec. 8.4 we used two different perspectives for envisioning a partial derivative. The first 
was based on making a very small change in the extent of a reaction and then normalizing the 
change in enthalpy to place the result on a per mole basis, ∆rH = (∂H/∂ξ)P = ∆H/∆ξ. The second 
model was to make a one mole change in the extent of the reaction, but in such a large quantity 
of reactants and products that the partial pressures remained essentially constant, Figure 8.4.3. In 
either perspective the constancy of the pressures was maintained for the partial derivative. Use 
both of the perspectives for envisioning partial derivatives to describe the meaning of the 
reaction heat capacity ∆rCp. 
 
15.  Octane is often taken as being representative of the fuel value for gasoline. When 0.7908 g 
of benzoic acid was burned in a bomb calorimeter the temperature of the calorimeter increased 
2.0252ºC. When 0.5458 g of octane was burned in the same calorimeter under the same 
conditions, the temperature increase was 2.5272ºC. Assume the calorimeter was at an average 
temperature of 298.15 K. Calculate the enthalpy of combustion and the enthalpy of formation of 
octane at 298.15 K. 
 
16.  This problem explores the difference between bond enthalpies, Table 8.8.1, and bond 
increments, Table 8.8.2. Use the bond enthalpies in Table 8.8.1 to estimate the enthalpy of 
formation for methane. Calculate the bond increment for the C–H bond as ¼ of the estimated 
enthalpy of formation of methane. Compare your results with the bond increments in Table 8.8.2. 
 
17.  In Table 8.9.1 note that the constant volume heat capacity for CO2 exceeds the prediction 
based on translation and rotation alone by a larger margin that does O3. (a). Why? Answer 
qualitatively, no calculations are needed. (b). Why does rotation contribute only 2/2 RT to the 
heat capacity for CO2, while the contribution for O3 and H2O is 3/2 RT? 
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18. The general form for the Coulomb potential is: 
 

 εele = 
qi qj

4πεoεr rij
 

 

where qi and qj are the charges on the two atoms in coulombs, εo is the vacuum permittivity, εr is 
the relative dielectric constant, and rij is the distance between the two charges in meters. Eq. 
8.8.18 is written in terms of the partial charges Qi, where qi = Qi e, with e the fundamental unit of 
charge in coulombs. For example, for an electron, Qi = -1 and for a proton Qi = 1. If the partial 
charge on an atom is given as Qi = 0.210 then the charge in coulombs is qi = 0.210 e. Qi and εr 
are unitless. The vacuum permittivity is the dielectric constant of vacuum, 
εo = 8.85419x10-12 J-1 C2 m-1. Verify the units conversion constant in Eq. 8.8.18. 
 
19.  Calculate the electrostatic potential energy of two partial charges with Qi= Qj = 0.40 at a 
distance corresponding to the H atom distance in H2O2 assuming the relative dielectric constant 
for vacuum and also the relative dielectric constant for water. The dihedral angle for H2O2 is near 
118° giving the H atom distance as 2.37 Å. Does the higher dielectric constant of water increase 
or decrease the magnitude of the electrostatic interaction? 
 
20. The Merck Molecular Force Field, MMFF, uses a “buffered” electrostatic interaction. MMFF 
is optimized for work on small molecules and proteins in aqueous solution, for use in medicinal 
chemisty. In addition, MMFF and some other force fields scale electrostatic interactions for 
atoms that are separated by three bonds by a factor of 0.75. Interactions for atoms separated by 
more than three bonds and atoms in different molecules are not scaled. The buffered Coulomb 
potential is:1 

 

 εele = 
c Qi Qj

4πεr (rij + 0.05 Å)
 

 

The distance between the two oxygen atoms in hydrogen peroxide, H2O2, is near 2.37 Å and the 
partial charges are 0.40. The H-atoms are three bonds apart, H–O–O–H. Calculate the 
electrostatic potential energy term using Eq. 8.8.18 and also the buffered and scaled version. 
 
21.  The calculated equilibrium bond length for the C-H bond in ethane is re = 1.0856 Å. The 
potential energy for the C–H stretch is 0.1917 kJ mol-1 higher when the bond is compressed to 
1.0750 Å. Calculate the stretching force constant. 
 
22.  The calculated equilibrium bond length for the C-H bond in ethane is re = 1.0856 Å. The 
potential energy for the C–H stretch is listed as a function of bond length in the following table. 
Calculate the stretching force constant using a quadratic potential. (Don’t bother to calculate 
uncertainties.) 
 

rC-H (Å)    εstr (kJ mol-1) 
1 15.136 

1.05 2.3630 
1.075 0.1917 

1.0856 0 
1.1 0.3439 

1.15 6.414 
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23. Use the data in the last problem to determine the C–H stretching force constant and the cubic 
stretch constant. 
 
24.  The geometry optimized bond angle for water is 105.50º. The potential energy for the bend 
is 0.305 kJ mol-1 higher when the bond angle is expanded to 107.50º, keeping the same bond 
lengths. Calculate the bending force constant. 
 
25.  Build and geometry optimize water using a molecular orbital calculation at the HF 6-31G* 
level (a fairly quick level with only moderate accuracy). Determine the equilibrium bond length. 
Then constrain the bond angle in several steps between 95º and 110º and geometry optimize at 
each new bond angle. (Make sure to measure the bond angle each time to verify that you 
constrained the bond angle properly.) Plot the geometry optimum bond length versus the bond 
angle. In our discussion of the stretch-bend interaction, Eq. 8.8.12, we argued that when a bond 
is bent to smaller angles, the two associated lowest energy bond lengths increase. Does your plot 
agree with this observation? 
 
26.  Determine the enthalpy of formation for the monoterpines listed in Problem 4 using the 
MM2, MM3, or MM4 molecular mechanics program. Compare the results with the literature 
values from Problem 4. 
 
27.  Estimate the contribution of vibration to the enthalpy of formation for the monoterpines in 
Problem 4. Use the approximate torsional increments described in Sec. 8.10. 
 
28.  Calculate the partition function for a harmonic oscillator with fundamental vibration 
frequency 200 cm-1 at 298.2 K, by explicit summation. (Use the lowest energy state as the 
reference energy, εo = 0). Then calculate the probability of occupation for the states with 
population greater than ~1%. Plot the probability as a function of the energy of the states. 
 
29.  A good example of the use of the Boltzmann distribution is the derivation of the barometric 
formula, Eq. 1.3.16°. The potential energy of a molecule of mass m at an elevation h is ε = mgh, 
with g the acceleration of gravity. The ratio of the number of molecules at height h to height ho is 
then given by Eq. 8.10.8 with ∆ε = mg(h – ho). Let the number of molecules at sea level, ho = 0, 
be no. Then note that the molar mass is given by M = NA m, and the pressure of the gas is P = 
nRT/V for a given fixed volume of gas. In other words, the pressure is proportional to the 
number of molecules. Derive the barometric formula from the Boltzmann distribution assuming 
a constant temperature. 
 
30.  The energy between the ground electronic state and the first excited state in typical 
molecules is on the order of 30,000. cm-1. Find the ratio of the number of molecules in the first 
excited state and the ground state at 298.2 K. Find the temperature that gives a ratio of 0.001. 
(Assume the ground and excited states are non-degenerate.) 
 
31.  Calculate the energy difference in J, kJ mol-1, and cm-1 for transitions with the wavelength of 
maximum absorbance at 500.00 nm and 50,000. nm. The transition at 500 nm corresponds to the 
blue-green portion of the visible spectrum. The transition at 50,000 nm or equivalently 50 µm is 
in the infrared. Calculate the ratio of the number of molecules in two states separated by these 
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energy differences at 298.2 K. Do this calculation with ∆ε/kT or ∆ε/RT with the energy in J, 
kJ mol-1, and cm-1 (three separate calculations, to get used to the units). 
 
32.  Use the Equipartition theorem to predict the heat capacity of N2O and HCN. Constant 
pressure heat capacities are more commonly tabulated than constant volume heat capacities. For 
an ideal gas Cp = Cv + nR. Compare your predictions to literature values for Cp. 
 
33.  Molecular shape plays an important role in determining the properties of a substance. Of 
sulfur dioxide and carbon dioxide, which molecule is predicted to have the greater heat capacity? 
Constant pressure heat capacities are more commonly tabulated than constant volume heat 
capacities. For an ideal gas Cp = Cv + nR. Compare your predictions to literature values for Cp. 
 
34.  The amino acid valine has three possible conformations for the side chain –CH(CH3)2 group. 
Calculate the probabilities of the side chain being in each of these three conformations at 298 K. 
Use molecular mechanics with the MMFF force field in the gas phase for the zwitter-ionic form 
to determine the low energy side chain conformations and the corresponding energies. 
 
35.  Nitrous oxide, N2O, can act as a ligand in transition metal complexes. The infrared 
stretching frequencies for N2O are used to judge the strength of coordination to the metal.2 
Nitrous oxide is also an important component of the atmosphere.3 The isotopic composition of 
nitrous oxide is a useful marker in atmospheric photochemistry.4 Nitrous oxide can be thought of 
as a resonance hybrid among: N-=N+=O ↔ N≡N+–O-

↔ N–N-
≡O+.  N2O is isoelectronic with 

carbon dioxide. As such N2O is linear and has a symmetric (ν~1 = 1285 cm-1) and an asymmetric 
(ν~3= 2223.5 cm-1) stretching mode and two degenerate bending modes (ν~2 = 588 cm-1). Using 
valence force field techniques, the force constants for the NN and NO bonds in nitrous oxide 
have been estimated to be 1790 N m-1 and 1140 N m-1, respectively.5 (a). Use these bond force 
constant estimates and MatLab, Mathematica, or the “eigen” Web applet from the companion 
CD or the text Web site to calculate the frequencies for the symmetric and asymmetric stretches 
for nitrous oxide. Your calculation will be very similar to the CO2 example in Sec. 8.11. For 
example, restrict the motions to just the x-axis (e.g. neglect the bending vibrations) and estimate 
the force constants in a similar way. You should end up, again, with a 3x3 mass weighted force 
constant matrix. [Hint: k22

xx won’t be equal to 2k11
xx in this case because there is a nitrogen on one 

side and an oxygen on the other side of the central atom, atom 2] (b). Which of the three 
resonance structures is most representative of the true bonding in N2O, based on the NN and NO 
force constants? 
 
36.  Acetylene is a linear hydrocarbon with a carbon-carbon triple bond, H-C≡C-H, with 
stretching modes at 1973.8 cm-1, 3287.0 cm-1, and 3373.7 cm-1. Using valence force field 
techniques, the force constants for the C-H and C≡C bonds in acetylene have been estimated to 
be 592. N m-1 and 1580. N m-1, respectively. Use these bond force constant estimates and 
MatLab, Mathematica, or the “eigen” Web applet, from the text Web site, to calculate the 
frequencies for the three linear stretch normal modes for acetylene. Your calculation will be 
similar to the CO2 example in Sec. 8.11. For example, restrict the motions to just the x-axis (e.g. 
neglect the bending vibrations) and estimate the force constants in a similar way. You should end 
up with a 4x4 mass weighted force constant matrix. [Hint: k22

xx won’t be equal to 2k11
xx in this case 
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because there is a hydrogen on one side and a carbon on the other side of atom 2]. Sketch the 
normal modes. 
 
 
37.  Infrared spectroscopy is a useful tool for functional group determination in organic 
molecules. The correlation chart from your Organic Chemistry text lists typical values for 
infrared frequencies for different functional groups.6 Do a normal mode analysis for acetone and 
dimethylether using molecular mechanics or molecular orbital methods and compare the C–H, 
C=O, and C–O stretching frequencies to the typical values. These absorptions are typically easy 
to find because they are intense or in uncluttered regions of the spectrum. 
 

Characteristic Infrared Absorption Frequencies.7 

 

bond Compound type Frequency range (cm-1) 
C–H Alkanes 2850-2960 
C–H Alkenes 3020-3080(m) 
C–H Aromatic 3000-3100(m) 
C=C Alkenes 1640-1680(v) 
C—

…C Aromatic 1500, 1600(v) 
C–O Alcohols, ethers,carboxylic acids, esters 1080-1300 
C=O Aldehydes, ketones, carboxylic acids, esters 1690-1760 
C≡N Nitriles 2210-2260(v) 
–NO2 Nitro 1515-1560, 1345-1385 

All absorptions are strong except: m moderate, v variable 
 
38. The infrared spectrum for 2-nitropropane is shown below. Do a normal mode analysis using 
B3LYP/6-31G* molecular orbital calculations to assign the –NO2 asymmetric and symmetric 
stretches. You will need to use a visualization environment that displays the normal mode 
displacements or animates the vibrations. 
 

 

P 8.2: The infrared spectrum of 2-nitropropane, presented in absorbance mode. 
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39.  The energy density of fuels differs greatly. At times optimizing the energy density per unit 
weight is most important. For practical purposes the low energy density per unit volume for 
gases or biomass are an issue. Calculate the enthalpy of combustion on a kJ kg-1 and a kJ L-1 
basis for the following fuels, and plot the enthalpy of combustion in kJ L-1 versus kJ kg-1. Note 
that 1 Btu lb-1 = 2.326 kJ kg-1. For the gases, assume ideal gas behavior at a pressure of 10 bar at 
298 K. The octanes are commonly used to represent gasoline and methane is the major 
component in natural gas. 
 

Enthalpy of formation or combustion for common fuels.8-10 
 

Fuels ∆fH° ∆combH ∆combH density 
kJ mol-1 kJ g-1 

Btu lb-1 g mL-1 
graphite 0  2.25 
methanol (l) -238.66  0.7914 
ethanol (l) -277.69  0.7893 
octane -249.9  0.7025 
isooctane -255.1  0.6918 
glucose -1274  1.526 
wood   -4480 0.55 
biodeisel -41.2 0.87 
coal (lignite)  -8000 0.75 
coal (anthracite)  -14000 0.88 
H2 (g) 0  

CH4 (g) -74.81  
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