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Chapter 3: Kinetics

The hydrolysis of ethylacetate by sodium hydroxide,
CH:COOCHCHsz + OH - CHCOO + CH,CHsOH

is proposed to follow an addition-elimination megisan. The time course for the

reaction with initial concentration of hydroxide@G0100 M and initial ethylacetate at
0.02656 M is given below, as determined by conditgtmeasurements. Determine the
rate law for the process. In the next chapter wedigcuss how to verify that the rate Igw
is consistent with the proposed mechanism.

t (min) 0 1 2 3 4 5 6
[OH]/103M 10.000 7.307 5467  4.285 3.348  2.634 _ 2.133
t (min) 7 8 9 10 11 12

[OH1/10° M 1.698 1.361 1.131 0.918 0.754  0.630

The rates of chemical reactions play a critioée in the maintenance of natural bio-
geochemical cycles and the fate of environmentilifamts. The rates of processes in living
cells are carefully controlled by the regulatioreozymatic catalysis. The tailoring of the
properties of polymeric systems involves the cdredatrol of the kinetics of polymerization.
The competition between kinetic and equilibriumtcohof organic synthetic reactions often
determines the production of useful products. Thue to increased energy efficiency in
industrial production is often through the devel@mtnof new transition metal catalysts that
lower the activation energy demand and increasepheificity of chemical reactions. A careful
description of the rates of chemical processestisal for many applications. How do we
characterize and control the rates of chemicalti@as?

You have already had an introduction to chenkaatics in your General Chemistry course.
Please review your General Chemistry text chaptesh@mical kinetics, so that we don’t need to
repeat that introductory information. We now wamekpand beyond that elementary treatment.

A chemical kinetics study has three stages:

1. The determination of the empirical rate law.

2. The determination of the mechanism of the reacti

3. The determination of the rate constants for @aebhanistic step through first-principles
theoretical calculations.

Stage 1Consider the example reaction:

Hz (9) + k(9) — 2 HI(9)

Therate law expresses the concentration or partial pressyrertience of the rate of the
reaction. The experimentally determined rate laterms of partial pressures is:

o dPs:
rate =v = — dt =Kk Ry P

or in terms of gas phase concentrations:
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L= —ﬂ:—tzl =k [Hz] [I2] or equivalently v = —% =K O+ C2

where k is the rate constant. The symbalill be used to symbolize the rate of the reactibme
order of the reaction with respect to each constitugtihé exponent of the concentration term in
the rate law. Theverall order is the sum of the orders with respect to eachtaeadn other
words, this reaction is first order inpHirst order in 4, and second order overall. Remember that
the reaction orders cannot be predicted from theti@n stoichiometry, because the reaction may
occur in more than one mechanistic step. The @actiders can only be determined by
experiment. This specific rate constant might &lsavritten as k indicating that the reaction is
second order overall. However, the subscriptsdte constants are really just for convenience
and have no theoretical significance. For exanfpleanother systempkmight specify that it is
the second rate constant in a series of reactions.

The order of the reaction with respect to a &z is often 1, 2, or rarely 3. However,
reaction orders can also be simple fractions liker % or any rational number and also negative.
A negative order shows that the reaction rate dse®with increasing concentration or partial
pressure of the species. Reactants, productspihens, and catalysts can appear in rate laws. An
example with a product appearing in the rate lad/@&so a negative non-integer order is:

1d[SGj] ;
25Q(g)+ 02(9) ~ 2SQ(g) L=5"gr = KI[SOI[SO]™
An example with a catalyst is the decompositiohyafrogen peroxide, catalyzed by iodide ion:
I- 1 d[H207]
2 H,02 (aq) - 2 HO () + Oz (g) V=5 g = k[H02] [I]

The I ion does not appear in the reaction stoichiométuydoes appear in the rate law.

Stage 2 After the empirical rate law is determinednpachanismis developed that agrees with
the experimental rate law. For example, one passitdchanism for thed+ > reaction is:

ks
l2(9) = 2 1(9)
K1
ka
H2(g) + 1(9) - HI (9) + H(g)
ky'
H(g) +12(g9) - HI(9) + 1(9)

The mechanism is the sequenceleimentary steps that describe the collisions that take place
during the course of the reaction. The number demdes involved in each collision is called
themolecularity. The first step in the forward direction,+ 2 |, isunimolecular. The first step
in the reverse direction, 2-1 I, isbimolecular. The second and third steps are both
bimolecular. The steps in a complete mechanismldtamid to give the overall reaction. There
may be more than one mechanism that agrees wittxiherimental rate law. For example, an
alternate mechanism forH |7 is:

k1 ks
k(9) = 21(9) H (g) + 2 1(g) — 2HI(9)

K1
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A definitive conclusion about the actual mechanienthe reaction may be difficult. Or, several
mechanisms may be operative depending on the oeamtnditions. Reaction mechanisms are
the subject of the next chapter.

Stage 3 Once a mechanism has been postulated, calqudadiocthe reaction dynamics are used
to predict the rate constants for the elementayssin the mechanism. These calculations are
often based on molecular orbital calculations g@atistical mechanical theories for the reaction
dynamics. We will return to reaction dynamics & é&md of this text after we have covered
guantum mechanics and statistical mechanics.

We first consider how to determine the reactete law.

3.1 The Rate Law Expresses the Concentration Depeauce of the Rate of the Reaction

The rate law may be expressed in terms of theofappearance of a product or the rate of
disappearance of a reactant. The rates expresseqhia of different species are related by the
stoichiometric coefficients for the balanced chehreaction.

The Expression of Chemical reactiorfSonsider the general reaction:
aA+bB-cC+dD 3.1.1

Let the number of moles of A change bydar in general for species i the change is tihe
changes are related through the stoichiometricficosits:

—adm=—édnsz%drb=ldrbzdé 3.1.2
These relationships define thirange in the extent of the reactiond¢. We use the extent of the
reaction to measure the reaction progress, bethesxtent is independent of the stoichiometry.
Theextent of the reactiong, varies from 0 to 1 mol during the course of tbaation as written,
corresponding to a moles of A reacting to produogotes of C. Eq. 3.1.2 can be applied to any
single step reaction, multi-step reactions thattdomolve stable intermediates, and reactions
close to equilibrium, since the concentrationswtéimediates are negligible near equilibrium.
The stoichiometric coefficients are unitless, givthe units fo€ as moles. Thetoichiometric
coefficientsare symbolized ag for each constituent i. The are defined as negative for a
reactant and positive for a product. With the asgmnsva = —a,vs = —b,vc = ¢, andvp = d, in
general:

1
—dn =d 3.1.3
Vi

or equivalently solving for the change in moles:
dn =v; d¢ 3.14

The rate law is usually expressed in terms of cotmagons or partial pressures, which are
intensive variables, so that the rate law holdsafor size system. Dividing Eq. 3.1.3 by the
volume:

1 1 1
S dmV) =3 da =y 3.1.5
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and taking the derivative with respect to time gitleerate of the reaction in terms of changes in
concentration:

0] =V—Ia =V dt 3.1.6
Partial pressures and molal concentrations canb@sesed. The rate defined by this last equation
is sometimes called thiestantaneous rate which is just the derivative of the concentration
versus time curve at the time of interest. @kerage ratefor a reaction during the time interval
from t1 to t is given by the concentrations at timend ¢, G(t1) and gt2), respectively:

_ 1 ci(tz) —aG(ta) i+ —_ Gi(ta) + a(t2)
0= iz—t(i - atT= 12t2 and o= ZG 2 3.1.7
|

The average rate corresponds to a time and coatienthalf-way through the interval,
Figure 3.1.1.

[Al

ot
Cc
)

Figure 3.1.1: The average rate corresponds to tpaimmt of the time interval.

The Time Course for the Reaction is Determined Exgatally. The starting point for the
determination of the rate law is the measuremethetoncentration of a reactant or product as
a function of time. The concentrations can be megishy many different analytical techniques.
We will focus on UV/visible absorption spectroscpfiyorescence, and conductivity. To
determine the rate law, there are several options.

1. Thelntegral Method: The experimental time course can be comparegetintegrated
form of different possible rate laws.

2. TheHalf-time Method: The variation of the half-times of the reactioithamitial
concentration can be compared to predictions ftoerpbssible rate laws.

3. TheDifferential Method : The differential method directly follows the aage rate of the
reaction as a function of the concentrations. Tiiteal rate method that you learned in your
General Chemistry course is a version of the diffgal technique.

We first consider the integral and half-time hwuets. For these methods we need to find the
integrated rate laws which express the concentrations of the reacamdsproducts as a
function of time.

3.2 Determining the Rate Law: Integrated Rate Lawsnd Half-Times

1st Order ReactionsConsider a first order reaction of the form:
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ki
A- B 3.2.1

with first-order rate constant kAssume a first-order rate law written in termshaf rate of
disappearance of the reactant:

—ﬂdétl = ki [A] 3.2.2
Multiplying both sides of this equation by dt gives
d[A] = — ki[A] dt 3.2.3

which with reference to general patté&irl we recognize as simple exponential procesbhe
limits for the integration are at t = 0 the init@ncentration of A is [AJand at time t the
concentration of A is given as [A]:

Al d[A]
fwo Al - —f; ks dt 3.2.4

Then usindg] 1 we can immediately write thetegrated rate law as:

In GAA\]]_O) = — kit 3.25

Solving for [A] gives:
[A] = [Alo €™ 3.2.6

which we recognize as a simple exponentially destngafunction of time, Figure 3.2.1a. Fitting
time course data to Eq. 3.2.6 is used to verifstfarder behavior. Eq. 3.2.5 shows that we can
also verify first-order behavior by plotting thepeximental data as In [A] versus t. Solving Eq.
3.2.5 for In [A] and comparing to the general fopfra straight line gives:

In [A] = — kit + In [Alo 3.2.7
y = mx+b

Associating the independent variable x with t, glmpe is m = — kand the intercept b = In [A]
If the resulting plot is a straight line, as in &iig 3.2.1b, the reaction is first order in A.

A
[Alo

[A]

[B] In [A]

A

[B] In [A]

slope = -k

(Al

>t >t

(a) (b)
Figure 3.2.1: First-order kinetics. (a) Integratate law, (b) A linear plot of In [A] vs. t
verifies first-order behavior.
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We could also follow the appearance of the pcoderom the one-to-one stoichiometry of this
reaction, the current concentrations of the reaetad product are related by:
[Alo = [A] + [B] 3.2.8

where [A] and [B] are the concentrations of thectaat and product at time t. We can then
calculate the concentration of B by difference, §A]o — [A]:

[B] = [Alo—[A] = [Alo (1 —€7 3.2.9

where we have substituted Eq. 3.2.6 for [A]. Theasmtration of B is also shown in Figure
3.2.1a. For the asymptotic concentration of [Bf,lemg times, t— o, €. 0, and [B] - [A]o.

1st Order Reaction Half-TimeAnother way to characterize first-order behavsaio find the
half-time of the reaction. The half-time,, ©f the reaction is the time necessary for thiaini
concentration of the reactant to decrease to otiehiss initial value. Substituting [A] = [AJ2
into Eq. 3.2.4 gives at the half-time:

[A] 0/2j
In( Alo =—kity 3.2.10
Solving for the half-time gives:
In2 0.693
b, = ki - ki 3.2.11

Notice that for a first-order reaction the half-éins independent of the initial concentration. In
other words, the time necessary for the conceotrdat decrease from 1.0 M to 0.5 M is the
same as the time from 1.0x4M to 0.5x1° M. Another characteristic of simple exponential
decay is that the concentration decreases by arfattwo for every successive half-time,
Figure 3.2.2.

A
[Alo
[Al

[Aloy

[Alo4
(Alog

H : ! > t
ty, 2t, 3ty
Figure 3.2.2: For a first-order reaction, the coniation decreases by a factor of two for
every successive half-time.

Radioactive decay is a first-order kinetic procd$se number of disintegrations per second of
the radionuclide decreases exponentially with tifrree half-time for the kinetic process is called
the half-life of the particular radionuclide. Thalflife of a radionuclide is a distinguishing
characteristic. The half-life of uranium-238 is #i8ion years and of polonium-212 is 0.3(5.
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Many other processes follow first-order kinetiEkiorescence emission follows first-order
kinetics. Thefluorescence lifetimeis defined as: = 1/k*, where k* is the effective rate
constant for fluorescence decay. The intensityumréscence emission, |, is given as:

—t/Ts

=g t= @ 3.2.12

where } is the initial fluorescence intensity after a shprlse of exciting light. Pulsed lasers,
pulsed light emitting diodes, and xenon flash lam@gscommonly used as time-resolved
fluorescence excitation sources. Many biologicabgs are based on changes of fluorescence
lifetimes. Please see the next chapter for a momgotete analysis of fluorescence lifetimes.

One useful interpretation of the fluorescenfititne and exponential decay in general is to
notice that when the time is equalttdhe exponential factor decreases By Ehe numerical
factor is € = 1/e = 0.368. The lifetimey, is often called the “1/e time.” All first-ordergresses
have a corresponding lifetime. For chemical kirgetibe 1/e time is equal to 1/k. The time
necessary for the concentration of the reactaatfirst-order chemical reaction to drop to 0.368
of its initial concentration is = 1/k. Notice that the lifetime and the half-timea first-order
process are distinct, but directly related, charstics; {, = 0.69311.

Boundary Conditions We used general pattelfhl to quickly derive the integrated rate law for

a first-order reaction. This derivation used amitdiintegral with the limits of integration: att

0 the initial concentration of A is [AJand at time t the concentration of A is givenAlk The

traditional method of solving differential equatsodoes the integration in a different order. First

the equation is integrated using an indefinitegrakand then the constant of integration is fixed

usingboundary conditions. Let’s repeat the derivation of Eq. 3.2.7 to hight the difference in

procedure. First, as id 1, we do the separation of variables by dividinghbsitles of Eq. 3.2.3

by [A]:
1

fa7 IA] = — ko 3.2.13

Then we do the indefinite integrals:

fﬁ d[A] = — fka dt 3.2.14

to find:
In [A] + ¢' = -kt + c" 3.2.15

where c¢' and c" are the integration constantshiertwo integrals. We can combine the two
integration constants as ¢ = c" — ' to give:

In [A] = —kit + ¢ 3.2.16

To find the integration constant we now apply tberary condition: at t=0 the concentration
of A is the initial concentration, [A] = [A] Setting t = 0 and [A] = [A]in Eq. 3.2.16 at the
initial boundary gives:

c =In[Alo 3.2.17
Substituting this value for ¢ back into Eq. 3.2di¥%es the final result:
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In[A] ==kit+In[A]o 3.2.18

This last equation is the same as Eq. 3.2.7. Theelof the method to use, definite integral or
indefinite integral with a boundary condition, iiatorical choice. Historically, chemical
kinetics was developed using indefinite integraihwoundary conditions, which is also the
normal presentation of the general theory of déifeial equations. Thermodynamics was
developed using definite integrals. You may useegitnethod when you do the homework
problems. Let’s continue on to determine the irdéggt rate laws for second-order reactions and
then get back to the experimental data.

2nd Order ReactionsThere are two general types of second-ordeticeec A — B + C and

A+ B - C + D. We tackle the type with a single reactast.fAssume the following reaction is
second-order in A:

A - products 3.2.19
The rate law is:

i%?zhmr 3.2.20

We can separate the variables by multiplying batassof the equation by dt and dividing both
sides of the equation by [A]

-1
A2 dIA] = ko dt 3.2.21
Note that the integral on the left is (see addendibnTable 1.5.1):
-1 1 ,
Taking the indefinite integral of both sides andhtining the integration constants gives:
1
A~ ket+c 3.2.23

To calculate the integration constant, we applyabendary condition at t = 0 then [A] = [A]
Setting t = 0 and [A] = [A]in Eq. 3.2.23 gives:

1
c= Alo 3.2.24
Substituting this integration constant back into £§.23 gives the integrated rate law:
1 1
Th = ket + 3.2.25
NIRRT

This equation is in the form of a straight linegiéiie 3.2.3, with t as the independent variable.
We can verify second-order behavior if a plot af &xperimental data as 1/[A] versus t gives a
straight line, with slope m =lkand intercept b = 1/[A] The time course of the reaction can be
determined by solving Eq. 3.2.25 for [A]:
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_ 1 __ [Alo
[A]_ﬁ+k2t_l+k2[A]ot
Alo

3.2.26

The time courses of first- and second-order proaessndistinguishable by eye; both plots of
[A] versus t look similar. The last equation is diger non-linear fitting of experimental data.

Eqg. 3.2.25 is often rearranged by subtractif@y]3/from both sides of the equation to give a
form that can be compared to Eq. 3.2.5 for a firsker reaction:

ﬁ—[Al]o:kzt 3.2.27
A
1/[A]
1[A]o

>

Figure 3.2.3: Second-order kinetics: A linear bf/[A] vs. t verifies second-order
behavior.

2nd Order Reaction Half-Time€nce again we set t z taind [A] = [A]lo/2 in Eq. 3.2.27 to find
the reaction half-time:

1 1
Canceling terms gives:
L kot 3.2.29
[Alo 2™ 2.
and solving for the half-time gives:
1
tl/2:[A] okz 3.2.30

Notice that the half-time for a second-order preases depend on the initial concentration. The
time necessary for the concentration to decrease 1.0 M to 0.5 M is a million times shorter
than the time from 1.0x10M to 0.5x10° M. The dependence of the half-time on initial
concentration is an important tool for determinihg order of a reaction.

The Effect of Reaction Stoichiometff/he order of the reaction with respect to theotes
reactants and products cannot be determined fremetiction stoichiometry; however, the
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reaction stoichiometry still has an effect on tle¢ads of the overall rate law. For example,
consider two different stoichiometries for a seconder reaction:

A-B and 2A- B
The rate law for the first 1:1 stoichiometry is:
A
L= —% = k2 [A]? (A - B) 3.2.31
and for the 2:1 stoichiometry from Eq. 3.1.2:
__1diAl_ ko [A]2 (2A- B) 3.2.32
2 dt
or solving this last equation for the rate of dizagrance of A:
d[A
—Jd—tl =2k [A]? (2A- B) 3.2.33

You might note that sometimes we are lazy, or fifufjeand neglect to write the stoichiometric
factor, as in the multiplicative factor of 2 insHast equation. However, for multi-step
mechanisms, it is important to use Eq. 3.1.2 tategthe rates for different reactions in a series,
so that the reactions are compared on an equahépand the overall stoichiometry of the
reaction is maintained.

Isolation Method and Pseudo-Order Reactiof®r complicated reactions it is often useful to
simplify the rate law by setting the concentratiohall the reactants except for one in large
excess, so the concentrations of everything buspleeies of interest remain essentially constant.
For example, consider reactions of the type A % BP. With B in large excess, the

concentration of B will remain at the initial comtetion, [B] = [Bl. The rate law:

v= -%%l = k [A]"[B]® 3.2.34

can be rearranged to give:

L= —ﬂdétl = (k[B]?) [A]" 3.2.35
and areffective rate constantis then defined assk= k[B]3. The order of the reaction with
respect to A can then be determined by comparie@tiperimental time course to integrated
rate laws. As a separate study, the concentrafidncan then be held in excess and then the
order with respect to B can be determined.

If the solvent is one of the reactants in dilsdution, the concentration of the solvent will
remain essentially constant. The concentratiom@fblvent is often combined with the rate
constant. For example, the rate of hydrolysis afese in dilute aqueous solution is first-order in
sucrose and first order in:8:

—%L k [sucrose][HO] = kett [sucrose] 3.2.36
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where ks = k|[H20] with the molar concentration of water in dilg@ution at ~55.5 M. This
reaction is said to beseudo-first order reaction. The concentration of a catalyst is often
essentially constant during the course of a reaarml can be similarly lumped with the rate
constant to give a simplifiegseudo-orderrate law.

The isolation method has some drawbacks. Théameem of the reaction may change with a
large excess of one of the reactants. Alternatjuteky reaction may have several parallel
pathways that shift in importance with concentragiol he isolation method is often used for
initial studies. However, the rate law so obtaiskduld be verified by studies with comparable
concentrations of all the reactants.

Determining the Reaction OrdeiSince absorbance is directly proportional tocesrtration,

A = gic, the absorbance can be used for the curve fittipdace of the concentrations. As a first
example, assume that only the reactant absorbs fist-order reaction, the term cancels in

the numerator and denominator of the In term in&E2.5, so either concentration or absorbance
may be used to directly determine the rate conskamta second-order reaction, substituting ¢ =
Alerinto Eqg. 3.2.27 gives:

%_Aio =§t (single absorber) 3.2.37
where A is the initial absorbance. Note that we use [A]tfe concentration of A and just A for
the absorbance. Then to determine the order adcio®m, absorbance versus time measurements
are collected in the laboratory and the data avtqal according to Egs. 3.2.5, 3.2.7 and 3.2.27.
Notice that a plot of 1/A versus t gives a straigie for a second-order reaction with a slope of
ko/er. Often in the laboratory, the long-time limitingsaorbance, A, of a reaction mixture
approaches a constant rather than zero. This cdmdtset may be caused by instrumental
artifacts like misalignment of the cuvette, caltibya drift, or by the constant absorbance of
another species in solution. The absorbance olusigo with a constant offset is given by:

A=¢gcCc+ A (constant offset) 3.2.38

and then the concentration of the species is diyeni= (A — Ad)/et. The plots are then made of
In(A — Ax) versus t or alternatively 1/(A —Aversus t.

As a second example, consider a reaction whatethe reactant and product absorb. Consider
a general reaction of the form A + B C + D. Assume that both A and C absorb, and |t fC
0. During the reaction [A] = [A} ¢ and [C] =&. The absorbance of the mixture at a single
wavelength is given by Eq. 2.6.1:

A =¢eal (JA]o—€) +ect & (product and reactant absorb) 3.2.39

whereea andec are the molar absorption coefficients of A andeSpectively. The following
ratio can be used to follow the progress of thetrea:

Al _[Al—g_ A-Ao
[Alo™ [Alo ~Ao—Ax

To prove this relationship, substitute Eq. 3.2188 the absorbance ratio in this last equation,
noting that, because of the 1:1 stoichiome§ry,[A]. at the end of the reaction:

(product and reactant absorb) 3.2.40
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A—Ax [ ([Alo=<) + et &] — el [Alo & ([A]o=¢) —&d ([Alo=€) [Alo<

Ao— Aoo - Eaf [A] o— ch [A] 0 a (Eaf - ch) [A] (0] - [A] o
3.241
Alternatively:
[Alo—[A] __& _Aoc—=A
Ao “TAlo~ Ao A (product and reactant absorb) 3.2.42

Egs. 3.2.40 and 3.2.42 can be used interchangediidprbance is not unique. Equations similar
to Eq. 3.2.38-42 hold for absorbance, conductivitigrescence or any other analytical
technique giving data that are directly proportidnaconcentration and additive for multiple
constituents. Eqgs. 3.2.40 and 3.2.42 eliminatentesl to know the molar absorption coefficients
or molar conductivity of the reactants or produotsthe purposes of verifying the reaction
order. Notice however, that the molar absorptioeffocient does affect the slope of the plot for a
second-order reaction, Eq. 3.2.37.

Finally, while the linear forms of the integrdtete laws are useful for verifying the order of a
reaction, non-linear curve fitting is better fotazdating the values of rate constants. The linear
plot for a first order reaction that has a sigrfitamount of experimental uncertainty, or noise,
is shown in Figure 3.2.4a. Notice that the effdata@ise increases as the reaction progresses.
Linear curve fitting treats all points equally. Hever, the data points at the beginning of the
reaction have less relative uncertainty than datatp at the end of the time course, so data
points at the beginning of the reaction should kehted more strongly in the curve fit.

0 0.6
05
1 0.5 ¢
15 0.4 1
— —2 )
< .25 < 0.3
= 3 <
®
0.2
-3.5 4
-4 A X 0.1
45 | .
-5 : ‘ ‘ 0
0 5 10 15 20 0 5 10 15 20
t(sec) t(sec)
(a) Linear fit (b) Non-linear fit

Figure 3.2.4: A simulated data set with constasbalie error 0£0.010. Non-linear curve
fitting gives k = 0.1934 0.0023 se¢ and [Al= 0.4933+ 0.0038 M.

The best way to extract the rate constant is tinéitdata directly to Eq. 3.2.6 or Eq. 3.2.26.
Another good reason to choose non-linear curveadits that the A value can be treated as a fit
parameter, Eq. 3.2.38. Using non-linear curvenfitis often the only way to make an unbiased
choice for A, especially if there is significant noise in tbad-time portion of the data. Non-
linear curve fitting is very easy, Figure 3.2.4b.
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Several on-line applets for non-linear curveriitiare available, including the

“Nonlinear Least Squares Curve Fit” applet on thatiook Web site and on the companion CD.

Excel spreadsheets are also available to do exgiaheuarve fitting. Many commercial graphics

packages are specifically designed for non-lineave fitting. Appendix 2 gives the formulas.
Non-linear curve fitting procedures give stataity valid estimates for the uncertainties of the

fit parameters and an estimate of the correlataefficient between the fit parameters. For

example consider first-order kinetic exponentitlrfg with fit parameters [A]land k. A

correlation coefficient between the fit paramet#r® means that the error in [Afhas no effect

on the error in k. For a correlation coefficientdf the errors in [AJand k are completely

correlated. For high correlation coefficients, aafirahange in the value of one of the data points,

caused by experimental error, will give a largengfeain the fit values of both [Aand k. Such a

complete correlation means that neither paramstenate is valid. For the example in Figure

3.2.4, the correlation coefficient between th@&tameters [A]and k is 0.64. Such a correlation

coefficient is quite good for exponential curveifig. Correlation coefficients larger than 0.95

usually suggest that one of the fit parameters sie@ble specified as a fixed parameter, which is

independently determined either directly from tlagador from another experiméhin some

cases algebraic rearrangement of the model equediodecrease fit value correlations.

Half-time Methods Instead of direct comparison of the time cowtat to various integrated

rate laws, the variation of the half-time of thacton for changes in initial concentrations of the
reactants can be used to establish the order oé#ution. The reaction is run with several
different starting concentrations of each reactauat the half-times for the reactions are
compared to the values expected for the differeattion orders, Egs. 3.2.11 and 3.2.30. If the
half-time doesn’t change as the initial concentratf a reactant is changed, then the reaction is
first order. If the half-time is inversely propamial to the initial concentration, the reaction is
second order.

Example 3.2.1: Determine Reaction Order by Comparison to Integid®ate Laws
Crystal violet reacts with hydroxide to convert the to a colorless form:

CV"+0OH - CVOH
purple colorless

The time course, measured as the absorbance sblilteon at 590 nm, is given below for an
initial crystal violet concentration of 1.2x2M and a hydroxide concentration of 0.0300 M. The
long-time absorbance is 0.040. Determine the astidre reaction and the rate constant.

t(min) 0 1 3 5 7 9 11 13 15
A 1.200 0.905 0526 0.317 0.200 0.133 0.094 0.07D58

Answer This experiment is an example of the isolatiagthnd. The concentration of base is
large enough that the concentration is essentalhgtant during the course of the reaction.
Using the linear forms of the integrated rate lams,need to prepare plots according to Egs.
3.2.7 and 3.2.25. In addition, the absorbance dbgsrto zero; there is an offset in the long-
time limit. So Eg. 3.2.38 must be used to cancelaifiset. A spreadsheet is set up with columns
t, A, and A— A, In(A — Ax), and 1/(A — A). The corresponding plots are given in Figures3.2.
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t (min) A A=A In(A-Ax) | 1/(A—Ax)
0 1.200 1.160 0.148 0.862
1 0.905 0.865 -0.146 1.157
3 0.526 0.486 -0.722 2.059
5 0.317 0.277 -1.282 3.604
7 0.200 0.160 -1.833 6.250
9 0.133 0.093 -2.376 10.760
1 0.094 0.054 -2.926 18.649
13 0.071 0.031 -3.484 32.593
15 0.058 0.018 -4.041 56.876
0.500 ‘ 60.000 1
0.000 7 y =-0.2781x +0.1266 50.000 |
-0.500 - R2 =0.9999 '
-1.000 + 40.000 |
< -1.500 - — .
— <C i
= 2,000 - < 30.000
-2.500 - 20.000 .
-3.000 -
10.000 .
-3.500 - o *
-4.000 ‘ ‘ 00006 ¢ ‘
0 5 10 15
0 5 t(min) 10 15 t (min)
(a) First-order plot (b) Second-order plot.

Figure 3.2.5: Kinetic plots for crystal violet tinceurse fitting.

The reaction is clearly first order in crystal &bl The effective rate constant is

0.278+ 0.001 min'. This reaction is a pseudo-first order reactidme Tate constant is an
effective rate constant withik= k[OH]3. If we assume that the reaction is first ordevase,
m = 1, and solving for k gives:

_ ket 0.278 min*
" [OH]o ™ 0.0300 M

A different k would result if the reaction is sedoorder in base.

Notice that we did not use thé §oodness of fit criterion to compare the curvdse dverall
fit correlation coefficient, either R or’Ris not designed to be a statistically valid wéy o
comparing the appropriateness of two different nsdehe overall correlation coefficient is
designed to judge the degree of fit to the strdiglet not compare two different underlying
models? The R statistic is a measure of the null hypothesis tiidata is a random scatter of
points as compared to a linear function. UsidgdRchoose between two possible kinetic models
can lead to incorrect conclusiohRather, the best way to judge the order of theti@ais to
look for systematic deviations from the fit line.particular, the second-order plot shows
significant systematic curvature.

k =9.27 M min?

Example 3.2.2: Non-linear Curve Fitting to Integrated Rate Laws
Use the data in Example 3.2.1 to do a non-linearecfit.
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Answer One of the advantages of using non-linear cfitireg is that you can make the-A
value a fitted parameter. The “Nonlinear Least $em&urve Fit” applet on the textbook Web
site or on the companion CD is an easy way to dathive fitting. For first-order fitting, Eq.
3.2.6, with a constant offset is the “a exp(-bxg’®ption in the applet:

a exp(-bx) + ¢ corresponds to 0 &+ Ao,

For second-order curve fitting, Eq. 3.2.25 withoastant offset is the “1/((1/a)+bx) + ¢” option:

1
A, Tk

[0}
The fit values and correlations for the first-orgéot are:

1/((1/a)+bx) + c corresponds to (;J + A
t

Fitting Function: a exp(-bx) + ¢
a=1.1518 +- 0.0027
b=0.2902 +- 0.0019

c=0.046 +- 0.0019

sum of squared residuals= 0.0000436
stand. dev. y values= 0.002696
correlation between a & b=-0.1142
correlation between b & ¢c= 0.7782
correlation between a & c=-0.503

The fit lines for both first and second order drevsn in Figure 3.2.6.

1.2
1 —— first ordel
081 \ — = second ordk
< 06- A\
04 -
0.2 1 e
0 : : — -
0 5 10 15 20

t (min)

Figure 3.2.6: First and second-order nonlinear etits.

The first-order plot fits the experimental data otree complete time course, while the second-
order fit is first below, then above, and finallglbw the data points. In other words, the second-
order fit shows systematic deviations from the date Example 3.2.1). The standard deviation
of the y values is a measure of the error of tha gaints above and below the fit values. The
value of 0.002696 for the first-order plot is qusteall. The standard deviation of the y values
for the second-order plot, at 0.0255, is almostitaes larger, which agrees with our visual
inspection. The correlation of the b and c fit s wworresponds to the correlation of k ard A
This value of 0.7782 for the first-order plot shathe fit to be excellent with only moderate
interaction between the values of the fit paranseter
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Example 3.2.3: Half-time Method
The gas phase decomposition of acetaldehyde:
CH:CH=0 (g) - CHi (g) + C=0 (9)
has a half-time of 410. s for an initial pressuir®.d82 bar and 880. s for an initial pressure of
0.225 bar at 5I%. What is the order and rate constant for thetie@as®

Answer The reaction changes with initial partial pressiso the reaction cannot be first order.
Using Eqg. 3.2.29, the rate constants for bothah@onditions are calculated. If the rate constant
is identical, to with in experimental error, théme treaction is determined to be second-order. For
the initial pressure at 0.482 bar:
o 1 1
b =Pk, IVING k=P =0482 bar (410. 9)
For the initial pressure at 0.225 bar:
1 1
k2 =Bt = 0.225 bar (880, ) 2-05X10 bar’ s
The results are identical within experimental erfidre reaction is second order.

5.06x10 bar! st

Example 3.2.4: Zeroth-Order Integrated Rate Law

Find the integrated rate law for a zeroth-ordectiea. What linear form plot would you use to
verify zeroth-order behavior? What is the half-tifoea zeroth order reaction in terms of the rate
constant?

o d[A
Answer A zeroth-order rate law is in the form: at - k

The separation of variables gives:  d[A] = -k dt

The indefinite integral is: Jd[A] = - [k dt

or: [A]=-kt+cC

Setting the boundary condition at time t = 0 as§AR]. gives the integration constant as:
[Alo=cC

which upon substitution back into the integratete faw gives:
[A] = -kt + [A]o

A plot of [A] versus t gives a straight line witlope = — k. This integrated rate law is often
rearranged to give: [A] — [A]= — kt. The half-time is when [A] = [Al2:

[Alo/2 — [Alo=—Kk ts

. . . A
Solving for the half-time glves:l/zt=[5]iz0
so the half-time is directly proportional to thétied concentration.
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2nd Order — Two ReactantSonsider a reaction with two reactants thatrs forder with respect
to each reactant:

A + B - products 3.2.43
with the rate law:
A
AL e e 3.2.44

Integrating Eq. 3.2.44 is a little more difficukdause both [A] and [B] change with time. The
concentrations of A and B are not independent; botl change by the same amount. In terms
of the extent of the reactio&/V, at t = 0, no reaction has taken place &wl= 0. To make the
equation a little easier to read, notice that catre¢ions are intensive and therefore are
independent of the total volume. So we can assumed Without loss of generality. From the
1:1 stoichiometry at time t:

[A] =[A] — ¢ and [B]=[B}-¢& 3.2.45
Taking the derivative of [A] = [A]—¢§ to find the rate of disappearance of A gives:

diA] _ d(Alo—¢) _dg
Todt T dt T dt 3.2.46

since [A} is a constant. This last equation is a consequeiEg. 3.1.6. Substitution of this last
equation and Eqgs. 3.2.45 into the original rate lag 3.2.44, gives:

d
di = ka ([A]o—€) ([B]o—¢€) 3.2.47

This equation is now easy to integrate becausalytltas one concentration variabie,To
separate the variables, both sides of the lasttiequare divided by ([A}<) ([B]o—¢) and
multiplied by dt:

dé
([Alo=¢€) ([Blo—¢)

Extensive tabulations of integrals can be founstamdard references, such as@fC

Handbook of Chemistry and Physmd_ange’s HandboakK* Many tables can also be found on-
line. Take a moment soon to find sources that an@enient for you. Using one of these
references will save time when doing homework. Yfoght also use a computer based algebra
program likeMaple or Mathematicawhich can do the harder integrals and algebraic
manipulations in chemical kinetics. Using an inggable we find:

= kodt 3.2.48

b—
f (a—x)(b—x) b— aln(a—g 3.2.49
Using this standard integral gives the indefinitegrals of Eqg. 3.2.48 as:
1 [mrg_
[Blo- [Alo I”([A]O—E =kt +c 3.2.50

To find the integration constant we apply the bargatondition: t = 0§ = 0:
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1 (Bl
© 1Bl Al '”([A] o) 3.2.51
Substitution of the integration constant back itp 3.2.50 gives the final result:
1 [B]o— Ej _ 1 [Blo
[B]o [A]oln([A]o—E = ket + 1]~ [A]oln([A] o) 3.2.52

This equation is again in the form of a straigheliWe can verify second-order behavior if a
plot of the experimental data with the left-handkesof Eq. 3.2.52 as the vertical axis versus t
gives a straight line with slope m z, lFigure 3.2.7.

Eq. 3.2.52 is often rearranged by subtractiegnkegration constant from both sides of the
eqguation to give a form that can be compared taB3EQ5 for a first-order reaction and Eq. 3.2.27
for a single-reactant second-order reaction:

1 [Bl—¢& 1 [Blo) _
[B]o— [Alo In([A] o E) " [Blo [Alo '”([A] oj = ket 3.2.53
Combining the In terms gives:
1 [Alo([B]o—€&))_
[Blo— [Alo In([B] o([A] o— z)j‘ kat 3.2.54

If the initial concentrations of A and B are equ&ds. 3.2.52-54 are not applicable. Instead if
[A] o= [B]o, then [A] = [B] during the course of the reactimmd the integrated rate law is
equivalent to Egs. 3.2.25-3.2.27.

1 ([Blet
[Bl—TATo "\[A] o—z)

. ")
0 >t

Figure 3.2.7: Second-order A + B P kinetics: A linear plot of the left-hand side of
Eq. 3.2.52 vs. t verifies first-order behavior wifspect to each reactant.

Example 3.2.5: Integrated Rate Law for A + B

The hydrolysis of ethylacetate by sodium hydroxids the following time course for a reaction
with initial concentration of hydroxide of 0.0100 &hd initial ethylacetate at 0.02656 M. This
kind of reaction is called saponification:

CH:COOCHCHz + OH - CHCOO + CHCH3OH
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Saponification is the basis for the productionads The time course was determined using
conductivity. Verify that the reaction is first @dwith respect to hydroxide, first order with
respect to ethylacetate, and second order overall.

t (min) 0 1 2 3 4 5 6
[OH]/10°M  10.000 7.307 5.467 4.285 3.348 2.634 2.133
t (min) 7 8 9 10 11 12

[OH]/103 M 1.698 1361 1.131 0.918 0.754 0.630

Answer We need to do plots according to Egs. 3.2.7.23,2and 3.2.52. The following
spreadsheet was set up. Assume [A] is fOHhen [Al, = [OH]o = 0.0100 M and [B]=
0.02656 M. To calculat&in Eq. 3.2.52, note that [OH= [A] —&, S0 = [OH]— [OHT]. The
column labeled LHS is given by the left-hand sifi&g. 3.2.52 and is the vertical axis of
Figure 3.2.8a.

t(min) | [OH](M) | x (M) LHS 1/[OH] In [OH]
0 0.01 | 0.00000 58.990 100.000 -4.605
1| 0.007307 | 0.00269 71.484 136.864 -4.919
2| 0005467 | 0.00453 84.156 182.914 -5.209
3| 0004285 | 0.00572 95.542 233.395 -5.453
4| 0003348 | 0.00665 | 107.655 298.644 -5.699
5| 0002634 | 0.00737 | 119.942 379.647 -5.939
6| 0002133 | 0.00787 | 131.084 468.799 -6.150
7| 0001698 | 0.00830 | 143.442 588.960 -6.378
8| 0001361 | 0.00864 | 155.668 734.664 -6.599
9| 0001131 | 0.00887 | 166.061 883.946 -6.784
10 | 0.000918 | 0.00908 | 177.961 | 1089.612 -6.994
11 | 0.000754 | 0.00925 | 189.299 | 1327.101 -7.191
12 0.00063 | 0.00937 | 199.644 | 1586.346 -7.369
190 12 1800 -4.0
y =11.754x +60.314 1600 |  y=118.29x- 93527 o 45| y=-0.227x- 47372
. 170{  R=09997 R =0.9207 B R? =0.9951
= 1400 |
S 150 1200 | 501
% 130 ] = 1000 | - 55
< 110 S 800 | T 40l
g 90 | 600 1 -6.5 -
= 400 -
70 n 200 B ‘70 ’
50 | ; ; 0 ; ; 75 : . ¢
0 5 10 0 5 10 0 5 10
t (min) t (min) t (min)
(a) 290rder: A+B-. P (b) 29Order: A~ P (c) ®Order: A~ P

Figure 3.2.8: Kinetic plots for the saponificatiohethylacetate.

Figure 3.2.8a, shows that the reaction is firseoid both reactants. Figure 3.2.8b rules out
second-order behavior for Oldnd zeroth order for ethylacetate. Figure 3.8sed on Eq.
3.2.7, rules out first-order behavior for Okhd zeroth-order for ethylacetate. This last @ogn
though it has an Rclose to one, shows systematic curvature oveerltiee time course.
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Example 3.2.6: Second Order Rate Law in Terms of Extent

Find the integrated rate law for an-A P second-order process using the form [A] ={A4]. In
other words, rederive Eq. 3.2.25 using the styleapf3.2.47 with the extent of the reactignas
the independent composition variable.

Answer The rate law is:

d[A d

—Jd—tl= ko [A]? or Ei: ke ([A] o— &)? 3.2.55
We can separate the variables by multiplying batessof the equation by dt and dividing both
sides of the equation by ([&] &)

1
0 5 0 = ko dt 3.2.56
(A5 &=
The integral on the left is (see addendum 1.5,84&t8.1, or standard reference tables):
1 1 ,
f(a—x)z dx _(a—x)+ C 3.2.57

Taking the indefinite integral of both sides andhtxining the integration constants gives:

1
T o=kt+c 3.2.58
(Al—8) ~ 2
To calculate the integration constant, we applyaendary condition, at t = 0 thén= 0, giving
¢ = 1/[A]o. Substituting this value for the integration camstback into Eqg. 3.2.58 gives the
integrated rate law:

1 1
= ot 3.2.59
At - Al
which rearranges to a form commonly seen in tleedttre:
&

Alo(Al &) ~ 3.2.60

3.3 The Differential Method is Based Directly on tke Rate Law

The integral method requires that we make assumpabout the order of the reaction and then
compare the time course to the corresponding iatedrrate laws. Differential methods calculate
the order of the reaction directly from the datdfddential methods work with reactions of any
order, including fractional orders.

Initial Rate Determinations The differential method is a group of techniqtlest are based on
measurements of the average rate of the reactr8.EE.7. One group of techniques is based on
determinations of the initial rate of the reactifs.we saw in section 1.3, general pattart,

the short-time limiting behavior of an exponentiaiction is approximately linear. Consider a
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general reaction with rate law given by k [A]"[B]™. Calculations of the initial rate using
Eq. 3.1.7 for short times gives a constant valuersg as [A]= [A]. and [B]= [B].. Then for
two separate experiments with initial rates andu. 2 with different values of the initial
concentrations, [AL and [Al2, the rate laws are:

Loz = k [A]6B] S 3.3.1

Vo1 = k [A]51[B] T 3.3.2
keeping [B} the same for both reactions. The ratio of Eq.13t8.3.3.2 gives:

Vo2 _([Alo2 :

Vo1~ ([A] 0 3.3.3
Taking the In of both sides of the last equatioregi

Vo2| _ [A] 02
In(UO‘) =nl [Alo 3.34

which allows the calculation of the order of thaaton with respect to A. Initial rate studies
require several kinetic runs, which requires etitree and reagents. The same information can be
extracted from a single time course.

The Rate as a Function of the Concentration froenfiime Course The rate is a function of the
concentration of each reactant during the timesm®of a single experiment. During the course
of the reaction, taking the In of both sidesyof k [A]"[B]™ gives:

Inv =nIn[A] + In(k [B]™ 3.35

If we use the isolation method by keeping [B] irgaexcess, then [B] [B]. and a plot of Irv
versus In[A] gives a straight line with slope n. \6feen use the average rate instead of the
instantaneous rate and then the corresponding otratien should be the average concentration
during the time interval of each data point, EG.B.

The integral and half-time methods are usualffigent for reactions where the concentration
of a reactant or product can be calculated withdgarecision from the analytical method.
However, we often work with absorbance or conditgtidirectly instead of concentrations, as in
Eq. 3.2.36-41. There may be significant uncertaimtye limiting values at time zero and at
long times. Uncertainty in the values of &nd A. can cause significant curvature in the linear
form of kinetic plots, Figures 3.2.1 and 3.2.3, aadse incorrect conclusions about the order of
the reaction. Differential methods are somewhat $essceptible to uncertainty in the limiting
values.

Example 3.3.1: The Differential Method

Denitrification is the reduction of either nitrgfdO3z) or nitrite (NG) to the gaseous oxides or
N2 by aerobic bacteria. Bacteria capable of redunitrgte to N typically dominate in ground
water. Denitrification of ground water can be resgrgted by the reaction sequence:

NOE — NOE — 1/2 N2
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The reaction order with respect to nitrate has eparted to be half-order on the basis of
theoretical consideratiofsThe following data was taken on the nitrate lewela biofilm-based
reactor. Determine the order of the reaction usiiegdifferential method.

t (hn) 0 0.49 1.19 1.70
[NO3] (mg L) 409.0 178.2 238 0.0

Answer Using Eq. 3.1.7 the average rate for each suiseesgerval can be calculated. For
example, for the first interval:

G(t) —a(t) ~ 178.2 —409.0 .

and the concentration in the middle of this fimste interval is:

_ G(t) +q(t) 178.2 +409.0
c:C'(l)ZQ(Z)z 5= 293.6 mg L!

0=-—

A spreadsheet was constructed with rates and aveitigte concentrations, as shown below.
The In of the average nitrate concentration andrtlod the rate are also included.

t (hr) [NO3] C=[NO3](av) | U=rate(av) |In[NO3](av) | Inrate
0 409.0
0.49 178.2 293.6 471.0204 5.6822 6.1549
1.19 23.8 101 220.5714 4.6151 5.3962
1.7 0.0 11.9 46.66667 2.4765 3.8430

The plot of Inu versus In"d@s shown below. The slope of the line is clos®.%b or %. The
uncertainty can’t be statistically evaluated withfew points.

6.5

y =0.7219x + 2.0575
6 -

5.5 1

5

In(rate)

4.5 -

4

35 ‘
2 4 5 6
In([NO;"],.)

Figure 3.3.1: Differential method applied to aeootbenitrifcation using a biofilm.

For this data set, the apparent order is about &feMata points are necessary to get a better plot
for comparison to the expected value of %. Seel@mhk8 for time course comparisons.
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3.4 Progress Towards Equilibrium

No reaction goes to completion. Even for the miostrhodynamically favorable reactions, small
amounts of reactants remain at the end of theicgadthe integrated rate laws we have derived
so far neglect this possibility. We first considee general case and then consider the integrated
rate law for a reversible first-order reaction. Tomcept of chemical equilibrium flows naturally
from these considerations.

Opposed ReactionConsider a reaction thatrisversible. That is, the forward and reverse
reactions are considered withtke rate constant for the forward direction anth& rate
constant for the reverse reaction:
ke
A+BzC+D 3.4.1
kr

This reaction scheme could also have been writteéhd following equivalent way:

ke
A+B - C+D 3.4.2

kr
C+D-A+B 3.4.3

The combination of the two steps is often calledpposedreaction mechanism. The choice of
expressing the reaction scheme by Eq. 3.4.1 a2 ardd 3.4.3 is by convenience, whichever
helps you to see the overall relationships. Asstiraethe rate law for the forward reaction, Eq.
3.4.2, is first order in both A and B:

forward rate v+ = ks [A] [B] 3.4.4
In addition, assume that the reverse reaction3Eq3, is also first order in C and D:
reverse rate v_ = k [C] [D] 3.4.5

The net rate of change of A is the difference ekthchanges; the forward rate decreases A and
the reverse rate increases A:

-4 - W Bl - ke [ D) 3.4.6

At the beginning of the reaction, [C] and [D] areadl and the rate law reduces to Eq. 3.2.31. As
the reaction progresses [C] and [D] increase afjé&af@l [B] decrease until the rate of change of
A goes to zero:

—ﬂdétl =k [A] [B] -k [C] [D] =0 (equilibrium) 3.4.7

At this point, the reaction shows no further termdefor change and the concentrations of all the
reactants and products remain constant in time.iie concentrations remain constant, the
system is aéquilibrium . Rearranging Eq. 3.4.7 at equilibrium gives:

ki [A] [B] = k[C] [D] (equilibrium) 3.4.8



98

which from Eqgs. 3.4.4 and 3.4.5 shows that the &mdrand reverse rates for the reaction are
equal at equilibrium:

forward rate = reverse rate  or U+ =U- (equilibrium) 3.4.9

Solving for the ratio of the rate constants givesequilibrium ratio of the concentrations:

ki _(IC][D] -
k: - ([A] [B] )eq (equilibrium) 3.4.10

This ratio is constant for any initial mixture &][and [B] once the system attains equilibrium.
The ratio of the forward and reverse rate constardefined as thequilibrium constant Keg

k C][D I

Keqzﬁ = (%)eq (equilibrium) 3.4.11

When the equilibrium constant is expressed in teshtoncentrations, as it is in this last
equation, the symbol s often adopted. For gas phase reactions, tedaatand the
corresponding equilibrium ratio can also be expdss partial pressures, in which case the
equilibrium constant is denoted,Kr'he equilibrium state is the final resting pdmt the
chemical reaction; in other words, the equilibricomstant determines how far the reaction runs
towards products. This relationship among the fodveand reverse rate constants and the
equilibrium constant is a central focal point fouch of the rest of this text.

The concept of a reversible chemical reactiaisinct from the thermodynamic concept of
reversibility that we introduced in Chapter 1. Argesible reaction from a kinetic standpoint just
means the reaction runs forwards and backwardsmidaynamic reversibility for a chemical
reaction requires kinetic reversibility and that tieaction is also at equilibrium. From a
thermodynamic perspective, the equations that we Harived in this chapter describe the
irreversible progress towards equilibrium. We \Wwiélve much more to say about the relationship
of kinetics to equilibrium in the next chapter. Fmw we focus on the time course for the
reaction as it approaches equilibrium.

Opposed, First Order The rate law for an opposed reaction dependb@reaction orders and
the stoichiometry. Consider a first-order forwaedation and first-order reverse reaction as a
simple example:

k1
A - B
K1 3.4.12

Where k is the rate constant for the forward reaction lanik for the reverse reaction. The
corresponding rate law with the assumed reactidarsris:

—ﬂdétl = kaA] — K-1[B] 3.4.13

To integrate this rate law, we need to relate thecentrations of the reactant and product during
the course of the reaction. Initially, assume$AR]o, and [B] = 0. As the reaction progresses,
from the stoichiometry, [B] = [A]— [A]. At equilibrium, [A] = [A]leqand [Bkq = [A]lo — [Aleq

These relationships are summarized in the followatnde.
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Table 3.4.1: Concentrations for an opposed firdeofirst-order reaction.

Progress [A] [B]

initial [A] o 0

middle [A] [B] =I[Alo—[A]
equilibrium [Aleq [Bleq= [Alo— [Aleq
displacement  [A] - [Adq [B] — [Ble= [Aleq— [A]

Thedisplacementaway from equilibrium for A is defined as [A] — [& The displacement for
B is calculated by taking the difference of theresponding rows in Table 3.4.1:

[B] — [Bleq = [Aleq— [Al = — ([A] = [Al &g) 3.4.14

If [A] is larger than its equilibrium value then [Biwust be smaller than its equilibrium value by
the same amount, because of the 1:1 stoichiom&tgquilibrium the rate of change of A is
zero giving Eq. 3.4.13 as:

K1[A] eq— k1[B]eq= 0 (equilibrium) 3.4.15
The equilibrium constant determines the ratiohefgroducts to reactants:

ki [B I

_l:{ﬂ}i (equilibrium) 3.4.16

The rate law is expressed in terms of the displacerny subtracting Eq. 3.4.15 from Eq. 3.4.13:
J—l = ka[A] — ka[A] eq— k1[B] + k-1[B]eq 3.4.17
Distributing out the rate constants gives:
—J—l = ku([A] — [A] eq) + ka(— [B] + [Bleq) 3.4.18

Using Eqg. 3.4.14 to relate the displacement in Biéodisplacement in A in the second term
gives:

—J—l = ki([A] = [A] eq) + K1([A] = [A] eq) 3.4.19
Distributing out the displacement gives the muchpser relationship:

AL - o+ k(A - (AT o9 3.4.20
However, d([A]-[Akg/dt = d[A]dt, since [A}qis a constant. Then Eq. 3.4.20 can be rewritten:

Mﬁm = — (ke + k2)([A] = [A] e 3.4.21

Eq. 3.4.21 is aimple exponential processid by general pattefih 1 with lower integration limit
[A] =[A]oatt=0:
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A d(A] = [Aleg _  t
f[A]O (Al = [Aled - , (k) dt 3.4.22

giving '{[A] — [A] — (ke + k)t 3.4.23

This last equation looks a bit complicated. Howeifahe reaction did run to completion, the
equilibrium value of A would be [A},= 0, there would be no reverse reaction, and Eq23
reduces to Eq. 3.2.5. To verify this integratee tatv, a plot of In(([A] — [Aty)/([A] o— [Aleq))
versus t gives a straight line with slope = +«Kk1). In other words, you just need to subtract
the equilibrium concentration from the numeratod denominator of Eq. 3.2.4. The time course
is obtained by solving for [A]:

[A] = ([A] 0 — [Aleq) € Kt )t + [A]eq 3.4.24

Note the limiting behavior of this last equationh& t = 0 thend™*2' = 1, and [A] = [A].
When t— o then e &kt _, 0, and [A] = [Akq Figure 3.4.1 shows the time course for a
reaction that approaches equilibrium comparedriaation that goes to completion.

1.2

[A] (M)

t (min't)

Figure 3.4.1: Comparison of a reaction that goesgtalibrium (solid line) compared to a
reaction that runs to completion (dashed line).

The limiting slope at t = 0 is —([A}- [A]ed (K1 + k1), S0 the initial rate is proportional to the
sum of the forward and reverse rate constants.

After the rate law for the reaction is deterndin@e move to stage 2, where possible
mechanisms are proposed. However, before going stutly mechanisms, we should take a
careful look at the temperature dependence ofimracites.

3.5 Temperature Dependence of Reaction Rates

A typical chemical reaction roughly doubles in rideevery 10 K temperature increase near
room temperaturéAfter the study of the temperature dependencevafigty of chemical
reactions, Svante Arrhenius, in 1889, empiricallyedmined that the rate constants for a
majority of reactions followed the relationship:



101

k= AgBRT 3.5.1

where A is the pre-exponential factor and$tthe activation energy. Eqg. 3.5.1 is one expoess
of theArrhenius equation. The activation energy is a measure of the colignergy necessary
for the bond breaking and making steps to occue. drie-exponential factor is the product of the
rate of intermolecular collisions and a probabifdagtor that depends on the collision geometry
and timing. In solution, it is better to talk abenblecular encounters rather than collisions, but
the minimum energy requirement still applies. ltuson, the solvent can act as a cage
surrounding both reactants so that many collismtair when the reactants approach each other
at short range. The activation energy is usualiydand positive. However, some reactions,
such as ion-molecule reactions, have no activamergy. Some reactions have negative
activation energies; that is, the reactions slotihwemperature increase. The “chemist’s rule”
that the reaction rate doubles for every 10 K taapee increase corresponds to an activation
energy of about 50 kJ mblIn the ratio FRT, the RT term is a measure of the availableniar
kinetic energy through collisions. At room temparatRT is about 2.5 kJ mglwhich is much
less than the typical activation energy.

0.2 1
0.18 + E, =5 kJ mol* 0.9 - E, =5 kJ mol*
0.16 - 0.8 -
0.14 1 0.7 -
0.12 1 0.6
< 01 < 05
0.08 0.4
0.06 0.3 1
0.04 - 0.2
0.02 1 0.1
0 ‘ ‘ ‘ 0 ‘ ‘ ‘
0 100 200 300 400 0 2000 4000 6000 8000
T (K) T(K)

(a) (b)
Figure 3.5.1: Arrhenius temperature dependendcesirfd) low temperature and (b) high

temperature regions. An unusually smalbE5 kJ mott was chosen to facilitate displaying
both plots. The vertical axis is the rate consthwvitled by the pre-exponential factor.

A plot of the Arrhenius equation for low temperras that correspond to RT <g fifoduces a
rapidly increasing temperature dependence, Figlré& For much higher temperatures, the
rate constant approaches a maximum equal to thexp@nential factor, Figure 3.5.1b. For most
reactions, the high temperature region is not ailoles except in high temperature flames,
lightning strikes, or atmospheric reactions inttermosphere (1000-1500 K).

Finding A and Efrom experimental data by non-linear curve fittiogeq. 3.5.1 is
straightforward, and in many ways preferable. Hoavefzq. 3.5.1 is usually recast into linear
form. The best linear method to use depends onuh®er of available data points. If many data
points are available, the Arrhenius equation iasemto a straight line form that is convenient
for linear curve fitting. Taking the In of both sislof Eq. 3.5.1 gives:
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_ Ea
Ink=1InA RT 3.5.3

A plot of the In k versus 1/T gives a straight linigh slope —&/R and intercept In A, Figure
3.5.2. If only two data points are available aeralate form is better.

In A

In k slope = - &R

.

UT (K

Figure 3.5.2: Arrhenius behavior is verified bytglog In k versus 1/T. This plot is often
called an Arrhenius plot or an activation energytpr he intercept is usually extrapolated
well beyond the range of observations making theetainty in A quite large.

Assume that the rate constant for the reacidmown only at two different temperatures, k
and k2 at T; and b, respectively. Evaluating Eg. 3.5.3 for these tata points gives:

_ _Ea

Inkr,=In A “RT, 354
_ _Ea

Inkr,=In A “RT 355

Subtracting the last two equations gives:

Ba(l 1
In kro — In kry = R (T_z —T—J 3.5.6
The difference in the In terms is the In of theaat
ko Ea(1 1
In k- "R (Tz -7 357

This form of the Arrhenius equation for two datang® is a very common functional form. We
will encounter this general form when we considhertemperature dependence of equilibrium
constants and colligative properties.

04
General Pattern 4: Exponential Temperature Dependes™R™

The exponential form of the temperature depecgl@nEg. 3.5.1 appears in many different
problems. The role of the activation energy candpéaced by other energy parameters including
internal energy, enthalpy, and Gibbs energy, deipgnzh the problem. The role of the rate
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constant can be replaced by equilibrium constant®centrations for specific problems. The
barometric formula, Eq. 1.3.16s another example. Using Arrhenius behaviohasexample,
the three equations:

Ea K12 Ea(l 11)
— E4RT =2 - ==L =
k=A€ Ink=InA-= RT Inle R\, T
are all equivalent. You should practice converangong the three forms. The In based terms are
in a linear form that is useful for linear curveifig. Comparing Eq. 3.5.3 to the general equation
for a straight line:

Ink = —R—Eial. +In A 3.5.8
y = mx + b

shows that associating 1/T with x gives the slapea —E/R and the intercept as b = In A,
Figure 3.5.2. Eg. 3.5.7 can also be rearranged/eligpear form. Going back to Eq. 3.5.6 and
solving for In k- and grouping the terms in Together on the right-side of the equation:

Inkr. = —Ea[lj (53( J+ In le) 3.5.9

y

Once again, the slope of the straight line formshiswn to be m = —#R. The intercept involves
only the initial data point. This intercept looksneplicated and unusual. However, notice that
solving Eq. 3.5.3 for In A specifically at the teerpture T shows that the intercept for Eq. 3.5.9

is:
(R ko) =1
_RT +nTl—nA 3.5.10

Once again the intercept is b = In A, as in Eq.8.B you are given an equation in the form of
Eq. 3.5.7 you should immediately be able to spat ¢hplot of In k vs. 1/T will give a straight
line of slope —ER. Eq. 3.5.7 can also be solved for the rate emstvhich is also a general
form that is found in the literature:

—E 1])
kr2 = 3.5.11
Now consider the temperature dependence in Bg/ @nd 3.5.11. Please remember that:
1 1 1 .
(T_z —T—J Z (Tz T incorrect!!

It is often just best to leave the temperature terthe form in Eq. 3.5.7. However, taking a
common denominator can be useful:

1 1) (Ti=T2\ (T2—=T\ _ AT

(TZ_TJ.)_(Tl Tz)__( T1 TZ)__(Tl TJ 3512
whereAT = T>— Ti. Since the temperatures are often near 300 Khdomow temperature ranges,
it is often an acceptable approximation to I€f;& T1? in the denominator and then:
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1 1 AT
(Tz_TJ D—(le) (smallaT)  3.5.13
Using this approximation, Eq. 3.5.7 becomes:
kro _ Ea(l 1) _ Ea
ni - & (TZ_TJ Rz AT (smallAT)  3.5.14

This approximation will be useful for colligativeqperties.

An exponentially increasing function of the foéfiis a common occurrence, for example in
exponential population growth. How similar are fbems €™ ande™**? Our current case of an
activated chemical reaction is a good example. @aeow temperature ranges for RT<tke
functional dependence for the rate constant lodks l&ke a simple exponential process. Solving
Eq. 3.5.14 for k. gives:

Ea
AT
kr2 Ok e<RT12) (smallAT)  3.5.15

which shows that the rate constant is approximatelgxponentially increasing function of
temperature, if the range of temperatures of istasesmall and RT <<£A comparison of the
exact form of the Arrhenius equation with the apgoration in Eq. 3.5.15 is plotted in

Figure 3.5.3, for 7= 300 K.

400

350 -
300 -
250 -

" 200 -
150
100
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0 T T T

270 290 310 330 350
T (K)

Figure 3.5.3: The Arrhenius temperature dependene@}", can be approximated as a
simple exponential increase with temperatufg,fer narrow temperature ranges. The
constant is ¢ = #RT:2. The temperature dependence for a simple exp@hénstronger
than for an activated process.

The “Chemists Rule” gives a constant factor inoeaagate for every 10 K increase and
corresponds to pure exponential behavior, Eq. 8.%:igure 3.5.3 shows that the “Chemists
Rule” holds for only a narrow temperature rangeayrrige. When the activation energy is 50 kJ
mol?, the “Chemists Rule” is applicable just near raemperature. Similar approximate
doubling rules can be expressed for other exanufle$'R" temperature dependence.

04
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Alternatives to Arrhenius BehaviorSome reactions do not follow the functionahfoof Eq.

3.5.1. The derivation of the Arrhenius equatiomfrtineoretical considerations is the topic of the
chemical dynamics chapter later in this text. Stmeeries suggest that the temperature
dependence is better expressed as:

k=aT"e&RT 3.5.19

where m =1, 2, at%. Experimental values for m are often non-integaregative. It is difficult
experimentally to determine the value of m, andtmeactions follow Eq. 3.5.1 over a useful
temperature range.

Example 3.5.1: Arrhenius Temperature Dependence
The rate constant for the decomposition edNat 25°C is 3.46x1¢ st and at 65C is
4.87x10° s*. Calculate the activation energy and the pre-exptal factor.

Answer Absolute temperatures are necessary, which@8e K and 33& K, respectively.
Since only two data points are given, Eq. 3.5&pigropriate:

ko Bl %)
D T

| 4.87x10° Ea ( 1 1

N'3.46x10° = 78.314 J KK mort\338.2 K~ 298.2
_ Ea 4
4.94% = g 3117 K mort (-3-96x10%)

[Hint on significant figures: To get a quick estitmaf the number of significant figures in the In
term, just calculate In(48%10°/3.46x10°) or In(4.87x1(%/3.47x10°) and notice how much the
answer changes from the previous value with thsteons given in the problem. You can also
use the significant figure rule for In to get ttaaree result, Appendix 1.]

Solving for the activation energy gives £1037 kJ motl. We can then solve Eqg. 3.5.1 using
either temperature data point to determine theegpmnential factor. Using the lower
temperature gives:

k=AeERT = 346x16 st = A e=1037x10° J/(8.314 J K mol* 2982 K)

3.46x10° s = A (6.83x10'9)

A =5.1x133+2.2x1033s?
For the error analysis for the pre-exponentialdgave used the “Uncertainty

Calculator” applet that is on the textbook Web aite on the text companion CD. To calculate
the error in A, here’s how the values were entered:

Ecpuation: Ik*EXF' ([E/RIT)

After you click on Calculate, the following windoappears:
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Equation = k*exp(E/R/T)

[Variable [V alue Uncertainty
K [adses [notes

£ [is7e [10e3

I EITT [10e5

N = [10

Notice that you can click in a table cell and tipeass the Constants button to get a common list
of fundamental constants and conversion factons thig literature uncertainties. The conclusion
is that error propagation for exponentiation igoftuite unfavorable.

3.6 Fast Reaction Techniques

Chemical reactions are often quite rapid and reggpecialized techniques to determine the time
course. Table 3.6.1 outlines several useful teclesdghat we will discuss.

Table 3.6.1: Techniques for measuring the ratehemical reaction$.

Method Description Timescale
Conventional Mix reactants in a cuvette or beaker> 10 s

and monitor.
Stopped Flow Mix reactants through jets in a small> 101 s

volume chamber using pneumatically

driven syringes.
Flash Photolysis: Starting at equilibrium, initiate a 10°-10%s
Laser Flash Photolysis, LFPphotochemical process by a short flash

from a laser or xenon flash lamp.

Chemical Relaxation: Starting at equilibrium rapidly change>10°% s

Temperature, Pressure, or the temperature, pressure, or a

Concentration Jump concentration to shift the position of
equilibrium.

NMR Chemical Exchange: Starting at equilibrium, monitor line  102-10°s
Line broadening (see the  broadening with changes in
magnetic resonance chapterfemperature or concentration.

Stopped Flow The limitation on determining the rate of a t&atis often simply the time it

takes to mix the reactants together. Stopped ftopeat a fancy way to rapidly and efficiently

mix reactants in a small volume cell. The cell rhaya cuvette for absorption or fluorescence, a
cell for conductivity determinations, or a cell foagnetic resonance measurements like electron
spin resonance (please see the magnetic resonaguateoscopy chapter). Other than the mixing
speed, the time course is monitored conventionaltiipugh with instruments that have a rapid
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time response. The minimum mixing times are orottaker of 10 milliseconds. A diagram of a
stopped flow accessory is shown in Figure 3.6.1.

Stopwith microswitch
Constant temperature jacket

Flow from constant
temperature water bath

I

Reagent syringes Cuvette window for

absorbance measurements

Figure 3.6.1: Stopped flow apparatus for rapid @semeasurements. The reagents are
rapidly mixed in a micro-volume spectrophotometeratte.

The reagents are placed in syringes. The syringesaanected to the flow-through cuvette with
Teflon tubing. The cuvette has nozzles specificdédgigned to generate turbulence to enhance
the mixing efficiency. The syringes are pushedegithy hand or by computer-controlled
pneumatic cylinders. The waste from the cuvettedlanto a waste syringe. When the waste
syringe fills, the barrel of the syringe contatts stop block, which simultaneously stops the
injection and contacts a switch that starts tha datuisition. In favorable circumstances,
reaction half-times as short as 0.05 s are medsui@topped flow techniques are particularly
useful for fast enzyme kinetics studies and obserfriee-radical intermediates in inorganic and
environmental reactions.

Flash Photolysis When stopped-flow mixing times are too sloweattate techniques are
required. The following techniques all start wilie reaction mixture at equilibrium, which
avoids the mixing time issue. Photochemical reastican be studied by exciting the reaction
mixture with ultra-short bursts of light from eith& laser or a pulsed xenon flash lamp. The
limiting factor in the minimum half-times that anbservable is the temporal width of the
excitation pulse. In general, the pulse width @f liight source must be much shorter than the
half-time of the chemical reaction. The pulse widtixenon flash lamps, such as those used in
photography, is in the microsecond time scale.f&ster reactions, specially designed lasers
must be used that have pulse widths in the nanodaemge. Using ultra-fast pulsed lasers
allows processes in the sub-femtosecond time scdie studied. Readily available lasers have
pulse widths in the 10 nanosecond range, allowiagytphotochemical processes to be studied.
One disadvantage of laser-driven systems isutltraviolet lasers have a fixed wavelength.
Several different types of lasers are often necgdegrovide coverage of the UV range of
common organic and inorganic reactants. Nd-YAGraed eximer lasers are commonly used.
Nd-YAG is the acronym for a neodymium-yttrium alunmm garnet solid-state laser. Nd-YAG is
a synthetic "mineral” that is excited by flash lanp produce light at 1064 nm in the IR region
of the spectrum. To convert the IR light into theible and then the UV region, a special optical
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trick is used. Certain substances have non-linpaca properties in intense laser irradiation that
combines the photons; doubling and then triplind #ren quadupling the photon frequency are
possible. Doubled output of a Nd-YAG laser is & 58, which is in the green region of the
spectrum. Tripled output is at 355 nm and quaddipte266 nm.

Eximer lasers use gas phase chemical reacbhgm®tiuce highly excited diatomic molecules
that emit light. The chemical reaction that dritles laser is initiated by an intense electrical
discharge. The reaction used is normally betwe@aoxand either fluorine or chlorine,
producing either XeF or XeCl. The product is pragtha a highly excited state with a lifetime
in the nanosecond range. In returning to the gratai, light is emitted in a short pulse. XeCl
provides laser emission at 308 nm with a pulsewadtabout 10 nsec.

Many different techniques are available for nbaring the progress of photochemical
reactions. Conductivity, IR, Raman, mass spectromahd chemiluminescence are all used.
However, the most commonly used technique is U\MBl&sabsorption spectrophotometry,
Figure 3.6.2. The signal acquisition must be vast.fThe signal from the photodetector is
digitized using a very fast digital oscilloscope.

Flash photolysis is useful for photochemicakttems, but is not applicable to other types of
reactions. Chemical relaxation techniques can bd osore generally, but not with such short

time resolution.
é\} Xenon arc source

Pulsed Laser &=  Lens

Nd-YAG " 2 3 Cuvette
w | 3w uv
1064 nm 532 nm 355 nm o Lens

Digital Oscilloscope

‘ time
Detector

Figure 3.6.2: Laser flash photolysis, LFP, for gobtemical reactions. A tripled Nd-YAG
laser produces 10 ns pulses at 266 nm. The redstmonitored using UV/Visible

absorption and a fast digital oscilloscope. A xeaomsource is often used to provide intense
UV and visible light for the monitoring beam. A gbhoultiplier with fast electronics is used
as the detector.

Monochromator | ;

7111;,; B

Chemical RelaxatianChemical relaxation techniques use a suddenation in temperature,
pressure, electric field, or concentration to sthié position of equilibrium for a reacting system.
After the perturbation, the system is monitore@ &snction of time as the system approaches
the new equilibrium position. The process of attajrthe new equilibrium position is often
calledchemical relaxation The limit for determining fast reaction ratesletermined by the
time necessary for the perturbation. Intense (@8ers are available that can produce
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temperature jumps up t6® in a few microsecondsElectric discharges through electrolyte
solutions can also be used for temperature jumpkoble heating. Specialized piezoelectric
systems can provide pressure jumps of 100 barantalDOus® However, temperature jump
experiments can also be done with simple appar&hescooling or heating water flowing
through a jacketed spectrophotometer cuvette cawiiehed between two constant temperature
baths at different temperatures. Chemical relaraechniques are useful for enzyme kinetics
experiments as well as inorganic ligand exchangktlaa kinetics of free radical

intermediate$:*° Temperature and pressure jump techniques haverteegoite important in the
study of protein folding:** Chemical relaxation is also an important partef theory of
irreversible thermodynamics (see Chapter 22).

The key result of chemical relaxation technigabat all single-step chemical reactions,
independent of the rate law, relax towards equilinrby a first-order process that is
characterized by a single relaxation timd his simple, universal behavior is true as loaghe
shift in equilibrium position by the perturbatissmall. The relationship between the relaxation
time and the rate constants for the reaction igdéent on the rate law. We will consider the
example of a temperature jump for a reaction thaecond order in the forwards and first order
in the reverse direction:

k2
A+B - C 3.6.1
K1

The effect of the perturbation is to change thdldxjiwm position from the old value before the
temperature change, [§&hiq to the new equilibrium position at the new tenapere after the
perturbation, [Cds The initial value for the relaxation experimesthe old equilibrium
concentration, [G]= [Cleq.oidand the system evolves to the new equilibriumtms[Cleq,

Figure 3.6.3.

A
[C] eq,old Xo
[C] e—t/’l’
(M) }
[Cleq
A ik
T (°C) Thew i
Told J >
0 t

Figure 3.6.3: Temperature jump kinetics is a foxter exponential process with time
constant that depends on the rate law. The tintleeofemperature jump is t = 0.

For the displacement away from equilibrium we defE [C] — [Cleq, Where [Ciqis the
equilibrium concentration of the product. The desj@ment is also directly related to the extent
of the reaction:

X =[C] - [Cleq = ([Clo+ &) = ([Clot+ &eq) = & —&eq 3.6.2
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Since the stoichiometry is 1:1 the displacemem ia [A] — [A] eq= —X. In other words, the —x
means that if [C] is less than the equilibrium ealhien [A] and [B] are greater than the
equilibrium value. The stoichiometric relationshgre summarized in Table 3.6.1.

Table 3.6.1: Concentrations for an opposed secoterirst-order reaction.

Progress [A] [B] [C]
initial, new T [Alo [Blo [Clo
middle [A]eq — X [B]eq— X [C]eq + X
equilibrium [Aleq [Bleq [Cleq

displacement  [A] —[Adg=—X  [B]—=[Bley=—X  x=[C] = [Cleq

Assume that the rate law is first order in eacletaaa and product giving the rate law:

% = ke[A][B] - k 41[C] 3.6.3

To integrate this rate law, it is necessary to egpmll the concentrations in terms of the
displacement, x. At equilibrium, the forward raseegual to the reverse rate,
ko[A] edB]eq = k1[C]eq OF rearranging gives:

Ko[A] edB]eq— k1[Cleq= 0 (equilibrium) 3.6.4

From Table 3.6.1, [C] =[G} + x in the middle of the relaxation process aredrtite derivative
simplifies to:

d[C] _d([Cleqtx) _dx
dt - dt " dt 3.6.5

Substituting the values from Table 3.6.1 and E§.53into Eq. 3.6.3 gives:

d
it = el[A] e X)([Bleq- X) — Ka([CleqX) 3.6.6

Multiplying out each term gives:

dx

a = kZ[A] e({B] eq— kZ[A] eq X — kZ[B] eqX + k2X2 - kl[C]eq— ki x 3.6.7
Using Eq. 3.6.4, thexjA] eB]eq and — ki[Cleq terms cancel. We have now arrived at the critical
step. Since the perturbation is small, the displere away from equilibrium, x, must be small.
The term in X should then be negligible. Neglecting the terrs?gives:

d
¢ = — KAl eqX — k[Bleqx — k1 X 3.6.8

Neglecting higher order terms in x guaranteesttiatelaxation will be a first-order exponential

process. Distributing out the common factor of +vesg:

?:I_)t( = —{k2([A] eq + [Bleq) + k1} X 3.6.9
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All the terms in the braces are constants. We dédfin relaxation time:

_ 1 )
U= ka([Aleq + [Bleg + ku (A+B=C) 3.6.10
Eg. 3.6.9 reduces to:
dx X
dt ~ 1 3.6.11

or equivalently, using Eq.3.6.2:

d(€ —&ed _ (€ —&eq)
dt  — T

3.6.12

These last two equations correspond to simpledirdér kinetics, which by general patténn
we recognize assimple exponential processhich we integrate to:

X =X e_t/T or E —E,eq = (Eo— Eeu) e_t/T 3.6.13

where the initial state immediately after the terapgre jump corresponds to t = 0, where %= X
with Xo = [Clo — [Cleq, With [CJo = [Cleq,0l¢ Similarly, in terms of the extent of the reactian

t = 0 the extent is the initial extedt= &o, with &, given by the equilibrium position before the
temperature jump. The response of the system tpetarbation is a simple first-order
relaxation towards the new equilibrium state withet constant.

Eq. 3.6.9 only holds for the reaction stoichitmp@ + B = C that is second order forwards and
first order backwards. Corresponding equations rbesterived for other reaction orders and
stoichiometries. We have already done another ekarpg. 3.4.24 corresponds to a first order
forwards and first order backwards-AB reaction. In deriving Eq. 3.4.24 we used the
displacement, we just didn’t use the symbol x. Carmg Eq. 3.4.24 with Eq. 3.6.13 gives:

1 .
T G (A= B) 3.6.14

Chemical relaxation techniques have greatlyreded the types of chemical reactions that can
be studied and the range of rate constants thaieaetermined. An enzyme binding to its
substrate to form the enzyme substrate complexSE $ES], is one important A+ B C
example. We should emphasize the importance datttehat chemical relaxation, as well as
flash photolysis, starts with the system at equiin. There is no hurry when mixing the
reagents for the reaction. In addition, once trstesy relaxes back to equilibrium, the
perturbation may be repeated. The kinetics deteatioin can be repeated many times with the
same reagents. This attribute conserves preciaysrass, nucleic acids, or reagents that are
difficult to synthesize.

Example 3.6.1 Temperature Jump Kinetics

The equilibrium constant for the reaction” HOH - H.O is a function of temperature, so the
equilibrium position shifts with a temperature junijhe progress of the reaction is followed
using conductivity. At 298.2 K at pH 7.000 the saltion time is 37us. Calculate kand k.

The autoprotolysis constant for watety, ks 1.008x163* and [HO] = 55.33 M at 298.2 K.
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Answer The rate law for the reaction is:
d[H*
—% = k2 [H][OHT] — k1 [H20]

At equilibrium for this reaction:
k2 [Hzo]eq _ [H ZO]eq _ 55.33

— )
©=ks = [HedOHTeg~ Kw - 1.008x10% = 5:489x10

and at neutral pH, [Heq= [OH]eq=4/Kw = 1.004x10 M. We can also relate the two rate
constants through the equilibrium constant hy=kk./K.. From Eq. 3.6.10:

1 1
' Ke([Aleq + [Bleq) + ki~ ka([H'Jeq+ [OHTeq) + k1

Inverting this last equation and substituting fardives:
Ko([H"]eq+ [OHTJeq + ko/Ke = 1£

Putting the experimental values in gives:
k2(2.008x10° M) + k2(1.822x10') = 2.03x10*s?t

Solving for k gives k = 1.35x16! M-1s. This rate constant is one of the largest knowatd?
transfer rate constants are usually quite largeali k. and ki are related through the
equilibrium constant, k= ko/K¢ = 2.45x1 s.

3.7 Summary — Looking Ahead

Rate laws must be determined in the laboratoryddtermine the rate law, integrated rate laws
are compared to the time course for the reactisnrasg different reaction orders. Reaction
rates span many orders of magnitude with rate aotsfrom ~18 M s to centuried. Flash
photolysis and chemical relaxation techniques allosvstudy of fast reactions, starting from
equilibrium. The response of any chemical reactoa small perturbation is an exponential
decay that is characterized by a single relaxdtioa. Once the rate law has been determined, a
mechanism can be postulated that predicts the akanyesteps that are responsible for the rate
law. Mechanisms are the subject of the next cha@ee important question for the next chapter
is “why can’t the rate law be determined from tlverall reaction stoichiometry?” We also want
to focus on systems that involve a complex sequehoeactions.

Chapter Summary

1. A chemical kinetics study has three stagesTKE) determination of the empirical rate law, (2)
the determination of the mechanism of the reactaon, (3) the determination of the rate
constants for each mechanistic step through frisisjples theoretical calculations.

2. The order of the reaction with respect to eamtstituent is the exponent of the concentration
term in the rate law. The overall order is the safrthe orders with respect to each reactant.
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3. The mechanism is the sequence of elementary gtapdescribe the collisions that take place
during the course of the reaction. The number demdes involved in each collision in the
mechanism is called the molecularity.

4. The steps in a complete mechanism should adivéathe overall reaction.
5. The stoichiometric coefficients are symbolize&;dor each of the i constituents. Theare

negative for a reactant and positive for a prodliseé change in the extent of the reactidp, d
is related to the stoichiometric coefficients:

1 . .
v dn =d and solving for the change in moles; =m; d¢
|

. . S 1
6. The rate of the reaction in terms of changeircentration is given asl =— —~ =,

7. The average rate for a reaction during the timtexval from { to t is given by:

_ 1 ci(tz) —q(t t1 + _  Gi(ty) + q(t
_1 i(t2) — G(ty) Aol t2 and &= i(ty) + a(t2)

v Vi to—t 2 2
8. To determine the rate law, there are three géogtions:
1. The Integral Method: The time course is compé#odtie integrated rate laws.

2. The Half-time Method: The variation of the haifies of the reaction with initial
concentration is compared to predictions for ddfeérreaction orders.

3. The Differential Method: The differential methdudlectly follows the average rate of the
reaction as a function of the concentrations.

9. The lifetime for a first-order process,is the “1/e time,” which is the time necessanytfe
reactant to drop to 0.368 of its initial concentnat For first-order chemical reactions the 1/e
time is equal to 1/k.

10. The lifetime and the half-time of a first-orgepcess are related by+ 0.6931t.

11. In the Isolation Method the rate law is simptif by setting the concentrations of all the
reactants except for one in large excess.

12. Pseudo-order reactions have an effective mistant that combines the concentration factor
of one or more species that are in large excessth original rate constant. For example, the
solvent term is often combined with the rate camstias = k [H20]™.

13. Any linear concentration measure can be ugedttl for the determination of the reaction
order. For absorbance X = A and for conductivity X:

JAl  [Al—é X —=Xw [Alo—[A] &  Xo—X
[Alo =~ [Alo = Xo— X [Alo  ~ [Alo = Xo— X

14. Non-linear curve fitting is the best method ¢alculating rate constants from the
experimental time course.

15. Correlation coefficients between the fit parterelarger than 0.95 usually suggests that one

of the fit parameters needs to be specified asea fparameter, independently determined
either directly from the data or from another expent.

16. The extent of the reaction in concentrationauisié/V. Since concentration is intensive, we
can assume V = 1 without loss of generality: [APFo—&/V is equivalent to [A] = [A§—&.

and
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17. For initial rate®,2 anduo1 corresponding to initial concentrations §Afnd [Al2, the order
of the reaction with respect to A, n, is determifredn:

Uo2) _ [A] 02
In( ‘) =nl [Alo
18. During the course of the reactionuvlF n In[A] + In(k [B]™).

19. A reversible reaction from a kinetic standp@ust means the reaction runs forwards and
backwards. Thermodynamic reversibility for a cheahreaction requires kinetic reversibility
and that the reaction is also at equilibrium.

20. Chemical kinetics describes the irreversibtegpess of a reaction towards equilibrium.
21. At equilibrium the forward rate is equal to teeerse rate:fjA] [B] = k;[C] [D] or v+ =uv.
22. The ratio of the forward and reverse rate @ontstis the equilibrium constant:

Keq= E = G%Hg]l)eq

23. The displacement of a reaction away from elgiiiim for product C is defined as:
X = [C] = [Clq = ([Clo* &) — ([Clo* &eq) = & — &eq
and for reactant A: [A] — [AL = ([Alo— &) — ([Alo—&eq) = Eeq & = —X
24. The Arrhenius equation for the temperature ddgece of reaction rate constants is:

(o]

k = Ae®RT where A is the pre-exponential factor ands&he activation energy.

25. The “Chemists Rule:” a typical chemical reattioughly doubles in rate for every 10 K
temperature increase near room temperature. Thavim corresponds to.E 50 kJ mot
near room temperature.

26. The activation energy is a measure of thesiotlienergy necessary for the bond breaking
and making steps in a reaction to occur.

27. The pre-exponential factor is the product efridte of intermolecular collisions and a
probability factor that depends on the collisiommetry and the timing of the collision.

28. In solution, the solvent can act as a cagesuading both reactants so that many collisions
occur when the reactants approach each other dtrainge. These constrained multiple
collisions are called molecular encounters.

29. The temperature dependence is sometimes bafisgssed as: k = & B =RT
30. Stopped flow instruments automate the rapidngif the reactants.
31. Flash photolysis instruments use short lighdgrito initiate photochemical reactions.

32. Chemical relaxation techniques use a suddeuarpation in temperature, pressure, electric
field, or concentration to shift the position ofuddprium for a reacting system. After the
perturbation, the system is monitored as a funaticiime as the system approaches the new
equilibrium position.

33. The response of a chemical reaction to a feation is simple first-order relaxation towards
the new equilibrium state with time constantx = % €% or & —&eq= €o—E&eq €M

| | e 1
34. For first order forwards and first order rewevgth stoichiometry A- B: 1= ki + Ka

35. For second order forwards and first order e evith stoichiometry A + B C:
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_ 1
U= Ka([Al eq + [Bleg) + ka

Summary Table: Integrated Rate Laws (including fdas from the Problems)

Stoichiometry| Rate Law Integrated Form Linear Form
zeroth order | d[A] _ [Al=[Alo— ko't [Al-[Alo=— kot
AP
12 d 1 1 1 k/z
RO O NE ([A] 4 )2 A" =A==
3, d ] s . k L7
i'\s' 3“:'3” J—l = ki [A] [A] = [Alo € € In( ) =kt
1 order _ﬂ’ﬂ -2k A [A] = [AL, & 24 n(fa) = - 2ut
15 order J_l _ [A] = ([A] —[Alegetatkt | ([A]-[Aleq
A-B - = k[A] - k-1[B] + Al I ([A] [A]e =—(k+ k)t
2" order @_Al 3 1 1
AP —a = k[A A= [A] [A]0 = fe

[ Als +kt
2nd d d A 1 1
A o IO e B

[ Als + 2kt
2" order dg » _ 1 1 1 _
AP |a-k(@D ¢ =W~ Al Al !

([A] Tk t)
2" order g [Bo (1 (Bl Al )th) 1 [Alo([B]o—%)
A+B P | gk (AlDBlE) |g- (1Bl | AL, ([B]o([A] 04)) .
(Al S

3 order d[A] _ 3 1 1 1
ALp |Tdt TRIAP W =" % |ZArZART M

([A] ;+ 24
34 order dg , 17 28 1 [A]o[B]o— &)
2a+B — P | dt = K(Al2)(Blod) | 2B],— (AT (AT (Al 2) ~ 2[Blo- (Al " ([B]o([A]o 22))} ot

0 4 Exponential Temperature DependencER& The Arrhenius equation and similar equations
of the general type®RT can be alternatively expressed in the forms:

E 11
E sz E ( 1 1 (T —T
— E/RT — 2

The temperature dependence can be expressed s aeAh = To— Ti:

-7 =) -l
To T "\ TaiTe )" \T1To) — \T4?
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The last approximation only holds for narrow tengpere ranges.
The “Chemists Rule” is a rough approximation givbgn

krz=km € <RE?1> ot

which only holds for narrow temperature ranges.il@mapproximate doubling rules can be
expressed for other examples &€ temperature dependence.

Summary Table: Reaction Half-times (including fotasufrom the Problems)

Stoichiometry| Rate Law Half-time
zeroth order | d[A] _ K t _[Alo
A_P “dt T % 2k
zeroth order| d[A] _ 2k o = Alo
2A- P “dt T 4k
1 Vo
:ordper | | = ke [A] %2 t1/2:0.58k(?/|Ao
¥, order | | v _0.636 [Als
= ks, [A] ™ ty, =

A-P K,
1° order | | _ _In2 0.69¢
AP —ar - klAl b= T g
1* order dA] _ _In2_0.69¢
2A-P | d ~2KIA b= 2k = 2k
1% order d|A| _ __In2  0.69¢
A-B = Al -kalB] 1 6 =000 = (ka + ko)
2" order d|A| ~ 2 1
AP “at " kIAl b =1A] ke
2" order d[A] _ 2 1
2ALP | Tat ~2kIAl b = 2[A1 ke
3 order d[A] 3

— = 3 v S
AP at ~kelAl b = 23 ks
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Problems: Kinetics

1. In Example 3.3.1 we discussed denitrificatiomaftaminated ground water. The literature
assumes a half-order reaction with respect t@,NOt the differential method for the particular
data set gives % order. The best fit values forctreesponding rate constants ayek26.71 and
ks, = 7.12. Give the units for the rate constants withconcentration expressed in mg L

2. The half-life of the pesticide aldicarb (trademe Temik) is 30.0 days. The decomposition of
aldicarb is first-order. Calculate the time neceg$ar the amount of adicarb in a soil sample to
drop to 10.0% of its initial value.

3. Organisms require iron for survival. Reduced irothe form of F&' is readily available for
acquisition by living systems. However,?Fés oxidized by @ from the air to produce Be
which precipitates from solution as mixed hydradedles and hydroxides. Iron(ll) stability is
strongly pH dependent. The oxidation ofF@ aqueous 0.5 M HCIOsolution at 35C follows
the rate law:

_g%-]. — k [Fé+]2 P02

where R is the partial pressure ok@bove the solution and k = 3.653@ol?* L atnt* hr,
Assume that the air above the solution is at com$a = 0.200 atm. (a) Calculate the half-time
of the reaction in days for an initial concentratiaf 0.100 M F&". (b). How long would it take
for the concentration of Eeto drop to 0.0100 M?
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4. The concentration of 0zones,@n the stratosphere is dependent on interactiotiisthe odd
electron reactive nitrogen species, NO. The comagah of NO in the atmosphere is determined
in part by the rate of oxidation by,O

2NO (g) +Q(9) - 2N

An initial rate study at 2% was completed with the following results. Detarenthe rate law
and the rate constant. The initial rate is theeslofthe time course for very short times,Q:

o _(d[og] EXp [O2]o (mol L'Y)  [NOJo (mol L'Y) v, (mol L1 s?)
initial rate =vo = -( at ) 1 1.44x10° 0.28 x10° 6.90x10’
° 2 1.44 X108 0.93 x1C° 7.50 x10F

3 1.44 x10° 2.69 x10° 6.00 x10°

4 6.60 x10P 2.69 x10° 3.00 x10°

5. The decomposition of acetaldehyde:
CHsCH=0 - CH;+ C=0O

at 518°C and at an initial pressure of 363 mm Hyglmamonitored by measuring the total
pressure of the reaction at constant voldriéhat is the order of the reaction and the rate
constant? Use non-linear curve fitting. [Hint: yoeed to solve for the partial pressure of

acetaldehyde from the total pressure.]

t(s) 42 73 105 190 242 310
P(mmHg) 397 417 437 477 497 517
t(s) 384 480 665 840 1070 1440

P(mmHg) 537 557 587 607 627 647

6. Redo the kinetic analysis for the data from Rnwb5 using the linearized forms of the
integrated rate laws.

7. Use the differential method during the time seufior the data in Problem 5.

8. Pharmacokinetics is the study of the absorptisposition, metabolism, and excretion
(ADME) of drugs in living organisms. Pharmacokiestuses chemical kinetics as a tool to
predict drug levels in the body and anticipate diisgribution problems that might arise. Your
study of chemical kinetics puts you in a good posito understand ADME properties of drug
substances. In the terminology of pharmacologylasdose is a drug given in a short period of
time, for example by intravenous injection or deddlet administration. The table, below, gives
the plasma concentration as a function of timer difte administration of a 184-mg bolus dose of
ceftriaxone to a newborn infaht.Ceftriaxone is an antibiotic. Find the effectiviaetic order

for the time course of the drug concentration rdte constant, and half-life of the drug in the
body.

t (hr) 1.0 6.0 12. 24. 48. 72. 96. 144.
Concentration (mgt) 137. 120. 103. 76. 42. 23. 12. 3.7
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9. The absorption of UV light by benzophenone @gatlong-lived excited state. When
isopropanol-water mixtures are used as the solteaexcited state of benzophenone rapidly

reacts with isopropanol to produce protonated beheonone ketyl (6Hs).CO H, which is a free
radical:

(CsHs)2CO* + (CH)2CHOH - (CsHs)2COH + (CH).C'OH

The “*” indicates an electronic excited state. bsiz solution protonated benzophenone ketyl
rapidly looses a proton to produce the benzopheketyt radical anion:

(CeHs)2COH = (GeHs)2CO~ + HY

The benzophenone ketyl radical anion then readtstive protonated form to produce
benzpinacol:

(CoHe)osCOH + (CsHe):CO™ <2 (CoHe)oaC(OH)-C(OH)(GHs)

The benzophenone ketyl radical anion has an absonptaximum at 630 nm, which allows the
disappearance of the radical anion to be follonsed function of time in a laser flash photolysis
instrument. The absorbance time course for theiogais given below. The data table is

extracted from the much larger data file from th&riument, which is plotted at right. Find the

order of the reaction and the rate constant wipeet to benzophenone ketyl radical anion using

non-linear least squares curve fitting.

0.30
t (ms) A 0.95
0.064 0.2736
0.128  0.2660 0.20
3.264  0.1080 0.15 |
6.464  0.0540 <
0.10 $
9.664  0.0282
12.864  0.0129 0.05 |
16.064  0.0029 0.00 |
19.264 -0.0039
22.464 -0.0084 -0.05 ‘ ‘ ‘
0 0.01 0.02 0.03 0.04

25.664 -0.0109
28.864 -0.0125
32.064 -0.0111
35.264 -0.0102

t(s)

10. Use the data in the last problem with lineaweditting to determine the order of the
reaction and the rate constant.

11. Determine the fluorescence lifetime for antbracusing the following fluorescence intensity
measurements.

t (ns) 0 2 4 6 8 10
Intensity 62620 41250 27218 17708 11352 7560
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12. Determine the integrated rate law for a zeoytter reaction with stoichiometry 2 A P.
Use definite integrals. Zeroth-order reactionscm@mon with reactions involving surfaces.
Find the half-time for a zeroth-order reaction wiitis stoichiometry.

13. The half-time for a chemical reaction is tmadiwhen %2 the original amount of reactant
remains. However, the choice of the half-time pama measure of the reaction rate is not
unique. We can also determine the time when Yebtlginal amount remains, or when 1/p of
the original amount remains. Find the formula tieddtes the time to reach the 1/p point to the
rate constant, for a first-order and a second-ameetion.

14. Determine the integrated rate law and the tiak-for a third-order reaction with the
stoichiometry A- P.

15. Determine the integrated rate law for a haffeoreaction with the stoichiometry A P.

16. In biology, exponential population growth asiseom the rate law:

oL
dt = KIP]

where [P] is the population of a given organism dffel/dt is the birth rate. In short, the greater
the number of individuals the greater the birtler&ind the integrated rate law for the
population.

17. Determine the integrated rate law for a ¥-ordaction with the stoichiometry A P.

18. In Example 3.3.1 we discussed denitrificatibnantaminated ground water. The literature
assumes a Y2-order reaction with respect t@,M0Ot the differential method for the data set give
% order. Plot the time course for a ¥-order and@dér reaction using [N&) = 409 mg L for

0 hrto 1.7 hr. Include the data points from ExarthB.1. The best fit values for the rate
constants aresk= 26.71 mg? L” hrtand k. = 7.12 mg” L* hr. [Hint: restrict the time interval
for the half-order plot so that ([A]-kst /2) = 0 or for the %s-order plot, ([A]— k. t/4) > 0]

19. Find the integrated rate law for a third-ongsaction that is second-order in A and first-order
in B for the stoichiometry: 2 A + B, products. In actual examples, B is often calléthiad

body” and is often an inert gas, an Molecule from the air, a particle, or the wallg o

container. If the third body were not present,ablision of two A molecules would not be
stable and would dissociate back to form two A rooles. The third body is necessary to carry
away the excess energy of the collision. [Grab yotggral tables for this one.]

20. Thecis-transisomeration of 1-ethyl-2-methylcyclopropane istfiorder in the forward and
reverse direction$®
Ky
cis = trans
(]

The reaction, starting with ontyis isomer has the following time course. The longetivalue
for thecis-isomer concentration is 0.00443 M. Determinekd k.
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t(s) 0 400 1000 1600 2100
[cis (M) 0.01679 0.01406 0.01102 0.00892 0.00775

21. The rate of decomposition of acetaldehyde bas Istudied as a function of temperature. The
table below gives the rate constant for the reac®a function of temperature. Determine the
activation energy and the pre-exponential factor.

T (K) 703 733 759 791 811 836
ko (M1 s?) 0.011 0.035 0.105 0.343 0.79 2.14

22. This problem concerns the error analysis oféiselts from the last problem. (a) Using the
results from the last problem, determine the @nrdhe activation energy and the pre-
exponential factor. (b) Often a better approadb igse a non-linear fit. Do a non-linear fit to the
original data in the last problem and compare itheafues and the uncertainties with the
linearized fit.

23. Calculate the activation energy and pre-expoalefactor for the decomposition ob8s
from the following temperature dependefice.

T (K) 298.0 308.0 318.0 328.0 338.0
ki (min?) 2.03 8.09 29.9 90.1 291.5

24. The rate constant for the disappearance ofidlel in the reaction of NO with &€to form
NOCl is 4.52 M2 s1 at 0.0°C and 8.03 M s at 22.0°C. What are the activation energy and
pre-exponential factor for this reaction?

25. The decomposition of urea is BEONH; + 2 O — 2 NH, + CG; . The activation energy
for the reaction is 128.0 kJ mbIThe rate constant 72Q is 2.77x1@ min’. Calculate the rate
constants at 40°C.

26. The rate constant for the decomposition £94Ns 8.09 mint at 308.0 K and 90.1 mifhat
328.0 K® Calculate the rate constant at 298.2 K.

27. The half-time for the first-order denaturatmfryeast invertase at 58@ and pH 3 is
26.7 min. The activation energy is 308. kJ mbCalculate the time for the denaturation of the
protein to be 75% complete at 6800

28. The development of biological complexity ahd Emergence of life have important time
constraints. These time constraints in turn gigeraesponding range of reaction rate constants
for the production of the building blocks of lif&ll reactions are reversible, and the ratio of the
forward and reverse rate constants is given bytuslibrium constant, kg =ki/k.. Favorable
equilibrium is required to allow the significantilodup of products. A careful balancing of rate
and equilibrium constants is necessary for theigtersce necessary to build molecular and
organizational complexity. If reactions are twotfa®mplexity can’t be established because the
lifetimes of the molecules are too short. If reacs are too slow, interdependent sets of complex
reaction sequences can’t develop. The range ofioaatalf-times that are amenable for the
building of complexity is estimated to be in the o 100 yr range, which still spans more than 9
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orders of magnitud@Assume a range of pseudo-first order half-times sfto 100 yr to
calculate the range of amenable activation enefgreagactions to build complexity at 298 K.
Typical pre-exponential factors are in the rangé.0k13° s? to 1.0x14 s,

29. In this problem we compare the integrated leatefor A + B — P with A - P for a simple
first-order and second-order reaction. (a) Forc@sd-order reaction that is first order in A and
first order in B, solve Eq. 3.2.52 f&r Then plot [A] = [Al —¢& using the initial conditions [A]=
0.5M, [Blo=1.0 M and k= 0.1 M's?. Lett range from 0 to 20 s. (b) On the same @t the
corresponding time course for a first-order reaxtid— P, with [Alo = 0.5 M and k= 0.1 s". (c)
On the same axis, plot the corresponding time eofmnsa simple second-order reaction of the
form and stoichiometry A. P. For this last plot, use a rate constantcf R.2 M? s? so that

the initial rates for all three types of reacti@me equal, to make a fair comparison. (d)
Rationalize the differences in the plots.

30. Show that Eq. 3.4.22 reduces to simple firdeobehavior, with a rate constant of just k
for a reaction that runs to completion.

31. Find the lifetime and half-time for a reversildrst-order/first-order reaction from
Eq. 3.4.23:

32. For a reversible first-order/first-order reawt

k1
A - B
K1

(a) Show that the displacement for A after n hialfeis is given by:

1\n
A~ [Alea= (Ao~ [Aled) 3
(b)What percentage of the initial displacementfaemains after five half-times?

33. For a reversible first-order/first-order reawct

k1
A-B
K1

(a) Show that the displacement for A after n lifeds is given by:

Al - [Alea= (Ao~ [Aled (2]

A commonly quoted rule is that a reaction or predess essentially returned to equilibrium after
five lifetimes. (b)What percentage of the initigdglacement for A remains after five lifetimes?
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) . . o 1 -
34. Show that the relaxation time for a dimerizatist = (GKa[A] g+ K2) with:

k2
2A - A2
K-1

Assume the reaction is second-order in the forvaadtifirst-order in the reverse direction.

35. Consider the reaction:. A+B C+D
Show that the displacement for each product isdkfaneach reactant is — x, independent of the
initial concentrations used to prepare the reaatioriure.

36. Consider a temperature jump perturbation fi@aation that is second order in the forwards
and second order in the reverse direction:

k2
A+B 2 C+D
K2

o 1
Show the relaxation time is:= ka([A] eq + [Bleq) + k2([Cleq + [Dleq)

37. Consider a temperature jump perturbation fi@aation that is second order in the forwards
and second order in the reverse direction andyzadlby C°

k2
A+C -2 B+C
K2

: . . 1
Given the catalyst concentration is §3how that the relaxation time B;m
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