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Chapter 4: Kinetic Mechanisms 
 

How can a reaction be first-order? A unimolecular elementary step implies that no 
collision occurs; how can the reactant overcome its activation energy barrier? 

 
 
   The primary goal of chemical kinetic studies is to determine, as completely as possible, the 
mechanism for a chemical reaction. A mechanism is postulated based on the available 
experimental evidence. The empirical rate law, activation energies, pre-exponential factors, 
equilibrium constants, and the presence of any intermediates are the key pieces of information 
that help to construct plausible mechanisms. A proposed mechanism must agree with the 
empirical rate law. In other words, a proposed mechanism should result in a predicted overall 
rate law that has the same concentration and time dependences as the experimentally determined 
rate law. However, the empirical rate law for a reaction far from equilibrium may be different 
from the rate law for the same reaction close to equilibrium. In addition, the form of the rate law 
may depend on the overall pressure for a gas-phase reaction or the initial concentrations in 
solution. The corresponding mechanisms may then be different far from equilibrium or near 
equilibrium, or at high and low overall pressure or concentration. A proposed complete 
mechanism should explain such shifts in the observed rate law and be applicable over a range of 
initial conditions and at equilibrium. 
   The rate law for each elementary step is directly determined from the molecularity, because the 
elementary steps describe the collisions that take place. The steps in the mechanism should add 
to give the overall reaction stoichiometry. However, there may be more than one mechanism that 
agrees with the experimental rate law. Such alternate mechanisms are called kinetically 
equivalent. One way to distinguish between kinetically equivalent mechanisms is to identify 
intermediates in the reaction. 
 

Intermediates:  An intermediate is a species that is neither a reactant nor a product. Reactive 
intermediates react quickly after formation and so never build to significant concentrations. The 
concentration of stable intermediates, on the other hand, can build to a sizable fraction of the 
concentration of the original reactants. If the rate law for a reaction involves the concentration of 
an intermediate, the mechanism cannot consist of a single elementary process. Typical 
intermediate species include reactive atoms, free radicals, and charged species such as 
carbocations and carbanions. Identifying intermediates experimentally is helpful in postulating a 
mechanism for the reaction. 
 

Building a Plausible Mechanism:   A good example, from the beginning of Chapter 3, is the 
H2 + I2 → 2 HI reaction. The empirically determined rate law is: 
 

 υ = 
d[HI]

dt  = k [H2][I 2] 
 

The direct molecular collision of H2 and I2 molecules is one possible mechanism that agrees with 
the empirical rate law. This direct molecular mechanism occurs in one elementary step, H2 + I2 
 →→ 2 HI. The fact that the experimental rate law follows the stoichiometry of the reaction does 
not imply that the process occurs in one elementary step. Conversely, however, if the empirical 
rate law does not follow the reaction stoichiometry, the reaction cannot be a single elementary 
step. One alternate mechanism type for this reaction is the pre-equilibrium mechanism: 
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          k1 
 I2 (g) →→→→→→→→←←←←←←←← 2I (g)       (rapid bidirectional) 
          k-1 
 

   k3 
 H2 (g) + 2 I (g) →→→→→→→→ 2HI (g)     (slow, k3<< k1, k-1) 
 

where the I atoms are reactive intermediates. We follow the convention that reaction arrows are 
given in bold to identify an elementary step. The rate law for the formation of product is: 
 

 υ = 
1
2 

d[HI]
dt  = k3 [H2][I]

2 
 

as dictated by the molecularity of the second step. If the first reversible step is rapid in both 
directions compared to the second step, k1 and k-1 >> k3, the reversible step is near equilibrium, 
and then: 
 

 Kc = 
k1

k-1
 = 

[I] 2

[I2]
 

 

Solving for the concentration for the I atoms gives [I] 2 = Kc [I2], which when substituted into the 
rate law for the formation of products gives: 
 

 υ = 
1
2 

d[HI]
dt  = k3 Kc [H2][I 2] 

 

This rate law and the direct single-step mechanism both agree with the empirical rate law. 
Proving that a mechanism is the correct mechanism is often compared to building a case in a 
court of law, “beyond a shadow of a doubt.” You can build evidence for a proposal, but you can 
never be sure that the proposal is absolutely and exclusively correct. One way to build evidence 
for a mechanism is to detect the proposed intermediates. Even better is to measure the time 
course for the intermediates and show that the integrated rate laws for the intermediates agree 
with the experimental data. Another way is to compare the predicted activation energy for the 
different proposals to the experimental activation energy. For the H2 + I2 reaction, the activation 
energy for the direct mechanism is predicted to be lower than the activation energy for the pre-
equilibrium mechanism, which must break the I-I bond.1 Therefore, the direct molecular 
mechanism is presumed to be more important at low temperatures. In the end, there may be 
several competing mechanisms that are active under different experimental circumstances, or 
even several competing mechanisms that are always active. As a consequence there are few 
complete mechanisms that are widely accepted. 
   In this chapter we discuss some simple typical mechanisms and the corresponding overall rate 
laws and integrated rate expressions. We then apply the methods that we develop for simple 
mechanisms to chain reactions. We also discuss the restrictions that are placed on valid 
mechanisms when the reaction is close to equilibrium. 
 

4.1 A Mechanism is a Sequence of Elementary Steps 
 

One of the best ways to learn about reaction mechanisms is to consider simple examples. The 
examples we cover will highlight the most common aspects of all reaction mechanisms, no 
matter how complex. Complex reactions are combinations of these simpler examples. We also 
want to develop general insight into the effect of a given mechanism on the overall rate law. 
General insight is important as you consider important environmental and biological examples. 
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The current model for tropospheric ozone production considers 70 species and about 140 
mechanistic steps. To unravel such important and complex mechanisms it is helpful to be able to 
conceptually break the complex mechanism into simpler components that you can relate to 
simplified rate laws. The first mechanism we consider is a reaction that has two parallel steps. 
Then we will consider a mechanism with two sequential steps. Finally, we consider several 
examples of the reversible first-step mechanism. 
 

Parallel Mechanism – Competitive Reactions:   First we consider a single reactant that can form 
two products. Two reactions from the same reactant are said to be in parallel. The two parallel 
steps compete with each other for the available reactant, so this mechanism is often called a 
competitive mechanism. To simplify matters we consider two parallel steps that are given by: 
 

  k1 
        A →→→→→→→→  B 
 

  k2 
        A →→→→→→→→  C     (1st-order parallel unidirectional) 4.1.1 
 

The two parallel steps are also sometimes called channels. The reactant disappears through two 
channels in this mechanism. Because these two steps are postulated to be elementary processes, 
the rate law for each elementary process is determined by the molecularity. Each parallel step is 
unimolecular and the rate law for the disappearance of A is first order in A for both steps: 
 

 – 
d[A]

dt  = k1[A] + k2[A]    (1st-order parallel unidirectional) 4.1.2 
 

You can read this rate law as saying the disappearance of A is through the first-order 
decomposition of A to produce B and the simultaneous first-order decomposition of A to 
produce C. Both parallel steps decrease the concentration of A. Since [A] is a common factor in 
the rate law, we can define the combined rate constant, k, as: 
 

 k ≡ k1 + k2     (1st-order parallel unidirectional) 4.1.3 
 

Then, the rate law reduces to a simple first-order process: 
 

 – 
d[A]
dt  = k [A]     (1st-order parallel unidirectional) 4.1.4 

 

In other words, the rate of disappearance of the reactant doesn’t depend on what the products are. 
Eq. 4.1.4 is a simple exponential process, and using general pattern ℘℘℘℘1 or equivalently Eq. 
3.2.5: 
 

 [A] = [A] o e–kt = [A]o e–(k1+k2) t  (1st-order parallel unidirectional) 4.1.5 
 

giving simple first-order decay. We can substitute this result for the time dependence of A into 
the rate laws for the formation of B and C: 
 

 
d[B]
dt  = k1 [A] = k1 [A] o e–(k1+k2) t  (1st-order parallel unidirectional) 4.1.6 

 
d[C]
dt  = k2 [A] = k2 [A] o e–(k1+k2) t  (1st-order parallel unidirectional) 4.1.7 
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The general form of the indefinite integral is ⌡⌠eax dx = 
1
a eax, giving the integral of Eq. 4.1.6 as: 

 

 [B] = – 
k1 [A] o

(k1 + k2)
 e–(k1+k2) t + c   (1st-order parallel unidirectional) 4.1.8 

 

The boundary condition at t = 0 is [B]o = 0 and Eq. 4.1.8 becomes: 
 

 0 = – 
k1 [A] o

(k1 + k2)
 + c    (1st-order parallel unidirectional) 4.1.9 

 

Solving for the integration constant: 
 

 c = 
k1 [A] o

(k1 + k2)
     (1st-order parallel unidirectional) 4.1.10 

 

Substitution of the integration constant back into Eq. 4.1.8 and collecting common factors gives: 
 

 [B] = 
k1 [A] o

(k1 + k2)
 ( )1 – e–(k1+k2) t    (1st-order parallel unidirectional) 4.1.11 

 

Eqs. 4.1.6 and 4.1.7 are in exactly the same form, except for the specific rate constant. Then by 
analogy for C we find: 
 

 [C] = 
k2 [A] o

(k1 + k2)
 ( )1 – e–(k1+k2) t   (1st-order parallel unidirectional)  4.1.12 

 

A typical plot of Eqs. 4.1.5, 4.1.11, and 4.1.12 is shown in Figure 4.1.1. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.1: Competitive first-order mechanism. 
 
 
Notice if the second parallel step is negligible, then k2 ≈ 0, and Eqs. 4.1.5 and 4.1.11 reduce to 
the expressions for a simple single-step first-order reaction with rate constant k1. Also, Eq. 4.1.12 
correspondingly gives [C] ≈ 0. Another way to look at this mechanism is to find the ratio of the 
concentrations of the two products at any time during the course of the reaction by dividing Eq. 
4.1.11 by 4.1.12: 
 

 
[B]
[C] = 

k1

k2
     (1st-order parallel unidirectional) 4.1.13 

 

t 

[A] 
[B] 
[C] 

[A] o 

[B] 

[C] 
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Notice that the ratio of the two products does not depend on time. The relative yield of B is the 
same at both early stages and late stages of the reaction. This general feature of this mechanism 
is often exploited by organic chemists for studies of competitive processes. A common lab 
experiment in Organic Chemistry courses that you may have done is the competitive SN1 
reaction of tert-butyl alcohol with chloride and bromide using an acid catalyst. 
   A useful generalization of this mechanism is based on reaction lifetimes (review Sec. 3.2). If 
the first reaction A→B occurs alone, the reaction lifetime, or 1/e time, is τ1 = 1/k1. If the second 
reaction A→C occurs alone, the reaction lifetime is τ2 = 1/k2. The lifetime of the reaction when 
both steps occur is given from Eqs. 4.1.3 and 4.1.5: 
 

 
1

τobs
 = 

1
τ1

 + 
1
τ2

 = k1 + k2    (1st-order parallel unidirectional) 4.1.14 
 

where τobs is the observed lifetime for the reaction and τobs = 1/k. One easy way to remember this 
equation is to compare this result to electronic circuits. Two resistors, R1 and R2, in a parallel 
connection give the overall resistance, 1/R = 1/R1 + 1/R2. Parallel chemical reactions and parallel 
resistors have analogous behavior. 
   What happens if there are more than two parallel mechanistic steps? For the disappearance of 
the reactant, the rate constants for each parallel step add to give the rate constant for the 
disappearance of A and the overall life time is given by: 
 

 
1

τobs
 = 

1
τ1

 + 
1
τ2

 + 
1
τ3

 + ….   (multiple 1st-order parallel unidirectional) 4.1.15 

 
 
              

Example 4.1.1: Parallel Mechanisms and Reaction Life Times 
In an acid catalyzed reaction of tert-butyl alcohol with excesses of tetramethylammonium 
chloride and bromide, the pseudo first-order rate constant for the formation of tert-butylchloride 
is 0.112 min-1 and for tert-butylbromide is 0.332 min-1. Calculate the observed lifetime for the 
decomposition of tert-butyl alcohol. Comment on the observed, overall lifetime as compared to 
the lifetimes of the single product reactions. 
 
 

Answer:  The overall rate constant for the disappearance of the reactant is: 
 

 k = 0.112 min-1 + 0.332 min-1 = 0.444 min-1 
 

The lifetime for the single-product reaction with chloride alone is:    τCl = 1/kCl = 8.93 min 
 

and for bromide alone is:   τBr = 1/kBr = 3.01 min 
 

The lifetime for the overall, observed reaction is calculated from: 
 

 
1

τobs
 = 

1
τCl

 + 
1

τBr
 = 

1
8.93 min + 

1
3.01 min = 0.444 min-1 

 

or τobs = 2.25 min. The observed lifetime is closest to the lifetime of the fastest reaction. The 
fastest channel has the shortest lifetime and dominates the observed lifetime. 
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Up to this point we have only considered unidirectional steps for a parallel mechanism. 
However, if both parallel processes are reversible there will be competition based on 
thermodynamic versus kinetic control of the reaction. Thermodynamic versus kinetic stability is 
a key concept in chemistry. For complex mechanisms it is often very helpful, or even necessary, 
to use purely numerical methods to find the time course that is predicted by a mechanism. The 
reversible, parallel mechanism is a good example. 
 

The Finite Difference Approximation Allows the Numerical Integration of Rate Laws:   
Integrated rate laws rapidly increase in complexity as the mechanisms require more steps. For 
most complex mechanisms, the integrated rate laws cannot be determined analytically. 
Numerical approximations are very useful for finding the corresponding time course by 
integrating the rate laws. For example, the first-order rate law is: 
 

 – 
d[A]
dt  = k [A]          4.1.16 

 

Approximating the derivative with a finite difference gives: 
 

 – 
∆[A]
∆t  = k [A]        (∆t << 1/k) 4.1.17 

 

Multiplying by –∆t gives: 
 

 ∆[A] = – k [A] ∆t       (∆t << 1/k) 4.1.18 
 

The time course is divided into equal time intervals, ∆t. If the concentration at time t is [A](t), 
and the concentration in the next time interval is [A](t + ∆t), then the concentration difference 
over the time interval, ∆[A], as given in Eq. 4.1.18 corresponds to: 
 

 ∆[A] = [A](t + ∆t) – [A](t)        4.1.19 
 

Substituting this last equation into the finite difference approximation, Eq. 4.1.18, with some 
rearrangement gives: 
 

 [A](t + ∆t) = [A](t) – k [A](t) ∆t     (∆t << 1/k) 4.1.20 
 

Starting with the initial value [A]o, this equation is applied repeatedly to generate each step for 
the time course. The trick to finding adequately accurate results using the finite difference 
approach is to use a ∆t that is small enough. Setting ∆t << 1/k is a commonly used guideline. In 
practice, you should run your calculation with two different ∆t values and compare. If the runs 
differ significantly, choose an even smaller ∆t and run again. You can do finite difference 
integration using Excel. Table 4.1.1 is an example Excel spreadsheet based on Eq. 4.1.20 to 
show how well the finite difference approximation works. 
   There are also a wide variety of computer applications for finite difference integration of 
differential equations. Computer-based algebra programs like Maple and Mathematica and 
numerical simulation programs like MathCad, MatLab, and Stella have a well developed suite of 
routines for differential equations. The “Kinetics Mechanism Simulation” applet on the textbook 
Web site and on the companion CD is specific to chemical kinetics. However, this applet is 
simplified for Web delivery and therefore less accurate. 
   All these applications use sophisticated numerical approximation techniques to decrease the 
errors inherent in finite difference integration, but the form of Eq. 4.1.20 is still the basis. 
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Table 4.1.1. Comparison of the finite difference approximation to the exact solution of a 
first-order rate law. k=0.3 s-1 and ∆t = 0.1 s. Closer agreement is obtained with smaller ∆t. 
 

t [A]=[A]-k[A] ∆t exact 
0 1.000 1.000 

0.1 0.970 0.970 
0.2 0.941 0.942 
0.3 0.913 0.914 
0.4 0.885 0.887 
0.5 0.859 0.861 
0.6 0.833 0.835 
0.7 0.808 0.811 
0.8 0.784 0.787 
0.9 0.760 0.763 

1 0.737 0.741 
 
 

The Kinetic Product Dominates Early in the Progress of a Reversible Parallel Reaction:   
Consider a first-order parallel mechanism with reversible steps and products X and Y: 
 

  k1 
      A →→→→→→→→←←←←←←←←   X          4.1.21 
  k-1 
 

  k2 
      A →→→→→→→→←←←←←←←←   Y          4.1.22 
  k-2 
 

X and Y compete for A with equilibrium constants Kc1 = k1/k-1 and Kc2 = k2/k-2 for the two steps. 
The thermodynamic product is the product with the larger equilibrium constant. The kinetic 
product is the result of the faster step, which has the larger forward rate constant. The rate law 
for A is given by: 
 

 
d[A]
dt  = – k1[A] + k -1[X] – k2 [A] + k-2[Y]      4.1.23 

 

The integrated rate law for this mechanism would be complex (see Problem 5.36 and 5.37). 
Finite difference integration is useful for helping to understand the relationships, Figure 4.1.2. 
 
 
              

Example 4.1.2: Kinetic vs. Thermodynamic Control 
Numerically integrate the rate laws for the mechanism in Eqs. 4.1.21 and 4.1.22 using the rate 
constants k1 = 0.020 s-1, k-1 = 0.00050 s-1, k2 = 0.50 s-1, and k-2 = 1.50 s-1. Determine the 
equilibrium constants for the formation of each product. Determine how to optimize the yield of 
each of the products. 
 
 

Answer:  The equilibrium constant for the first step is Kc1 = 40 and for the second step is Kc2 = 
0.333. So the thermodynamically favored product is X. The rate constant for the formation of Y, 
however, is 25 times larger than for X. 
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WWWWWW   For the numerical integration we used the “Kinetics Mechanism Simulator” applet. 

Here’s how the values were entered: 
 

 
 

Figure 4.1.2 gives the simulation results: 
 

 
Figure 4.1.2: Kinetic versus thermodynamic control. 

 
 

The kinetic product is favored at short times and the thermodynamic product is favored at long 
times. In the applet the default ∆t is determined by the maximum time chosen and number of 
steps as ∆t = max time/750. The simulation was additionally run for shorter maximum times to 
decrease ∆t and no significant differences were found, thus validating the accuracy. 
              

 
 

   We now consider what happens if we have two mechanistic steps in a consecutive sequence. 
Consecutive Reactions – Reactive Intermediates:   One of the most common simple mechanisms 
is the formation of an intermediate, B, that subsequently reacts to form products: 
 

  k1 k1' 
       A   →→→→→→→→   Β  →→→→→→→→  C      (1st-order consecutive unidirectional) 4.1.24 
 

These two reaction steps are consecutive. Before we solve for the integrated rate laws, we 
should take a moment to qualitatively predict the expected time course for B. For a reactive 
intermediate the first step is relatively difficult, but after the formation of the intermediate, the 
second step is rapid. In this case, we find k1<< k1'. The concentration of the reactive intermediate 
is predicted to remain low during the course of the reaction because the intermediate reacts 
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quickly after formation. On the other hand, if the first step is intrinsically rapid and the second 
step is slow, k1>> k1', the concentration of the intermediate builds to large levels before the 
second slow step removes the intermediate. In other words, in this case B is a stable 
intermediate. Let’s see if our expectations are met by the rate laws based on Eq. 4.1.24. 
   Assuming each of these steps is an elementary process, each step is unimolecular and the 
corresponding first-order rate laws are: 
 

 
d[A]
dt  = – k1[A]      (1st-order unidirectional) 4.1.25 

 
d[B]
dt  = k1[A] – k1' [B]      (1st-order consecutive unidirectional) 4.1.26 

 
d[C]
dt  = k1' [B]       (1st-order consecutive unidirectional) 4.1.27 

 

The rate law for the concentration of B has two terms: the first for the rate of appearance of B by 
the first step in the mechanism and the second for the disappearance of B to form product. The 
sign of the first term is positive because the first step produces B, increasing [B]. The second 
term has a negative sign because the second step removes B to produce products, decreasing [B]. 
   The integrated rate law for the concentration of A from Eq. 4.1.25 is just simple first-order 
decay, and from Eq. 3.2.5: 
 

 [A] = [A] o e–k1t        (1st-order unidirectional) 4.1.28 
 

Substitution of this equation for [A] into the rate law for B, Eq. 4.1.26, and integration using 
standard integral tables gives (see Example 6.3.2 and 6.3.3): 
 

 [B] = [A] o





k1

k1'–k1
(e–k1t – e–k1't)           (1st-order consecutive unidirectional)  4.1.29 

 

Using Eqs. 4.1.28 and 4.1.29, we can solve for the time dependence of C by difference using the 
mass balance equation: 
 

 [A] o = [A] + [B] + [C]         4.1.30 
 

Solving 4.1.30 for [C] and substituting 4.1.28 for [A] and 4.1.29 for [B] gives: 
 

 [C] = [A] o





1 + 







1

k1 – k1'
( )k1' e–k1t – k1 e–k1't  

                (1st-order consecutive unidirectional)  4.1.31 
 

One way to become comfortable with any complicated expression is to plot the behavior for 
typical values of the rate constants. Consider the case when the first step has the smaller rate 
constant, k1 << k1', Figure 4.1.3. Notice that A decays by a simple first-order process. The time 
course of A doesn’t depend on what happens in later steps. For very short times, B builds up in a 
roughly first-order process. This initial short time period when B is rapidly increasing and C 
increases slowly is sometimes called an induction period. However, after the concentration of B 
reaches a small but significant value, the rate of production of product increases limiting any 
further increase in B. When k1 << k1', B corresponds to a reactive intermediate and the 
concentration of B remains small during the course of the reaction as we expected. 
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Figure 4.1.3: Consecutive reaction mechanism with k1 = 0.10 min-1 and k1

' = 1.0 min-1. The 
first step is the slow step. 

 
 

   As we have noted before, another way to become comfortable with a complicated expression is 
to look at the expression in the limit that corresponds to a mechanism that we already know. If 
the first step has the smaller rate constant, k1 << k1', Eq. 4.1.31 reduces to: 
 

 [C] = [A] o (1 – e–k1t)       (k1 << k1') 4.1.32 
 

This last result is identical to the result for a simple one-step first-order process, Eq. 3.2.8. The 
most important and interesting point is that even though C is formed in the step with rate 
constant k1', the rate constant that appears in Eq. 4.1.32 is the slower rate constant k1. In other 
words, the intrinsically slow step is the rate determining step. The rate of formation of product, 
after the induction period, is only dependent on the rate of the first step. You will explore the 
case when k1 >> k1' in your homework (Problem 7). However, we can anticipate that when the 
second step is the intrinsically slow step the concentration of the intermediate builds to 
significantly higher levels than shown in Figure 4.1.3. 
   A careful look at Figure 4.1.3 provides a very useful insight that we can generalize to give a 
method for simplifying and approximating complex rate laws. The concentration of the 
intermediate is remarkably constant for most of the course of the reaction. This observation is the 
basis for the steady-state approximation. While it is always possible to use computer-based 
algorithms to numerically integrate the rate laws for complex mechanisms, it is useful to be able 
to develop an approximate method that helps us to develop our chemical insight. 
 
4.2 The Steady-State Approximation Simplifies Rate Laws 
 

Consecutive Reactions:   For the consecutive reaction mechanism, when the first step is the 
intrinsically slow step, the concentration of the intermediate is constant during most of the time 
course of the reaction. For the short-time interval at the beginning of the reaction, the 
concentration of B must increase from zero. However, once the concentration of B is large 
enough, the rate of the second step increases until the second step has the same rate as the first 
step. After the induction period, then, the time derivative of this approximately constant 
concentration of the intermediate goes to zero: 
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d[B]
dt   = k1[A] – k1' [B] ≈ 0      (k1 << k1') 4.2.1 

 

This approximation is called the steady-state approximation. Adding k1' [B] to both sides of the 
second equality in Eq. 4.2.1 shows that the rates of the two steps are equal when the steady-state 
approximation is valid: 
 

 k1[A] = k1' [B]        (k1 << k1') 4.2.2 
 

Notice that equalities in Eqs. 4.2.1 and 4.2.2 do not imply that the concentration of B is zero; 
they only require that the concentration of B, big or small, remains constant. The steady-state 
approximation is useful because it allows the concentrations of reactive intermediates to be 
calculated. For example, we can solve Eq. 4.2.2 for [B]: 
 

 [B] = 
k1

k1'
 [A]        (k1 << k1') 4.2.3 

 

This value for the intermediate concentration can then be substituted into the rate law for the 
production of product, Eq. 4.1.27, to give: 
 

 
d[C]
dt   = k1' 

k1

k1'
 [A] = k1[A]       (k1 << k1') 4.2.4 

 

Notice something quite striking. The rate constant that now appears in the rate law for the 
production of product is the rate constant for the first, intrinsically slower step. In other words, 
the intrinsically slow step is the rate determining step, just as we discovered from Eq. 4.1.32. In 
fact, substituting the concentration of A from Eq. 4.1.28 into Eq. 4.2.4 gives: 
 

 
d[C]
dt  = k1[A] o e–k1t       (k1 << k1') 4.2.5 

 

which when integrated gives Eq. 4.1.32. The steady-state approximation is a “short cut” that 
avoids having to do the exact integrals of all the coupled steps in a multi-step mechanism. 
Remember, however, that the steady-state approximation does not hold at the beginning of the 
reaction. However, all net rates for each reversible step do approach zero as the reaction 
approaches equilibrium; the steady-state approximation becomes exact at equilibrium. 
   The steady-state approximation can be used in a wide variety of situations to help simplify 
complex rate laws. Our goal now is to show you how to apply the steady-state approximation to 
a variety of important problems. In each case the steady-state approximation allows the 
concentrations of reactive intermediates to be calculated, which can then be used to simplify the 
rate law for the production of products. The three examples we discuss next are nucleophilic 
substitution, the Michaelis-Menten enzyme mechanism, and the mechanism for first-order gas-
phase reactions. Each of these examples uses the same two-step mechanism that has a reversible 
first step. The examples really differ only in the stoichiometry. 
 

Reversible First-Step Mechanism — Nucleophilic Substitution, SN1:  The different reaction 
mechanisms that you learned in Organic Chemistry are differentiated by their experimentally 
determined rate laws. The SN1 mechanism is an important example. Consider a reactant with a 
good leaving group, X, which reacts by a reversible first-order process to form a reactive 
carbocation intermediate, R+. Subsequent to the initial reversible step, the reactive intermediate 
reacts with a nucleophile, Nuc:–, to form the product: 
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  k1 
    RX   →→→→→→→→←←←←←←←←  R+ + X–         4.2.6 
  k-1 
 

            k2 
    R+ + Nuc:– →→→→→→→→   R-Nuc        4.2.7 
 

If R-X is R-Cl, R-Br, or R-I, then X– is simply Cl–, Br–, or I–. The nucleophile is often OH– or is 
derived from an alcohol. For notational simplicity we represent the product as P, where [P] = 
[R-Nuc]. The rate law for the formation of product is: 
 

 
dP
dt  = k2 [R+] [Nuc:–]         4.2.8 

 

This rate law looks quite straight forward until you realize that it includes the concentration of 
the reactive intermediate. The concentration of the reactive intermediate is often very difficult to 
measure or even detect. There are two approaches to approximations at this point. We can 
assume a pre-equilibrium mechanism or use the steady-state approximation. We start with the 
pre-equilibrium mechanism. 
 

Use the Pre-equilibrium Approximation When k2 is Small:  If k2 << k1 and k-1, then the initial 
reversible steps can essentially come to equilibrium at each point during the reaction. The rate 
law for the rate based on the concentration of the reactant is given by: 
 

 
d[RX]

dt  = – k1 [RX] + k-1 [R+] [X –] = 0    (k2 << k1, k-1) 4.2.9 
 

At equilibrium the net rate is zero and the ratio of the products to reactants is then given by the 
equilibrium constant: 
 

 Kc = 
k1

k-1
 = 

[R+] [X –]
[RX]        (k2 << k1, k-1) 4.2.10 

 

Solving for the concentration of the reactive intermediate gives: 
 

 [R+] = Kc 
[RX]
[X–]

       (k2 << k1, k-1) 4.2.11 
 

Substitution of this approximation for the reactive intermediate into the rate law for the 
formation of product, Eq. 4.2.8, gives: 
 

 
d[P]
dt  = 

k2 Kc [RX] [Nuc:–]
[X–]

      (k2 << k1, k-1) 4.2.12 
 

Notice that [X–] appears in the denominator, so [X–] is an inhibitor. Also note the observed rate 
constant for this mechanism is actually a product of a rate constant and an equilibrium constant, 
that is kobs = k2 Kc. 
   The pre-equilibrium mechanism is common. However, this approximation is quite restrictive. 
The intrinsic rate of the second step must be much slower than that of the reversible steps. In this 
SN1 case, in contrast, once the reactive intermediate forms, we expect subsequent steps to 
proceed with a large rate constant. So the pre-equilibrium mechanism may not be a realistic 
approximation. This is the point where the steady-state approximation comes to the rescue. 
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SN1 General Case with the Steady-state approximation:   To use the steady-state approximation 
we focus on the rate law for the reactive intermediate: 
 

 
d[R+]

dt  = k1 [RX] – k-1 [R+] [X –] – k2 [R+] [Nuc:–] = 0  (k1 << k2) 4.2.13 
 

Once again the steady-state approximation allows the concentration of the reactive intermediate 
to be approximated. Solving Eq. 4.2.13 for [R+]: 
 

 [R+] = 
k1 [RX]

k-1 [X–] + k2 [Nuc:–]
      (k1 << k2) 4.2.14 

 

Substitution of this value for the reactive intermediate into the rate law for the formation of 
products, Eq. 4.2.8, gives: 
 

 
d[P]
dt  = 

k2 k1 [RX] [Nuc:–]
k-1 [X–] + k2[Nuc:–]

      (k1 << k2) 4.2.15 
 

We can unravel this rate law by looking at some appropriate limits. When k2 << k-1, the second 
term in the denominator is negligible and Eq. 4.2.15 gives the same result as the pre-equilibrium 
mechanism, Eq. 4.2.12. You can think of the pre-equilibrium mechanism as a special case of the 
steady-state approximation. Now consider the beginning of the reaction when [X–] is small and 
[Nuc:–] is large. The first term in the denominator becomes negligible and Eq. 4.2.15 reduces to: 
 

 
d[P]
dt  = k1 [RX]            (k-1 [X–] << k2[Nuc:–]) 4.2.16 

 

This rate law is first-order in reactant, which is why the mechanism is called first-order 
nucleophillic substitution or SN1 for short. At the beginning, the reaction is also correspondingly 
zeroth-order in Nuc:–. On the other extreme, at the end of the reaction, [X–] is large and [Nuc:–] 
is small. The second term in the denominator is now negligible and: 
 

 
d[P]
dt  = 

k2 k1 [RX] [Nuc:–]
k-1 [X–]

         (k-1 [X–] >> k2[Nuc:–]) 4.2.17 
 

In other words, as the reaction proceeds, the reaction approaches first-order in Nuc:–. In this 
limit, which corresponds to a rapid reverse process for the first step, the results follow the pre-
equilibrium mechanism; Eqs. 4.2.17 and 4.2.12 are the same. One way to verify SN1 behavior is 
to add [X–] in large excess at the beginning of the reaction. With a large excess of [X–], the 
concentration of X– can be considered constant and can be grouped with the rate constant: 
 

 
d[P]
dt  = 







k2 k1

k-1 [X–] cst
[RX] [Nuc:–]      (excess [X–]) 4.2.18 

 

With a large excess of [X–], the reaction shifts to second-order overall. The shifts in observed 
rate law define SN1 behavior: zeroth-order in [Nuc:–] at the beginning, first-order in [Nuc:–] at 
the end, and second-order overall with a large excess of [X–]. 
 

At Steady-State All Elementary Steps Have the Same Net Rate:   We can use the SN1 example to 
make several general comments about multi-step mechanisms. First note that during the vast 
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majority of this SN1 reaction, the net rate of the reversible first step is equal to the rate of the 
second step. To show this equivalence, we can rearrange Eq. 4.2.13 to show that: 
 

  k1 [RX]    –   k-1 [R+] [X–]  = k2 [R+] [Nuc:–]   (k1<< k2) 4.2.19 
     υ+      –     υ-          =   υ2 
 forward rate reverse rate 
  first step  second step 
 

where we recognize the terms on the left as the net rate for the reversible first step, Eq. 4.2.9, and 
the term on the right of the equality as the rate of the unidirectional second step, υ2. This result is 
worth thinking about. In general for multi-step mechanisms, during the majority of the course of 
the reaction the net rates for each step are equal, regardless of which step is the rate determining 
step.2 In this specific case, the second step can’t run any faster than the first reversible process. 
The second step is limited by the supply of the intermediate. On the other hand, if the second 
step is slower than the first reversible step, then the second step becomes the rate determining 
step. If the second step is the rate determining step, the net rate of the first reversible process 
can’t run any faster than the second step at steady state. This is the reason we have used the 
terminology: “the intrinsically slow step is the rate determining step.” We need to differentiate 
between rates and rate constants. For first-order reactions, the intrinsic rate of a unidirectional 
elementary step is determined by the rate constant for the step. For first-order reactions, steps 
with small rate constants are intrinsically slow. But, during the vast majority of the reaction all 
the steps have the same net rate, if the steady-state approximation applies. 
   What about the rate determining step for more complex mechanisms? For second-order 
processes, the concentration of both reactants affect the rate of the mechanistic steps and a 
complete analysis of the integrated rate laws for the mechanism is required to determine the rate 
determining step, if there is one. 
   Many reactions follow a reversible first-step mechanism. In atmospheric environmental 
chemistry one important reaction is the destruction of ozone through the disproportionation: 
 

 2 O3 → 3 O2          4.2.20 
 

which is postulated to follow the mechanism: 
 

  k1     k2 
    O3    →→→→→→→→←←←←←←←←   O2 + O  O + O3  →→→→→→→→  2 O2     4.2.21 
  k-1 
 

Another important use of the steady-state approximation is for simplifying the rate laws for 
enzyme mechanisms. 
 

Reversible First-Step Mechanism — Michaelis-Menten Mechanism:   Enzyme catalysis can 
follow a wide variety of mechanisms. However, many enzyme catalyzed reactions follow the 
mechanism: 
 

  k2  k1 

 E + S  →→→→→→→→←←←←←←←← ES →→→→→→→→   P + E       4.2.22 
  k-1 
 

where E is the enzyme, S is the substrate, and ES is the enzyme-substrate complex. Only the 
stoichiometry differs from the reversible first-step mechanism that we just discussed. We can use 
this example to highlight the general principles involved in using the steady-state approximation 
for any problem. We start by writing the rate law for the formation of product: 
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 υ = 
d[P]
dt  = k1 [ES]         4.2.23 

 

If the rate law for the production of product involves the concentrations of reactive 
intermediates, we use the steady-state approximation to solve for the concentrations of the 
reactive intermediates. Focusing on the rate law for the formation of the enzyme-substrate 
complex and applying the steady-state approximation gives: 
 

 
d[ES]

dt   = k2 [E][S] – k-1 [ES] – k1 [ES] ≈  0    (k2 << k1) 4.2.24 
 

Solving for the enzyme-substrate complex concentration gives: 
 

 [ES] = 
k2 [E][S]
(k-1 + k1)

       (k2 << k1) 4.2.25 
 

At this point, however, we have two unknown concentrations, [E] and [S]. We can use the mass 
balance for the total enzyme concentration, [E]o= [E] + [ES], to eliminate one of the unknowns. 
Solving the mass balance to give the free enzyme concentration gives: 
 

 [E] = [E]o – [ES]          4.2.26 
 

Substitution of this free enzyme concentration into Eq. 4.2.25 results in: 
 

 [ES] = 
k2 ([E]o – [ES])[S]

(k-1 + k1)
  =  

k2 [E]o[S]
(k-1 + k1)

 – 
k2 [ES][S]
(k-1 + k1)

   (k2 << k1) 4.2.27 
 

Collecting terms in [ES] gives: 
 

 [ES] 






1 + 

k2 [S]
(k-1 + k1)

  =  
k2 [E]o[S]
(k-1 + k1)

     (k2 << k1) 4.2.28 
 

and solving for [ES] gives the steady-state enzyme-substrate complex concentration: 
 

 [ES] =  
k2 [E]o[S]

(k-1 + k1 + k2[S])      (k2 << k1) 4.2.29 
 

This last equation can then be substituted back into the rate law for the formation of product, Eq. 
4.2.23 to give the final result: 
 

 
d[P]
dt   = k1 [ES] = k1 

k2 [E]o[S]
(k-1 + k1 + k2[S])     (k2 << k1) 4.2.30 

 

which is the final desired approximate rate law. This equation is usually rearranged by dividing 
both the numerator and denominator by k2 and defining the Michaelis constant as: 
 

 kM ≡ 
(k1 + k-1)

k2
          4.2.31 

 

In terms of the Michaelis constant the rate law is: 
 

 υ = 
d[P]
dt   =  k1 [ES] =  

k1 [E]o[S]
(kM + [S])     (k2 << k1) 4.2.32 
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In homework Problem 13 you will show that the integrated time course for the reaction is linear 
for short times and then the rate decreases as [P] approaches [P]∞ = [S]o, Figure 4.2.1. 
 
 
 
 
 
 
 
 
 

Figure 4.2.1: Enzyme characterization through a Michaelis – Menten kinetic study. Separate 
initial rate determinations are first run while varying the initial concentration of substrate. 

 
 

In a typical enzyme kinetics study, the initial rate, υo, is determined while varying the initial 
substrate concentration in a series of experiments. One convenient method for extracting the 
values of k1 and kM is given by a double reciprocal plot, Figure 4.2.2. First, Eq. 4.2.32 is 
inverted: 
 

 
1
υ = 

kM + [S]
k1 [E]o[S]        (k2 << k1) 4.2.33 

 

The initial rate, υo, corresponds to: [S] ≈ [S]o: 
 

 
1
υo

 = 
1

k1 [E]o
 + 

kM

k1 [E]o[S]o
     (k2 << k1, initial rate) 4.2.34 

 

What is the maximum rate for this reaction? The maximum, υmax occurs when all the available 
enzyme is bound to substrate: [ES] = [E]o. Substituting the maximum enzyme-substrate complex 
concentration into the rate law, Eq. 4.2.23 gives: 
 

 υmax = 
d[P]
dt  = k1 [E]o      (maximum rate) 4.2.35 

 

Substituting the maximum rate into Eq. 4.2.33 gives: 
 

 
1
υo

 = 
1

υmax
 + 

kM

υmax [S]o
      (k2 << k1, initial rate) 4.2.36 

 

This form is called a double-reciprocal plot because the reciprocal of the initial rate versus the 
reciprocal of the initial substrate concentration gives a straight line with slope = kM/υmax and 
intercept 1/υmax, Figure 4.2.2. This plot is often called a Lineweaver-Burk plot. However, 
double-reciprocal plots often produce high correlation coefficients between the fit coefficients 
and in addition the error propagation in calculating υmax from 1/intercept is quite unfavorable. 
There are several better ways to extract KM and k2, which you will study if you take 
biochemistry. A non-linear curve fit directly using the functional form from Eq. 4.2.32 often 
works best. Curve fitting for Eq. 4.2.15 has the same issues and can be handled in double-
reciprocal or non-linear forms. 
 

t 

[P] 
[S]o = 8 mM 

slope = rateo 

t 

[P] 
[S]o = 3 mM 

slope = rateo 

t 

[P] 
[S]o = 2 mM 

slope = rateo 

…. 
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Figure 4.2.2: Lineweaver-Burk plot for the determination of υmax and the Michaelis constant. 
 
 

The two available parameters from fitting Eq. 4.2.32, υmax and kM, are not sufficient to determine 
k2 or k-1 separately. Stopped flow or temperature-jump chemical relaxation experiments are 
usually necessary to completely determine all the rate constants in the mechanism. Please also 
note that the Michaelis-Menten mechanism is just one of the simplest possible mechanisms for 
enzyme catalyzed reactions. In particular, many enzyme reactions show inhibition or allosteric 
control, which are not taken into account by the Michaelis-Menten mechanism. Our purpose here 
is to show a useful and interesting example of the steady-state approximation. 
   To summarize the use of the steady-state approximation, the steps are: 
 

Steady-State Approximation: 
1. Write the rate law for the formation of product. 
2. Write the rate laws for the formation of any reactive intermediates. 
3. Apply the steady-state approximation to all the reactive intermediates to obtain 
approximate concentrations of the reactive intermediates. 
4. Mass balance equations are often applied to decrease the number of unknowns, one fewer 
unknown for each mass balance. 
5. Substitute the reactive intermediate concentrations into the final rate law. 
6. Look at appropriate limits to further simplify the rate law and compare to the rate laws for 
simpler mechanisms. For example, assume short times or very long times or assume some 
rate constants are much larger than others. 
7. Integrate the approximate rate law if desired. 

 

The steady-state approximation cannot be applied if the concentrations of the intermediates are 
not much less than the initial concentration of reactants. The steady-state approximation should 
not be applied to reactants or products. 
   Another important example of the steady-state approximation and the reversible first-step 
mechanism is the theory of unimolecular reactions. In particular, if elementary mechanistic steps 
describe the collisions that take place, how can a reaction be first-order? A unimolecular step 
implies that no collision occurs; how can the reactant overcome its activation energy barrier? 
 
 
              

Example 4.2.2: Unimolecular Reactions – Lindemann-Henshelwood Mechanism 
The following mechanism has been postulated to explain first-order reactions. 
 

1/[S]o  (M
-1) 

1
rateo

 

(s M-1) 

• 

• 

• 

• 

• 

slope = 
kM

υmax
 

intercept = 
1

υmax
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  k2    k1 
 A + A  →→→→→→→→←←←←←←←← A + A*   A*   →→→→→→→→  B + C     4.2.37 
  k-2 
 

where A* is an activated molecule created by the collision. Use the steady-state approximation to 
show that this mechanism results in a first-order rate law under suitable circumstances (i.e., 
apply step 6 in the general scheme, above). 
 
 

Answer:  Step 1: The rate law for the formation of products is: 
 

 
d[B]
dt  = k1[A*]          4.2.38 

 

Step 2: The rate law for the formation of the activated molecule as the reactive intermediate is: 
 

 
d[A*]

dt  = k2[A] 2 – k-2 [A*][A] – k 1[A*] = 0    (k2 << k1) 4.2.39 
 

Step 3:  Setting this last equation equal to zero to apply the steady-state approximation and 
solving for the reactive intermediate gives: 
 

 [A*] = 
k2[A] 2

k-2[A] + k1
       (k2 << k1) 4.2.40 

 

Step 4: There is only one unknown in this last equation, so we can skip step 4. 
Step 5: Substitution of the concentration of the reactive intermediate into the rate law for the 
formation of products, Eq. 4.2.38, gives the final simplified rate law: 
 

 
d[B]
dt  = k1[A*] = 

k1k2[A] 2

k-2[A] + k1
      (k2 << k1) 4.2.41 

 

Step 6: The limit k1<< k-2[A] corresponds to rapid deactivation of the excited molecule. The 
second term in the denominator of this last equation is negligible and: 
 

 
d[B]
dt  = 

k1k2

k-2
 [A]         (k2 << k1, k1<< k-2[A]) 4.2.42 

 

The net result is an overall first-order reaction, as we wished to find. 
   Note, however, that when k-2[A] << k1 the reverse process in the reversible first step is slow. 
This limit is called slow deactivation, which from Eq. 4.2.41 leads to: 
 

 
d[B]
dt  = k2[A] 2          (k2 << k1, k-2[A] << k1) 4.2.43 

 

which is an overall second-order process. The validity of the Lindemann-Henshelwood 
mechanism, in an analogous way to the SN1 mechanism, is often verified by determining the rate 
law under different experimental conditions. At low initial pressure, A + A* collisions are 
unlikely, k-2[A] << k1, so that the deactivation step is slow giving a second-order reaction. At 
high pressure, A + A* collisions are likely so deactivation is fast. At high pressure, k1<< k-2[A], 
and the unimolecular step is the intrinsically slow step giving a first-order process. 
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   As you review these last three reversible first-step mechanisms, make sure to note the 
similarities in the final rate laws, Eqs. 4.2.15, 4.2.30, and 4.2.41. This general mechanism is one 
example of how a particular mechanistic sequence can often be used in a variety of different 
applications. Continuing with our theme of exploring the steady-state approximation, we now 
wish to consider more complex multi-step reaction mechanisms. Again, there are many possible 
application areas to choose from to illustrate the underlying principles. Many atmospheric, 
aquatic, and enzymatic reactions involve reactive intermediates that participate in a series of 
steps. These reactions often follow chain mechanisms. The processes that are involved in 
stratospheric ozone destruction and tropospheric ozone production are chain mechanisms. 
 
4.3 Chain Mechanisms and Autocatalysis 
 

Chain mechanisms are characterized by steps that consume a reactive intermediate but then 
produce one or more reactive intermediates. Such steps are called chain propagation steps, 
because the net number of reactive species is kept constant or increased. The reactive 
intermediates in chain propagation steps are called chain carriers. Odd electron atoms and 
molecules are often called free radicals. Chain carriers are often free radicals. For example, 
chlorine and bromine atoms, Cl• and Br•, are reactive odd-electron atoms that are chain carriers 
in stratospheric ozone depletion. 
   The gas phase reaction: 
 

 H2 + Br2 → 2 HBr         4.3.1 
 

is a well-studied chain reaction. The experimentally determined rate law is quite complex: 
 

 
d[HBr]

dt   = 
ka [H2][Br2]½

kb + kc
[HBr]
[Br2]

        4.3.2 

 

where ka, kb, and kc are empirically determined rate constants. The goal is to postulate a 
mechanism that agrees with the experimental rate law. The proposed mechanism is: 
 

     k1 
         Br2 →→→→→→→→  2 Br   initiation     4.3.3 
 

    k2 
 Br + H2 →→→→→→→→  HBr + H   propagation     4.3.4 
 

    k3 
 H + Br2 →→→→→→→→  HBr + Br   propagation     4.3.5 
 

    k4 
 H + HBr →→→→→→→→  H2 + Br   inhibition     4.3.6 
 

    k5 
       2 Br →→→→→→→→ Br2   breaking     4.3.7 
 

A chain mechanism begins with the formation of a chain carrier in an initiation  step, which is 
Eq. 4.3.3 for this reaction. The chain initiation step is followed by one or more chain propagation 
steps. The propagation steps cycle producing products and additional reactive intermediates that 
carry the chain mechanism forward. The chain propagation steps compete with reactions that 
decrease the net number of chain carriers. Such steps are called chain breaking steps. Chain 
reactions are often quite rapid because the chain propagation steps don’t consume the net pool of 
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reactive intermediates. Chain breaking steps slow the overall process. On the other hand, some 
steps consume product, but still produce chain carriers. Such steps are called chain inhibition  
steps. 
   It is not obvious that the above proposed mechanism results in the observed rate law. One 
approach is to use the steady-state approximation to simplify the overall rate law. In this 
mechanism, the free radical chain carriers are H and Br atoms. We need to apply the steady-state 
approximation to both of these reactive intermediates. Following step 1 in the general steady-
state approximation scheme, we formulate the rate law for the formation of products: 
 

 
d[HBr]

dt  = k2 [Br][H 2] + k3 [H][Br 2] – k4 [H][HBr]     4.3.8 
 

This rate law is clearly not in the final desired form because the free radical chain carriers are 
involved. This juncture is where we can use the steady-state approximation to solve for the 
steady-state concentrations of the reactive intermediates. Writing the rate laws for [Br] and [H] 
gives: 
 

 
d[Br]

dt  = 2 k1[Br2] – k2 [Br][H 2] + k3 [H][Br 2] + k4 [H][HBr] – 2 k5[Br] 2 = 0  4.3.9 
 

 
d[H]
dt   = k2 [Br][H 2] – k3 [H][Br 2] – k4 [H][HBr] = 0     4.3.10 

 

where we set each rate law equal to zero to satisfy the steady-state approximation. These last two 
equations provide two simultaneous equations in two unknowns, [H] and [Br]. If we add Eq. 
4.3.9 and 4.3.10, the middle terms of Eq. 4.3.9 cancel and the result is: 
 

 0 = 2 k1[Br2]  – 2 k5 [Br] 2        4.3.11 
 

which we can solve for the Br atom concentration: 
 

  [Br] = 






k1

k5
 [Br2]

½
        4.3.12 

 

We can solve Eq. 4.3.10 for the hydrogen atom concentration and then substitute for [Br] from 
this last equation: 
 

 [H] = 
k2[Br][H 2]

k3[Br2] + k4[HBr]   = 
k2 




k1

k5

½
[H2][Br2]½

k3[Br2] + k4[HBr]      4.3.13 
 

Notice that Eq. 4.3.8 and 4.3.10 have the k2[Br][H 2] and – k4[H][HBr] terms in common. Since 
Eq. 4.3.10 is equal to zero, subtracting Eq. 4.3.10 from Eq. 4.3.8 will cancel the common terms, 
but leave the overall rate law unchanged: 
 

   
d[HBr]

dt   = k2 [Br][H 2] + k3 [H][Br 2] – k4 [H][HBr] 

 – (    0     = k2 [Br][H 2] – k3 [H][Br 2] – k4 [H][HBr]  ) 
         

   
d[HBr]

dt   =                    2 k3 [H][Br 2]       4.3.14 
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Finally, we can substitute the H atom concentration from Eq. 4.3.13 into Eq. 4.3.14 to give: 
 

 
d[HBr]

dt  = 
2 k3 k2 k1

½ k5
-½ [H2][Br2]½ [Br2]

k3[Br2] + k4[HBr]       4.3.15 
 

Dividing numerator and denominator of this last equation by [Br2] gives the final result: 
 

 
d[HBr]

dt  = 
2 k3 k2 k1

½ k5
-½ [H2][Br2]½

k3 + k4
[HBr]
[Br2]

       4.3.16 

 

which is an equation only a chemical kineticist could love. Comparison of this final result with 
the experimentally determined rate law, Eq. 4.3.2, shows the same functional form. The 
experimental rate constant ka turns out to be a composite of the rate constants for several 
mechanistic steps, while kb = k3, and kc = k4. It is important to note that the agreement between 
the experimentally determined rate law and the rate law predicted by the proposed mechanism 
does not prove that the mechanism is the correct mechanism, nor the only mechanism. 
   Notice also that this proposed mechanism has two reversible steps: Eqs. 4.3.3 and 4.3.7 and 
also Eqs. 4.3.4 and 4.3.6. The full mechanism can be equivalently written as: 
 

    k1 
        Br2 →→→→→→→→←←←←←←←←  2 Br   initiation, breaking    4.3.17 
    k5 
 

    k2 
 Br + H2 →→→→→→→→←←←←←←←←  HBr + H   propagation     4.3.18 
    k4 
 

    k3 
 H + Br2 →→→→→→→→  HBr + Br   propagation    (4.3.5) 4.3.19 
 

The reverse of Eq. 4.3.5 (4.3.19) was not considered. Because all the proposed steps are not 
reversible, this proposed mechanism violates a principle called “detailed balance,” which we will 
discuss in Sec. 4.5. As a consequence, this mechanism can only hold at the beginning of the 
reaction, away from equilibrium. As the reaction approaches equilibrium the proposed complete 
mechanism must include the exact reverse of each mechanistic step. However, this example 
serves nicely to introduce the concept of chain initiation, propagation, and termination steps. The 
trick we used in adding and subtracting rate laws, in the derivation of Eqs. 4.3.11 and 4.3.14, is a 
very handy technique to master as you work further on complex mechanisms. However, there is 
one more important type of mechanistic step for chain mechanisms. 
   What causes explosions? Explosions are very rapid and exothermic chemical reactions that 
have chain branching steps. A chain branching step is a chain propagation step that increases 
the net number of chain carriers. The reaction 2 H2 + O2 → 2 H2O is a very important example: 
 

 H2  + O2     →→→→→→→→ 2 •OH   initiation 
 H2  + •OH  →→→→→→→→   H•+ H2O  propagation 
 O2  + H•     →→→→→→→→  •O• + •OH  branching 
 •O•   + H2  →→→→→→→→  •OH +  H•  branching     4.3.20 
 

The odd electron, neutral hydroxyl radical, •OH, is also an important free radical intermediate in 
many atmospheric process. Remember that ground state oxygen molecules have two unpaired 
electrons; the electron configuration for ground state oxygen is 2s2 2p4: 
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    O :  ↑↓        ↑↓ ↑  ↑       (ground state)  4.3.21 
  2s         2p 
 

Such an electron configuration results in a triplet state. For convenience we symbolize triplet 
oxygen atoms in the mechanism as •O•. Triplet oxygen atoms are highly reactive. (Remember 
also that ground state oxygen molecules also have two unpaired electrons and can be 
correspondingly symbolized as •O2•.) Notice that the two chain branching steps consume one 
reactive intermediate on the left and produce two reactive intermediates on the right. The net 
increase in chain carriers in chain branching steps greatly accelerates the reaction to the point of 
an explosion. The rapid and highly exothermic nature of the oxidation of hydrogen makes 
hydrogen a useful fuel. Hydrogen was the fuel for the main engines of the space shuttle. Many 
feel that hydrogen should become a commonly used transportation fuel as a substitute for 
petroleum. Chain branching steps are a specific example of a process called autocatalysis, which 
has important applications in some enzymatic reactions as well as combustion reactions. 
 

In Autocatalysis, Products Catalyze the Reaction:   Autocatalysis is a more general phenomenon 
than chain branching. A simple form of autocatalysis is given by the following reaction with a 
rate law that includes the concentration of the product: 
 

 A 
kAB
→   B  – 

d[A]
dt  = kAB [A][B]      4.3.22 

 

where a corresponding single-step mechanism might be (among other possibilities): 
 

 A + B →→→→→→→→ 2 B          4.3.23 
 

The rate of an autocatalytic process increases with the production of products, because a product 
is also a reactant for one or more mechanistic steps. An autocatalytic reaction requires that both 
A and B be present at the beginning of the reaction, [B]o≠ 0, otherwise Eq. 4.3.23 cannot occur. 
Autocatalytic processes show an induction period, followed by a rapid rise in rate as products 
begin to build, but then finally the rate slows as a reactant is exhausted. A simple first-order 
reaction is compared to an autocatalytic process for equal rate constants in Figure 4.3.1. 
 
 

 
Figure 4.3.1: An autocatalytic process shows an induction period, followed by a rapid 
increase in rate. The rate constant is 0.1 s-1 and [A]o = 1 M, [B]o = 0.01 M. The initial rate of 
the autocatalytic process is υo= 0.1 s-1 (1 M)(0.01 M), as compared to a corresponding first-
order reaction with υo= 0.1 s-1 (1 M), giving the slow initial rate for the autocatalytic process. 
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Autocatalysis is an example of a general phenomenon called positive feedback. The loud squeal 
sometimes heard from public address systems is another commonly encountered example of 
positive feedback. A biochemical example of an autocatalytic reaction is the conversion of 
trypsinogen to trypsin. Trypsin is a proteolytic enzyme used to degrade proteins in food in the 
digestive system. The pancreas maintains a pool of inactive trypsinogen until required, at which 
point a small peptide is cleaved from the terminus of trypsinogen to produce active trypsin in an 
autocatalytic process. The autocatalysis provides the rapid conversion of the enzyme to meet the 
sudden demand of the digestive system. Other examples include the combustion of hydrocarbons 
at high temperatures3 and the degradation of aspirin to salicylic acid and acetic acid. 
Autocatalytic steps also play an important role in some clock reactions and especially oscillating 
reactions, which operate far from equilibrium. 
 
 
              

Example 4.3.1:  Chain Mechanisms and Autocatalysis 
Iron is a necessary nutrient for bacterial and phytoplankton growth in natural waters. The 
biological availability of iron is dependent on the relative amounts, that is the speciation, of iron 
between Fe(II) and Fe(III). Fe(II) is readily soluble and easily acquired by bacteria and 
phytoplankton. However, Fe(III) forms hydroxo complexes and Fe(OH)3 that precipitates iron 
from solution and makes Fe(III) unavailable. In oxygenated waters, Fe(II) is rapidly oxidized to 
Fe(III), making the pool of iron largely unavailable for biological growth. The mechanism for 
Fe(II) oxidation has been extensively studied because of its importance for regulating biological 
productivity. The proposed mechanism is:4 

    k1 
        Fe(II) + O2 →→→→→→→→  Fe(III) + •O-

2      4.3.24 
    k2 
  Fe(II) + •O-

2 + 2 H+ →→→→→→→→  Fe(III) + H2O2      4.3.25 
    k3 
       Fe(II) + H2O2 →→→→→→→→  Fe(III) + •OH + OH-     4.3.26 
    k4 
      Fe(II) + •OH   →→→→→→→→  Fe(III) + OH-      4.3.27 
 

The •O-
2 ion is called superoxide. Since the reaction is run at constant pH, the rate constant for 

Eq. 4.3.25 is defined to include the [H+]  concentration, k2 = k2'[H
+]2. The pool of reactive oxygen 

intermediates, •O-
2, H2O2, and •OH, also plays an important role in many other aquatic redox 

processes. (a) Find the overall stoichiometry. (b) Identify the chain initiation, propagation, 
termination steps. (c) Is this process autocatalytic? (d) Use the steady-state approximation to find 
the steady-state concentrations of the reactive intermediates. (e) Find the overall rate law under 
steady-state conditions. 
 
 

Answer:  (a) Adding all four steps gives a 4:1 stoichiometry for Fe(II) oxidation by O2: 
 

 4 Fe(II) + O2 + 2 H+  → 4 Fe(III) + 2 OH–      4.3.28 
 

(b) Step 1 is the chain initiation step. Steps 2 and 3 are chain propagation steps. Step 4 is a chain 
termination step, since no reactive oxygen species is produced. 
(c) This mechanism is autocatalytic, especially at high Fe(II) concentrations, since the products 
of reactions 1, 2, and 3 further react with reactant Fe(II).4 

(d) The rate laws are:  
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d[Fe(II)]

dt  =  – k1 [Fe(II)][O2] – k2 [Fe(II)][ •O-
2] – k3 [Fe(II)][H2O2] – k4 [Fe(II)][ •OH] 4.3.29 

      
d[•O-

2]
dt  =    k1 [Fe(II)][O2] – k2 [Fe(II)][ •O-

2] = 0      4.3.30 

     
d[H2O2]

dt  =    k2 [Fe(II)][ •O-
2] – k3 [Fe(II)][H2O2] = 0     4.3.31 

      
d[•OH]

dt  =    k3 [Fe(II)][H2O2] – k4 [Fe(II)][ •OH] = 0     4.3.32 
 

Applying the steady-state approximation for •O-
2 from Eq. 4.3.30 gives: 

 

 k1 [Fe(II)][O2] = k2 [Fe(II)][ •O-
2] or   [•O-

2] = 
k1 [O2]

k2
    4.3.33 

 

Applying the steady-state approximation for H2O2 from Eq. 4.3.31 and substitution of Eq. 4.3.33 
for [•O-

2] gives: 

 k2 [Fe(II)][ •O-
2] = k3 [Fe(II)][H2O2] or    [H2O2] = 

k2 [•O-
2]

k3
 = 

k1 [O2]
k3

  4.3.34 
 

Similarly the steady-state approximation for •OH with Eq. 4.3.34 gives: 
 

 k3 [Fe(II)][H2O2] = k4 [Fe(II)][ •OH]  or    [•OH] = 
k3 [H2O2]

k4
 = 

k1 [O2]
k4

  4.3.35 
 

The concentrations of the reactive intermediates at steady state are then predicted to be 
completely determined from the dissolved O2 concentration. The ratios of the reactive 
intermediates are completely fixed at steady state by k2, k3, and k4. 
(e) To find the overall rate law at steady state, we first need to look for a simplification of 
Eq. 4.3.29. Notice from Eqs. 4.3.33-4.3.35 that: 
 

 k1 [Fe(II)][O2] = k2 [Fe(II)][ •O-
2] = k3 [Fe(II)][H2O2] = k4 [Fe(II)][ •OH]  4.3.36 

 

Then, substitution of k1 [Fe(II)][O2] for each of the last three terms in Eq. 4.3.29 gives: 
 

 
d[Fe(II)]

dt  = – 4 k1 [Fe(II)][O2]        4.3.37 
 

In natural waters, the saturated [O2] concentration at 20°C is near 230-284 µM and the total iron 
concentration is often in the micromolar or sub-micromolar range. In well-oxygenated water, 
then, O2 is often in excess and the oxidation of Fe(II) is a pseudo-first order process. 
              

 
 

4.4  Oscillating Reactions 
 

Oscillating Chemical Reactions are Autocatalyic Reactions Far from Equilibrium:   Reactions 
near equilibrium approach equilibrium with simple exponential time dependence, Sec. 3.6. 
Classical kinetics leads us to expect smooth monotonic time evolution towards the equilibrium 
state. It is quite striking then to discover that some reactions show concentration profiles that 
oscillate in time. The Briggs-Rauscher reaction is one of the first laboratory examples of an 
oscillating reaction, Figure 4.4.1.5 The mechanism of the reaction is complex, but the bulk of the 
reaction is the oxidation of malonic acid by iodate and hydrogen peroxide in acidic solution: 
 



  149 

 IO-
3 + 2 H2O2 + CH2(COOH)2 + H+ → ICH(COOH)2 + 2 O2 + 3 H2O  4.4.1 

 

The iodination step is given by: 
 

 I2 + CH2(COOH)2→ ICH(COOH)2 + I– + H+      4.4.2 
 

where the I2 is generated and consumed by the reaction of H2O2 with IO-
3: 

 

 5 H2O2 + 2 IO-
3 + 2 H+ →  I2 + 5 O2 (g) + 6 H2O     4.4.3 

 5 H2O2  + I2   → 2 IO-
3 + 2 H+ + 4 H2O      4.4.4 

 

Adding these two reactions shows that the net result is the catalytic diproportionation of H2O2: 
 

 2 H2O2 → O2 (g) + 2 H2O        4.4.5 
 

The release of O2 from the solution and consumption of malonic acid eventually drive the 
process to equilibrium. 
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Figure 4.4.1: Periodic variation of I– during the Briggs-Rauscher reaction, measured by a 
AgI/Ag electrode.5 Typical conditions are: [IO-3] = 0.067 M, [H2O2] = 1.2 M, 
[CH2(COOH)2] = 0.050 M, [Mn2+] = 0.0067 M, [H2SO4] = 0.053 M. 

 
 

The reaction is catalyzed by Mn2+. Starch indicator is added to detect I2; the starch-I2 complex is 
dark blue. During the reaction, the color changes repeatedly from pale yellow to dark blue and 
back again. Oscillations continue up to 10 minutes, and then the reaction goes to equilibrium 
giving a dark blue-black color. The discovery of oscillating reactions was quite unexpected. 
However, upon reflection, we are surrounded by oscillating reactions. Many oscillating reactions 
occur in nature that have diurnal, lunar, or seasonal cycles. Alpha and beta brain waves and heart 
beats are oscillating reactions on shorter time scales. These biological examples show that 
coupled enzymatic processes can give oscillations, under the proper conditions. 
   In general, oscillations are common in coupled systems with positive feedback, such as the 
squeal from public address systems. Positive feedback in chemical systems is provided by an 
auto-catalytic step. The requirements for an oscillating chemical reaction are:6 

 

     •  The reaction starts far from equilibrium 
     •  The mechanism includes an autocatalytic step, giving positive feedback 
 

Oscillating reactions in closed systems are difficult to construct. However, running oscillating 
reactions in a flow reactor allows the overall displacement of the system to remain far from 
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equilibrium. A simple mechanism in a flowing system that satisfies the requirements for 
oscillation is the Lotka-Voltera mechanism: 
 

  k1 

 M + A →→→→→→→→ 2 A 
  k2 

 A + B  →→→→→→→→ 2 B 
  k3 

        B  →→→→→→→→  P          4.4.6 
 

   The M species is supplied at constant concentration. The final product P flows out of the 
reactor. The first and second step are autocatalytic steps with the rate laws υ1 = k1 [M] [A] and 
υ2 = k2 [A] [B]. Consider an initial state with high A and low B concentrations. As autocatalytic 
reaction 2 progresses, the concentration of B increases, gradually at first and then rapidly as in 
Figure 4.3.1. As the concentration of B increases, A is consumed. The decrease in concentration 
of A decreases the rate of reaction 1. At that point the concentration of B is high and A is low. 
Since A is low, the rate of reaction 2 then decreases and B is removed from the reactor by the 
formation of final product. Then as reaction 1 progresses, the concentration of A increases, 
gradually at first then rapidly by the autocatalytic process and the cycle repeats. 
 
 
              

Example 4.4.1: Lotka-Volterra Mechanism 
Find the steady state concentrations for the Lotka-Volterra mechanism. Do a numerical 
simulation with [M] = 1.0 M, [A]o = 1 M, [B]o = 1 M, k1 = 0.1 M-1 s-1, k2 = 0.1 M-1 s-1, 
k3 = 0.05 s-1. Then repeat the simulation using the steady state concentrations of A and B. 
 
 

Answer:  The rate laws are:  
d[A]
dt  = – k1[M][A] + 2 k 1 [M][A] – k 2 [A][B] = 0 

             
d[B]
dt  = – k2[A][B] + 2 k2 [A][B] – k 3 [B] = 0 

 

At steady state the rates are zero. Simplifying the two rate laws and factoring out the common 
concentration gives, respectively: 
 

 [A](k 1 [M] – k2 [B]) = 0 giving   (k1 [M] – k2 [B]ss) = 0   and then   [B]ss = k1 [M]/k 2 
 [B](k2 [A] – k3) = 0  giving   (k2 [A] ss – k3) = 0          and then   [A]ss = k3/k2 
 

For the given conditions: [B]ss = k1 [M]/k 2 = 0.1 M-1 s-1(1.0 M)/ 0.1 M-1 s-1 =1.0 M 
        [A]ss = k3/k2 = 0.05 s-1/0.1 M-1 s-1 = 0.5 M 
 

WWWWWW   A simulation was run with the “Kinetics Mechanism Simulation” applet on the textbook 

Web site and on the companion CD, as shown below. The concentrations of A and B oscillate in 
time, Figure 4.4.2a. A plot of [B] versus [A] shows the relative relationships of the two 
concentrations. Figure 4.4.2b. After an initial adjustment, the reaction settles into a repeated 
pattern with the concentration of A is at its maximum when B is near average and the 
concentration of [B] at maximum when [A] is near average. This closed, repeating time course is 
called a cycle. The simulation with [A]o= 0.5 and [B]o = 1 M corresponds to the steady-state, 
giving negligible variation in concentrations with time. The center of the cycle corresponds to 
the steady state concentrations. 
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(a).       (b). 
 

Figure 4.4.2: (a). The Lotka-Volterra mechanism gives oscillatory concentrations for A and 
B. (b). A plot of [B] versus [A] shows the relative relationships of the concentrations. The 
concentration of A is at its maximum when B is at its average. 

 
              

 
 

   Autocatalysis is the key that allows the system to avoid the monotonic approach to equilibrium. 
Returning to the Briggs-Rauscher reaction, the postulated mechanism is:7 

 

 2 H+ + I– + IO-
3 → HOI + HIO2    Step 1 

 H+ + HIO2 + I– → 2 HOI     Step 2 
 HOI + I– + H+ → I2 + H2O     Step 3 
 HIO2 + IO-

3 + H+ → 2 IO2 + H2O    Step 4 
 2 HIO2 → HOI + IO-

3 + H+     Step 5 
 
 IO2 + Mn2+ + H2O → HIO2 + MnOH2+   Step 6 
 
 H2O2 + MnOH2+ → HO2 + Mn2+ + H2O   Step 7 
 
 2 HO2 → H2O2 + O2      Step 8 
 I2 + MA → IMA + I– + H+     Step 9 
 HOI + H2O2 → I– + O2 + H+ + H2O    Step 10 
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Steps 1-3 consume I– to produce I2. Steps 4 and 6 combine to give auto-catalysis. Step 6 shows 
the Mn2+ catalysis of the decomposition of IO2. Step 7 regenerates the catalyst. Step 8 is a chain 
termination step. The iodination of malonic acid in step 9 and the reaction of HOI with H2O2 
generate I–. Many oscillating inorganic reactions have been designed and oscillating enzymatic 
reactions are a fertile area of study in biochemistry, systems biology, and ecology. 
   The Briggs-Rauscher mechanism given above is incomplete, because reverse reactions are not 
included. The mechanism is only valid far from equilibrium. We now continue with a discussion 
of how to develop complete mechanisms that hold over the entire course of a chemical reaction 
and that are consistent with fundamental principles. 
 
4.5 There Are Important Restrictions on Complete Mechanisms 
 

   All chemical reactions are inherently reversible at equilibrium. As a reaction proceeds, the 
system eventually approaches equilibrium when the forward and reverse reaction rates are equal. 
How is reversibility established for multi-step mechanisms? For a reaction at equilibrium, the 
forward and reverse reaction rates for each elementary step in the mechanism must be equal. 
This requirement is called detailed balance. For example, consider the possibility of a cyclic 
reaction with only unidirectional steps: 
 
 
 
            4.5.1 
 

The equilibrium state is a time-invariant state. This system may be kept in a time-invariant meta-
stable state by a careful balancing of the three steps. However, the system cannot be at 
equilibrium and equilibrium thermodynamics does not apply.8 For example, the three 
unidirectional reactions approach a steady state very differently than a reversible process 
approaches equilibrium; the approach of the unidirectional steps to a steady state shows 
oscillatory behavior, but a reversible system approaches equilibrium in an exponential process 
(e.g., after a temperature or concentration jump, see Problem 34 and Sec. 3.6).8,9 A given 
incomplete mechanism might be valid for early stages of a reaction. However for the system to 
be at equilibrium, each reaction and its exact reverse must occur at the same rate: 
 
 
 
 
 
            4.5.2 
 

A complete mechanism then includes a series of forward steps and the exact reverse for each 
step. The sum of the forward processes must give the overall reaction stoichiometry. We now 
explore the ramifications of the principle of detailed balance to highlight the interrelationships 
between chemical kinetics and chemical equilibrium. In Chapter 1 we pointed out that chemical 
kinetics and chemical equilibria are disjoint. The two approaches study very different aspects of 
chemical reactivity, and it is important not to confuse the two. However, as a reaction approaches 
equilibrium, chemical kinetics and equilibrium principles must be consistent. This self-
consistency is a powerful tool that helps us understand the underlying relationships in reaction 
mechanisms. 
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At Equilibrium the Forward and Reverse Reaction Rates are Equal:  In Section 3.4 we discussed 
that at equilibrium the forward and reverse reaction rates are equal. However, in our treatment 
we needed to assume a specific reaction order for each reactant and product. The relationship 
between the overall forward and reverse reaction rates must be independent of the molecularity 
of intervening mechanistic steps. We shouldn’t need to make any assumptions in deriving the 
relationship between the overall forward and reverse rates at equilibrium. Consider an overall 
reaction, A + B →← C + D, composed of three mechanistic steps. For illustration purposes, we 
choose the steps so that we can illustrate different stoichiometries and a variety of reaction types: 
 

    kAM  
 2 A + M  →→→→→→→→←←←←←←←←  A2 + M     Step 1    4.5.3 
    kMA 
 

    kAB 
 A2 + B    →→→→→→→→←←←←←←←←  A + X     Step 2    4.5.4 
    kXA 
 

    kX 
 X   →→→→→→→→←←←←←←←←  C + D     Step 3    4.5.5 
    kDC 
 

where M is a catalyst or third body and X is a reactive intermediate. The equilibrium constant for 
this overall reaction is simply: 
 

 Keq = 






[C][D]

[A][B] eq
         4.5.6 

 

How does this simple equilibrium expression result from the proposed mechanism? According to 
detailed balance, the forward and reverse rates for each mechanistic step are equal at equilibrium. 
We can then write equilibrium expressions for each individual mechanistic step: 
 

 
1
V 

dξ1

dt  = kAM [A] 2[M] – kMA [A2][M] = 0     Keq,1 = 






[A2][M]

[A] 2[M] eq
 ≡ 

kAM

kMA
  4.5.7 

 

 
1
V 

dξ2

dt  = kAB [A2][B] – kXA [A][X] = 0     Keq,2 = 






[A][X]

[A2][B] eq
 ≡ 

kAB

kXA
  4.5.8 

 

 
1
V 

dξ3

dt  = kX [X] – kDC [C][D] = 0      Keq,3 = 






[C][D]

[X] eq
 ≡ 

kX

kDC
  4.5.9 

 

where ξ1, ξ2, and ξ3 are the extents of each step. The mechanistic steps for the forward processes 
add to give the overall reaction stoichiometry, therefore the product of the equilibrium constants 
for the individual mechanistic steps always gives the overall equilibrium constant: 
 

 Keq,1 Keq,2 Keq,3 = 






[A2][M]

[A] 2[M] eq





[A][X]

[A2][B] eq





[C][D]

[X] eq
 = 






[C][D]

[A][B] eq
  = Keq  4.5.10 

 

Since Keq,1, Keq,2, and Keq,3 are each constants, the overall Keq must also be a constant. In other 
words, the overall equilibrium ratio of products to reactants is given by the overall reaction 
stoichiometry and is independent of the molecularity of the intervening mechanistic steps. 
Substituting Eq. 4.5.7-4.5.9 into Eq. 4.5.10, the overall equilibrium constant is then given by: 
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 Keq = 
kAM

kMA
 
kAB

kXA
 
kX

kDC
         4.5.11 

 

which has all the forward rate constants in the numerator and all the reverse rate constants in the 
denominator. We derived Eq. 4.5.11 for a specific mechanism. However, notice that the final 
results will be true for any number of steps with any molecularity. We just chose a specific 
example to make the derivation less abstract. A more general expression is: 
 

    k1  k2  k3 

 A + B   →→→→→→→→←←←←←←←←     C + D →→→→→→→→←←←←←←←←     E + F →→→→→→→→←←←←←←←←   G + H  .... 
    k-1  k-2  k-3 
 

with  Keq = 
k1 k2 k3 ….
k-1 k-2 k-3….         4.5.12 

 

   Eqs. 4.5.11 and 4.5.12 tell us something else quite important. In setting up a mechanism, not all 
the rate constants and the overall equilibrium constant are independent. In most experimental 
circumstances, the equilibrium constant is known from equilibrium measurements, but it is often 
difficult to measure the rate constants for all the mechanistic steps. For example, in Eq. 4.5.11, 
once the overall equilibrium constant is measured and five of the six rate constants have been 
determined, the sixth can be calculated using the overall equilibrium ratio. 
 

Cyclic Reaction Mechanisms Have an Important Constraint:   We began this section by 
considering a cyclic mechanism. You might suspect that cyclic mechanisms are uncommon. 
However, cyclic mechanisms of the general type in Eq. 4.5.2 are quite common, especially in 
biochemistry.10,11 Detailed balance is an important principle that helps guide the proper 
construction of complicated, complete mechanisms of all types. Two examples of cyclic reaction 
mechanisms are shown in Figure 4.5.1. Figure 4.5.1a is an enzyme mechanism when the product 
forms a stable complex with the enzyme. Figure 4.5.1b shows the processes that are active in 
aqueous solutions of weak acids. For weak acid proton transfer, all these steps, which include the 
weak acid dissociation, conjugate base hydrolysis, and auto-protolysis of water, are needed to 
understand kinetics experiments in weak acids. For cyclic mechanisms in general, each cycle in a 
mechanism provides an additional constraint on the set of rate constants. 
 
 
 
 
 
 
 
 

 
 
 (a)     (b) 
 

Figure 4.5.1: Two examples of three-state cyclic reaction mechanisms. (a) The Michaelis-
Menten mechanism is extended to include the formation of an enzyme-product complex. 
This mechanism is one example of product inhibition. (b) The dissociation of a weak acid in 
aqueous solution, for example acetic acid.12 For this mechanism Kw = k12/k21, Ka = k13/k31, 
and for the conjugate base, Kb = k32/k23. 
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   Consider the cyclic reaction in Eq. 4.5.2. The equilibrium constants for each of the mechanistic 
steps, taken in the order A → B → C → A, are: 
 

 K1 = 






[B]

[A] eq
  K2 = 







[C]

[B] eq
  K3 = 







[A]

[C] eq
    4.5.13 

 

Notice that the product of the equilibrium constants around the cycle gives: 
 

 K1 K2 K3 = 






[B]

[A] eq





[C]

[B] eq





[A]

[C] eq
= 1       4.5.14 

 

In other words, the net process is A →
← A, which has an equilibrium constant of one. Following 

Eq. 4.5.12, we can also do the product of the equilibrium constants in terms of the forward and 
reverse rate constants around the cycle: 
 

 K1 = 
kAB

kBA
   K2 = 

kBC

kCB
   K3 = 

kCA

kAC
     4.5.15 

 

giving: 
 

 K1 K2 K3 = 
kAB kBC kCA

kBA kCB kAC
 = 1        4.5.16 

 

In other words, the product of all the forward rate constants divided by the product of all the 
reverse rate constants is equal to one. The ramification of this result is that for cyclic 
mechanisms not all the rate constants are independent. For this example, once five rate constants 
are specified, the sixth is to be calculated from Eq. 4.5.16. For reactions with more than one 
cycle, there is one dependent rate constant per cycle.9,11,13 

 
 
              

Example 4.5.1:  Cyclic Mechanisms 
How many independent rate constants are needed to determine the kinetics of proton exchange in 
aqueous solutions of acetic acid if two equilibrium constants are known? The mechanism is 
given in Figure 4.5.1b. The Ka for acetic acid is 1.75x10-5 and Kw is 1.008x10-14 (or alternatively 
if the concentration of water is treated explicitly, Kc = [H2O]eq/Kw = 5.489x1015 at 298.2 K; see 
Sec. 3.6). Give the relationships that relate the rate constants to each other. 
 
 
Answer:  Because of the cyclic mechanism, the number of independent rate constants is five. The 
relationship around the cycle is based on Eq. 4.5.16: 
 

 
k12 k23 k31

k21 k32 k13
 = 1 

 

The specification of the acid dissociation constant, Ka = k13/k31, relates k13 and k31. The auto-
protolysis equilibrium constant for water relates k12 and k21. The result is that three independent 
rate constants need to be determined. If the water concentration is included in the equilibrium 
constant, Kw = k12/k21. [Note that, if the concentration of water is treated explicitly, Kc = k21/k12 
(see Sec. 3.6).] 
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Catalysis Doesn’t Change the Equilibrium Constant:   Another example of a reaction mechanism 
that follows the form of Eq. 4.5.1 is a reaction that is catalyzed through the formation of a 
reactive intermediate. Consider the overall reaction A →← C, with the mechanism A → B → C as a 
catalyzed path in the forward direction and C→ A an uncatalyzed path in the reverse direction. Is 
such a mechanism possible? One important ramification of detailed balance is that the forward 
and reverse mechanism for a catalyzed reaction must be the same. In other words, if the forward 
step is catalyzed, so must the reverse step. The proper mechanism for a catalyzed path and a 
parallel uncatalyzed path is then Eq. 4.5.2. The catalyzed and uncatalyzed processes occur in 
parallel. The net result is that the equilibrium constant for a catalyzed reaction is unchanged from 
the uncatalyzed reaction; both paths must have the same equilibrium constant since they connect 
the same two states, A and C. We should look at the effects of adding a catalyst in more detail. 
   Consider the reaction progress for typical single-step reactions, Figure 4.5.2. The horizontal 
axis is the reaction progress. The reaction progress corresponds to a concerted reactive 
asymmetric stretch that corresponds to stretching the bonds that are broken and contracting the 
bonds that are formed. This motion brings about the bond breaking and making steps for the 
reaction. The peak in the reaction profile corresponds to the formation of the transition state. The 
transition state is an unstable point on the reaction path that exists for a fleetingly short time, 
often only a few femtoseconds (1 fs = 1x10-15 s). Assume that the reaction is taking place at 
constant temperature and in a constant volume vessel. Remember from General Chemistry that 
the internal energy change for the reaction, ∆rU

o, is the appropriate measure of the energetics of 
the reaction at constant temperature and volume. Note that General Chemistry texts use ∆E for 
internal energy changes, but the international standard is to use ∆U, instead. For an exothermic 
reaction the change in reaction internal energy is negative. For an endothermic reaction the 
change in reaction internal energy is positive. The energy necessary to reach the transition state 
from the reactants is Eaf and the energy necessary to reach the transition state from the products 
is Ear. 
 
 
 
 
 
 
 
 
 
 
 (a) Exothermic reaction   (b) Endothermic reaction 
 

Figure 4.5.2: Reaction profile for an (a) exothermic and (b) endothermic reaction at constant 
temperature and volume. 

 
 

Using Figure 4.5.2, the activation energies for the forward and reverse processes are related 
through the reaction internal energy: 
 

 Eaf – Ear = ∆rU
o           (cst. V) 4.5.17 
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Also from General Chemistry, remember that the enthalpy change for the reaction, ∆rH
o, is the 

appropriate measure of the energetics of the reaction at constant temperature and pressure. If the 
reaction is bimolecular in both directions or takes place in solution, the difference in activation 
energies is also equal to the change in reaction enthalpy: 
 

 Eaf – Ear = ∆rH
o       (cst. P or bidirectional-bimolecular or solution) 4.5.18 

 

The equilibrium constant for the reaction is given by the ratio of the forward and reverse rate 
constants, which in turn are given by the corresponding Arrhenius expressions: 
 

 Keq = 
kf

kr
 = 

Af e–Eaf/RT

Ar e–Ear/RT         4.5.19 

 

where Af and Ar are the pre-exponential factors for the forward and reverse reactions, 
respectively. 
   Catalysts act on elementary steps by decreasing the activation energy or by increasing the pre-
exponential factor. We will return to reaction profiles and catalysis after we have covered 
statistical mechanics, at which point we will be able to be much more specific and complete in 
our description of reaction profiles. However, for now, we wish to focus on the activation energy 
and the reaction profile to help understand the interaction between catalysis and the equilibrium 
constant for a single-step reaction. 
   Assume that a catalyst lowers the activation energy for the forward process by an amount ε: 
 

 E
cat
af  = Eaf – ε          4.5.20 

 

Then from Figure 4.5.3, the activation energy for the reverse process must also be lowered by the 
same amount: 
 

 E
cat
ar  = Ear – ε          4.5.21 

 

 
 
 
 
 
 
 
 
 
 
 (a) Original reaction   (b) Catalyzed reaction 
 

Figure 4.5.3: Reaction profile for an (a) uncatalyzed and (b) catalyzed reaction. If a catalyst 
lowers the activation energy for the forward process, the activation energy for the reverse 
process is also lowered by the same amount. 

 
 

Assuming Arrhenius temperature dependence, using Eq. 3.5.1, the forward rate is accelerated to: 
 

 kf
cat = Af e–(Eaf  - ε)/RT         4.5.22 
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and the reverse rate is accelerated to: 
 

 kr
cat = Ar e–(Ear  - ε)/RT         4.5.23 

 

where kf
cat and kr

cat are the rate constants for the catalyzed reaction. However, notice that the 
equilibrium constant, which is the ratio of the forward to reverse rate constants, remains 
unchanged: 
 

 K
cat
eq = 

kf
cat

kr
cat = 

Af e–(Eaf  - ε)/RT

Ar e–(Ear  - ε)/RT = 
Af e–Eaf /RT eε/RT

Ar e–Ear/RT eε/RT = 
Af e–Eaf/RT

Ar e–Ear/RT = Keq   4.5.24 

 

This result is a consequence of detailed balance. Detailed balance can also help with construction 
of rate laws. 
 
Activation Energies for Elementary Steps Combine to Give the Overall Activation Energy:   We 
mentioned in Chapter 3 that the activation energy for a reaction can be a negative number. How 
can that happen? Another important and related question is how does the overall activation 
energy for a reaction depend on the activation energies for the elementary steps in the 
mechanism? To answer these questions, we first assume Arrhenius behavior for the overall 
reaction and each elementary step. From Eq. 3.5.3, taking the temperature derivative of both 
sides of the equation at constant volume gives: 
 

 
d ln k

dT  = 
Ea

RT2           (cst. V)  4.5.25 
 

for the overall reaction. This equation can also be applied to each individual elementary step. 
Consider the SN1 mechanism as a typical multi-step mechanism. For the case given in Eq. 4.2.17, 
the rate law has the form: 
 

 
d[P]
dt   = k  

[RX] [Nuc:–]
[X–]

         (k-1 [X–] >> k2[Nuc:–]) 4.5.26 
 

with the effective rate constant, k = k2 k1/k-1. We can then find the overall activation energy 
using Eq. 4.5.25 for each elementary rate constant: 
 

 
d ln k

dT  = 
d ln k2

dT  + 
d ln k1

dT  – 
d ln k-1

dT  = 
Ea2

RT2 + 
Ea1

RT2 – 
Ea-1

RT2    4.5.27 
 

where Ea1 is the activation energy for the forward direction for the first step, Ea-1 is the activation 
energy for the reverse of the first step, and Ea2 is the activation energy for the formation of 
product. Comparing Eq. 4.5.27 to Eq. 4.5.25 shows that the overall activation energy for the 
reaction is Ea = Ea2 + Ea1 – Ea-1. It is easy to see that the overall activation energy may be 
negative even though the activation energy for each elementary step is positive. We can use 
detailed balance to relate the overall activation energy to Le Chatelier’s principle. Eq. 4.2.17 or 
Eq. 4.5.27 corresponds to the pre-equilibrium mechanism, with Kc = k1/k-1, giving the effective 
rate constant as k = k2 k1/k-1 = k2 Kc. Using Eq. 4.5.17 then relates the overall activation energy 
to the reaction internal energy: 
 

 Ea = Ea2 + Ea1 – Ea-1= Ea2 + ∆rU
o        (cst. V)  4.5.28 
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Thus, we find the overall activation energy is the sum of the activation energy for the slow step 
and the internal energy change for the pre-equilibrium step. If the equilibrium step is more 
exothermic than the activation energy, – ∆rU° > Ea2, then the overall activation energy will be 
negative. In other words, using La Chatelier’s principle, the pre-equilibrium step will shift in the 
endothermic direction with an increase in temperature. If the pre-equilibrium is sufficiently 
exothermic, the overall reaction will slow as the temperature increases because the equilibrium 
constant for the pre-equilibrium step decreases. 
   This same general method, based on Eq. 4.5.25, can be used whenever the overall rate law can 
be expressed with a single rate constant. The method is general, assuming Arrhenius behavior, 
but the specific results depend on the details of the mechanism. The overall activation energy for 
such mechanisms is then seen to be a simple algebraic combination of the activation energies of 
the elementary steps.14 

 
 
             

Example 4.5.2:  Overall Activation Energy of a Multi-Step Mechanism 
The general chain mechanism for the H2 + Br2 reaction will not show Arrhenius behavior 
because of the rate constants in the denominator of the rate law in Eq. 4.3.16. However, if the 
inhibition step is slow, the rate law simplifies to: 
 

 
d[HBr]

dt   = 2 k2 k1
½ k5

-½ [H2][Br2]
½ 

 

(a) Find the relationship of the overall activation energy to the activation energies for the 
elementary steps in the mechanism. (b) Under what circumstances might this slow inhibition 
approximation be valid? 
 
 

Answer:  (a). The effective rate constant is k = 2 k2 k1
½ k5

-½. Then taking the logarithm gives: 
 

 ln k = ln 2 + ln k2 + ½ ln k1 – ½ ln k5 
 

And taking the temperature derivative 
 

 
d ln k

dT   =  
d ln k2

dT  + ½ 
d ln k1

dT  – ½ 
d ln k5

dT    =  
Ea2

RT2 + ½ 
Ea1

RT2 – ½ 
Ea5

RT2 
 

Which gives Ea = Ea2 + ½ Ea1 – ½ Ea5 
 

(b). Slow inhibition would result if k4 is small or at the beginning of the reaction when [Br2] is 
large and [HBr] is small. In this second case, the activation energy in part (a) would be the 
expected result from an initial rate study. 
 

             

 
 

   Detailed balance can also be helpful in postulating the rate laws for the reverse process of 
reversible steps. 
 
Detailed Balance Provides Some Possible Mechanisms for Reverse Processes:   Initial rate 
studies often provide the rate law for the forward process for a reaction. As the reaction 
progresses, reverse processes become more important, until at equilibrium the forward rate is 
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equal to the reverse rate. Can detailed balance be used to find the rate law for the reverse process 
if the rate law for the forward process is known? Detailed balance can be used to suggest some 
possible rate laws, but no single rate law may be obtained. The reason is that there is some 
ambiguity in how we write the overall reaction. Take for example the oxidation of nitric oxide. 
We can write the reaction with a variety of stoichiometric coefficients, which give a variety of 
corresponding equilibrium constants. Two examples are: 
 

 2 NO (g) + O2(g) →←  2 NO2 (g)  Kc = 






[NO2]

2

[NO]2[O2] eq
 (equilibrium) 4.5.29 

 

or NO (g) + ½ O2(g) →←  NO2 (g)   Kc
' = 






[NO2]

[NO][O2]
½

eq
 (equilibrium) 4.5.30 

 

where Kc
' = Kc

½. Of course, the equilibrium position of the reaction doesn’t change as we change 
the overall stoichiometric coefficients; we just express the equilibrium condition in a different 
functional form. We need to take this ambiguity into account as we relate forward and reverse 
processes. In general, from Eq. 4.5.29 we can write: 
 

 Kc
s = 







[NO2]

2

[NO]2[O2]

s

eq
       (equilibrium) 4.5.31 

 

where the coefficient, s, accounts for the different ways that we might choose to write the overall 
reaction. The coefficient s can be a positive integer or simple fraction.15 For Eq. 4.5.30, s = ½. 
While there is ambiguity in how we express the equilibrium constant, the rate laws are fixed and 
determined directly from experiment. First notice that by cross multiplication, Eq. 4.5.31 can be 
rearranged to give: 
 

 














[NO]2[O2]

[NO2]
2

eq
Kc

s
 = 1      (equilibrium) 4.5.32 

 

Correspondingly, for the general reaction, a A + b B →← c C + d D, we can write:15 

 

 Kc = 






[C]c[D]d

[A] a[B]b
eq

 and   














[A] a[B]b

[C]c[D]d  Kc

s

eq
 = 1   (equilibrium) 4.5.33 

 

If the forward rate process has an experimentally determined rate law in the form: 
 

 υ+ = kf [A] αf [B]βf  [C]χf  [D]δf        4.5.34 
 

The rate law for the reverse process will be in the form: 
 

 υ- = kr [A] αr [B]βr  [C]χr  [D]δr       4.5.35 
 

We use Greek letters for the kinetic coefficients and regular font for the equilibrium law 
coefficients. At equilibrium, the forward and reverse rates are equal giving the ratio υ+/υ- = 1, 
and then the ratio of Eq. 4.5.34 to 4.5.35 is related to Eq. 4.5.33 by: 
 

 
kf

kr
 [A] αf-αr [B]βf-βr  [C]χf-χr  [D]δf-δr  =  















[A] a[B]b

[C]c[D]d
eq

 Kc

s
 =  1 (equilibrium) 4.5.36 

 

Eq. 4.5.36 is a sufficient, but not necessary condition; other more complex mechanisms may be 
possible.16 Comparing term by term for each reactant and product, Eq. 4.5.36 is satisfied if: 
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 αf – αr =    as 
 βf – βr =    bs 
 χf – χr = – cs 
 δf – δr = – ds 

 and 
kf

kr
 = Kc

s          4.5.37 
 

Various possible values for s give alternative possibilities for the rate law for the reverse process. 
Note, however, that Eqs. 4.5.37 only hold if the rate law for the forward reaction is found to 
follow the simple form in Eq. 4.5.34. 
 
 
              

Example 4.5.3:  Rate Law for a Reversible Mechanism from Detailed Balance 
For the important atmospheric reaction:  2 NO (g) + O2(g) →← 2 NO2 (g) 
 

the rate law as determined in the laboratory for the early stages of the reaction is: 
 

 υ+ = – 
1
2 

d[NO]
dt  = kf [NO]2 [O2]     (initial rate law) 

 

Find two possible rate laws for the reverse process, and write the two corresponding final total 
rate laws that would apply as the system approaches equilibrium. 
 
 
Answer:  The corresponding equilibrium expression is: 
 

 Kc = 






[NO2]

2

[NO]2[O2] eq
 

 

First assume s = 1. From the given forward rate law αf = 2, βf  = 1, χf = 0. Then the conditions 
from Eq. 4.5.37 are: 
 2 – αr =    2(1)  or αr = 0 
 1 – βr =    1(1)  or βr = 0 
 0 – χr = – 2(1)  or χr = 2 

 and 
kf

kr
 = Kc 

or the rate law for the reverse reaction is υ- = kr [NO2]
2 

The final overall rate law is: 
 

 υ = – 
1
2 

d[NO]
dt  = kf [NO]2 [O2] – kr [NO2]

2    (s = 1) 
 

Now assume s = ½. Then the conditions from Eq. 4.5.37 are: 
 

 2 – αr =    2(½) or αr = 1 
 1 – βr =    1(½) or βr = ½ 
 0 – χr = – 2(½) or χr = 1 

 

and 
kf

kr
 = Kc

½ 
 

or the rate law for the reverse reaction is υ- = kr' [NO][O2]
½[NO2] 

 

The final overall rate law is: 
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 υ = – 
1
2 

d[NO]
dt  = kf [NO]2 [O2] – kr

' [NO][O2]
½[NO2]  (s = ½) 

 

As a final check, we should calculate the corresponding equilibrium constant from the last rate 
law. Setting the last equation equal to zero for the equilibrium state gives: 
 

 Kc
' = 

kf

kr
' = 






[NO][O2]

½[NO2]
[NO]2 [O2]

 
eq

 = 






[NO2]

[NO] [O2]
½ 

eq
 = Kc

½ 
 

as required by Eq. 4.5.29-4.5.31. 
 

              

 
 

Detailed Balance is a Consequence of Microscopic Reversibility:   Why is detailed balance 
required for all elementary steps in a mechanism? Remember that elementary steps describe the 
collisions that occur in the gas phase, or the encounters that occur in solution. Consider a 
collision as described by classical mechanics. The laws of classical mechanics are symmetric 
with respect to the direction of time. If every t in Newton’s Laws is replaced by –t, the equations 
of motion are still valid; the energy of a given configuration is unchanged. For example, consider 
the single collision in Figure 4.5.4a moving in the forward direction of time from left to right. If, 
after the collision, the momenta of all the particles are reversed and the initial and final states are 
reversed, the collision will reoccur exactly as it did before giving back reactants, as if time were 
running backwards. In other words, if we replace each momentum, p→ = –p→, the collision will 
reverse and give back reactants with reversed momenta. However, p→ and –p→ are equally likely 
because they give the same kinetic energy, which is Ek = p2/2m. Because Newton’s Laws don’t 
differ with the direction of time, the collision is equally probable in either direction. This result is 
called microscopic reversibility. 
 
 
 
 
 
 
 
 
 
 

(a).        (b). 
 

Figure 4.5.4: A collision is equally likely from either direction, reactants → products or 
products → reactants. (a). The original collision moving from left to right. (b). The collision 
after the momenta have been replaced, p→ = –p→, with the progression running from right to 
left, t = –t. 

 
 

   Detailed balance is a consequence of microscopic reversibility. Microscopic reversibility holds 
for every collision. Each mechanistic step is equally probable with its exact opposite, giving that 
at equilibrium the forward rate is equal to the reverse rate for each mechanistic step. However, 
microscopic reversibility is more general than detailed balance, because microscopic reversibility 

t –t 



  163 

holds for each collision throughout the time course of the reaction, while detailed balance only 
holds at equilibrium. Advanced theories of molecular collisions are based on quantum 
mechanics. Quantum mechanics is also symmetrical with respect to the direction, or sign, of 
time. Microscopic reversibility holds equally well for quantum mechanical and classical systems. 
   The theory of reaction rates that we have been studying is based directly on experimental 
observation; we can call this theory empirical kinetics. Neither microscopic reversibility nor 
detailed balance is required by the theories of empirical chemical kinetics and thermodynamics. 
Detailed balance is a requirement that is placed upon empirical kinetics and thermodynamics by 
our interpretation of chemical events on a molecular basis. Because of this distinction, detailed 
balance is said to be an extra-thermodynamic requirement. Even though we have used a 
molecular view in the last two chapters, neither empirical kinetics nor thermodynamics requires a 
molecular interpretation. 
 
4.6 Summary – Looking Ahead 
 

Complicated mechanisms are composed of parallel, consecutive, and reversible steps. A 
proposed mechanism must agree with the empirical rate law. This agreement can be checked by 
predicting the overall rate law from the mechanism or by comparing the integrated rate laws for 
the elementary steps with the experimental time course. For multi-step mechanisms, the steady-
state approximation is useful for predicting the overall rate law. When comparing the integrated 
rate laws for the elementary steps to the experimental time course, the finite difference 
approximation can be used instead of analytical integrals. Chain mechanisms are a common type 
of multi-step mechanism in environmental and biochemical processes. Autocatalytic processes 
far from equilibrium can generate temporal and spatial oscillations. 
   For chain mechanisms, the chain initiation step is often the critical step. The rate of the chain 
initiation step for the H2 + Br2 reaction, Eq. 4.3.3, is negligible at room temperature. The chain 
initiation step for the H2 + O2 reaction, Eq. 4.3.20, is also negligible at room temperature in the 
absence of a catalyst. This slow initiation step is the reason for the kinetic stability of H2 and O2 
mixtures. After the initiation step, autocatalyic processes rapidly accelerate the reaction. Often 
chain initiation steps are driven by the absorption of light to speed the initiation process. Light is 
a convenient source of energy to help overcome the activation energy barrier for difficult 
processes. Many environmental processes are driven by sunlight. For example, important redox 
intermediates in aquatic environmental chemistry that result from photolytic processes include 
peroxide, superoxide, and hydroxyl radicals. Another way to increase the rate of the chain 
initiation steps is to provide a catalyst. Heterogeneous catalysis is mediated through interactions 
on surfaces. In the next chapter we discuss the kinetics of photochemical and surface reactions. 
 
 
 

Chapter Summary 
 

1. A mechanism is a sequence of elementary steps. 

2. A proposed mechanism should result in a predicted overall rate law that has the same 
concentration dependences as the experimentally determined rate law. 

3. The rate law for each elementary step is directly determined from the molecularity, because 
the elementary steps describe the collisions that take place. 

4. Alternate mechanisms that agree with the experimental rate law are kinetically equivalent. 
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5. An intermediate is a species that is neither a reactant nor a product. 

6. Proving that a mechanism is the correct mechanism is often compared to building a case in a 
court of law; you can never be sure that a proposal is absolutely and exclusively correct. 

               k1            k2 
7. For two first-order parallel unidirectional reactions: A →→  B , A →→  C: 

[A] =   [A] o e–(k1+k2) t ,    [B] = 
k1 [A] o

(k1 + k2)
 (1 – e–(k1+k2) t),    [C] = 

k2 [A] o

(k1 + k2)
 (1 – e–(k1+k2) t) 

and the ratio of the two products does not depend on time: [B]/[C] = k1/k2 

8. For multiple first-order parallel unidirectional steps with τ1 = 1/k1, τ2 = 1/k2, etc., the lifetime 
of the reaction is: 

 
1

τobs
 = 

1
τ1

 + 
1
τ2

 + 
1
τ3

 + ….  

9. The finite difference approximation for a first-order rate law is: [A](t+∆t) = [A](t) – k[A](t) ∆t 

10. A first-order parallel mechanism with reversible steps, A →→→→→→→→←←←←←←←← X,  A →→→→→→→→←←←←←←←← Y,  has equilibrium 
constants Kc1 = k1/k-1 and Kc2 = k2/k-2. The kinetic product is favored at short times and the 
thermodynamic product is favored at long times. 

             k1      k1′ 
11. For a first-order consecutive unidirectional mechanism:  A →→   Β  →→→→→→→→  C: 

 [A] = [A] o e–k1t, [B] = [A] o





k1

k1'–k1
(e–k1t – e–k1't) , 

 [C] = [A] o 




1 + 







1

k1 – k1'
 ( )k1' e–k1t – k1 e–k1't  

which for k1 << k1' reduces to [C] = [A]o(1 – e–k1t). The intrinsically slow step is the rate 
determining step. 

12. The steady-state approximation cannot be applied if the concentrations of the intermediates 
are not much less than the initial concentration of reactants. The steady-state approximation 
should not be applied to reactants or products. The steady-state approximation does not hold 
at the beginning of the reaction if the reaction is not initially at equilibrium. 

13. The mechanism for SN1 nucleophilic substitution reactions is: 
    k1            k2 
 RX   →→→→→→→→←←←←←←←←  R+ + X–  R+ + Nuc:– →→→→→→→→  R-Nuc 
     k-1 

Assuming the steady-state approximation gives: 
d[P]
dt   = 

k2 k1 [RX] [Nuc:–]
k-1 [X–] + k2[Nuc:–]

   (k1<< k2) 

14. For the SN1 mechanism at the beginning of reaction when [X–] is small and [Nuc:–] is large, 
the rate law reduces to a first-order process: 

 
d[P]
dt   = k1 [RX]     (k-1 [X–] << k2[Nuc:–]) 

At the end of the reaction when [X–] is large and [Nuc:–] is small, the rate law reduces to the 
pre-equilibrium result: 
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d[P]
dt  = 

k2 k1 [RX] [Nuc:–]
k-1 [X–]

    (k-1 [X–] >> k2[Nuc:–]) 

15. If the steady-state approximation applies, all mechanistic steps have the same net rate. 

16. The Michaelis-Menten mechanism is: 
   k2  k1 

     E + S →→→→→→→→←←←←←←←← ES →→→→→→→→   P + E 
   k-1 

Applying the steady-state approximation gives:  
d[P]
dt  = k1 

k2 [E]o[S]
(k-1 + k1 + k2[S])   (k2 << k1) 

17. The maximum rate for the Michaelis-Menten mechanism is υmax = k1 [E]o and the Michaelis 

constant is defined as kM ≡ 
(k1 + k-1)

k2
  giving the initial rate:  

1
υo

 =  
1

υmax
  +  

kM

υmax [S]o
 

18. The Lindemann-Henshelwood mechanism for unimolecular reactions is: 
   k2    k1 
         A + A →→→→→→→→←←←←←←←← A + A*  A*   →→→→→→→→  B + C 
   k-2 

Applying the steady-state approximation gives:  
d[B]
dt  = k1[A*] = 

k1k2[A] 2

k-2[A] + k 1
     (k2 << k1) 

19. For the Lindemann-Henshelwood mechanism, in the rapid deactivation limit k1<< k-2[A], the 
rate law becomes first-order: 

 
d[B]
dt    =  

k1k2

k-2
 [A]        (k2 << k1, k1<< k-2[A]) 

For slow deactivation when k-2[A] << k1 the rate law reduces to: 

 
d[B]
dt   =  k2[A] 2       (k2 << k1, k-2[A] << k1) 

20. A chain mechanism begins with the formation of a chain carrier in a chain initiation step. 
Chain propagation steps both consume and produce chain carriers. A chain branching step is 
a chain propagation step that increases the net number of chain carriers. Chain propagation 
steps are in competition with chain breaking steps that consume reactive intermediates and 
produce stable reactants or products. 

21. The rate of an autocatalytic process increases with the production of products. The product is 
also a reactant for one or more mechanistic steps. 

22. Autocatalytic processes show an induction period, followed by a rapid rise in rate as products 
begin to build, but then finally the rate slows as a reactant is exhausted. 

23. Autocatalysis is an example of a general phenomenon called positive feedback. 

24. Oscillating reactions have autocatalytic mechanisms and are far from equilibrium. 

25. Detailed balance requires that for a reaction at equilibrium, the forward and reverse reaction 
rates for each elementary step in the mechanism must be equal. 

26. A complete mechanism includes a series of steps and the exact reverse for each step. 

27. The sum of the forward processes in a complete mechanism must give the overall reaction 
stoichiometry. 
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28. For the general mechanism at equilibrium: 
     k1  k2  k3 
    A + B   →→→→→→→→←←←←←←←←     C + D →→→→→→→→←←←←←←←←     E + F →→→→→→→→←←←←←←←←   G + H  .... 
     k-1  k-2  k-3 
 

detailed balance gives: Keq = 
k1 k2 k3 ….
k-1 k-2 k-3…. 

29. Each cycle in a mechanism provides an additional constraint on the set of rate constants. For 

A →→→→→→→→←←←←←←←← B →→→→→→→→←←←←←←←← C →→→→→→→→←←←←←←←← A:  K1 K2 K3 = 






[B]

[A] eq





[C]

[B] eq





[A]

[C] eq
= 1 

30. Catalysis doesn’t change the equilibrium constant for a reaction. 

31. Assuming Arrhenius behavior, at constant volume: 
d ln k

dT  = 
Ea

RT2 

holds for the overall reaction and each individual elementary step. Assuming Arrhenius 
behavior, the overall activation energy is a simple algebraic combination of the activation 
energies of the elementary steps. 

32. Detailed balance provides possible mechanisms for reverse processes. For the reaction 
aA + bB →← cC + dD, if the forward process has a rate law, υ+ = kf [A] αf [B]βf  [C]χf  [D]δf , 
the reverse process will give  υ- = kr [A] αr [B]βr  [C]χr  [D]δr  with: 

αf – αr =    as 
βf – βr =    bs 
χf – χr = – cs 
δf – δr = – ds 

 

with 
kf

kr
 = Kc

s 

33. Detailed balance is a consequence of microscopic reversibility. 
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Problems: Kinetic Mechanisms 
 

1. Consider the gas phase oxidation of HBr:   4 HBr + O2 → 2 H2O + 2 Br2. The following 
mechanism has been proposed: 
    k1 
   HBr + O2 →→→→→→→→ HOOBr 
 

    k2 
   HOOBr   +  HBr →→→→→→→→ 2 HOBr 
 

    k3 
       HOBr   +  HBr →→→→→→→→  H2O  +  Br2 
 

Assume all unidirectional steps. Comment on the validity of this mechanism. 
 

2. For the H2 + I2 reaction,  H2 + I2  → 2 HI, the empirical rate law is 
 

 υ = 
d[HI]

dt  = k [H2][I 2] 

The empirical rate law matches the stoichiometry of the reaction. Why can’t you conclude that 
the mechanism is a simple single-step mechanism? 
 

3. The gas phase decomposition of acetic acid at 1189 K proceeds by way of two parallel 
reactions: 
 (1)  CH3COOH →→→→→→→→ CH4 + CO2  k1= 3.74 s-1 
 (2)  CH3COOH →→→→→→→→ H2C=C=O   k2= 4.65 s-1 
 

What is the maximum ratio of H2C=C=O to CH4 obtainable at this temperature? 
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4. The gas phase reaction, 2 NO + 2 H2 → N2 + 2 H2O, is known to have the rate law: 
 

 υ = k [NO]2[H2] 
 

Can this mechanism be a one-step mechanism? If not, suggest a possible two-step mechanism 
and suggest the rate determining step. You can use unidirectional elementary steps. 
 

5. Use the finite difference approximation to integrate the rate law for a second order reaction, 
A + B → P with a rate constant of 0.05 M-1 s-1. Choose the initial concentrations [A]o = 1.00 M 
and [B]o = 0.50 M. Integrate to at least 100 s. Use Excel for the integration. Compare to the exact 
expression and the results from the Web based “Kinetics Mechanism Simulation” applet or 
MathCad or MatLab. 
 

6. Use the finite difference approximation to integrate the rate law for the two step mechanism: 
 

  k1      k2 

  A + B →→→→→→→→ X  X →→→→→→→→  P 
 

with rate constants k1 = 0.05 M-1 s-1 and k2 = 0.2 s-1. Choose the initial concentrations [A]o = 1.00 
and [B]o = 0.50 M. Use ∆t = 1 s for a maximum time of at least 50 s. Use Excel and compare to 
the results from the Web based “Kinetics Mechanism Simulation” applet or MathCad or MatLab. 
A useful comparison is to find the maximum concentration of the reactive intermediate. 
 

7. The purpose of this exercise is to understand the statement: “the intrinsically slow step is the 
rate determining step.” (a) Plot the integrated time course for the first-order mechanism: 
 

       ka 

 A  →→→→→→→→  P 
 

using ka = 0.05 s-1 and 0.20 s-1. Plot both [A] and [P] for each case. Use an initial concentration 
of [A] o = 1. Use the Web based “Kinetics Mechanism Simulation” applet or MathCad or MatLab. 
    (b) Similarly find the integrated time course for the consecutive first-order mechanism: 
 

       k1     k2 
 A  →→→→→→→→  X  →→→→→→→→  P 
 

Use k1 =  0.2 s-1 and k
2
 = 0.05 s-1. Predict the step that will be the rate determining step. Plot the 

time course for A, X, and P. To which curve in part (a) does the disappearance of A correspond, 
k=0.05 or k=0.20 s-1? To which curve in part (a) does the appearance of product correspond? 
According to the plot, which step is the rate determining step? Is the intrinsically slow step the 
rate determining step? 
 

8. Consider the reaction: H2O2 + 2H+ + 2 I– → I2 + 2 H2O, with the proposed mechanism: 
 

 H+ + I–  →→→→→→→→
←←←←←←←←  HI     rapid equilibrium 

 HI + H2O2 →→ H2O + HOI   slow 
 HOI + I– →→ I2 + OH–    fast 
 OH– + H+ →→ H2O    fast 
 

Show that this mechanism is consistent with the experimental rate law: 
 υ = k [H+][I –][H2O2] 
 

9. A possible mechanism for 3rd order reactions is: 
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   k1 
         A + M  →→→→→→→→←←←←←←←←  AM 
   k-1 
   k2 
        AM + A →→→→→→→→ A2 + M 
 

Show that the rate law can be expressed as:  
d[A2]

dt  = 
k1k2[A] 2[M]
k-1 + k2[A]  

 

10.  Use the steady-state approximation to determine the rate law for the following mechanism: 
 

      k1     k3 
 A  →→→→→→→→←←←←←←←←  B  B + C   →→→→→→→→ D 
      k2 
 

11. Determine the overall rate law for the proposed H2 + I2 mechanism: 
 

  k1 
    I2 (g) →→→→→→→→←←←←←←←← 2 I (g) 
  k-1 
 

            k2 

 H2 (g) + I (g) →→→→→→→→  HI (g) + H (g) 
 

            k2′ 
 H (g) + I2 (g) →→→→→→→→  HI (g) + I (g) 
 

12.  The decomposition of HI is given by 2 HI → H2 + I2. One proposed mechanism is: 
 

  k1 
       HI →→ H + I 
 

  k2 
 H + HI →→ H2 + I 
 

  k3 
 2 I + M →→ I2 + M 
 

Use the steady-state approximation to find the rate law for this mechanism. Show that this 
mechanism does not agree with the experimentally determined rate law: 
 

 
d[H2]

dt  = k [HI]2 

 

13. (a) Determine the integrated rate law for the Michaelis-Menten mechanism. Note that during 
the portion of the reaction where the steady-state approximation applies, – d[S]/dt = d[P]/dt so 
that Eq. 4.2.31 becomes: 
 

 – 
d[S]
dt  = 

k1 [E]o[S]
(kM + [S]) 

 (b) Show that for short times, [S] is a linear function of time: [S] – [S]o = – 
[E]o([S]o + 1) k1

kM
 t 

[Hint: you can approximate ln(x) ≈ x – 1, when x is close to 1.] 
 

14.  Use the “Kinetic Mechanism Simulation” applet to numerically integrate the rate laws for the 
Michaelis-Menten enzyme mechanism, Eq. 4.2.22. Set k2 = 0.40 M-1s-1, k-1 = 0.1 s-1, and k1= 
0.10 s-1. Use the initial conditions [S]o = 1.0 M and [E]o = 0.1 M. Such a large enzyme 
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concentration will make the plot scaling more convenient. (a). Plot [S], [ES], and [P] for a 
maximum of 300 s to verify the linear time course for short times. (b). To observe the pre-
induction lag, using the same conditions, plot [ES] and [P] for a maximum time of 15 s. 
 

15. Consider the Lindemann-Henshelwood Mechanism for first-order reactions. Compare the net 
rate of the pre-equilibrium step to the rate of the unimolecular step during the majority of the 
time course of the reaction. Look at the rate dependence after any induction period. 
 

16.  The following mechanism has been proposed for an enzyme reaction with two substrates, A 
and B: 
  k1 

 E + A  →→→→
→→→→
←←←←←←←←  EA 

  k-1 
 

    k2 

 EA + B →→→→→→→→ EAB + Y 
 

  k3 

    EAB →→→→→→→→ E + P 
 

where EA and EAB are enzyme substrate complexes. Assuming that k2 and k3 are large 
compared to k1, show that the mechanism gives the rate law: 
 

 
d[P]
dt   = 

k1 k2 [E][A][B]
k-1 + k2 [B]  

 

17.  Consider the following proposed mechanism for the decomposition of ozone. M is an 
unreactive gas molecule that collides with the ozone to break the ozone apart: 
 

  k2     k'2 
 O3 + M →← Ο2+ O + M   O + O3 → 2 O2 
  k-2 
 

Assume k'2>> k2. Show that the rate law that corresponds to this mechanism is: 
 

    
d[O2]

dt   = 
3 k'2 k2 [O3]

2[M]
k-2[O2][M] + k' 2[O3]

 

 

18.  Report all six of the rate constants for the kinetics of proton exchange in aqueous solution of 
acetic acid, Figure 4.5.1. The reaction was studied at pH = 4.74 with the acetic acid and acetate 
concentrations both 0.100 M. The rate constants determined from temperature jump kinetics 
studies are k31 = 4.5x1010 M-1 s-1 and k23 = 1.8x1010 M-1 s-1.1 Use the data from Example 3.6.1 for 
the auto-protolysis constants for water. The Ka for acetic acid is: 
 

 Ka = 
[H+][OAc–]

[HOAc]  = 1.75x10-5 M 

 

19. The following three-step mechanism has been proposed for the oxidation of HBr to Br2: 
    k1 
   HBr + O2 →→→→→→→→ HOOBr 
 

    k2 
   HOOBr   +  HBr →→→→→→→→ 2 HOBr 
 

    k3 
       HOBr   +  HBr →→→→→→→→  H2O  +  Br2 
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To give the proper overall stoichiometry, this last step must be doubled. All the steps are 
unidirectional. Show that the corresponding rate law can be expressed as: 
 

 
d[Br2]

dt  = k1 [HBr][O2] 

 

20.  For some oscillating mechanisms, after a short initial period, the same cycle results no 
matter the starting conditions. For such cases the plot of the oscillating concentrations is called a 
limit cycle. Does the Lotka-Volterra mechanism give a limit cycle? [Hint: repeat Example 4.4.1 
but with initial conditions [A]o = 1 M and [B]o = 0.5 M. Does the same cycle result as in Figure 
4.4.2b?] 
 

21.  The Lotka-Volterra mechanism with all irreversible steps, Eqs. 4.4.6, are unrealistic in 
several ways. The result is that oscillations occur for too wide a range of rate constants and 
starting conditions. In addition, the system does not evolve towards a steady state. Modify the 
mechanism to include reversible reactions for the formation of A and B (steps 1 and 2), but leave 
the formation of products as irreversible. Run a simulation with the same conditions as in 
Example 4.4.1, except set the equilibrium constants for the formation of A and of B at 20. 
Comment on the results. 
 

22.  The “Brusselator” or “trimolecular” mechanism is a more realistic model for oscillating 
systems than the Lotka-Volterra mechanism. The Brusselator displays most of the complex 
phenomena associated with reactions far from equilibrium and was centrally important in the 
development of non-equilibrium thermodynamics. The mechanism is:2 

 

      k1 
           M  →→→→→→→→  A 
 

     k2 
  N  +  A  →→→→→→→→   B  + P 
 

      k3 
 2 A  + B  →→→→→→→→  3 A 
 

      k4 
            A  →→→→→→→→  Q 
 

where M and N are held constant by running the reaction in a flowing system. A convenient set 
of conditions for simulation is to set all the rate constants to 0.10, [M]o = 1.00 M and 
[N] o = 3.00 M. Run kinetics simulations using MatLab, Mathematica, or the “Kinetic Mechanism 
Simulation” applet for three sets of initial conditions: (a) [A] o = [B]o = 1.00 M; 
(b) [A]o = 1.00 M, [B]o = 2.00 M; and (c) [A]o = 1.00 M, [B]o = 3.00 M, which are the steady 
state concentrations. Run the simulation for 300 s. Because the concentrations change rapidly 
over the time interval, you will need to choose a large number of time steps to ensure numerical 
accuracy, choose 15000 time steps. Plot the concentrations of A and B. 
 

23.  The Brusselator mechanism is given in the previous problem. (a). Find relationships for the 
steady state concentrations of A and B in terms of the rate constants. (b). Find the steady state 
concentrations for the conditions given in the previous problem: that is, all the rate constants 
equal to 0.10, [M]o = 1.00 M, and [N]o = 3.00 M. 
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24.  The Belousov-Zhabotinsky reaction is an oscillating reaction based on the oxidation of 
malonic acid with KBrO3, which is catalyzed by Ce(IV): 
 

 3 CH2(CO2H)2 + 4 BrO-
3 → 4 Br– + 9 CO2 + 6 H2O 

 

The BZ reaction played a central role in the development of techniques to study oscillating 
reactions and in the theory of non-equilibrium thermodynamics.2,3 The initiation step is the 
generation of HBrO2, a key reactive intermediate, from BrO-

3: 
 

 BrO-
3 + Br– + 2H+ →→ HBrO2 + HOBr      1 

 

The bulk of the HBrO2 is produced auto-catalytically: 
 

 BrO-
3 + HBrO2 + 2 Ce3+ + 3 H+ →→ 2 HBrO2 + 2 Ce4+ + H2O   2 

 

The intermediate HBrO2 is consumed in the reactions: 
 

 HBrO2 + Br– + H+ →→  2 HOBr      3 

 2 HBrO2 →→ BrO-
3 + HBrO + H+      4 

 

The oxidation of malonic acid is complex, but a simplified version includes first the bromination 
of malonic acid: 
 

 HOBr + Br– + H+ →→ Br2 + H2O      5 
 Br2 + CH2(CO2H)2 →→ BrCH(CO2H)2 + H+ + Br–    6 
 

and the oxidation of malonic acid and bromomalonic acid by Ce4+: 
 

 Ce4+ + ½ [CH2(CO2H)2 + BrCH(CO2H)2] → ½ Br– + Ce3+ + products 7 
 

The products include CO2, H2O, and a mixture of organic acids. For modeling purposes, the 
oxidation of the malonic acid by Ce(IV) is represented by the net Ce(IV) to Br– stoichiometry 
using: 
 

 CH2(CO2H)2 + Ce4+ + HOBr →→ Ce3+ + Br– + H+ + products   net 5-7 
 

Field, Körös, and Noyes have developed a mechanism for the reaction that displays oscillations. 
With steps numbered according to the mechanistic steps listed above, the FKN mechanism is:2,3 

 

  k1 
 B + M →→ A + P  k1 = 1.28 mol L s-1    1 
 

  k2 
 A + M →→ 2 A + 2 C  k2 = 8.0 mol-1 L s-1    2 

 

  k3 
  A + B →→ 2 Q   k3= 8.0x105 mol-1 L s-1   3 
 

             k4 
     2 A →→ Q + M  k4 = 2.0x103 mol-1L s-1   4 
 

  k5 
  C + N →→ B   k5 = 1.0 mol-1 L s-1    net 5-7 
 

 with A = HBrO2,  B = Br–,  C = Ce4+,  M = BrO-
3, N = malonic acid, Q = HOBr 
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The H+ and Ce3+ concentrations are roughly constant and are included through pseudo-rate 
constants. M and N are held constant by a flowing reactor. This mechanism is also called the 
“Oregonator.” Do a numerical simulation of the FKN mechanism using MatLab, Mathematica, 
or the “Kinetics Mechanism Simulation” applet on the companion CD or the textbook Web site 
with the following conditions: 
 

 [M] = [BrO-
3] = 0.06 M,  [N] = [malonic acid] = 0.02 M 

 [A] o = [HBrO2] = 2.0x10-7M,  [B]o = [Br–] = 2.0x10-5 M,  [C]o = [Ce4+] = 1.0x10-4 M. 
 

Run the simulation for 750 s. Because the rate constants span almost six orders of magnitude, 
you will need to choose a large number of time steps to ensure numerical accuracy, choose 7500 
or more total time steps. Plot the concentrations of A and B. 
 

25. Consider a reaction A →
← B at equilibrium that can occur via a catalyzed path and an 

uncatalyzed path, with C the catalyst: 
  kAC    kA 

 A  +  C  →→→→→→→→←←←←←←←←  B + C and        A   →→→→→→→→←←←←←←←←   B 
  kBC    kB 
 

            catalyzed          uncatalyzed 
 

Show that if 10% of the forward process at equilibrium occurs by the uncatalyzed path that 10% 
of the reverse process will also occur by the uncatalyzed path. 
 

26. A random bi-substrate enzyme mechanism requires two substrates, but the substrates can 
bind to the enzyme in either order. One example is an enzyme that phosphorylates a protein 
using ATP as the phosphate source; ATP and the protein target are the two substrates. The 
mechanistic steps are: 
 

 E + A   →→→→→→→→←←←←←←←←  [EA] 

 E + B   →→→→→→→→←←←←←←←←  [EB] 

 [EA] + B →→→→→→→→←←←←←←←←  [EAB] 

 [EB] + A →→→→→→→→←←←←←←←←  [EAB] 
 

all of which are assumed to be in quasi-equilibrium (in the same sense as the pre-equilibrium 
mechanism). The production of product is assumed to be essentially irreversible: 
 

 [EAB] →→→→→→→→ E + products 
 

Draw the quasi-equilibrium mechanistic steps as a four-state cyclic process, and give the 
relationship among the corresponding rate constants. 
 

27. Consider the bidirectional reaction: 
 

      A →→→→→→→→←←←←←←←←  B →→→→→→→→←←←←←←←←   C 
 

The initial rate law for the reaction, starting with A only, is experimentally determined to be: 
 

 
d[A]
dt  = – kobs,f [A] o 

 

If the reverse reaction is run starting with C only, the initial rate law is determined to be: 
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d[C]
dt  = – kobs,r [C]o 

 

Why isn’t the equilibrium constant for the overall reaction given by the ratio of the initial 
forward to the initial reverse rate constants, kobs,f/kobs,r? 
 

28. This problem is an example of finding the relationship among the rate constants in a 
mechanism and the overall equilibrium constant, based on detailed balance. For the mechanism: 
 

  k1 k2 
      A →→→→→→→→←←←←←←←←  B →→→→→→→→←←←←←←←←   C 
  k-1 k-2 
 

determine the rate law for the overall forward process, υ+, and the rate law for the overall reverse 
process, υ-, at equilibrium. Show that the ratio of the resulting rate constants gives the overall 
equilibrium constant. 
 

29.  Using the Principle of Detailed Balance, show that the following mechanism generates the 
expected overall equilibrium ratio when the reaction is at equilibrium: 
 

  k1 
       HI →→→→→→→→←←←←←←←← H + I  
  k-1 
 

   k2 
 H + HI →→→→→→→→←←←←←←←← H2 + I 
   k-2 
 

   k3 
 2 I + M →→→→→→→→←←←←←←←← I2 + M 
   k-3 

 

 
 
 
overall: 
 

Keq = 






[H2][I 2]

[HI] 2
eq

 

Derive the relationship between the rate constants and the overall equilibrium constant. 
 

30.  The reaction A + B →
← D is proposed to have the following mechanism: 

 

   k1 

   A + B →→→→→→→→←←←←←←←← C 
    k-1 
 

    k2 
   C + M →→→→→→→→←←←←←←←← D + M 
    k-2 
 

where C is a reactive intermediate and M is an inert gas in large concentration. (a). Show that 
with appropriate approximations that the rate law is: 
 

 
d[D]
dt  = 







k1k2[A][B][M] – k -1k-2 [D][M]

k-1 + k2[M]  
 

(b). In terms of the overall process, A + B → D, near equilibrium, the overall rate law in terms of 
the initial reactant and the final product is: 
 

 υ = 
d[D]
dt  = kf [A][B] – k r [D] 
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Show that the equation in part (a) reduces to this last overall equation and find the relationship 
between the overall equilibrium constant and the four rate constants for the mechanistic steps 
from this equation. Discuss any approximations that you make for parts (a) and (b). 
 

31.  The reaction 2 A →
← C is proposed to have the following mechanism: 

  k1 

          A →→→→→→→→←←←←←←←← B 
  k-1 
 

  k2 
   A + B →→→→→→→→←←←←←←←← C 
  k-2 
 

(a). Show that near equilibrium: 
 

 – 
1
2 

d[A]
dt  = 

d[C]
dt  = k1[A] – 







k1k-1[A] + k -1k-2 [C]

k-1 + k2[A]  
 

(b). In terms of the overall process, 2A → C, at equilibrium we would write the overall rate law 
in terms of the initial reactant and the final product: 
 

 υ = – 
1
2 

d[A]
dt  = kf [A] 2 – kr [C] 

Show that the equation in part (a) reduces to this last overall equation and find the relationship 
between the overall equilibrium constant and the four rate constants for the mechanistic steps. 
 

32.  For the reaction: 
 

     k1       k3 
 I2 

→→→→→→→→
←←←←←←←← 2 I   H2 + 2 I →→→→→→→→ 2 HI 

     k-1 
 

find the relationship of the experimentally determined, overall activation energy to the activation 
energies for the individual mechanistic steps. Assume the rate law is: 
 

 
d[HI]

dt  = 
k1 k3

k-1
 [H2][I 2] 

 

33.  Consider the SN1 mechanism as a typical multi-step mechanism. For the case given in 
Eq. 4.2.17, the rate law has the form: 

 

 
d[P]
dt  = k  

[RX] [Nuc:–]
[X–]

         (k-1 [X–] >> k2[Nuc:–]) 
 

with the effective rate constant, k = k2 k1/k-1. From Eq. 3.5.1, for the overall reaction with 
activation energy Ea:  k = A e–Ea/RT. This form of the Arrhenius equation can also be applied to 
each individual elementary step. For the individual elementary steps, for step 1: k1 = A1 e–Ea1/RT, 
for the reverse of step 1: k-1 = A-1 e–Ea-1/RT, and for the formation of product: k2 = A2 e–Ea2/RT. 
Using these Arrhenius expressions, find the relationship between the overall pre-exponential 
factor and activation energy and the pre-exponential factors and activation energies for the 
individual elementary steps. 
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34.  The connection between detailed balance and forward and reverse reaction rates for a multi-
step mechanism is illustrated in Eqs. 4.5.3-4.5.10. The rate laws are written for each individual 
step in the mechanism, rather than the rate of appearance or disappearance of a particular 
species. Symbolize the net rates of the individual mechanistic steps as υ1, υ2, and υ3: 
 

 υ1 = 
1
V 

dξ1

dt   υ2 = 
1
V 

dξ2

dt   and  υ3= 
1
V 

dξ3

dt  
 

(a). Write the rate laws for the appearance of intermediate A2, the appearance of intermediate X, 
and the appearance of product D in terms of υ1, υ2, and υ3. The purpose is to show the 
relationship between the species specific and step specific methods of writing rate laws. 
(b). For a multi-step mechanism at steady state, the rates of the individual steps are equal, Sec. 
4.2. Use the results of part (a) for intermediates A2 and X to prove this statement for this example 
mechanism. [Hint: apply the steady-state approximation]. 
 

35.  Consider the SN1 mechanism, Eqs. 4.2.6-4.2.7. The first mechanistic step is reversible and 
the second is uni-directional. Symbolize the net rates of the two mechanistic steps as υ1 and υ2: 
 

 υ1 = 
1
V 

dξ1

dt  and υ2 = 
1
V 

dξ2

dt  
 

(a). Write the rate law for the appearance of intermediate R+ and the rate law for the appearance 
of product R-Nuc in terms of υ1 and υ2. The purpose is to show the relationship between the 
species specific and step specific methods of writing rate laws. 
(b). For a multi-step mechanism at steady state, the rates of the individual steps are equal. Use 
the result of part (a) for intermediate R+ to prove this statement for this example mechanism. 
[Hint: apply the steady-state approximation]. 
 

36.  After a perturbation, the three unidirectional reactions in Eq. 4.5.1 approach a steady state 
very differently than a reversible process approaches equilibrium; the approach of the 
unidirectional steps to a steady state shows oscillatory behavior, but a reversible system 
approaches equilibrium in an exponential process.4,5 (a) Use the Web based “Kinetic Mechanism 
Simulation” applet or MatLab, Maple, or Mathematica to numerically integrate the rate laws for 
the mechanism in Eq. 4.5.1. Set kAB = 0.1, kBC = kCA = 0.05, and [A]o = 1 while [B]o = [C]o = 0. 
Plot the approach to the steady state and verify the appearance of oscillations. (b) Change the 
rate law to match Eq. 4.5.2. Set the forward rate constants as in part (a) and the reverse rate 
constants to give the equilibrium constant for A →→→→

←←←← B as 2 and for B →→→→
←←←← C as 2. Compare the 

approach to equilibrium with part (a). 
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