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Chapter 3 Problems 
 
1. In Example 3.3.1 we discussed denitrification of contaminated ground water. The literature 
assumes a half-order reaction with respect to NO–

3, but the differential method for the particular 
data set gives ¾ order. The best fit values for the corresponding rate constants are k½ = 26.71 and 
k¾ = 7.12. Give the units for the rate constants with the concentration expressed in mg L-1. 
 
 

Answer:  For a half-order reaction the rate law is in the form: –
d[A]

dt   = k½ [A]½ 

The units of the rate, based on the data, are mg L-1 hr-1. The units of [A]½ are mg½ L-½, giving 
the rate constant as: k½ = 26.71 mg½ L-½ hr-1 

For a ¾-order reaction the rate law is in the form: –
d[A]

dt   = k¾ [A]¾ 

The units of the rate are mg L-1 hr-1 and k¾ = 7.12 mg¼ L-¼ hr-1. 
 
 
2. The half-life of the pesticide aldicarb (trade name Temik) is 30.0 days. The decomposition of 
aldicarb is first-order. Calculate the time necessary for the amount of adicarb in a soil sample to 
drop to 10.0% of its initial value. 
 
 
Answer:  First we calculate the rate constant and from the integrated rate law, Eq. 3.2.5, solve for 
the time to achieve [A] = 0.100 [A]o. Solving, Eq. 3.2.11: 

 t½ = 
ln 2
k1

  = 
0.6931

k1
  rearranges to  k1 = 

0.6931
30.0 days = 0.0231 days-1 

Then from Eq. 3.2.5, when [A] = 0.100 [A]o: 
 

 ln 




0.100 [A]o

[A]o
  = – 0.0231 days-1 t 

 t = 99.7 days. 
 
 
3. Organisms require iron for survival. Reduced iron in the form of Fe2+ is readily available for 
acquisition by living systems. However, Fe2+ is oxidized by O2 from the air to produce Fe3+, 
which precipitates from solution as mixed hydrated oxides and hydroxides. Iron(II) stability is 
strongly pH dependent. The oxidation of Fe2+ in aqueous 0.5 M HClO4 solution at 35C follows 
the rate law: 
 

 – 
d[Fe2+]

dt  = k [Fe2+]2 PO2 

 

where PO2 is the partial pressure of O2 above the solution and k = 3.65x10-3 mol-1 L atm-1 hr-1. 
Assume that the air above the solution is at constant PO2 = 0.200 atm. (a) Calculate the half-time 
of the reaction in days for an initial concentration of 0.100 M Fe2+. (b)How long would it take for 
the concentration of Fe2+ to drop to 0.0100 M? 
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Answer:  For a constant PO2 the reaction is pseudo-second order with effective rate constant, keff 
= k PO2 = 7.30x10-4 mol-1 L hr-1. 
(a)  The half-time is given by Eq. 3.2.30: 
 

 t½ = 
1

[A]okeff
 = 

1
0.100 M(7.30x10-4 mol-1 L hr-1) = 1.370x104 hr = 571 days 

 

(b)  The integrated rate law is given by Eq. 3.2.27 with [A] = 0.0100 M: 
 

 
1

[A] – 
1

[A]o
  =  keff t 

 

or  
1

0.0100 M – 
1

0.100 M  =  (7.30x10-4 mol-1 L hr-1) t 
 

Solving for t: t = 1.233x105 hr = 5.14x103 days. Unfortunately for living organisms, the half-life 
of Fe2+ at neutral pH is many orders of magnitude shorter. 
 
 
4. The concentration of ozone, O3, in the stratosphere is dependent on interactions with the odd 
electron reactive nitrogen species, NO. The concentration of NO in the atmosphere is determined 
in part by the rate of oxidation by O2: 
 

 2 NO (g) + O2 (g)  2 NO2 
 

An initial rate study at 25C was completed with the following results. Determine the rate law 
and the rate constant. The initial rate is the slope of the time course for very short times, t  0: 
 

initial rate = o = – 



d[O2]

dt o
 

 

Exp [O2]o (mol L-1) [NO]o (mol L-1) o (mol L-1 s-1) 
1 1.44x10-3 0.28 x10-3 6.90x10-7 
2 1.44 x10-3 0.93 x10-3 7.50 x10-6 
3 1.44 x10-3 2.69 x10-3 6.00 x10-5 
4 6.60 x10-5 2.69 x10-3 3.00 x10-6 

 

 
 
Answer:  The order with respect to O2 can be calculated from experiments 3 and 4. Just looking 
at the ratios, since they are about equal, first-order behavior is indicated. To be more precise, 
using Eq. 3.3.4 gives: 
 

 ln






o2

o1
   =  n ln



[A]o2

[A]o1
 

 ln



3.00 x10-6

6.00 x10-5  =  n ln



6.60 x10-5

 1.44 x10-3  

 -2.996  =  n (-3.083)  or   n = 0.972 
 

To determine the order with respect to NO we could just do the same. In fact with just three data 
points, using Eq. 3.3.4 is the best approach. But, if we did have more data points a curve fitting 
approach would make better use of the experimental uncertainties. So as an example, a 
spreadsheet was constructed based on the left and right-hand sides of Eq. 3.3.4: 
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[NO]o rateo ln[NO]o ln rateo 
2.80E-04 6.90E-07 -8.1807 -14.187 
9.30E-04 7.50E-06 -6.9803 -11.801 
2.69E-03 6.00E-05 -5.9182 -9.7212 

 
 

y = 1.974x + 1.9671
R2 = 1
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The order with respect to NO is then 1.97, which rounds to 2. It would be silly to do any serious 
error analysis using linest() with only three data points. So we won’t bother, other than using 
significant figure rules. The ln values are good to 2-3 significant figures, so the final order is 
good to about 2-3 significant figures. The rate law is then:   = k3 [O2][NO]2. The rate constant 
can be calculated from each run and then the averaged result can be calculated. Using run 1: 
 

   = k3 [O2][NO]2 
gives 6.90x10-7 mol L-1 s-1 = k3 (1.44x10-3 mol L-1)( 0.28 x10-3 mol L-1)2 

solving for k3:   k3 = 6.11x103 mol-2 L2 s-1 
 
 

5. The decomposition of acetaldehyde: 
 

 CH3CH=O   CH4 + CO 
 

at 518°C and at an initial pressure of 363 mm Hg can be monitored by measuring the total 
pressure of the reaction at constant volume.1 What is the order of the reaction and the rate 
constant? Use non-linear curve fitting. [Hint: you need to solve for the partial pressure of 
acetaldehyde from the total pressure.] 
 

t (s) 42 73 105 190 242 310 
P (mm Hg) 397 417 437 477 497 517 
t (s) 384 480 665 840 1070 1440 
P (mm Hg) 537 557 587 607 627 647 
 
Answer:  The total pressure during the reaction is the sum for the reactants and products: 
 

 P = PCH3CHO + PCH4 + PCO      1 
 

The stoichiometric relationships for the initial pressure, Po, give: 
 

 CH3CH=O   CH4 + CO 
Pi :    Po –             2 
 

Substituting these values into the total pressure gives: 
 

 P = Po –  +  +  =  Po +       3 
 

solving for   gives: 
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  = P – Po  and then   PCH3CHO = Po –   =  2 Po – P   4 
 

The transformation from Eq. 4 was used in an Excel spreadsheet to calculate the acetaldehyde 
partial pressures: 
 

t (s) P (mm Hg) 2Po-P (mm Hg) 
0 363 363 

42 397 329 
73 417 309 

105 437 289 
190 477 249 
242 497 229 
310 517 209 
384 537 189 
480 557 169 
665 587 139 
840 607 119 

1070 627 99 
1440 647 79 

 

Using the “Nonlinear Least Squares Curve Fit” applet on the text book Web site and on the 
companion CD with the “a exp(–bx)” fitting function for a first-order fit gives: 
 

===============   Results   ============= 
 a= 337.6 +- 8.8 
 b= 0.00133 +- 0.000091 
----------------------------------------- 
 sum of squared residuals= 2912 
 stand. dev. y values= 16.27 
 correlation between a & b= 0.6541 

 

Using the “1/((1/a)+bx)” fitting function for a second-order fit gives: 
 

===============   Results   ============= 
 a= 363.24 +- 0.76 
 b= 0.000006674 +- 3.5e-8 
----------------------------------------- 
 sum of squared residuals= 13.9 
 stand. dev. y values= 1.124 
 correlation between a & b= 0.5758 

 

The corresponding plots are: 
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The second-order fit is much better, giving the rate constant as: 
 k = 6.674x10-6  0.035x10-6 mm Hg-1 s-1. 
 
 

6. Redo the kinetic analysis for the data from Problem 5 using the linearized forms of the 
integrated rate laws. 
 
 

Answer:  The data transformations using Eqs. 3.2.18 and 3.2.25 are given below as an Excel 
spreadsheet: 
 

t (s) P (mm Hg) 2Po-P (mm Hg) ln(PCH3CHO) 1/PCH3CHO 
0 363 363 5.894 0.0027548 

42 397 329 5.796 0.0030395 
73 417 309 5.733 0.0032362 

105 437 289 5.666 0.0034602 
190 477 249 5.517 0.0040161 
242 497 229 5.434 0.0043668 
310 517 209 5.342 0.0047847 
384 537 189 5.242 0.005291 
480 557 169 5.13 0.0059172 
665 587 139 4.934 0.0071942 
840 607 119 4.779 0.0084034 

1070 627 99 4.595 0.010101 
1440 647 79 4.369 0.0126582 

 
The corresponding plots are: 
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y = 6.86E-06x + 2.70E-03
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 (a) First-order plot    (b) Second-order plot 
 
The output from the linest() spreadsheet linear fit for the second-order plot is: 
 

slope 6.864E-06 2.703E-03 intercept 
 3.745E-08 2.312E-05  
r2 0.99967 5.715E-05 st.dev. y 
F 33585.36 11 df 
ssreg 1.097E-04 3.593E-08 ssresid 

 

The reaction is second order with a rate constant of 6.864x10-6  0.037x10-6 mm Hg-1 s-1. Notice 
that the difference between the non-linear fit rate constant and this current value is greater than 
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the estimated uncertainty. This underestimate of the uncertainty from the linearized forms is 
another reason to rely on non-linear curve fitting, which has a firmer statistical basis. The reson 
for the better statistical treatment is that the random errors are evaluated directly and not in the 
transformed 1/P form. 
 
 

7. Use the differential method during the time course for the data in Problem 5. 
 
 

Answer:  First note that  = – dPCH3CHO/dt. We next need to calculate the average rate for each 
time interval. For example, for the first interval: 
 

 – = – 
Pi(t2) – Pi(t1)

t2 – t1
 = – 

329 – 363
42 – 0  = 0.8095 mm Hg s-1 

 

and the partial pressure in the middle of this first time interval is: 
 

 P–CH3CHO = 
Pi(t1) + Pi(t2)

2  = 
329 + 363

2  = 346 mm Hg 
 

A spreadsheet was constructed with rates and average acetaldehyde partial pressures, as shown 
below. The ln of the average partial pressure and the ln of the rate are also included. 
 

  average average   
t (s) 2Po-P (mm Hg) rate PCH3CHO ln PCH3CHO ln rate 

0 363     
42 329 0.8095 346 5.8464 -0.2113 
73 309 0.6452 319 5.7652 -0.4383 

105 289 0.6250 299 5.7004 -0.4700 
190 249 0.4706 269 5.5947 -0.7538 
242 229 0.3846 239 5.4765 -0.9555 
310 209 0.2941 219 5.3891 -1.2238 
384 189 0.2703 199 5.2933 -1.3083 
480 169 0.2083 179 5.1874 -1.5686 
665 139 0.1622 154 5.0370 -1.8192 
840 119 0.1143 129 4.8598 -2.1691 

1070 99 0.0870 109 4.6913 -2.4423 
1440 79 0.0541 89 4.4886 -2.9178 

 

The plot of ln(rate) versus ln P is given below: 
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The output from the linest() spreadsheet linear fit is: 
 

slope 1.9521 -11.659 intercept 
 0.0303 0.1603  
r2 0.9976 0.0439 st.dev. y 
F 4159 10 df 
ssreg 8.0012 0.0192 ssresid 

 

The reaction order is 1.950.03, which is close enough to the integer 2. 
   You’ll probably agree that the non-linear curve fitting method is easiest, flowed by the 
linearized equation fitting. However, the differential method is somewhat less susceptible to 
problems arising from offsets than the linearized methods. 
 
 
8. Pharmacokinetics is the study of the absorption, disposition, metabolism, and excretion 
(ADME) of drugs in living organisms. Pharmacokinetics uses chemical kinetics as a tool to 
predict drug levels in the body and anticipate drug distribution problems that might arise. Your 
study of chemical kinetics puts you in a good position to understand ADME properties of drug 
substances. In the terminology of pharmacology, a bolus dose is a drug given in a short period of 
time, for example by intravenous injection or oral tablet administration. The table, below, gives 
the plasma concentration as a function of time for the administration of a 184-mg bolus dose of 
ceftriaxone to a newborn infant.2,3 Ceftriaxone is an antibiotic. Find the effective kinetic order 
for the time course of the drug concentration, the rate constant, and half-life of the drug in the 
body. 
 

t (hr) 1.0 6.0 12. 24. 48. 72. 96. 144. 
Concentration (mg L-1) 137. 120. 103. 76. 42. 23. 12. 3.7 

 
 
Answer:  To construct kinetic plots based on the linear forms of the integrated rate laws, Eq. 
3.2.18 for first-order and Eq. 3.2.27 for second-order, the following spreadsheet was constructed: 
 

t (hr) [C] (mg L-1) ln [C] 1/[C] 
1 137 4.919981 0.007299 
6 120 4.787492 0.008333 

12 103 4.634729 0.009709 
24 76 4.330733 0.013158 
48 42 3.73767 0.02381 
72 23 3.135494 0.043478 
96 12 2.484907 0.083333 

144 3.7 1.308333 0.27027 

 
The corresponding plots are given below: 
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y = -0.0253x + 4.9416
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 (a) first-order plot    (b) second-order plot 
 
The output from the linest() linear least squares curve fitting function in Excel for the first-order 
plot is: 
 

slope -0.02529 4.941594 intercept 
 0.000109 0.007509  
r2 0.999889 0.014537 st. dev. Y 
F 54177.75 6 df 
ssreg 11.44938 0.001268 ssresiduals 

 

The plasma concentrations clearly decrease by first-order kinetics. The slope of the ln[C] versus t 
curve gives the rate constant: slope = – k1. The half-time for a first-order reaction is given by t½ 
= ln(2)/k1. The final results are then: 
 

 k1 = 0.02529  0.00011 hr -1   and  t½ = ln(2)/k1 = 0.6931/0.02529 = 27.4  0.1 hr 
 

The uncertainty in the half-time was calculated from the relative standard deviation in the slope, 
which is 0.43 %. In other words the relative uncertainty in 1/x is the relative uncertainty in x, 
since multiplication and division are involved. 
 
 
9. The absorption of UV light by benzophenone creates a long-lived excited state. When 
isopropanol-water mixtures are used as the solvent, the excited state of benzophenone rapidly 
reacts with isopropanol to produce protonated benzophenone ketyl (C6H5)2COH, which is a free 
radical: 
 

 (C6H5)2CO*  +  (CH3)2CHOH     (C6H5)2COH  +  (CH3)2COH 
 

The “*” indicates an electronic excited state. In basic solution protonated benzophenone ketyl 
rapidly looses a proton to produce the benzophenone ketyl radical anion: 
 

 (C6H5)2COH    (C6H5)2CO + H+ 

 

The benzophenone ketyl radical anion then reacts with the protonated form to produce 
benzpinacol: 
 

(C6H5)2COH + (C6H5)2CO   
k2  (C6H5)2C(OH)-C(OH)(C6H5)2 
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The benzophenone ketyl radical anion has an absorption maximum at 630 nm, which allows the 
disappearance of the radical anion to be followed as a function of time in a laser flash photolysis 
instrument. The absorbance time course for the reaction is given below. The data table is 
extracted from the much larger data file from the instrument, which is plotted at right. Find the 
order of the reaction and the rate constant with respect to benzophenone ketyl radical anion using 
non-linear least squares curve fitting. 
 

 
t (ms) A 

0.064 0.2736 
0.128 0.2660 
3.264 0.1080 
6.464 0.0540 
9.664 0.0282 

12.864 0.0129 
16.064 0.0029 
19.264 -0.0039 
22.464 -0.0084 
25.664 -0.0109 
28.864 -0.0125 
32.064 -0.0111 
35.264 -0.0102 
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Answer:  The long-time portion of the absorbance time course is negative, which shows that the 
data has a constant offset. That is, A in Eq. 3.2.38 is negative. The long-time behavior of the 
time course has some low frequency noise, such that the time course has a minimum before the 
end of the time course. This level of noise is common for real world kinetics runs. The noise 
makes the determination of A in Eq. 3.2.38 very difficult. Therefore, the curve fit equations 
chosen included a constant offset as a fit parameter. The data table was pasted into the 
“Nonlinear Least Squares Curve Fitting” applet, which is available on the textbook companion 
Web site and the and on the companion CD. For first-order fitting, Eq. 3.2.6 with a constant 
offset, is the “a exp(-bx) + c” option. For second-order curve fitting, Eq. 3.2.26 with a constant 
offset, is the “1/((1/a)+bx) + c” option. The results are plotted below. 
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The first-order fit results are: 
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===================   Results   ===================== 
 a= 0.2821 +- 0.0051 
 b= 242 +- 12 
 c= -0.0076 +- 0.0025 
----------------------------------------------------- 
 sum of squared residuals= 0.0003994 
 stand. dev. y values= 0.00632 
 correlation between a & b= 0.05997 
 correlation between b & c= 0.5454 
 correlation between a & c= -0.4078 

 

The second-order fit results are: 
 

===================   Results   ===================== 
 a= 0.3208 +- 0.0031 
 b= 1180 +- 6.3 
 c= -0.0395 +- 0.0023 
---------------------------------------------------- 
 sum of squared residuals= 0.0001139 
 stand. dev. y values= 0.003375 
 correlation between a & b= -0.4096 
 correlation between b & c= 0.8893 
 correlation between a & c= -0.5629 

 

The second-order fit appears to reproduce the time-course better. In addition, in agreement with 
our visual inspection, the standard deviation of the y values for the second-order plot, 0.003375, 
is about half that for the first-order plot. The effective second-order rate constant is 1180  6 s-1. 
Note that a second-order rate constant should have units M-1 s-1. Because the absorbance is 
plotted instead of the actual concentration, an effective rate constant using Eq. 3.2.37 is the 
result, keff = k2/b, which has units of s-1. Absorbance is unitless. To distinguish this result from a 
first-order rate constant you might give the result as 1180  6 au-1 s-1, where “au” stands for 
absorbance units (which are officially unitless). The fit parameter correlation coefficients are 
acceptable. However, notice that the “correlation between b & c= 0.8893” value shows that final rate 
constant is very dependent on the choice of the offset constant, A. 
 
 

10. Use the data in the last problem with linear curve fitting to determine the order of the 
reaction and the rate constant. 
 
 

Answer:  In the last problem, the long-time portion of the absorbance time course is negative, 
which shows that the data has a constant offset. The difficulty in using the linear integrated rate 
law forms, Eq. 3.2.18 for first-order and Eq. 3.2.27 for second-order, is that the constant offset 
must be handled explicitly. As a first approach, choose the minimum value for the offset, A = -
0.0125. Then the corresponding data point can’t be used in the fit, since ln 0 is undefined. A 
spreadsheet that is set up to do the transformations is given below with the resulting curve fits: 
 

t (s) A A - A ln[A] 1/[A] 
0.000064 0.2736 0.2861 -1.251 3.4956 
0.000128 0.2660 0.2785 -1.278 3.5910 
0.003264 0.1080 0.1205 -2.116 8.3002 
0.006464 0.0540 0.0665 -2.710 15.031 
0.009664 0.0282 0.0407 -3.202 24.600 
0.012864 0.0129 0.0254 -3.672 39.337 
0.016064 0.0029 0.0154 -4.173 64.968 
0.019264 -0.0039 0.0086 -4.761 116.897 
0.022464 -0.0084 0.0041 -5.508 246.592 
0.025664 -0.0109 0.0016 -6.445 629.445 
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The last two data points are included in the plot to show the effect of noise, but they weren’t used 
in the curve fitting. Notice that these plots predict a first-order reaction in contradiction to 
Problem 5. If instead of the minimum value from the time course, the A value from the non-
linear curve fits is used, A =  -0.0395, then the following plots are obtained: 
 

t (s) A A - A ln[A] 1/[A] 
0.000064 0.2736 0.3131 -1.161 3.1941 
0.000128 0.2660 0.3055 -1.185 3.2736 
0.003264 0.1080 0.1475 -1.914 6.7806 
0.006464 0.0540 0.0935 -2.369 10.691 
0.009664 0.0282 0.0677 -2.693 14.780 
0.012864 0.0129 0.0524 -2.948 19.076 
0.016064 0.0029 0.0424 -3.160 23.589 
0.019264 -0.0039 0.0356 -3.336 28.125 
0.022464 -0.0084 0.0311 -3.471 32.200 
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In which case the reaction appears to be second-order with a rate constant of 1240 s-1 (please see 
the answer to the last problem concerning units). This problem shows that non-linear curve 
fitting is often the best method. If you choose an incorrect value for the long time value, the 
resulting kinetic plots can be so distorted that you determine the incorrect order. Non-linear 
curve fitting provides a non-biased method to determine the long time value because A can be 
treated as an adjustable parameter. 
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11. Determine the fluorescence lifetime for anthracene using the following fluorescence intensity 
measurements. 
 

t (ns) 0 2 4 6 8 10 
Intensity 62620 41250 27218 17708 11352 7560 

 
 
Answer:  First convert the times from nano-seconds to seconds. Using the “Nonlinear Least 
Squares Curve Fit” applet on the text book Web site and on the companion CD with the “a exp(–
bx)” fitting function for a first-order fit gives: 
 

============   Results   =============== 
 a= 62720 +- 170 
 b= 210700000.0 +- 1100000 
---------------------------------------- 
 sum of squared residuals= 145100 
 stand. dev. y values= 190.5 
 correlation between a & b= 0.5655 

 

with the fluorescence lifetime  from the slope:  = 2.11x108  0.011x108 s-1. You could also do 
the linear fit as ln I versus t using the following spreadsheet. 
 

t (s) Intensity ln I 
0.00E+00 62620 11.04483999 
2.00E-09 41250 10.62740639 
4.00E-09 27218 10.2116338 
6.00E-09 17708 9.781771794 
8.00E-09 11352 9.337149219 
1.00E-08 7560 8.930626469 

 
The plot from the non-linear fit and the linear version are shown below: 

 

y = -2.1245E+08x + 1.1051E+01
R2 = 9.9987E-01
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 (a) Non-linear fit    (b) First-order plot 
 
 
12. Determine the integrated rate law for a zeroth-order reaction with stoichiometry 2 A  P. 
Use definite integrals. Zeroth-order reactions are common with reactions involving surfaces. 
Find the half-time for a zeroth-order reaction with this stocihiometry. 
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Answer:  The rate law is – 
1
2 

d[A]
dt   = ko. 

The rate of the reaction is independent of the amount of reactant. Separation of variables to 
isolate all concentration dependent terms on the left side of the equality and all the time 
dependent terms on the right side gives: 
 

 d[A]  = – 2ko dt 
 

The integral limits are at t = 0, [A] = [A]o, and at time t the concentration is [A]. The definite 
integrals are: 
 

 [A]o

[A]
d[A]  = – 0

t
 2ko dt 

 

The integrals are: 
 

 [A]|
[A]

[A]o
 = – 2ko t|

t

0
 

 

Evaluating the integrals at the limits gives: 
 

 [A] – [A]o = – 2ko t 
 

This equation can be rearranged into the linear form by adding [A]o to both sides: 
 

 [A] = [A]o – 2ko t 
 

which has slope = – 2ko and intercept [A]o. The half-time is when [A] = [A]o/2: 
 

 [A]o/2 – [A]o = – 2kot½ 
 

Solving for the half-time: 
 

 t½ = 
[A]o

4ko
   (for 2 A  P) 

 

The half-time is greater when you start with more material, since the rate of the reaction is 
independent of the starting amount. 
 
 
13. The half-time for a chemical reaction is the time when ½ the original amount of reactant 
remains. However, the choice of the half-time point as a measure of the reaction rate is not 
unique. We can also determine the time when ¼ of the original amount remains, or when 1/p of 
the original amount remains. Find the formula that relates the time to reach the 1/p point to the 
rate constant, for a first-order and a second-order reaction. 
 
 
Answer:  For a first order reaction, starting with the integrated rate law in the form, Eq. 3.2.5: 
 

 ln 




[A]

[A]o
  = – k1t 

 

The 1/p time corresponds to the concentration of a dropping to [A] = [A]o/p. Substituting into the 
integrated rate law gives: 
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 ln 



[A]o/p

[A]o
  = – k1t1/p 

 

Simplifying the ln term: 
 

 ln 



[A]o/p

[A]o
 = ln(1/p) = – ln p 

 

Then solving for t1/p gives: 
 

 t1/p = 
ln p
k1

 
 

which for p = 2 reduces to Eq. 3.2.11. As an example, assume that the half-time for a first order 
reaction is t½ = 10 s, or k1 = 0.0693 s-1. The ¼ time would occur at 20 s, which is 2 t½, and the 1/8 
time at 30 s, which is 3 t½. 
   For a second-order reaction, from Eq. 3.2.27: 
 

 
1

[A]o/p
 – 

1
[A]o

  =  k2 t1/p 

 

Simplifying the left-hand side gives: 
 

 
1

[A]o/p
 – 

1
[A]o

  =  
p

[A]o
 – 

1
[A]o

  =  
p – 1
[A]o

  =  k2 t1/p 

 

Solving for the 1/p time gives: 
 

 t1/p = 
p – 1

[A]o k2
 

 

which reduces to Eq. 3.2.30 when p = 2. As an example, assume that the half-time for a second 
order reaction is t½ = 10 s. The ¼ time would occur at 30 s and the 1/8 time at 70 s. 
 
 
14. Determine the integrated rate law and the half-time for a third-order reaction with the 
stoichiometry A  P. 
 
 
Answer:  The rate law is: 
 

 –
d[A]

dt   = k3 [A]3 
 

Separation of variables to isolate all concentration dependent terms on the left side of the 
equality and all the time dependent terms on the right side gives: 
 

 – 
d[A]
[A]3  = k3 dt 

 

The indefinite integrals are: 
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 – 

 1

[A]3 d[A]  = k3 dt 

 

Note that  –

 1

x3 dx  =  
1

2x2 

Combining the integration constants: 
 

 
1

2[A]2 = k3t + c 
 

The boundary condition is at t = 0, [A] = [A]o, the initial concentration: 
 

 c  = 
1

2[A]2
o
 

 

Substituting the integration constant back in to the integrated rate law gives the linear form: 
 

 
1

2[A]2 = k3t + 
1

2[A]2
o
  

 

Rearranging gives the standard form often seen in texts: 
 

 
1

2[A]2 – 
1

2[A]2
o
 = k3t 

 

Or solving for the time course gives: 
 

 [A]  =   
1





1

[A]2
o
 + 2k3t

½ 

 

For the half-time: 
 

 
1

2([A]o/2)2 – 
1

2[A]2
o
 = 

2
[A]o

2 – 
1

2[A]2
o
 = 

3
2[A]2

o
 = k3 t½ 

 

Solving for the half-time gives: 
 

 t½ = 
3

2[A]2
o k3

 

 
 
15. Determine the integrated rate law for a half-order reaction with the stoichiometry A  P.  
 
 
Answer:  The rate law is: 
 

 –
d[A]

dt   = k½ [A]½ 
 

Separation of variables to isolate all concentration dependent terms on the left side of the 
equality and all the time dependent terms on the right side gives: 
 



Kinetics  16 

 – 
d[A]
[A]½  = k½ dt 

 

The indefinite integrals are: 
 

 

 1

[A]½ d[A]  = –k½ dt 
 

Note that  

 1

x½ dx  =  2 x½   or conversely in proof:  
d(2 x½)

dx  = x–½ 

Combining the integration constants: 
 

 2 [A]½ = – k½t + c 
 

The boundary condition is at t = 0, [A] = [A]o, the initial concentration: 
 

 c  = 2 [A]½
o  

 

Substituting the integration constant back in to the integrated rate law gives the linear form: 
 

 2 [A]½ = – k½t + 2 [A]½
o  and  [A]½ = – 

k½

2  t + [A]½
o  

 
Solving for the time course gives: 
 

 [A] = 



[A]½

o  – 
k½

2  t
2
 

 
 
16. In biology, exponential population growth arises from the rate law: 

 
d[P]
dt  = k [P] 

 

where [P] is the population of a given organism and d[P]/dt is the birth rate. In short, the greater 
the number of individuals the greater the birth rate. Find the integrated rate law for the 
population. 
 
 
Answer:  Separation of variables to isolate all concentration dependent terms on the left side of 
the equality and all the time dependent terms on the right side gives: 
 

  
1

[P] d[P] = k dt 
 

The indefinite integrals are: 
 

 

 1

[P] d[P]  = k dt 
 

Integrating and combining the integration constants gives: 
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 ln [P] = kt + c 
 

The boundary condition is at t = 0, [P] = [P]o; if you don’t start with at least a few individuals, 
there can be no population growth. Evaluating the integration constant: 
 

 c = ln [P]o 
 

Substituting the integration constant back into the integrated rate law gives: 
 

 ln [P] = kt + ln [P]o 
 

Combining the ln terms gives: 
 

 ln [P] – ln [P]o = kt  or  ln
[P]
[P]o

 = kt 
 

Solving for the population gives: 
 

 [P] = [P]o ekt 

 

which is Malthusian exponential population growth. 
 
 
17. Determine the integrated rate law for a ¾-order reaction with the stoichiometry A  P.  
 
 
Answer:  The rate law is: 
 

 –
d[A]

dt   = k¾ [A]¾ 
 

Separation of variables to isolate all concentration dependent terms on the left side of the 
equality and all the time dependent terms on the right side gives: 
 

 – 
d[A]
[A]¾  = k¾ dt 

 

The indefinite integrals are: 
 

 

 1

[A]¾ d[A]  = –k¾ dt 
 

Note that  

 1

x¾ dx  =  4 x¼   or conversely in proof:  
d(4 x¼)

dx  = x–¾ 

Combining the integration constants: 
 

 4 [A] ¼ = – k¾t + c 
 

The boundary condition is at t = 0, [A] = [A]o, the initial concentration: 
 

 c  = 4 [A]¼
o  

 

Substituting the integration constant back in to the integrated rate law gives the linear form: 
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 4 [A]¼ = – k¾t + 4 [A]¼
o  and  [A]¼ = – 

k¾

4  t + [A]¼
o  

 

Solving for the time course gives: 
 

 [A] = 



[A]¼

o  – 
k¾

4  t
4
 

 
 
18. In Example 3.3.1 we discussed denitrification of contaminated ground water. The literature 
assumes a half-order reaction with respect to NO–

3, but the differential method for the data set 
gives ¾ order. Plot the time course for a ½-order and a ¾-order reaction using [NO–

3]o = 409 mg 
L-1 for 0 hr to 1.7 hr. Include the data points from Example 3.3.1. The best fit values for the rate 
constants are k½ = 26.71 mg-½ L½ hr-1 and k¾ = 7.12 mg-¾ L¾ hr-1. [Hint: restrict the time interval 
for the half-order plot so that ([A]½

o  –k½ t /2)  0 or for the ¾-order plot, ([A]¼
o  – k¾ t/4)  0] 

 
 
Answer:  The following spreadsheet was set up using the equations from Problems 15 and 17, or 
alternatively from the Chapter Summary Table: 
 

 For ½-order: [A] = 



[A]½

o  – 
k½

2  t
2
 

 For ¾-order:  [A] = 



[A]¼

o  – 
k¾

4  t
4
 

 

A spreadsheet based on these equations and the corresponding plot is: 
 
 

t (hr) [NO3
-] n=1/2 fit n=3/4 fit 

0 409 409 409 
0.25  285.11 269.53 
0.49 178.2 187.14 172.56 
0.75  104.20 99.88 
1.19 23.8 18.76 31.96 

1.5  0.04 11.11 
1.6  0 7.37 
1.7 0 0 4.66 
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The values for the half–order fit for 1.6 and 1.7 hr were just manually set to zero since 
([A]½

o  –k½ t /2) was negative for these times. The plots show that both orders fit fairly well. The 
key time range for determining the correct order is the long-time region where the concentrations 
get close to zero. More data points in the 1.25-1.5 hr range would be helpful. 
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19. Find the integrated rate law for a third-order reaction that is second-order in A and first-order 
in B for the stoichiometry:  2 A + B  products. In actual examples, B is often called a “third 
body” and is often an inert gas, an N2 molecule from the air, a particle, or the walls of the 
container. If the third body were not present, the collision of two A molecules would not be 
stable and would dissociate back to form two A molecules. The third body is necessary to carry 
away the excess energy of the collision. 
 
 
Answer:  The rate law would be given as: 
 

  = – 
1
2 

d[A]
dt  = k3 [A]2[B] 

 

Given the stoichiometric relationships, [A] = ([A]o – 2) and [B] = ([B]o – ): 
 

 
d
dt  = k3 ([A]o – 2)2 ([B]o – ) 

 

Separating variables:  
d

([A]o – 2)2 ([B]o – )
  =  k3 dt 

 

The indefinite integrals are:  


 d

([A]o – 2)2 ([B]o – )
  =   k3 dt 

 

Integral tables give: 
 

 

 dx

(a + bx)2 (a' + b'x)  =  
1

ab' – a'b 



1

a + bx + 
b'

ab' – a'b ln
(a' + b'x)
(a + bx)  

 

With b = -2 and b' = -1: 
 

 


 d

([A]o – 2)2 ([B]o – )
  =  

1
2 [B]o – [A]o

 






1

[A]o – 2 – 
1

 2[B]o – [A]o
 ln







[B]o – 

[A]o – 2  
 

The integrated rate law is: 
 

 
1

2 [B]o – [A]o
 






1

[A]o – 2 – 
1

 2[B]o – [A]o
 ln







[B]o – 

[A]o – 2   =  k3 t + c 
 

The boundary condition is at t = 0,  = 0, and the integration constant is: 
 

 c = 
1

2 [B]o – [A]o
 



1

[A]o
 – 

1
 2[B]o – [A]o

 ln



[B]o

[A]o
 

 

Substituting the integration constant back into the integrated rate law and collecting common 
terms gives: 
 

 
1

2 [B]o – [A]o
 






1

[A]o – 2 – 
1

[A]o
 – 

1
 2[B]o – [A]o

 ln






[A]o([B]o – )

[B]o([A]o – 2)
  =  k3 t 

 

This equation is often rearranged by taking a common denominator for the terms: 
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1

[A]o – 2 – 
1

[A]o
 = 

2
[A]o([A]o – 2)

 
 

Substitution back into the integrated rate law gives: 
 

 
1

2 [B]o – [A]o
 






2

[A]o([A]o – 2)
 – 

1
 2[B]o – [A]o

 ln






[A]o([B]o – )

 [B]o([A]o – 2)
  =  k3 t 

 

In the next chapter we will discuss a method of calculating numerical approximations to rate 
laws that avoids having to do complicated integrals. However, this rate law arises often enough 
that it is handy to have a closed-form solution. 
 
 

20. The cis-trans isomeration of 1-ethyl-2-methylcyclopropane is first order in the forward and 
reverse directions:4,5 

  k1 

    cis    trans 
  k-1 
The reaction, starting with only cis isomer has the following time course. The long-time value 
for the cis-isomer concentration is 0.00443 M. Determine k1 and k-1. 
 

t (s) 0 400 1000 1600 2100 
[cis] (M) 0.01679 0.01406 0.01102 0.00892 0.00775 

 
 
Answer:  Using Eq. 3.4.23 with Ao = 0.01679 M and A= 0.00443 M, the follow spreadsheet was 
constructed: 
 

t (s) [cis] (M) 
([A]-[A])
([A]o-[A])

 ln 
([A]-[A])
([A]o-[A])

 

0 0.01679 1 0 
400 0.01406 0.7791 -0.2496 

1000 0.01102 0.5332 -0.6289 
1600 0.00892 0.3633 -1.0126 
2100 0.00775 0.2686 -1.3145 

 

The corresponding plot and linest() output is: 
 

slope -0.0006283 -0.000258 intercept 
 3.039E-06 0.003875  
r2 0.999929 0.00520 st. dev. y 
F 42737.8 3 df 
ssreg 1.15585 8.114E-05 ssres 

 

y = -6.283E-04x - 2.575E-04
R2 = 9.999E-01

-1.4
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ln
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The slope gives the sum of the rate constants: slope = –(k1 + k-1) = -0.0006283, or: 
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 (k1 + k-1) = 0.0006283        1 
 

To calculate the rate constants separately, we can use the equilibrium constant. The long-time, 
equilibrium concentration of the cis isomer is [cis] = 0.00443 M, and from the 1:1 
stoichiometry: 
 

 [trans] = [cis]o– [cis] = 0.01679 – 0.00443 M = 0.01236   2 
 

The ratio gives the equilibrium constant: 
 

 Kc = 
k1

k-1
 = 

0.01236
0.00443 = 2.79       3 

 

We now have two equations in two unknowns, Eq. 1 and 3. Solving Eq. 3 for k-1 gives k-1 = 
k1/Kc and substitution into Eq . 1 gives: 
 

 (k1 + k1/Kc) = 6.283x10-4 s-1       4 
 

Solving for k1: 
 

 k1 = 
6.283x10-4

1 + 1/Kc
 = 

6.283x10-4

1 + 1/2.79  = 4.625x10-4 s-1 

 

and then k-1 = k1/Kc = 4.625x10-4 s-1/2.79 = 1.658 x10-4 s-1 

 
 
21. The rate of decomposition of acetaldehyde has been studied as a function of temperature. The 
table below gives the rate constant for the reaction as a function of temperature. Determine the 
activation energy and the pre-exponential factor. 
 

T (K) 703 733 759 791 811 836 
k2 (M-1 s-1) 0.011 0.035 0.105 0.343 0.79 2.14 

 
 
Answer:  We will first do the common Arrhenius plot and then compare the results with a non-
linear curve fit in the next problem. The non-linear fit gives a more realistic view of the 
experimental errors. 
   The following spreadsheet was developed to fit the linear form of the Arrhenius equation, 
Eq. 3.5.3. 
 

T (K) k2 (M-1 s-1) 1/T (K-1) ln k2 
703 0.011 0.001422 -4.5099 
733 0.035 0.001364 -3.3524 
759 0.105 0.001318 -2.2538 
791 0.343 0.001264 -1.0700 
811 0.79 0.001233 -0.2357 
836 2.14 0.001196 0.7608 

 
The linest() output and plot are: 
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slope -23243.86 28.4312 intercept 
 619.84 0.8069  
r2 0.9972 0.1176 st.dev.y 
F 1406.2193 4.0000 df 
ssreg 19.4383 0.0553 ssresid 

 

y = -23244x + 28.431
R2 = 0.9972

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

0.0011 0.0012 0.0013 0.0014 0.0015

1/T (K-1)

ln
 k

2

 
 

The activation energy is given by: slope = – Ea/R or Ea = – slope(R) = 193.2  5.1 kJ mol-1. 
The pre-exponential factor is given by intercept = ln A  or: 
 

 A = e28.43 = 2.2x1012 M-1 s-1. 
 

See the next problem for more on error analysis. 
 
 
22. This problem concerns the error analysis of the results from the last problem. (a) Using the 
results from the last problem, determine the error in the activation energy and the pre-
exponential factor. (b) Often a better approach is to use a non-linear fit. Do a non-linear fit to the 
original data in the last problem and compare the fit values and the uncertainties with the 
linearized fit. 
 
 
Answer:  From the last problem, the relative uncertainty in the slope is 2.7% giving the activation 
energy as uncertain to 2.7% or 193.2  5.1 kJ mol-1. The error for the pre-exponential factor is a 
bit harder. The intercept is quite uncertain: 28.43  0.81. The significant figure rule is Significant 
Figure Rule 4 from Appendix 1: 
 

“The number of significant figures in 10x is the number of significant figures in the mantissa of 
x. Use the same rule for ex.” 
 

Using significant figure rules, the uncertainty is in the order of magnitude; there are no 
significant figures in the mantissa. Using the “Uncertainty Calculator” applet on the textbook 
Web site and on the text companion CD: 
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The pre-exponential factor and uncertainty are 2.2x1012  1.9x1012 M-1 s-1, which is a bit smaller 
than expected by the significant figure rules. 
   The full propagation of errors rule is: the relative variance in ex is equal to the variance in x 
(Rule 4, Appendix 1). In this case there is only one error term so we can work with standard 
deviations directly (Rule 5, Appendix 1). The standard deviation in x is 0.8069 so the relative 
standard deviation in e28.43 is 0.8069, or in other words 81%. The final result is the same as given 
by the “Uncertainty Calculator.” 
   A better approach is to do non-linear curve fitting, which is also quicker and easier. However, 
for non-linear curve fitting you need to specify initial guesses for the fit parameters. Sometimes 
these guesses can be far from the final value. For this particular function the guesses need to be 
pretty close to the final results. To get guesses for the fit parameters, we can use the results from 
the linear fit that we obtained in the last problem. The fit function is set up as: 
 

 
 

The results of the non-linear fit are significantly different from the linear form for the pre-
exponential factor: 
 

============   Results   =============== 
 a= 171000000000000 +- 75000000000000 
 b= -26760 +- 360 
---------------------------------------- 
 sum of squared residuals= 0.0007028 
 stand. dev. y values= 0.01326 
 correlation between a & b= -0.9999 

 

This fit gives Ea = 222.5  3.0 kJ mol-1 and A = 1.71x1014  0.75x1014 M-1 s-1. The correlation 
between the fit values shows why the uncertainties are so large. This very large correlation 
between the fit values suggests that the value would be best reported as log A  14 to avoid over-
representing the precision. 
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   A Note on Convergence:  If you start with a guess that results in the error message “Not 
Converged,” try clicking on one of the damping options. Choosing “Damped” or “Strongly 
Damped” allows a much larger range of input guesses to converge on the final result for this 
particular function. Unfortunately, damping is not always helpful for other fitting functions. 
 
 

23.  Calculate the activation energy and pre-exponential factor for the decomposition of N2O5 
from the following temperature dependence.6 

 

T (K) 298.0 308.0 318.0 328.0 338.0 
k1 (min-1) 2.03 8.09 29.9 90.1 291.5 

 
 

Answer:  The plan is to use the linearized form of the Arrhenius temperature dependence, 
Eq. 3.5.8, and linear least squares curve fitting. 
   The linearized form of the Arrhenius equation is ln k = –Ea/R + ln A. A fit of the ln k1 versus 
1/T is done using linest() in the following spreadsheet and plot. 
 
 

T (K) k1 (min-1) 1/T (K-1) ln k1 
298.0 2.03 0.003356 0.7080 
308.0 8.09 0.003247 2.0906 
318.0 29.9 0.003145 3.3979 
328.0 90.1 0.003049 4.5009 
338.0 291.5 0.002959 5.6750 

 
slope -12443.7 42.483 intercept 
 123.38 0.389  
r2 0.9997 0.0387 st.dev.y 
F 10171.6 3.00 df 
ssreg 15.2657 0.0045 ssresid 

 

 

y = -12444x + 42.483
R² = 0.9997

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0029 0.003 0.0031 0.0032 0.0033 0.0034

ln
 k

1

1/T (K-1)
 

   The straight-line behavior verifies Arrhenius temperature dependence. The slope is –Ea/R, 
giving:  Ea = –(-12443.7)8.3145 J K-1 mol-1 (1 kJ/1000 J) = 103.46 kJ mol-1 
Relative errors propagate upon multiplication and division, giving the uncertainty of 1.0% or 
Ea = 103.5  1.0 kJ mol-1. 
   The pre-exponential factor is determined from the intercept, ln A = 42.480.39, giving: 
 A = e42.48 = 2.81x1018 min-1 
The relative uncertainty of ex is the absolute uncertainty in x. The absolute uncertainty in the pre-
exponential factor is 0.39 or equivalently 39% of the final result: 
 A = 2.8x1018  1.1x1018 min-1 
 

The pre-exponential factor always has the same units as the rate constant. 
 
 

24.  The rate constant for the disappearance of chlorine in the reaction of NO with Cl2 to form 
NOCl is 4.52 M-2 s-1 at 0.0°C and 8.03 M-2 s-1 at 22.0°C. What are the activation energy and 
pre-exponential factor for this reaction? 
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Answer:  The plan is to follow Example 3.5.1. The linearized form of the Arrhenius relationship 
for two data points is Eq. 3.5.7: 
 

 ln kT2/kT1
 = – Ea/R (1/T2 – 1/T1)     (3.5.7) 

 ln (8.03/4.52) = – 
Ea

8.3145 J K-1 mol-1 (1/295.15 K – 1/273.15 K) 

 0.5747            = – 
Ea

8.3145 J K-1 mol-1 (-2.7288x10-4 K-1) 

 Ea = 17.51 kJ mol-1 
 

Then  k = A e–Ea/RT  using the lower temperature data point: 
 

 4.52 M-2 s-1 = A e(–17.51x103 J mol-1/8.3145 J K-1 mol-1/273.15 K) = A e-7.710 = A (4.484x10-4) 
 A = 1.01x104 M-2 s-1 
 

The number of significant figures in ex is the number of significant figures in the mantissa of x. 
The mantissa of the argument of the exponential is the “.710” part, or two significant figures. 
Either original data point gives the same pre-exponential factor. The units of the pre-exponential 
factor are always the same as the rate constant. 
 
 

25.  The decomposition of urea is NH2CONH2 + 2 H2O  2 NH+
4 + CO–

3 . The activation energy 
for the reaction is 128.0 kJ mol-1. The rate constant 71.2C is 2.77x10-5 min-1. Calculate the rate 
constants at 40.0C.  
 
 

Answer:  The plan is to use the linearized form of the Arrhenius temperature dependence, 
Eq. 3.5.7. The temperatures must be converted to absolute temperatures. 
   At 71.2C the absolute temperature is 344.4 K. The linearized form of the Arrhenius 
relationship for two data points is Eq. 3.5.7: 
 

 ln kT2/kT1
 = – Ea/R (1/T2 – 1/T1)     (3.5.7) 

 ln (kT2/2.77x10-5 min-1) = – 
128. x103 J mol-1

8.3145 J K-1 mol-1 (1/313.2 K – 1/344.4 K) 

 ln (kT2/2.77x10-5 min-1) = – 1.5394x104 (2.892x10-4 K-1) = 4.452 

 kT2 = 2.77x10-5 min-1 e–4.452 = 3.228x10-7 min-1 = 3.2x10-7 min-1 

 

There are only three significant figures in the inverse temperature difference: 
 

 (1/313.2 K – 1/344.4 K) = 3.19285x10-3 – 2.90360x10-3 = 0.2892x10-3 K 
 

     3 SFpdpt 3 SFpdpt      3 SFpdpt 
 

where “3 SF dpdt” is short for three significant figures past the decimal point. The number of 
significant figures in ex is the number of significant figures in the mantissa of x. The mantissa of 
the argument of the exponential is the “.452” part, or two significant figures. 
 
 

26.  The rate constant for the decomposition of N2O5 is 8.09 min-1 at 308.0 K and 90.1 min-1 at 
328.0 K.6 Calculate the rate constant at 298.2 K. 
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Answer:  The plan is to calculate the activation energy using Arrhenius temperature dependence 
and then use the same equation and one of the data points to calculate the new rate constant. 
   The linearized form of the Arrhenius relationship for two data points is Eq. 3.5.7: 
 

 ln kT2/kT1
 = – Ea/R (1/T2 – 1/T1)     (3.5.7) 

 ln (90.1/8.09) = – 
Ea

8.3145 J K-1 mol-1 (1/328.0 K – 1/308.0 K) 

 2.4103           = – 
Ea

8.3145 J K-1 mol-1 (-1.9797x10-4 K-1) 

 Ea = 101.23 kJ mol-1 
 

There are four significant figures in the ln because the number of significant figures in the 
mantissa of ln x is the number of significant figures in x; the mantissa is the “.4103” portion. 
There are only three significant figures in the inverse temperature difference: 
 

 (1/328.0 K – 1/308.0 K) = 3.04878x10-3 – 3.24675x10-3 = 0.19797x10-3 K 
 

     3 SFpdpt 3 SFpdpt      3 SFpdpt 
 

where “3 SFdpdt” is short for three significant figures past the decimal point. 
   Then using the lower temperature data point and Eq. 3.5.7 gives the rate constant at 298.2 K: 
 

 ln kT2/kT1
 = – Ea/R (1/T2 – 1/T1)     (3.5.7) 

 ln (kT2/8.09 min-1) = – 
101.23x103 J mol-1

8.3145 J K-1 mol-1 (1/298.2 K – 1/308.0 K) 

 ln (kT2/8.09 min-1) = – 1.2175x104 (-1.0670x10-4 K-1) = 1.2991 

 kT2 = 8.09 min-1 e–1.2991 = 2.207 min-1 = 2.2 min-1 

 

WWW  We can verify the significant figure propagation using the “Uncertainty Calculator,” from 
the text Web site. The activation energy calculation propagation is given by the following input. 
 

 

 
 

The propagation for the Arrhenius temperature dependence of the rate constant gives: 
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Significant figure rules and careful error propagation both give two significant figures in the final 
result: 2.2070.046 min-1 = 2.2 min-1.  For publication, the result is best expressed as 
2.2070.046 min-1. Significant figure rules are a poor substitute for careful error analysis, used 
only as a time saving convenience. 
 

[Alternately, the pre-exponential factor can be determined by solving for A from k2 = A e–Ea/RT, 
and then the rate constant at the new temperature is determined using A and Ea. However, this 
approach is much more difficult to determine the proper number of significant figures in the final 
result. While algebraically equivalent, using Eq. 3.5.7 is the preferable approach.] 
 
 
27.  The half-time for the first-order denaturation of yeast invertase at 55.0C and pH 3 is 
26.7 min. The activation energy is 308. kJ mol-1.7 Calculate the time for the denaturation of the 
protein to be 75% complete at 60.0C. 
 
 
Answer:  The plan is to calculate the rate constant at 55C from the half-time and use the 
linearized form of the Arrhenius temperature dependence, Eq. 3.5.7, to calculate the rate constant 
at 60C. Next the time for 75% completion is calculated using [A]/[A]o = 0.75. The temperatures 
must be converted to absolute temperatures. 
   At 55.0C the absolute temperature is 328.2 K and at 60.0 C the temperature is 333.15 K. The 
rate constant at 55C is calculated from the half-time using Eq. 3.2.11, t½ = ln 2/k2: 
 

 k2,328K = 0.6932/26.7 min = 0.02596 min-1 

 

The linearized form of the Arrhenius relationship for two data points is Eq. 3.5.7: 
 

 ln kT2/kT1
 = – Ea/R (1/T2 – 1/T1)     (3.5.7) 

 ln (kT2/0.02596 min-1) = – 
308. x103 J mol-1

8.3145 J K-1 mol-1 (1/333.2 K – 1/328.2 K) 

 ln (kT2/0.02596 min-1) = – 3.704x104 (-4.5722x10-5 K-1) = 1.6937 

 kT2 = 0.02596 min-1 e1.6937 = 1.412x10-7 min-1 = 0.1412 min-1 
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    There are only two significant figures in the inverse temperature difference: 
 

 (1/333.2 K – 1/328.2 K) = 3.00120x10-3 – 3.04692x10-3 = 0.04572x10-3 K 
 

     3 SFpdpt 3 SFpdpt      2 SF 
 

where “3 SFdpdt” is short for three significant figures past the decimal point. The number of 
significant figures in ex is the number of significant figures in the mantissa of x. The mantissa of 
the argument of the exponential is the “.6937” part, or one significant figure. 
   The time for 75% completion is determined from the integrated first-order rate law: 
 

 ln



[A]

[A]o
 = –k1t  giving   ln(0.75) = -(0.1412 min-1)t        with       t = 2.0 min 

 

The reaction is greatly accelerated by the temperature increase of only 5C because the activation 
energy is so large. 
WWW  We can improve upon the significant figure propagation using the “Uncertainty 

Calculator,” from the text Web site. The Arrhenius equation propagation is given by the 
following input. 
 

 

 
 
The result has two significant figures, 0.14. The error in the final result is given by: 
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The final result is 2.0370.098 min-1, which is significantly more precise than the uncertainty 
based on significant figure rules, namely 2. min-1. For publication, the result is best expressed as 
2.0370.098 min-1. Significant figure rules are a poor substitute for careful error analysis, used 
only as a time saving convenience. 
 
 
28.  The development of biological complexity and the emergence of life have important time 
constraints. These time constraints in turn give a corresponding range of reaction rate constants 
for the production of the building blocks of life. All reactions are reversible, and the ratio of the 
forward and reverse rate constants is given by the equilibrium constant, Keq =kf/kr. Favorable 
equilibrium is required to allow the significant build-up of products. A careful balancing of rate 
and equilibrium constants is necessary for the persistence necessary to build molecular and 
organizational complexity. If reactions are two fast, complexity can’t be established because the 
lifetimes of the molecules are too short. If reactions are too slow, interdependent sets of complex 
reaction sequences can’t develop. The range of reaction half-times that are amenable for the 
building of complexity is estimated to be in the 1 s to 100 yr range, which still spans more than 9 
orders of magnitude.8 Assume a range of pseudo-first order half-times of 1 s to 100 yr to 
calculate the range of amenable activation energies for reactions that build complexity at 298 K. 
Typical pre-exponential factors are in the range of 1.0x1010 s-1 to 1.0x1011 s-1. 
 
 

Answer:  The plan is to use k = A e-Ea/RT to calculate a range of corresponding activation 
energies, where the range of rate constants is determined from the half-times, t½ = ln(2)/k1. 
   The range of half-times, 1 s to 100 years, corresponds to a range of pseudo-first order rate 
constants from 0.693 s-1 to 2.20x10-10 s-1, respectively. The following table then gives the values 
of the activation energies, depending on the chosen value of the pre-exponential factor and half-
time, using Ea = –RT ln(k/A): 
 

Table:  Activation Energies for Specific Pre-exponential Factors and Rate Constants 
 

A                  k = 0.693 s-1 k = 2.20x10-10 s-

1 

1.0x1010 s-1 58 kJ mol-1 112 kJ mol-1 

1.0x1011 s-1 64 kJ mol-1 118 kJ mol-1 

 
Notice that significant activation energies are required. The activation energies are sizable 
fractions of typical covalent bond energies. The conclusion is that the development of 
complexity must be mediated through covalent bonding.8 Non-covalent interactions, such as 
hydrogen bonding and - interactions, are insufficient to provide the persistence necessary for 
building complexity. However, after significant complexity is established, networks of 
cooperative non-covalent interactions are sufficient. For example, protein denaturation typically 
has high activation energies (see the previous problem). Even though the range of half-times 
covers nine-orders of magnitude, the corresponding activation energies vary only by a factor of 
two. Molecules involved in cell signaling, such as NO and acetylcholine, typically have short 
half-times. Structural scaffold polymers, such as cellulose and collagen, have long half-times. 
Both extremes are necessary to maintain complex systems. 
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29. In this problem we compare the integrated rate law for A + B  P with A  P for a simple 
first-order and second-order reaction. (a) For a second-order reaction that is first order in A and 
first order in B, solve Eq. 3.2.52 for . Then plot [A] = [A]o –  using the initial conditions [A]o = 
0.5 M, [B]o = 1.0 M and k2 = 0.1 M-1 s-1. Let t range from 0 to 20 s. (b) On the same axis, plot the 
corresponding time course for a first-order reaction, AP, with [A]o = 0.5 M and k1 = 0.1 s-1. (c) 
On the same axis, plot the corresponding time course for a simple second-order reaction of the 
form and stoichiometry A  P. For this last plot, use a rate constant of k2 = 0.2 M-1 s-1 so that 
the initial rates for all three types of reactions are equal, to make a fair comparison. (d) 
Rationalize the differences in the plots. 
 
 
Answer:  The integrated rate law for A + B  P that is first-order in both reactants is given in 
Eq. 3.2.52: 

 
1

([B]o–[A]o)
 ln







[B]o–

[A]o–
   =  k2t + 

1
([B]o–[A]o)

 ln



[B]o

[A]o
 

 

Multiplying both sides of the equation by [B]o–[A]o and exponentiating gives: 
 

 






[B]o–

[A]o–
  = e([B]o–[A]o) k2t + ln([B]o/[A]o) =  

[B]o

[A]o
 e([B]o–[A]o) k2t 

 

Cross multiplying and multiplying out terms: 
 

 [B]o–   =  [B]o e([B]o–[A]o) k2t – 
[B]o

[A]o
  e([B]o–[A]o) k2t 

 

Collecting terms in : 
 

  – 
[B]o

[A]o
  e([B]o–[A]o) k2t = [B]o–  [B]o e([B]o–[A]o) k2t 

 

Solving for : 
 

  = [B]o 
( )1 – e([B]o–[A]o) k2t





1 – 

[B]o

[A]o
e([B]o–[A]o) k2t

 

 

Alternatively, multiplying numerator and denominator by [A]o/[B]o gives: 
 

  = [A]o 
( )1 – e([B]o–[A]o) k2t





[A]o

[B]o
 – e([B]o–[A]o) k2t

 

 

A spreadsheet was set up to calculate e([B]o–[A]o) k2t, , and [A]o–. Additional columns were 
added for the first-order function, [A] = [A]o e–k1 t, and the simple second-order function: 

 [A] = 
1





1

[A]o
 + k2t

 

 



Kinetics  31 

   [A]o- [A] [A] 
t (s) exp((b-a)kt)  A+B -> P 1st order 2nd order 

0 1 0 0.5 0.5 0.5 
2 1.105 0.087 0.413 0.409 0.417 
4 1.221 0.153 0.347 0.335 0.357 
6 1.350 0.206 0.294 0.274 0.313 
8 1.492 0.248 0.252 0.225 0.278 

10 1.649 0.282 0.218 0.184 0.250 
12 1.822 0.311 0.189 0.151 0.227 
14 2.014 0.335 0.165 0.123 0.208 
16 2.226 0.355 0.145 0.101 0.192 
18 2.460 0.372 0.128 0.083 0.179 
20 2.718 0.387 0.113 0.068 0.167 

 

The corresponding plot is: 
 

0
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]

A+B -> P

1st order

2nd order

 
 (d) To rationalize the differences, we write the rate laws at 10 s as an example. At 10 s, from the 
table, for the A + B P  case, [A] = 0.218 M and [B] = [B]o–  = 0.718 M. Substituting the 
actual concentrations: 
 

   2nd order overall A + B  P –
d[A]

dt   = k2 [A] [B] = k2 [A] (0.718)   1 

For the first-order rate law: 

 1st order A  P  –
d[A]

dt   = k1 [A]     2 

and for the simple second-order rate law, [A] = 0.250 at t = 10 s giving: 

 2nd order A  P  –
d[A]

dt   = k2 [A] [A] = k2 [A] (0.250)   3 
 

In Eq. 1, [A] is multiplied by (0.718) thus decreasing the rate of disappearance. In Eq. 2, [A] 
stands alone, so the rate of disappearance of [A] is faster than Eq. 1. In Eq. 3, [A]2 is effectively 
[A] (0.250) which is the smallest product of all three and therefore the slowest. 
 
 
30. Show that Eq. 3.4.22 reduces to simple first-order behavior, with a rate constant of just k1, 
for a reaction that runs to completion. 
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Answer: Eq. 3.4.22 involves the sum of the rate constants: 
 

 
d([A] – [A]eq)

dt  = – (k1 + k-1)([A] – [A]eq) 

which doesn’t look like it will reduce to a form that only depends on k1. However, note that from 
the equilibrium constant: 
 

 Keq = 
k1

k-1
 = 

[B]eq

[A]eq
 

 

or solving for k-1 gives: 
 

 k-1 = k1/Keq 
 

giving: 
 

 
d([A] – [A]eq)

dt  = – k1(1 + 1/Keq)([A] – [A]eq) 
 

In addition, [A]eq = [B]eq/Keq. For a reaction that runs to completion, Keq  , k-1  0, and [A]eq 
 0, which gives Eq. 3.2.2. 
 
 
31. Find the lifetime and half-time for a reversible first-order/first-order reaction from Eq. 
3.4.23: 
 

  k1 
      A     
  k-1 
 
 
Answer: The lifetime, , is the 1/e time for the course of the reaction. Since the reaction doesn’t 
run to completion, the 1/e point is when the displacement is 1/e of the way to equilibrium: 
 

 



[A] – [A]eq

[A]o – [A]eq
 = 1/e 

 

Then Eq. 3.4.23 reduces to: 
 

 ln



[A] – [A]eq

[A]o – [A]eq
 = ln(1/e) = –ln e = –1 = – (k1 + k-1)  

 

Solving for the lifetime gives: 
 

  = 
1

(k1 + k-1)
 

 

This equation should be compared to the temperature-jump relaxation time for the same reaction 
order and stoichiometry, Eq. 3.6.14. These two equations are the same. 
   Now for the half-time: 
 

 



[A] – [A]eq

[A]o – [A]eq
 = ½ 

 



Kinetics  33 

Then Eq. 3.4.23 reduces to: 
 

 ln



[A] – [A]eq

[A]o – [A]eq
 = ln(1/2) = –ln 2 = –0.6931 = – (k1 + k-1)  

 

and the half-time is t½ = 
ln 2

(k1 + k-1) = 
0.6931

(k1 + k-1) 

 
 
32.  For a reversible first-order/first-order reaction: 
 

  k1 
      A     
  k-1 
 

(a) Show that the displacement for A after n half-times is given by: 
 

 [A] – [A]eq = ([A]o – [A]eq) 


1

2
n

 
 

(b)What percentage of the initial displacement for A remains after five half-times? 
 
 
Answer:  The half-time for a reversible first-order/first-order reaction with 1:1 stoichiometry is 
the time when: 
 

 



[A] – [A]eq

[A]o – [A]eq
 = 1/2 or  t½ = 

ln 2
(k1 + k-1)

 
 

For n half-times, substituting t = n t½ into Eq. 3.4.24 gives: 
 

 [A] – [A]eq = ([A]o – [A]eq) e– (k1+k-1)n t½  =  ([A]o – [A]eq) e–n ln 2  = ([A]o – [A]eq) eln 2–n
 

        = ([A]o – [A]eq) 2-n =  ([A]o – [A]eq) 


1

2
n

 
 

(b) After five half-times the displacement is [A] – [A]eq = ([A]o – [A]eq) 


1

2
5

 

and 


1

2
5
 = 0.0312 or 3.1% remains compared to its equilibrium value. 

 
 
33.  For a reversible first-order/first-order reaction: 
 

  k1 
       A    B
  k-1 
 

(a) Show that the displacement for A after n lifetimes is given by: 

 [A] – [A]eq = ([A]o – [A]eq) 


1

e
n

 

A commonly quoted rule is that a reaction or process has essentially returned to equilibrium after 
five lifetimes. (b)What percentage of the initial displacement for A remains after five lifetimes? 
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Answer:  The lifetime for a reversible first-order/first-order reaction with 1:1 stoichiometry is the 
time when: 
 

 



[A] – [A]eq

[A]o – [A]eq
 = 1/e or   = 

1
(k1 + k-1)

 
 

For n lifetimes, substituting t = n  into Eq. 3.4.24 gives: 
 

 [A] – [A]eq = ([A]o – [A]eq) e– (k1+k-1)n   =  ([A]o – [A]eq) e–n 

        = ([A]o – [A]eq) 


1

e
n

 

(b) After five lifetimes the displacement is [A] – [A]eq = ([A]o – [A]eq) 


1

e
5

 

and (1/e)5 = 6.74x10-3 or 0.67% remains compared to its equilibrium value. 
 
 
34.  Show that the relaxation time for a dimerization: 
  k2 

  2 A   A2 

  k-1 
 

is  = 
1

(4k2[A]eq + k-1)
 

 

Assume that the reaction is second order in the forward direction and first order in the reverse 
direction. 
 
 
Answer:  The rate law is given by: 
 

   = 
d[A2]

dt  =  k2 [A]2 – k-1[A2]      1 
 

Equilibrium is established when the forward and reverse rates are equal: 
 

 Keq = 
k2

k-1
 = 

[A2]eq

[A]eq
2  or   k2[A]eq

2  – k-1 [A2]eq = 0    2 
 

Subtracting Eq. 2 from Eq. 1 references the concentrations to the equilibrium values: 
 

 
d[A2]

dt  =  k2 [A]2 – k2[A]eq
2  – k-1[A2] + k-1 [A2]eq    3 

 

Factoring out the rate constants gives: 
 

 
d[A2]

dt  =  k2([A]2 – [A]eq
2 ) – k-1([A2] – [A2]eq)     4 

 

Eq. 3.1.2 gives the relationship of the concentration changes, d[A] = –2 d[A2].The displacement 
in the product concentration is x = [A2] – [A2]eq and then for the reactant [A] – [A]eq = –2x or 
solving for [A]: 
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 [A] = [A]eq – 2x        5 
 

The [A]2 in terms of the displacement is the square of eq. 5: 
 

 [A]2 = [A] eq
2  –4[A]eq x + 4 x2  [A] eq

2  –4[A]eq x    6 
 

However for the last inequality, we assume the displacement is small so that the 4x2 is negligible 
(as we assumed for Eq. 3.6.7). Substituting Eq. 6 into Eq. 4 and using x = [A2] – [A2]eq, the rate 
law in terms of the displacements is: 
 

 
dx
dt   =  – 4k2[A]eq x – k-1 x       7 

 

Distributing out the factor of x gives: 
 

 
dx
dt   =  – (4k2[A]eq + k-1) x       8 

 

Setting the relaxation time to: 
 

  = 
1

(4k2[A]eq + k-1)
        9 

 

Substituting this definition for the relaxation time gives: 
dx
dt   = – 

x
  which integrates to: 

 x = xo e
–t/

          10 
 

as in Eq. 3.6.13. Once again, neglecting the term in x2 in Eq. 6 guarantees the relaxation is 
simple-exponential. 
 
 
35. Consider the reaction:  A + B   C + D 
Show that the displacement for each product is x and for each reactant is – x, independent of the 
initial concentrations used to prepare the reaction mixture. 
 
 
Answer:  Set up the following reaction table to show the stoichiometric relationships based on 
the extent of the reaction: 
 
 A                  + B                   C                  + D 
Initial [A]o [B]o [C]o [D]o 
During [A] = [A]o–  [B] = [B]o–  [C] = [C]o+  [D] = [D]o+  
Equilibrium [A]eq = [A]o– eq [B]eq = [B]o– eq [C]eq = [C]o+ eq [D]eq = [D]o+ eq 
Displacement [A] – [A]eq =  [B] – [B]eq = [C] – [C]eq = [D] – [D]eq = 
 ([A]o-)-([A]o-eq) ([B]o-)-([B]o-eq) ([C]o+)-([C]o+eq) ([D]o-)-([D]o-eq) 
 = eq –  = – x = eq –  = – x =  – eq= x =  – eq= x 
 
 
36. Consider a temperature jump perturbation for a reaction that is second order in the forwards 
and second order in the reverse direction: 
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  k2 
 A + B    C + D 
  k-2 

Show the relaxation time is:   
1

k2([A]eq + [B]eq) + k-2([C]eq + [D]eq)
 

 
 
Answer:  For the displacement away from equilibrium x  [C] – [C]eq = [D] – [D]eq. 
Since the stoichiometry is 1:1 the displacement in A is [A] – [A]eq = [B] – [B]eq = –x. The 
stoichiometric relationships are summarized in Table P30.1. 
 

Table P30.1: Concentrations for an opposed second-order/second-order reaction. 
 

Progress [A] [B] [C] [D] 
initial, new T [A]o [B]o [C]o [D]o 
middle [A]eq – x [B]eq– x [C]eq + x [D]eq + x 
equilibrium [A]eq [B]eq [C]eq [D]eq 
displacement [A] – [A]eq= –x [B] – [B]eq= –x x  [C] – [C]eq x = [D] – [D]eq 

 
The rate law is: 
 

 
d[C]

dt   = k2[A][B] – k-2[C][D]      1 
 

At equilibrium, the forward rate is equal to the reverse rate, k2[A]eq[B]eq = k-2[C]eq[D]eq, since at 
equilibrium the time derivative is zero: 
 

 k2[A]eq[B]eq – k-2[C]eq[D]eq = 0     2 
 

Using Eq. 3.6.5 
 

 
d[C]

dt   =  
d([C]eq+x)

dt   =  
dx
dt       3 

 

Substituting the values from Table P30.1 and Eq. 3 into Eq. 1 gives: 
 

 
dx
dt   = k2([A]eq– x)([B]eq– x) – k-2([C]eq+x)([D]eq+x)   4 

 

Multiplying out each term gives: 
 

dx
dt  = k2[A]eq[B]eq – k2[A]eq x – k2[B]eq x + k2x2 – k-2[C]eq[D]eq – k-2[C]eq x – k-2[D]eq x – k-2x2 

          5 
Since the perturbation is small, the displacement away from equilibrium, x, must be small. The 
term in x2 is then negligible. Neglecting the terms in x2 and subtracting Eq. 2 from Eq. 5 gives: 
 

 
dx
dt   = – k2[A]eq x – k2[B]eq x – k-2[C]eq x – k-2[D]eq x   6 

 

Distributing out the common factor of –x gives: 
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dx
dt   = – {k2([A]eq + [B]eq) + k-2([C]eq + [D]eq)} x   7 

 

All the terms in the braces are constants. We define the relaxation time: 
 

   
1

k2([A]eq + [B]eq) + k-2([C]eq + [D]eq)
    8 

 

The rate law in terms of the displacement again reduces to 
 

 
dx
dt   = – 

x
        9 

 
 
37. Consider a temperature jump perturbation for a reaction that is second order in the forwards 
and second order in the reverse direction and catalyzed by C:9 
 

  k2 
 A + C    B + C 
  k-2 
 

Given the catalyst concentration is [C]o, show that the relaxation time is:  = 
1

(k2 + k-2)[C]o
 

 
 
Answer:  Assuming that the reaction as written is complete and no other mechanistic steps are 
involved, the concentration of the catalyst is constant. The rate law is: 
 

 
d[B]

dt   = k2[A][C]o – k-2[B][C]o 

 

This reaction is pseudo-first order in both directions with effective rate constants that combine 
the original rate constants with the catalyst concentration: 
 

 
d[B]

dt   = (k2[C]o) [A] – (k-2[C]o) [B] 

 

The reaction is then pseudo-first order in both directions, with relaxation time given by Eq. 
3.6.14: 
 

  = 
1

 (k2[C]o) + (k-2[C]o)
 

 

which simplifies to:  = 
1

(k2 + k-2)[C]o
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