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Chapter 7 Heat, Work, and the First Law of Thermodynamics

Calculate the electrical work for moving one moléNa’ ions across the membrane of a neuron,

Thermodynamics is the study of the interconwersif heat and work. In a thermodynamic
study, a system undergoes a process involving gnexgsfers in the form of heat and work. We
monitor the process by determining the changearthermodynamic state of the system. The
First Law states that the only way of changingittternal energy of system is through transfers
of heat and work. There are many forms of work;wioek of chemical change is our primary
focus. One goal is to determine the amount of usefat and work made available by a process.
Another goal is to determine the equilibrium staftéhe system. The response of a system to
transfers of heat and work depends on the propeastithe system as specified by the heat
capacity and equation of state of the system.

Chemical kinetics studies the approach to dojuilim, that is “how fast” a reaction runs.
Thermodynamics studies the equilibrium state, whlietermines “how far” the reaction runs.
Classical thermodynamics applies to the systemuatilerium. The final state of the system
must be equilibrium. Knowing the changes in equiliim position with changing conditions is
important in learning how to control chemical preses for useful purposes.

7.1 Heat and Work

Heat and work are both transfers of energy. ldedtwork cannot be stored in a bottle. Even
though heat and work are linguistically nouns hie scientific sense heat and work are verbs (or
gerunds). Heat and work transfers occur duringpagss as energy is transferred from one object
to another. Heat and work do not exist apart froengrocess. Thermal energy transfer is a
commonly used alternative term for heat.

Heat and Work are Transfers of Kinetic Energy: Thermodynamics was developed before the
notion of atoms and molecules was widely accepyetthd scientific community. The theoretical
development of thermodynamics does not require lacutar perspective; however, a molecular
interpretation is often useful when considering niepics within the thermodynamic context.
Heat is the transfer of energy through random motidnaaecules anavork is the transfer of
energy through organized motion. Consider a gaBremhin a cylinder by a piston, with the gas
defined as the system. When a thermal energy s@oroes in contact with the piston, collisions
of the cold gas molecules with the hot walls of piston increase the kinetic energy of the gas
molecules. The increase in kinetic energy causegdls molecules to move faster on average.
The motion of the gas molecules is in random divaest Thermal energy is in the form of
random thermal kinetic energy.
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Figure 7.1.1: Work is done by the organized motbatoms and molecules in the system.
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Now consider transfer of energy as work. In Fégr.1.1 the system does work against the
surroundings. The work results from the net motibthe molecules in the upwards direction.
Work is done by organized motion of moleculespadlving in the same direction on average.

We Interact with Our Environment Through Transfers of Heat and Work: Focusing on heat and
work transfers may seem a bit foreign and restectHowever, heat and work transfers are
exactly the way that we sense and interact withwibed around us. Take the sense of touch for
example. When we touch things, objects feel haotadt depending on whether energy, in the
form of heat, is transferred to or from our fingjes. The other aspect of touch is how hard or
soft something feels. Press your fingers on yosk@ad then press your fingers on your cheek.
Pressing with your fingers is the equivalent ofndpivork on the object. The desk feels hard
because for a given force from your finger tipg, Wiolume change is small. Your cheek feels
soft because for the same force, the volume changech larger.

Now consider our other senses. Light is expegdreither as radiant heat or through the work
of chemical reactions. The sun feels warm on yé&im, ecause energy is transferred to your
skin through radiant heat transfer. Our eyes skgisethrough the chemical work of tloes-
trans isomerization of the retinol in our retina.

So, we sense our environment through transfensat and work. How do we interact with the
environment? When the air temperature is colder tha body temperature, we constantly lose
energy to the surroundings in the form of heat. WMile air temperature is warmer, energy in
the form of heat is transferred into our bodiesrfrihe surroundings. We do work when we
move objects, so the principle goal for athletessigians, and painters is the efficient
production of work. When we think pleasant thoughesnerve impulses result from the rapid
switching of membrane potentials, thus doing eleatmwork. The membrane potentials are
produced by the pumping of ions across the cell brames of our neurons. Pumping ions across
membranes requires chemical work. Of course, tlkeggrfor all these processes comes from the
food we eat. The combustion of food in our mitoatiia produces chemical work and some heat
transfer. The work of chemical change, electricatkywork against surface tension, and work
against elastic forces such as muscles are ak tyfreon-PV work.

In a broader perspective, the efficient productf heat and work is critical to the continued
health of our planet. Progress on global warmingparticular, involves the careful and
thoughtful analysis of coupled thermodynamic systehine efficiency of our global economy is
a critical concern, since energy production haagehmpact on the environment. Energy is
produced in the form of transportation fuels, fuelsheating, commodity chemicals, and
agriculture. Food is in short supply in many arefthe globe, and competition for scarce
resources accelerates environmental damage.

7.2 Thermal Energy Transfer—Heat Transfer

Heat Transfer can be Measured Through Changesin Temperature: The transfer of energy in
the form of heat is often determined indirectlytbg measurement of the change in temperature
of an object:

g = CAT (cst. C) 7.2.1

where the proportionality constant between heatstea and temperature change is defined as
theheat capacity C. The change in temperature is given by theedgficeAT = T,— Ty, where
T, is the initial temperature ang & the final temperature. The heat capacity israldmental
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property of a substance. The units of heat capacity) K* or equivalently 3C*, since a change
in temperature of 1 K is the same € 1For a simple example, consider a hot stew. What
should you eat first to avoid burning your tongiie, meat or the potatoe? Both the meat and
potatoe start off at the same temperature and @ftegact with your tongue both end up at the
same temperature. However, the wise eater chobsesdat first because meat has a smaller
heat capacity than potatoe. The potatoe with thkdriheat capacity transfers more energy to
your tongue for a given temperature change. Thedageacity of water is atypically high, and
potatoes have higher water content than meat.

Heat Transfer Depends on the Type of Process: There are two general types of systems. For
open systems, processes can include transfersttdrmaenergy. For closed systems, processes
can include transfers of energy, but not transééraatter. We often depict closed systems as
being in closed containers. However, for shortqusiof time, a cup of coffee on the desktop can
be considered a closed system, as long as noisatievaporation occurs. If evaporation does
occur the cup of coffee is an open system. In addtb the amounts of materials, processes
often have other variables held constant.

Processes can occur at constant pressure, voturtesnperature. For example, any process
open to the atmosphere is at constant pressurep Afccoffee sitting on your desk is a constant
pressure system. Examples of constant volume sgstastude autoclaves, kitchen canning jars,
closed aerosol spray cans, and capped soda badttlesnost important chemical example of a
constant volume system is a constant volume caéiegnbomb, which is used for determining
internal energies of combustion. There are multiydgs of realizing a given type of process.

For illustrative purposes, however, we often drémged, constant pressure processes as being
confined in a cylinder by a perfectly-sealing masslpiston, with the piston in contact with the
atmosphere, Figure 7.1.2. Constant volume conditeaze maintained by a container with rigid
walls.
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Figure 7.1.2: (a). A closed, constant pressureqa®¢s depicted as confined in a cylinder by
a massless piston that is in contact with the apimexe. A cup of coffee and a reaction in a
beaker open to the atmosphere are examples. @imed|constant volume systems are
contained in sealed enclosures with rigid walls. Adiabatic processes allow no heat
transfer and are depicted in well-insulated comianA thermos bottle open to the
atmosphere is an example of a constant pressuabatii process.
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The general types of processes have special names:

Constant pressure, AP =0: isobaric processes
Constant volume, AV =0: isochoric processes
Constant temperaturAT = O: isothermal processes
No heat transfer, g=0: adiabatic processes

Processes in the human body are isobaric at amimiessure and isothermal at 3&8which is
310.0 K. Processes can be kept at constant tempefat being in contact with a constant-
temperature¢hermal reservoir. Constant temperature water baths are exampkbeohal
reservoirs. Energy exchange between the resemdithee system maintains equal temperatures.
The surroundings often act as the thermal resergmiing T = T, Barriers that allow thermal
energy transfer are calleliathermal barriers. Diathermal barriers allow the attainmant
thermal equilibrium. Foadiabatic processes no thermal energy is allowed to flowben the
system and the surroundings, so g = 0. Adiabaticgeses can be achieved through thermal
insulation of the system or by doing the processkdy before heat transfer takes place. An
insulating barrier is also called an adiabatic ilearAdiabatic processes can also occur at
constant pressure, Figure 7.1.2c, or at constdatne

The heat capacity depends on the conditionsiguhie process. The heat capacity for a
constant pressure process is different from thé d¢egzacity for a constant volume process. At
constant volume the heat transfer is given by:

o = G AT (cst. LCy) 7.2.2
and at constant pressure:
op=GAT (cst. RCp) 7.2.3

The subscripts specify that the energy transfearetthe corresponding heat capacity is
dependent on theath of the process, which in this case is either atart volume path or a
constant pressure path. Eqgs. 7.2.1-7.2.3 assuim@sgant heat capacity. Heat capacities are
functions of temperature for wide temperature ranger an infinitesimal transfer of energy:

dq=CdT dgy = G, dT dgp = G, dT 7.2.4

in general, at constant volume, and at constarsispre, respectively. These last equations are
integrated if the heat capacities are temperatependent. Thed” symbol for the infinitesimal
is used to highlight the fact that the heat tramstéis a function of the path. Solving these last
equations for the heat capacities gives the defimibf the constant volume and constant
pressure heat capacities:

dqv
dT
Heat capacities are extensive properties of a aabst The constant pressure heat capacity of
one gram of water is 4.179 J'fand the heat capacity of 10.00 g of water is 41.K9, at 25C.
An intrinsic measure of the heat capacity of a grx® is given by the molar heat capacity:
[
n

C,= cpz%? (cst. VorP) 7.25

C
Cym= Com=" (cst. VorP) 7.2.6



253

where n is the number of moles of the substancading by the amount normalizes the heat
capacity for the size of the system (see Secti®h Eor solutions or substances with an
unknown molar mass, the specific heat capacitisis aseful:

,SE% Cp,sz% (cst. VorP) 7.2.7
where w is the mass of the substance or solutiba.rifolar and specific heat capacities are
intensive properties. Tables are available for baphacities, especially those at constant
pressure, in standard reference wdrksfew examples are given in Table 7.2.1. The cmtst
volume heat capacity of monatongjases is G = %> R = 12.471 J K mol'* and the constant
pressure heat capacity is &= °/-R = 20.786 J K mol™ to within experimental error, except at
low temperatures near absolute zero. A compari$timecheat capacities of CO, g@nd for
then-alkanes shows that the heat capacity increaseghé@thumber of atoms in the substance.
Comparison of the solid, liquid, and gas formsdeveral substances is given in Table 7.2.2. The
heat capacity of the liquid phase is greater thraggoal to the solid, which shows that the liquid,
while similar to the solid phase, has more motiod ean store more energy. The heat capacity
of the liquid is greater than the gas, which shtves some energy is stored in intermolecular
forces thus increasing the heat capacity of theleosed phase.

Table 7.2.1: Constant Pressure Heat Capacities filew Substances at 298.2 K and 1'bar.

Substance & (J K'mol) Substance S (3 K mol")
He () 20.786 CHlli (9) 35.309
Xe (g) 20.786 G@Hs (g, ethane) 52.63
CO (9) 29.14 GHs (g, propane)  73.51
CO; (9) 37.11 GHio (g, n-butane) 97.45

Table 7.2.2: Constant Pressure Heat CapacitieBiffarent Phase$.

Substance Solid Liquid Gas

T (K) Com@K'mol) Cor@K'mor) Cpm (K mol®
Zn 693 30. 31.

1000 31. 20.8
Hg 234 28. 28.

500 28. 20.8
CO 68 52.9 60.2

80 60.7 28.9
H.O 263 38.09 75.291

298 75.291 33.58
CsHg, propane 85 52.7 85.

298 73.5

Heat transfer is also conveniently measurededsistive electrical heating Ohm’s Law
relates the voltage across a resistance R to thentudlowing through the resistance: V = IR.
The heat transferred from a wire or resistor witlrent flowing for time t is:
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q:fOtVIdt:fotlszt 7.2.8

where V, I, and R are often time dependent. Ifvibiéage and current are constant:
q=VIt=FRt (cst. V,1 & R) 7.2.9

Resistive heating is the most common referencaldsration method for heat flow. Resistive
heating is also commonly callddule heating For example, the heat capacity of a metal can be
simply measured by wrapping some resistance wirena the metal and measuring V, |, and t
as the sample temperature increases. Egs. 7.2.B.22dor 7.2.3 then give the heat capacity
over the temperature range; €q/AT or G, = /AT, depending on whether the system is at
constant volume or pressure. The heat capacitysofudion is often measured by immersing a
resistor in the solution and passing a known cuifi@ma given period of time, using the same
equations.

Heat capacities are functions of temperaturat bapacities increase with temperature for a
given phase. Heat capacities are often approxintatedpower series with four adjustable
constants, a, b, ¢, and d:

Com=a+bT+cT+dT (cst. P) 7.2.10

The coefficients, Table 7.2.3, are tabulated ind#ad reference worksin many cases, the’T
and T terms are negligible and can be dropped. The peees is just the Taylor series
expansion of the heat capacity as a function ofehgerature, expanded around T = 0 K (see
addendum Section 1.5). We often use power seransions of thermodynamic quantities.
Such expansions are useful because they provideamate determination of the variation of
the quantity, but the expansions themselves areeusssarily theoretically insightful or unique.
For example, many authors use the heat capacigneign: Gn=A+BT+C T
Thermodynamics is a very practical science. Thiedfean equation is its usefulness. If Eq.
7.2.10 accurately expresses the temperature depemdéthe heat capacity, then we will use it,
even though we may not have a theoretical justiboa

Table 7.2.3: Heat Capacity Coefficients for the &xgion: Gm=a +b T + ¢ T+ d T from
300 to 1800 K.

Substance a b C d
J K*molt 10°J K*mol* 10°JK®mol* 10°J K* mol*

N> (9) 28.883 -0.157 0.808 -2.871

0 (9) 25.460 1.519 -0.715 1.311

H, (9) 29.088 -0.192 0.400 -0.870

CO (g) 28.142 0.167 0.537 -2.221

CO; (9) 22.243 5.977 -3.499 7.464

H.0 (9) 32.218 0.192 1.055 -3.593

NH;3 (g) 24.619 3.75 -0.138

CHs (9) 19.875 5.021 1.268 -11.004
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Example7.2.1

Here is a review question from General Chemistuy,dme that highlights the important issues in
thermal energy transfer. A 12.11 g piece of alummrat 84.24C is dropped into 100.0 mL of
water at 20.2ZC held in a Styrofoam cup. Assume the system isim&lilated and neglect the
energy lost to the Styrofoam cup and the thermomaAfeer equilibrium is attained, the
temperature of the water is 21°85 Calculate the specific and molar heat capadigluominum.

Answer: The plan is to use the fact that§l= — gu. The heat lost by the aluminum and the heat
gained by the water are necessarily equal in magd@iand opposite in sign because heat transfer
is a process that transféhe given amount of energy from one object to laeiotThe heat
capacities are constant pressure heat capaciies tsie system is open to the atmosphere. The
molar heat capacity of water is 75.291 3 idol"*, Table 7.2.2. The density of water at 2@0

Table 2.2.1, is 0.9982 g riiL The molar mass of water is 18.02 g thahd of aluminum is

26.98 g mof. The specific heat capacity of water is:

C(H20) = G m(H20)/9Mz0 = 75.291 J K mol™* (1 mol/18.02 g) = 4.178 JKg™*

The mass of the water isw = thxo Vo= 0.9982 g mL* (100.0 mL) = 998.2 g.
The energy transfered as heat for the alumirsugiven by:

OaL = Wai CSADN(T 2 — Toa)

The energy transferred as heat for the watemigo = Wh.o Cs(H20) (T2 — T1 10)
Using G0 = — Qu gives:  Wi,o C(H20)(T2 — Ti ko) = — War C(AN(T2 — Toa)
Solving for the heat capacity for Al:

Cs(Al) == (Who/Wai) C(H20)(T2 — Ty r0)/(T2 — T1,a1)
= —(99.82 g/12.11 g)(4.178 J'Kj)(21.85C — 20.22C)/(21.85C — 84.24C)
=0.899J°C*g'=0.899 J K gt =0.900 J Rk g*

The result has only three significant figures si@g.0 = T2 — Ty v2o= 1.63C. The molar heat
capacity is then:

Co.m(Al) = CAl) 91y = 0.899 J K' g7(26.98 g mot) = 24.3 J K mol™*

The system in this example is the water and alumiritithe heat transferred to the Styrofoam
cup and the thermometer were included in this ¢aficun, then those transfers would be
combined and called the “calorimeter” and thaegp e Gta = — Gn and g = G AT. A separate
calibration experiment is necessary to find the lbapacity of the calorimeterc& This
calibration experiment is usually done using Jtndating with a resistor immersed in the
calorimeter.

Example7.2.2

A solution of 100.0 mL of 0.100 M HCl is held in arsulated flask fitted with a stirrer,
electronic thermometer, and a resistance heaferrtoa constant pressure calorimeter. A
current of 0.407 amp is passed through the heatel5.6 s. The voltage across the heater is
4.064 V. The temperature increases by ®C7Zalculate the heat capacity of the calorimeter.
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Answer: Using Eq. 7.2.9, the heat supplied by Jouleihgas:
g = VIt =4.064 V(0.407 amp)(45.6 s) = 753

Using Eqg. 7.2.5, assuming the heat capacity istaohsver the temperature range, gives:
Ceal = QIAT = 75.4 J/0.172 K = 438. J K

The heat capacity is labeled.,Gn these types of measurements to remind usltbdti¢at
capacity is for the solution, stirrer, thermometard heater combination. If a reaction is run in
the calorimeter the heat transfer for the reaaBagiven by g = — qa = — Ca AT. The definition
of the system for a reaction is just the bonds nzadibroken for the reactants and products.

The instruments that measure heat transfer aredcedllorimetersCalorimetry is the
experimental branch of thermodynamics. Calorimedegsavailable in an amazing variety of
forms, but the underlying fundamentals are all Hasethe concept of heat capacity. To
understand the operation of calorimeters, we adsulto cover some issues in thermal transfer
kinetics, which is a completely separate issue ftoenthermodynamics, but necessary and
useful none-the-less.

The Kinetics of Thermal Transfer: Thermal energy can be transferred by conduction,
convection, and radiation. Heat transfer is exg@ss a flux in units of joules per unit area per
second, J mMs?, or equivalently in watts per unit area, Wnsince 1 W = 1 J5 Thermal
conductivity can be expressed as a linear flux-force relatipngteferring to general pattern
02

3= gy 7.2.11

whereX is the thermal conductivity and dT/dx is the tenapeare gradient. Eq. 7.2.11 has direct
analogies to diffusion, Eq. 2.3.4, and electriaalductivity, Eq. 2.5.5. The units &f are

J m* K* s (see Problem 2.197hermal convective transferis also expressed analogously to
mass transport; the thermal flux is proportionahi® local velocity of the thermal transport
medium, which commonly is air, water, or ste@&adiative thermal energy transferis also
expressed as a flux-force relationship, but rackatiansfer is highly non-linear with
temperature. The total flux, which is the radia@rergy emitted per second per unit area by an
object, is given by the Stefan-Boltzmann law:

Jq,radiativez oT! 7.2.12

whereg is the Stefan-Boltzmann constant, 5.6704%18 m* K. A small temperature
difference between a hot thermal source (like tivd and an object results in a large rate of
energy transfer, because of the fourth power depresed In other words, every object, including
every human, is constantly losing energy by thession of infrared radiation. We will deal with
radiative thermal energy transfer in more detabaction 11.2.

Living systems are constantly exchanging themenargy with their environment. For the
human body in a resting state, conduction and adioreaccount for 15% and radiation
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accounts for 66% of the energy loss at@3The remainder of the loss, 19%, is through
evaporation of insensible perspiration, which anmstm 30 g water lost per holiAs a part of

the convective losses, only 3% occurs during bregthnsulated clothing on cool weather days
drastically cuts thermal loss rates largely by irbitiming air; air in the absence of convection is
a very good insulator.

Calorimeters are set up to avoid thermal transfeconvection and radiation. For example, a
thermal shield often surrounds the sample cell. tEhgperature of the thermal shield is carefully
controlled to match the sample temperature to ma@rboth radiative energy loss from the
sample and convective air currents. Calorimetaasuble a temperature controlled thermal heat
shield are called adiabatic calorimeters.

Let’s focus on heat conduction to find the terapire change for a system as a function of
time. Consider the simplest case of a solutioemerature T in thermal contact with its
surroundings at a constant temperatugg. We assume that the solution and the surroundings
are well mixed and uniform in temperature, Figu2 I.

A - A
T| T B To
o T
q Tsurr }IN Tsur N T O — _
"| |‘_ X time
0
(a). (b). (©).

Figure 7.2.1: (a) Thermal transfer by conductiome Temperature of the solution and the
surroundings are assumed to be uniform. (b). Tteface has a linear temperature gradient of
thicknessd. (c). The approach of the solution temperaturthéosurroundings is exponential.

Assume that the interface between the solutiontla@durroundings has thermal conductivity
a cross-sectional aregga and a linear temperature gradient with thickrdgggving dT/dx =
(T — Tsur)/d. The rate of thermal transfer is given by:

d K : :
Ectl = —Tﬂ (T — Tsun) (linear gradient)  7.2.13

(Also see Section 6.1.) The heat flow and tempegatbange are dependent on the heat capacity
of the solution; taking the time derivative of Eg2.4 gives:

dq_ . dT
e 7.2.14

where G is the heat capacity of the solution and T istémeperature of the solution. The change
in temperature of the solution is given from thatiteansfer by equating Egs. 7.2.13 and 7.2.14:

drT X : :
CPE = _Tﬂ (T = Toun) (linear gradient)  7.2.15
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Dividing this last equation by the heat capacitgl aoting that dT/dt = d(T —gJ)/dt, since the
temperature of the surroundings is assumed consgfi@as Newton’s Law of cooling:

— XK
= dthurr) = —(5 éD (T — Tsur) (linear gradient)  7.2.16

This differential equation corresponds to simplpanential behavior. By general pattéiri,
Eq. 1.3.24 gives the integrated form of Newtoniaaling as:

T — X
f (T — Taun) _ —f (—ﬂ) dt (linear gradient) 7.2.17
0

To (T - Tsurr) - 6 CP
XA
(T—Taun) = (To—Teu) € 0% (linear gradient)  7.2.18

where T, is the initial temperature of the solution ang,Is the temperature of the surroundings.
In other words, the temperature of the solutionragghes the temperature of the surroundings as
an exponential function of time.

The rate of thermal transfer is a widely usedcept. In the laboratory, the plot of temperature
as a function of time is often an exponential fiorcfor calorimetric experiments (See Section
8.6). For a practical example, building insulatischaracterized by an R-value, which is given
by R =&/. Now that we have an understanding of thermalggneansfer, we can discuss one
of the most commonly used forms of calorimetry.

7.3 Differential Scanning Calorimetry is a Highly &nsitive Measure of Heat Flow

Differential scanning calorimetry, DSC, monitorah&ansfers associated with phase transitions
and chemical reactions as a function of tempera®€s can be configured to work with
samples sealed in sample pans or solutions in sacefls. In a DSC experiment, the
temperature of the sample and a reference areasedeat a constant rate. The change in
temperature may induce various processes inclyzhage transitions and thermal
decomposition reactions. During the experimentténeperature of the sample and the reference
are kept equal by supplying heat to the samplelamdeference independently. The difference in
heat flow to the sample and the reference is recbes a function of time, Figure 7.3.1. Since
the temperature scan rate is constant, the tingecaxi be converted to a temperature axis. The
reference for solid samples is an inert materiahsas alumina, or just an empty sample pan. For
protein or nucleic acid studies in solution, thierence is usually just a buffer solution. The
sample and reference cells are operated at constsgure. Heat flowdc/dt, is given as Jsor
equivalently watts. The heat flow difference betwé®e sample and the reference is:

A = - 7.3.1
dt dt sample dt ref

Dividing this equation by the contact area of tample with its holder gives the differential heat
flux. The output plot from the instrument is calledhermogram. The differential heat flow is
positive for endothermic processes and negativexothermic processes. In an endothermic
process, heat is absorbed by the sample so thiatitv@do the sample is higher than to the
reference to keep the cells at equal temperatiresnples of endothermic processes include
helix-coil transitions in DNA, protein denaturatjafehydrations, reduction reactions, and some
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decomposition reactions. DSC is the only technitpaé can completely determine the
thermodynamic parameters involved in protein fajdiExothermic processes include
crystallization, some cross-linking processes, atxah reactions, and some decomposition
reactions. A change in heat capacity caused byaeptransition or other chemical process is
detected as a baseline shift, as indicatedq® in Figure 7.3.1.

sample reference .
P . Linear Temperaire Scal

l T dT
= _ -1
at - 20°C min

. Scan
AT I:Heater Control

sample reference 4\

power power
monitor monitor A%

time

endotherm

time or temperature

Figure 7.3.1: Differential scanning calorimetereTthangles represent amplifiers that
produce an output that is given by the differemcthe inputs. The sample heater power is
adjusted to keep the sample and reference at the sanperature during the scan. Typical
temperature scan rates vary from 0.5 téGifin’. Few samples show all three features
illustrated on the thermogram.

The instrument measures heat transfer, but rédeefrom General Chemistry that the heat
transfer at constant pressure is the enthalpy eéhforghe process. We will develop the concept
of enthalpy more completely in Section 7.8. For nowate that for a constant pressure process
Adgy/dt = AdH/dt, so the DSC thermogram is a direct measub®thf heat transfer and enthalpy
changes.

Heat capacities and changes in heat capacitheaetermined from the shift in the baseline of
the thermogram, Figure 7.3.1. The temperature sdarns:

dT
o =gt 7.3.2
Using Eq. 7.2.14, the heat capacity is given byhtbat flow divided by the scan rate:
t t
Cp= (?F) :%‘9 c?_T :Kd—clg(&) (constant P) 7.3.3

This equation can also be derived directly usirggdiain rule. In DSC the difference in the heat
capacity of the sample and the reference is detexani
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Cp(sample) - G(ref) = A(—qgj (Aﬁg) (dT) (constant P) 7.3.4

For a thermal transition, the integral of theasaabove the baseline gives the heat transfer for
the transition, Figure 7.3.2. To prove this, feehsider baseline subtraction. The heat transfer
before the transition is just a function of the thesgpacity of the sample and the reference from
Eq. 7.2.14:

A_qp

ampled_T efd_T
at =G

T ot (constant P) 7.3.5

where Co™"is the heat capacity of the sample in its injtiahse before the phase transition and

Cy'is the heat capacity of the reference.

dq dT dT d  erdT
2Hp _ sampleU | tr refU 1
Nt =G oGt eSO at

49,
N gt
Adqg sampl edT refdT

dt ’ dqb’rslseline sampledT refdT
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Figure 7.3.2: The solid line is a thermogram foy@ical melting transition or thermal
denaturation of a protein. The integral of the aeave the baseline gives the heat transfer
for the transition.

The phase transition is accompanied by a changeahcapacity),C,. For example, for a
melting transitionA,C, = Gy(liquid) — Gy(solid), Table 7.2.2. The value &fC; is given by the
baseline shift from before and after the phasesttiam, Eq. 7.3.4. Phase transitions are
endothermic and require an additional heat trandégr The total heat transfer during the
transition is then given by:

dgp _ ampledT dT djt_r ref AT
Nyt = Coo at TAC G o S ot (constant P) 7.3.6

where Co™and & are relatively weak functions of temperature coragdo the heat transfer
for the transition and the change in heat capdeityhe transition. After the transition, tidgy/dt
term is zero. The baseline before and after thesifian can be smoothly interpolated:

gbasellne ampledT dT ref d_T
A Coo +DeCo g - Cp gt (constant P)  7.3.7

whereA,C, increases from zero before the transition to ith@ thange in heat capacity as the
substance melts. Baseline subtraction then corneispim subtracting Eq. 7.3.7 from 7.3.6:

_Q gbasellne doy
Adt - at at (constant P) 7.3.8
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The heat flow after baseline subtraction is thest flne heat transfer for the transitidag/dt.
The integral under the DSC peak, above the basgjines the total heat transferred and the
enthalpy change for the process:

d
f_dqtt_r dt = g = AdH (constant P)  7.3.9

There are two types of DSC'’s, power compensddfg’s and heat flux DSC’s. We focused
on power compensation DSC'’s in this section. HeatDSC's place the sample and reference
in a single oven and measure the temperature eliféer between the sample and reference. The
heat flux is then given by Eq. 7.2.14. The heatcdp is calculated using Eq. 7.2.15. The
thermal conductivities are calculated from calilmatexperiments using a standard sample with
a known heat capacity.

Example 7.3.1:

The DSC thermogram for a sample from a commerabigthylene milk bottle is shown below.
The transition is the melting transition. The temapere scan rate was 26@min*. The mass of
the sample was 2.417 mg. The reference was an esaptgle pan. Calculate the enthalpy of
melting per gram and the change in specific hgaa@sy upon melting for polyethylene from
the following thermogram.

10¢ | 30¢ )time (s)
110 133. 14C T (°C)

Answer: The heat transfer for the melting transitiothis enthalpy of melting:

__405. mJ(ax18 J/mJ)_ _
AH=="""517aFg - 1684

We assume that the heat capacity of the referdmmeges slowly over the temperature range so
that the baseline shift results entirely from thelting transition. The temperature scan rate is
given as 20C min™ or 20 K min', since the centigrade and Kelvin degree sizeds#me. The
change in heat capacity, with units conversionttiertransition is given by Eq. 7.3.3:

AwCp = -1.25 mJ $(1x10° I/mJ)(1.00 min/20.0 K)(60 s/1 min) = 3.75XLDK*
The change of the specific heat capacity for thedition is the per gram quantity:
AyCps=3.75x10° J KY/2.417x10° g = -1.55 J K g*
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The heat capacity is expected to increase on rgelfiable 7.2.2. This observed decrease is
dependent on processing conditions and the regudggree of crystallinity of the polymer.

7.4 Work

There are many different forms of work. We firstdig on the mechanical work of gas
expansions and contractions, PV work. Every time gwhale, you are doing work against the
external atmosphere. Chemical reactions that coesurproduce gases, like respiration, also
involve the exchange of energy with the surrounslithgough transfers of mechanical work. The
general definition of work from physics is the egechange for displacement against a force, F.
For an infinitesimal displacement, dx, the work is:

dw = F dx 7.4.1
Integration gives:
w= [ Fdx 7.4.2

The path indication on the integral results becaus, like heat transfer, is dependent upon the
path of the process. For a constant force, thgiatgives w = Bx, Figure 7.4.1a. The change
in energy of the surroundings from work transfewig, = — w and from thermal energy transfer

IS Gsurr = — . By convention, quantities without an exiplisurr” subscript are for the system.
w = FAX Pex W = = R dV
dav >0
| | > X
X1 X
(@) (b)

Figure 7.4.1: Work is done as a displacement agjamspposing force. Picture yourself as
the system. (a) For a positive displacement of ssnrathe surroundings, your energy
decreases, w =/, where F < 0. (b). For an expansion, you pusinagée external
pressure, dV > 0, doing work, thus lowering youergyy,dw < O.

Now consider the work done by changes in voluGansider a gas confined in a cylinder by a
massless piston with cross-sectional area A. Ibath multiply and divide by the cross-sectional
area in Eq. 7.4.1, the result is:

F
dw =A (A dx) =— Ry dV 7.4.3
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where F/A is the external pressurgg,Rand (A dx) is the change in volume, dV. We nexbd
careful about the sign convention. We need to takesystem as the point of reference. If the
system does work, the change in volume is positive> 0, and thedw = — R, dV is negative.
The system’s energy must decrease to do the wetkid sign convention consistent with the
sign convention that we have chosen for heat tes@gfrom Eq. 7.2.1, dq is positive the
temperature of the system increases, showinglibagriergy of the system increases. Eqs. 7.2.1
and 7.4.3 have a consistent sign convention usiaghange in energy of the system as the point
of reference. The pressure in Eq. 7.4.3 is thereateressure because work is done against an
opposing force and the external atmosphere is nssiple for the opposing force. Some
examples will help make this distinction cleared atso show the path dependence of the
integral of Eq. 7.4.3.

Consider the isothermal expansion of a gas, Px. For the first example, assume that the gas
expands against the ambient atmosphere, whichaigamstant pressurgfPFigure 7.4.2a. Since
the external pressure is constant the integrabof7e4.3 is just:

w=- z Pext AV = — Ry (V2= V1) = — Ry AV (cst. T,Rq) 7.4.4
1

The process can be diagrammed in a plot of P v&fskgure 7.4.2b. The pressure of the gas
starts at a high value. When the stop is removegbtassure opposing the expansion is the
constant external pressure. The area under thelw is the negative of the work done by the
system.

For the second example, consider the expangiargas against a vacuum, Figure 7.4.2c. The
gas in the bulb on the left is defined as the sysiehe bulb on the left starts at a high pressure
and the bulb on the right is evacuateg; £ 0. When the stopcock is opened the gas expands t
fill both volumes. No work is done, because therea opposing force sincef= 0.

A
Pextz 1 bar P
—— '
V, P
st |
stop = ’Vl Pexi
W =— R AV
(a) (b) (©)

Figure 7.4.2: (a) Expansion against a constantexit@ressure equal to the ambient
pressure. (b). The work done in a constant pressyansion is the negative of the area
under the P-V curve. (c). An expansion againstcawen does no work because there is no
opposing force.

A third example is a two step process, wherddta external pressure is lowered by
successively removing two weights from the tophef piston, Figure 7.4.3a. The final step is an
expansion just against the external ambient presssiin the first example. The change in
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volume of the two-step process is the same asathgt@nt pressure expansion; the final state in
both cases is>= nRT/V,, where R is the ambient pressure. However, the two-stepga®does
more work because the intermediate step has eseg@abosing pressure. The work is the
negative of the sum of the two rectangular aremsiré 7.4.3a.

A logical extension of the two-step process jgacess that takes place by a sequence of many
small steps. For the fourth example, imagine a eugksand attached to the piston, Figure
7.4.3.b. A hole is drilled in the bottom of the katto allow the grains of sand to drop from the
bucket. The grains of sand replace the weighteandst example. As each grain of sand falls
through the hole in the bottom of the bucket, the gxpands against the external pressure
maintained by all the remaining grains of sand phesambient pressure. The initial and final
volumes and pressures are the same as in thexkspke, since we arrange the mass of the sand
to equal the mass of the two weights. However,nibis process does more work, because at
each stage of the expansion the system is expaadaigst the maximum possible pressure.
Because the expansion takes place in very smah stiee internal pressure of the gas is equal to
the total external pressure applied to the pidtooughout the process, P &PSuch an
expansion does the maximum amount of work poss$iblan isothermal process for a given
volume change. In the limit that the grains of shadome infinitesimally small, the system
remains at equilibrium throughout the process.

Pext = Pext = Pext = 1 bar
1 bar + 2mg/A 1 bar + mg/A

o0,

V | : SN | - =V,
atsly” g* b,

P]_'———I P]_-——

area = -w

PV =nRT

1bar]--- 1bard---

\I/l \./2 >V V]_ V2 ’V

(a) (b)
Figure 7.4.3: (a) A two-step expansion does morkviar the same overall change in
volume because the system expands against a ges&tenal pressure in the first step. (b)

The maximum work for an isothermal expansion isedimna sequence of reversible steps,
where P = B at each step in the process.
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If the process in Figure 7.4.3b occurs by a sage of infinitesimal steps, each step is readily
reversible; the change in volume for an infinitesimecrease in the external pressure can be
reversed by an infinitesimal increase in the pressureturn the system to its original state. In
other words, if the hole in the bucket is pluggedray point during the expansion, the system is
at equilibrium and remains at the given intermegiatlume. Referring to Section 1.2, we see
that this expansion is a reversible process. Theewa this reversible isothermal expansion is
that the process gives the maximum amount of wodsible. Substituting P =Rinto Eq. 7.4.3
gives the work of an isothermal reversible process:

w=-— vz P dv (reversible) 7.4.5
Vi
Because P =4, the course of the process for an ideal gas fallthe isotherm, P = nRT/V. The
work of an isothermal reversible process for amlidgs is then:

_ V2o _ V2 .
w = —f\“ NnRT/V dV = - nRT Ir’vl (cst. T, reversible)  7.£4.6

Our four examples, Figures 7.4.2-7.4.3, showwmak is dependent on the path of the
process. Such a variable is called a path funcilibe.general integral of a path function is
shown with the explicit path dependence as:

=—[  PeqdV 7.4.7
path

Our four examples, expansion against a constasspre, expansion against a vacuum, a two-
step process, and a reversible process, are diffgspecifications of the path for the integral. Of
these processes, you might think that the revergiticess is quite impractical, since emptying a
bucket of sand with infinitesimally small grains wa take an infinite amount of time. No
spontaneous process can be reversible. Howeversible processes give the limit of what is
possible. Knowing the absolute best that we cais dften a useful tool in evaluating the
efficiency of spontaneous processes.

7.5 Equations of State Specify the Mechanical Behar of Systems

The integral in Eq. 7.4.5 shows that the work dione reversible expansion is dependent on the
properties of the substance. The ideal gas lawimsiting approximation. All gases approach
ideal behavior as the density of the gas approantres n/V - 0. Gases deviate from ideal
behavior at high densities and pressures and edlyaonder conditions in which the gas can
liquefy. A useful equation of state for gases undederate conditions is the Van der Waals
equation of state:

(P + aszz) (V-nb) =nRT 7.5.1

where a and b are adjustable coefficients thatlarermined by fitting to experimental data. The
fact that the Van der Waals equation is a betfgresentation of the properties of a gas than the
ideal gas law is the only justification necessanyits use. However, a molecular interpretation
of the form of the equation is particularly usefdbnsider the (V — nb) term. The Van der Waals
b-coefficient is the excluded molar volume of thelecules. The ideal gas law corresponds to
gas molecules with no molecular volume and no hmtween the molecules. Real molecules
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occupy space so that some of the volume of theagwattis excluded for the motion of the gas.
The (-nb) term is a correction to the actual volwhthe container to give the volume an
equivalent ideal gas would occupy.

Figure 7.5.1: In the center of the container in@euular forces balance. Near the walls of
the container intermolecular forces are imbalamrediding a net decrease in pressure. The
force of collisions with the wall is decreased.

The Van der Waals a-coefficient takes into aotdlie intermolecular forces. Consider the
collisions of gas molecules with the walls of ateamer, Figure 7.5.1. The pressure of the gas on
the wall is given by:

P ~ (force per collision)(number of collisions igigen time) 7.5.2

At moderate densities intermolecular forces amaetite. In the center of the container, the
intermolecular forces acting on a molecule arerimdd because, on average, each gas molecule
is surrounded uniformly by other molecules. Howetee intermolecular forces near a wall are
imbalanced giving a net force away from the walieTorce per collision for a real gas is
smaller than for an ideal gas because of this iarza. The correction for this imbalance should
be a positive addition to the measured pressuge/éothe pressure that an equivalent ideal gas
would exert. The imbalance in the forces near thk i a function of the molar density of the
gas. At higher density there are more moleculesipérvolume and therefore more interactions
“pulling” the colliding molecule away from the wallhe number of collisions in a given time is
also a function of the molar density; more molesuiethe gas provide more collisions per unit
time with the wall. The net correction factor shibthen scale as the molar density squaded;
(n/V)2. The final corrected pressure is then given as &Rn/VY).

Typical values for the Van der Waals coefficgeate given in Table 7.5.1. The Van der Waals
b-coefficients are comparable for a wide varietynafiecules. The a-coefficients, on the other
hand, vary by orders of magnitude. Intermolecubacds are strongly dependent on molecular
size and structure. To judge the importance ottreection terms, consider one mole of
propane at 1.000 bar and 298.2 K. Assuming ideabghavior gives the volume as 24.79 L.
The correction to the volume from the Van der Waajgation is then just (—nb) = (-1
mol)(0.0905 L mof) = -0.0905 L. The volume correction is only -0.4% the other hand, the
correction for intermolecular forces using the af@oient is:

1 mol

2479 L7 0.01528 bar 75.3

2
(a%z) = 9.392 bar £ mor’
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or about a 1.5% correction compared to 1.000 bantt such moderate conditions, propane
shows significant deviations from ideal behavior.

Table 7.5.9%- van der Waals coefficierfts

Molecule a (bar Emol® a (atm Emol?) b (L mol?)

Helium 0.03460 0.03415 0.02373
Hydrogen 0.02465 0.2432 0.02667
Nitrogen 1.3661 1.3483 0.03858
Oxygen 1.3820 1.3639 0.03186
Water 5.536 5.464 0.03049

Ethylene 4.6112 4.5509 0.05820
Ethane 5.5818 5.5088 0.06514
Propane 9.3919 9.2691 0.09049
Benzene 18.876 18.629 0.11974

(D9S): Additional Valuesin the Appendix Data Section

Phase Diagrams Show the Behavior of Substances in Different Phases: The Van der Waals
equation does a reasonable job of reproducinge¢haior of gases, except at high densities and
conditions in which the gas can liquefy. The plbth® P-V behavior of C&is shown in Figure
7.5.2. The lines are plots of the pressure versitgnwe at constant temperature. Each line
corresponds to a different constant temperaturasacalled an isotherm. For low densities, the
behavior of the gas approaches ideal behavioright tiensities the gas can liquefy. Such P-V
plots are called phase diagrams when more thaplosee is possible. For example, consider a
gas confined in a cylinder by a piston at high woduand temperature 22@. We compress the
gas and monitor the pressure at constant temperaarthe volume decreases, the pressure
rises. As the volume decreases we reach point Aemduntinued compression is possible
without increasing the pressure; liquid is forminghe piston. The vapor pressure of a liquid is
only a function of the temperature; the vapor puesef CQ at 22.4C is 60 bar. As long as
both liquid and gas phases exist, any change imvelsimply changes the relative amounts of
gas and liquid in the piston. However, when alldhs is converted to liquid at point B, the
barrel of the piston contacts only liquid. Furtdecreases in volume require large increases in
pressure, since liquids are hard to compress. ddtkarms in the liquid region of the phase
diagram are steep.

The formation of the liquid corresponds to adrrdincrease in density from the gas phase
density and molar volume, Vgas to the liquid phase density and molar volumg,i/ The
region between these two molar volumes is calledogphase region. Liquid and vapor are in
equilibrium. As the temperature of the gas risles,molar volumes of the gas and liquid
approach each other. The point, at the top ofwlephase region, where the gas and liquid
molar volumes are equal is called tirégical point. Above this temperature the gas can no
longer liquefy. The pressure of the gas simply gesrsmoothly with changes in volume. The
critical point corresponds to one specific tempaatpressure and molar volume, F;, Vi c.
These critical properties are characteristic ofdiestance, Table 7.5.2.
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Figure 7.5.2: Phase diagram for £®he two phase region is outlined by the dashes li
Molar volumes in the two-phase region correspona naix of liquid and vapor at the vapor

pressure of the liquid.

The Van der Waals equation of state does a me&d® job of reproducing the behavior of the
system at temperatures above the critical poigtiféi 7.5.3. The inflection point of the critical
isotherm defines the critical point. However, thadtional form of the Van der Waals equation
is not capable of reproducing the sudden changdéseislope of the P-V curve at the edges of the
two-phase region. Instead, the Van der Waals eguatiows unphysical changes in pressure
with volume in the two-phase region. In the midofiehe two-phase region the slope of the P-V
curve becomes positive leading to the predicti@i the pressure would increase with increasing

volume.

Table 7.5.2: Critical Constants.
P, (bar) R (atm) Vinc (Lmol™)  T¢ (K)

helium 2.2750 2.2452 0.05780 5.1950
nitrogen 34.000 33.555 0.09010 126.20
oxygen 50.427 50.768 0.07640 154.58
water 220.55 217.66 0.05595 647.126
carbon dioxide 73.843 72.877 0.09400 304.14

propane 42 477 41.922 0.2030 369.85
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Figure 7.5.3: Van der Waals isotherms for,CQ = 30.99C. The portion of the isotherms
with a positive slope are unphysical.

A gas above its critical temperature is callediper-critical fluid . Super-critical fluids have a
smooth change in density as the volume is changed.property makes supercritical €O
useful for drying biological samples for electrorcrascopy. Super-critical CQOs also useful
for sample extraction for environmental sample prapon. This process is callsdper-critical
fluid extraction, SFE. SFE is the method used to decaffeinateng@affee. Super-critical
fluids can also be used as the mobile phase imzdiagraphy for substances that are difficult to
separate using normal gas chromatography andrdaiod amenable to liquid chromatography.
The temperatures and pressures in mid-ocean hymo#h vents are above the critical
temperature and pressure of water. Geochemical Isytmanineral deposition under these
extreme circumstances must treat water as a supiegkfluid.

The failure of the Van der Waals equation to elahses accurately at high density has led to
the search for more accurate equations of state.

More Accurate Equations of State:  The Redlich-Kwong equation of state is valictoa wider
range of gas densities than the Van der Waals iequait state:

2
n
(P + Am} (V-nB) =nRT 754

The A and B coefficients are given in Table 7.5\Bile this equation of state is more accurate,
the basic form of the equation is still not capaifleredicting liquefaction (The equation is still
basically a cubic equation in the volume).

There are many possible equations of stateryfn@accuracy. Each equation of state requires
a separate table of coefficients, which is incommein Johannes Diderik Van der Waals, in 1881,
decided to ask if there is some universal behatatr characterizes all gases, instead of simply
trying to derive new more accurate equations désta convenient method for finding the
deviation from ideal behavior for a gas is to defihecompressibility factor, z:

PV -
Z=pT giving PV =znRT 7.5.5
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Table 7.5.8: Redlich-Kwong coefficienfs

Molecule A (bar Emol®) A (atm Lmol®) B (L mol™)
Helium 0.07991 0.07886 0.01645
Hydrogen 1.4333 1.4145 0.01848
Nitrogen 15.551 15.348 0.02674
Oxygen 17.411 17.183 0.02208
Ethylene 78.512 77.486 0.04034
Ethane 98.831 97.539 0.04515
Propane 183.02 180.63 0.06272
Benzene 453.32 447.39 0.08300

(DS): Additional Valuesin the Appendix Data Section

For an ideal gas the compressibility factor is favaall pressures and temperatures. For real
gases the compressibility factor is less than ba#ractive forces dominate the non-ideal
behavior and greater than one if repulsive foraeaidate. The compressibility factor for &t
several different temperatures is shown in Figuseda. Separate plots are necessary for
different gases. However, Van der Waals noticetiglws of z as a function of R/Bnd T/T;
were almost identical for different gases. We defimereduced variables:

Pr=P/R Vr=VIV, Tr=T/T, 7.5.6

where R, V., and T are the critical parameters for the gas underideration. The effect of the
division by the critical parameters is to normalikze measured P, V, and T in a way that
removes the particular characteristics of the asther words, the critical parameters take into
account the differences that make He different f@nand Q different from CQ. The resulting
reduced variables show the universal behaviorlafades. The result is called thaw of
Corresponding States A plot of z for a variety of gases as a functodrthe reduced pressure
and temperature is shown in Figure 7.5.4b. Notie¢ to within 1% error all the gases follow the
same equation of state over a wide range of camditiNow we are getting somewhere; we only
need one plot to describe the properties of maffigrdnt gases.

Eq. 7.5.5 allows the compressibility factor ®odalculated from experimental data. However,
it is preferable to find a useful functional foror & instead of having to rely on plots such as
Figure 7.5.4. What is the functional form for z?théut additional information, at this point we
simply assume that we can express z as a powessgrst as we did for the heat capacity, Eq.
7.2.10. The compressibility factor is approximadsdca power series in the molar density:

7 z%: 1+ B(T)(%) +C(T) [3)2 +D(T) [3)3 _ 7.5.7

This equation is called tharial equation. The coefficients B(T), C(T), and D(T) are caltbe
second virial coefficient, the third virial coeffiaent, and the fourth virial coefficient,
respectively. One advantage of the virial equaisathat additional terms to higher order in the
density can be added for better accuracy, if necgsslowever, often the second and third virial
coefficients are sufficient for all but the mostrexne conditions. The virial coefficients are
functions of temperature; extensive tables arelavia, Table 7.5.4.
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Figure 7.5.4: (a) Compressibility factor for @@b). The compressibility factor versus
reduced variables shows universal behavior fordewariety of gases.

Table 7.5.4: Virial Coefficients at 298.15K.

Molecule B (L mol) C (L” mol®)
Helium 0.0113 1.21x16
Hydrogen 0.0141 3.50x10
Nitrogen -0.0045 0.001100
Oxygen -0.0161 0.001200

The power series form of the virial equatiojuist an example of a Taylor series expansion.
The expansion is around zero densitys x/V = 0, where the gas is ideal and z approathes
Comparing Eq. 7.5.6 to Eq. 1.5.16 gives the coeffits for the first two terms in the expansion:

df dz
f(XO) - Zln/V: 0— 1 and (dx)xzxo— (d(n/V))n/V:O - B(T) (CSt T) 7.5.8
B(T) is called the second virial coefficient becauitss the coefficient for the second term in the

Taylor expansion. You will show in your homeworlathif the virial expansion is truncated to
three terms, the virial coefficients and the Van\d&als coefficients are related by:

B(T) =b -7 and C(M)=b DM =0) 7509

The virial equation can also be written as aguoseries in the pressure by substituting
n/V = P/RT from the ideal gas law for the molar signinto Eq. 7.5.6:
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z :%’T: 1 +(BF§_TF)) =) +((CR(TT))2) P+ ((%TI)%) P+ ... 7.5.10

Gases may be adequately described using mdeyathit equations of state. However, few
accurate equations of state are available fordsjand solids. The mechanical behavior of
condensed phases is often specified using theicieatff of thermal expansion and the isothermal
compressibility. To discuss these parameters seriged to take a short detour to discuss partial
derivatives. We return to the ideal gas law assasifar our discussion.

7.6 Partial Derivatives Are Derivatives Taken Oné/ariable at a Time

The ideal gas law for a closed system is a funatfathree variables, P, V, and T. For a closed
system n is constant. We can display the idealayasis a series of plots. For example, consider
the volume as a function of temperature at congtaagsure, V(T), giving the plot in Figure
7.6.1.a. The most convenient and consistent wajotomulti-variable functions is with the
independent variable along the horizontal axistaeddependent variable on the vertical axis.
The independent variable is the variable that yantrol. For example, for V as a function of T,
you might control the temperature in the laboratsing a hot plate. The dependent variable is
the measured response of the system. The mosstamisivay to rearrange the ideal gas law to
coincide with the choice of independent and depeindariables is to isolate the dependent
variable on the left-hand side of the equation:

nR
V—(P)T 7.6.1

We can think of this last equation as being inftren of a straight line with slope (nR/P) and
zero intercept. Equivalently we can find the slogang the partial derivative:

(a—vj _NR (closed) 7.62

oT)p~ P
The dV and dT from single-variable derivatives em@laced byV anddT to remind us that we
are taking the derivative with respect to T whitdding all the other variables constant. We list,
as subscripts, all the variables that are being b@hstant. Except for the changes in notation, a
partial derivative is just like a regular derivaiwe take the derivative with respect to one
independent variable at a time.

A cst. P p A cst. V p

slope = nR/P
slope = nR/V

>T >T
(@). (b).

Figure 7.6.1: The ideal gas law with (a) V versust Tonstant P, (b) P versus T at constant
V, and (c) P versus V at constant T. The curvdis last plot is an isotherm.
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As a second example, consider the pressure plagtedunction of the temperature at constant
volume, Figure 7.6.1b. This plot corresponds t fha dependent variable and T as the
independent variable with:

R
P =(n7) T 7.6.3
This plot has the slope (nR/V), which we can alad tising the partial derivative:
oP R
(ﬁjv :nv (closed) 7.64

In the plot of P versus V at constant temperatkiiguyre 7.6.1c, the slope is harder to determine.
Isolating the dependent variable, P, on the lefégji

1
P = (NRT), 7.6.5

This function defines the isotherm in the plot. Taetial derivative that gives the slope of the P
versus V plot is:

oP NnRT
(OV)T =T VvZ (closed) 7.6%
Example 7.6.1:

Find the partial derivative of P as a function ofdv an isothermal process with a Van der Waals
gas.

Answer: We first need to rearrange Eq. 7.5.1 to isdla¢edependent variable on the left:

b - NRT arf
“V-nb~V?

We then hold n and T constant and take the deviwa@onsulting Addendum 1.5, we find:
d(2/x")  —n
dx ~x™
Then the partial derivative is given by:

(@j ___NRT 2arf
N)r ~ T (V-nbf V3

The mechanical behavior of liquids, solutions, aalids is often defined in terms of partial
derivatives with respect to the volume.
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The Coefficient of Thermal Expansion and the Isothermal Compressibility Describe the
Mechanical Behavior of Condensed Phases. Consider that the volume of a substance is a
function of temperature and pressure, V(T,P). Rbnitesimal changes in temperature and
pressure the change in volume is given by:

dv = @_\T/jp dT +@—\QT dP (closed) 7.6.7
This expression is called thetal differential of the volume. The first term on the right, for
example, can be interpreted as simply the changelime for very small changes in
temperature; the slope with respect to changempégature is the partial derivativé\/oT)p.

The second term is the analogous change in volomeefy small changes in pressure, dP.
(Please see the addendum, Sec. 7.11, for moreriafmm on partial derivatives and the total
differential.) The partial derivatives in Eq. 7.@Xpress fundamental properties of the system.
However, since V is extensive, the partial derwegidepend on the size of the system. To
tabulate information on a variety of substances fthctional or relative changes are used. The
coefficient of thermal expansions defined as:

a= % (a—V)P (closed) 7.6.8

The relative changes are intensive; they are inuiga of the size of the system, so they
express an intrinsic property of the system. Mty o by 100% gives the volume change on
a percentage basis. The coefficient of thermal esipa is also called thisobaric thermal
expansivity, since the derivative is taken at constant pressihe units ofr are just K. The
partial derivative of the volume with respect tegsure is also tabulated as a relative change:

Kt = —% (g_\F/))T (closed) 7.6.9
which is called thésothermal compressibility. The negative sign is included because the
change in volume with increasing pressure is negathus making overall positive and easier
to tabulate, Table 7.6.1. The units are’bar atmi*. Note that some texts uBdor the symbol,

Kt = . Botha andkrt are often called thieasic derivatives since all the mechanical derivatives
of a system can be expressed in terms afdkt. Substituting the definitions in Egs. 7.6.8 and
7.6.9 into the total differential, Eq. 7.6.7 gives:

dvV=VadT-VkydP (closed) 7.6.10

Table 7.6.9: The coefficient of thermal expansion and isoth&raompressibility at 2.

Substance o (K7 kt (bar')
Benzene 12.4x1H 90.9x10°
Water 2.57x1¢ 45.3x10°
Cu 0.500x1d 0.775x10°

Diamond 0.030x10  0.185x10
(DS): Additional Valuesin the Appendix Data Section
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Eqg. 7.6.10 is easily integrated to find the chamgeolume for any process in a closed system.
Before we proceed however, it is important to wetfifata andkr do give everything we need to
know about mechanical behavior. For example, howedind the change in pressure for a
change in temperature for a constant volume pr@cess

oP
- =2
(GTJV : (closed) 7.6.11
It is not obvious that this derivative can be expeal in terms af andkr. The key to finding the
relationship is to focus on the constant volumest@nt. For a constant volume process the total
differential of the volume is zero; from Eq. 7.6.7:

ov Vv
dv = (aij dT +(6P)T dP =0 (closed) 7.6.12
Subtracting the temperature dependent term froim &ides of the equation gives:
Y ov
(GP)T dP = aT)p dT (closed) 7.6.13

We can then solve for the differential of the ptess
7

—\oT P

oP )T

To find the partial derivative in Eqg. 7.6.11 weVidie” by dT and specify constant volume
conditions:

dT (closed) 7.6.14

™ (@
oP)T

(closed) 7.6.15

o) ot

We can relate these partial derivativesitandk by dividing the numerator and denominator of
this expression by the volume:

i(a_vj

P __V 0T)p o

(aT)V _—i (a—V) e (closed) 7.6.16
V 0P/t

The result is that the behavior of the system @axpressed as a function of oalyandkr.
Also note that this derivation is an example okg gartial derivative relationship, called the
Euler Chain Relationship that we will use many times. Partial derivativempalations are
summarized in the Addendum. Now that we know theartance of the basic derivatives, we
can integrate the relationships for finite changes.

The approach to integrating the basic derivatokepends on the size of the temperature and
pressure changes and the desired accuracy. Wilwgttate this issue for small changes,
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moderate changes, and very large changes. Corfisglesmall temperature changes at constant
pressure. For small changes the volume doesn'gelanch and we can set the volumes on the
right-hand side of Eq. 7.6.10 to the initial voluofahe system, \# V,. For an isobaric process
Eq. 7.6.10 reduces to:

dv=VadT (closed, cst. P) 7.6.17

Integrating from the initial temperaturg @nd initial volume ¥ to the final temperature T and
final volume V:

\/ T
f dv :f Voa dT (closed, cst. P) 7.6.18
Vo To

Assuming \4 anda are constants, the integrals give:

(V=Vo) =Voa (T-=Ty) or AV =V,aAT (closed, cst. P&, smallAT)7.6.19
We can also add Mo both sides of the equation to give:

V=Vo+Voa (T-T) (closed, cst. P&, smallAT)7.6.20

In other words, in this approximation the voluma ignear function of the temperature.

For moderate changes in temperature, we caonget assume that the volumes on the right-
hand side of Eq. 7.6.10 are constant. For modefrateges in temperature we can use a
successive approximations approach. Substitutingy B0 into Eq. 7.6.17 gives the following
approximation:

dV =[Vo+ Voa (T=Ty)] adT (closed, cst. P, modera&i€) 7.6.21
Integration then gives:

\/ T T 2
[T av=] VoadT+[ Voa®(T-T)dT  (closed, cst. P, moderai®)7.6.22
Vo To To

which integrates to:

Vo2
2

(V—Vo) =Voa (T—T) + (T — To)? (closed, cst. P& moderate\T)7.6.23
Notice that the first term is just what we found &osmall change in temperature. The second
term can be thought of as a correction term. Arrotlegy of looking at this last equation is that
we have found the first two terms in the Tayloiesexpansion of the volume change.

For large changes in temperature, we can takera accurate approach. Notice that Eq. 7.6.17
is in the form of aimple exponential process, general patterll 1, which we used so many times
in the chapters on kinetics. Separating variabhhesiategrating gives:

odT (closed, cst. P)7.6.24
(0]

Using general pattefd 1 and assuming is constant, we can write:

v =V, o (closed, cst. R 7.6.25
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You might wonder, if we can do the integral exaetlyy we bothered with the approximations?
Egs. 7.6.19 or 7.6.20 are often good enough forympanposes and display simple linear
behavior. Eq. 7.6.23 is better and is in a powgesdorm, which is often convenient for
calculations. Eq. 7.6.25 is best since it is aptlie over a wide range of temperatures, however,
the exponential form may be cumbersome for somieatens and the accuracy of the equation
may not be worth the extra complexity. This “gobéjiter, best” relationship also applies, for
example, to the accuracy of the ideal gas law\te der Waals equation of state, and the virial
equation of state. We often choose to use apprdiansgsimply for ease of use, if the situation
warrants.

Example 7.6.2:
Express the following partial derivative in ternfsooandkr:
(@j =7
ov)r
Answer: Notice that we can invert the partial derivative
oP 1
5
oP )T
. . .. [0V
Solving Eg. 7.6.9 for the new partial derivativ 9P =— VKt 7.6.27
Substitution back into Eq. 7.6.26 gives:
oP 1
Example 7.6.3:

Even though we normally useandkr to find changes in volume for condensed phases, it
instructive to finda andky for an ideal gas. Find andk+ for an ideal gas.

Answer: From Egs. 7.6.8 and 7.8:2

_1(ov _l(ﬁ)
A=viaT)p~VIP
Using the ideal gas law in the form PV = nRT anlss$iuting into the denominator of this last
eqguation gives:

_A(G_Vj 21
Y=Vt pTT

From Eqg. 7.6.9 fokt, we need to finddV/oP);. For the ideal gas V = nRT/P and
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(g_\F/’)T - _ﬁ;_r

Substitution back into the definition fef and substituting PV = nRT in the denominator gives

_ ;(a_v) _i(nR _1
Kr==vliep/y VI )7P

The equation of state for gases and alterngtivelndkt for condensed phases provide all the
information we need to determine the mechanicahtein for any system. For example,
consider a small change in temperature for a liguid solid in contact with the surroundings.
This expansion is at constant pressure with R=The work done, substituting Eq. 7.6.19 into
Eq. 7.4.5, results in an important equation in aogaaphy and atmospheric chemistry:

w=-— vz PdV=-PAV=-P\V,a AT (cst P&, smallAT) 7.6.29
Vi

7.7 The Zeroth Law of Thermodynamics Allows the Empirial Definition of Temperature

We have been using the concept of temperatub®ut carefully defining what we mean by
the term. In this section we briefly introduce soofi¢he important concepts surrounding the
definition of an empirical temperature scale. Fon@ment, please forget that we know anything
about the concept of temperature.

The hotness of an object is a sensation wettliregperience through touch. We need to
develop a corresponding thermodynamic measurernantorrelates with our sensation of
hotness. Thermometers are an empirical way of uhgfithis variable. But, how can we be sure
that thermometers measure hotness in a meaningfg® Whe basis for the development of the
concept of temperature and of thermometers igéreth Law of thermodynamic& Consider
two objects, A and B, that are brought into theromaltact. By thermal contact we mean the
objects can exchange energy through a diathermaébto achieve thermal equilibrium. Our
experience tells us that at thermal equilibriune, tiko objects will be equally hot. Now consider
a third object, C. The Zeroth Law states that dd B are found to be at thermal equilibrium
and if B and C are found to be in thermal equilibrj then A and C must also be in thermal
equilibrium. In addition, since we can use the kemof an object to judge thermal equilibrium,
we can state that if A and B are equally hot, arahB C are equally hot, then A and C must be
equally hot. We can now use object C as a thermemmEhe hotness as measured by object C
can be used to compare any two systems, even tivihgystems are very different in size and
composition. But how can we physically measure &sdf? Are pressure and volume measures of
hotness?

Consider a gas, confined in a cylinder by agpisin thermal equilibrium with the
surroundings. Boyle’s Law establishes that theg,Pxoduct of an ideal gas is a constant for a gas
in thermal equilibrium with its surroundings:

PVn, = cst (ideal gas, thermal equilibrium)7.2°

with V, the molar volume. We can vary the pressure angiwelof the gas over a wide range of
values, while keeping Byequal to a constant. But as long as the gas renaihermal
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equilibrium with the surroundings, we know that ges stays at the same hotness. So, separately
neither pressure nor volume measure hotness. Hoywegeknow that the product of pressure

and volume, PY, always increases as the gas gets hotter. Théarwms Boyle’'s Law is small

for cold systems and large for hot systems. Weusagnany measurement that correlates with our
sense of hotness as a thermometer; the expansanwds the basis for the first thermometer.
Then using an ideal gas as a thermometer, we daredbe P\, product as being proportional

to the empirical temperature,

PVn=cst=R@ +C) (ideal gas) 71.7°2

where the proportionality constant, R, and the tamt€ must be fixed by experiment. Eq.
7.7.2 provides an equation for the temperature in twknowns. To complete the definition of
the empirical temperature scale we must chooseatbitrary fixed points, giving two equations
in two unknowns from which we can calculate R &xd he absolute temperature scale is most
convenient because then we Get 0 andd = T in kelvins. The constant R is then evaluated b
arbitrarily choosing the freezing point of waterlaatm as 273.15 K, which is the basis of our
calculations for R in Section 1.3.

Carefully measuring the pressure and volumegzsais not a particularly convenient or
portable means of measuring temperature. So subsetuthe development of the gas
thermometer, alcohol in glass and then mercuryaasggthermometers were developed and
calibrated against the ideal gas thermometer. Aorking substance or property can be used as a
thermometer, as long as the equation of statecisrately known. With temperature defined we
can now return to the Zeroth Law of thermodynanaieg state that if systems A and B are at the
same temperature and if systems B and C are aathe temperature then systems A and C will
be at the same temperature. Any of the three sgst&nB, or C, may be chosen as a
thermometer. The empirical definition of temperatisgr essentially: “temperature is the property
measured by a thermometer.” Temperature is theseacgvariable for assessing if two systems
are at thermal equilibrium. The relationship of émapirical temperature to P and V is
established experimentally by the equation of sthtee substance. We will develop the more
fundamental and direct thermodynamic definitioneshperature in Chapter 10 when we
introduce the concept of entropy. (See also Proldléror more information about the ideal gas
thermometer).

7.8 Heat and Work Are Path Functions, but InternalEnergy Is a State Function

We depend on thermodynamic systems to heat our fidmenake electricity, to power our
automobiles. The heat and work available from tloelynamic processes power our society and
drive processes in nature, including chemical cbakipw much heat and work are available
from a thermodynamic process? We need to do autaetounting of all the energy effects to
be able to understand and predict the outcomeffefreint processes. Let’s start with several
simple illustrative processes. Consider a cappeitisulated container of hot coffee, which is
hotter than the surroundings, Figure 7.8.1a. Heatinsferred from the hot coffee to the
surroundings. Where does the energy come fromz3ieat is a transfer of energy, if the
surroundings gain energy the system must lose gngyg = — q. However, since we assumed a
capped container there is no change in volume angank done, w = 0. Now consider a gas at
high pressure confined in an insulated cylindeabynsulated piston, Figure 7.8.1b. When the
stop is removed the system expands, doing workemsarroundings. Where does the energy
come from? Since work is a transfer of energyhéf surroundings gain energy the system must
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lose energy, wir=— wW. However, since the process is adiabatgyragig an insulated piston,

the heat transferred must be zero, q = 0. In bases the energy transfers come at the expense of
the system. A hot container of coffee has the tgtih transfer heat and a gas at high pressure
has the ability to do work. The ability to do warkpurely mechanical systems is called the
potential energy. We can define a parallel contapthermodynamic processes, the internal
energy. Thenternal energy of a system is the ability of the system to transhergy in the

form of heat and work. But, what is the interna¢egy?

AU =q,
Osur=—4(
T hot
AV=0, w=0 adiabatic, q=0
(a) (b)

Figure 7.8.1: (a). A hot, closed, constant voluysteam with diathermal walls transfers heat
to the surroundings with no work. (b). A high pra®s closed system with adiabatic walls
does work on the surroundings with no heat transfer

Consider another simple example. Assume yowtlarbattery across the room. The total
energy of the battery is given by:

E = % mv? + mgh + U 7.8.1

where m is the mass of the battery and the firgt is the kinetic energy of the overall system,
the second term is the gravitational potential gneand the third is the internal energy of the
system. The symbol U is used for the internal epevglifferentiate it from the total energy of
the system, E. The internal energy includes allhgs the system can have energy, except for
the overall kinetic and gravitational energy of ffystem. The internal energy is sum of the
average kinetic and potential energy of all ofdb@ms and molecules that make up the system.
The internal energy includes the translationahtiohal, vibrational, and electronic energy of the
molecules plus any energy due to intermolecularef®rFor the constant-volume hot coffee
example AU = q,, and for the adiabatic high pressure gas examples w. What happens in the
general case when both heat and work transfenscssble?

The internal energy is given as the sum:

dU =dq +dw 7.8.2

Eq. 7.8.2 is the mathematical statement ofRingt Law of thermodynamics. Heat and work are
dependent on the path of the process. Howeverategpexperiments have shown that the sum
of the heat and work transfers is independent@ptith. The path independence of the internal
energy is remarkable. A function that is indepemnaénhe path of the process is called a state
function. Other examples of state functions incl@d&/, T, S, and density. The change in a state
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function for a process is only a function of thetiah and final states of the system, hence the
name. The First Law can then also be stated asrfiat energy is a state function.” Another
common statement of the First Law based on Eq2 7s&hat “the only way of changing the
internal energy of system is through transferseaittand work.” But, how can the sum of two
path functions give a function that is independsrihe path?

The heat transfer and work done by a given @®eaee not independent; they both depend on
the path of the process. For a given initial andlfstate, the First Law implies that for different
paths the heat and work transfers compensate ¢otiggvsame overall change. The consideration
of cyclic processes is often a useful way to putneugh thermodynamic relationships.

A cyclic path begins and ends with the same initial and firatlestFor any state function, the
result of a cyclic process is no net change. hiqaar for the internal energy:

ﬁ du =0 7.8.3

The integral sign with the “0” indicates an integvaer a cyclic path, Figure 7.8.2a. What might
happen if internal energy weren't a state functibm@roving a statement we often assume the
converse and work through the ramifications unéla@@me to an impossibility. Having reached
an impossible condition we must conclude the oabassumption was wrong. Assume that the
internal energy is not a state function, which theplies that Eq. 7.8.3 does not hold. A cyclic
process for a gas expansion and contraction insedlsystem is diagrammed in Figure 7.8.2b,
assuming U is not a state function.

U A U A
U;]_I __-i
U |- ; (P2, T2)
\'/1 \I/z vV
(a) U is a state function (b) If U assumed nstade function

Figure 7.8.2: A cyclic process for a closed syst@nThe change in internal energy for a
cyclic process is zero. (b) Assuming the conveza€es to the possibility of perpetual motion.
An increase in energy during the cyclic processhiniig able to do useful work with no
other change in the system id the initial internal energy and,'Us the final internal

energy.

If the integral for the cyclic process is not zdte internal energy will be different upon
completing the cycle. This difference in internakegy might then be available to do useful
work. In other words, on taking the system fromratial state at B, V1, and T and returning
the system to that same state, energy might beupeald The net result is the production of
energy with no change in the system. Such a prdwessever been discovered and would
constitute perpetual motion, which we know from ex@nce to be impossible. Therefore, our
original assumption that the internal energy isastate function must be incorrect. Perpetual
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motion that violates the First Law of thermodynasng called perpetual motion of thest
kind.

Internal Energy is Conserved: EQq. 7.8.2 also shows that internal energy iseoved. For
example, for an isolated systedq, = 0 andiw = 0 giving dU = 0. So another statement of the
First Law is that “the internal energy of an iselhystem is constant.” Another way of noting
the conservation of internal energy is to consttlerinteraction of a system with its
surroundings. By the nature of heat and work assfeais of energydgsur = —dq anddwsyr = —

dw, which necessarily gives dl4 = - dU by Eq. 7.8.2. The corresponding statemetiteoFirst

Law then follows, “the internal energy change @& sturroundings is equal in magnitude and
opposite in sign to the internal energy changdefsystem.” The internal energy is a
fundamental property of the system that keeps tohtke energy changes for the system and the
interrelationship of the system with its surrourgdin

The Change in Internal Energy isthe Heat Transfer at Constant Volume: How do we calculate
changes in internal energy for simple processegemeral for a closed system with no non-PV
work, we can substitute Eqg. 7.4.3 into the defomitof the internal energy in terms of heat and
work transfers:

dU =dq +dw =dq — RxdV (PV work only) 7.8.4

Note that “PV work only” implies a closed systenmce the work of chemical change is a type
of non-PV work. For constant volume processes dVand this equation reduces to:

dU =daq, (PV work only, cst. V) 7.8.5
This result is important. This result shows, assy®V work only, that the:

|heat transfer for a constant volume process is thaternal energy change|

For changes in temperature at constant volumeciaseed system, the heat transfer is given by
Eq. 7.2.4 and substitution for the constant volymaeess into Eq. 7.8.5 gives a particularly
simple result:

du =G dT (PV work only, cst. V) 7.8.6
Or using the definition of the heat capacity froop E.2.5, substitution of Eq. 7.8.5 fig, gives:
ouU
(—j =G (closed, cst. V) 7.8.7
oT )y

The convention is to use th&™“symbol for path functions and thé
in partial derivatives. Eqs. 7.8.6 and 7.8.7 inabgto:

symbol for state functions

fuz du=("c,dT (closed, cst. V) 7.8.8
U1

T1

AU = U Uy = [ :2 C, dT (closed, cst. V) 7.8.9
1

If we assume a constant heat capacity over thedehpe range, Eq. 7.8.9 gives:
AU =C, AT (closed, cst. &C,) 7.8.10
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In other words, for a constant volume processdlogsed system the internal energy is directly
proportional to the temperature change.

The Change in Enthalpy is the Heat Transfer at Constant Pressure:  We work at constant
pressure more often than constant volume. Whaeiséat transfer for a constant pressure
process? Consider a gas held at constant pressareylinder by a piston, Figure 7.4.2a, with a
change in volume from Mo V.. The gas is held at constant pressure by conidictie
surroundings, P =&. The internal energy change for the process is ¢finven by Eq. 7.8.4 with
P = Rx:

AU=U,-U =¢-P M-V (PV work only, cst. P)  7.8.11

where @ is the heat transfer at constant pressure. Sofeinthe heat transfer at constant
pressure gives:

p=U-U +P M-V (PV work only, cst. P)  7.8.12
We can rearrange this expression to group togétledinal and initial states:
Op=U+PVWV)—- (U +PV) (PV work only, cst. P)  7.8.13

Since we often work at constant pressure, we stgipaicthis combination of terms will occur
repeatedly. For convenience, we define a new théymaimic function, the enthalpy, as:

H=U+ PV 7.8.14

where P and V are for the systemot the surroundings. The enthalpy is a statetion because

U, P, and V are state functions. The enthalpyse aktensive, because U and V are extensive.
For a general process with P, V, and T possiblgtainging, the change in enthalpy from state 1
to state 2 is:

AH=H,—H = (U2 + R V) — (Ui + P Vy) 7.8.15
which is only a function of the two states of tlystem. The equation can be rearranged to find:
AH = (U, =U))+ (P, V2 — P V) =AU + A(PV) 7.8.16

The enthalpy is particularly useful for constarggsure processes, where Egs. 7.8.15 and 7.8.16
reduce to:

AH =AU + PAV (cst. P) 7.8.17
Comparing Egs. 7.8.13 and 7.8.17 we find that:
AH =g, (PV work only, cst. P)  7.8.18

This result is important. This result shows, assgiV work only, that the:

|heat transfer for a constant pressure process is ¢henthalpy changd

The internal energy and the enthalpy changes caalbalated for any process. However, at
constant volume the internal energy has a simpknig and at constant pressure the enthalpy
has a simple meaning. For example, for a calorintbtg operates at constant volume, the heat
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transfer gives the internal energy change direé&ity,7.8.5. For a calorimeter that operates at
constant pressure, the heat transfer gives thalpytobhange directly, Eqg. 7.8.18.
The differential form for infinitesimal changesenthalpy from the definition B U + PV is:

dH = dU + d(PV) 7.8.19
The differential of the PV product can be takemgghe product rule. For a general process:
dH =dU + PdV + VdP 7.8.20

For a constant pressure process dP = 0, and #tieekult reduces to the differential form of Eq.
7.8.17:

dH = dU + PdV (cst. P) 7.8.21

In general dU =iq +dw. A constant pressure process with Pez itvesdw = — P dV.
Substituting dU =iq — P dV into Eq. 7.8.21 gives:

dH =dq +dw + PdV =dq, + — P dV + PdV =g, (cst. P)  7.8.22

which is a general proof in differential form of E68.18.

We can now use Eg. 7.8.22 to find the changmthalpy for a change in temperature in a
closed system. The heat transfer is given by Ej4 ‘&nd substitution for the constant pressure
process into Eq. 7.8.22, dHdg), gives a particularly simple result:

dH =G dT (PV work only, cst. P) 7.8.23
Or using the definition of the heat capacity froop E.2.5 gives:
oH
(ﬁ)p =G (closed, cst. P) 7.8.24
Egs. 7.8.23 and 7.8.24 integrate to:
["dH=["cydT (PV work only, cst. P)  7.8.25
Hi T1 T
AH = Hy-Hy = [ 7 C,dT (PV work only, cst. P)  7.8.26
T1

If we assume a constant heat capacity over thedeahpe range, Eq. 7.8.25 gives:
AH = G AT (PV work only, cst.&Cp) 7.8.27

In other words, for a constant pressure proceascinsed system the enthalpy change is directly
proportional to the temperature change. We carsos® other simple examples to help
understand the meaning of enthalpy.

Consider the difference between the enthalpyth@dnternal energy for an ideal gas at
constant pressure using Eg. 7.8.16. The changelume can be calculated by noting that for n
moles of an ideal gas in a closed system:

A(PV) = nRAT (ideal gas, closed) 7.8728
Substituting this last result into Eq. 7.8.16 gives
AH =AU + nRAT (ideal gas, closed) 7.8%29
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Example 7.8.1:

Calculate the change in internal energy and emytfalpthe constant pressure expansion of one
mole of ideal gas as it is heated from 298.2 K38.2 K at 1.00 bar. Assume the gas is
monatomic; monatomic gases have a constant prelssateapacity of = *l,nR.

Answer: The plan is to use Eq. 7.8.27 to find the emtyp@hange, since the process is at
constant pressure, and then use the definitiomtbiadpy to find the internal energy. We have
two choices for the relationship betwesd andAH, Eq. 7.8.17 or Eq. 7.8.29We will use both
to verify that they give the same result. Using E§.27 for one mole of gas:

AH = C, AT =/, nRAT =°/, (1 mole)(8.3145 J Kmol™)(398.2 K — 298.2 K)
= 2078 J = 2.078 kJ

The initial and final volumes for the ideal gas:are
_nRT; _ (1 mole)(0.083145 L bar Kmol')(298.2 K)

Vi=—p (1,00 ban) =243 L =24%x10° m’
RT, (1 mole)(0.083145 L abr Kmol%)(398.2 K
Vy= L P 2 _ (1 mole)( a ooabarr) mor)( )- 33.11 L= 3.31x10° m®

or AV = (3.311x10% m*- 2.48x10% m*) = 8.3x10° m°.
Rearranging Eq. 7.8.16 for this constant presstoegss to find\U gives:

AU = AH — PAV = 20786 J — (1.00 bar)(1xTtPa/1 bar)(8.3«10° m°)
=2078&J-83J=124.J=1.25kJ

Now, let’s try working from Eq. 7.8.29

AU =AH-nRAT = 20786 J + (1 mole)(8.3145 J Kmol*)(398.2 — 298.2 K)
=207&J—831.5J=1247.J=1.25kJ

Both equations give the same result. Now why igriternal energy change smaller than the
enthalpy change for this expansion? Since the xja@nels on heating, the gas does work, which
lowers the internal energgw = — P dV < 0. However, dH = dU + PdV for a comstaressure
expansion and PdV =dw > 0. So the enthalpy change is bigger than ttenial energy change
by the negative of the work of expansion.

How does the enthalpy change for processes thatdahange in pressure? The enthalpy
change for a reversible process is given by suibistif Eq. 7.8.4 with P =42 into Egs. 7.8.20:

dH =dq — PdV + PdV + VdP =iq + VdP (reversible, PV work only) 7.8.30
For a reversible adiabatic proceiss= 0 and the last equation simplifies to:
dH = VvdP (reversible adiabatic or isolates work only) 7.8.31

The last equation also holds for an isolated systieice substitution afg = 0 and dV = 0 into
Egs. 7.8.4 and 7.8.20 gives the same result. ker atrds, the enthalpy change can be
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calculated for many different processes, but thikadpy change is the heat transfer only for
constant pressure processes. In addition, theexaxhple shows that the enthalpy change with
pressure is small for solids and liquids.

Example 7.8.2:
Calculate the change in enthalpy for 1.00 mol afewat 28C for a change in pressure of 10.0
bar in a reversible adiabatic process.

Answer: One mole of water has a volume qf ¥ 91/d = 18.1 mL at 2%C. Using Eq. 7.8.31, the
change in volume is small for the pressure chasgéy a good degree of approximation we can
consider V a constant giving:

AH = VAP = 0.0181 L(1 fi1000 L)(10.0x18Pa) = 18.1 J

This change is negligible compared to the changesthalpy for typical phase transitions and
chemical reactions. So the pressure dependenbe enthalpy for liquids and solids is often
neglected.

Enthalpy is Not Conserved: Internal energy is conserved, but enthalpy iscooserved.

Consider an isolated system as an example. Faotated system internal energy is conserved,
that isAU = 0. However, Eq. 7.8.31 shows that the enthalgnge is non-zero if the pressure of
the system changes. In addition, the enthalpy ah&mrgthe surroundings is not necessarily equal
in magnitude and opposite in sign to the enthalnge for the system. So while both internal
energy and enthalpy are state functions, only malegnergy is conserved. This result
underscores the fundamental importance of thenatemergy.

Heat, work, internal energy, and enthalpy prevaccareful accounting of the energy changes
accompanying a process. This accounting is mostilesed interesting for chemical purposes
when we consider non-PV work. Sources of non-PWwal be critical as we consider
chemical reactions, applications in biochemistngd anergy-related areas.

7.9 Systems Do Many Different Kinds of Work

The equation dU dq + dw is applicable to any kind of work. So far we havay explicitly
considered the work of expansion, Eq. 7.8.3. Theegd form,dw = F dx, can be applied to
other kinds of work as well, giving the changenternal energy as:

dU =dq — RxdV + F dx 7.9.1

Work against surface tension is an example. Consideibble with surface area Figure
7.9.1a. For a given change in surface area the isaiven by:

dw =y do 7.9.2
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wherey is thesurface tension Surface tension results from the imbalance afdsrat an
interface and therefore is a function of the prapsrof both of the phases that are in contact,
Table 7.9.1. The units of the surface tension Aré dr equivalently N/m.

d o238 $550
do = 8nrdr &?%go%%o%:%
or "o

Fromrtor +dr “Jﬁffng

a. b.

Figure 7.9.1: Surface tension arises from the i@ of intermolecular forces when two
phases come in contact. (a). When a bubble expanontracts, work is done against the
interfacial tension. (b). A phospholipid bilayerasother example of a system that can do
interfacial work.

Table 7.9.1: Surface tension for several phasesmitact.

Interface y (MN/m)
water/air 72.8
ethanol/air 22.3
hexane/air 18.4

hexane/water 51.1

The change in internal energy when PV and inteafacork are possible is then given by:
dU =dq - RydV +ydo 7.9.3

This formulation holds for any interfacial regidar example the surface of a rain drop. Free
droplets of water are spherical to minimize thenface area, which lowers the internal energy
with respect to interfacial work.

Another example is the work ektension which is applicable to any elastic medium.
Examples include springs, rubber bands, and mustheswork of extension, Figure 7.9.2a, is
given by

dw="fd 7.9.4
N —
L e O Y
> dr

Figure 7.9.2: (a). The work of extension for arsgabody,dw = f di. (b). Work against
gravity,dw = mg dh.
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Similarly work against gravity is given by the madshe object, m, the acceleration due to
gravity, g, and the change in height of the objdbt,Figure 7.9.2b:

dw =F dh =mg dh 7.9.5

Another important form of non-PV work is electai work. Consider a change in charge, dq
in a region with electric potentigl The work done is given by:

dw = @dg 7.9.6

The unit of charge is coulombs, C, and the undlettric potential is volts, V, with 1 J=1C V.
The corresponding change in internal energy wh@amesion and electrical work are possible is
then given by:

dU =dq - RdV + @dg 7.9.7

o0| T nro

Figure 7.9.3: Electrical work is done when n maésns of charge;zare moved into a
region with electric potenti@. For Nd, z. = +1, and for CJ z = -1. You can picture the
electric potential difference as being establisbyed battery or other voltage source.

We often work with ionic species in solution. Catesin moles of ion type i. For ions with
charge zthe differential of the charge is given by:

dg=ze Nadn 7.9.8

where e is the elementary unit of chargee)as the charge on the ion in coulombs per ignisN
Avogadro’s number, and dis the change in number of moles of the ion. Thal tharge of one
mole of elementary charges is given by the faraday:

1F=e N =1.602176x10° C (6.02214x1# mol') = 96485.3 C mat 7.9.9
Substituting this identity into Eq. 7.9.8 gives:
dg=zFdn 7.9.10

The electrical work done by placing a chargerzn moles of ions in a solution at constant
electric potentiatpis then given by the integral of Eq. 7.9.6:

Z F n N
w = @dqg :f zFoedn =znFo (constantp) 7.9.11
0 0
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The work of transferring Ndons across the membrane of a neuron is a goodggaf
electrical work. The work done by the transfer afneles of ions between solutions at different
electric potential is given by Eq. 7.9.6:

w=2zn FAQ 7.9.12

whereA@is the difference in electric potential betweea tivo solutions. A schematic diagram
of a neuron and the corresponding plot of the atepbtential is shown in Figure 7.9.4.

[INa'Tin < [NaJout ¢

AQ = @n — Qout
=-70 mV

Figure 7.9.4: A neuron in its resting-state hasaalignt of N4, K*, and C4" ions across the
membrane, which results in an electric potentifiecince. The concentration of Nautside
the cell is greater than the concentration inggecell.

The resting-state electric potential differencenasra neuron is approximately -70 mV,;

AP =@, — @u = -70 mV. A nerve impulse is caused by the rapidsh or outrush of NaK”,

and C4" ions across the membrane, which depolarizes tmebmame. The electrical work done
in transferring a mole of Ndons across the membrane is given by Eq. 7.9.13:

Na" (outside)—~ Na’ (inside)
Welec = (+1)(1 moj(96485 C mot)(-0.070 V) =-6.75kJ  (electrical work only) 7.9.13

The sign is negative because in this process ttersydoes work, lowering the system’s internal
energy. Batteries are also good examples of etattrork.

Table 7.9.1. Non PV-work.

Type work change in internal energy
Surface tension  dw =y do dU =dq — RydV +y do
Extension dw=-fd dU =dqg - RydV —-fd
Gravity dw =mg dh dU =iq — RxdV + mg dh
Electrical dw = ¢ dg dU =dq - RxdV + ¢ dg

dw =2z Fo@dn dU =dq — RxdV + z Fodn

Chemical dw = dn dU =dg — RydV + 1 dn
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The most important type of work for chemistghis work of chemical chandeChemical
synthesis is one particular example of chemicakw@Ghemical work can also be expressed in
the general form of a force multiplied by a disglaentdw = F dx. For a single component i,
the chemical work is expressed as:

dw = dn (one component) 7.9.14

where the generalized force is called themical potential W, and the displacement is the
change in number of moles of the component. A gradn the chemical potential is the force
for chemical change. We will have much more toaagut chemical work. However, we need to
discuss entropy and free energy before we can lbe precise. The various work terms are
summarized in Table 7.9.1.

7.10 Summary — Looking Ahead

The First Law of thermodynamics allows careftd@unting of the energy changes in chemical
systems. This accounting is possible because tbmal energy of a system is conserved and a
function only of the initial and final states okteystem. The internal energy is a state function,
while heat and work are dependent on the patheoptbcess. The First Law determines the
interrelationships of a system with its surroundifgy exchanges of heat and work. The First
Law is independent of the scale of macromoleculatesns. The heat and work available
account for chemical processes in the laboratodyiathe environment. The concept of the
conservation of internal energy is a useful toolassessing processes within the laboratory, an
ecosystem, or within a society. Organisms can tierdntiated on the basis of their ability to
use, produce, and process energy. Work comesaniety of forms, including the work of
chemical synthesis. As we consider progress inggniadependence, decreased reliance on
fossil fuels, and on ameliorating global climatewbe, one of the biggest needs is the
development of advanced methods for energy stofidgeproduction of liquid fuels and
advanced batteries are examples of the storageeofgin chemical form.

The enthalpy is defined as a convenience taéte the heat transfer for processes at
constant pressure. Enthalpy is an extensive siatibn, but enthalpy is not a conserved
guantity. Therefore, enthalpy cannot replace irdeemergy as the primary tool for “balancing
the books” on interconverting heat and work. Onthefbest ways to get used to a new state
function is to do example problems. Our standamtagng procedure when considering a new
state function will be to consider homogeneous ehasich as an ideal gas, then phase
transitions, and then chemical reactions. In the aeapter we calculate the change in internal
energy and enthalpy accompanying phase transi@indshemical reactions. The ultimate goal
is to understand chemical transformations on adorhtal level so that we can design new
chemical processes that meet our pressing needs.

7.11 Addendum: Partial Derivatives

Partial Derivatives Are Derivatives Taken One Variableat a Time: The ideal gas law is a
convenient function to use to explore partial daties. The ideal gas law for a closed system
defines a 3-dimensional surface. Consider P ade¢pendent variable with V and T the
independent variables, Figure 7.11.1a. The indegr@ndariables are the ones that you control in
the laboratory. The surface is the set of all Pan T values that satisfy the equation:
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P =nRT/V 7.11.1

.~/ ~ CstP:isobar

cst. T

T

st V: isochor

isotherm

cst. T: isothermm™ 2 (@)%
.

ov

<V

\%
(@). (b).

Figure 7.11.1: (a). P-V-T surface for an ideal. gzextial derivatives are the slopes tangent
to“slices” perpendicular to the axis for the consteariable.

An isotherm defines the P-V behavior in the pldreg ts perpendicular to the T axis, taken at the
temperature of interest. One such slice is extdaeive Figure 7.11.1b. The slope of the P-V
plot for this isotherm corresponds to the parteiivhtive:

oP nRT
(OV)T ==VZ 7.11.2

Let's go through taking this partial derivativesigy-step. The quantities n and R are constants;
n is constant because we assumed a closed systéaking this partial derivative, we treat T as
a constant also. In other words:

P =nRT/N =c/V (cst. T) 7.11.3
with ¢ = nRT. And then:

dP) (d(c/V)) ¢
() =21 - 7114

Substituting ¢ = nRT back into this last equatioreg Eq. 7.11.2. Partial derivatives are
derivatives taken one variable at a time.
For practice consider the function:

f=mxX-6y 7.11.5

As a first case, assume that m and y are both @atstith x the only variable. The normal one-
dimensional derivative is then:

%( =gn”j—x_6x)= 2 mx (cst. m,y) 7.11.6



292

Now assume that oniy is a constant, which gives two independent bégx and y. We can’t
take a one-dimensional derivative anymore, bechaex and y can change. Instead, we can
find the partial derivative with respect to x ahstant y:

%jy - (%x_w)y =2mx (cstm) 7117

The result is just the same as when we assumedbatid y were constant. We can also find
the partial derivative with respect to y:

(%jx - (ﬂm)gT_ESDJX =-6 (cst. m) 7.11.8

Partial derivatives are nothing extraordinary; wet keep everything constant except for the
chosen independent variable. But, why are paréavdtives useful?

Total Differentials Express the Change in the Function with Each Independent Variable: First,
we know that the volume of a closed system chandpes we change the temperature and
pressure. For a small change in temperature atamsessure:

dv = (a—vjp dT compared to y =m x 7.11.9

oT

which is just a linear equation for dV in termstloé¢ variable dT and the slop@/dT)p, Figure
7.11.2a.

slope
v A cst. P f
------- oV
dav ! =|—
______ A av=(2) o
a— > T
(a). (b).

Figure 7.11.2: (a). The partial derivatin®/(0T), is the slope of the function for small
changes in temperature, at constant P. (b). ThHa&apderivative §V/0P); is the slope of the
function for small changes in pressure, at conskant

On the other hand, for a small change in presdurerstantemperature:

dv :(a—vj dP comparedto y=m x 7.11.10

0Pt
which, again, is just a linear equation for dVennhs of the variable dP and the slo@e/0P)r,
Figure 7.11.2b. Now what happens if both T and &gk infinitesimally? The result is just the
sum of Eq. 7.11.9 and 7.11.10:
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dv = @_\'QP dT +(‘3—\QT dP (closed) 7.11.11
which is also Eq. 7.6.7. This last equation isezhthetotal differential , since the equation

gives the change in the dependent variable, V, ghtnges in all the independent variables.
Notice that the total differential implies that ttleanges in dT and dP can be done in either order
or at the same time; the result is the same, Figure.3. Notice this result is simply saying that
the change in V is independent of the path. Inrotherds, the total differential can be written for
any state function, since state functions are patbpendent.

first
@mp
qp thendT

Figure 7.11.3: For the total differential, the chas in dT and dP can be taken in either order.
Notice the change in axes from Figure 7.11.1.

The Total Differential can be Integrated Term-by-term: The path independence allows Eq.
7.11.11 to be integrated term-by-term:

T2 P2
V2dv:J (_gv) dT +J (_av) dp 7.11.12
Vi T1 Tp = oPJT

Even though your particular process may have agghanT and P simultaneously, we can think
of the process as an equivalent two-step processabconstant P and then one at constant T.
The net result is the same, one-step or two ireeihder.

We can cast these ideas in general form. Giiencion F of independent variables, X, vy,
z...., we denote the independent variables by F(x,y)zIf F is a state function, the differential
of F isexact An exact differential, dF, can be calculated dniyn the functional form of F
without any additional information. On the othentathe differential of a path function gives an
inexact differential, which we denote withiB. An inexact differential cannot be obtained by
differentiation of a function of the state of thesem alone. Exact differentials have useful
properties. Given that F is a state function, déxiact, and the total differential is given by:

60 (o), (3
aF _(OX y,z,...cIX * oy x,z,...cIy oz XY, ... dz ... (exact) 7.11.13

with one term for each independent variable.
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We used the general form of Eq. 7.11.13 to @effg. 7.6.7. Another example, which we will
use in Chapter 9 is to consider the internal endayyPV work only, as a function of
temperature and volume, U(T,V). The internal enesgy state function, the total differential of
U is exact, and the total differential is given by:

du :(G_U)V dT +(0—U) av 7.11.14

oT oV )T
Note that the first term on the right is justdX. Similarly we can express the enthalpy as a
function of P and T giving the exact total diffetiah

oH oH
dH _(GT)p dT -{GF’)T dP 7.11.15

Note that the first term on the right is jusf@.Our major task for Chapter 9 is to show how and
why these last two relationships are useful.

Partial Derivative Transformations. Partial derivatives can be manipulated just tike one-
dimensional derivatives that we discussed in Addend.5. For example, thoduct ruleis
analogous:

oL ol o
(ap PR YR O Uaz )y~ Xaz)g tY\az), 7.11.16
Notice also thatdP/0P)r = 1. Theinversion relationship also works:

oP 1 0X 1

(aV)T & or (GYJZ @ [

Thechain rule works the same way as for one-dimensional devigati

0-GE, - G-EE
W, o @, s

Notice that in each of these relationships, Eql.23-17, the same variable is held constant
each partial derivative.

Partial derivatives have two additional relasibips that can be used to change the variable that
is being held constant. We used Ehder Chain Relationship when we derived Eq. 7.6.14. To
find (OP/0T)y we noted that the volume was held constant. We skeéthe total differential dV =
0 and solved:

oV oV 0z 0z
dv=0 ‘(aij dT +(6PJT dP or dz=0 {ax)y dx +(6y)x dy 7.11.19

Solving for @P/OT)y or (0x/dy), gives:



295

I
EE
N
o

I
IR
x

oP 0x
(GTJV = (a—vj or (Gy)z = (Q) 7.11.20

Using theinversion relationship, Eq. 7.11.17, we can also rewrited¢Hast equations as:

oP oP) (oV 0X ox\ (0z

(GT)V i} ‘(av)T (aT)p or (ay) (az) (ay) el
These rearranged results look very similar to tvenal chain rule, Eq. 7.11.18. However, note
that the variable being held constant is differargach partial derivative and a minus sign is
also present that is not present in the normainchae.

The remaining relationship also changes theab&ithat is held constant and the derivation of
the relationship also starts with the total différal. Consider U(T,V) or F(X,y):

oU ouU oF oF
du _(aTjV dT +(6V)T dv or dF _(axj dx +(6yj dy 7.11.22

We can find relationships for partial derivativegls as §U/0T)p or (0F/0x), by dividing these
last equations by dT at constant P, or dx at cahgtaespectively:

= (Gehlarhlouhlarh o (50l ~(60) (5.5 G

Notice that §T/0T)p = 1 and §x/0x), = 1, which simplifies these particular expressions

We would like to discourage you from memorizthgse formulas. Rather, it is best to observe
what each relationship does to the variables femptioblem and then remember the process that
was used. For example, for ttleain rule, the same variable is held constant for eachabarti
derivative. If you want to change the variable tsdieing held constant for a partial derivative,
the transformations work through a total differahtas in Eq. 7.11.19 or 7.11.22. At this point, it
will be best to do some examples to show the wfitit these transformations. We will also
present a general scheme for simplifying partiaivdgives relationships in Chapter 9.

A Short-cut for Integrating Partial Derivative Relationships: Consider a process at constant P.
The change in volume is given rigorously by Eq.106with dP = 0:

dv=VadT 7.11.24

We sometimes use a mental short-cut that is easye@nd gives the same result. Rearrange Eq.
7.6.8 to give:

v
(GT)p_ Va 7.11.25

We can think of “multiplying” Eq. 7.11.25 by dT droth sides to give:

(Z\T/j dT =VadT or dV =Va dT 7.11.26
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where thedT and dT on the left effectively “cancel out.” Thet result is the same as the
rigorous Eq. 7.11.23. The issue is keeping praektof the §” and “d” symbols. Even though
our trick of multiplying both sides of the equatiby dT is sloppy, the result is correct and easily
derived.

Example7.11.1:
Consider a constant volume process. (a). Integqt&.11.14 rigorously to find the change in
internal energy. (b). Use the “short-cut” methodimal the same integral from Eq. 7.8.7.

Answer: (a). From Eq. 7.11.14 with dV = 0 and the sitbshg the definition of the constant
volume heat capacity from Eq. 7.8.7 gives:

du :(S—LTJJV dT =G, dT or integrating fi du :ﬂj C, dT

(b). Starting from Eq. 7.8.7:@—% =C
\%
Multiplying both sides of the last equation by diVes:

(g#) dT =G, dT and “canceling” gives du =aT
\%

as we derived in part (a), above.

In Chapter 9, we continue our development of thundélations of thermodynamics, which will
include many examples of partial derivative transfations. If you have additional questions
about differentials as you do the homework for thapter, you might benefit from jumping
ahead to Section 9.3Dffferentials. A Differential is a Derivative Waiting to Happen,” and
Section 9.4, Integrating Differentials: A Differential isan Integral Waiting to Happen.”

Chapter Summary

1. Thermodynamics is the study of the interconwersif heat and work.

2. Heat is the transfer of energy through randortians of molecules and work is the transfer of
energy through organized motion. Thermal energgnslom thermal kinetic energy.

3. Heat and work transfers are dependent on theqgfdhe process.
4. The general types of processes are:

Constant pressure, AP =0: isobaric processes
Constant volume, AV =0: isochoric processes
Constant temperatur&T = O: isothermal processes

No heat transfer, g=0: adiabatic processes
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5. Diathermal barriers allow heat transfer andatt@inment of thermal equilibrium. For
adiabatic barriers no heat transfer is allowed.

6. Heat capacity is a path function. At constaritine the heat capacity and heat transfer are:
d
C = EQTM dg,=C,dT and for a constant,Cq, = C, AT
and at constant pressure:

C= dgp dgy =G, dT  and for a constant,Cq, = G, AT

dT
7. The molar heat capacity or specific heat capaci intensive properties of a substance:
_C _C _C e
™= n ™= n ST w Gs=w

8. Resistive electrical heating, or Joule heatm@gsed to calculate heat flow:
q =ftVI dt :ft I’R dt and for constant Vand I: q =V ItRIt
0 0
9. Heat capacities are often approximated by a peesges:

Com=a+bT+ct+dT or Gm=A+BT+CT?
10. Thermal conductivity can be expressed as allifiex-force relationship:

€ =-XGx
whereX is the thermal conductivity and dT/dx is the tenapere gradient.
11. Radiative thermal energy transfer is givenhey$tefan-Boltzmann law:

K radiative=0 T* with o =5.6704x10° W m* K™
12. The rate of thermal transfer, assuming a liter@perature gradient, is given by:
dqg XA

dt = —T (T — Tsun)
assuming a linear temperature gradient over arfacial area? and thickness.

. d dT
13. Thermal transfer changes the temperature obgatt: Ectl = Cpa
14. If the temperature of the surroundings is amstNewton’s Law of Cooling gives:

KA
d(T -T. KA e
T (58] T o (T-Td=(-Tun € °%

15. In differential scanning calorimetry, the hééatv difference between the sample and the
reference is determined by:

2 Gt =), ()
dt dt sample dt ref

The sample and reference are kept at the same tatugewhile the temperature of both is
increased at a constant rate= dT/dt.

16. In DSC the difference in the heat capacityhefsgample and the reference is:
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Cp(sample) - G(ref) :A(%F) :( %9) (%)

17. The integral under the DSC peak, above thelibhasgives the total heat transferred and the
enthalpy change for the process:

Jv%tt_r dt = G = AyH

18. For a general procesisy = F dx. Integration of the work is path dependemt= fpamF dx
19. Because heat and work are intrinsically enenayysfers, the changes in energy for the
system and surroundings are related bygyrw—w and gx=-Q
By convention, quantities without an expligtirr” subscript are for the system.
20. The work of expansion, which is also called naedcal work or PV work, is a path function:
dw = — Ry dV and w=— PeqdV
path

21. For a constant external pressure, the expamsidhis:
\/
W= [ " PedV = = R (Vom Vi) = = RV
1

22. For an isothermal reversible expansion, R, &hd the work is the maximum amount of
expansion work available for an isothermal procEss.an ideal gas:

_ V2 _ Vo
W——fwnRT/V dV = —nRT I

23. The Van der Waals equation of state, with VanWaals coefficients a and b, is:

2
n
(P + av—z) (V-nb) =nRT
The a-coefficient is a measure of the intermolacati&actions, and the b-coefficient is the
excluded molar volume of the molecules.

24. The gas and liquid molar volumes for a substapproach the critical volumeg\as the
system approaches the critical temperatugeaiid pressure,.P

25. A gas above its critical temperature is callesliper-critical fluid. Super-critical fluids hase
smooth change in density as the volume is changed.

26. The Redlich-Kwong equation of state is valiéo& wider range of gas densities than the
Van der Waals equation of state. The A and B caiefits differ from the Van der Waals:

2
n
(P + Am} (V-nB) =nRT
27. The compressibility factor is a measure ofdeeiation from ideal gas behavior:
PV
or PV=znRT

Z=_5—
nRT
28. The virial equation is a power series approxiomafor the compressibility factor:

PV n n\2 n\3
Z=RT" 1+ B(T)(v) + C(T) (v) + D(T) (v) + ...
B(T) and C(T) are the second and third virial cmééhts, respectively. The virial
coefficients, are temperature dependent.
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29. The Law of Corresponding States is that to@g@pproximation all gases follow the same
equation of state when given as a function of dticed variables:
Pr=P/R Vr= VIV, Tr=T/T,
30. The total differential of the volume with resp& changes in temperature and pressure is:
oV oV
dv = (OT)p dT +(0Pj-r dP
31. The coefficient of thermal expansion and tleghisrmal compressibility are defined as,
respectively:
o G
A=V T )p KT==vor)s

32. The total differential of the volume in ternfsooandky is: dV = Va dT — VKt dP.

33. The values ak andkr are sufficient to completely specify the mechahiehavior of a
system. The Euler chain relationship gives:

1)
(@) __V\0Te_a
0Ty 1 (a_vj S
V\0oP/t
34. The differential dV =\ dT may be integrated with varying accuracy to give
for small changes: V =& Voo (T —Tp)

Vo

2
a
> (T-T)°

moderate changes: V 3¥ Voa (T—-T) +

and large changes: V =T To

35. The Zeroth Law of thermodynamics states: ifays A and B are at the same temperature
and if systems B and C are at the same tempefthiemesystems A and C will be at the same
temperature. The Zeroth Law is the basis for estfainlgy empirical temperature scales.

36. Temperature is the necessary variable for sisges two systems are at thermal equilibrium.
The relationship of the empirical temperature @nB V is established experimentally by the
equation of state of the substance.

37. The internal energy is the sum of the kinetiergy and potential energy of all of the atoms
and molecules that make up the system. The interrealgy includes the translational,
rotational, vibrational, and electronic energylod inolecules plus any energy due to
intermolecular forces.

38. The First Law of thermodynamics is given bydeénition: dU =dq +dw

39. Statements of the First Law include:
Internal energy is conserved.
Internal energy is a state function.
;’he only way of changing the internal energy otteysis by transfers of heat and work.
du=0
The internal energy of an isolated system is caornsta
The internal energy change of the surroundinggjislein magnitude and opposite in sign
to the internal energy change of the system.

40. For PV work only: dU 4q — R«dV and for reversible processes: ddg— PdV.
41. The enthalpy is B U + PV. Enthalpy is an extensive state functian,ib not conserved.
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42. At constant volume for PV work only, dUdg,:

Heat transfer for a constant volume process istieenal energy change.
43. At constant pressure for PV work only, didgp:

Heat transfer for a constant pressure procdsgisnthalpy change.
44. At constant volume for a closed system for Rdrknonly:

ouU .
(G_Tj =C dU =G dT and for a constant heat capacity AU = C, AT
\%
45. At constant pressure for a closed system fomekk only:
H
(g—.r) =G dH=GdT and for a constant heat capacityAH = G, AT
P

46. For an ideal gas in a closed system: d(PV) dfiRrA(PV) = nRAT, giving:
dH=dU +nR dT or AH =AU + nRAT

47. For a general process: dH =dU + d(PV) = ded¥ + VdP
For a constant pressure process: dH =dU + Pdv AH =AU + PAV
For a reversible process for PV work only: ddg=+ VdP
For a reversible adiabatic process for PV work onlydH =V dP
For an isolated system: dH=VdP
48. The general forndw = F dx, can be applied to many kinds of work giv(Table 7.9.1):
dU =dq — RxdV + F dx
49. Electrical work by a change in charge, @ga region with electric potentiglis dw = ¢ dq.
The change in charge in coulombs for a change ilesraf ion i is dg= z F dn, giving:

N
w =f zFedn =znFo
0
50. The chemical work igw = ; dn for a single component i, where the chemical pcagnu;,

is the force for chemical change.

51. An exact differential can be obtained by défgration of a function of the state of the
system, only. An inexact differential requires duahal information concerning the path.

52. State functions have exact differentials. Patictions have inexact differentials.
53. The total differential for a state functionxfy(z) is exact and is given as:

oF oF oF
dF _(ax)y,z,...dx +(aYJx,z,...dy +(62jx,y,... dz

54. The Euler Chain Relationship f@x(dy), is obtained by setting dz = O:

0z 0z
d =0:(—j d +(—j d
z X )y X ay )x y
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Problems: First Law of Thermodynamics

1. The movie “On Golden Pond” (IPC Films, 1982, 3ademy Awards) was based on a play
that was written about a summer home on Great Rooentral Maine. The surface area of Great
Pond is 3.383x10m? and the volume is 2.130x3M°. Great Pond is a large lake. The solar
insolation for the Boston area is given in ChagteProblem 13 as 4.16 kWhalay*. Calculate
the total energy received by the lake per day @mane and the corresponding change in
temperature.

2. The specific heat capacity of stainless ste@l565 J K g*. A typical spoon weighs 20.9 g.
Calculate the change in temperature when you @apoon at 21.5C into 250. mL of hot
coffee at 58.5C. Assume the heat capacity of coffee is 4.179 @iKand the density is the
density of water at SC from Table 2.2.1.

3. Calculate the work done as a gas expands fromitgad volume of 1.00 L to a final volume
of 10.00 L against a constant external pressufeGff0 atm.

4. Calculate the work done by one mole of an idealin a reversible isothermal expansion
from an initial volume of 1.00 L to a final volunod 10.00 L at 298.2 K. Compare the work done
to the constant pressure expansion given in ProBlem

5. Calculate the work done by one mole of an igealin a reversible isothermal expansion
from an initial pressure of 10.00 bar to a finagsure of 1.00 bar at 298.2 K. Compare the work
done to the isothermal reversible expansion in [Brok.
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6. How ideal is water vapor? To answer this questignthe following problem: Assume a
volume for a closed flask of 10.000 L, a tempemir298.15K, and 0.01280 moles of water
vapor. Calculate the pressure of water vapor irfldsk using the ideal gas law and the Van der
Waals equation of state and compare. (For companisih the results of this problem, note that
the vapor pressure of water at 298K {g2 23.8 torr.)

7. Find the formula for the work done in the revielsiisothermal expansion of a Van der Waals
gas. (i.e. derive the equation corresponding todeal gas result: w = — nRT Inf¥/,)

8. Derive the relationships between the secondtaindi virial coefficients and the Van der
Waals coefficients, as listed in Egs. 7.5.6. Asstimaé the virial equation is truncated after the
cubic term. [Hint: use the Taylor series approxiomathat for small x: 1/(1 —»§ 1 + X + X]

9. Show that the Van der Waals equation is a cetpiation in the volume. In other words,
rearrange the Van der Waals equation to give acquidynomial in V.

10. Use the virial equation to find the compressipitactor and the pressure for 10.00 mol ¢f O
contained in a 1.000 L vessel at 298.15 K. Do etitra or repulsive forces dominate?

11 Integrate Eq. 7.6.9 for a small change in presduring an isothermal process; that is,
integrate dV = —\kt dP.

12. If the isothermal compressibility of acetond is.x106 atnl at 14.2°C, what is the change
in volume if the pressure is increased from 100 &t 35.0 atm? Assume an initial volume of
1.00 L, theAP is small so that ¥ V, and the isothermal compressibility is constant.

13. From the definition okt prove that for moderate changes in pressure:

VQKT2 2
V=VO_VOKT(P_F()))+T(P—F())).

. . : oT . : .
14. Find the relationship betweéBE) anda andkr. Use the Euler chain relationship.
%

15. Calculate the expansion work done by 1.00 L atewwhen the temperature is raised by
100.0C. Assume the pressure is constant at 1.00 bas.pFbblem is an important issue when
considering upwelling in the ocediThe effect is small on the laboratory scale, lytdrtant on
an oceanic scale.

16. The upwelling of deep-sea water is caused Ilgelacale ocean currents such as the Atlantic
current, which brings warm water north in the AtlanThis current keeps western Europe
warmer than other areas at similar latitude. Aackpt of water rises, the pressure drops, the
volume of the packet expands and the system dods™Witne work is given by:

dw = Pkt dP at constant temperature. Derive this relatignsh

17. The empirical temperature scale is based ord#ead gas thermometer. However, how can
you build an ideal gas thermometer when there isunh thing as an ideal gas? The answer is
that the effective temperature based on the idemlayv is measured for differing amounts of gas
and the results are extrapolated to zero gas gensié ideal gas thermometer can then be used



303

to calibrate more convenient thermometers. An idealthermometer using helium is
constructed with an internal volume for the ga®.600 L. The following table gives the number
of moles of gas and the corresponding pressuteedided external temperature to be measured.
Use the ideal gas law to calculate the effectimepierature and then extrapolate the results to
zero density.

n mol 0.04034. 0.0302560.02017: 0.008068 0.004034
P (bar) 2.0822! 1.56116 1.0482 0.41602 0.20797

18 The heat transfer at constant volume is thenateenergy change and the heat transfer at
constant pressure is the enthalpy change. Comsidenstant volumprocess for an ideal gas.
Even though the pressure isn’t constant, you dircalculateAH. Calculate the change in
enthalpy for a constant volume process given thgégature chang&T or dT. Assume a
constant heat capacity over the temperature r&ige.your answer in differential, derivative,
and integrated (that i&H) form.

19. Enthalpy is a state function. The heat tranafeonstant pressure is the enthalpy change,
ge = AH. Does this equality argue that g is a state fonét

20. Determine if the following statements are trudatse. If the statement is false, describe the
changes that are necessary to make the statemenif possible. If the statement is true but too
restrictive, give the more general statenfent.

(a). The work done by the system on the surroursdihging a change in state is never greater
than the decrease in the internal energy of theesys

(b). The enthalpy of a system cannot change damgdiabatic process.

(c). When a system undergoes a given isothermalgehim state, the enthalpy change for the
system does not depend upon the path of the provesised.

(d). When a change in state occurs, the increageianthalpy of the system must equal the
decrease in the enthalpy of the surroundings.

(e). The equatioAU = q + w is applicable to any macroscopic procpssyided no electrical
work is performed by the system on the surroundings

(). No change in state occurring in an isolatestesyn can cause a change in the system'’s
internal energy or enthalpy.

(9). For any constant pressure process, the ineiaanthalpy equals the heat transferred
whether or not electrical or chemical work is doieing the process.

(h). A reversible process is one in which the im&é¢energy lost by the system is just
sufficient to restore the system to its originaltst

(). When a real gas expands into a vacuum, it da®k because the molecules of the gas
have been separated from one another againstraota force.

21. The Gibbs free energy is usually considerechatfan of the temperature and the pressure,
G(T,P). Write the total differential of G with resgt to changes in temperature and pressure.

22. Write the total differential of U consideredafunction of T and P as independent variables.
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23. (a). Integrate Eq. 7.6.10 for a constant tentpesgorocess using the total differential.
Assume a narrow pressure range so that\ andky is constant. (b). Integrate Eq. 7.6.9 using
the “short-cut” method discussed in the Addenduet,. $.11.

24. Find @P/0T)y for a Van der Waals gas in a closed system.

25. The critical point is the point of inflection @hne critical isotherm. The point of inflection
corresponds to:

oP o°P
(OV)T =0 and (O_VZ)T =0

Assume the gas is described by the Van der Waakstieq of state. The two equations for the
inflection point, above, provide two equationswotunknowns. Show that, in terms of the Van
der Waals a and b coefficients, the critical voluteenperature, and pressure are given by:

8a a

Ve=3mb  T=gpr  ReTgp

26. Calculate the change in internal energy fordiakatic expansion of a gas for a change in
volume from 1.00 L to 10.00 L against a constatemal pressure of 1.00 bar.

27. Calculate the internal energy and enthalpy chdaga constant volume process for one
mole of ideal gas with a change in temperature f298.2 K to 323.2 K. Assume the gas is
diatomic with a constant volume heat capacity/ofiiR. Explain the relative sizes of the internal
energy and the enthalpy changes.

28. Find the enthalpy change for a constant voluroegss for a change in temperatiiieof a
Van der Waals gas, starting from the internal epergngeAU.

29. Heat capacities are often approximated by a peeees: Ggn=a+bT+cC T+d T Find
the change in molar enthalpy for a constant presgrocess from 11to To.

30. Consider the surroundings as a constant temyrerahd pressure reservoir. Show for a
reversible adiabatic expansion of a gas franoH?, that the enthalpy change of the system is not
equal in magnitude and opposite in sign to theapthchange of the surroundings. In other
words, enthalpy is not conserved.

31. Consider the surroundings as a constant temperahd pressure reservoir. Show for a
constant pressure process that the enthalpy cladrige system is equal in magnitude and
opposite in sign to the enthalpy change of theosundings.
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