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Chapter 2 Problems 
 
1.  A 1.00-L bulb containing H2 at a pressure of 2.50 bar is connected to a 2.00-L bulb containing 
N2 at a pressure of 1.50 bar, both at the same temperature. Calculate (a) the total pressure of the 
system, (b) the mole fraction of H2, and (c) the partial pressure of each gas. 
 
 
Answer:  (a) The easiest way to work this kind of problem is to convert to moles. For the 1.00-L 
bulb: 
 nH2  =  PV/RT  =  2.50 bar 1.00 L/RT =  2.50 L bar/RT 
for the 2.00-L bulb: 
 nN2  =  1.50 bar 2.00 L/RT  =  3.00 L bar/RT 
 

the total pressure is given by the total moles, n = nH2 + nN2 in the total volume V= 3.00 L, Eq. 
2.1.3: 
 P  =  n RT/V =  (2.50 L bar/RT + 3.00 L bar/RT) RT/3.00 L =  1.833 bar 
 

(b) The mole fractions are: 

 yH2  =  nH2/n = 
2.50 L bar/RT
5.50 L bar/RT  =  0.4545 

and  yN2  = nN2/n  =  
3.00 L bar/RT
5.50 L bar/RT  =  0.5455 

 

(c) The partial pressures are given by Eq. 2.1.10: 
 PH2  =  yH2 P  =  0.4545 (1.833 bar)  =  0.833 bar 
 PN2  =  yN2 P  =  0.5455 (1.833 bar)  =  1.000 bar 
 
 
2.  Dry air is 20.946% by volume O2 and 79.054% N2. Consider a constant pressure piston filled 
with dry air at 1.000 atm or 1.01325 bar pressure at 298.2 K. A small amount of water is 
admitted and allowed to evaporate to give the equilibrium vapor pressure of water in the piston. 
Calculate the partial pressure of O2 at 298.2 K. 
 
 
Answer:  Think through this problem first: At constant pressure, admission of water vapor into 
the piston will cause an increase in the total moles of gas and a corresponding increase in 
volume. The moles of O2 remain the same, but with the increase in volume, the partial pressure 
of O2 will decrease. Assume the initial volume is Vo. In dry air P = PO2 + PN2, with 
PO2 = nO2 RT/Vo and PN2 = nN2 RT/Vo giving: 
 

 P = nO2 RT/Vo + nN2 RT/Vo or    P = (nO2 + nN2) RT/Vo    (1) 
 

Using the given mole fraction of O2, the partial pressure of O2 in dry air is: 
 PO2 = yO2 P = 0.20946 (1.01325 bar) = 0.2122 bar  or 
 PO2 = yO2 P = 0.20946 (1.0000 atm) = 0.2095 atm = 159.2 torr   (2) 
 

After the admission of water vapor, P = PO2 + PN2 + PH2O and the volume increases to V1, or: 
 

 P – PH2O = PO2 + PN2 = nO2 RT/V1 + nN2 RT/V1 = (nO2 + nN2)RT/V1   (3) 
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Dividing Eq. 3 by Eq. 1 gives: 
 

 
P – PH2O

P   =  
(nO2 + nN2)RT/V1

(nO2 + nN2)RT/Vo
  =  

1/V1

1/Vo
  =  

Vo

V1
      (4) 

 

In addition, the ratio of the wet and dry partial pressures for O2 can be calculated from: 
 

 
PO2,1
PO2,o

  =  
nO2 RT/V1

nO2 RT/Vo
  =  

1/V1

1/Vo
  =  

Vo

V1
       (5) 

 

since the moles of O2 remain constant. Combining Eq. 4 and 5 gives: 
 

 
PO2,1
PO2,o

  =  
P – PH2O

P          (6) 

 

Substitution of the equilibrium vapor pressure of water from Table 2.1.1 gives the ratio: 
 

 
PO2,1
PO2,o

  =  



101.325 kPa – 3.168 kPa

101.325 kPa   =  0.9687     (7) 

 

Using the dry partial pressure from Eq. 1 gives the wet partial pressure: 
 

 PO2,1  =  PO2,o 



P – PH2O

P   =  0.2122 bar (0.9687)  =  0.2056 bar 
 

or equivalently, 0.2029 atm and 154.2 torr. 
 
 
3.  Dry air is 20.946% by volume O2 and 79.054% N2. Consider a constant volume flask filled 
with dry air at 1.000 atm or 1.01325 bar pressure at 298.2 K. A small amount of water is 
admitted and allowed to evaporate to give the equilibrium vapor pressure of water in the constant 
volume flask. Calculate the partial pressure of O2 at 298.2 K. 
 
 
Answer:   The dry partial pressure is: 
 

 PO2 = yO2 P = 0.20946 (1.01325 bar) = 0.2122 bar 
 

and the total pressure is given by Po = PO2 + PN2. The admission of water vapor to the constant 
volume flask will increase the total pressure to P1 = PO2 + PN2 + PH2O. However, since the partial 
pressure of O2 is the pressure the gas would exert in the flask if it were alone, the partial pressure 
of O2 won’t change. So the final partial pressure of O2 is 0.2122 bar, or 0.2095 atm, or 159.2 torr. 
 
 
4.  An aqueous solution is prepared by adding 5.0822 g of ammonium sulfate, (NH4)2SO4, to a 
100-mL volumetric flask and then diluting to the mark. The final mass of the solution is 
102.97 g. Calculate the molarity, molality, and the mole fraction of ammonium sulfate in this 
solution. Calculate the mole fraction of the solvent. 
 
 



Chapter 2: Concentrations and Partial Pressures 3 

Answer:  The molar mass of (NH4)2SO4 is 132.14 g mol-1. The number of moles of added 
(NH4)2SO4 is 0.0384607 mol and the molarity is: 
 

 cB = 0.0384607 mol/0.1000 L = 0.384605 M. 
 

The molality, using the mass of the solvent: 
 

 wA = wsoln – wB = 102.97 g – 5.0822 g = 97.888 g = 0.097888 kg 
is mB = nB/wA = 0. 0.0384607 mol/0.097888 kg = 0.392904 mol kg-1 
 

The mole fraction is given using Eq. 2.2.13: 
 

 xB = 
mB (1kg)





1000g

 MA +mB (1kg)
  =  

0.392904 m (1kg)





1000g

18.0153 g mol-1 + 0.392904 m (1kg)
 

 xB =  7.02853x10-3 
 

Don’t forget to use all constants to at least the number of significant figures justified by the 
problem. Then calculate the mole fraction of the solvent by difference, since xA + xB = 1: 
 xH2O = 1 – 7.02853x10-3 = 0.992971 
 

Notice that the molarity and molality differ by 2.1%. 
 
 

5.  An aqueous solution is prepared by adding 2.012 g of CaCl22H2O to a 100-mL volumetric 
flask and then diluting to the mark. The final mass of the solution is 101.26 g. Calculate the 
molarity, molality, and the mole fraction of CaCl2 in this solution. Calculate the mole fraction of 
the solvent. 
 
 
Answer:  We need to take into account the waters of hydration. The plan is to note that the 
number of moles of anhydrous CaCl2 is equal to the moles of added CaCl22H2O. For the 
molality calculation the water of hydration is added to the mass of the solvent. The molar mass 
of CaCl22H2O is 147.014 g mol-1. 

   The moles of CaCl22H2O is based on the hydrated molar mass: 
 

 nB = 2.012 g/147.014 g mol-1 = 0.013686 mol 
 

and the molarity is: 
 

 cB = 0.013686 mol/0.1000 L = 0.13686 M. 
 

The mass of the solvent includes the water of hydration, based on 0.013686 mol of CaCl22H2O: 
 

 wA = water added in making solution + water of hydration from solute 
 wA = (101.26 g – 2.012 g) + 2 (18.02 g mol-1)(0.013686 mol) 
       = 99.741 g = 0.99741 kg 
 

The molality is then: 
 mB = nB/wA = 0.013686 mol/0.99741 kg = 0.13721 mol kg-1 
 

The mole fraction is given using Eq. 2.2.13: 
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 xB = 
mB (1kg)





1000g

MA
+mB (1kg)

  =  
0.13721 m (1kg)





1000g

18.0153 g mol-1 + 0.13721 m (1kg)
 

 xB =  2.466x10-3 
 

Don’t forget to use all constants to at least the number of significant figures justified by the 
problem. Then calculate the mole fraction of the solvent by difference, since xA + xB = 1: 
 xH2O = 1 – 2.466x10-3 = 0.9975 
 

Notice that the molarity and molality differ only by 0.26% in this problem. 
 
 
6.  Calculate the molality and mole fraction of an 0.851 M aqueous NH4Cl solution (MB = 53.50 
g mol-1). The density of the solution is 1.0140 g mL-1. 
 
 
Answer:  Using Eq. 2.2.7, the molality is: 

  m =  
c (1L)





1000mL dsoln – c (1L) MB

1000g/kg

 = 
0.851 mol L-1 (1L)

1000mL (1.0140 g mL-1) – 0.851 mol L-1 (1L) 53.50 g mol-1

1000g/kg

 

 

 =  0.879 m 
 

The molality and molarity differ by 3.3%. The mole fraction is given by Eq. 2.2.14: 
 

 xB = 
cB (1L)







1000mL dsoln- cB (1L) MB

MA
 + cB (1L)

 

      =  
0.851 mol L-1 (1L)





1000mL 1.0140 g mL-1 – 0.851 mol L-1 (1L) 53.50 g mol-1

18.02 g mol-1  + 0.851 mol L-1 (1L)
 

 xB =  0.01558 = 0.0156 
 
 
7.  The intensity of a 552 nm light beam is decreased to 18.2% of its original intensity on passing 
through 3.00 cm of a 2.13x10-4 M solution of an absorbing solute. What is the molar absorption 
coefficient? 
 
 
Answer:  The plan is to first calculate the absorbance of the solution and then use the Beer-
Lambert Law. The absorbance is given by Eq. 2.4.8: 
 

 A =  log 
Io

I   =  log 1/T = log 
100
%T = log 

100
18.2 = 0.73993 

 
The uncertainty can be easily evaluated by changing the %T to 18.3 and noting the change in the 
absorbance:  log(100/18.3) = 0.7375. The result changed in the third significant figure past the 
decimal point. So A = 0.7399 or just 0.740. Alternatively, you can use significant figure rules for 
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log x with x = 100/18.2 = 5.49 for three significant figures for x. The resulting log x should also 
have three significant figures past the decimal point, that is in the mantissa, A = 0.734. 
   Now using the Beer-Lambert Law, A =  l c, Eq. 2.4.7: 
 

  = 
A
l c = 

0.7399

3.00 cm (2.13x10-4 M) = 1157. mol-1 L cm-1 =  1.16x103 M-1 cm-1 

 
 
8.  Explicitly do the integration of Eq. 2.4.1 to give Eq. 2.4.3. 
 
 
Answer:  Starting with Eq. 2.4.1 
 dJ = –  c J(x) dx 
 

Separate the variables by dividing both sides of the equation by J: 
 

 
dJ
J  = –  c dx 

 

At x= 0 J = Jo, the incident intensity. Integrating x from 0 to l: 
 

 



Jo

J
 
dJ
J  = – 


0

 l  c dx 

 

The integral on the left is in the form of 

dx

x  = ln x   and the constants  and c can factor out in 

front of the integral on the right: 
 

 ( ln J|JJo
  =  –  c 


0

 l  dx  =  –  c ( x |l0 

 

Evaluating at the endpoints of the integral gives: 
 

 ln J – ln Jo  =  –  c l 
 

Combining the ln terms: 
 

 ln 
J
Jo

   = – l c 
 

and multiplying by -1 gives: 
 

 - ln 
J
Jo

   = ln 
Jo

J   =  l c  

 
 
 
 
9.  Bipyridine forms an intense red color when mixed with aqueous solutions of Fe(II): 
 

 3 bipy + Fe2+   Fe(bipy)3
2+ 
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This complex is commonly used for low level spectrophotometric determinations of Fe(II) in 
natural waters. A standard solution of 5.04x10-4 M Fe(II) was added, using volumetric pipettes, 
to a series of 50.0-mL volumetric flasks and diluted to the mark with excess bipyridine solution 
according to the following table. The absorbance of the solutions was determined at the 
wavelength of maximum absorbance, 522 nm, using a cuvette path length of 1.00 cm. (a). What 
color corresponds to 522 nm? (b). Determine the molar absorption coefficient. (c). A 20.000-mL 
sample of water from a stream that drains a bog was treated in the same fashion producing an 
absorbance of 0.271. Calculate the concentration of Fe(II) in the stream. 
 

Fe(II) added, (mL) 2.00 4.00 6.00 8.00 10.00 
A 0.176 0.345 0.523 0.702 0.870 

 
 
Answer:  (a). The wavelength of 522 nm is in the green to blue-green region of the spectrum. The 
important point is the wavelength of maximum absorption is not red. 
(b). According to the Beer-Lambert Law, A =  l c, Eq. 2.4.7, absorbance is a linear function with 
slope l  and zero intercept when plotted as A versus c. An Excel spreadsheet was set up and 
linest() used to calculate the molar absorption coefficient from the slope of the plot. A plot of the 
data with the best fit line is also shown below: 
 

 

V(total) = 50 mL  
[A] (stand.)=  5.04E-04 M  
    
V (mL) c (M) A  

0 0.00E+00 0  
2 2.02E-05 0.176  
4 4.03E-05 0.345  
6 6.05E-05 0.523  
8 8.06E-05 0.702  

10 1.01E-04 0.87  
    
    
slope 8653.628 -0.00014 intercept 
 37.65683 0.002298 
r2 0.999924 0.003176 st.dev. Y 
F 52809.12 4 df 
ssreg 0.532618 4.03E-05 ssresidual 

 

 

 

 

It is always good idea to use the (0,0) data point, assuming the absorbance scale was calibrated 
properly. The molar absorption coefficient is 8654.  38 M-1 cm-1. The uncertainty is 0.44%. 
(c). The unknown absorbance is 0.271, which when substituted into A =  l c gives: 
 

 c = 0.271/8654 M-1 cm-1/1.00 cm = 3.131x10-5 M 
 

To find the uncertainty in the final result, note that the relative uncertainty in the unknown 
absorbance is 0.001/0.271 = 0.37%. Relative variances add on multiplication and division. 
Assuming that the intercept is zero with no uncertainty, the total relative uncertainty in the result 
is then 0.00442 + 0.00372 = 0.0057 or 0.57%. The uncertainty in the result is: 
 

 c =  (0.0057)(3.131x10-5 M) = 0.018x10-5 M, giving: 
 c = 0.271/8654 M-1 cm-1/1.00 cm = 3.131x10-5  0.018x10-5 M = 3.13x10-5 M 

y = 8653.6x - 0.0001
R2 = 0.9999

0

0.2

0.4

0.6

0.8

1

0.0E+00 5.0E-05 1.0E-04
c (M)

A
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Please consult a text on Analytical Chemistry for a more complete discussion on the propagation 
of errors for calibration problems, such as this. This result is the concentration in the 50-mL 
volumetric flask. The concentration in the original 20-mL stream sample is: 
(50 mL/20 mL)( 3.131x10-5  0.018x10-5 M) = 7.828x10-5  0.045x10-5 M. 
 
 
10.  What is the absorbance of the column of water that corresponds to ¼, ½, and ¾ of the depth 
of the euphotic zone? What absorbance corresponds to the depth of the euphotic zone? 
 
 
Answer: The euphotic zone corresponds to 99% of the incident light absorbed or a percent 
transmission of 1%. Using Eq. 2.4.8: 
 

 A =  log 
Io

I   =  log 1/T = log 
100
%T = log 

100
1  = 2.00 

 

The other absorbances can be determined using the Beer-Lambert Law, A =  l c, Eq. 2.4.7, and 
direct proportions assuming the molar absorption coefficient and concentration of absorber are 
constant with depth: 

 
A2

A1
 = 

 l2c
 l1c

 = 
l2
l1

 

 

So at ¼ of the depth of the euphotic zone A = 0.5, at ½ of the depth of the euphotic zone A= 
1.00, and at ¾ of the full depth A = 1.5. These absorbances correspond to %T of 31.6%, 10%, 
and 3.16%, respectively. 
 
 
11.  The concentration of quinine sulfate in tonic water can easily be determined using 
fluorescence emission. A series of standard solutions in 0.05 M sulfuric acid was prepared and 
the fluorescence emission at 470 nm was determined as shown below. The standard stock 
concentration was 1.00x10-3 g L-1 or 1.28x10-6 M. The volumes of the quinine stock solution, 
listed below, were added to 100–mL volumetric flasks and diluted to the mark with 0.05 M 
sulfuric acid. Fluorescence light fluxes, or intensities, are usually measured in arbitrary units, 
which could be in millivolts or the unscaled computer digitized output from the detector. The 
units are immaterial since fluorescence must always be calibrated with standard solutions and 
then the fluorescence units cancel out. A commercial tonic water sample was diluted 0.5 mL to 
100 mL with 0.05 M sulfuric acid and the fluorescence intensity was determined to be 22167 
units. Determine the molar concentration of the quinine in the tonic water. 
 

stock added, (mL) 10.00 30.00 50.00 70.00 100.00 
fluorescence intensity 2741 8214 13586 18983 27319 

 
 
Answer:  The fluorescence is assumed to be directly proportional to concentration, Section 2.4, If 
= k c. A plot of fluorescence intensity, or flux, versus concentration should give a straight line 
with slope k. An Excel spreadsheet was developed and linest() was used to determine the slope 



8 
 

of the curve (essentially the same spreadsheet as for Problem 9). A plot of the data with the best 
fit line is also shown at right: 
 

 

V(total) = 100 mL  
[A] (stand.)=  1.28E-06 M  
    
V (mL) c (M) If  

0 0.00E+00 0  
10 1.28E-07 2761  
30 3.84E-07 8514  
50 6.40E-07 13086  
70 8.96E-07 18983  

100 1.28E-06 27019  
    
    
slope 2.102E+10 69.83178 intercept 
 2.706E+08 191.8388 
r2 0.9993371 292.5832 st.dev. Y 
F 6030.4259 4 df 
ssreg 516234315 342419.8 ssresidual 

 

 

 
 

 
The calibration constant is k = 2.102x1010  0.027x1010 M. The unknown intensity is 22167, so 
solving for the corresponding concentration from If = k c gives: 
 

 c = If/k = 22167/2.102x1010 = 1.055x10-6 M 
 

To find the uncertainty, note that relative variances add on multiplication and division. The 
relative uncertainty in k is 1.3%. We can use the standard deviation of the Y values from the 
curve fit as a measure of the uncertainty of the fluorescence intensities, which gives a relative 
uncertainty of the unknown intensity as 293/22167 = 1.3%. The relative uncertainty in the result 
is then 0.0132 + 0.0132  = 2 0.013 = 0.018, which gives the final result as 1.055x10-6  
0.019x10-6 M. 
 
 
12. Photovoltaic cells convert sunlight into electrical energy. The units often used for the 
electrical energy are kW hours, or kWh. Calculate the conversion factor from kWh to joules. 
 
Answer:  Given that 1 Watt = 1 J s-1 then: 
 

  1 kWh = 1000 J s-1(1 hr)(3600 s/1 hr) = 3.6x106 J 
 
 
13.  The peak sun solar flux that reaches a surface pointed directly at the sun is about 
1000 W m-2. The solar insolation is the total amount of solar energy for a given location for a 
specific time. The solar insolation is the average incident energy for a specific time that takes 
into account the tilt of the sun during the day and the effects of clouds. Calculate the factor for 
the conversion of the peak sun flux of 1000 W m-2 to the yearly average flux for Phoenix (6.08 
kWh m-2 day-1), Seattle (3.69 kWh m-2 day-1), Boston (4.16 kWh m-2 day-1), and Miami (5.45 
kWh m-2 day-1). (The yearly average insolation for the United States is given in color plate 1 at 
the end of this section, from data from the National Renewable Resource Laboratory, NREL, 
http://www.nrel.gov/gis/solar.html). 
 

0
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15000

20000

25000

0.0E+00 5.0E-07 1.0E-06 1.5E-06
c (M)

If 
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Answer:  The tabulated yearly average value for Phoenix from NREL is 6.08 kWh m-2 day-1. 
First convert the insolation into the equivalent averaged flux. 
 

 J = 6.08 kWh m-2 day-1(3.6x106 J/1 kWh)(1 day/24 hr)(1 hr/3600 s) = 253.33 J m-2 s-1 

 

Remember that 1 J s-1 = 1 W so J = 253 W m-2. We want to find the factor, k, for the conversion: 
 

 k = averaged flux/peak sun flux = 253.3 W m-2/1000 W m-2 = 0.253  or 25.3% 
 

Let’s check this result. The solar insulation should be given by 
 

 solar insulation = k (peak sun flux) (24 hr/1 day) 
    = 0.25333 (1 kW m-2) (24 hr/1 day) = 6.08 kWh m-2day-1 
 

The values for the other cities are given in the table below: 
 

City flux  
(W m-2) 

k Insolation  
(kWh m-2 day-1) 

Phoenix 253 25.3% 6.08 
Miami 227 22.7% 5.45 
Boston 173 17.3% 4.16 
Seattle 154 15.4% 3.69 

 
 
14.  A photovoltaic panel can convert about 17-23% of the light flux into electrical power. The 
conversion of the DC power from a solar panel to AC power that can be used to power 
appliances or to feed into the power grid is about 77% efficient. Use the solar insolation values 
listed in Problem 13. (a) Calculate the AC power available per square meter per day from 
photovoltaic cells operating at 23% efficiency in each of the four cities listed in the previous 
problem. (b) A typical refrigerator requires 450 kW hours of energy per year. Calculate the 
photovoltaic panel area needed to provide all the energy for this refrigerator. 
 
 
Answer:  The tabulated yearly average value for Phoenix from NREL is 6.08 kWh m-2 day-1. 
First convert the insolation into the equivalent averaged flux: 
 

 J = 6.08 kWh m-2 day-1(3.6x106 J/1 kWh)(1 day/24 hr)(1 hr/3600 s) = 253.33 J m-2 s-1 

 

Remember that 1 J s-1 = 1 W so J = 253 W m-2.The AC power from a 23% efficient solar 
photovoltaic cell is: 
 

 AC power = (253 W m-2)(0.23)(0.77) = 44.87 W m-2. 
 

and in kWh per year: 
 

 AC energy = 44.87 W (365 day/1 yr)(24 hr/1day) = 393 kWh m-2 yr-1 

 

The refrigerator requires 450 kWh yr-1. The panel area necessary is: 
 

 panel area = (450 kWh yr-1)/ 393 kWh m-2 yr-1 = 1.15 m2 
 

The values for the other cities are given in the table below: 
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City flux 
(W m-2) 

Insolation  
(kWh m-2 day-1) 

AC power 
(W m-2) 

AC energy 
(kWh m-2 yr-1) 

Collector area 
(m2) 

Phoenix 253 6.08 44.9 393 1.15 
Miami 227 5.45 40.2 352 1.28 
Boston 173 4.16 30.7 269 1.67 
Seattle 154 3.69 27.2 239 1.89 

 
This calculation is optimistic, because most current commodity photovoltaics have an efficiency 
closer to 19%. This calculation also doesn’t have any inefficiency added for energy storage. 
Battery storage is 80-90% efficient. So in Boston with 19% efficiency and battery storage, the 
roof area to be energy neutral for a refrigerator is in the range of 2.25-2.5 m2. This refrigerator 
power corresponds to an averaged 51 W. So the roof areas listed in the table would also be 
needed for roughly 15 “100 watt-equivalent” LED light bulbs (10 W), assuming they are on a 
third of the time. 
 
 

15.  Calculate the value for the limiting molar conductivity, o
m, for CaCl2 from the following 

data, taken at 25C. 
 

c (M) 1.00x10-3 2.00x10-3 10.00x10-3 0.100 
m (mS m2 mol-1) 26.386 26.072 24.850 24.072 

 
 
Answer:  From Eq. 2.4.14, m = o

m – K c½, we need to plot the molar conductivity as a function 
of the square root of the concentration. The y-intercept is then the value of 

o
m. The following 

spreadsheet and plot were constructed and linest() was used to find the intercept: 
 

 

c (M) c½ (M½) m (mS m2 mol-1) 
1.00E-03 0.031623 26.386 
2.00E-03 0.044721 26.072 
1.00E-02 0.1 24.85 

0.02 0.141421 24.072 
 
 

slope -21.1568 27.02572 intercept 
 0.621326 0.056435 
r2 0.998278 0.05472 st.dev. Y 
F 1159.469 2 df 
ssreg 3.471775 0.005989 ssresidual 

 

 

 
The intercept gives o

m(CaCl2) = 27.02 ± 0.06 mS m2 mol-1. 
 
 
16.  Conductivity electrodes are calibrated using standard KCl solutions. The conductivity of 
0.001000 M KCl is 0.14695 S m-1. Many meters and texts list conductivities in mS m-1, S cm-1, 
mS cm-1, and µS cm-1. Find the conductivity of 0.001000 M KCl in these additional units. 

y = -21.157x + 27.026
R² = 0.9983
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Answer:   = 0.14695 S m-1 (1000 mS/1S) = 146.95 mS m-1 
     = 0.14695 S m-1 (1 m/100 cm) = 0.0014695 S cm-1 
     = 0.14695 S m-1 (1 m/100 cm)(1000 mS/1S) = 1.4695 mS cm-1 
     = 0.14695 S m-1 (1 m/100 cm)(1x106 µS/1S) = 1469.5 µS cm-1 
 
 
17.  Conductivity electrodes are calibrated using standard KCl solutions. The conductivity of 
0.01000 M KCl is 0.14127 S m-1 or 1412.7 µS cm-1. The resistance of a conductance cell 
containing 0.0100 M KCl is 552.2 ohm at 25ºC. The resistance of the same cell when filled with 
a solution containing 2.380 g of MgCl2 per liter is 151.0 ohm. (a). Calculate the cell constant, 
which is defined as (l /A), where l is the distance between the electrodes and A is the cross-
sectional area of the electrodes. (b). Calculate the conductivity of the MgCl2 solution. (c). 
Calculate the molar conductivity in mS m2 mol-1, S cm2 mol-1, and S cm-1 mol-1. 
 
 

Answer:  (a). Using Eq. 2.4.11:   = 
1
R  



l

A  

Solving for (l /A) gives: 
  = R  = 552.2 ohm (0.14127 S m-1) = 78.009 m-1 

or   



l

A  = R  = 552.2 ohm (1412.7 µS cm-1) (1x10-6 ohm-1/1 µS) = 0.78009 cm-1 

(b). The conductivity of the MgCl2 solution is: 

  = 
1
R  



l

A  = 
1

151.0 ohms  78.009 m-1 = 0.5166 S m-1 

or   = 
1
R  



l

A  = 
1

151.0 ohms  0.78009 cm-1 = 5.166x10-3 S cm-1 = 5166. µS cm-1 
 

(c). The concentration of the MgCl2 solution is: 
 

 c = 2.380/95.21 g mol-1/1 L = 0.02500 mol L-1  
    = 2.380/95.21 g mol-1/1 L (1000 L/1m3) = 25.00 mol m-3 
    = 2.380/95.21 g mol-1/1 L (1 L/1000 cm3) = 2.500x10-5  mol cm-3 
 

The molar conductivity is then defined by Eq. 2.4.12 

 m = 

c = 

0.5166 S m-1

25.00 mol m-3 = 0.02066 S m2 mol-1 = 20.66 mS m2 mol-1 

 m = 

c = 

5166. µS cm-1

2.500x10-5  mol cm-3 = 2.066x108 µS cm2 mol-1 
 

Another common set of units for molar conductivity are S cm2 mol-1: 
 

 m =  0.02066 S m2 mol-1 (100 cm/1m)2 = 206.6 S cm2 mol-1 
 
 
18.  Ammonia is a weak electrolyte and weak base:  NH3 + H2O   NH4

+ + OH-. The fraction of 
NH4OH is always small in aqueous solution, so the limiting molar conductivity cannot be 
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measured directly. However, NH4Cl, NaCl, and NaOH are all strong electrolytes. Given 
o

m(NH4Cl) = 14.97 mS m2mol-1,  o
m(NaCl) = 12.64 mS m2mol-1, and  o

m(NaOH) = 
24.80 mS m2mol-1, calculate the limiting molar conductivity of NH4OH. 
 
 
Answer:  At infinite dilution the conductivity of ions is independent, because negligible forces 
act between the ions. Then 

o
m(NH4OH) = 

o
m(NH4Cl) – 

o
m(NaCl) + 

o
m(NaOH): 

 

 
o
m(NH4OH) = 14.97 – 12.64 + 24.80 mS m2mol-1 = 27.13 mS m2mol-1 

 
 
19.  Thermal conductivity can be expressed as a linear flux-force relationship: 
 

 Jq = –  
dT
dx 

 

where  is the thermal conductivity and dT/dx is the temperature gradient. The units of the 
thermal flux are J m-2 s-1 giving the units of  as J m-1 K-1 s-1. Some manufactures sell 
thermopane windows with argon as the fill gas between the panes. Calculate the thermal flux 
with air and with argon as the fill gas in a thermopane window with a spacing of 2.00 mm 
between the panes of glass. Assume the outside air temperature is 0.0C and the inside is 20.0C. 
The thermal conductivity of air is 0.0252 and argon is 0.0233 J m-1 K-1 s-1 at 15C and 1 atm. 
Assume a linear temperature gradient. 
 
 
Answer:  Note that for temperature differences, a C is the same as a degree K. Analogously to 
Eq. 2.3.4 for a linear temperature gradient: 
 

 
dT
dx = 

(T' – T)
  

 
 
For air: 

 Jq = –  
dT
dx = – 0.0252 J m-1 K-1 s-1 (20.0 –0.0C)/2.00 mm (1000 mm/1 m)  

     = -252 J m-2 s-1  the flux direction is    (hotter to colder) 
For argon: 

 Jq = –  
dT
dx = – 0.0233 J m-1 K-1 s-1 (20.0 –0.0C)/2.00 mm (1000 mm/1 m)  

     = -233 J m-2 s-1 
 

The difference is about 7.5%. 
 
 
20.  Thermal conductivity can be expressed as a linear flux-force relationship: 
 

T (C) 

x 

2.0 mm 

0C 

20C 

 Jq 
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 Jq = –  
dT
dx 

 

where  is the thermal conductivity and dT/dx is the temperature gradient. The units of the 
thermal flux are J m-2 s-1 giving the units of  as J m-1 K-1 s-1. Why are stainless steel cooking 
pans often sold with a thin copper cladding on the bottom? The thermal conductivity of 
aluminum is 250, copper is 401, and stainless steel is 16 J m-1 K-1 s-1 at 25C. 
 
 
Answer:  Note that for temperature differences, a C is the same as a degree K. Analogously to 
Eq. 2.3.4 for a linear temperature gradient: 
 

 
dT
dx = 

(T' – T)
  

 

For the same temperature gradient, a substance with a higher thermal conductivity will conduct 
more energy in a given amount of time. The chemical resistance of stainless steel is much better 
than copper and aluminum, but the thermal conductivity is poor. The copper cladding distributes 
the heat more evenly from the cooking surface. Even heat distribution helps to minimize food 
sticking and carbonizing on the bottom of the pot. Copper is more expensive than aluminum. 
 
 
21.  Often in practical applications of membrane diffusion the membrane thickness is not known. 
When the membrane thickness is not known, the flux across the membrane from Eqs. 2.3.3 and 
2.3.4 is written as: 
 

 Jm = – D 
(c' – c)

  = – P (c' – c) 
 

where the permeability, P, is defined as P = D/, and  is the thickness of the membrane. A linear 
concentration gradient through the membrane is assumed. The permeability of a cellulose-based 
dialysis membrane was found to be 6.3x10-4 m s-1 for KCl. Calculate the initial flux of KCl 
through the membrane if one side of the membrane is a well-stirred solution of 0.100 M KCl and 
the other side is distilled water. 
 
 
Answer:  Using Jm =  – P (c' – c) = – 6.3x10-4 m s-1 (0 – 0.100 mol L-1)(1000 L/1 m3) 
        = 0.063 mol m-2 s-1 
 

The flux will decrease as the two solutions approach the same concentration, so this value is only 
for short times. 
 
 
22.  Assume two well-mixed compartments with volumes V1 and V2 are separated by a 
membrane. Substance X diffuses through the membrane, which has cross-sectional area A: 
 
 
 
 

membrane 
cross-sectional area = A 

V1 V2 

X 
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(a). Prove for diffusion of substance X across a membrane that the rate of concentration change 
in compartment 1 is given by: 
 

 
d[X]

dt  = 
dcX

dt   =  Jm (A/V1) 
 

(b). Using the data in the last problem calculate the initial rate for the concentration change for 
compartment 1 assuming a 3.00 cm diameter circular membrane and V1 = 50.0 mL. 
 
 
Answer:  (a). The flux is the amount per unit time per unit area. Starting with Eq. 2.3.1: 
 

 
dnx

dt  = Jm A 
 

gives the change in moles of X flowing into compartment 1 per unit time. The change in 
concentration is then just the change in moles from the last equation divided by the volume for 
compartment 1: 
 

 
d[X]

dt  = 
dcX

dt   = 
1

V1
 
dnX

dt =  Jm 



A

V1
 

 

(b). The cross-sectional area of the membrane is A = r2 = 7.07x10-4 m2. The volume should be 
converted to liters, since we normally express rates in mol L-1. From the last problem, Jm = 0.063 
mol m-2 s-1 giving the rate as: 
 

 
d[X]

dt   =  Jm 



A

V1
  =  0.063 mol m-2 s-1 



7.07x10-4 m2

0.050 L   =  8.91x10-4 mol L-1 s-1 
 

The rate will decrease as the two solutions approach the same concentration, so this value is only 
for short times. However, to check the order of magnitude of the result to see if it is reasonable, 
if the flux were constant after 112 s the concentration would increase to 0.10 M. 
 
 
23.  A constant volume flow reactor is used to convert used vegetable oil to biodiesel fuel. The 
input stream contained vegetable oil, 1% KOH and 20% methanol. The yield of biodiesel for a 
constant flow at 50C was 73.0% and the yield when the reactor was run at 65C was 92.1%. 
Assume a constant flow. (a). Show that the ratio of the reaction yields under two different 
conditions is equal to the ratio of the product fluxes out of the reactor. Assume the flow cross-
sectional area for the input and output are the same. (b). Show that the ratio of the reaction yields 
is equal to the ratio of the average chemical reaction rates under the two different conditions. 
[Hint: the average reaction rate for the formation of product over the time interval t is given by 
– = [P]/t, where [P] is the change in product concentration.] 
 
 
Answer:  (a). The yield for a reaction is given by: 
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 y = 
moles product
moles reactant        1 

 

Using Eq. 2.3.2, the amount can be related to the flux into and out of the reactor. Assume the 
input cross-sectional area is Ain and for the output Aout. The yield for a time in the reactor of t is 
given by: 
 

 y = 
moles product
moles reactant =  

nP

nR
 =  

JmP Aout t
JmR Ain t

     2 
 

where JmR and JmP are the fluxes for the reactant into the reactor and the product out of the 
reactor, respectively. If the cross-sectional area of the input and output to the flow reactor are 
equal then y = JmP/JmR for a given experiment. For two different experiments with the same 
input, the ratio is given by: 
 

 y1 = (JmP1/JmR)  y2 = (JmP2/JmR)  and    
y2

y1
  = 

JmP2

JmP1
  3 

 

which is just the ratio of the output product fluxes. 
(b). Assuming a constant average reaction rate over the time in the reactor, –, the amount of 
product formed is given by: 
 

 – = 
[P]
t

    or    [P]  =  – t     4 
 

Note that nP = [P]V, where V is the total volume flowing through the reactor in time t. 
Substitution of this last result with Eq. 4 into Eq. 2 gives for a given experiment: 
 

 y  =  
nP

nR
 =  

– V t
nR

        5 
 

For two different experiments the ratio is given by: 
 

 y1  =  
–1 V t

nR
  y2  =  

–2 V t
nR

  and   
y2

y1
  =  

–2

–1

   6 

 

The ratio of the average reaction rates over the fixed time interval is given by the ratio of the 
yields in a constant volume flow reactor. 
 
 
24.  By drawing vectors in an x-y coordinate plot, show that matrix multiplication: a  = M  b with 
the matrix: 
 

 M   = 






3/2 –1/2

1/2 3/2
 

corresponds to a rotation of the vector by 30 around the z-axis. Use b = 



1/2

3/2
, which is 

diagrammed at right: 
 

y 

x 0.5 

0.866 
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Answer: 

 a  = M  b = 






3/2 –1/2

1/2 3/2 



1/2

3/2
 =  



3/4 – 3/4

1/4 + 3/4
  =  



0

1  

 

which lies along the y-axis: 
 
 
 
 
 
 
 
 
To verify the angle we can remember from your General Physics course that the dot product is 
related to the angle between the vectors,  uv = |u| |v| cos . Both a  and b  are unit length; that is, 
|a| = |b| = 1, giving: 
 

 cos   =  
ab

|a| |b|  =  (1/2(0) + 3/2(1)) = 3/2  = 0.866 or     = 30 

 
 
25.  How are 3D computer graphics done? Many of the operations in computer games and 
molecular graphics correspond to rotation about the axis perpendicular to the computer screen. 
We showed in the last problem that matrix multiplication can generate such rotations. Show that 
the matrix: 
 

 Rz()  =  






cos  –sin 

sin  cos 
 

 

generates a rotation around the z-axis of  degrees, by showing that Rz(30) gives the matrix in 
the last problem. 
 
 

Answer:  Rz(30)  =  






cos 30 –sin 30

sin 30 cos 30
  =  







3/2 –1/2

1/2 3/2
 

 
 
26.  In computer graphics, the apparent distance between the observer and the object on the 
screen is determined by scaling the object. Show that the diagonal matrix: 
 

 M  = 






n 0

0 n
  with   a  = M  b 

 

y 

x 0.5 

1 



Chapter 2: Concentrations and Partial Pressures 17 

changes the length of the vector b but not the direction. Use b = 



1/2

3/2
, which is diagrammed in 

Problem 24. 

Answer:  a  = M  b = 






n 0

0 n
 



1/2

3/2
 = 



n(1/2)

n( 3/2)
 which is in the same direction but is longer if n > 

1 and shorter if n < 1. To verify the angle we can remember from your General Physics course 

that uv = |u| |v| cos . Note that |a| = n2(1/2)2 + n2( 3/2)2) = n and b  is unit length; that is, |b| 

= 1. The angle is given by: 
 

 cos   =  
ab

|a| |b|  =  
n(1/2(1/2) + 3/2( 3/2))

n  = 1   or    = 0 

 
 
27.  The UV-visible absorption spectra of two compounds is shown below. The concentration of 
each is 5.00x10-5 M. The absorbances at the two chosen analytical wavelengths, 1 and 2 are 
listed. 
 
 
 
 
 
 
 
 
 
 
 
 
The path length of the cuvette is 1.00 cm. An unknown mixture has an absorbance of 0.419 at 1  
and an absorbance of 0.546 at 2. (a). Determine, without calculations, the component with the 
larger concentration. (b). Calculate the concentrations of the two compounds. 
 
 
Answer:  (a). The absorbance at the second wavelength for the unknown is bigger than at the 
first. As a pure substance, compound 2 has the bigger absorbance at wavelength 2. This shows 
that component 2 is in higher concentration than component 1 in the unknown. 
(b). The plan is to first find  l for each compound at each wavelength. Then invert the matrix in 
Excel to do the matrix multiplication based on the Beer-Lambert Law, Eq. 2.6.8. 
   Using the Beer-Lambert Law, A =  l c, Eq. 2.4.7 gives  l = A/c: 
 
          compound 1   compound 2 
             
 

 ( l )  = 



13440 2240

2080 10660  
 1

 2
 

wavelength (nm) 
300 400 500 600 

0.2 

0.4 

0.6 

0.8 

1 2 

A = 0.672 

A = 0.112 

A = 0.533 

A = 0.104 

A Compound 1 Compound 2 
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Excel was then used to invert the matrix and do the multiplication, as in Figure 2.8.2: 
 
 

  compound 1 compound 2        

  l =    ( l )-1  * A = c 
wavelength 1  13440 2240  7.6906E-05 -1.6160E-05  0.419  2.340E-05 
wavelength 2  2080 10660  -1.5006E-05 9.6962E-05  0.546  4.665E-05 

 

One difficulty with simultaneous concentration determinations is that the uncertainties are a bit 
harder to determine. Since we are using Excel, we can use the trick of changing an absorbance 
by ±1 in the last significant figure and recalculating to see how the final results change. For 
example, changing 0.419 to 0.420 changes the results to (2.348x10-5 and 4.664x10-5M). In other 
words the results change roughly in the third significant figure. Of course, there are uncertainties 
in every measurement, which compound to increase the uncertainty in the result. But at least the 
results are certainly not known to better than three significant figures. Changing a few values 
simultaneously at random will give an even better estimate of the overall uncertainty. Using 
three significant figures, the final results are c1 = 2.34x10-5 M and c2 = 4.67x10-5 M. 
 
 

28. Show that A  (B+C) = AB + AC explicitly using A  = 



a b

c d
 ,  B = 



e f

g h
 , and C = 



i j

k l
 

 
 
Answer:  The plan is to work on the left-hand side and then the right-hand side and compare to 
see if the results from both sides are equal. For the left-hand side: 
 

  A  (B+C) = 



a b

c d
 









e f

g h
 + 



i j

k l
  =  



a b

c d
 



e+i f+j

g+k h+l
  =  







a(e+i)+b(g+k) a(f+j)+b(h+l)

c(e+i)+d(g+k) c(f+j)+d(h+l)
 

 

For the right-hand side: 
 

       AB + AC = 



a b

c d
 



e f

g h
 + 



a b

c d
 



i j

k l
  =  



ae+bg af+bh

ce+dg cf+dh
 + 



ai+bk aj+bl

ci+dk cj+dl
 

  =  



ae+bg+ai+bk af+bh+aj+bl

ce+dg+ci+dk cf+dh+cj+dl
 = 







a(e+i)+b(g+k) a(f+j)+b(h+l)

c(e+i)+d(g+k) c(f+j)+d(h+l)
 

 

The left-hand and right-hand sides agree. Matrices are distributive. 
 
 
29.  Find the determinant of the following matrix: 
 

 M  = 








2 0 1

3 5 0
0 1 4

 

 
 
Answer:  We can expand across any row or down any column. Expanding down the first column, 
we need the first and second minors: 
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 M  = 








2 0 1

3 5 0
0 1 4

  and  M  = 








2 0 1

3 5 0
0 1 4

 

 

We need to take into account the signs of the associated minors:  








+ – +

– + –
+ – +

 

 

Expanding in terms of the minors gives: |M| = 2 



5 0

1 4 – 3 



0 1

1 4  

The determinants of the 2x2 minors are: 
 

 



5 0

1 4  = 5(4) – 1(0) = 20 and 



0 1

1 4  = 0(4) – 1(1) = –1 
 

giving the final determinant:  |M| = 2(20) – 3(-1) = 43. 
 
 
30.  Find the determinant of the following matrix (which we will use in Chapter 6): 
 

 M  = 








–k1–i 0 0

k1 –k1'–i 0
0 k1' – i

 

 
 
Answer:  We can expand across any row or down any column. Expanding across the first row, 
we only need the first minor, since the second and third elements across the row are zero. 
Striking out the first row and column: 
 

 M  = 








–k1–i 0 0

k1 –k1'–i 0
0 k1' – i

 

 

and then the first minor gives: 
 

 



–k1'–i 0

 k1' – i
 = (–k1' – i)(– i) 

 

Overall, then the determinant is: 
 

 |M| = (–k1 – i)(–k1' – i)(– i) 
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Color Plate1: Average Daily Solar Insolation. The solar insolation is the average daily energy 
falling on a surface parallel to the ground per day averaged over the year. (Map source: 
http://projectsol.aps.com/solar/data_insolation.asp)(See also: http://www.nrel.gov/gis/solar.html) 
 
 


