
   

Chapter 6 Problems 
 
1.  Qualitatively predict the effect of wind turbulence on the exchange of CO2 across the air/sea 
interface. 
 
 
Answer:  Wind caused turbulence increases the mixing rate at the air/sea interface, thus 
decreasing the thickness of the stagnant boundary layer. Assuming a linear concentration 
gradient, using Eq. 6.1.29: 
 

 Jo = – 
DCO2

  ([CO2]bulk – [CO2]w/a) 
 

The thinner the boundary layer, the larger the concentration gradient and the larger the flux. 
 
 
2.  Find the second derivative with respect to x of a Gaussian distribution for a non-zero mean. 
Use explicit differentiation of the general form of the Gaussian distribution in Eq. 6.1.8. 
 
 
Answer: Starting with Eq. 6.1.8: 
 

 g(x) = 
1

 2
 e– (x–)2/22

       1 

 
Taking the first derivative with respect to x of Eq. 6.1.8 gives: 
 

 
dg
dx  = 

1

 2
   

d( )e– (x–)2/22

dx   =  
1
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





–2(x – )

22  e– (x–)2/22
  2 

 

This last equation can be written more simply by substituting back in the definition of g(x): 
 

 
dg
dx  =  







–(x – )

2  g        3 
 

and then the derivative of this last equation gives the second derivative. Let f equal the first term: 
f = (–(x – )/2). Using the product rule  d(fg)/dx = f dg/dx + g df/dx : 
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Using Eq. 3 for the first derivative of g gives: 
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3.  In deriving Eq. 6.1.24, we used Eq. 6.1.19 from General Pattern 5. Instead, derive Eq. 
6.1.24 by explicit differentiation of Eq. 6.1.7. 
 
 
Answer:  Starting with the Gaussian concentration profile from Eq. 6.1.7: 
 

 c(x,t) = 
no

A 4Dt
 e– x2/4Dt 

 

Taking the first derivative of Eq. 6.1.7 with respect to distance while keeping t constant gives: 
 

 

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Using the definition of c(x,t) in this last equation gives: 
 

 






c

x t
 =  



–2x

4Dt  c 

 

and then the derivative of this last equation gives the second derivative. Let f equal the first term: 
f = (–2x/4Dt). Using the product rule  d(fc)/dx = f dc/dx + c df/dx : 
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Substitution of the first derivative gives: 
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4.  Write an Excel spreadsheet that uses the finite difference approximation to solve Eq. 6.1.6 for 
the one-dimensional planar diffusion problem. The analytical solution is Eq. 6.1.7. To do this, 
first assume finite differences for Eq. 6.1.6 to give: 

 c(x) = D






2c

x2
t
t 

where this equation is applied at each point, x, on equally spaced intervals along the x-axis. We 
also need an approximation for the second derivative. Assume the concentrations along the x-
axis are c0, c1, c2, c3, …., which are evaluated at points x = 0, dx, 2dx, 3dx,… The first derivative 
from c0 to c1 and the first derivative from c1 to c2 are: 
 

 

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dc

dx x=0.5 dx
 = 

c1– c0
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The second derivative is the derivative of the first derivatives: 
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This result is then used to find the new value for the concentration at c1 in the next time interval 
using the finite difference formula. Assume the diffusion coefficient is 1.0x10-9 m2s-1. Assume a 
time interval of t = 0.01 s and integrate to 0.3 s. Assume an x spacing of dx = 1.0x10-5m from 0 
to 1x10-4m. (In other words, use a range from 0 to 100 m.) Assume the initial conditions are a 
concentration of 1.00 mol m-3 in the first x interval and zero at larger distances. One problem 
arises however. The second derivative can’t be calculated at the very first or very last spatial 
point. For this problem, just set the value of the concentration at the largest value of x at zero. 
For the value of the concentration at x = 0, that is c0, we can use conservation of mass. In other 
words find the sum of the concentrations: c1+c2+c3+c4… and then subtract from the initial 
concentration, c0 at t = 0. Here is a start on how you might lay out the first few rows of your 
spreadsheet. The concentrations at equally spaced x are arranged across the columns and 
successive time points correspond to successive rows: 
 

A1 B C D E F G H I J K L M N 
2   dt= 0.01 s         
3   dx= 1.E-05 m         
4   D= 1.E-09 m2 s-1         
5   c(0,0)= 1 mol m-3        
6   x (m):           
7  t (s): 0 1.E-05 2.E-05 3.E-05 4.E-05 5.E-05 6.E-05 7.E-05 8.E-05 9.E-05 1.E-04 
8  0 1.00 0 0 0 0 0 0 0 0 0 0 
9  0.01            
10  0.02            

  : 
  : 
 
 
Answer: The formula in cell E9 is: “=E8+$E$4*(F8-2*E8+D8)/$E$3^2*$E$2”. This formula 
can then be automatically filled across and down the spreadsheet to provide the formulas for all 
the other cells, except the first and last concentration points. The formula in the cell D9 is: 
“=$E$5-SUM(E9:N9)”. This formula can then be filled down for all the other c0 values. The last 
concentration at x = 1.0x10-4 m is set to zero for each time. 
 

A1 B C D E F G H I J K L M N 
2   dt= 0.01 s         
3   dx= 1.E-05 m         
4   D= 1.E-09 m2 s-1         
5   c(0,0)= 1 mol m-3        
6   x (m):           
7  t (s): 0 1E-05 2E-05 3E-05 4E-05 5E-05 6E-05 7E-05 8E-05 9E-05 1E-04 
8  0 1.00 0 0 0 0 0 0 0 0 0 0 
9  0.01 0.90 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
10  0.02 0.82 0.170 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
11  0.03 0.76 0.219 0.025 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
12  0.04 0.70 0.253 0.042 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
13  0.05 0.66 0.277 0.059 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
14  0.06 0.62 0.293 0.076 0.011 0.001 0.000 0.000 0.000 0.000 0.000 0.000 
15  0.07 0.59 0.304 0.091 0.017 0.002 0.000 0.000 0.000 0.000 0.000 0.000 
16  0.08 0.56 0.311 0.105 0.023 0.003 0.000 0.000 0.000 0.000 0.000 0.000 
17  0.09 0.53 0.315 0.117 0.029 0.005 0.001 0.000 0.000 0.000 0.000 0.000 
18  0.1 0.51 0.317 0.128 0.035 0.007 0.001 0.000 0.000 0.000 0.000 0.000 
19  0.11 0.49 0.318 0.138 0.042 0.009 0.001 0.000 0.000 0.000 0.000 0.000 



   

20  0.12 0.47 0.317 0.146 0.048 0.012 0.002 0.000 0.000 0.000 0.000 0.000 
21  0.13 0.46 0.316 0.153 0.054 0.014 0.003 0.000 0.000 0.000 0.000 0.000 
22  0.14 0.44 0.314 0.160 0.060 0.017 0.004 0.001 0.000 0.000 0.000 0.000 
23  0.15 0.43 0.311 0.165 0.066 0.020 0.005 0.001 0.000 0.000 0.000 0.000 
24  0.16 0.42 0.309 0.170 0.071 0.023 0.006 0.001 0.000 0.000 0.000 0.000 
25  0.17 0.41 0.306 0.174 0.076 0.026 0.007 0.002 0.000 0.000 0.000 0.000 
26  0.18 0.40 0.303 0.177 0.081 0.029 0.009 0.002 0.000 0.000 0.000 0.000 
27  0.19 0.39 0.300 0.180 0.086 0.032 0.010 0.003 0.001 0.000 0.000 0.000 
28  0.2 0.38 0.297 0.183 0.090 0.036 0.011 0.003 0.001 0.000 0.000 0.000 
29  0.21 0.37 0.294 0.185 0.094 0.039 0.013 0.004 0.001 0.000 0.000 0.000 
30  0.22 0.36 0.291 0.187 0.097 0.042 0.015 0.004 0.001 0.000 0.000 0.000 
31  0.23 0.36 0.288 0.188 0.101 0.044 0.016 0.005 0.001 0.000 0.000 0.000 
32  0.24 0.35 0.284 0.189 0.104 0.047 0.018 0.006 0.002 0.000 0.000 0.000 
33  0.25 0.34 0.281 0.190 0.107 0.050 0.020 0.007 0.002 0.000 0.000 0.000 
34  0.26 0.34 0.278 0.191 0.109 0.053 0.021 0.007 0.002 0.001 0.000 0.000 
35  0.27 0.33 0.276 0.192 0.112 0.055 0.023 0.008 0.003 0.001 0.000 0.000 
36  0.28 0.33 0.273 0.192 0.114 0.058 0.025 0.009 0.003 0.001 0.000 0.000 
37  0.29 0.32 0.270 0.192 0.116 0.060 0.027 0.010 0.003 0.001 0.000 0.000 
38  0.3 0.32 0.267 0.192 0.118 0.062 0.028 0.011 0.004 0.001 0.000 0.000 

 
The plot of the last row at t = 0.3 s is shown below with the analytical solution from Eq. 6.1.7. 
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The agreement between the finite difference approach and the analytical solution is much better 
than you might expect from the coarse grid of x points and the large t that we used. Better 
agreement would be obtained for smaller t. 
 
 
 
5.  In this problem we will use Fick’s Second Law to model diffusion through a membrane. 
Consider a membrane of thickness  separating two well mixed solutions of concentration cout 
and cin. The origin of the x-axis is chosen to be at the interface between the membrane and the 
solution at concentration cout as shown below: 
 
 
 
 
 
 
 
 

exact 

finite 
difference 

cout 

cin 

c 

x 0  



   

 
(a.) Show that the concentration profile: 
 

 c(x)  =  




cin – cout

  x + cout 
 

has the correct behavior at the surfaces of the membrane. 
(b). Assume Fick’s Second Law holds for diffusion within the membrane. Show that this linear 
concentration profile is a valid solution to Fick’s Second Law at steady-state. 
(c). Find the relationship for the flux across the membrane. 
 
 
Answer:  (a) At x = 0, c(0) = cout and at x = : 
 

 c() = 




cin – cout

   + cout = cin      1 
 

This linear concentration profile has the correct concentrations at the edges of the membrane. In 
other words, it obeys the proper boundary conditions. 
(b). At steady state, Eq. 6.1.6 is equal to zero and we no longer need to worry about time 
dependence: 
 

 D
d2c
dx2 = 0        2 

 

We need to show that the second derivative of the proposed solution is equal to zero. Starting 
with the first derivative gives the gradient: 
 

 
dc
dx = 

d [(cin – cout) x/ + cout]
dx   = 





cin – cout

     3 
 

The second derivative is equal to zero, because the first derivative is a constant, as required by 
Eq. 2. Therefore, the proposed solution is a valid solution for 0 < x < . 
(c). Fick’s First Law of diffusion, Eq. 2.3.4, relates the molar flux of a substance to the 
concentration gradient, Jm = – D dc/dx. Eq. 3 is the gradient so that: 
 

 Jm = – D




cin – cout

        4 
 

This final result is the same as for diffusion across an interface, Eq. 6.1.29, and also the general 
form from Eqs. 2.3.3 and 2.3.4. Therefore, all of the theory that we have developed for gas 
exchange across an interface is applicable to membrane diffusion. 
 
 
 
 
 
6.  A very simple model for active transport of Na+ ions across a membrane is shown below, 
where the driving force for the transfer results from a H+ gradient.9 The key is the membrane 
soluble fatty acid that shuttles Na+ and H+ ions across the membrane in opposite directions. The 



   

fatty acid is only soluble in the membrane. The reactions at the membrane surfaces are shown at 
right. 
 
 
 
 
 
 
 
 
 
 
 
 
The two forms of the fatty acid are HR and NaR. The reactions at the surfaces of the membrane 
are: 
 

             kL 

   Left:  HR + Na+(left) + OH-(left)    NaR + H2O 
          kR 

   Right:  NaR + H+(right)    HR + Na+(right) 
   Net:  Na+(left) + OH-(left) + H+(right)    Na+(right) + H2O 
 

The reactions don’t occur within the membrane, so Eq. 6.1.26 applies just at each interface as a 
surface reaction. For the purposes of this problem, you can assume that the reactions are 
unidirectional. Assume that the solutions on the left and right are well mixed. Use Fick’s Second 
Law to write the differential equations for the transport within the membrane. Indicate how you 
would find the steady-state for the fluxes. You don’t need to solve the differential equations, but 
linear concentration gradients would be applicable at steady state if you did. 
 
 
Answer:  The rate of the reactions on the left-hand side are: 
 

 L = – 
d[HR]

dt  = 
d[NaR]

dt  = kL [HR][Na+(left)][OH-(left)]   (x = 0) 
 

and for the right-hand side: 
 

 R = = – 
d[NaR]

dt = 
d[HR]

dt  = kR [NaR][H+(right)]    (x = ) 
 

at the left-hand interface using Eq. 6.1.26: 
 

 


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
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t x
 = D






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

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
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 = D



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

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t
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and at the right-hand interface: 
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





[HR]

t x
 = D







2[HR]

x2
t
  +  kR [NaR][H+(right)]    (x = ) 

 

 






[NaR]

t x
 = D






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2[NaR]

x2
t
  –  kR [NaR][H+(right)]    (x = ) 

 

and within the membrane with no chemical reactions: 
 

 

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
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[HR]

t x
 = D
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



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t
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
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
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

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
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t
  (0 < x < ) 

 
For steady-state fluxes, the time derivatives in the six above equations would be set to zero. 
   Note that for a more realistic model, the chemical reactions at each interface should be 
reversible, which would add additional terms to the rate laws. At steady state for the fluxes, the 
reaction rate at both interfaces would be equal, L = R, which would help simplify the problem. 
Also note that H+ gradients across membranes are used to drive many processes, including the 
primary events in photosynthesis. 
 
 
7.  Find the eigenvalue-eigenvector solution to the set of linear equations: 
 

   x  + y   = 0 
   x  + y + z  = 0 
 y + z  = 0 

which give the coefficient matrix  M  = 








1 1 0

1 1 1
0 1 1

 

 

Calculate the eigenvalues by hand and the eigenvectors using MatLab, MathCad, Maple, or 
Mathematica. (For symmetric matrices, you can also use the “Matrix Diagonalization” applet on 
the textbook Web site and on the companion CD.) The MatLab command to use is [X,L] = 
eig(M), where X is the matrix of eigenvectors and L is the diagonal matrix of eigenvalues of the 
input matrix M. 
 
 
Answer:  Using the given coefficient matrix, the characteristic equation is: 
 

 (M  – i I)Xi~  = 








1– i 1 0

1 1– i 1
0 1 1– i

 








x

y
z

 

 

This characteristic equation has the characteristic determinate ( –1)(2 – 2   – 1) = 0. The 
factor ( –1) = 0 gives the eigenvalue  = 1. Solving the quadratic factor (2 – 2   – 1) = 0 gives 
the additional eigenvalues:  = -0.4142 and 2.4142. 
   Here is the MatLab input (after the >>) and output: 
 

>> M=[1,1,0;1,1,1;0,1,1] 
 

M = 
     1     1     0 
     1     1     1 
     0     1     1 
 

>> [X,L] =eig(M) 
 



   

X = 
    0.5000   -0.7071    0.5000 
   -0.7071    0.0000    0.7071 
    0.5000    0.7071    0.5000 
 

L = 
   -0.4142         0         0 
         0    1.0000         0 
         0         0    2.4142 

 

Note that the L matrix lists the three eigenvalues along the diagonal. The X matrix lists the 
eigenvector as columns. The three sets of eigenvalues and eigenvectors are: 
 

 1 = -0.4142   2 = 1    3 = 2.4142 
 

 X1~ = 








0.5000

-0.7071
0.5000

   X2~ = 








-0.7071

0
0.7071

   X3~ = 








0.5000

0.7071
0.5000

 

 

To help you get used to eigenvectors, we can verify that X1~  is a valid solution. We need to prove 
that MXi~   =  i Xi~ , for eigenvector 1: 
 

 MX1~  = 








1 1 0

1 1 1
0 1 1

 








0.5000

-0.7071
0.5000

 =  








1(0.5)+1(-0.7071)+0(0.5)

1(0.5)+1(-0.7071)+1(0.5)
0(0.5)+1(-0.7071)+1(0.5)

  = 








-0.2071

0.2929
-0.2071

 =  -0.4142 X1~  

 

Notice that any constant multiple of the listed eigenvectors is also a solution, including the case 
where all the signs are reversed. Matrix techniques allow the solution of problems that would 
otherwise be exceedingly time consuming to solve. 
 
 
8.  A bi-exponential process is given by the form: 
 

 [A] = c1 e–k1t + c2 e–k2t 
 

The logarithmic plot of a bi-exponential process produces two straight line segments and a 
transition region between. Bi-exponential decay curves are fit in two segments. First the long 
time behavior of the logarithmic plot is fit to a straight line to determine the slope, k2, and 
intercept ln(c2). The non-linear transition region is avoided when points are selected for this plot. 
Then, the long time behavior is “stripped” from the time course: 
 

 ln[A]short = ln([A] – c2 e–k2t) 
 

and a second logarithmic plot of the stripped data produces the short time k1 and ln(c1). These 
estimated constants are then used as guesses for non-linear curve fitting. Fit the following data to 
a bi-exponential function. For the non-linear fit, use the four-parameter version of the “Nonlinear 
Least Squares Curve Fit” applet on the textbook Web site and on the companion CD. 
 

time 0 5 10 20 30 40 60 80 100 120 140 
[A] 1 0.727 0.564 0.401 0.328 0.288 0.235 0.196 0.163 0.136 0.114 

 
 
Answer:  The spreadsheet to implement the stripping procedure is: 
 



   

  original original stripped 
 time [A] ln [A] ln [A] ln([A]- c2exp(k2t)) 

0 1 0  -0.50777 
5 0.727 -0.3188  -1.06062 

10 0.564 -0.5727  -1.61001 
20 0.401 -0.9138  -2.68794 
30 0.328 -1.1147   
40 0.288 -1.2448   
60 0.235 -1.4482   
80 0.196 -1.6296   

100 0.163  -1.8140  
120 0.136  -1.995  
140 0.114  -2.1716  

 

The last few points are moved into a separate column so the curve fit can be done from the chart, 
directly. The stripped data is in the last column. The plot showing the stripped data is:  
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The linest() output for the long curve fit and the stripped, short-time curve fit are given below: 
 

Long time fit Short time fit after stripping 
slope -0.00894 -0.9209 intercept slope -0.11022 -0.50834 intercept 
 6.7E-05 0.008109   0.000199 0.001288  
r2 0.999944 0.001894 st.dev. y r2 0.999997 0.001411 st.dev. y 
F 17822.69 1 df F 305307.4 1 df 
ssreg 0.063922 3.59E-06 ssresid ssreg 0.607473 1.99E-06 ssresid 

 

The corresponding values for the constants are 
 c2 = e–0.9209 = 0.3982  k2 = 0.00894 s-1 

 c1 = e–0.5083 = 0.6015  k1 = 0.1102 s-1 
 

WWWWWW     Using these fit values as guesses in the “Nonlinear Least Squares Curve Fit” applet with 

the “a exp(–bx) + c exp(–dx)” option and the above guesses gives: 
 

===========   Results   ============ 
 a= 0.596731 +- 0.000631 
 b= 0.111514 +- 0.00022 
 c= 0.403231 +- 0.0006 
 d= 0.0090422 +- 0.0000204 
------------------------------------ 
 sum of squared residuals= 7.226e-7 
 stand. dev. y values= 0.0003213 
 correlation between a & b= -0.5727 



   

 correlation between b & c= 0.8166 
 correlation between a & c= -0.8726 
 correlation between c & d= 0.907 
 correlation between b & d= 0.6811 
 correlation between a & d= -0.8034 

 

Notice that the correlation coefficient between c and d is high, but acceptible. If the long-time 
behavior were extended, the linear version of the fit could give good uncorrelated results for 
these parameters. Fitting bi-exponential curves is a difficult issue, and the corresponding fit 
coefficients are difficult to estimate accurately. 
 
 
9.  Draw the Chapman ozone mechanism, Section 5.2, as a box model. 
 
 
Answer:  The Chapman mechanism from Section 5.2 is comprised of four steps: 
   j1 

        O2 + h    2 O 
   k2 

 O + O2 + M    O3  + M 
   j3 
       O3  + h    O  + O2 
   k4 
       O + O3   2 O2 
 

Common depictions of the Chapman model are: 
 
 
 
 
 
 
 
 
 
 
Since steps 2 and 4 aren’t first order, the additional reactants must be shown with additional 
arrows, unlike purely first-order processes. There are many other possibilities, but all would have 
three boxes and at least four arrows that relate to the four elementary steps. 
 
 
10.  Would the residence time in the body for X be altered if an excretion pathway for Y was 
added to the model in Section 6.2, Figure 6.2.2? The added pathway is shown below. 
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Answer:  The residence time for X would not be altered, because the new differential equation 
for X still does not involve the concentration for Y; Eq. 6.2.8 still holds: 
 

 
d[X]

dt  = kin [X]o – kex [X] – kmet [X] 
 

Just as for any chemical reaction, the concentration of X does not depend on any unconnected 
“downstream” processes, if the mechanistic steps are uni-directional. However, if the metabolic 
process were reversible, then the concentration of X would depend on Y and the residence time 
would change (the effective rate of the metabolic removal would decrease). 
 
 
11.  Use Maple or Mathematica to solve for X1and X2 for the reversible two-box problem 
starting from the rate matrix, Eq. 6.3.3. Find the concentrations symbolically first. Then 
substitute in the specific constants: k1 = 0.3 s-1, k-1 = 0.15 s-1, and kex = 0.1 s-1, with initial 
conditions [X1]o = 1.0 M and [X2]o = 0. Solve for the concentrations at t = 1 s. Note that in 
general Eqs. 6.3.8, 6.3.9, and 6.3.28 can be combined into: 
 

 [X
~

] = C
~

 (exp 
~

t) C
~

-1[X
~

]o 
 

where exp 
~

t is the matrix with the exponential terms along the diagonal: 

 exp 
~

t = 







e1t 0 0 ...

0 e2t 0 ...

0 0 e3t …

... ... ...

 

 

Let K be the rate matrix, L be the vector of eigenvalues, C be the matrix of eigenvectors, and E 
be the diagonal matrix, exp 

~
t. The set of initial conditions is given by the vector Xo. After 

defining the rate matrix, K, and initial values vector, Xo, the Maple commands to do these 
calculations symbolically are: 
 

 (L,C) := Eigenvectors(K) ; 
 E := DiagonalMatrix(Map(exp,L*t)) ; 
 X := C.E.MatrixInverse(C).Xo ; 
 
 
Answer:  The Maple input is: 
 

 with(LinearAlgebra) ; 
 K := Matrix([[ –kex–k1 , k-1 ], [ k1 ,–k-1 ]]) ; 
 Xo := Vector([1,0]) ; 
 (L,C) := Eigenvectors(K) ; 
 E := DiagonalMatrix(Map(exp,L*t)) ; 
 X := C.E.MatrixInverse(C).Xo ; 



   

 kex := 0.1 ; 
 k1 := 0.3 ; 
 k-1 := 0.15 ; 
 t := 1.0 ; 
 eval(X) ; 
 

which gives: 

 



0.68597

0.21308  

 
The advantage of determining the result symbolically is that the concentrations can easily be 
calculated at any time. A finite difference numerical solution would need to start at t = 0 and 
integrate up to the desired time. The symbolic result is also exact. 
 
 
 
12.  Use MatLab to solve the two-box model in Figure 6.3.1 and Eq. 6.3.3. Plot [X1] and [X2] for 
t = 0 – 30 s. See Problem 11 for a hint on how to compactly write the solution. The 
corresponding MatLab commands are in the form: 
 

 [C,L] = eig(K) ; 
 

to determine the eigenvalues, L, and eigenvectors, C. Then at time t, the vector of concentrations 
is given by: 
 

    E = diag(exp(diag(L)*t)) ; 
    X = C*E*inv(C)*X0 ; 

 

[Note: You can create a matrix with concentrations as the rows and the time points indexed along 
the columns by using: 
 

    X(:,t+1) = C*E*inv(C)*X0 ; 
 

which makes plotting easier. The t values would be successive integers, so they can be used as 
array indices. The t+1 is necessary because we want to evaluate the concentrations at t = 0, but 
MatLab indexes vectors and matrices starting at 1.] 
 
 
 
Answer:  The MatLab –m file is: 

kex = 0.1 ; 
kf1 = 0.3 ; 
kr1 = 0.15 ; 
X0 = [1;0] ; 
tmax = 30 ; 
  
K(1,1) = -kex-kf1 ; 
K(1,2) = kr1 ; 
K(2,1) = kf1 ; 
K(2,2) = -kr1 ; 
  
[C,L] = eig(K) ; 
  



   

for t = 0:1:tmax 
    T(t+1) = t ; 
    E = diag(exp(diag(L)*t)) ; 
    X(:,t+1) = C*E*inv(C)*X0 ; 
end 
  
% Plot data 
figure(1) 
plot(T,X) 
xlabel('Time (s)') 
ylabel('[X1],[X2] (M)') 
 

The plot is given below: 
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13.  Use Maple or Mathematica to symbolically verify the solution to the reversible two-box 
problem, Eqs. 6.3.24-6.3.26, and also find the time course for X2. 
 
 
Answer:  Refer to Example 6.3.3. Let K be the rate matrix, L be the vector of eigenvalues, and C 
be the matrix of eigenvectors with each eigenvector corresponding to a column. The set of initial 
conditions is given by the vector Xo and A is the vector of the  values. The Maple input is: 
 

 with(LinearAlgebra) ; 
 K := Matrix([[ –kex–k1,k-1 ], [ k1,–k-1 ]]) ; 
 Xo := Vector([1,0]) ; 
 (L,C) := Eigenvectors(K) ; 
 A := MatrixInverse(C).Xo ; 

 A[1] C[1..2,1] ; 

 A[2] C[1..2,2] ; 
 

The eigenvectors are listed as: 
 

 






–½ k-1–½ kex–½ k1+½ k-1

2–2k-1kex+2k-1k1+kex
2+2kexk1+k1

2

– ½ k-1–½ kex–½ k1–½ k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2

 = 



1

2
  1 



   

 

The results for A[1] C[1..2,1] corresponding to the first eigenvalue, 1 : 
 





(–k-–1+kex+k1+ k-1

2–2k-1kex+2k-1k1+kex
2+2kexk1+k1

2) (k-–1–kex–k1+ k-1
2–2k-1kex+2k–1k1+kex

2+2kexk1+k1
2)Xo

k1 k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2 · 

 







-1

4  
k1

–½ k-1+½ kex+½ k1+½ k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2

–1
4

    2 

 

This result can be simplified by noticing that: 
 

 1 – 2 = k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2      3 

 k-1 + 1 = ½ k-1 – ½ kex – ½ k1 + ½ k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2  4 

 k-1 + 2 = ½ k-1 – ½ kex – ½ k1 – ½ k-1
2–2k-1kex+2k-1k1+kex

2+2kexk1+k1
2   5 

 

Substitution of Eqs. 3-5 into Eq. 2 gives: 
 

 









–(k-1 + 2)( k-1 + 1) k–1

–(k-1 + 2) k–1 (1 – 2)
 Xo

–(k-1 + 2)(k-1 + 1)
k–1 (1 – 2)

 Xo

 = 









(k-1 + 1)

(1 – 2)
 Xo

–(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo

 

 

Similarly for A[2] C[1..2,2] corresponding to the second eigenvalue, 2 : 
 

 









(k-1 + 2)( k-1 + 1) k–1

–(k-1 + 1) k–1 (1 – 2)
 Xo

(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo

 = 









– 

(k-1 + 2)
(1 – 2)

 Xo

(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo

 

 

 
The final time profiles are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A[1] C[1..2,1] = 









(k-1 + 1)

(1 – 2)
 Xo

–(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo

 

A[2] C[1..2,2] = 









– 

(k-1 + 2)
(1 – 2)

 Xo

(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo

 

[X1] =     
(k-1 + 1)
(1 – 2)

 Xo    e-1t    –         
(k-1 + 2)
(1 – 2)

 Xo      e-2t  

[X2] = 
–(k-1 + 2)( k-1 + 1)

k–1 (1 – 2)
 Xo e-1t   + 

(k-1 + 2)( k-1 + 1)
k–1 (1 – 2)

 Xo e-2t  

coefficients for1st eigenvalue coefficients for2nd eigenvalue 



   

 
 
14.  The box model below corresponds to a reversible first-step mechanism, as in Section 4.1, 
with all first-order processes. Determine the eigenvalues and time constants. Compare the results 
with the model in Figure 6.3.1 and Eq. 6.3.3.  
 
 
 
 
 
 
 
 
 
 
Answer:  The rate laws for this model are: 
 

 1 = 
d[X1]

dt  =– k1 [X1] + k-1 [X2]     1 
 

 2 = 
d[X2]

dt  =  k1 [X1] – k-1 [X2] – kex [X1]    2 
 

The rate matrix is: 
 

 K  = 



– k1 k-1

k1 – (k-1 + kex)
      3 

 

Using Eq. 6.3.23 gives the eigenvalues as: 
 

 i  =  
–(k1 + k-1 + kex)  (– k1 + k-1 + kex)2 + 4 k1 k-1

2   4 
 

The result is similar to, but not identical to, Eq. 6.3.24. For the same constant values as Example 
6.3.1, the eigenvalues in this case are: i = -0.4886, -0.0614. 
 
 
15.  The model in Section 6.2, Figure 6.2.2, considers the metabolic elimination of a drug in 
parallel with excretion. Since the liver is often the site for metabolic processes, this model would 
be more realistic if the drug is first transported by the blood plasma (bulk flow) to the liver where 
the drug is metabolized and excreted. (Compounds can be excreted from the liver in the bile.) 
The added pathways are shown below, including a constant flow input. 
 
 
 
 
 
 
 
 

kex [X1] 

Compartment 1 

[X1] 

Compartment 2 

[X2] 

k1 [X1] 

k-1 [X2] 

Excretion 

X1 

+ = kin Xo 

kexX X1 

kmet X2 
Y 

kexY Y 

X2 
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(a). Set up the differential equations for this model and write the rate matrix. (b). Find the 
relationship between kD1 and kD2. The typical plasma volume of a 70 kg person is 3 L, and the 
volume of extracellular fluids, excluding plasma, is 12 L. The total body water is about 42 L, so 
most of the water volume is in the cellular cytoplasm, which is about 80% water. Assume 
compartment 1 is the blood plasma and compartment 2 is the liver. Assume the effective volume 
for this process in the liver is 0.5 L. 
 
 
Answer:  (a). Because this model uses more than one spatial compartment and mass transfer is 
occurring, the differential equations should be written in terms of moles instead of 
concentrations, for each process for consistency. 
The rate laws are: 
 

 
dXo

dt  = 0   (Xo is a constant flow input) 
 

 
dX1

dt  = kinXo – kexX X1 – kD1 X1 + kD2 X2 
 

 
dX2

dt  =  kD1 X1 – kD2 X2 – kmet X2 

 

 
dY
dt  =  kmet X2 – kexY Y 

 
The rate matrix is given below with the rows and columns labeled to help you see the 
relationships: 
   Xo    X1        X2  Y 
                      
 

 K    =    









0 0 0 0

kin – kexX– kD1 kD2 0

0 kD1 –kD2 – kmet 0

0 0 kmet –kexY

  

 dXo/dt

 dX1/dt

 dX2/dt

 dY/dt

 

 
The time course for this problem would be determined by numerical simulation.  
(b). The ratio of the mass transport coefficients is given by Eq. 6.1.46: kD2/kD1 = V1/V2 = 3 /0.5. 
   This general model has many applications. For example, in atmospheric environmental 
chemistry, compartment 1 could be the gaseous atmosphere and compartment 2 an aerosol 
droplet where a reaction occurs. One specific example is the conversion of NaCl particles to 
NaHSO4 (aq) by reaction with sulfuric acid. Another example is the reaction of dimethyl sulfide 
produced by bacteria in the ocean with ozone or hydroxyl radical in cloud droplets or on particle 
surfaces. 
 
 



   

16.  Show that the kinetic versus thermodynamic control mechanism in Example 4.1.2 gives two 
exponential time constants. Calculate the time constants using the rate constants given in 
Example 4.1.2, namely: k1 = 0.020 s-1, k-1 = 0.00050 s-1, k2 = 0.50 s-1, and k-2 = 1.50 s-1. The 
corresponding box model is shown below. 
 
 
 
 
 
 
 
 
Answer:  The rate matrix is: 
 

 K  = 








– k-1– k-2 k-1 k-2

k1 – k-1 0
k2 0 – k-2

 

 

The secular equation is: 
 

 (M  – i I)Xi~  = 0 = 








– k-1 – k-2 –i k-1 k-2

k1 – k-1 –i 0
k2 0 – k-2 –i

) 

 

Expanding the determinant in terms of the first column gives: 
 

 (– k-1 – k-2 –i)( – k-1 –i)( – k-2 –i) – k1 k-1 (– k-2 –i) – k2 k-2 (– k-1 –i) = 0 
 

The multiplications give: 
 

 – i
3 – i

2(k1 + k2 + k-1 + k-2) – i (k1k-2 + k-1k2 + k-1k-2) = 0 
 

Since there is a common factor of i, one of the eigenvalues is zero. A zero eigenvalue is 
expected because all the processes are reversible (7 point 14). Dividing the characteristic 
polynomial by – i gives: 
 

 i
2 + i(k1 + k2 + k-1 + k-2) + (k1k-2 + k-1k2 + k-1k-2) = 0 

 

This equation can then be solved using the quadratic equation using Excel: 
 

kf1 0.02 s-1 
kr1 0.0005 s-1 
kf2 0.5 s-1 
kr2 1.5 s-1 
   
a= 1  
b= 2.0205  
c= 0.031  
   
lamda(+)= -0.015461 s-1 
lamda(-)= -2.005039 s-1 
   
1 = 1/1 64.6786759 s 
 =1/2 0.49874343 s 

 

A X 

Y 

k1 [A] 

k-1 [X] 
k2[A] k-2 [Y] 



   

The listed a, b, and c cells are the normal coefficients for ax2 + bx + c = 0. Notice that the two 
time constants differ by over two-orders of magnitude. That is the reason for the very quick rise 
and comparatively slow decay in Figure 4.1.2. 
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