
Chapter 7: Heat and Work  1 
 

Chapter 7 Problems: Heat, Work 
 
1. The movie “On Golden Pond” (IPC Films, 1982, 3 Academy Awards) was based on a play 
that was written about a summer home on Great Pond in central Maine. The surface area of Great 
Pond is 3.383x107 m2 and the volume is 2.130x108 m3. Great Pond is a large lake. The solar 
insolation for the Boston area is given in Chapter 2, Problem 13 as 4.16 kWh m-2 day-1. Calculate 
the total energy received by the lake per day on average and the corresponding change in 
temperature. 
 
 
Answer:  From Chapter 2 Problem 12 the conversion factor is given as: 
 

 1 kWh = 1000 J s-1(1 hr)(3600 s/1 hr) = 3.6x106 J  
 

The total energy received by the lake on an average day is given by: 
 

 q = JAt  
    = 4.16 kWh m-2 day-1(3.6x106 J/1 kWh)( 3.383x107 m2)(1 day) = 5.066x1014 J 
 

The molar heat capacity of water is 75.291 J K-1 mol-1, Table 7.2.2. The specific heat capacity of 
water is: 
 

Cs(H2O) = Cp,m(H2O)/MH2O = 75.291 J K-1 mol-1 (1 mol/18.02 g) = 4.178 J K-1 g-1 

 

The density of water at 20.0C, Table 2.2.1, is 0.9982 g mL-1, giving the heat capacity of the lake 
as: 
 Cp = (4.178 J K-1 g-1)(2.130x108 m3)(0.9982 g mL-1)(1x106mL/1 m3) = 8.902x1014 J K-1 

The corresponding change in temperature is obtained from qp = Cp T: 
 

 T = qp/Cp = 5.066x1014 J/8.902x1014 J K-1  = 0.57 K 
 

As the temperature of the lake rises, there will be significant loss of energy by radiation, 
convection at higher winds speeds, and evaporation. These losses will moderate the temperature 
rise. The predominant energy loss mechanism is radiative loss. 
 
 
2.  The specific heat capacity of stainless steel is 0.505 J K-1 g-1. A typical spoon weighs 20.9 g. 
Calculate the change in temperature when you place a spoon at 21.5 C into 250. mL of hot 
coffee at 58.5 C. Assume the heat capacity of coffee is 4.179 J K-1 g-1 and the density is the 
density of water at 50C from Table 2.2.1. 
 
 
Answer:  This problem is very similar to Example 7.2.1. The plan is to use the fact that: 
 qcoffee = – qspoon. The heat capacities are constant pressure heat capacities since the system is 
open to the atmosphere. The density of water at 50.0C, Table 2.2.1, is 0.9880 g mL-1.  
   The mass of the coffee solution is wcoffee = dH2O Vcoffee= 0.9880 g mL-1 (250.0 mL) = 247.0 g. 
The energy transfered as heat to the spoon is given by: 
 

 qspoon = wspoon Cs(spoon)(T2 – T1,spoon) 
 

The energy transferred as heat from the coffee is: 
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 qcoffee = wcoffee Cs(coffee)(T2 – T1,coffee) 
 

Using qcoffee = – qspoon gives: 
 

 wcoffeeCs(coffee)(T2 – T1,coffee) = – wspoon Cs(spoon)(T2 – T1,spoon) 
 

Solving for T2 gives: 
 

 247.0 g(4.179 J K-1 g-1)(T2 – 58.5C) = – 20.9 g(0.505 J K-1 g-1)(T2 – 21.5C) 
 1032.2 T2 – 60384. = -10.555 T2 + 227. 
 1042. 8 T2 = 60611. 
 T2 = 58.13 C 
 

The change in temperature of the coffee is only T = -0.4 C. The result has only one significant 
figure since T = 58.13 C – 58.5 C = -0.4 C. 
 
 
3.  Calculate the work done as a gas expands from an initial volume of 1.00 L to a final volume 
of 10.00 L against a constant external pressure of 1.000 atm. 
 
 
Answer:  We need to convert to pascals and m3 to find the work in joules. The conversions are: 
 

 1.000 atm = 1.01325x105 Pa  and 1.00 L = 1.00x10-3 m3 
 

Giving the work against a constant external pressure as: 
 

 w = –Pext V = –(1.01325x105 Pa)(9.00x10-3 m3) = –912. J 
 

The work is negative because the system loses energy pushing against the external pressure. 
 
 
4.  Calculate the work done by one mole of an ideal gas in a reversible isothermal expansion 
from an initial volume of 1.00 L to a final volume of 10.00 L at 298.2 K. Compare the work done 
to the constant pressure expansion given in Problem 3. 
 
 
Answer:  For a reversible isothermal expansion the work is given by Eq. 7.3.6: 
 

 w = – nRT ln



V2

V1
 = – 1.00 mol(8.314 J K-1 mol-1)(298.15 K) ln



10.00

1.00  = -5708. J 

     = -5.71 kJ 
 

Reversible expansions do the maximum amount of work, in magnitude, for the given initial and 
final states of the system. The magnitude of the work for a reversible expansion is maximal 
because the system pressure is equal to the external opposing pressure, P = Pext, so the system 
always pushes against the maximum external pressure. 
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5.  Calculate the work done by one mole of an ideal gas in a reversible isothermal expansion 
from an initial pressure of 10.00 bar to a final pressure of 1.00 bar at 298.2 K. Compare the work 
done to the isothermal reversible expansion in Problem 4. 
 
 
Answer:  For an isothermal process in an ideal gas P1V1 = P2V2 or: 
 

 
V2

V1
 = 

P1

P2
 

 

Substitution into Eq. 7.3.6 gives: 
 

 w = – nRT ln



V2

V1
 = – nRT ln



P1

P2
 

      = – 1.00 mol(8.314 J K-1 mol-1)(298.15 K) ln



10.00

1.00  = -5708. J 

     = -5.71 kJ 
 

Comparing to Problem 4, if the volume increases by a factor of 10 for an isothermal expansion, 
the pressure will drop by a factor of 10. So this problem and Problem 4 are the same problem. 
This expansion is reversible, so the system does maximum work for the given initial and final 
states. 
 
 
6. How ideal is water vapor? To answer this question, try the following problem: Assume a 
volume for a closed flask of 10.000 L, a temperature of 298.15K, and 0.01280 moles of water 
vapor. Calculate the pressure of water vapor in the flask using the ideal gas law and the Van der 
Waals equation of state and compare. (For comparison with the results of this problem, note that 
the vapor pressure of water at 298K is Pvap= 23.8 torr.) 
 
 
Answer:  From the Van der Waals equation, Eq. 7.5.1: 
 

 P = 
nRT

V– nb – 
an2

V2  as compared to the ideal gas   P = nRT/V 
 

with a = 5.536 bar L2 mol-2 and b = 0.03049 L mol-1, Table 7.5.1. The Van der Waals result is: 
 

      P = 
0.01280 mol(0.0831447 bar L K-1 mol-1)(298.15 K)

10.0 L – 0.01280 mol (0.03049 L mol-1)  – 
5.536 bar L2 mol-2(0.01280 mol)2

10.02  

 P = 0.031732– 9.07x10-6 bar = 0.031723 bar 
  or P = 0.031308 atm = 23.794 torr 
 

The ideal gas result is: 

 P = 
0.01280 mol(0.0831447 bar L K-1 mol-1)(298.15 K)

10.000x10-3m3   =  0.031731 bar 

 P = 0.031316 atm = 23.800 torr 
 

Water vapor at its equilibrium vapor pressure at room temperature is well described by the ideal 
gas law. 
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7. Find the formula for the work done in the reversible isothermal expansion of a Van der Waals 
gas. (i.e. derive the equation corresponding to the ideal gas result: w = – nRT ln(V2/V1) 
 
 

Answer:  For a reversible process P = Pext and then   w = – P dV. From the Van der Waals 

equation, Eq. 7.5.1: 
 

 P = 
nRT

V– nb – 
an2

V2  
 

which upon substitution into the formula for the work gives: 
 

 w = – V1

V2  



nRT

V– nb – 
an2

V2  dV 

 w = – V1

V2  



nRT

V– nb  dV + V1

V2  
an2

V2  dV 

 w = – nRT (ln(V – nb)|V2

V1
  –  

an2

V  |V2

V1
 

 w = – nRT ln



V2 – nb

V1 – nb  – an2 



1

V2
 – 

1
V1

 
 

Notice the effect of the second term. The Van der Waals a-coefficient is proportional to the 
average intermolecular forces that exist between gas molecules. For an expansion, V2 is bigger 
than V1 making (1/V2 – 1/V1) < 0. The overall sign of the second term is then positive. The 
resulting work done will be less than an ideal gas expansion, since the intermolecular force term 
is opposite in sign to the main work term. One way of thinking about this effect is that some 
energy goes into separating the gas molecules against their intermolecular forces, thus decreasing 
the work that can be done by the gas. 
 
 
8.  Derive the relationships between the second and third virial coefficients and the Van der 
Waals coefficients, as listed in Eqs. 7.5.9. Assume that the virial equation is truncated after the 
cubic term. [Hint: use the Taylor series approximation that for small x: 1/(1 – x)  1 + x + x2] 
 
 
Answer:  The plan is to rearrange the Van der Waals equation to find z and then arrange this 
expression into a power series in (n/V). 
   Starting with Eqs. 7.5.1 and solving for P gives: 
 

 P = 
nRT

V – nb – 



a 

n2

V2  
 

Next solving for z by multiplying by (V/nRT) gives: 
 

 z = 
PV

nRT = 
V

V – nb – 
a

RT 



n

V  
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 z = 
1





1 – b 



n

V

  –  
a

RT 



n

V  

 

The last term is already in the form expected for a term in a power series expansion. However, 
the first term is not. Using the Taylor series approximation, 1/(1 – x)  1 + x + x2, for the first 
term gives: 
 

 z = 1 + b 



n

V  + b2 



n

V

2
 – 

a
RT 



n

V  
 

Gathering the terms in (n/V) and comparing this result to the virial expansion, Eq. 7.5.7, gives: 
 

 z =  1 + 



b – 

a
RT  



n

V  + b2 



n

V

2
 

 

 z =  1 +      B       



n

V  + C 



n

V
2
      (7.5.7) 

 

     B = b – 
a

RT   and    C = b2 
 

At this level of approximation, we see clearly why B is a function of temperature. 
 
 
9.  Show that the Van der Waals equation is a cubic equation in the volume. In other words, 
rearrange the Van der Waals equation to give a cubic polynomial in V. 
 
 
Answer:  Starting with Eq. 7.5.1, multiply both sides of the equation by V2 and then take the 
product of the pressure and volume terms: 
 

 



P + a 

n2

V2  ( )V – nb  = nRT       7.5.1 

 ( )PV2 + an2  ( )V – nb  = nRT V2 

 PV3 + an2V – nbPV2 – abn3 = nRT V2 
 PV3 – (nbP + nRT)V2 + an2V – abn3 = 0 
 

Luckily, we can usually avoid having to solve this equation for V. The cubic form explains the 
shape of the isotherms at temperatures below the critical point in Figure 7.5.3. 
 
 
10. Use the virial equation to find the compressibility factor and the pressure for 10.00 mol of O2 
contained in a 1.000 L vessel at 298.15 K. Do attractive or repulsive forces dominate? 
 
 
Answer:  Using the virial expansion, Eq. 7.5.7 and the coefficients from Table 7.5.4 gives: 
 

 z = 1 + B(T) 



n

V  + C(T) 



n

V
2
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    = 1 + (-0.0161 L mol-1) 



10.00 mol

1.000 L  + (0.001200 L2mol-2) 



10.00 mol

1.000 L

2
 

    = 1 – 0.161 + 0.1200 = 0.959 
 

Since z < 1, attractive forces dominate. Using PV = z nRT gives: 
 

 P = z nRT/V = 0.959(10.00 mol)(0.08314 bar L K-1 mol-1)(298.15 K)/1.000 L = 238. bar 
 

which is a factor of (1 – 0.959) or 4.1% less than the ideal value. 
 
 

11.  Integrate Eq. 7.6.9 for a small change in pressure during an isothermal process; that is, 
integrate dV = –V T dP. 

 
 
Answer:  Integrating from Vo, Po to V, P gives: 
 

 Vo

V
dV = – Po

P
V T dP 

For small changes in pressure we can approximate the volume in the integrand as V Vo. Then 
the factor of (Vo T ) is a constant, which factor out of the integral to give: 
 

 V – Vo =  – Po

P
Vo T dP = – Vo T (P – Po) 

 

or succinctly as V = – Vo T P. We can also solve for the final volume as: 
 

 V = Vo – Vo T (P – Po) 
 
 
12.  If the isothermal compressibility of acetone is 111.x10-6 atm-1 at 14.2°C, what is the change 
in volume if the pressure is increased from 10.0 atm to 35.0 atm? Assume an initial volume of 
1.00 L, the P is small so that V  Vo, and the isothermal compressibility is constant. 
 
 
Answer:  From Eq. 7.6.9, for a constant temperature: 
 

 dV = – V T dP 
 

Assuming a small enough temperature change to give V  Vo and a constant isothermal 
compressibility gives:  
 

 V = Vo T P 
       = – (1.00 L)(111.x10-6 atm-1)(35.0 – 10.0 atm) = -2.78x10-3 L 
       =  -2.78 mL 
 
 
13.  From the definition of T prove that for moderate changes in pressure: 
 

 V = Vo – Vo T (P – Po) + 
Vo T

2

2  (P – Po)2. 
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Answer:  Integrating from Vo, Po to V, P gives: 
 

 Vo

V
dV = – Po

P
V T dP 

 

For moderate changes in pressure we can approximate the volume in the integrand using the 
result of Problem 11 as V = Vo – Vo T (P – Po).  The integral is then: 
 

 V – Vo =  – Po

P
[ Vo – Vo T (P – Po)] T dP  

  =  – Po

P
Vo T dP  +  Po

P
Vo T

2 (P – Po) dP 
 

Then the factors of (Vo T ) and (Vo T
2) are constants, which factor out of the integrals to give: 

 

 V – Vo =  – Vo T (P – Po) + 
Vo T

2

2  (P – Po)2|PPo
 

 V – Vo =  – Vo T (P – Po) + 
Vo T

2

2  (P – Po)2 

 
 

14.  Find the relationship between 






T

P V
 and  and T. Use the Euler chain relationship in your 

proof. 
 
 

Answer:  Noting that   
1
V 






V

T P
 and T  – 

1
V 






V

P T
, neither derivative is taken at constant 

volume. The key to finding the relationship is to focus on the constant volume constraint. For a 
constant volume process the total differential of the volume is zero; from Eq. 7.6.7: 
 

 dV = 






V

T P
 dT + 







V

P T
 dP = 0     1 

 

Subtracting the pressure dependent term from both sides of the equation gives: 
 

 






V

T P
 dT = – 







V

P T
 dP      2 

 

We can then solve for the differential of the temperature: 
 

 dT = 

–






V

P T

 






V

T P

  dP       3 

 

To find the partial derivative (T/P)V “divide” by dP and specify constant volume conditions: 
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





T

P V
 = 

–






V

P T

 






V

T P

       4 

 

We can relate these partial derivatives to  and T by dividing the numerator and denominator of 
this expression by the volume: 
 

 






P

T V
 = 

– 
1
V 






V

P T

 
1
V 






V

T P

 = 
T

       5 

 

The result is that the behavior of the system can be expressed as a function of only  and T. 
 
 
15.  Calculate the expansion work done by 1.00 L of water when the temperature is raised by 
100.0C. Assume the pressure is constant at 1.00 bar. This problem is an important issue when 
considering upwelling in the ocean.1 The effect is small on the laboratory scale, but important on 
an oceanic scale. 
 
 
Answer:  The plan is to use Eq. 7.6.29 and the value of the thermal expansion coefficient from 
Table 7.6.1. We need to be careful about units, to get joules we need to work with volume in m3 
and pressures in Pa, 1 bar = 1x105 Pa: 
 

 w = – PVo  T = – (1.00x105 Pa)(1.00 L)(1 m3/1000 L)(2.57x10-4 K-1)(100.0 K) 
   = -2.57 J 
 

In the laboratory, we can neglect the work of expansion of liquids and solids under most 
circumstances. 
 
 
16.  The upwelling of deep-sea water is caused by large scale ocean currents such as the Atlantic 
current, which brings warm water north in the Atlantic. This current keeps western Europe 
warmer than other areas at similar latitude. As a packet of water rises, the pressure drops, the 
volume of the packet expands and the system does work.1 The work is given by: 
đw = PVT dP at constant temperature. Derive this relationship. 
 
 
Answer:  The work is given by đw = – Pext dV. A packet of water is surrounded by and is in 
contact with its surroundings so that P = – Pext, where Pext is the pressure at the given depth for 
the packet of water. The process is reversible. The change in volume with pressure at constant 
temperature is given by the definition of the isothermal compressibility, Eq. 7.6.9 and Eq. 7.6.10: 
 

 T  – 
1
V 






V

P T
  with dV = V  dT – V T dP 
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For constant temperature this last equation reduces to: 
 

 dV = – V T dP       (cst. T) 
 

Substituting this last equation into the general equation for the work of the system gives: 
 

 đw = – P dV = PVT dP     (reversible, cst. T) 
 
 
17.  The empirical temperature scale is based on the ideal gas thermometer. However, how can 
you build an ideal gas thermometer when there is no such thing as an ideal gas? The answer is 
that the effective temperature based on the ideal gas law is measured for differing amounts of gas 
and the results are extrapolated to zero gas density. The ideal gas thermometer can then be used 
to calibrate more convenient thermometers. An ideal gas thermometer using helium is 
constructed with an internal volume for the gas of 0.500 L. The following table gives the number 
of moles of gas and the corresponding pressure at the fixed external temperature to be measured. 
Use the ideal gas law to calculate the effective temperature and then extrapolate the results to 
zero density. 
 

n mol 0.040342 0.030256 0.020171 0.008068 0.004034
P (bar) 2.08225 1.56116 1.04042 0.41602 0.20797

 
 
Answer:  A spreadsheet was set up to calculate the molar density of the gas and PV/nR from the 
measured parameters. 
 
 
 
 

n n/V PV/nR 

0.040342 0.080684 310.4108

0.030256 0.060513 310.3071

0.020171 0.040342 310.2017

0.008068 0.016137 310.0884

0.004034 0.008068 310.0306

 
slope 4.842429 310.0098intercept 

 0.32278 0.015895+- 

r2 0.986846 0.019524s(y) 

F 225.0679 3df 

ssreg 0.085789 0.001144ssresid 
 

 

 

y = 4.842x + 310.010
R2 = 0.987

309.95

310

310.05

310.1

310.15
310.2

310.25

310.3

310.35

310.4

310.45

0 0.02 0.04 0.06 0.08 0.1
n/V (mol L-1)

P
V

/n
R

 (
K

)

 

 

The extrapolated temperature in the ideal gas limit is 310.01  0.02 K. 
[Note:  Vacuum lines can be easily set up to include calibrated gas burets. Then Avagadro’s Law 
can be used to meter out the required amounts of helium for each run. Using Avagadro’s law 
avoids using the full, accurate equation of state, which was unknown when gas thermometry was 
first developed. The mole amounts need not be accurate since the intercept is the desired 
quantity, as long as the amounts are precise and proportional.] 
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18.  The heat transfer at constant volume is the internal energy change and the heat transfer at 
constant pressure is the enthalpy change. Consider a constant volume process for an ideal gas. 
Even though the pressure isn’t constant, you can still calculate H. Calculate the change in 
enthalpy for a constant volume process given the temperature change, T or dT. Assume a 
constant heat capacity over the temperature range. Give your answer in differential, derivative, 
and integrated (H) form. 
 
 
Answer:  From the definition of the enthalpy, H  U + PV, the change in enthalpy can be 
determined from the differential: dH = dU + d(PV). For an ideal gas, PV = nRT and for a closed 
system d(PV) = nR dT, giving dH as: 
 

 dH = dU + nR dT      (ideal gas) 
 

Then at constant volume for any system dU = CvdT: 
 

 dH = CvdT + nR dT      (ideal gas) 
 

Integrating this expression for a constant heat capacity gives: 
 

 H1

H2 dH = T1

T2 CvdT + T1

T2 nR dT    (ideal gas) 
 

or  H = Cv T + nR T      (ideal gas) 
 

Notice that since Cp = Cv+ nR for an ideal gas this last equation is equivalent to H = Cp T. 
Now we need to get the derivative form (H/T)v. Once again using the definition of the 
enthalpy, H  U + PV: 
 

 






H

T V
 = 







U

T V
 + V 







P

T V
 

 

The first derivative on the right is the constant volume heat capacity. For an ideal gas, P = nRT/V 
giving: 
 

 






P

T V
 = 

nR
V        (ideal gas) 

 

Substitution then gives: 
 

 






H

T V
 = Cv + nR      (ideal gas) 

 

which is consistent with our previous results. 
 
 
19.  Enthalpy is a state function. The heat transfer at constant pressure is the enthalpy change, 
qP = H. Does this equality argue that q is a state function? 
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Answer:  No, H is a state function, but q is not. The heat transferred depends on the path. In the 
given expression, the path is specified as a constant pressure path. Only for the specific case of a 
constant pressure path is qP = H. 
 
 
20. Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement.2 

 

(a). The work done by the system on the surroundings during a change in state is never greater 
than the decrease in the internal energy of the system. 
 

(b). The enthalpy of a system cannot change during an adiabatic process. 
 

(c). When a system undergoes a given isothermal change in state, the enthalpy change for the 
system does not depend upon the path of the process involved. 
 

(d). When a change in state occurs, the increase in the enthalpy of the system must equal the 
decrease in the enthalpy of the surroundings. 
 

(e). The equation U = q + w is applicable to any macroscopic process, provided no electrical 
work is performed by the system on the surroundings. 
 

(f). No change in state occurring in an isolated system can cause a change in the system’s 
internal energy or enthalpy. 
 

(g). For any constant pressure process, the increase in enthalpy equals the heat transferred 
whether or not electrical or chemical work is done during the process. 
 

(h). A reversible process is one in which the internal energy lost by the system is just sufficient 
to restore the system to its original state. 
 

(i). When a real gas expands into a vacuum, it does work because the molecules of the gas have 
been separated from one another against an attractive force. 
 
 
Answers:  (a). The work done by the system on the surroundings during a change in state is never 
greater than the decrease in the internal energy of the system. 
 

False: Solving U = q + w for the work gives w = U – q. The work done on the surroundings is 
– w = –U + q. The work done on the surroundings can be greater than 
– U if heat is transferred into the system (q>0). In fact, the internal energy need not change at 
all for work to be done. The corrected statement is: “The work done by the system on the 
surroundings during a change in state is equal to the decrease in the internal energy of the system 
added to any heat transferred into the system.” 
 
(b). The enthalpy of a system cannot change during an adiabatic process. 
 

False: For an adiabatic process đq = 0 giving dU = đw = – Pext dV and in general P, V, and T can 
all change. The definition of enthalpy then gives: 
 

 dH = dU + d(PV) = dU + PdV + VdP = – Pext dV + PdV + VdP (adiabatic) 
 



12 
 

which can be non-zero. For example, consider a system in contact with the surroundings so that 
P = Pext in a reversible adiabatic expansion. During the expansion the pressure of the system 
decreases and the change in enthalpy is given by Eq. 7.8.31: 
 

 dH = – P dV + PdV + VdP = V dP    (reversible adiabatic) 
 

Then dH = 0 only for a reversible, constant pressure, adiabatic process, but not in general. The 
correct statement is: “The enthalpy of a system cannot change during a reversible adiabatic 
process at constant pressure.” An example of such a process is the Joule-Thomson expansion. 
 
(c). When a system undergoes a given isothermal change in state, the enthalpy change for the 
system does not depend upon the path of the process involved. 
 

True but too restrictive: The statement is too restrictive because the process does not need to be 
isothermal to be path independent, since enthalpy is a state function. The correct statement is 
“For any given change in state, the enthalpy change is independent of the path.” 
 
(d). When a change in state occurs, the increase in the enthalpy of the system must equal the 
decrease in the enthalpy of the surroundings. 
 

False:  Both internal energy and enthalpy are state functions. However, while internal energy is 
conserved, enthalpy is not (see Section 7.8). Consider a reversible process. The change in the 
enthalpy is given by Eq. 7.8.30: 
 

 dH = đq + V dP    (reversible, PV work only) 1 
 

   Now consider the surroundings. Assume that the surroundings are large in extent and uniform 
so that the pressure of the surroundings is constant. The enthalpy change for the surroundings is 
given by the heat transfer at the constant pressure of the surroundings: 
 

 dHsurr = dqp,surr = – đq        (surroundings at cst. P, PV work only) 2 
 

Comparing Eq. 1 for the system and Eq. 2 for the surroundings shows that enthalpy is not in 
general conserved; the increase in the enthalpy of the system is not equal to the decrease in the 
enthalpy of the surroundings for a general reversible process. 
   However, the enthalpy change of the surroundings is equal in magnitude and opposite in sign 
to the system enthalpy change specifically for a constant pressure process. Then dH = đqp for the 
system from Eq. 1 (or Eq. 7.8.18) and dHsurr = – đqp for the surroundings. So the corrected 
wording is “the increase in the enthalpy of the system is equal to the decrease in the enthalpy of 
the surroundings for a constant pressure process.” 
 
(e). The equation U = q + w is applicable to any macroscopic process, provided no electrical 
work is performed by the system on the surroundings. 
 

True but too restrictive:  The First Law, U = q + w, holds for any form of work. The work done 
in expansion and electrical work is given by: 
 

 đw = – Pext dV +  dqi   giving   dU = đq + đw = đq – Pext dV +  dqi 
 

For another example of non-PV work, for an open system with one component i gives: 
 

 dU = đq – Pext dV + i dni 
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The correct statement is “The equation U = q + w is applicable to any macroscopic process for 
the system.”  
 
(f). No change in state occurring in an isolated system can cause a change in the system’s 
internal energy or enthalpy. 
 

False for the enthalpy but true for the internal energy: The statement is equivalent to the First 
Law in the case of the internal energy, but the enthalpy is not conserved. In general, dH = dU + 
d(PV) = dU + PdV + VdP. In an isolated system dU = 0 and dV = 0 and then: 
 

 dH = VdP or since V is constant:  H = VP   (isolated) 
 

(See also Eq. 7.8.31) So the enthalpy is not necessarily constant for an isolated system. The point 
here is that the “P” in the definition of the enthalpy, H  U + PV, is the system pressure. A 
process in an isolated system can cause a change in pressure. The correct statement is just “No 
change in state occurring in an isolated system can cause a change in the system’s internal 
energy.” 
 
(g). For any constant pressure process, the increase in enthalpy equals the heat transferred 
whether or not electrical work is done during the process. 
 

False:  Consider a process with PV and electrical work, Eq. 7.9.7: 
 

 dU = đq + đw = đq – Pext dV + dqi 
 

From the definition of enthalpy, dH = dU + d(PV), giving: 
 

 dH = đq – Pext dV + dqi + d(PV) 
 

For a constant pressure process in contact with the surroundings P = Pext and the last equation 
reduces to: 
 

 dH = đqp – P dV + dqi + PdV = đqp +  dqi 
 

Solving for the heat transfer at constant pressure gives: 
 

 đqp = dH –  dqi 
 

The correct statement is “The heat transer at constant pressure is the change in enthalpy minus 
any non-PV work.” 
 
(h). A reversible process is one in which the internal energy lost by the system is just sufficient 
to restore the system to its original state. 
 

True but too restrictive:  Internal energy is a state function, so the change in internal energy is 
independent of the path. For a given change in state, the change in internal energy for the 
forward and the reverse processes are always equal in magnitude and opposite in sign. This 
statement is true for any process, reversible and irreversible. The correct statement is something 
like “For any given change in state, the internal energy lost by the system is just sufficient to 
restore the system to its original state.” For a reversible process, specifically, the statement is “A 
reversible process is one in which the work transfer by the system is just sufficient to restore the 
system to its original state.” 
 



14 
 

(i). When a real gas expands into a vacuum, it does work because the molecules of the gas have 
been separated from one another against an attractive force. 
 

False:  The work is only a function of the external pressure: đw = – Pext dV. For expansion into a 
vacuum Pext = 0 and no work is done. The internal energy, however, does change for a real gas 
expansion against a vacuum. We will calculate the change of the internal energy in Chapter 9. 
The correct statement is “When a real or ideal gas expands into a vacuum, no work is done, 
because the external pressure is zero.” 
 
 
21.  The Gibbs free energy is usually considered a function of the temperature and the pressure, 
G(T,P). Write the total differential of G with respect to changes in temperature and pressure. 
 
 
Answer:  The independent variables for G are given as T and P. So both T and P change: giving 
dT and dP. The form of the differential is then: 
 

 dG = 






   

   
 dT + 







   

   
 dP 

 

Then the total differential is given as: 

 dG = 






G

T P
 dT + 







G

P T
 dP 

 
 
22.  Write the total differential of U considered as a function of T and P as independent variables. 
 
 
Answer:  The independent variables for U are given as T and P. So both T and P change, and 
these changes are dT and dP. The form of the differential is then: 
 

 dU = 






   

   
 dT + 







   

   
 dP 

 

Then the total differential is given as: 

 dU = 






U

T P
 dT + 







U

P T
 dP 

 
 
23.  (a). Integrate Eq. 7.6.10 for a constant temperature process using the total differential. 
Assume a narrow pressure range so that V  Vo and T is constant. (b). Integrate Eq. 7.6.9 using 
the “short-cut” method discussed in the Addendum, Sec. 7.11. 
 
 
Answer:  (a). For a constant temperature process, Eq. 7.6.10 reduces to:  dV = – V T dP. See 
problem 12 and 13 for the integration. 
(b). From the definition of T, Eq. 7.6.9, multiplying both sides of the equation by – V gives: 
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





V

P T
 = – V T 

 
Multiply both sides of the equation by dP and “cancel” the P and dP on the left: 
 

 






V

P T
 dP  = – V T dP or dV  = – V T dP 

 
which is the same as the rigorous approach starting with the total differential. 
 
 
24. Find (P/T)V for a Van der Waals gas in a closed system. 
 
 
Answer:  Rearranging the Van der Waals equation, Eq. 7.5.1, to isolate P as the dependent 
variable on the left side of the equation gives: 
 

 P = 
nRT

V– nb – 
an2

V2  
 

Only the first term on the right is temperature dependent: 
 

 






P

T V
 = 

nR
V– nb 

 
since n and R are constants, and V is the independent variable that is held constant for the partial 
derivative 
 
 
25.  The critical point is the point of inflection on the critical isotherm. The point of inflection 
corresponds to: 
 

 



∂P

∂V T
 = 0 and 



∂2P

∂V2
T

 = 0 

 

Assume the gas is described by the Van der Waals equation of state. The two equations for the 
inflection point, above, provide two equations in two unknowns. Show that, in terms of the Van 
der Waals a and b coefficients, the critical volume, temperature, and pressure are given by: 

 Vc = 3nb  Tc = 
8a

27bR Pc = 
a

27 b2 

 
 

Answer:  Starting from Example 7.6.1:  



∂P

∂V T
 = – 

nRTc

(Vc – nb)2+ 
2an2

V
3
c

 = 0   1 

The second derivative is:      



∂2P

∂V2
T

 = 
2nRTc

(Vc – nb)3 – 
6an2

V
4
c

 = 0   2 
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To solve for Vc multiply Eq. 1 by  2/(Vc – nb)  to give: 
 

  – 
2nRTc

(Vc – nb)3+ 
4an2

V
3
c(Vc – nb)

 = 0       3 

 

Now add Eqs. 2 and 3: 
 

  2 + 3:  – 
6an2

V
4
c

 + 
4an2

V
3
c(Vc – nb)

 = 0       4 

 

Dividing both sides of Eq. 4 by the common factor  2an2/V
3
c gives: 

 

 – 
3

Vc
 + 

2
 (Vc – nb) = 0         5 

 

and solving for Vc gives :  Vc = 3nb        6 
Substituting Eq. 6 into Eq. 1 gives: 
 

  – 
nRTc

(3nb – nb)2+ 
2an2

(3nb)3 = 0  or  Tc = 
8a

27bR      7 
 

Finally, substituting Eq. 6 and 7 into the original Van der Waals equation gives: 
 

 Pc = 
nRTc

Vc– nb – 
an2

V
2
c

 =  
nR



8a

27bR
3nb– nb  – 

an2

(3nb)2      8 

 

 Pc = 
a

27 b2          9 

 
 
26.  Calculate the change in internal energy for an adiabatic expansion of a gas for a change in 
volume from 1.00 L to 10.00 L against a constant external pressure of 1.00 bar. 
 
 
Answer:  Starting with Eq. 7.8.2, for the finite process U = q + w. However, for an adiabatic 
process, q = 0, giving U = w. The work done in the expansion is w = – Pext V: 
 

 w = – 1.00x105 Pa (10.00 L – 1.00 L)(1 m3/1000 L) = -900. J 
 

which gives U = -900. J 
 
 
27.  Calculate the internal energy and enthalpy change for a constant volume process for one 
mole of ideal gas with a change in temperature from 298.2 K to 323.2 K. Assume the gas is 
diatomic with a constant volume heat capacity of 5/2 nR. Explain the relative sizes of the internal 
energy and the enthalpy changes. 
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Answer:  The plan is to use U = qv = Cv T, since the process is at constant volume. Then Eq. 
7.8.29 can be used to calculate the enthalpy, since this system is an ideal gas. 
   From Eq. 7.8.10: 
 

 U = Cv T = 5/2 nR T = 5/2 (1.000 mol)(8.3145 J K-1 mol-1)(323.2 K – 298.2 K) 
       = 519.6 J 
 

Using Eq. 7.8.29: 
 H = U + nR T = 519.6 J + (1.00 mol)(8.3145 J K-1 mol-1)(25.0 K) 
        = 519.6 J + 207.9 J = 727. J 
 

So even though the pressure changes in this process, the change in enthalpy can still be 
calculated. Now, why is the enthalpy change bigger than the internal energy change? Since the 
pressure of the gas increases on heating, the PV-product increases: d(PV) > 0. No work is done, 
since the volume is constant, but the PV-product does increase. Then dH = dU + d(PV) for a 
general process and d(PV) adds to dU. So the enthalpy change is bigger than the internal energy 
change. Notice that the difference between H and U is not the work done by this process, 
because no expansion work is done at constant volume. 
 
 
28.  Find the enthalpy change for a constant volume process for a change in temperature T of a 
Van der Waals gas, starting from the internal energy change, U. 
 
 
Answer:  The plan is to use Eq. 7.8.16 and the Van der Waals equation of state to find (PV). 
   From the Van der Waals equation, Eq. 7.5.1: 
 

 P = 
nRT

V– nb – 
an2

V2  

The PV-product is then: 
 

 PV = 



V

V– nb  nRT – 
an2

V  
 

and for a constant volume process for a change in temperature T: 
 

 (PV) = 



V

V– nb  nRT      (cst. V) 
 

Finally then from Eq. 7.8.16: 
 

 H = U + 



V

V– nb  nRT      (cst. V) 
 

You can also use Eq. 7.8.10 if the heat capacity is constant over the temperature range: 
 

 H = Cv T + 



V

V– nb  nRT      (cst. V) 
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29. Heat capacities are often approximated by a power series: Cp,m = a + b T + c T2. Find the 
change in molar enthalpy for a constant pressure process from T1 to T2. 
 
 
Answer:  The plan is to integrate the partial derivative relationship (H/T)P = Cp. For a constant 
heat capacity, H = Cp(T2 – T1) = CpT. 
   The integral is: 
 
 H = T1

T2 Cp dT = T1

T2 ( a + b T + c T2) dT 

       = T1

T2 a dT + T1

T2 bT dT + T1

T2 cT2 dT 

       = a [ T |T1
T2 + 

b
2 [ T2 |T1

T2 + 
c
3 [ T3 |T1

T2 

       = a(T2– T1) + 
b
2 (T2

2 – T2
1) + 

c
3 (T3

2 – T3
1) 

 
 
30.  Consider the surroundings as a constant temperature and pressure reservoir. Show for a 
reversible adiabatic expansion of a gas from P1 to P2 that the enthalpy change of the system is not 
equal in magnitude and opposite in sign to the enthalpy change of the surroundings. In other 
words, enthalpy is not conserved. 
 
 
Answer:  The plan is to note that the surroundings are at constant pressure, which gives a simple 
relationship for the enthalpy change of the surroundings. The enthalpy change of the system is 
given by Eq. 7.8.31. 
   Since the surroundings are at constant pressure, the enthalpy change for the surroundings is the 
heat transfer to the surroundings. This transfer is at constant pressure, from the perspective of the 
surroundings, even if the system is not at constant pressure. The heat transferred to the 
surroundings is then the negative of the heat transfer of the system:Hsurr = –đq. For an adiabatic 
process, đq = 0 giving no change in enthalpy for the surroundings. The enthalpy change of the 
system for a reversible adiabatic process is given by Eq. 7.8.31: dH = VdP, which is non-zero. 
Because the enthalpy change of the system is not equal in magnitude and opposite in sign to the 
enthalpy change of the surroundings, enthalpy is not conserved. 
 
 
31.  Consider the surroundings as a constant temperature and pressure reservoir. Show for a 
constant pressure process that the enthalpy change of the system is equal in magnitude and 
opposite in sign to the enthalpy change of the surroundings. 
 
 
Answer: The plan is to note that the surroundings are at constant pressure, which gives a simple 
relationship for the enthalpy change of the surroundings. 
   Since the surroundings are at constant pressure, the enthalpy change for the surroundings is the 
heat transfer to the surroundings. This transfer is at constant pressure, from the perspective of the 
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surroundings, even if the system is not at constant pressure. The heat transferred to the 
surroundings is then the negative of the heat transfer of the system:Hsurr = –đq. 
   The process is at constant pressure for the system, giving H = đq = đqP. As a consequence, 
H = – Hsurr for the special case of a constant pressure process, for the system. Note that the 
pressure of the system and the pressure of the surroundings do not necessarily need to be the 
same. For example, a gas can be confined in a cylinder with a weight on the piston, giving P > 
Psurr. However, if the system is held at constant pressure by contact with the surroundings, then 
H = – Hsurr is guaranteed since P = Psurr. This holds for example, for a solution in a beaker at 
ambient pressure. 
   For a constant pressure process, enthalpy is conserved. However, enthalpy is not conserved in 
general (see the previous problem for an example). 
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