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Chapter 6: Applications of Reaction Mechanisms

Calculate the maximum flux of GGnto the ocean by assuming the bulk concentratfon
CO; in seawater is zero and the interfacial conceptradf CG; is in equilibrium with the
atmosphere.

Chemical reactiometworks are defined by complex systems of coupled rats faw
homogeneous and heterogeneous chemical reactibagrdcesses can include photochemical
reactions and surface catalysis. Understandindiogacetworks is necessary for solving many
practical problems. Problems in nature often ineapatial separation; chemical concentrations
are often not uniform. In this chapter we apply basic theoretical understanding of chemical
kinetics to systems that couple chemical reactwitis concentration gradients. Global climate
change is a pressing issue that is informed by @#&kinetics. As an example of the coupling
of chemical processes and concentration gradiesmtsliscuss the exchange of carbon dioxide
across the air/sea interface. The theory that weldp is also applicable to active transport
across membranes, which is an important consideratiliving cells.Pharmacokineticsis the
study of the absorption, disposition, metabolisnd excretion of drugs in living organisms.
Pharmacokinetics also involves the coupling of emtiation gradients and chemical reactions.
We will use pharmacokinetics to motivate and illast our discussion of spatially dispersed
networks. We conclude this chapter with a genasglugsion of box models, which are a useful
way of visualizing spatial and chemical relatiomshin chemical reaction networks.

6.1 Spatial Variation has an Important Influence onChemical Kinetics

Detailed balance requires that all reactionstouequilibrium. This necessity creates problems
for living systems. The equilibrium states for fireduction of many biochemicals are not
favorable at the levels required for the properctioming of the cell. The presence of enzyme
catalysis does nothing more than hasten the apptoasquilibrium. To avoid detailed balance,
living cells depend on compartmentalization andvadransport processes. In other words, to
avoid the equilibrium state, the cell is enginedmedupport concentration gradients. The proper
functioning of cells depends on spatial variationsoncentration. Concentration gradients also
play an important role in biogeochemical processes.

One of the critical issues in the developmerdamfnd energy policies is understanding global
CO, dynamics. How rapidly will global C{Qevels adjust to decreases in gfoduction? The
oceans and other surface waters are primary smks@,. CO, enters aquatic systems by
diffusion across the concentration gradients aaihevater interface. The GOnay then be
consumed by chemical reactions and eventually loygslynthesis. Taken together, processes in
living cells and global climate change require aderstanding of the coupling of chemical
kinetics and concentration gradients. With thislgoanind, we first derive Fick’'s Second Law
of diffusion, which determines the change of comicdion with time for a system with
concentration gradients. We then add in the additiooncentration changes that arise from
chemical reactions. Using G@ansfer across the air/water interface as an pkamwe then
develop a simple model of interfacial diffusiondahen compare the simple model to a model
that includes coupled diffusion and chemical reandi
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Diffusion Changes the ConcentratiorfFick’s First Law of diffusion, Eq. 2.3.4, re¢stthe molar
flux of a substance to the concentration gradigént — D dc/dx. The flux is the time rate of
change of the amount of substance across a swfacgt area per unit time. However, we often
need to know how the concentration at some poittiersolution changes because of the flux.
Consider a thin slice of solution, with cross-saadil area A, of thickness dx, Figure 6.1.1. The
volume of this thin slice is dV = Adx. Assume a centration gradient across the sample with a
decrease in concentration with increasing x, frefntb right. The number of moles in this thin
slice, at position x, will increase by diffusiontbie substance into the slice from the left over a
time interval dt, as given by,() Adt. Dividing by the volume of the slice givédse change in
concentration with time:

dc In(X)A _ In(X) 6.1.1
dt— Adx = dx T

where J(x) is the flux at position x in the solution.
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Figure 6.1.1: Diffusion into and out of a thin gliof solution. Fluxes into and out of a thin
slice of thickness dx.

The flux leaving the thin slice at (x+dx) is given:

dc  Jn(X+dx)A  Jn(x+dx)
dt— Adx —  dx

The net change in concentration is then given bydifference between Egs. 6.1.2 and 6.1.1.:
de _ Jn(x) = Jn(x+dx)
dt — dx

The definition of the derivative of,Jwith respect to x is @ldx = [Jn(X+dx) — Jn(x)]/dx. With

this definition Eq. 6.1.3 gives:
dc_ ddy
dt —  dx

As a simple starting example, consider the cade matchange in flux with distance:n@dx = 0.

As you step along the x-axis in Figure 6.1.1, & flux remains the same, the flux in and out of

each slice remains the same giving no net changenoentration: dc/dt = 0. We can obtain a
relationship directly in terms of concentrationdupstitution of § = — D dc/dx into Eq. 6.1.4:

6.1.2

6.1.3

6.1.4
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dc _d%
dt = “dx 6.1.5

The second derivative with respect to distancheéscurvature. Remember that a function with a
minimum has a positive curvature, and that the i&utxom regions of high concentration to
regions of low concentration. Consider the poiind-igure 6.1.2. The positive curvature at X

in Figure 6.1.2a causes an increase in concemirafith time. Functions with a maximum have
negative curvature, Figure 6.1.2b, causing a deergaconcentration. Functions with a constant
slope have no curvature; the flux into and ouhefriegion near will be the same, giving no

net change in concentratiorfcttx’= dd,/dx = 0, Figure 6.1.2c. In other words, in thig lease,

the flux is uniform because of a purely linear camtcation gradient. In Figure 6.1.2a we find
that holes fill in and in 6.1.2b we find that peaksead. In 6.1.2c we note that linear
concentration gradients tend to stay linear.

d’c d’c
) e <0 20
CE A de dc
dx? a <0 T a =0
dc
c dt 70 c C
—
Xo X Xo "X Xo X
(a) positive curvature (b) negative curvature ) z@ro curvature

Figure 6.1.2: The curvature at a point and the eptration change with time have the same
sign. (a) If the concentration profile has a minimuhe fluxes from the left and right of x
increase the concentration. (b) If the concentngpimfile has a maximum, the fluxes from
the left and right of xdecrease the concentration. (c) For a linear caregon profile, the
gradient is linear, and the fluxes are equal.

To be careful we should use the partial denneasiymbol §c/ot)y instead of dc/dt to remind us
that the concentration is a function of both x adhen we take the derivative with respect to
time at a specific position, x. We also need topout that the derivatives of the concentration
with respect to x are taken at constant t:

2
(%) - D(%jt (uniforminy and z) 6.1.6
X

We will deal more with partial derivatives in thext chapter, if you haven’t seen them before.
For now, just note that they simply point out tlzi&ble that is held constant for the derivative.
Eqg. 6.1.6 is callefick’s Second Lawof diffusion, or sometimes just thigffusion equation.

Eq. 6.1.6 assumes the concentration gradient aristsly the x direction. The y and z directions
are assumed to be uniform. Fick’s Second Law cagalsdy generalized to the case with
concentration gradients in all three directions. &6.6 is often solved numerically; however
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diffusion away from a planar surface can be sobeaytically. This planar diffusion model is
particularly useful for understanding gas transf@oss an air/water interface and other
interfacial and chromatographic processes.

Consider a sheet of filter paper coated withia kayer of a compound immersed in a beaker
filled with water. Assume that there argmoles on the surface with area A. The compound
dissolves and then diffuses into the water, Figuie3. The x-direction is chosen perpendicular
to the sheet with x = 0 at the plane of the shg®t. concentration profile is given as a function
of distance and time by:

—— o~ 4Dt
c(x,t) = e 6.1.7
.9 AA[4TDt

We will prove that this result is a solution to Bgl.6. However, first we should understand the
behavior of this concentration profile. Figure 8.8hows the profile as a function of time. As
time progresses the compound diffuses furthertimécsolution. Eq. 6.1.7 is a specific example
of a Gaussian distribution.

0.2

10s
0.1

c(x,t) (M)

60 s

X (mm)

Figure 6.1.3: Concentration profile as a functibtime for diffusion from a planar surface
for CO, in sea water, By, = 1.35x10° m* s,

a5

General Pattern 5: Gaussian Distributipg- X720°
The Gaussian distribution, also called the nornsdtibution, is the classic “bell-shaped” curve
that is common in statistics. The general form Gfaassian distribution is given as:

1 2
—_— x—1)%20°
909 =7 ,—Zner( +) 6.1.8

wherep is the average or mean value of x and the standard deviation of the distribution. For
a series of measurementg,thke mean is given by:

1N
M= > Xi 6.1.9
i=1

and the standard deviation is a measure of thadmkthe distribution:
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10 &
0=(ﬁ Z(xi—u)zj - ) 6.1.10
i=1

where n is the number of measurements. The stacléardtion is an example ofraot-mean-
square In other words, the standard deviation is theasguoot of the average of a value that is
squared. The square in &u)? prevents positive and negative deviations fromntiean from
canceling, which would otherwise give a sum of z&mobtain a truly representative value for
the mean and standard deviation, the number ofunements for the sums in Egs. 6.1.9 and
6.1.10 must be very large. The resulting statistrescalled th@opulation meanand

population standard deviation If n is small, an estimate of the mean is obtinehich is
denotedand is called theample meanFor small n, an estimate of the standard deviation
obtained by theample standard deviation s, which is defined by:

1 < ”
s {n——l Z(xi—i)ZJ (n small) 6.1.11
i=1

As the number of measurements increases, the savgriage and standard deviation approach
the underlying population average and standardatieni. asn- «, X 1 ands- O.

In statisticsthe probability of occurrence of a given experinaénesult, x, is given by a
probability distribution, P@. For example, consider the set of five observetio

Observations#4, 3, 4, 4, 2
The probability of occurrence of the results isegi\by the probability distribution, R{x

Xi P(x)
0/5
0/5
1/5
1/5
3/5
0/5
sum 5/5

and the probability for any other result is 0/5eTdum of the probabilities is equal to one. Using
a probability distribution, the mean and standardiaion in Egs. 6.1.9 and 6.1.10 can be
equivalently calculated by:

abrhwWwNDEFLO

i—— 00

[0} 0] ]/2
H=<x>= > x P(X) 0 =<(x —p)*>"*= ( (i —p)? P(X)] 6.1.12
Xi

X{=— 0

where the sum now runs over all possible values. dthe brackets, <>, indicate an average. The
sum is appropriate for a discreet set of resutts.acontinuous variable, the summations in Eqs.
6.1.12 are replaced by integrals, over all possiblaes of x from x =ee to . In particular,
assuming a Gaussian distribution, the mean andatdreviation are averages over the
probability distribution given by the integrals:
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%
u:<x>=fw X g(x) dx 0 =<(Xx —p)>"*= UW (x —)? g(x) dx) 6.1.13

-00

1 1 1 1
X is averaged (x — )% is averaged

The constant, drA/Zn, in Eq. 6.1.8 is the normalization constant; tbestant is specified so
that the area under the curve is equal to one:

[ a0 [ g 6T 0 = 1 o114

-00

In probability applications, normalization just meahat the sum of all the probabilities is
100%. Eq. 6.1.8 is plotted in Figure 6.1.4 to higfmi the relationship of the standard deviation
to the area under the curve and the full-widthadt imaximum. Integrating g(x) between x =g-2
to 20 gives 0.9544 or 95.44% of the area under thediatribution.

0.41
0.3+
g(x)
0.21

0.11

95.44 % area
0 f f f f i 1

-3 -2 -1 0 1 2 3
X

Figure 6.1.4: Gaussian distribution wjih= 0 ando = 1.

The maximum value of the distributionygg is at the center of the distribution;sg= g(). The
half-width at half-maximumhwhm is given by solving for x from g(x) =@¥2:

hwhm=4/2In2 o 6.1.15

and the full-width at half-maximuniwhm is just twice this value:

fwhm= 2/2 In 2 o0 = 2.3550
6.1.16

Often the first and second derivatives of thei€d&an function are needed, as in Eq. 6.1.6.
Taking the first derivative with respect to x of.Eq1.8 and choosing a zero mean gives:

X202
dg _ 1 de0) 1 53) e v

This last equation can be written more simply bipgishe definition of g(x) from Eq. 6.1.8:

dg _ (=X
dx ~ (OZJ 9 6.1.18
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and then the derivative of Eq. 6.1.18 gives thesdderivative, using the product rule:

0= 129 [0 -3

The Gaussian, or normal, distribution is a v@gnmonly occurring function for several
reasons. One reason is ttentral limit theorem, which states that the probability of occurrence
of a given value from a continuous, random, an@pahdent set of observations approaches a
Gaussian distribution as the number of observatjmes to infinity. In other words, for
independent, continuous measurements all distabstapproach a Gaussian distribution for
large data sets. The other reason that the Gaudisiaibution is so common is that it is the
solution to the diffusion equation, Eq. 6.1.6, aggiations of similar form.

a5

How far do molecules move by diffusion? One rouglywo answer this question is to determine
the width of the concentration profile. Comparing B.1.7 to the general form in Eq. 6.1.8, the

standard deviation of the concentration profileeiated by &* = 4Dt, oroc =+/2Dt. The full-

width at half-height of the diffusion region is,mg Eq. 6.1.15fwhm= 2.355\/2Dt. The

Gaussian distribution shows that, in a given tiragqa, most molecules move a short distance
and a few move longer distances. So to get a kdtarof the distance traveled, we need to take
an average. The best way to find the distance ledvs the root-mean-squared, or rms,
displacement. Given the probability distributiom fioe displacement, g(x), the rms displacement
is defined as:

Y
Xrms = <X2>7 = (fw X2 g(X) dx) 6.1.20

where the integral calculates the average valilkeo$quared distance traveled. However, we
note that this value is just the standard deviaa®defined by Eq. 6.1.13, given that the center of
the distribution is at x = 0. Using the concentratprofile from Eq. 6.1.7 as the probability
distribution, the rms displacement is calculated as

Xrms =0 =1/2Dt 6.1.21

Now that we have a better understanding of ¢éselt, we now wish to prove that Eq. 6.1.7 is a
solution to Eq. 6.1.6. The general approach to gmchlems is to work on the part of the
differential equation to the left of the “=" sigimdt and then the part to the right. Then we need t
show that the result from the left-hand side eqgtr@sesult from the right-hand side. So starting
with the left-hand side of Eq. 6.1.6 (or equivalg®t1.5) we take the time derivative, keeping x
constant. Factoring out the constants and usingribduct rule:

1 2 )
14Dt
Ny d(tvz € 1

%)x “AaD At A Jjﬁ KV) (4%2?) € )8/4Dt‘(2_%377) o XZMDt} o122

We can simplify the appearance of this equatiosuystituting in the original definition of the
concentration from Eq. 6.1.7:
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%)X _ [(%12) _ %ﬂ c (hs) 6.1.23

Now we need to work separately on the right-hadd.sTaking the second derivative of Eq.
6.1.7 with respect to distance while keeping t tamis using Eq. 6.1.19 witho2 = 4Dt, gives:

9%c NG 1
(axz)t - [(4D2t2) ‘(2Dtﬂ ¢ 6.1.24
To find the right-hand side of Eq. 6.1.6, all weedé¢o do is multiply by the diffusion coefficient:
0°c X 1
D(axzjt B [(4Dt2) ‘(2 tﬂ ¢ (rhs) 6.1.25

If Eq. 6.1.7 is a solution to Eq. 6.1.6 then th&uteof the left-hand side should equal the result
of the right-hand side, which we see is the cags. £1.23 and 6.1.25 are equal. Eq . 6.1.7 is a
valid solution to the diffusion equation for thisoplem. Note that we will draw on this general
left-hand side then right-hand side then compapequure many times throughout this course.

Eq. 6.1.7 is useful for a wide variety of prabhke The same profile results from
chromatography experiments, including gas chromafiiy/, HPLC, and electrophoresis. A
small plug of a compound in a chromatography coluhffuses during the separation according
to EQ. 6.1.7. As time progresses, the band spilieaal§aussian distribution.

Example 6.1.1:
Calculate the distance that a molecule with a ditfn coefficient of 2.0xI®m? s* travels in 10
minutes.

Answer Using @° = 4Dt and that the standard deviation is thedistance:
Xms=0 = (2Dty* = (2 (2.0x10 m? s1)(600 s)i* = 1.55x1¢ m = 1.55 mm

Diffusion is a very slow process, which is why vigos stirring is required for solution
preparation and other lab activities.

Now that we know how to work with diffusion, wan tie together what we know about
diffusion and chemical kinetics.

Diffusion and Chemical Reactions Both Change thec€ntration At any point in a system,
the net change in concentration for a speciessistiie sum of the change due to diffusion and
any chemical reactions. All we need to do is to tdrate law to Eq. 6.1.6. For species i with
stoichiometric coefficient; and reaction rate:

o) _ az_q)
(atjx = D(axz . + ViU 6.1.26

diffusion  reactions
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For example, for a first-order reaction with theass of interest as a reactant, the reaction rate
isv = —dg/dt = k¢ andv; is -1:

%j _ (&) - -

(at < =D P . — kG (first-order reaction) 6.1.27

diffusion  reactions
where the concentration now depends on the postartime: ¢x,t). Note that we have
neglected any convection and bulk flow for thisa&pn, but they can be added in if necessary.
The absorption of C&oy surface waters, other than the obvious impodais an excellent
example of the use of this equation. But, as atpdinomparison, we first consider interfacial
transfer in the absence of chemical reactions.

Interfacial Diffusion is Determined by the Bound&wgnditions We first need to develop a
simple, but very useful, model for the flux of dstance near an interface. For convenience, we
will focus on the air-water interface, but the Hesialso applicable to gas-solid and liquid-solid
interfaces as well, under similar conditions. Cdaesi solution in contact with air. We assume
that the gas phase and the bulk of the solutioeach well mixed. Let the x-direction be
perpendicular to the solution surface with x = thatinterface, Figure 6.1.5.

w/a

C A
-—m cVie
0 .. 3 % 5 c (M)
Cbulk Cbulk
x 0 5 x

Figure 6.1.5: Stagnant boundary layer model fterfacial gas exchange. The thickness of
the boundary layer i, the concentration of the solution at the wateifaerface is ¥2

Under many circumstances a good approximation &ssoime that the solution interfacial region
is a thin stagnant layer of thickngsdt is also often a good approximation to assuna¢ the
concentration gradient across this so-called bayndster is linear, with endpoints between the
concentration in solution at the water/air inteef@t x = 0, ¥2 and the concentration of the
well-mixed bulk of the solution,°¢*. The concentration gradient is then given by E§.2as:

dc Cbulk _ dN/a

dx~ 5
Fick’s First Law of diffusion, Eq. 2.3.4, relatdgetmolar flux of a substance to the concentration
gradient!

dc (D), .
%:_Dd—)c(::{gj (Cb Ik—dN/a) 6.1.29

where D is the diffusion coefficient for the gagsies in the solvent. This model is often called
thestagnant boundary layermodel or thdilm diffusion model. The diffusion coefficient for

6.1.28
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CO, in the ocean is &, = 1.35x10° m? s*.2 For surface waters, the stagnant layer thickness
depends on wind velocity, surface state, and cdiweecurrents; however, a reasonable range is
600 + 400um for fresh water and about fén on average for the ocedin the laboratory the
thickness of the boundary layer depends on stispeed; the faster the stirring speed, the
thinner the boundary layer, and the larger the.flux

Example 6.1.2:

Calculate the maximum flux of GGnto the ocean by assuming the bulk concentraifd®O;, in
sea-water is zero and the interfacial concentraifd@O; is in equilibrium with the atmosphere.
To find the interfacial concentration note that #teosphere is 0.030% by volume £4hd the
equilibrium solubility of CQ in water at 25C is 3.39x1G M atm*. Assume the atmospheric
pressure is 1.00 atimA box model representing the process is in Figutes.

Atmosphere, co, C+02
o= ”,”””,,,,,”””,””,,,,,,,”,”””,,,,,,i,i”” bound ary |aye r
Ocean, ™*

Figure 6.1.6: Box model or reservoir model for 3change across the air/sea interface.

Answer The concentration of G(at the water/air interface in equilibrium with thenosphere
w/a

is: [COJeq = 1.00 atm (0.00030)(3.39xEM atmi*) = 1.0x10° M
and in mol ri: Ce =[CO g = 1.0x10° M (1000 L/1 ) = 1.0x1CF mol ni®
The flux is then given by Eq. 6.1.29 usingdd= 1.35x10° m? s*andd = 50um:
bulk i -
_ v " o 1 (O — 1.0x1¢ mol ms] _ . 1
Jn=— D( 5 a) =-1.35x10 n? s 010" = 2.7x10' mol nt' s

On a yearly basis this flux corresponds to 8.4 mfoyr*. We can use this flux to find the time
necessary on average to exchange all thei€@e atmosphere into the oceans. There are about
100 mol of CQ in the column of air above each square meteretthiface of the ocean. Then
about (100 mol fM)/(8.4 mol nf yr!) or 12 years are required to exchange all of tBe i€ the
atmosphere with the ocean. Note, however, that wiiebulk concentration of GOn the ocean
approaches the equilibrium G®olubility, the net flux will drop to zero. At edjbrium the flux

into the oceans will be equal to the flux leavihg bcean. Our calculation, so far, neglects any
chemical reactions that consume [ @ the boundary layer.

The neglect of chemical reactions in the boundaygi works fairly well for CQabsorption by
the oceans. However, for accurate predictions arfdce waters at higher pH, we also need to
consider the effects of chemical reactions.

CO, Transport Across the Air/water Interface Couplefu3ion and Chemical Reactians
When CQ dissolves in surface waters the following hydmatieaction occurs:
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ky
CO, (ag) + HO - HCOy + H' 6.1.30

Ky

The result is that CQs converted into HCOin the stagnant boundary layer and the total @fux
CO; into solution is increased. The contribution a§tleaction is dependent on pH. The reverse
reaction slows as the pH increases, increasingaheate of CQhydration. The rate of

hydration of CQ s then:

d[CO; _ d[HCOy]
(0| dt

= kg [COy] — k1 [H+][HCO3] 6.1.31

with vee, = =1 andvycos- = 1. To determine the steady state fluxes, weusanour old friend the
steady state approximation by setting Eq. 6.1.2&k zero for both CQand HCQ':

2[ ]
DCOz(a ;):((z)zj — ki [CO,] + k1 [HH][HCO3] =0 (steady state flux) 6.1.32
t
2 -
Dhcos- (—6 [F(;S(:Zpg ]j + ky [CO,] — k1 [H'J[HCO3] =0 (steady state flux) 6.1.33
t

Quinn and Ottdband Emersohnumerically evaluate these expressions for typiehles for
natural water. However, for our purposes, we wilke simplifying assumptions that, while
drastic, will allow us to explore the coupling offdsion and the chemical reactions in a general
way. We assume a stagnant boundary layer modelangtinstant pH. We assume that the
constant pH is maintained by a buffer that doesmailve HCQ'.

Egs. 6.1.32 and 6.1.33 show that, at steady &iathe fluxes, any increase or decrease in
concentration caused by chemical reactions musbbetered by diffusion. Since the rate of
consumption of C@and the rate of production of Hg@re the same but opposite in sign,
adding these last two equations gives:

92[CO 9’[HCO;s
Dco{_[ax_zzlj + Ducor (—[ngl) =0 (steady state flux) 6.1.34
t t

2 2 y
0 ICOzl) - _p, (a HCOs ) (steady state flux) 6.1.35
t

or rearranging: 502( PV i cos %2

The only way for Eq. 6.1.35 to hold for this systenif the curvatures for both G@nd HCQ’
are zero. Otherwise, the Hg@oncentration would need to drop below the bulkcemtration
to have opposite curvature from the £@ncentration (if not zero, one progresses towards
minimum while the other progresses to a maximurajoZurvature corresponds to a linear
gradient; we then assume a linear concentratiodigymafor both C@and HCQ'". The boundary
conditions at the water/air interface are [f{@) = [CO,]""® and HCO;](0) = [HCO5]™2.
However, we don’t knowHC0O;]"2. Since the curvature is zero in Eq. 6.1.32, thetien rate
term must also be zero. In this approximation, ttiea reaction is also found to be at steady
state for all values of x. Therefore, at the waielhterface:

ki [CO"® — k4 [HT][HCO3]"2 =0 (steady state reaction) 6.1.36

H -jw/a k
giving: [[é:gz i’v]v/a S [|1_|+] (steady state reaction) 6.1.37
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The total flux of CQ from the atmospherer,ds the sum of the terms for G@nd HCQ' since
both result from absorption of G&om the gas phase. The flux for each speciealcuated
from Fick’s First Law, ¢ = — D dc/dx, and Eqgs. 6.1.29 for each species:

Jr = ko + Jicor
= 222 (1O}~ [COJ"?) —HE% (HCO;1"H— [HCO5]")
(steady state flux) 6.1.38
In the absence of the chemical reaction the flgxsdyiven by just the first term:

Dco

b=-"5" ([CO* "~ [CO,"™) (steady state flux) 6.1.39

To find the maximum flux, we set the bulk concetitras to zero as we did in Example 6.1.2.
The enhancement of the total flux by the chemieattion is then defined as:

- Ducos- [HCO; 12
Jr 3 S 'E')CCOSZ %COZ]B‘,N]’a (steady state flux, max) 6.1.40
0

using Egs. 6.1.38 and 6.1.39. Substitution of Ef.3G for the concentration ratio then gives the
maximum enhancement as:

Jr—%  Dhcor ki
% - Deo Ki[H] (steady state, max) 6.1.41

The diffusion coefficients of C£and HCQ are approximately the sarh@he ratio k/k; is the
acid dissociation constant for G®K; = 4.45x10’. The predicted pH dependence agrees with
our reasoning from reaction Eq. 6.1.30; the enhaece increases with increasing pH. At
neutral pH the enhancement predicted by this sirm@ldel is significant, ~4.45. However, more
complete numerical calculations for natural wapeslict the enhancement at pH 7 to be
smaller, in part because the pH is not constamisadhe boundary layer if the system is not
buffered by a non-carbonate buffefor natural waters we also need to consider tHiiadal
equilibrium? CQO, (ag) + OH - HCO;. However, our model for CQransfer across the
air/water interface is a good first step in undarding the coupling of chemical reaction rates
with concentration gradients.

For membrane systems, the membrane is compkatalpgous to the boundary layer in these
models. Therefore, similar models can be constduicteexplain C@, O,, and CO exchange into
the blood®® Such models are useful in understanding lung fancMembrane transport in
batteries and fuel cells as well as surface cataban be handled in an analogous fashion.

Diffusion in Discontinuous Systems Can Be Approtethds a First-Order ProcessThe study
of chemical reaction models is greatly simplifiedll processes can be written as first-order
processes. We now show that diffusion can ofteadsgjuately approximated as a first-order
reversible process, which allows diffusive masadpmrt to be easily included in reaction
models. Consider two well-stirred compartments withcentrations;cand ¢ that are separated
by a membrane or an interfacial boundary layerigid.1.7. The flux through the boundary
layer, assuming a linear gradient, is given eitheEq. 2.3.4 or analogously with Eq. 6.1.29:
dc D

Jn=- Ddx = —(g) (- (linear gradient) 6.1.42
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with D the diffusion coefficient ithe boundary layer or membrane.

Compartment 1,

Compartment 1,; X 7y
5% ,,,,,,,,,E,,,,,,,,,,,,,,,,,,,,/,,/WJ 4 | boundary ko[ca] v ko [c2]
vl layer or
Compartment 2,.C X | membrane Compartment 2,

Figure 6.1.7: Equivalent ways of illustrating defue transport. From the point of view of
the compartments, diffusion can be treated asadnder process, assuming a boundary
layer model and the compartments are well-mixed.

We have been focusing on the flux within thermtary layer. Now we shift our focus to the
concentrations of the two compartments. The flus ager the surface area of the boundary
layer, 4, giving the changes in moles as:

d d D
drll——Jnﬂ ()ﬂ(Cz—cl) and d—rlz=5|nﬂ=—(g)ﬂ(c2—cl)

(discontinuous, linear interface) 63L.4

The overall signs are opposite because as thal#pletes compartment 1, the concentration
increases in compartment 2. Defining the effeathass transport coefficient as ¥ D.4/d and
usingn =X, =Xz, & =[Xz] and g = [X4], as is conventional in chemical rate laws, allows
these last equations to be written as reversildedrder processes that are in the same form as
chemical rate laws:

B oD +ho[Xd  and D=k X - ko [X2]

(discontinuous, linear interface) 641.4

In working with heterogeneous systems or systensgweral compartments, it is often preferable
to work with moles directly instead of concentragoGiven the volumes of the two
compartments Yand \4, the corresponding changes in terms of moles g 6.1.43 are:

%_(Q) (& &) dXz _() (2 &)
dt =(3)1\V, "V, 51\, "V,
(discontinuous, linear interface) 65L.4

Defining the effective mass transport coefficiesds

kD]_ =D/d (ﬁl/Vl) and lﬁz =D/® (ﬂ/Vz) 6.1.46
recasts these last equations into a form thatakgous with chemical reaction rate laws:
dX;

dX
dt = — ko1 X1t ko2 Xz and dt2=—K)2X2 + ko1 X1
(discontinuous, linear interface) 671.4
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Note that k./kp; = V1/V2. All the standard chemical kinetics methods thathave developed
can then be applied to problems that couple intefaiffusion and chemical kinetics. Notice
the_2/V term is analogous to the a/V, A/V, aafl terms in bulk flow, photochemical, and
heterogeneous catalysis rates, Egs. 6.2.5, 5.1.4 and 5.5.6. These A/V terms allow the
conversion of flux units to concentration units.

Fick’s Second Law is often difficult to solveadytically. The approximation that we used in
Egs. 6.1.43-6.1.47 avoids explicitly solving FiclSscond Law within the compartmetip
assuming uniform concentrations separated by adasyrayer. Such a system is called a
discontinuous systemsince the concentration changes abruptly achessiterface between the
two solutions. We still need to solve Fick’s Secduaav withinthe boundary layer, but first-
order, reversible, mass transfer between compattmea good approximation if the
concentrations are uniform in the compartments. 8dsimption of a discontinuous system is a
common trick for simplifying systems governed melar flux-force relationships.

Figures 6.1.6 and 6.1.7 are represented as boels Box models help us visualize complex
systems and can be useful for representing sydtehsouple spatial separation with chemical
reactions.

6.2 Box Models

Box models are commonly used tools for visualizimg relationships represented by systems of
differential equations, Figure 4.4.1. As we havensa reaction mechanism can be pictured as a
series of reservoirs, one for each reactant orymipdhat fill and empty as the reaction
progresses. These models are examples of box métieigever, the true utility of box models
arises when chemical reactions are subject todsmparations. We will highlight some of the
general principles in using box models to undestaymplex series of chemical reactions in
spatially dispersed systems. We start by discussiiegv specific examples in the context of the
drug discovery process. We then present a genatigrp that summarizes some of the
properties of box models. Box models are applicadbke wide variety of fields.

Pharmacokinetics Pharmacokineticsis the study of the absorption, disposition, meliain,

and excretionADME ) of drugs in living organismsPharmacokinetics uses chemical kinetics
and chemical transport properties as tools to ptede time variation of drug levels in the body.
The prediction of the ADME properties of new caradeldrugs (pharmaceutidebd

compoundg is used to anticipate drug distribution problefar example, if a compound is
poorly soluble in water, getting the drug to theided tissues in the body will be a difficult
problem. The principal purpose is to shorten thegdfiscovery and development process.

A little of the terminology of pharmacology wile helpful for our examples. Bolus doses a
drug given in a single time-point addition, for exale by intravenous injection or oral tablet
administrationInfusion is the administration of a drug at a constant oatr a long period of
time, for example by an intravenous drip. A systeiih a continuous input is called an open
system. Acompartment is a portion of the body that acts as a homogenesaervoir for a
particular drug. The mixing time within the compaent is assumed to be short compared to the
flow of the drug into or out of the compartmenteldomponents of a given compartment can
vary from drug to drug. Common components incluaehlood plasma, extracellular water,
liver, kidneys, and adipose tissue, which may comloir act separately. The boundaries between
the compartments are membranes or flow restrictidlternate names for compartments in drug
discovery applications are organs and tissuesthierdields compartments may be called
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reservoirs, beakers, flow reactors, and most genetatiyes hence the nam®ox models Drug
dispositionis characterized by the amount of drug or conediotm in each of the compartments.
The disposition is determined by the balancdistribution of the drug after absorption from
the site of administration aredimination. Elimination occurs through excretion and
metabolism. Metabolism is where chemical reactimetics interfaces with pharmacokinetics. A
major metabolic site in the body is the liver.

In multi-compartment problems, for consistendthwnass transport processes (Section 6.1),
the rate laws are usually written in terms of mahstead of concentrations. The typical first-
order rate law:

1d¢

=V dt- ki [X] 6.2.1

is multiplied by the volume of the solution in tbempartment:

%_id_x_k;LV(é):klx or V:Vixdd_>t<: klx 6.2.2
which is_independertf the volume of the solution. We use “v” for ttede expressed in moles.
The rate law can be written in terms of concerdratior moles directly, as we did with diffusion
in Eq. 6.1.47. In pharmacokinetics, the volume obmpartment is often not known. Working
with moles avoids needing to know the volume oiveig compartment. In the equations that
follow, we will continue to use [X] when writing t@laws. Just remember that for single
compartment systems or compartments with equahved,) you can work with concentrations,
but for multi-compartment systems just switch thésito moles. A pseudo-first order rate law
results from dX/dt = (ko[X2]) X1, with ket = ko[X].

Most drug absorption, disposition, metabolisng axcretion processes can be adequately
modeled by first-order or pseudo-first order kiogtiln other words, the mass transfer and
metabolic chemical reactions are taken to be éirder processes (see Problem 3.10). Mixing
within each compartment and mass transfer betweempartments is by bulk flow driven by
blood circulation, diffusion, and/or convection.elimass transfer fluxes into and out of each
compartment are considered to be slow comparedxognwithin each compartment, so the
compartments maybe considered as discontinuous.

Steady state Box Model&\ one-compartment model for drug dispositioshewn in Figure
6.2.1a. Box models can be visualized more genéyiaalflows into and out of reservoirs, as in
Figure 6.2.1b. There are two types of box modelsacthic and static, or steady state. Let’s begin
with a very simple steady state model. Assumettiaflow of drug into the compartment,, is
constant. This could be arranged by intravenoussiah. The net change of concentration of the
drug, d[X]/dt, in the compartment is the differencehe rate due to flow into the compartment,
U+, and flow out of the compartmert;

dix]
o=y 6.2.3

For a steady state, the flow into the compartmeaigtrbe equal to the total flow out of the
compartmenty..:

U+ = 0. (steady state) 6.2.4
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Steady state means that the concentration of aflisp in the compartment remain constant,
d[X]/dt = 0. However, it is important to remembhbat the system is not at equilibrium, since the
input process is not the exact reverse of the eoytmneess (water doesn’t flow back up the inlet
pipe in Figure 6.2.1). The system is in a metastatibady state. A very commonly used
characteristic of steady state systems is theemss&ltime. Theesidence timeis the average

time that a species spends in the compartmentrédi@ence time can be calculated by:

_IXI

Tres=" ) 6.2.5
To help with this concept, consider the followingabbgy, which is taken from the excellent
introduction to environmental modeling by John idissume the graduation rate on average
for a college is 400 students’yand the total enrollment at the school is 160@estts. What is
the average residence time for the school? Edp §i2estes= enroliment/graduation rate = 4
years. Note that the exchange time for,@Cthe atmosphere that we calculated in Example
6.1.2 is, in fact, a residence time.

luana/v:kn[X]o | %

Compartment e e
QM:MW(” ) f”%u:}/ﬂ =
N N
[X] [

l U. = Ju@/V = ke [X] ?0

(a) ‘ (b)
Figure 6.2.1: Box model for drug disposition assugmo metabolic reactions. (&) i& the
input flux and J,: is the output flux. (b) The concentration of thagican be represented as
the level of fluid in a reservoir.

For the single-box model in Figure 6.2.1, asstimaéthe flux into the compartment is
constant, . If the effective cross-sectional area for thefloto the compartment is “a” and the
volume of the compartment is V, then the rate @nge of the concentration from the inflow is
given by J.a/V. The input can alternately be written as a catestant for mass transfer
multiplied by the concentration of the drug, {Xih the stream flowing into the compartment:

Vs = na/V = kn [Xo 6.2.6

We often use the k[X]," form for the mass transfer fluxes because ofsih@larity to the
terms in a chemical rate law. The flux out of thenpartment, excretion, is also by bulk flow
andu. = J,@/V = ke [X]. The differential equation is then:

S = ke X~ ke X 627

where [X] is the concentration in the compartmétsteady state, d[X]/dt = 0, [X] = [X}and
the steady state concentration of the drug igsFXkin [X] o/Kex-
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Now let’s combine the spatial aspects of the @mapartment box model with a metabolic
chemical reaction, X> Y with rate constanti¢. The decrease in concentration of the drug in
the single compartment is by bulk flow and throtigd metabolic reaction, Figure 6.2.2.

oo v =k Do
X] o el gy
Kex [X]l lkmet X] kx|
(a). One-box model (b). Two-box model

Figure 6.2.2: Equivalent box models for drug dispas with a metabolic reaction. The total
loss rate for the drug is given by= Kex [X] + Kmet [X].

Either a one-box or a two-box model can be usedstmalize this system. In general, an output
sink, as in Figure 6.2.1a, or a receiving box waitlnidirectional input gives the same underlying
differential equation for the central box. The dr#ntial equation with the chemical reaction is,
assuming all first-order processes:

d[X]
dt = kin [X] 0 = kex [X] = Kmet [X] 6.2.8
At steady state the concentration of the drug rstamt and:
= Kin [X] 0 — Kexcretion[X] ss— Kmet [X] ss= O (steady state) 6.2.9

or Kin [X] 0= Kex [X] sst Kmet [X] ss (steady state) 6.2.10
which is to say that the drug inflow is equal te tbtal drug outflow:

U+ =U. (steady state) 6.2.11
Solving Eqg. 6.2.10 for [X}, the steady state concentration of the drug is:

Ki
[X]ss= (Kex +|nkm ) [X]o (steady state) 6.2.12

The residence time can be calculated by substitwtighis last equation into Eq. 6.2.5 and
noting that at steady state, = v. = ki, [X] o

(kin |X|0)
_m_ kex"'kme _ 1
Tes™ ) T kin[Xlo  (Kex * Kne)

In other words, the steady state concentratioh®firug is decreased and its residence time is
shortened by the metabolic removal of the drugoasmight expect. Just as for a competitive
chemical reaction, comparing Egs. 4.1.14 and 6.8IM&5 11 s = Kex + Kmet = Lflex + 1mer. The
important conclusion is that we can model masssprart in a way analogous to chemical

(steady state) 6.2.13
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reactions. All the methods that we have developedtiemical reaction kinetics can be used for
modeling spatial dependence.

Dynamic Box ModelsThere are two general types of dynamic moddig. first type
corresponds to a bolus dose; in other words, tihealdkind of kinetics experiment that we have
been considering in the previous sections for nowihg systems. For a bolus-dose the
differential equation in Eg. 6.2.8 reduces to:

dix] _
dt —

with the initial concentration of the drug, [2{as determined by the single time-point dose. This
rate law is equivalent to a parallel reaction medctra with time course given by Eq. 4.1.5:

[X] = [X] o €Kt = [X], g kexrhmedt 6.2.15

kex [X] = Kmet [X] 6.2.14

Box models with rate laws that have only first-arte¥ms are calletinear models. The time
course for a linear single-box model is a simpleogential decay with a single time constant,
which in our example is = 1/(kex + kme. Notice that this result is analogous to thetilifie for a
purely chemical, parallel mechanism, Eq. 4.1.14, @so a parallel photochemical process, Eq.
5.1.31.

The second type of dynamic experiment is an gystem with constant inflows. These
dynamic systems often evolve towards a steady. state

Example 6.2.1:

Find the steady state concentration of a drug bheddsidence time for the model in Figure 6.2.2
if Kin = kex = kmet = 0.030 mift, and [X}, = 1.00pM. Use the “Kinetics Mechanism Simulator” or
other simultaneous differential equations solvditytWhat would the steady state
concentration of the drug be if there was no mdialpoocess?

Answer To find the steady state concentration we rensimulation until the concentration of
the drug is constant.

Using the “Kinetics Mechanism Simulator,” we ne¢edise a constant concentration
source for the inflow, which is signified as “M” this applet (and “N” if you need two constant
concentration sources). Let the drug be represdnteppecies A and the metabolite by X. Flow
out of the box is represented by the third reactidmch has no product. We will start with [£]
0 and let the system come into steady state. Titiageare shown below:

e el e o M R i
O

e s e P i

el et e R

Imtial Conditions:

HU |0 BE||D Xﬂ |I] Tu' 0 Fuilu Quilu M: 1
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After 150 min with 7500 steps, the concentratiofAdfreaches 0.50Q0M. The residence time
using Eqg. 6.2.13 is:

1 1 |
Tres = (Kex + Koy (0.03 miri® +0.03 mirf) ~ 17 ™MiN

|f kmetz 0, then [Alsz [M].

6.3 Linear Multiple-Box Models

Let’s return to spatial dispersion only, and coasi@nother important pharmacokinetic model.
Consider the case where disposition of a drug tpleee between two compartments.
Compartment 1 is the plasma and compartment 2ad §lowly and reversibly from the plasma,
Figure 6.3.1. This second compartment might béiviee. Environmental examples of a similar
two-reservoir model are the carbon dioxide distitruat the air/water interface or alternatively
the transport of moisture and pollutants acrosgptaeetary boundary layer.

Compartment 1 Ky [X4] »| Compartment 2
[X4] k1 [X2] [X2]
Kex [X4]
Excretion

Figure 6.3.1: Two-compartment box model for drugpdsition.

The concentration of the drug in compartment Xig fnd in compartment 2 is pX The rate
constant for mass transfer from compartment lisokg, for transfer from compartment 2 to 1 is
k.1, and for excretion is given byk Excretion only occurs from compartment 1. We abersa
dynamic model that corresponds to the responseafielus dose, with the initial concentration
in compartment 1 given by (X% with compartment 2 having p% = O.

The rate laws for this model are:

d[Xd]

U1 =" = — kex [Xa] = ka [Xq] + ka [X2] 6.3.1
d[X
Uy = dt2 = ke [Xq] = ka1 [X3] 6.3.2

The response of a linear single-box model is armeeptial decay with a single time constant. Is
the response of a two-box model given by the sutwofexponential terms? For linear systems,
the answer is yes. As we have seen, integratingleommate laws can be cumbersome. A
method has been developed by Wei and Prater tloatsathe straightforward and automatic
integration of simultaneous linear kinetic equasith® Matrix algebra comes to the rescue.

The Wei-Prater Method for Multiple Box Model§ he method is essentially based on a Taylor
expansion. The first step is to rewrite Eqs. 6a&d 6.3.2 as a matrix equation. The rate matrix,
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K, is defined as the matrix of rate constants, whiegaows label the rate law and the columns
label the chemical species. For our example, frgméE3.1 and 6.3.2:

5 - ( ) (kel)é: “ —kzl) 6.3.3

The rates and concentrations can be formed integponding vectors. Using the same symbols
as is Section 5.2:

d[X4]
[d[L(]j | Tat ) ([x 1])
at )" d[x] and [X]= [X3] 6.3.4
dt

and then the simultaneous first-order equatiorisgn6.3.1 and 6.3.2 can be written:

d[X]

at )~ BIX 6.3.5

The formal solution to this equation’{§*

[X] = [X]o €Kt 6.3.6

which is analogous to the integrated rate law iimipe first-order kinetics. At first this equation
might look a bit confusing, because of the matnixhie exponent. However, remember that the
exponential function is just a nickname for the poseries:

I‘gz 2

[>~<]:[>§]O(L+§t+7+...) 6.3.7

The first two terms of the series, JiXI + K 1), are just the finite difference approximatiom,
matrix form, that we used earlier in Eq. 4.1.1% kwear systems Eq. 6.3.7 can be rearranged
and recast as a sum of exponentials:

[X] = [X]o(01 G M+ 0 G @M + ) 6.3.8

where the\; values are composite rate constants and hesdlues give the time constants for
the course of the reaction. Tbeare scalar coefficients (in other words, theyrarevectors) that
are fixed by the boundary conditions. When t =4, [X],, and Eq. 6.3.8 reduces to:

Xlo=01Ci+02Co+ ... 6.3.9

The formulation in Eq. 6.3.8 conveniently allowstasnodel complicated processes as a sum of
a few exponential processes. The number of reqtémeas and corresponding time constants is
dependent on the problem; however, we might aratieighat we will need two terms for our
two-box model. The alternative approach is to usieefdifference simulations; however, the
analytical solution in Eq. 6.3.8 is chemically martuitive than the tables of concentrations
output from numerical simulations. Mathematicalg A; are calculated as the eigenvalues and
the G are the eigenvectors of the rate matrix. Eigerevalud eigenvector problems may be new
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to you; however, understanding these general pnmabbgreatly simplifies many chemical
models. Let's change to more general notationgblight the general utility of the eigenvalue-
eigenvector formulation.

06

General Pattern 6: Eigenvalue-Eigenvector Equations

Eigenvalue-eigenvector problems are quite commatanomics, psychology, sociology,
statistics, ecology, business applications, antbafse in chemistry and physics. To introduce
the general concept, we start with the exampleixnatd vectors:

M = (i g) and vectors _} G) and %= (_lj) 6.3.10

Consider the multiplications:

w2 419 -0 - off) - o

o 12 22 ()= () -

Notice that the vector multiplications return tlzere vector multiplied by a constant. A vector
with this property is a special vector and is chi@eigenvector The constants that multiply the
vector after the multiplication are calletyenvalues The eigenvalues of our example matrix are
6 and —2. Eigen means “the same” in German; the $himg, X, appears on both sides of the
equations. If the matrix is an NxN matrix and Has property, there are N eigenvalues and
vectors. The eigenvalues are often given the syldolr each of the N possible eigenvectors:

MXi = Ai Xi 6.3.13

The eigenvectors are specific to the given maliot all matrices have eigenvectors. Sometimes
some of the eigenvalues are identical. When twersiglues have the same value they are said
to bedegenerate In Problems 2.24 and 2.25 we saw that matrix iplidation can be thought of
as a transformation like a rotation in computepfres. One interpretation of eigenvalue
equations is that the transformation of the eigetors stretches or shrinks the eigenvector, but
the direction remains unchanged. In other wordsetenvectors have a special direction that
corresponds to a special relationship betweendhales.

The eigenvectors for a given problem group thgmal variables in a special way. Consider a
complex reaction mechanism. Some concentratiomease and some decrease over time. The
eigenvectors for the problem group together thpseiss that have the same time profiles. The
process of finding the eigenvectors “sorts” throtig variables and puts similar variables in the
same eigenvector. Then the resulting groups, @neigctors, are as different as possible from
each other. For examples in chemical kinetics, efgénvector has a distinct time signature.
Each time signature is characterized by an expaldime constant, which is the reciprocal of
the eigenvalue that corresponds to the group behasimilar interpretations can be placed on
other types of eigenvalue problems. Vibration ndnrmede coordinates are eigenvectors. These
special characteristics are very useful, but howalofind the eigenvalues and vectors?

Eigenvalue equations are just a special caserafltaneous homogeneous linear equations.
Subtracting\; X; from both sides of Eq. 6.3.13 and factoring oet¢cbmmon factor of YXgives:
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(M-Ai 1) Xi=0 6.3.14

where_lis just the unit matrix. This looks a little alzstt, but we can do the multiplications to
explicitly write the equivalent set of simultaneacuations. Let X be the value for variable 1
that corresponds to eigenvalue i angltke value for variable 2 for eigenvalue i. Varegll. and
2 are the concentrations in two different boxetotwo different chemical species in our
problems. For the example of a 2x2 matrix and fgemvalue i the matrix operations give:

x5 ) <[ i, J) =0 s

which upon multiplication gives:

(M11—A) X + Mz2Xs =0
M X1i  + (MazAi) Xai =0 6.3.16

The solution to this set of homogeneous equatiahdevthe trivial solution, which is %= 0,
unless the determinant of the matrix of coefficsavdnishes:

IM-Ai L|=0 6.3.17

This last equation is called tlsbaracteristic equation To help you remember this fact about
homogeneous linear equations, take the two sinyamples:

Example 1which only has the trivial solution

X+2y=0 12| _ o
ox+3y=0 gives: det , 5|=13-22=-1 soonlyx=y=0 6.3.18

Example 2, which has a non-trivial set of solutions

X+2y=0 12]_ _ _
ox+4y=0 gives: 9 24/714-22=0 sox=-2y 6.3.19

Now only a bit of algebra stands between us aneidenvalues. For a general 2x2 matrix, M
the determinant in Eq. 6.3.17 is given by:

Mi—-Ai M2

Mar  Mash | = (MizAi) (Maz=hi) = Mzg Maz 6.3.20

A% = (Mig + Mag) Aj + (Mi1 Moz~ Mg M) =0 6.3.21

This polynomial is called theharacteristic polynomial. We can now solve the second-order
characteristic polynomial in Eq. 6.3.21 for theegigalues using the quadratic formula:

_(Mu+ Mg £ AV (M11+ Mpp) — 4 (Mg Moo~ Moy Myp)

A > 6.3.22
which simplifies to:
+ + — My)® +
A = (M1 + Mpp) +/(M11 — Mpp)” + 4 Mpy My, 6.3.23

2

For larger matrices the algebra is a bit cumbersdmmequite analogous.
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Now, how can we find the eigenvectors? Thegestaight-forward algorithm to find the
eigenvectors. However, the calculations are aobig| Luckily, there are many different
computer based eigenvalue-eigenvector program$abigisee Problem 6.7 and Example 6.3.3.
Notice, however, that for the non-trivial case, E@.19, there are many possible solutions. For
example x =2, y =-1is a solution as is x = -2, ¥, any solution set can be multiplied by -1 and
still be a solution. Correspondingly, any multigealso a solution, sox=4,y=-2 andx =6,y
= -3 are also solutions. The lack of a unique, Isisglution for a homogeneous set of linear
eqguations is the reason that normalization is reacgsfor example the terms in Eq. 6.3.8. The
boundary conditions fix the multiplier for the eigectors.

06

We can now solve for the integrated time cofmsé¢he two-box model in Eq. 6.3.3. Using Eq.
6.3.23, the full analytical solution is:

—(Kex+ Ko + K1) £/ (kex— ki + k1) + 4 ki kq
2

Ai = 6.3.24
Let A; be the eigenvalue that corresponds to the negsitivein this last equation and the
eigenvalue that corresponds to the positive sipeAl value corresponds to the faster decay.
The integrated rate law is, using Eq. 6.3.8:

k. k.
[Xl] = [Xl] |:(()\l )\2:;) (S 1t (()\]i_ 22)) e Zt}

See Problems 6.11 and 6.13 for the derivationettefficients. This general type of bi-
exponential form is quite commonly encountered.

6.3.25

Example 6.3.1

Using Egs. 6.3.24 and 6.3.25, calculate the timesmof the two-box model for k 0.3 &,
ki=0.158, and k,= 0.1 &', with initial conditions [%]o = 1.0 M and [%]= 0. Plot both [X]
vs. t and In[X] vs. t for a maximum time of 30 s.

Answer The first few lines of the Excel spreadsheetvtaluate Egs. 6.3.24 and 6.3.25 are:

A= -0.52122 | s-1

A= -0.02878 | s-1

c= 0.753837 | M

o= 0.246163 | M

t(s) [Xa] (M) In[X4]
0 1] -11E-16
1| 0686804 [ -0.37571
2| 0498192 | -0.69677
3| 0.383631 | -0.95807
4] 0313115 | -1.16119
5] 0268822 | -1.31371

where gand ¢ are the coefficients multiplying the exponenteits, Eq. 6.3.25. The plots are:
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Figure 6.3.2: Integrated time course for the rabérdwo-box model, Eqg. 6.3.25. The

logarithmic plot shows two linear portions indicagia bi-exponential process.

In many cases the concentration plot with a liree@s for a bi-exponential process is hard to
distinguish from a single exponential function. Metthat the logarithmic plot, however,
consists of two straight-line segments separatea thgnsition region between. This bi-linear log
plot is diagnostic for bi-exponential processesv@ditting for bi-exponential processes is

discussed in Problem 5.29.

Example 6.3.2

The first-order consecutive mechanism from Chatéiq. 4.1.24, is a good first example for
using Egs. 6.3.8 and 6.3.9. Solve for the expoaktithe constants and draw the mechanism as a

box model. Compare the results to Egs. 4.1.28-%.1.3

Answer Using Eqs. 4.1.25-4.1.27 the rate matrix andesponding secular matrix are:

-k 0 O
g: ki k' O

0 ki O
and:
—K1—A; 0 0
M { ki —k'Ai O J
- 0 Y

Expanding the determinant across the first rowgive
(ki =) (ki =A)(=A) =0

which is already factored giving:
(-k—A)=0, (K-N)=0, and (A) =0
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The roots are then: tk—k;', and 0. In other words, there are only two exptiakterms, which
are in the forme™" ande™", just as in Eqgs. 4.1.28-4.1.31. The exponentiaéttonstants for

this mechanism are then= 1/k; andt, = 1/k;'.
We can draw the box model corresponding torttéshanism in two ways, Figure 6.3.2.

Xl Xl
Kq[X4] Ki[X4]
v v
XZ XZ
| ki |
X3
(a). (b).

Figure 6.3.2: Consecutive unidirectional reacticgchranism. Model (a) and (b) are
equivalent from the point of view of the resultingmber of exponential time constants and
the concentrations of pand %.

Both box models work because there are only twa@eaptial terms, even though there are three
species. The reason is that the terminal recelvingis connected by a unidirectional input.
Therefore, the concentration of the product in teisinal box does not enter into any of the rate
laws. Three explicit boxes are used if you warddlve for [X;]. However, if you don’'t need to
know the integrated time course fog, Xhen two boxes and a unidirectional sink areicietfiit to
determine the properties of the system and are easity algebraically handled.

Example 6.3.3
UseMaple or Mathematicao find the integrated time course for the firstler consecutive
mechanism:
ky ks
A - B - C
Compare to Eqgs. 4.1.28-4.1.31. Thevalues can be arranged as a vector and foundhango
EqQ. 6.3.9 using General Patteéfrs:

a=C*Xo 6.3.26

Answer Let K be the rate matrix, L be the vector ofegigalues, and C be the matrix of
eigenvectors with each eigenvector correspondirsgdolumn. The set of initial conditions is
given by the vector gand A is the vector of the, values. Thévlapleinput is:
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with(LinearAlgebra) ;

K := Matrix([[ k1,0, 0], [k, —k2 0],[0, ko, O 1) ;
X, := Vector([1,0,0]) ;

(L,C) := Eigenvectors(K) ;

A = MatrixInverse(C).X ;

A[1] [C[1..3,1] ;

A[2] [C[1..3,2] ;

A[3] [C[1..3,3] ;

The last three lines list the constants that miyltipe exponential terms. Note that thé “
symbol is the matrix multiplication operator, whishtyped as a period, and th8$ymbol is
scalar multiplication, which is typed as a “*” indyle.

The corresponding eigenvalues, vectors,@nalues are listed:

ki—k KoXo
N k 00 ki— ko
1
L=| O C= —k A= X
LJ T 01 .
2- 2 _klxo
1 1 1 ki—k

Notice, in the terminology we have used for box elsdthe product C is a terminal species, or
box, connected with a unidirectional input. As estpd, one of the eigenvalues is
correspondingly zero, and the corresponding eigeovenly involves the terminal
concentration [0,0,1]. Note that the order of ils&rg of the eigenvalues is arbitrary. Doing the
multiplications in Eqg. 6.3.8 gives the results shaw Figure 6.3.3. These equations are
equivalent to Egs. 4.1.28-4.1.31.

coefficients forlst eigenvalue coefficients for2igenvalue  coefficients for 3rd eigenvalue

A[1] [C[1..3,1] = A[2] [C[1..3,2] = A[3] [C[1..3,3] =
Xo 0 0
k1X0 0 klxo

_kl— kz XO kl_ k2

KX __kiXe

ki — ko k=l

\ y y
[X4] = X ekt 4 0 + 0

Xd== e €+ 0t ke &
_ koXo Kkt KiXo kot
Xd= e X T gk €

Figure 6.3.3: The correspondence of the vectoltewith the final integrated rate law for the
Wei-Prater matrix method.
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The Wei-Prater method is restricted to firstesrdystems; however, the method also applies to
the response of a system near steady state oitemuil following a perturbation® In other
words, parallel to what we saw for relaxation kicein Section 3.6, even complex systems relax
toward equilibrium following a perturbation by answf first-order processes that are
characterized by a set of exponential time constdrite Wei-Prater method may also be
extended to non-first order systeffls.

We introduced the Wei-Prater matrix method usiag models, however, the method was
originally developed for purely chemical mechaniskivéthin the context of generalized box
models, the matrix method provides a convenientnmeé analyzing complex networks of
spatial and chemical processes. The examples thaawe discussed can be summarized into a
few general principles.

a7

General Pattern 7First-Order Box Models

Box models are routinely used by environmental deeynmedicinal chemists, chemical
engineers, ecologists, systems biologists, and®the wide variety of disciplines. It is
important for chemists in general to be comfortatits box models since we often work in
interdisciplinary teams. Box models are usefuld¢dol displaying important interrelationships
and simplifying communication about important sysse On the other hand, it is important to
realize that there is nothing mathematically uniquearticularly special about box models. Box
models are simply a visual representation of theedging differential equations. The properties
of box models are determined by the propertieb®funderlying set of simultaneous differential
equations. Box models are particularly useful figpthying networks of first-order or pseudo-
first-order processes. Here is a summary of thegéharacteristics of first-order box models,
assuming constant volumes in the compartments.

1. First-order, pseudo-first-order, and zeroth-oakemical reactions, photochemical reactions,
surface reactions, and mass transport in discamimgystems can be combined in first-order
box models.

2. Primary photochemical processes are essendilalyys unidirectional. The “k” in a
photochemical rate law is often written as a “j'amphasize the relationship to the light flux.
The production of secondary photo-products in @fiiia¢hin systems is first order, Eq. 5.1.17.

3. Surface reactions for rapid, reversible, wealictant adsorption can be expressed in the form
of first-order processes, Eq. 5.5.8, or pseudd-firder processes, Eq. 5.5.17, under
appropriate conditions.

4. Zeroth-order processes can be handled usingatine mathematical machinery as first-order
processes by introducing a constant concentratian s by setting = k,[M] with [M] = 1.
Zeroth-order processes include photochemical @asin optically thick systems, Eq. 5.1.14,
and strong surface adsorption and catalysis, B .5.

5. For multi-compartment systems, the amount oceptration of each chemical species in each

compartment is handled as a separate variableeXeonple, for component X, [Xs the
concentration and Xs the molar amount in each compartment i.

6. For multi-compartment systems, the rate lawsast written in terms of moles instead of
concentration changes, as in Eqgs. 6.1.47 and 6.2.2.
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7. Mass transport can be by bulk flow, convectand diffusion. Bulk flow is often represented
by a unidirectional first-order process. For a seuat constant concentration pénd a
compartment of solution volume V:

For inflow:

In concentration terms: Vs = Jna/V = kn [X]o

In moles: v=Ja =k X, where X =V [X]o.
For outflow:

In concentration terms: V. = bhu@/V = kout [X]

In moles: v=Ju@ = kuX

where [X] is the concentration and X is the molaroant in the compartment. Each bulk flow
rate constant is given by k = F/V, where F is tbkimnetric flow rate. Put succinctly, the rate
laws for bulk flow can be expressed in either nmleoncentration units using the same bulk
flow rate constants. For a given compartmentokk,, are the same for all species in the
mobile phase.

8. The a/V terms for the bulk flow, diffusion, pbohemical, and heterogeneous catalysis rates
are analogous, Egs. 5.1.6, 5.1.10, 5.5.6, 6.1tV 62.6. The a/V term converts from flux to
concentration units.

9. Assuming discontinuous systems with rapid mixang uniform concentrations in each
compartment avoids solving the diffusion equatiothim each compartment.

10. Mass transport by diffusion in discontinuousteyns is a reversible first-order process, Egs.
6.1.44 or 6.1.47. With concentrations in the rate, Ithe rate constant for a given species is
the same in each transfer direction, thatiis — ko [X1] + ko [X2] = ko ([X2] = [X4]). When
moles are used in the rate law:=v— ko1 X1 + kpo X with kpo/kpy = Vi/V5,. Diffusion can be
depicted with an explicit interface or with revéisi arrows, Figure 6.1.7.

11. The steady state approximation can be usdddfiosient intermediates in dynamic systems

under the same conditions as for any general ctamiechanism. For meta-stable, steady
state models and systems at equilibrium all timévdgves vanish, exactly.

12. At steady state, each species in each boxaiscterized by a residence timgs = [X]/v..

13. The integrated time course for networks ot4ingler processes is characterized by a small
set of exponential time constants, which are rdltdehe eigenvalues of the rate matrixs
1/A; for each eigenvalue i.

14. If all processes are reversible, one of theraiglues is zero and the corresponding
eigenvector is the set of equilibrium concentragion

15. A terminal receiving box connected by a unictimal input also gives a zero eigenvalue, if
the concentration inside the box is included invaeables, Examples 6.3.2 and 6.3.3. This
zero eigenvalue results because the concentratitihreibox does not enter into any of the rate
laws. In other words, a unidirectional sink anchairectional terminal box are equivalent in
their effect on the remainder of the network. Téreninal box just continuously fills.

16. For some systems, the eigenvalues are complakers. Complex eigenvalues correspond
to oscillatory concentration changes.
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17. The mode of the process underlying the box inzatebe dynamic or static. For a static
model with a constant inflow, the system is in darsable, steady state. For a static model
for a closed system, the system is at equilibrium.

18. For a dynamic system, the process can stafriofar equilibrium (left, below) or at
equilibrium or in a steady state state (right, glorhe process at t = 0 for a system starting
far from equilibrium is to mix the reactants orrsthe flow, which is done by setting the
initial conditions. The process for a system staréit equilibrium or steady state is to apply a
perturbation. These relationships are diagramméxhbe

closed, single-time-point addition

initial state:  far from equilibrium: equilitanm:
process: mix reactants perturbation
t=0 [Xlo % = [Xi]o = [Xi]eq
t=o0 - [Xileq -

final state: equilibrium

open, constant inflow

initial state:  far from steady state: Steatdyes
process: start flow perturbation
t=0 [X]o % = [Xi]o = [Xi]ss
=0 - [Xilss -

final state: steady state

All closed systems approach equilibrium at longetsmMost, but not all, constant inflow
systems approach a steady state. A dynamic prémeasystem starting far from equilibrium
with a single-time point addition corresponds talttional chemical kinetics. A dynamic
process for a system starting near equilibrium &itierturbation corresponds to chemical
relaxation. Example 6.2.1 corresponds to a congtfiotv starting far from steady state. In
pharmacokinetics, a single-time point additionalledd a bolus dose. A constant inflow
system corresponds to infusion.

The general idea of box models and complex netwofrkimultaneous differential equations is
further elaborated in network theory, biologicasteyns theory, and systems chemistry.

av

6.4 Summary — Looking Ahead

Chemical kinetics is a wonderfully predictive tdbat is indispensable in many areas of science.
However, chemical kinetics does not answer somg a@ntral questions. Chemical kinetics tells
us how a reaction progresses, but the theory dotetglhus why:

1. Why do reactions run? What is the impetus factiens? Do energy changes drive the
reaction progress and if not what does?
2. Do reactions always progress towards equilibPium
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3. What is the position of equilibrium? In otherngs, kinetic arguments tell us thafqt< ki/k;
but give us no theoretical method to determing k&, or k. Within chemical kinetics these
important parameters can only be determined enatlyi¢from experiment).

Our goal for the remainder of this text is to ansthese central questions. In the next chapter we
begin the study of thermodynamics, which specifycatidresses these questions. In particular,
our initial focus is to predict the equilibrium sta

Chapter Summary

Diffusion:

1. Fick’s Second Law of diffusion relates solutmncentration to the gradient of the flux and
the concentration curvature:

B e -
o)y~ “\ox )t an )y~ \axk
2. Diffusion from a planar surface produces a Ganssoncentration profile:
n .
c(x,t) =r/4°TDt e~ X14Dt \with fwhm= 2.355\2Dt and ¥ns=+/2Dt.

3. Diffusion and chemical reactions both changectivecentration at a given point X. For species
I with stoichiometric coefficient; and reaction rate:

o) _ 02_0)
(atjx = D(ax2 v

4. The stagnant boundary layeodel for interfacial diffusion of a gas across #mésolution
interface, assuming a linear gradient, gives:

\l'n - _ D% — {%} (Cbulk _ dN/a)

where D is the diffusion coefficient for the gagfie solvent, ¥ is the concentration in
solution at the water/air interface, afd*ds the concentration of the well-mixed bulk of the
solution.

5. Two well-stirred, uniform compartments separdigdn interface is called a discontinuous
system. The concentration changes abruptly achessterface between the two solutions.
Within the interfacial region Fick’'s Second Law is usedétermine the concentration
gradient and the net flux across the interface.

6. Diffusion in discontinuous systems can be apipnaked as a first-order process for transfer
between the compartments:

dX dX
gt =~ o X+ ko [Xa and 5 = ko [Xa] — ko [X2]
with kp = D4/ assuming a linear gradient in the interfacialoegand D the diffusion

coefficient within the interfacial region. Using fee directly with the volumes of the two
compartments Yand \4:
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dX dX

Ttlz—Kalxl"‘szxz and Tt2=—KJ2X2 + ko1 X1

where the effective mass transport coefficients laye= D/ (4/V1) and ko, = DB (4/V ).
Box Models

7. In multi-compartment problems, for consistendghwnass transport equations, the rates of
chemical reactions are often expressed in molesfilst-order reactions:

L1 1dx

V. dt and dt =k, X are interchangeable
X

8. The residence time is the average time thaeeisp spends in the compartment; = [X]/v..

9. The matrix method of Wei and Prater is exachftworks of first-order differential
equations. The rate matrix, i the matrix of rate constants where the rowslithe rate law
and the columns label the chemical species. Tledaats are written as:

d[X]
[Tj =KXl
For first-order processes the solution is a suexpbnentials:
[X]= [Xlo(@:1 G @M+ G @A+ ) with  [Xlo=01Cr+aeCo+....

TheA; values are the eigenvalues and thar€ the corresponding eigenvectors of the rate
matrix. Theo; values are fixed by the boundary conditians; C* Xo.

05 General Pattern 5: Gaussian Distributipihe general form of a Gaussian distribution is:
2
g(x) = \/— e~ (x4)%20°

wherep is the mean value of x amdis the standard deviation of the distribution. kdarge
number of n measurements, tke population mean and standard deviation are:

¥
u=—2x. and o =(—Z(x. u)j
i=1 i=1
For a continuous, Gaussian, random variable thesponding averages are:
Ya
== X xg(x) and 0 =<(x—p)>>"= [ (% — )y g(ﬁ)}
Xi:_oo Xi:_oo

The distribution is characterized by the full-widthhalf-maximumfwhm=2\(2In 2 ¢

O 6 General Pattern 6: Eigenvalue-Eigenvector Equatiombe eigenvalues,;, and
eigenvectors, Xfor matrix Mare defined byMX; = A; X;. The eigenvalues are given by the
solution to the secular equationg, {M; 1) X; = 0. For a non-trival solution to the secular
equations, the determinant of the matrix of coeffits must vanish, [MA; L| = 0. For a 2x2
matrix the secular determinant gives the charattempolynomial:

MiAi M1 | ., a
Mai  Maghi |~ Ai” = (M11 + M2g) Ai + (M11 M2z~ M21 M12) = 0
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Solving the characteristic polynomial for the eigalues gives:
A = (M1 + Mpp) +4/(M13 + M) — 4 (Mg Moz~ Mpy Myp)
' 2

_ _ (My1+ M2 £4/(M11— Mpp)” + 4 Moy My
or: Ai = 5

The eigenvectors are obtained by substitution ol @arresponding eigenvalue into the secular
equations. As with all homogeneous sets of lingaagons, any multiple of an eigenvector is
also an eigenvector.

O 7 General Pattern 7First-Order Box Models The properties of box models are determined
by the properties of the underlying set of simudtaus differential equations. Box models are
particularly useful for displaying networks of chieal and spatial processes. Zeroth-order, first-
order, and pseudo-first-order chemical reactiohstqrhemical reactions for optically thick and
thin systems, surface reactions for strong and weagtant adsorption, and mass transport in
discontinuous systems can be combined in firstrdsdg models (see the summary points in
Chapter 5: 4, 6, 7, 10, 19, 20, and point 6, abhdvet) meta-stable, steady state systems, each
species in each box is characterized by a residéneet,.s = [Xj]/u.. The integrated time course
for networks of first-order processes is charazestiby a small set of exponential time
constants, which are related to the eigenvaluéiseofate matrixy; = 1/A;. If all processes are
reversible, one of the eigenvalues is zero an@dnesponding eigenvector is the set of
equilibrium concentrations.
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Problems
1. Qualitatively predict the effect of wind turleakce on the exchange of €érross the air/sea
interface.

2. Find the second derivative with respect to & @aussian distribution for a non-zero mean.
Use explicit differentiation of the general formtbe Gaussian distribution in Eq. 6.1.8.

3. Inderiving Eq. 6.1.24, we used Eq. 6.1.19 f@eneral Patterri] 5. Instead, derive Eq.
6.1.24 by explicit differentiation of Eq. 6.1.7.
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4. Write an Excel spreadsheet that uses the filifiterence approximation to solve Eq. 6.1.6 for
the one-dimensional planar diffusion problem. Thalgical solution is Eq. 6.1.7. To do this,
first assume finite differences for Eq. 6.1.6 teegi

2
Ac(x) = %jtm

where this equation is applied at each point, xequrally spaced intervals along the x-axis. We
also need an approximation for the second derigathgsume the concentrations along the x-
axis are g, ¢, ¢, G, ...., Which are evaluated at points x = 0, dx, &tk,... The first derivative
from @ to ¢ and the first derivative from; ¢o ¢ are:

5 (0
dX/x=05dx  dX dX/x=15dx  dX

The second derivative is the derivative of tha filsrivatives:

(o) -5
(dzc) _\dx dx /] c-2G6+q
&2 Xx=dx - dx - dX2

This result is then used to find the new valuetifigrconcentration at @ the next time interval
using the finite difference formula. Assume thdudifon coefficient is 1.0xIdm?s™®. Assume a
time interval ofAt = 0.01 s and integrate to 0.3 s. Assume an xispat dx = 1.0x10m from 0O
to 1x10%m. (In other words, use a range from O to 1) Assume the initial conditions are a
concentration of 1.00 mol thin the first x interval and zero at larger distesicOne problem
arises however. The second derivative can’t beutztied at the very first or very last spatial
point. For this problem, just set the value oftbacentration at the largest value of x at zero.
For the value of the concentration at x = O, thas,iwe can use conservation of mass. In other
words find the sum of the concentrations:a+cs+c4... and then subtract from the initial
concentration, cat t = 0. Here is a start on how you might lay thet first few rows of your
spreadsheet. The concentrations at equally spaaeslarranged across the columns and
successive time points correspond to successive: row

Al | B C D £ F G H J K L M N

2 dt= 0.01 | s

3 dx= 1.E-05 | m

4 D= 1.E09 [ m°s™

5 c(0,0)= 1| molm®

6 X (m):

7 t (s): 0 | 1.E-05 2.E-05 | 3.E-05 | 4.E-05 | 5.E-05 | 6.E-05 | 7.E-05 | 8.E-05 | 9.E-05 | 1.E-04
8 0 1.00 0 0 0 0 0 0 0 0 0 0
9 0.01

10 0.02

5. In this problem we will use Fick’s Second Lawntodel diffusion through a membrane.
Consider a membrane of thicknésseparating two well mixed solutions of concentrat™

and ¢. The origin of the x-axis is chosen to be at titerface between the membrane and the
solution at concentratiorf't as shown below:
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0 5 X

(a.) Show that the concentration profile:

in u

c(x) =(C ;Scojx+c°“t

has the correct behavior at the surfaces of thebrame.

(b). Assume Fick’s Second Law holds for diffusioithin the membrane. Show that this linear
concentration profile is a valid solution to FiclBgcond Law at steady state.

(c). Find the relationship for the flux across thembrane.

6. A very simple model for active transport of N@ns across a membrane is shown below,
where the driving force for the transfer resulgnira H gradient: The key is the membrane-
soluble fatty acid that shuttles Nand H ions across the membrane in opposite directions. T
fatty acid is only soluble in the membrane. Thectieas at the membrane surfaces are shown at
right.

membrane H-Q
Na' < Na
NG
01MNaOH [ 0-1MHCI
0.2 M NaCl \
low [Na] - high [N&] ho /\) Na*j\w
low [H] < high [H] g

The two forms of the fatty acid are HR and NaR. Tdetions at the surfaces of the membrane
are:

k
Left: HR + N&(left) + OH(left) — NaR + HO
&
Right: NaR + A(right) — HR + Nd(right)
Net: N&(left) + OH(left) + H'(right) - Na'(right) + H,O

The reactions don’t occur within the membrane, go@1.26 applies just at each interface as a
surface reaction. For the purposes of this probigm,can assume that the reactions are

unidirectional. Assume that the solutions on tHieded right are well mixed. Use Fick’s Second
Law to write the differential equations for thertsport within the membrane. Indicate how you
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would find the steady state for the fluxes. You’'daeed to solve the differential equations, but
linear concentration gradients would be applicalblsteady state if you did.

7. Find the eigenvalue-eigenvector solution tos#teof linear equations:

X +y =0 110
X+ y+z =0 which give the coefficient matrix M| 1 1 1
y+z =0 011

Calculate the eigenvalues by hand and the eigeorgegsingMatLab, MathCad Maple, or
Mathematica (For symmetric matrices, you can also use thetfiMi®iagonalization” applet on
the textbook Web site and on the companion CD.)Ma#.ab command to use is

[X,L] = eig(M), where X is the matrix of eigenvecsoand L is the diagonal matrix of
eigenvalues of the input matrix M.

8. A bi-exponential process is given by the form:

[A] = ¢, e_klt + G e_kzt

The logarithmic plot of a bi-exponential processduces two straight line segments and a
transition region between. Bi-exponential decayesrare fit in two segments. First the long
time behavior of the logarithmic plot is fit to &agght line to determine the slope, land
intercept In(g). The non-linear transition region is avoided wipeints are selected for this plot.
Then, the long time behavior is “stripped” from tirae course:

ln[A] short = In([A] -G e—kzt)

and a second logarithmic plot of the stripped gataluces the short timg knd In(g). These
estimated constants are then used as guessesftinear curve fitting. Fit the following data to
a bi-exponential function. For the non-linear dise the four-parameter version of the “Nonlinear
Least Squares Curve Fit” applet on the textbook Aieband on the companion CD.

time 0 5 10 20 30 40 60 80 100 120 140
[A] 1 0.727 0.564 0.401 0.328 0.288  0.235 0.196 68.1 0.136 0.114

9. Draw the Chapman ozone mechanism as a box model

10. Would the residence time in the body for Xaliered if an excretion pathway for Y was
added to the model in Section 6.2, Figure 6.2.22 ddded pathway is shown below.

A 4

11. UseMapleor Mathematicato solve for Xand X% for the reversible two-box problem
starting from the rate matrix, Eq. 6.3.3. Find te@centrations symbolically first. Then
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substitute in the specific constants=0.3 §", k; = 0.15 &, and k, = 0.1 §', with initial
conditions [X]o = 1.0 M and [%], = 0. Solve for the concentrations att =1 s. Nb# in
general Eqgs. 6.3.8, 6.3.9, and 6.3.28 can be cadbimo:

[X] = C (expAt) C'{Xlo

where exp\t is the matrix with the exponential terms along thagonal:

[ eMt 0 0
0 et o
exp/~\t:
0 0 et .

Let K be the rate matrix, L be the vector of eiganes, C be the matrix of eigenvectors, and E
be the diagonal matrix, exfst. The set of initial conditions is given by thect@ X,. After
defining the rate matrix, K, and initial values t@g X, the Maple commands to do these
calculations symbolically are:

(L,C) := Eigenvectors(K) ;

E := DiagonalMatrix(Map(exp,L*t)) ;
X := C.E.Matrixinverse(C).X;

12. UseMatLabto solve the two-box model in Figure 6.3.1 and &8.3. Plot [X] and [X;] for
t =0 - 30 s. See Problem 11 for a hint on howotogactly write the solution. The
corresponding/atLab commands are in the form:

[CL] =eig(K ;
to determine the eigenvalues, L, and eigenvectar$hen at time t, the vector of concentrations
is given by:

E
X

di ag(exp(diag(L)*t)) ;
C*E*inv(C*X0 ;

[Note: You can create a matrix with concentratiaashe rows and the time points indexed along
the columns by using:

X(:,t+1) = CE*inv(C)*X0 ;

which makes plotting easier. The t values wouldleessive integers, so they can be used as
array indices. The t+1 is necessary because wetaw@&avialuate the concentrations at t = 0, but
MatLabindexes vectors and matrices starting at 1.]

13. UseMapleor Mathematicato symbolically verify the solution to the revdyi two-box
problem, Eq. 6.3.24-6.3.26, and also find the tooerse for X%.

14. The box model below corresponds to a reverditsdt-step mechanism, as in Section 4.1,
with all first-order processes. Determine the eigdues and time constants. Compare the results
with the model in Figure 6.3.1 and Eqg. 6.3.3.
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Compartment 1 ka [X4] »| Compartment 2
[X1] ka[X2] [X2]
l kex [Xl]
Excretion

15. The model in Section 6.2, Figure 6.2.2, carsidhe metabolic elimination of a drug in
parallel with excretion. Since the liver is oftéretsite for metabolic processes, this model would
be more realistic if the drug is first transporisdthe blood plasma (bulk flow) to the liver where
the drug is metabolized (catabolized) and excrdtédmpounds can be excreted from the liver
in the bile.) The added pathways are shown beloghuding a constant flow input.

compartment 1 l_U_f_‘Sn Xo compartment2
i D kg X; ! Kinet X i
: xl _ : D1 /A1 : > x2 met 2; Y :
i t Kpe X2} i

(a). Set up the differential equations for this elaghd write the rate matrix. (b). Find the
relationship betweenpk and k. The typical plasma volume of a 70 kg personlis &nd the
volume of extracellular fluids, excluding plasm&a12 L. The total body water is about 42 L, so
most of the water volume is in the cellular cytgohg which is about 80% water. Assume
compartment 1 is the blood plasma and compartmenti liver. Assume the effective volume
for this process in the liver is 0.5 L.

16. Show that the kinetic versus thermodynamidrobmechanism in Example 4.1.2 gives two
exponential time constants. Calculate the time tamts using the rate constants given in
Example 4.1.2, namely;k 0.020 &, k; = 0.00050 ¢, k, = 0.50 &, and k, = 1.50 & The
corresponding box model is shown below.

ki [A]

A ¢
K1 [X]
Ko[A] v K2 [Y]

Y
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