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Chapter 20 Problems: Chemical Equilibrium  
 
 

1.  Determine rG at 298.2 K for the reaction:  AgCl (s)  Ag+ (aq) + Cl- (aq). The Ksp for AgCl 
is 1.8x10-10. 
 
 
Answer:  Using rG = – RT ln Ka: 
 

 rG = – 8.314x10-3 kJ K-1 mol-1 (298.2 K) ln 1.8x10-10 = 55.63  0.13 kJ mol-1 
 

assuming Ksp = 1.8x10-10  0.1x10-10. Using significant figure rules you would expect only two 
significant figures in the result. 
 
 
2.  Nitrogen dioxide forms a dimer in the equilibrium: 2 NO2 (g)  N2O4 (g). The standard state 
reaction Gibbs energy for the dimerization of NO2 is -4.77 kJ mol-1 at 298.2 K. In a reaction 
mixture, the partial pressure of NO2 is 0.332 bar and of N2O4 is 0.986 bar. Is the reaction at 
equilibrium, and if not what is the spontaneous direction for the reaction? 
 
 
Answer:  The plan is to calculate the equilibrium constant from rG and then calculate the 
reaction quotient, Q, and compare. 
   The equilibrium constant is given by: 
 

 Kp = e–rG/RT = e–(-4.77x103 J mol-1)/(8.314 J K-1mol-1 298.2 K) = 6.848 
 

The reaction quotient is: Q = 
PN2O4/P

(PNO2/P)2 = 
0.986
0.3322 = 8.945 

 

Finally, Q > Kp; the reaction is not at equilibrium and the spontaneous direction is to the left, 
towards increased reactant, NO2. 
 
 
3.  Under standard conditions, one of the steps in the photosynthetic production of glucose does 
not occur spontaneously: 
 

 fructose-6-P + glyceraldehyde-3-P  erythrose-4-P + xyulose-5-P 
 

where rG°' = +6.28 kJ mol-1 at 298.2 K. The “P” indicates the phosphorylated form of the 
sugar; fructose-6-P is fructose-6-phosphate. Can this reaction take place spontaneously in a 
chloroplast where the concentrations are:  [fructose-6-P ] = 53.0x10-5 M,  [glyceraldehyde-3-P] = 
3.20x10-5 M,  [erythrose-4-P] = 2.00x10-5 M, and [xyulose-5-P] = 2.10x10-5 M ? 
 
 
Answer:  The prime for rG°' indicates pH = 7, the “biochemist’s standard state.” The reaction 
Gibbs energy under non-standard state conditions is given by Eq. 20.1.10: 
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 rG = rG° + RT ln Q = rG° + RT ln






[erythrose-4-P]/c [xyulose-5-P]/c

[fructose-6-P ]/c [glyceraldehyde-3-P]/c  
 

where c = 1 M, the standard state concentration. Substituting the given values: 
 

  rG = +6.28 kJ mol-1 + 8.314 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 



(2.00x10-5)(2.10x10-5)

(53.0x10-5)(3.20x10-5)  

         = +6.28 – 9.17 kJ mol-1 = -2.89 kJ mol-1 

 

The reaction is spontaneous under these conditions. 
 
 
4.  At 298.15 K the rG° for the dissociation of water to H+ and OH- is 79.89 kJ mol-1. 
Calculate rG for the reaction conditions specified below. 
 

 H2O (l)  H+ (aq, aH+ = 1.005x10-7) + OH- (aq, aOH- = 1.005x10-7) 
 
 
Answer:  The reaction Gibbs energy under non-standard state conditions is given by Eq. 20.1.10: 
 

 rG = rG° + RT ln Q = rG° + RT ln[(aH+)(aOH-)] 
        = 79.89 kJ/mol + 8.3145 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln(1.010x10-14) 
        = 79.89 – 79.888 kJ mol-1 = 0 
 

The reaction conditions correspond to pH = 7.00, which is the equilibrium state for pure water at 
298.15 K: Kw = 1.01x10-14 at 298.15 K on a molal concentration basis. The reaction Gibbs 
energy at equilibrium should be zero. 
 
 
5.  In rivers and lakes, bacteria catalyze the oxidation of Fe(II) to Fe(III): 
 

 4 Fe2+ + O2(g) + 4 H+   4 Fe3+ + 2 H2O 
 

with fG(Fe2+) = -78.90 kJ mol-1, fG(Fe3+) = -4.70 kJ mol-1, and fG(H2O) = -237.13 kJ mol-1. 
Calculate the reaction Gibbs energy for mFe2+ = 1.00x10-6 m, mFe3+ = 1.00x10-5m, 
PO2 = 0.200 bar, mH+ = 1.00x10-6 m at 298.15 K (neglect activity coefficients). 
 
 
Answer:  The standard state reaction Gibbs energy is given by rG = [products] – [reactants]: 
 

 rG = [2(-237.13 kJ mol-1) + 4(-4.70 kJ mol-1)] – [4(-78.90 kJ mol-1) + (0) + 4(0)] 
          = -177.46 kJ mol-1 
 

The reaction Gibbs energy under non-standard state conditions is given by Eq. 20.1.10: 
 

 rG = rG° + RT ln Q = rG° + RT ln






(mFe3+/m)4

(mFe2+/m)4 (PO2/P) (mH+/m)4  
 

where m = 1 m, the standard state concentration. Substituting the given values: 
 

rG = -177.46 + 8.3145 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln



(1.00x10-5)4

(1.00x10-6)4(0.200)(1.00x10-6)4  
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    = -177.46 kJ mol-1 + 163.80 kJ mol-1 = -13.66 kJ mol-1 

 

Note that the reaction pH can have a large influence of the spontaneity for redox reactions if the 
stoichiometric coefficient for the H+ ion is large, as it is in this case. 
 
 

6.  The equilibrium constant for the dissociation  N2O4 (g)  2 NO2 (g) is Kp = 0.146 at 298.2 K. 
Assume that the initial amount of N2O4 is 0.300 mol with no initial NO2. Find the equilibrium 
partial pressures for the dissociation assuming that the reaction is run under constant pressure 
conditions at (a) 0.500 bar and at (b) 5.00 bar. (c). Does the shift in equilibrium position with 
applied pressure agree with LeChâtelier’s Principle? 
 
 
Answer:  The plan is to set up a table to calculate the mole fractions and partial pressures of N2O4 
and NO2 based on the extent of the reaction, . The equilibrium expression is then constructed in 
terms of , and the expression is solved for . This problem is very similar to Example 20.2.1. 
      Let the initial moles of N2O4 be “a.” The total moles at equilibrium will be: 
 

 ntot = (a –) + 2  = a +         1 
 

Next, a table for the moles of each reactant and product is constructed. Then the mole fractions 
using Yi = ni/ntot and the equilibrium partial pressures using Dalton’s Law of pressures, Pi = Yi P, 
are calculated: 
 

  N2O4 (g)  2 NO2 (g) 
 moles   a –    2 
 

     Yi   
a – 
a +   

2
a +  

 

     Pi   
a – 
a +  P 

2
a +  P        2 

 

where P is the total applied pressure. The equilibrium expression (law of mass action) is: 
 

 Kp = 
(PNO2/P)2

PN2O4/P
 =  







2

a + 

2







a –

a + 

 (P/P) = 
42

(a + )(a – )
 (P/P) = 

42

a2 – 2 (P/P)  3 

 

Notice the similarity to Eq. 20.2.7. To solve for the extent, divide both sides of the last equation 
by (P/P): 
 

 
42

a2 – 2 = 
Kp

(P/P) = Kx         4 
 

The last equality results since Kp = Kx (P/P)rng  with rng = 1 for this dissociation. The solution 
to Eq. 4 is: 
 

  = 



Kx

4+Kx

½
 a          5 
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(a).  For P = 0.5 bar:   Kx = 0.292   and    = 



0.292

4+0.292

½
 0.300 mol = 0.07825 mol 

 

which gives a degree of dissociation of  = /ntot = 0.261. The partial pressures using Eqs. 2 are: 
 

 PN2O4 =  
a – 
a +  P = 

0.300 – 0.07825

0.300 + 0.07825
 P = 0.2931 bar 

and PNO2 = 
2

a +  P= 
2(0.07825)
a + 0.07825

 P = 0.2069 bar 
 

(b).  For P = 5.00 bar:   Kx = 0.0292   and    = 



0.0292

4+0.0292

½
 0.300 mol = 0.02554 mol 

 

which gives a degree of dissociation of  = /ntot = 0.085. The partial pressures using Eqs. 2 are: 
 

 PN2O4 =  
a – 
a +  P = 

0.300 – 0.07825

0.300 + 0.07825
 P = 4.215 bar 

and PNO2 = 
2

a +  P= 
2(0.07825)
a + 0.07825

 P = 0.7845 bar 
 

(c). For a reaction with rng = 1, the equilibrium extent should decrease with an increase in 
pressure, thus favoring the side of the reaction with the fewer moles of gas. The decrease in the 
degree of dissociation with pressure for this problem shows the expected result. 
 
 
7.  Calculate the equilibrium partial pressures at 298.2 K for the dimerization of NO2: 
2 NO2 (g)  N2O4 (g). The standard state reaction Gibbs energy for the dimerization of NO2  is 
-4.77 kJ mol-1 at 298.2 K. Assume the initial amount of NO2 is 0.300 moles at a constant total 
pressure of 1.00 bar. [Hint: you may use successive approximations to solve for the equilibrium 
position.] 
 
 
Answer:  The plan is to set up a table to calculate the mole fractions and partial pressures of NO2 
and N2O4 based on the extent of the reaction, . The equilibrium expression is then constructed in 
terms of , and the expression is solved for . The equilibrium constant is given by: 
 

 Kp = e–rG/RT = e–(-4.77x103 J mol-1)/(8.314 J K-1mol-1 298.2 K) = 6.848 
 

   Let the initial moles of NO2 be “a.” The total moles at equilibrium will be: 
 

 ntot = (a – 2 ) +  = a –  
 

Next, set up a table for the moles of each reactant and product, the mole fractions using Yi = 
ni/ntot, and the equilibrium partial pressures using Dalton’s Law of pressures, Pi = Yi P, with P 
the total pressure: 
 

  2 NO2 (g)    N2O4 (g) 
 moles   a – 2      
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     Yi   
a – 2
a –    


a –  

 

     Pi   
a – 2
a –   P 


a –  P 

 

The equilibrium expression (law of mass action) is: 
 

 Kp = 
PN2O4/P

(PNO2/P)2 =  








a – 







a – 2

a – 

2 (P/P)-1 = 
(a – )
(a – 2)2 (P/P)-1 =  

a – 2

(a – 2)2 (P/P)-1   1 

 

with P = 1 bar specified in the problem. This expression can be solved exactly using the 
quadratic expression: 
 

 (4K+1) 2 – (4K+1) a + Ka2 = 0    giving  = 







1  
1

4K+1  
a
2 = 0.1218 mol 

 

However, successive approximations is often more time efficient. Using the values given: 
 

 Kp = 
0.300  – 2

(0.300 – 2)2 = 6.848          2 
 

As a basis for successive approximations, we need to solve this last equation for  in terms that 
also involve . Two examples will show the idea. Solving the last equation for : 
 

 (0.300 – 2)2 = 
0.300  – 2

6.848
  or 0.300  – 2 = 6.848 (0.300 – 2)2    3 

 

giving:  = ½ 







0.300 – 



0.300  – 2

6.848

½
 or  = 0.300  – 6.848 (0.300 – 2)2   4 

 

The next step is to guess an initial value. The extent of the reaction may vary from 0 to 0.300/2 
moles. A short spreadsheet was written based on the first iteration formula in Eqs. 4 with an 
initial guess of 0.05 mol, below. The update formula for  in C8 is “=($C$3-SQRT(B8*($C$3-
B8)/$C$4))/2”. The last column calculates the equilibrium constant using Eq. 2 with the updated 
value of  to check for accuracy. The approximation converges in three iterations. This update 
formula works for guesses from  = 1.0x10-5 to 0.2999 mol. The range of initial guesses that 
leads, or converges, to the correct answer is called the convergence interval. Guesses outside the 
convergence interval either diverge or oscillate around the correct value. 
 

A1 B C D 
2    
3 a= 0.3  
4 Kp= 6.848  
5    
6 guess updated giving 
7 extent extent Q 
8 0.05 0.128638 12.0764 
9 0.128638 0.121632 6.739764 

10 0.121632 0.121857 6.852015 
11 0.121857 0.121849 6.847854 
12 0.121849 0.121849 6.848005 
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The second update formula from Eqs. 4 converges over the interval [0.115, 0.19]. Some 
rearrangements of Eq. 2 do not lead to update formulas that converge on the final result for any 
initial guess. The disadvantage of the successive approximations approach is that several 
rearrangements may need to be tried to find an update formula that converges rapidly. 
   For  = 0.1218 mol the corresponding partial pressures are: 
 

 PNO2 = 
a – 2
a –   P = 



0.300 – 2(0.1218)

0.300 – 0.1218
 1.00 bar = 0.3164 bar 

 

 PN2O4 = 


a –  P = 



0.1218

0.300 – 0.1218
 1.00 bar = 0.6835 bar 

 

Checking the final results against the equilibrium constant gives Kp = 0.6835/(0.3164)2 = 6.838 
 

Method 2:   A clever way to approach this problem is to first assume the reaction goes to 
completion, giving the moles of N2O4 as 0.150 mol. Then reversing the reaction gives the form 
of a dissociation: N2O4 (g)  2 NO2 (g) with Kp' = 1/Kp = 1/6.848 = 0.1460. Then using Problem 
6  Eq. 3, above: 
 

 Kp' = Kx (P/P) = 
4 2

a2 – 2 (P/P) = 
4 2

0.1502 – 2 = 0.1460 
 

where “a” is now the amount of N2O4. Solving for the extent at equilibrium for the new direction 
gives  = 0.0282 mol, which results in the same final partial pressures as the more direct method. 
 
 
8.  Calculate the equilibrium partial pressures and the degree of dissociation for the reaction: 
 

 SO2Cl2 (g)  SO2 (g) + Cl2 (g) 
 

The equilibrium constant is Kp = 2.78 at 110C. Assume a constant total pressure of 0.500 bar 
with 2.00 moles of SO2Cl2, only, initially placed in the reaction vessel. 
 
 
Answer:  The plan is to note that the reaction is a A (g)  B (g) + C (g) dissociation, for which 
Eq. 20.2.7 and 20.2.8 apply. 

   Since rng = 1 and Kp = Kx (P/P)rng, Kx = 2.78/0.500 = 5.56. Using Eqs. 20.2.7 and 20.2.8 
with the given parameters: 
 

 Kx = 
2

2.002 – 2 = 5.56   and    = 



Kx

1+Kx

½
 a = 



5.56

1 + 5.56

½
 2.00 mol = 1.841 mol 

 

We can check the result by substituting back in to calculate the resulting equilibrium constant 
given the extent of the reaction: 
 

 check  Kx = 
2

2.002 – 2 = 
1.8412

2.002 – 1.8412 = 5.55 
 

which is close enough given round-off error. The degree of dissociation for this stoichiometry is 
then: 
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  = /a = 1.841/2.00 = 0.920 
 

or 92% dissociated at equilibrium. 
 
 
9.  Consider a gas phase dissociation with the stoichiometry A (g)  B (g) + C (g). (a). Show that 
the equilibrium expression can be directly expressed in terms of the degree of dissociation as: 
 

 Kp = 
2

1 – 2 (P/P)        P20.9.1 
 

(b). Solve for the degree of dissociation. 
 
 
Answer:  At equilibrium: 
 

  A (g)       B (g) + C (g) 
      moles: a –                 giving   ntot = a –  + +  = a +  
 

 Yi: 
a – 
a +        


a +         


a +  

 

 Pi: 
a – 
a +  P       


a +  P       


a +  P 

 

where ntot is the total moles of gases, Pi = Yi P, and the total pressure is P. Substitution of the 
mole fractions into Kx gives: 
 

 Kp = 
(PB/P) (PC/P)

(PA/P)  = 








a +  







a + 







a – 

a + 

 (P/P) = 
2

a2 – 2 (P/P)    1 

 

This result is the corresponding expression to Example 20.2.1, in terms of pressures. Eq. 1 can be 
expressed in terms of the degree of dissociation. Divide the numerator and denominator by the 
initial amount of reactant squared, a2. Then use the definition of the degree of dissociation for 
this reaction,  = /a: 
 

 Kp = 
(/a)2

1 – (/a)2 (P/P) = 
2

1 – 2 (P/P)       2 
 

The total moles of gas is then determined by ntot = a +  = a(1 + ). 
(b). To solve for the degree of dissociation, divide both sides of the last equation by (P/P): 
 

 
2

1 – 2 = 
Kp

(P/P) = Kx         3 
 

The last equality results since Kp = Kx (P/P)rng  with rng = 1 for this dissociation. The solution 
to Eq. 3 is: 
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  = 



Kx

1+Kx

½
          4 

 
 
10.  For the reaction H2S (g)  H2 (g) + ½ S2 (g) the degree of dissociation of H2S is 0.305 at 
1125C and 1.00 bar total pressure. Calculate Kp at 1125C. 
 
 
Answer:  To determine the equilibrium expression for the reaction, let the initial moles of H2S be 
“a” and the extent of the reaction be . The total moles at equilibrium is: 
 

 ntot = (a – ) + + ½  = a + ½  
 

Next, set up a table for the moles of each reactant and product, the mole fractions using Yi = 
ni/ntot, and the equilibrium partial pressures using Dalton’s Law of pressures, Pi = Yi P, with P 
the total pressure: 
 

  H2S (g)          H2 (g)   +   ½ S2 (g) 
     moles a –           ½  
 

     Yi  
a – 

a + ½  


a + ½  
½ 

a + ½  
 

     Pi  
a – 

a + ½  P  


a + ½  P 
½ 

a + ½  P 
 

The equilibrium expression (law of mass action) then simplifies to: 
 

 Kp = 
(PH2/P) (PS2/P)½

(PH2S/P)  = 








a + ½   






½ 

a + ½ 

½
 (P/P)½







a – 

a + ½ 

 = 








a –   






½ 

a + ½ 

½
 (P/P)½ 

 

Divide the numerator and denominator of each expression in parentheses by the initial moles of 
H2S and then substitute the definition of the degree of dissociation, α = /a: 
 

 Kp = 



α

1 – α  



½ α

1 + ½ α

½
(P/P)½ 

 

Substituting the given degree of dissociation: 
 

 Kp = 



0.305

1 – 0.305  



½ 0.305

1 + ½ 0.305

½
 1.00½ = (0.4388)(0.1323)½ = 0.160 

 
 
11.  The Kp and Kx based equilibrium expressions are convenient to use for reactions at constant 
pressure. Kc based expressions are convenient for reactions at constant volume. Consider 
dissociation with the stoichiometry: A (g)  B (g) + C (g). Set up the Kp expression in terms of 
the extent of the reaction, , as in Example 20.2.1. Show that the Kp expression reduces to: 
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 Kc = 
(x/cº)2

cAo/cº – x/cº 
 

where cAo is the initial concentration of A and x is the final concentration of B and C. Assume 
the reaction is run at constant volume. 
 
 
Answer:  The total moles of gas in the reaction mixture is:  ntot = a –  + +  = a + . The 
concentration of a constituent in the reaction mixture is ci = ni/V, with ni moles of constituent i 
and V the total volume. The total pressure is determined by the total moles of gas: 
 

 P = ntot RT/V = (a + ) RT/V       1 
 

with the total volume V held constant. We next lay out the equilibrium state in terms of moles, 
mole fractions, and partial pressures. In the last step we substitute Eq. 1 for the total pressure and 
cancel the common factor: 
 
      A (g)  B (g) + C (g) 
 moles:  a –              
 

        Xi:  
a – 
a +    


a +   


a +  

 

        Pi:  
a – 
a +  (P/P) 


a +  (P/P) 


a +  (P/P) 

 

        Pi:  
a – 

V  (RT/P)    

V (RT/P)    


V (RT/P)    2 

 

The Kp expression is then: 
 

 Kp = 
(PB/P) (PC/P)

(PA/P)  =
(/V) (/V)
(a – )/V

 (RT/P)      3 
 

Let cAo be the initial concentration of A with cAo = a/V and let x be the final concentration of B 
and C with x = /V. Substitution of these definitions into Eq. 3 gives: 
 

 Kp = 
x2

cAo – x  (RT/P)         4 
 

Multiply and divide through each concentration term by cº and collect terms to ensure that the 
concentration based equilibrium constant is unitless: 
 

 Kp  =
(x/cº)2

cAo/cº – x/cº  (cº RT/P) = Kc (cº RT/P)     5 
 

Note that the result agrees with Kp = Kc (cº RT/P)rng  with rng = 1 for this reaction. Dividing 
Eq. 5 by (cº RT/P): 
 

 Kc = 
(x/cº)2

cAo/cº – x/cº         6 
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In other words, at constant volume, the position of equilibrium can be determined by solving the 
Kp or Kc expressions. Eq. 6 is the form for the equilibrium expression most commonly used in 
General Chemistry texts for this type of problem. 
 
 
12.  Calculate the equilibrium partial pressures and the degree of dissociation for the reaction: 
 

 SO2Cl2 (g)  SO2 (g) + Cl2 (g) 
 

The equilibrium constant is Kp = 2.78 at 110.C. Assume the reaction starts with 2.00 moles of 
SO2Cl2, only, initially placed in the reaction vessel with an initial pressure of 0.500 bar. Assume 
the reaction runs at constant volume (see Problem 8 for the constant pressure version of this 
problem). 
 
 
Answer:  The plan is to convert the initial amount of SO2Cl2 to the equivalent concentration and 
then use Kc = (x/cº)2/(cAo/cº – x/cº). [In General Chemistry, you allowed Kc to have units and 
then Kc = x2/(cAo – x).] 
   For the given conditions, the volume and initial concentration of SO2Cl2 are: 
 

 V = nSO2Cl2 RT/P = 2.00 mol(0.08314 L bar K-1 mol-1)(383.15 K)/0.500 bar = 127.4 L 
 

 cAo = nSO2Cl2/V = 2.00 mol/127.4 L = 0.01570 mol L-1 

 

Then using concentrations at equilibrium: 
 

 SO2Cl2 (g)  SO2 (g) + Cl2 (g) 
    ci: cAo – x  x    x 
 

   Kc = 
(x/cº)2

cAo/cº – x/cº    (x/cº)2 + Kc x/cº – Kc cAo/cº = 0 x/cº = 
–Kc  K

2
c + 4 Kc cAo/cº
2  

 

Using Kp = Kc (cº RT/P)rng  and rng = 1 for this reaction: 
 

 Kc = 
2.78 (1 bar)

0.08314 L bar mol-1(383.15 K)(1 mol L-1) = 0.08726 = 
(x/cº)2

0.01570 mol L-1 – x/cº 
 

 x = 0.013585 mol L-1 
 cSO2Cl2 = (cAo – x) = (0.01570 – 0.013585 mol L-1) = 0.00211 mol L-1 
 

Giving the final amounts and partial pressures: 
 

 nSO2Cl2 = (cAo – x) V = (0.00211 mol L-1) 127.4 L = 0.2690 mol 
 PSO2Cl2 = (cAo – x) RT = 0.00211 mol L-1(0.08314 L bar K-1 mol-1)(383.15 K) = 0.067 bar 
 nSO2 = nCl2 = x V = 1.73 mol 
 PSO2 = PCl2 = x RT = 0.433 bar 
 

The final pressure is P = PSO2Cl2 + PSO2 + PCl2 = 0.933 bar and the degree of dissociation is: 
 

  = nSO2/ nSO2Cl2,o = 1.73 mol/2.00 mol = 0.865 
 

or equivalently:  = (nSO2/V)/(nSO2Cl2,o/V) = x/cAo = 0.013585 mol L-1/0.01570 mol L-1 = 0.865. 
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Notice that the degree of dissociation is less than Problem 8, with a constant total pressure. The 
smaller degree of dissociation for the constant volume process is consistent with LeChâtelier’s 
Principle, given rng = 1 and the corresponding increase in pressure for this reaction. (See 
Problem 11 for more information on constant volume reactions.) 
 
 
13.  For the reaction BeSO4(s)  BeO (s) + SO3 (g), Kp = 1.71x10-19 at 400.0 K and 9.70x10-11 at 
600.0 K. (a). Predict, without doing the numerical calculation, if the reaction is endothermic or 
exothermic. (b). Calculate rH° for this temperature range and rG° and rS° at 400.0 K. 
 
 
Answer:  The plan is to use LeChâtelier’s Principle for part (a) and the integrated form of the 
van 't Hoff equation for two data points, Eq. 20.1.28, for part (b). Then the thermodynamic 
parameters are calculated using rG = –RT ln Kp and rG = rH – T rS at 400.0 K. 
 

(a). The equilibrium constant increases with temperature. In other words, the position of 
equilibrium shifts to the right, the forward direction, with an increase in temperature. The 
forward direction for the reaction, as written, must then be the endothermic direction. 
(b). From Eq. 20.1.28, assuming rH is constant over the temperature range: 
 

 ln 
Kp,T2

Kp,T1

 = – 
rH

R 



1

T2
 – 

1
T1

 

 

 ln 
9.70x10-11

 1.71x10-19 = – 
rH

8.314 J K-1 mol-1



1

600.0 K – 
1

400.0 K  
 

 ln 
9.70x10-11

 1.71x10-19 = – 
rH

8.314 J K-1 mol-1 (0.0016667 – 0.0025000) 
 

 20.156 = – 
rH

8.314 J K-1 mol-1 (-8.333x10-4 K-1) 
 

 rH = 2.011x105 J mol-1 = 201.1 kJ mol-1 
 

Remember to carry at least one extra significant figure than allowed for the (1/T2 – 1/T1) term to 
avoid round-off error. The standard state reaction Gibbs energy and entropy at 400 K are then: 
 

 rG = –RT ln Kp = – 8.3145 J K-1 mol-1 (400.0 K) (1kJ/1000 J) ln 1.71x10-19 
          = 143.7 kJ mol-1 
 

 rS = 
rH – rG

T  = 
(201.1 kJ mol-1 – 143.7 kJ mol-1)(1000 J/1 kJ)

400.0 K  = 144. J K-1 mol-1 

         = 1.4x102 J K-1 mol-1 
 
 
14.  The autoprotolysis constant for water, Kw, is the equilibrium constant for the reaction: 
 

    Kw 

 H2O (l)    H+ (aq) + OH- (aq) 
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The temperature dependence for Kw is given in the table, below.1 (a). Assume rH° is constant. 
Calculate rH° for this temperature range and rG° and rS° at 298.2 K. (b). Neutral pH is the 
pH that gives aH+ = aOH-. Calculate the pH of a neutral solution at each temperature. 
 

T (C) 0.0 10.0 25.0 35.0 40.0 
Kw 1.15x10-15 2.97x10-15 1.01x10-14 2.07x10-14 2.88x10-14 

 
 
Answer:  First, don’t forget to convert to kelvins. Eq. 20.1.31 shows a plot of ln Kw versus 1/T 
gives a slope of –rH°/R: 
 

 

Kw T (K) 1/T (K-1) ln K 
1.15E-15 273.15 0.003661 -34.399 
2.97E-15 283.15 0.003532 -33.4502 
1.01E-14 298.15 0.003354 -32.2262 
2.07E-14 308.15 0.003245 -31.5086 
2.88E-14 313.15 0.003193 -31.1784 

 
slope -6878.66 -9.18538 intercept 
± 85.91525 0.292248 ± 
r2 0.999532 0.033738 s(y) 
F 6410.131 3 df 
ssreg 7.296323 0.003415 ssresid 

 

 

 

-35

-34

-33

-32

-31

0.0031 0.0033 0.0035 0.0037

ln
 K

w

1/T  (K-1)
 

 

 
The corresponding rH° is: 
 

 rH° = -8.3145 J K-1 mol-1 (-6878.66 K-1)(1kJ/1000 J) = 57.2  0.7 kJ mol-1 
 

From the data table at 298.15 K:  
 

 rG = –RT ln Kw = – 8.3145 J K-1 mol-1 (298.15 K) (1kJ/1000 J) ln 1.01x10-14 
          = 79.89 kJ mol-1 
 

 rS = 
rH – rG

T  = 
(57.2 kJ mol-1 – 79.89 kJ mol-1)(1000 J/1 kJ)

298.15 K   

          = -76.1  2.3 J K-1 mol-1 
 

Notice that there is noticeable upward curvature to the plot, showing that the reaction enthalpy is 
temperature dependent for this range of temperatures. A more accurate estimation of rS would 
result from a curve fit to Eq. 20.1.36. 
(b). From the equilibrium expression: Kw= (aH+)(aOH

-), or pKw = pH + pOH. For a neutral 
solution pH = pOH. Neutral pH is then given by pKw/2: 
 

T (C) 0.0 10.0 25.0 35.0 40.0 
Kw 1.15x10-15 2.97x10-15 1.01x10-14 2.07x10-14 2.88x10-14 

pH=pOH 7.47 7.26 7.00 6.84 6.77 
 

Notice that a neutral solution at body temperature is not pH = 7. 
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15.  In the last problem for the autoprotolysis of water, we assumed that the reaction enthalpy 
was temperature independent. Assume the temperature dependence of the reaction enthalpy is 
given by rHT = rHo + rCp T, with rCp = -186.6  2.7 J K-1 mol. The temperature dependence 

of ln K is then just the first two terms of Eq. 20.1.36: 
 

 ln K = – 
rHo
RT  + 

rCp

R  ln T + c 
 

where c is a constant. Calculate rH° , rG°, and rS° at 298.2 K. A more complete table for the 
autoprotolysis constant for water, Kw, is given in the table, below.1 [Hint: subtract rCp ln T from 
both sides of the above equation and plot (ln K – rCp ln T) along the vertical axis.] 
 

T (°C) 0.0 5.0 10.0 15.0 20.0 25.0 30.0 
Kw 1.15x10-15 1.88x10-15 2.97x10-15 4.57x10-15 6.88x10-15 1.01x10-14 1.46x10-14 

 

T (°C) 35.0 40.0 45.0 50.0 100.0 150.0 
Kw 2.07x10-14 2.88x10-14 3.94x10-14 5.31x10-14 5.43x10-13 2.3x10-12 

 
 
Answer:  As we did in the last problem, convert the temperature to kelvins and calculate ln Kw at 
each temperature. Then subtract rCp ln T from both sides of the above equation and plot (ln K – 
rCp ln T) along the vertical axis and 1/T along the horizontal axis: 
 

 ln K – 
rCp

R  ln T  =  – 
rHo
RT  + c 

 

T(°C) K T (K) 1/T 
ln K -Cp/R ln 
T 

0 1.15E-15 
273.1

5 
0.00366

1 91.505 

5 1.88E-15 
278.1

5 
0.00359

5 92.404 

10 2.97E-15 
283.1

5 
0.00353

2 93.261 

15 4.57E-15 
288.1

5 0.00347 94.085 

20 6.88E-15 
293.1

5 
0.00341

1 94.880 

25 1.01E-14 
298.1

5 
0.00335

4 95.643 

30 1.46E-14 
303.1

5 
0.00329

9 96.385 

35 2.07E-14 
308.1

5 
0.00324

5 97.101 

40 2.88E-14 
313.1

5 
0.00319

3 97.793 

45 3.94E-14 
318.1

5 
0.00314

3 98.462 

50 5.31E-14 
323.1

5 
0.00309

5 99.110 

100 5.43E-13 
373.1

5 0.00268 104.664 

150 2.30E-12 
423.1

5 
0.00236

3 108.930 
 

 

y = -13407x + 140.61
R² = 1

90

95

100

105

110

115

0.002 0.0025 0.003 0.0035 0.004

ln
 K

 -


C p
/R

 ln
(T

)

1/T (K-1)
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slope -13407.4 140.607 intercept 


6.72292

6 
0.02186

9 ± 

r2 
0.99999

7 
0.00850

9 s(y) 
F 3977173 11 df 

ssreg 
287.982

9 
0.00079

6 ssresid 

 
The curve fit results give: 
 

 rHo = –R slope = 111.48  0.05 kJ mol-1 
 

The corresponding reaction enthalpy at room temperature is: 
 

 rHT = rHo + rCp T = 111.48 kJ mol-1 – 186.6 J K-1 mol-1(298.15 K)(1 kJ/1000 J) 

          = 55.85  0.81 kJ mol-1 
 

which matches the literature value of 55.84 kJ mol-1. From the Kw table at 298.15 K: 
 

 rG = –RT ln Kw = – 8.3145 J K-1 mol-1 (298.15 K) (1kJ/1000 J) ln 1.01x10-14 
          = 79.89 kJ mol-1 
 

 rS = 
rH – rG

T  = 
(55.85 kJ mol-1 – 79.89 kJ mol-1)(1000 J/1 kJ)

298.15 K   

         = -80.6  2.7 J K-1 mol-1 
 

The literature value for the reaction entropy is -80.66 J K-1 mol-1. The agreement of our values 
with the literature should be considered to be fortuitous given the parameter uncertainties. 
 
 
16.  In the atmosphere NO and NO2 approach equilibrium (see Ch. 5 Problems 10-12): 
 

 NO (g) + ½ O2 (g)  NO2(g) 
 

Because NO and NO2 are rapidly interconverted, the concentration of NO and NO2 in the 
atmosphere are usually combined and quoted as [NOx]. The equilibrium constant is Kp = 
1.168x105 at 335.15 K and 4075. at 400.15 K. (a). Calculate the standard state reaction enthalpy 
at the average temperature, assuming the reaction enthalpy is constant over the temperature 
range. (b). Calculate the standard state reaction Gibbs energy and entropy at 335.15 K. (c). The 
molar constant pressure heat capacities are 29.844 J K-1 mol-1 for NO, 29.355 J K-1 mol-1 for O2, 
and 37.20 J K-1 mol-1 for NO2. Calculate rH, rS, and rG at 298.15 K. 
 
 
Answer:  The plan is to use Eq. 20.1.28 to solve for rH at the average temperature and rG = 
– RT ln Kp to find rG at 335.15 K. rS at 335.15 K is calculated from rG = rH – T rS. 
Then rCp is used with Eqs. 8.5.5 and 13.3.7 to find rH and rS at 298.15 K. Finally, rG at 
298.15 K is calculated from rG = rH – T rS. 
(a). Using the van 't Hoff equation for two data points, Eq. 20.1.28: 
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 ln 
Kp,T2

Kp,T1

 = – 
rH

R 



1

T2
 – 

1
T1

 

 

 ln 
4075.

1.168x105 = – 
rH

8.3145 J K-1 mol-1



1

400.15 K – 
1

335.15 K  
 

 -3.3556 = – 
rH

8.3145 J K-1 mol-1 (0.00249906 – 0.00298374) 
 

 -3.3556 = – 
rH

8.3145 J K-1 mol-1 (-4.8468x10-4 K-1) 
 

 rH = -5.7564x104 J mol-1 = -57.564 kJ mol-1       at average temperature 367.65 K 
 

(b). At 335.15 K:  rG = – RT ln Kp: 
 

    rG = –8.3145 J K-1mol-1(1 kJ/1000 J)(335.15 K) ln 1.168x105 = -32.515 kJ mol-1 

 

    rS = 
rH – rG

T  = 
(-57.564 kJ mol-1 – (-32.515 kJ mol-1))(1000 J/1 kJ)

335.15 K  = -74.742 J K-1 mol-1 
 

(c). The reaction change in heat capacity is: 
 

 rCp = [37.20] – [29.844 + ½ (29.355)] J K-1 mol-1 = -7.322 J K-1 mol-1 
 

The reaction enthalpy corrected to 298.15 K from the average temperature for the experiment is: 
 

 rH
o
298 K = rH

o
367 K + rCp T 

    = -57.564 kJ mol-1 + (-7.322 J K-1 mol-1)(1 kJ/1000 J)(298.15 K – 367.65 K) 
    = -57.055 kJ mol-1 
 

The reaction entropy at 298.15 K corrected from 335.15 K is: 
 

 rS
o
298 K = rS

o
367 K + rCp ln(T2/T1) 

   = -74.742 J K-1 mol-1 + (-7.322 J K-1 mol-1)(1 kJ/1000 J) ln(298.15/335.15) 
   = -74.742 + 0.8565 J K-1 mol-1= -73.885 J K-1 mol-1 
 

The final standard state reaction Gibbs energy is then: 
 

 rG = rH – T rS = -57.055 kJ mol-1 – (298.15 K)(-73.885 J K-1 mol-1)(1 kJ/1000 J) 
 rG = -35.03 kJ mol-1 

 
 
17.  The density at equilibrium for gas phase reaction mixtures can be used to calculate the 
equilibrium constant for the chemical reaction. Consider a gas phase dissociation with the 
stoichiometry A (g)  B (g) + C (g), giving at equilibrium (see Problem 9): 
 

 Kp = 
2

a2 – 2 (P/P) = 
(/a)2

1 – (/a)2 (P/P) = 
2

1 – 2 (P/P)   (P20.9.1) 
 

Assume only A is initially placed in the reaction vessel. The total moles of gas is then 
determined by ntot = a +  = a(1 + ). Now consider the density of the gas mixture. The total 
mass of the reaction mixture is constant, w = aMA, where MA is the molar mass of reactant A. 
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However, the total moles of gas changes as the reaction progresses, if rng  0. For a reaction at 
constant temperature and pressure, the change in moles of gas will cause a change in volume as 
the reaction progresses from the initial state. The density of the reaction gas mixture at 
equilibrium, assuming each constituent is ideal, is given by the ideal gas law: 
 

 d = w/Veq = 
aMA

ntot RT/P = 
a MA

a(1 + ) RT/P
 = 

1
1 +  



MA P

RT    P20.17.1 
 

   COCl2 dissociates according to the reaction:  COCl2 (g)  CO (g) + Cl2 (g). The density of the 
reaction mixture at equilibrium at 724. K and 1.00 bar total pressure is 1.16 g L-1. Calculate the 
degree of dissociation, Kp, and rG at 724. K. 
 
 
Answer:  The plan is to use Eq. P20.17.1 to find , and then use Eq. 20.2.7 with Kp = Kx P/Pº 
and  = /a to find Kp. Finally rG = – RT ln Kp. 
   Solving Eq. P20.17.1 for the degree of dissociation gives: 
 

  = 



MA P

d RT  – 1 = 



98.91 g mol-1 1.00 bar

1.16 g L-1 0.08314 bar L K-1 mol-1 724. K  – 1 = 0.4166 
 

The equilibrium expression is then given by Eq. 20.2.7. Then, Kp = Kx (P/P)rng with rng = 1 
for this dissociation. Substituting Kp = Kx P/Pº,  = /a and P = 1.00 bar gives: 
 

 Kp = 
2

1 – 2 (P/P) = 
0.41662

1 – 0.41662 = 0.2100 
 

See Problem 9 and Eq. P20.9.1 for a complete derivation of this last equation. 
 

 rG = – RT ln Kp = – 8.314 J K-1 mol-1 (724. K)(1 kJ/1000 J) ln 0.2100 = 9.39 kJ mol-1 
 
 
18.  The density of an equilibrium mixture of N2O4 (g) and NO2 (g), at 1.00 bar pressure, is 
3.62 g L-1 at 15.C. Only N2O4 was initially placed in the reaction vessel. Calculate Kp and rG 
at 15.C. [Hint: write the equilibrium expression in terms of the degree of dissociation.] 
 
 
Answer:  The reaction is the dissociation of N2O4: 
 

 N2O4 (g)  2 NO2 (g) 
 

See Problem 6 for the derivation of the equilibrium expression: 
 

 Kp = 
42

a2 – 2 (P/P)        1 
 

The degree of dissociation for this stoichiometry is  = /a. Dividing the numerator and 
denominator of the last equation by a2 gives: 
 

 Kp = 
4(/a)2

1 – (/a)2 (P/P) = 
42

1 – 2 (P/P)      2 
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The total moles of gas is ntot = a +  = a(1 + ). Now consider the density of the gas mixture. The 
total mass of the reaction mixture is constant, w = a MA, where MA is the molar mass of reactant 
A. The total moles of gas changes as the reaction progresses if rng  0, giving a change in 
volume. The density of the reaction gas mixture at equilibrium, assuming each constituent is 
ideal, is given by the ideal gas law, Veq = ntot RT/P: 
 

 d = w/Veq = 
aMA

ntot RT/P = 
a MA

a(1 + ) RT/P
 = 

1
1 +  



MA P

RT    3 
 

where MA is the molar mass of reactant A, Veq is the total volume at equilibrium, and P is the 
total applied pressure. Substituting in the given values and solving Eq. 3 for the degree of 
dissociation: 
 

  = 



MA P

d RT  – 1 = 



92.02 g mol-1 1.00 bar

 3.62 g L-1 0.08314 bar L K-1 mol-1 288.2 K  – 1 = 0.06082 
 

The equilibrium constant is then given by Eq. 2 and P = 1.00 bar: 
 

 Kp = 
42

1 – 2 (P/P) = 
4(0.06082)2

1 – 0.060822 = 0.01485 
 

 rG = – RT ln Kp = – 8.314 J K-1 mol-1 (1 kJ/1000J)(288.2 K) ln 0.01485 
          = 10.1 kJ mol-1 
 
 
19.  Create an Excel spreadsheet based on Eq. 20.1.21 to reproduce Figure 20.1.1. Assume the 
total pressure is constant at 1.00 bar and the standard state chemical potentials of A, B, C, and D 
are 6.24, 5.64, 2.78, and 2.22 kJ mol-1, respectively. Assume 1.00 mol for A and B initially, with 
no C and D. 
 
 

Answer:  The spreadsheet used to produce Figures 20.1.1 and 20.1.2 is shown below. 
 

species  A B C D       
chem.potential  6.24 5.64 2.78 2.22 kJ/mol      
stoichiometry  -1 -1 1 1       
initial mol  1 1 0 0 mol      
             
T= 298.2 K R= 8.314 J/K/mol RT= 2.4792 kJ/mol    
Kp= 16.039  Ptot= 1 bar        
             
 (mol) nA nB nC nD PA PB PC PD Q rG G(pure) G (kJ) 

0 1 1 0 0 0.5 0.5 0 0 0  11.88 8.443 
0.1 0.9 0.9 0.1 0.1 0.45 0.45 0.05 0.05 0.0123 -17.775 11.192 6.143 
0.2 0.8 0.8 0.2 0.2 0.4 0.4 0.1 0.1 0.0625 -13.754 10.504 4.586 
0.3 0.7 0.7 0.3 0.3 0.35 0.35 0.15 0.15 0.1837 -11.081 9.816 3.350 
0.4 0.6 0.6 0.4 0.4 0.3 0.3 0.2 0.2 0.4444 -8.890 9.128 2.354 
0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 1 -6.880 8.44 1.566 
0.6 0.4 0.4 0.6 0.6 0.2 0.2 0.3 0.3 2.25 -4.870 7.752 0.978 
0.7 0.3 0.3 0.7 0.7 0.15 0.15 0.35 0.35 5.4444 -2.679 7.064 0.598 
0.8 0.2 0.2 0.8 0.8 0.1 0.1 0.4 0.4 16 -0.006 6.376 0.458 
0.9 0.1 0.1 0.9 0.9 0.05 0.05 0.45 0.45 81 4.015 5.688 0.639 

1 0 0 1 1 0 0 0.5 0.5   5 1.563 
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The top section specifies the reaction stoichiometry for A + B  C + D, the given chemical 
potentials, and the initial conditions. The chemical potentials give the standard state reaction 
Gibbs energy using Eq. 15.4.17 and the equilibrium constant using Eq. 20.1.14 as Kp = 16.0. The 
partial pressures are determined by Dalton’s Law of partial pressures, Pi = Yi P, and then: 
 

 Q = 
(PC/P) (PD/P)
(PA/P) (PB/P)   rG = RT ln(Q/Kp)  G(pure) = ni i 

 

and the Gibbs energy for each value of  from Eq. 20.1.21. Notice that the minimum occurs for 
 = 0.80 where Q = Kp = 16.0. 
 
 
20.  Dissociations with the stoichiometries A  B + C and A  2 B have significantly different 
equilibrium positions, given the same equilibrium constant and initial conditions. (a). First, 
assume the equilibrium constant for both reactions is Kp = 1.33 and the initial moles of reactant 
is 1.00 mol, with no initial products at 1.00 bar total pressure. Calculate the degree of 
dissociation for each reaction. (b). Qualitatively sketch diagrams of the form in Figure 20.1.1 and 
discuss the effect of the entropy of mixing in determining the difference in equilibrium position 
for the two reaction stoichiometries. (See also Problems 6, 8, and 9.) 
 
 

Answer:  (a). Since rng = 1 for both reactions, Kp = Kx (P/P)rng. Given the total pressure of 
1.00 bar, Kp = Kx. Using Eq. 20.2.8 with  = /a, the degree of dissociation for the reaction 
A  B + C is given by Problem 9 Eq. 4: 
 

 A  B + C   = 



Kx

1+Kx

½
 = 



1.33

1 + 1.33

½
 = 0.756 

 

Using Problem 6 Eq. 5 for the reaction A  2 B, the degree of dissociation is given by: 
 

 A  2 B   = 



Kx

4+Kx

½
 = 



1.33

4 + 1.33

½
 = 0.500 

 

The extent of the reaction is significantly less for the stoichiometry A  2 B. Why does this 
difference occur, even though the equilibrium constants are the same and rng = 1 for both 
reactions? 
 

(b). The difference in extent results because the reaction A  B + C has a favorable entropy and 
Gibbs energy of mixing for the products, while A  2 B does not. Since both reactions have the 
same equilibrium constant, the standard state reaction Gibbs energies are the same, 
rG = -RT ln Kp. Sketches for the Gibbs energy versus reaction extent, corresponding to Figure 
20.1.1, for the two reactions are shown below. Neither case has entropy of mixing for the 
reactants. There is a favorable entropy and Gibbs energy of mixing for intermediate reaction 
extents, so that the reactions don’t run to completion in either case. The favorable entropy of 
mixing for the products pulls the position of equilibrium further to the right towards products for 
the A  B + C case. 
 
 A  B + C      A  2 B 
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A rough sketch for this problem is sufficient; however, see the next problem for the Excel 
spreadsheet used to construct these figures. 
 
 
21.  Derive an expression for the Gibbs energy for the dissociation A  B + C as a function of 
the extent of the reaction. Your derivation will parallel Eqs. 20.1.16-20.1.21, but for the new 
stoichiometry. Create an Excel spreadsheet based on your expression to produce a plot similar to 
Figure 20.1.1. Assume the total pressure is constant at 1.00 bar and the standard state chemical 
potentials of A, B, and C are 6.00, 2.95, and 2.34 kJ mol-1, respectively. Assume 1.00 mol for A 
initially, with no B and C. 
 
 

Answer:  The initial amount of the reactant is nAo. Assume that we start with only reactant so that 
nBo = 0 and nCo = 0. From the stoichiometry for this example, the mole amounts are: 
 

 nA = nAo –  , nB =  ,   nC =        1 
 

The Gibbs energy at any point during the reaction is just the sum of the Gibbs energies for each 
product and reactant: 
 

 G = nA µA + nB µB + nC µC      (cst. T&P) 2 
 

   G = nA [µA + RT ln




PA

P ] + nB [µB + RT ln




PB

P ] + nC [µC+ RT ln




PC

P ] 

                (cst. T&P, ideal gas) 3º 
 

The partial pressures are expressed in terms of the mole fractions using Dalton’s Law of partial 
pressures, Pi = Yi P, with P the total pressure, Yi = ni/n, and  n =  ni. Collecting terms, as we did 
for Eqs. 20.1.17-20.1.19, gives: 
 

 G = (nA µA + nB µB + nC µC) 
  + nA RT ln YA + nB RT ln YB + nC RT ln YC  

  + nA RT ln




P

P  + nB RT ln




P

P  + nC RT ln




P

P        (cst. T&P, ideal gas)    4º 
 

Using Eq. 20.1.20, n = nA + nB + nC, and G(pure) = (nA µA + nB µB + nC µC), we can simplify Eq. 
4 to: 
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 G = G(pure) + nRT (YA ln YA + YB ln YB + YC ln YC) + nRT ln



P

P  

               (cst. T&P, ideal gas)     5º 
 

The spreadsheet used to produce Figures 20.1.1 and 20.1.2 is shown below, but with the new 
stoichiometry and chemical potentials. 
 

species  A B C  rG    
chem.potential 6 2.95 2.34 kJ/mol -0.71 kJ/mol  
stoichiometry -1 1 1      
initial mol 1 0 0 mol     
          
T 298.2 K R 8.31 J/K/mol RT= 2.47923 kJ/mol 
Kp =  1.332  Ptot= 1.00 bar     
          
 (mol) nA nB nC Ptot PA PB PC G(pure) G (kJ) 

0 1 0 0 1 1 0 0 6.000 6 
0.1 0.9 0.1 0.1 1.1 0.818 0.091 0.091 5.929 4.292 
0.2 0.8 0.2 0.2 1.2 0.667 0.167 0.167 5.858 3.277 
0.3 0.7 0.3 0.3 1.3 0.538 0.231 0.231 5.787 2.531 
0.4 0.6 0.4 0.4 1.4 0.429 0.286 0.286 5.716 1.971 
0.5 0.5 0.5 0.5 1.5 0.333 0.333 0.333 5.645 1.559 
0.6 0.4 0.6 0.6 1.6 0.25 0.375 0.375 5.574 1.281 

0.65 0.35 0.65 0.65 1.65 0.212 0.394 0.394 5.539 1.191 
0.7 0.3 0.7 0.7 1.7 0.176 0.412 0.412 5.503 1.133 

0.75 0.25 0.75 0.75 1.75 0.143 0.429 0.429 5.468 1.110 
0.8 0.2 0.8 0.8 1.8 0.111 0.444 0.444 5.432 1.126 
0.9 0.1 0.9 0.9 1.9 0.053 0.474 0.474 5.361 1.296 

0.985 0.015 0.985 0.985 1.99 0.008 0.496 0.496 5.301 1.697 
1 0 1 1 2 0 0.5 0.5 5.290 1.853 

 
The top section specifies the reaction stoichiometry for A  B + C, the given chemical potentials, 
and the initial conditions. The chemical potentials give the standard state reaction Gibbs energy 
using Eq. 15.4.17 and the equilibrium constant using Eq. 20.1.14º as Kp = 1.33. The partial 
pressures are determined by Dalton’s Law of partial pressures, Pi = Yi P, and then: 
 

 G(pure) =  ni i = (nA µA + nB µB + nC µC) 
 

The Gibbs energy for each value of  is determined from Eq. 5. Notice that the minimum occurs 
for   0.75 as shown in Problem 20a. The plot of the Gibbs energy is shown in Problem 20. 
 
 
22.  Calculate the pH and degree of dissociation of 0.100 m acetic acid in water at 25C using the 
Debye-Hückel approximation and Ka = 1.75x10-5. (The acid dissociation constant is determined 
on a molal basis. Neglect the autoprotolysis of water.) Compare to the degree of dissociation 
calculated neglecting activity coefficients. 
 
 
Answer:  The dissociation is given by: HOAc (aq)     H+  +  OAc-. Assume that the activity 
coefficient for undissociated acetic acid is one, since acetic acid is neutral. The analytical 
(nominal, undissociated) concentration of the weak acid is mA. The activities for the ions are 
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 aH+ =  mH+/m and aOAc- =  mOAc-/m. However, by the 1:1 stoichiometry and neglecting the 
autoprotolysis of water, mH+ = mOAc-. Let x = mH+ = mOAc-. The value of x is the extent of the 
reaction measured as a molality. The acid dissociation reaction is: 
 

  HOAc           H+     +    OAc- 
   molality: mA– x  x       x 
   activity: (mA– x)/m  x/m        x/m 
 

 Ka = 
(aH+)(aOH-)

aA
 = 


2
 (x/m)2

(mA – x)/m giving   K
eff
a  = 

x2

mA – x   1 
 

where for convenience, we define the effective equilibrium constant as K
eff
a  = Ka/

2
 m. Solving 

for x gives: 
 

 x2 + K
eff
a  x – K

eff
a  mA = 0   x = 

–K
eff
a   (K

eff
a )2 + 4 K

eff
a  mA

2  2 
 

Neglecting activity coefficients, K
eff
a   Ka and using the given values: 

 

 x = 
–1.75x10-5  (1.75x10-5)2 + 4(1.75x10-5)(0.100)

2  = 1.314x10-3 m (ideal) 3º 
 

Only the positive root gives a positive concentration. The Debye-Hückel approximation depends 
on the ionic strength. However, the exact concentration of the ions is not known. However, since 
the degree of dissociation is so small, the activity coefficients will be close to one. We can use 
the ion concentrations that we calculate neglecting activity coefficients to approximate the ionic 
strength. Using the definition of ionic strength, Eq. 19.4.22: 
 

 I = ½  z2
i 

mi

m = ½ [(1)2 m + (-1)2 m]/m = m/m = 1.314x10-3   4 

 

This result is expected for a uni-positive:uni-negative electrolyte: I = m/m. The mean ionic 
activity coefficient is calculated using Eq. 19.4.23: 
 

 ln ± = -1.171 |z+ z-| I½ = -1.171 |(1)(-1)| (1.314x10-3)½ = -0.04245   5 
or log ± = -0.509 |z+ z-| I½ = -0.509 |(1)(-1)| (1.314x10-3)½ = -0.01845   6 
 

giving ± = 0.9584 and K
eff
a  = Ka/

2
 m = 1.75x10-5/(0.9584)2 = 1.905x10-5 m. The molal extent 

using Eq. 2 is: 
 

 x = 
–1.905x10-5  (1.905x10-5)2 + 4(1.905x10-5)(0.100)

2  = 1.371x10-3 m  7 
 

Given that x = mH+, the pH is calculated from the activity: 
 

 aH+ =  mH+/m = 0.9584 (1.371x10-3) = 1.314x10-3 
 

 pH = – log aH+ = 2.88 
 

and the degree of dissociation is:  = x/mA = 0.0137 or 1.37% dissociated. The degree of 
dissociation neglecting activity coefficients, using Eq. 3º, is  = 0.0131 for a 4% error. 
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23.  Calculate the pH and degree of hydrolysis of 0.100 m ammonia in water at 25C using the 
Debye-Hückel approximation and Kb = 1.78x10-5. (The hydrolysis constant is determined on a 
molal basis. Neglect the autoprotolysis of water.) Compare to the degree of hydrolysis calculated 
neglecting activity coefficients. 
 
 
Answer:  The hydrolysis is given by: NH3 (aq) + H2O  NH

+
4 + OH-. Assume that the activity 

coefficient for ammonia is one, since ammonia is neutral. The analytical (nominal, 
undissociated) concentration of the weak base is mB. The activities for the ions are 
aNH4+ =  mNH4+/m and aOH- =  mOH-/m. However, by the 1:1 stoichiometry and neglecting 
the autoprotolysis of water, mNH4+ = mOH-. Let x = mNH4+ = mOH-. The value of x is the extent of 
the reaction measured as a molality. The hydrolysis reaction is: 
 

  NH3 (aq) + H2O       NH
+
4    +    OH- 

   molality: mB– x    x        x 
   activity: (mB– x)/m   x/m        x/m 
 

 Kb = 
(aNH4+)(aOH-)

aB
 = 


2
 (x/m)2

(mB – x)/m giving   K
eff
b  = 

x2

mB – x   1 
 

where for convenience, we define the effective equilibrium constant as K
eff
b  = Kb/

2
 m. Solving 

for x gives: 
 

 x2 + K
eff
b  x – K

eff
b  mB = 0   x = 

–K
eff
b   (K

eff
b )2 + 4 K

eff
b  mB

2  2 
 

Neglecting activity coefficients, K
eff
b   Kb and using the given values: 

 

 x = 
–1.78x10-5  (1.78x10-5)2 + 4(1.78x10-5)(0.100)

2  = 1.325x10-3 m (ideal) 3º 
 

Only the positive root gives a positive concentration. The Debye-Hückel approximation depends 
on the ionic strength. However, the exact concentration of the ions is not known. However, since 
the degree of hydrolysis is so small, the activity coefficients will be close to one. We can use the 
ion concentrations that we calculate neglecting activity coefficients to approximate the ionic 
strength, Eq. 3º. Using the definition of ionic strength, Eq. 19.4.22: 
 

 I = ½  z2
i 

mi

m = ½ [(1)2 m + (-1)2 m]/m = m/m = 1.325x10-3    4 

 

This result is expected for a uni-positive:uni-negative electrolyte: I = m/m. The mean ionic 
activity coefficient is calculated using Eq. 19.4.23: 
 

 ln ± = -1.171 |z+ z-| I½ = -1.171 |(1)(-1)| (1.325x10-3)½ = -0.04263   5 
or log ± = -0.509 |z+ z-| I½ = -0.509 |(1)(-1)| (1.325x10-3)½ = -0.01853   6 
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giving ± = 0.9583 and K
eff
b  = Ka/

2
 m = 1.78x10-5/(0.9583)2 = 1.938x10-5 m. The molal extent is: 

 

 x = 
–1.938x10-5  (1.938x10-5)2 + 4(1.938x10-5)(0.100)

2  = 1.382x10-3 m  7 
 

Given that x = mOH- the pOH is calculated from the activity: 
 

 aOH- =  mOH-/m = 0.9583 (1.382x10-3) = 1.324x10-3 
 

 pOH = – log aOH- = 2.878 and pH = 13.995 – 2.878 = 11.12 
 

and the degree of hydrolysis is:  = x/mB = 0.0138 or 1.38%. The degree of hydrolysis 
neglecting activity coefficients, using Eq. 3º, is  = 0.0132 for a 4% error. 
 
 
24.  The Ksp for PbCl2 in water is 1.70x10-5. (a). Calculate the solubility of PbCl2 in pure water. 
(b). Show that the solubility of a 1:2 electrolyte with charges z+ = 2 and z- = -1 in a m-molal 
solution of NaNO3 (or other uni-positive : uni-negative non-participating electrolyte) is given by: 
 

 ms = 100.509|z+ z-| (m/mº)½
 



Ksp

4

1/3
 

 

Use the Debye-Hückel approximation at 25ºC for the activity coefficients. Calculate the 
solubility of PbCl2 in 0.100 m KNO3. 
Answer:  The dissolution is  PbCl2 (s)  Pb2+ (aq) + 2 Cl- (aq). Assume PbCl2 is the only source 
of Cl- ions, giving mCl- = 2 mPb2+ = 2ms. The equilibrium expression is given by: 
 

 Ksp = (aPb2+)(aCl-)2 = 
3
± (mPb2+/mº)(mCl-/mº)2 = 

3
± (ms/mº)(2 ms/mº)2 = 4 

3
± (ms/mº)3      1 

 

(a). For PbCl2 in pure water, first assume the activity coefficient is equal to one: 
 

 ms  (1.70x10-5/4)1/3 mº = 0.01620 m      (ideal)       2º 
 

We can use this concentration to approximate the ionic strength: 
 

 I = ½  z2
i 

mi

m = ½ [(2)2 ms + (-1)2 2 ms]/m = 3 ms/m = 0.04859       3 

 

and the mean-ionic activity coefficient for PbCl2 is: 
 

 log ± = -0.509 |z+ z-| I½ = log ± = -0.509 |(2)(-1)| (0.04859)½ = 0.5965       4 
 

The solubility in pure water is  ms = 






Ksp

4
3
±

1/3
 mº  



1.70x10-5

4(0.5965)3

1/3
  0.0272 m      5 

 

For more accurate calculations this new estimate of the solubility should be used in the spirit of 
successive approximations to calculate a new ionic strength, activity coefficient, and then more 
accurate solubility. Given that Ksp is uncertain to 6%, our current result is sufficient for 
comparison with part b. 
 

(b). Assume that the ionic strength is dominated by the non-participating electrolyte. For a  
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uni-positive : uni-negative electrolyte the ionic strength is given by the molality, I = m/mº. The 
Debye-Hückel approximation correspondingly gives the activity coefficient of the sparingly 
soluble salt as: 
 

 log ± = -0.509 |z+ z-| I½ giving    ± = 10-0.509|z+ z-| (m/mº)½
   6 

 

Solving for the solubility gives: ms = 






Ksp

4
3
±

1/3
 = 100.509|z+ z-| (m/mº)½

 



Ksp

4

1/3
  7 

 

For the specific case of PbCl2 (s) in 0.100 m KNO3, I = 0.100: 
 

 ms = 100.509|(2)(-1)| (0.100)½
 



Ksp

4

1/3
mº = (2.098)(0.01620 m) = 0.0340 m  8 

 

or 210% of the ideal solubility, Eq. 2º, and 125% of the solubility in pure water, Eq. 5. The 
corresponding mean ionic activity coefficient in 0.100 m KNO3 works out to ± = 

10-0.509|(2)(-1)| (0.100)½
 = 0.309. 

 
 
25.  The Ksp for PbCl2 in aqueous solution is 1.70x10-5 on a molal basis at 298.15 K. (a). 
Calculate the Ksp of PbCl2 in pure water on a molarity concentration basis. (b). Calculate the Ksp 
of PbCl2 on a molarity basis in a 0.200-M solution of KNO3, assuming a very dilute solution. 
The density of 0.200 M KNO3 is 0.9905 g mL-1. 
 
 
Answer:  (a). For the solubility equilibrium PbCl2 (s)  Pb2+ (aq) + 2 Cl- (aq): r = [1 + 2] – [0] 
= 3, since the reactant is a solid. The solution is dilute, which allows the use of Eq. 20.3.12. 
Assume the solution density is the density of pure water at the same temperature, 
d 25

H2O = 0.99705 g mL-1, Table 2.2.1: 
 

 Kc = Km (dsoln/1 g ml-1)r = 1.70x10-5(0.99705)3 = 1.685x10-5 
 

or only a 0.9% change. 
(b). However, for the solubility in 0.200 M KNO3: 
 

 Kc = Km (dsoln/1 g ml-1)r = 1.70x10-5(0.9905)3 = 1.652x10-5 
 

for a 3% difference. 
 
 

26.  The hydrolysis of ammonia is given by: NH3 (aq) + H2O  NH
+
4 + OH- with Kb = 1.78x10-5 

at 25C on a molal basis. Calculate Kb on a molarity concentration basis. The density of 0.100 M 
ammonia is 0.994 g mL-1 at 25C 
 
 
Answer:  For the hydrolysis r = [1 + 1] – [1] = 1, since water is kept on a mole fraction basis 
with XH2O  1. Use of Eq. 20.3.12 with the solution density gives only a 0.6% difference in 
equilibrium constants: 
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 Kc = Km (dsoln/1 g ml-1)r = 1.78x10-5(0.994) = 1.769x10-5 
 
 
27.  Nimodipine is a dihydropyridine calcium channel blocker that was developed for the 
treatment of high blood pressure: 
 

 

N
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This class of calcium channel blockers are antagonists that block the flow of Ca2+ ions out of 
cardiac muscle cells. A receptor site for nimodipine is found in the plasma membrane of striated 
muscle tissue, or sarcolemma. Isolated sarcolemma membranes were used in a binding study 
with tritium-labeled nimodipine. Tritiated-nimodipine was incubated with the purified 
membranes in the absence of Ca2+ ion and then filtered. The concentration of bound nimodipine 
was determined by liquid scintillation counting of the membranes trapped on the filters. Consider 
the membrane bound protein receptor as the host and nimodipine as the guest. The concentration 
of bound guest as a function of the total concentration of guest is given in the table below.2 The 
effective concentration of the host membrane receptors is [H]o = 9.3  0.4 pmol L-1. 
 

[G]o (pmol L-1) 0.468 0.9 1.92 6.75 10.3 21.9 53.4 105.4 
[HG] (pmol L-1) 0.134 0.234 0.468 1.606 2.21 4.12 6.09 6.93 

 
 
Answer:  The plan is to determine the association constant from the Scatchard plot using Eq. 
20.5.14. The free guest concentration is given by solving the mass balance: [G] = [G]o – [HG]. 
The degree of association for the host is given by HG = [HG]/[H]o. A spreadsheet was 
developed to calculate [G], HG, and HG/[G] to form the Scatchard plot: 
 

  [H]o =  9.3 pmol L-1 
     
[G]o (pmol L-1) [HG] (pmol L-1) [G] (pmol L-1) HG HG/[G] (pmol-1 L) 

0.468 0.134 0.334 0.0144 0.04314 
0.9 0.234 0.666 0.0252 0.03778 

1.92 0.468 1.452 0.0503 0.03466 
6.75 1.606 5.144 0.1727 0.03357 
10.3 2.21 8.09 0.2376 0.02937 
21.9 4.12 17.78 0.4430 0.02492 
53.4 6.09 47.31 0.6548 0.01384 

105.4 6.93 98.47 0.7452 0.00757 
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slope -0.0411598 0.0401616 intercept 
 0.003408 0.0013577 ± 
r2 0.9605001 0.0026033 s(y) 
F 145.89902 6 df 
ssregression 0.0009888 4.0664E-05 ssresidual 
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The association constant determined by the slope is 0.0412 pmol-1 L or: 
 

 K = 0.0412 pmol-1 L 



1000 pmol

1 nmol  = 41.2 nmol-1 L = 41.2  3.4 nM-1 
 

Even though the effective host concentration is very uncertain, you can verify by changing [H]o 
that the association constant that is determined from the slope is unaffected by the value of the 
total host concentration. The intercept should also give the association constant, but the value is 
strongly dependent on the total host concentration. 
 
 
 
 
28.  Leukotriene-B4 is important in activating the inflammatory response:3 

 

 

OH

OOHOH

 
 

Developing leukotriene-B4 antagonists may be helpful in managing chronic obstructive 
pulmonary disease, severe asthma, rheumatoid arthritis, inflammatory bowel disease, and cystic 
fibrosis. A receptor site for leukotriene-B4 is a membrane bound protein in polymorphonuclear 
leukocytes, PMNLs. Isolated PMNL membranes were used in a binding study with radio-iodine 
labeled leukotriene-B4. The leukotriene was incubated with the purified membranes and then 
filtered. The concentration of bound leukotriene was determined by liquid scintillation counting 
of the membranes trapped on the filters. Consider the membrane bound protein receptor as the 
host and leukotriene-B4 as the guest. The concentration of bound guest as a function of the total 
concentration of guest is given in the table below.3 The effective concentration of the host 
membrane receptors is [H]o = 33  12 pmol L-1. 

 
[G]o (pmol L-1) 8.33 16.7 38.7 86.4 183 322 401 464 1000 2080 
[HG] (pmol L-1) 0.56 1.26 2.66 5.19 9.67 14.3 14.3 16.8 21.7 27.8 
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Answer:  The plan is to determine the association constant from the Scatchard plot using Eq. 
20.5.14. The free guest concentration is given by solving the mass balance: [G] = [G]o – [HG]. 
The degree of association for the host is given by HG = [HG]/[H]o. A spreadsheet was 
developed to calculate [G], HG, and HG/[G] to form the Scatchard plot: 
 
 

  [H]o =  33 pmol L-1 
     
[G]o (pmol L-1) [HG] (pmol L-1) [G] (pmol L-1) HG HG/[G] (pmol-1 L) 

8.33 0.56 7.77 0.0170 0.00218 
16.7 1.26 15.44 0.0382 0.00247 
38.7 2.66 36.04 0.0806 0.00224 
86.4 5.19 81.21 0.1573 0.00194 
183 9.67 173.33 0.2930 0.00169 
322 14.3 307.7 0.4333 0.00141 
401 14.3 386.7 0.4333 0.00112 
464 16.8 447.2 0.5091 0.00114 

1000 21.7 978.3 0.6576 0.00067 
2080 27.8 2052.2 0.8424 0.00041 

 
The curve fit results are: 
 

slope -0.0024546 0.0023768 intercept 
 0.0001532 6.6721E-05 ± 
r2 0.9697631 0.00012796 s(y) 
F 256.57729 8 df 
ssregression 4.2011E-06 1.3099E-07 ssresidual 
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The association constant determined by the slope is 0.00245 pmol-1 L or: 
 

 K = 0.00245 pmol-1 L 



1000 pmol

1 nmol  = 2.45 nmol-1 L = 2.45  0.15 nM-1 
 

Even though the effective host concentration is very uncertain, you can verify by changing [H]o 
that the association constant that is determined from the slope is unaffected by the value of the 
total host concentration. The intercept should also give the association constant, but the value is 
strongly dependent on the total host concentration. 
 
 

29.  The organic dye eosin binds to the protein lysozyme. Binding to lysozyme quenches the 
fluorescence of the protein at 340 nm.4 If IH is the fluorescence intensity of the free form of 
lysozyme and IHG is the fluorescence intensity of the bound form of the protein, then the 
observed intensity is the mole fraction weighted average: 
 

 Iobs = H IH + HG IHG = (1 – HG) IH + HG IHG = (IHG – IH) HG + IH P20.29.1 
 

where H is the mole fraction of the free host protein, H = nH/(nH + nHG) = [H]/[H]o, and HG is 
the mole fraction of the guest-host complex, HG = nHG/(nH + nHG) = [HG]/[H]o. Solving Eq. 
P20.29.1 for the degree of association gives: 
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 HG = 
[HG]
[H]o

 = 
IH – Iobs

IH – IHG
        P20.29.2 

 

The fluorescence intensity of free lysozyme in buffer alone is IH = 1.541. The fluorescence 
intensity, Iobs, as a function of the concentration of eosin with [H]o = 3.00x10-6 M lysozyme in 
each solution is:4 

 

[G]o (M) 5.00x10-6 10.0x10-6 20.0x10-6 50.0x10-6 
Iobs 1.198 1.064 0.855 0.494 

 

The fluorescence intensities are relative and in arbitrary units, which makes fluorescence 
intensity effectively unitless. Calculate the association constant of eosin with lysozyme. Assume 
that the fluorescence of lysozyme is negligible in the bound form, IHG  0. [Hints: a Scatchard 
plot is not appropriate for this experiment, because the free eosin concentration is not known. 
There is only one unknown, so use of a curve fitting program is not necessary. Using “goal seek” 
in a spreadsheet format is useful for finding the optimum value for an adjustable parameter in a 
non-linear equation.] 
 
 

Answer:  The plan is to use Eq. 20.5.22 for calculating the degree of association. A spreadsheet is 
constructed and then “goal seek” is used to find the value of K[H]o that best fits the data. 
   The spreadsheet is reproduced below. The raw data is in the first two columns. The guest-host 
ratio is then calculated, r = [G]o/[H]o, where the guest is eosin and the host is lysozyme. The 
degree of association is then determined from the fluorescence intensities: 
HG = (IH – Iobs)/(IH – IHG). A value of K[H]o is guessed. Eq. 20.5.22 is then used to calculate the 
fit value for the degree of association based on the guessed value of K[H]o, in the fifth column. 
The formula is: “=((1+$G$3*(1+E6))-SQRT((1+$G$3*(1+E6))^2-4*$G$3^2*E6))/2/$G$3.” The last column is 
the squared residual (HG – HG fit)2, which is used to judge the agreement of the experimental and 
modeled value based on the current guess for K[H]o. The overall goodness of fit is determined by 
the sum of squared residuals in cell H12. The “goal seek” option under Data: What-if-analysis is 
then used to minimize the sum of squared residuals: 
 

  
 

A1 B C D E F G H 
2  IHG = 0     
3  [H]o= 3.00E-06 M K[H]o= 0.141  
4        
5  [G]o (M) Iobs r=[G]o/[H]o HG HG fit residual2 
6  0 1.541 0.0000 0.0000 0.0000 0 
7  5.00E-06 1.198 1.6667 0.2226 0.1739 0.002371 
8  1.00E-05 1.064 3.3333 0.3095 0.2996 9.878E-05 
9  2.00E-05 0.855 6.6667 0.4452 0.4664 0.0004529 
10  5.00E-05 0.494 16.6667 0.6794 0.6925 0.0001716 
11        
12      ssresidual 3.095E-03 
13      s(y)= 0.0278 
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The final optimized value is K[H]o = 0.141 or K = 4.70x104. Biochemists often quote the results 
as dissociation constants and neglect to divide by the standard state concentrations in the 
equilibrium expression, which gives the dissociation constant with units: KD = 1/K = 2.13x10-5 = 
21. M. A standard goodness of fit criterion is the standard deviation of the y values, sy or s(y). 
The y values in this problem are the HG values and sy = ssresidual/(n-1). See the next problem 
for the error analysis. 
 
 
30.  Finding the optimum value for a single adjustable parameter in a non-linear equation is 
easily handled using the “goal seek” option in a spreadsheet, rather than using non-linear least 
squares curve fitting programs. However, the spreadsheet approach makes the determination of 
the uncertainty of the final fit value more involved than using non-linear least squares curve 
fitting algorithms. However, least squares curve fitting programs are often set up to fit two or 
more adjustable parameters, not just one parameter. The uncertainty for fitting procedures for a 
single parameter are easily handled using the following approach. 
   The general formula for propagation of errors for the two-parameter function f(x,y) is 
(Appendix 1): 
 

 2f = 



∂f

∂x

2

y
 2x + 



∂f

∂y

2

x
 2y 

 

Consider a non-linear function f(b,x), with the adjustable parameter b and independent variable 
x. The adjustable parameter is often an equilibrium constant and the x variable is a concentration 
or a mole ratio (see the previous problem). Let the value of the measured observables at a series 
of x values be y1 = f(b,x1), y2 = f(b,x2), y3 = f(b,x3), … for n values of x. The y values are often 
absorbances, fluorescence intensities, or chemical shifts. The uncertain variables are the yi 
values. The uncertainty in the fit parameter, b, is then given by: 
 

 2b = 



∂b

∂y1

2
 2y1 + 



∂b

∂y2

2
 2y2 + ... 

 

with the sum over all n data points. If we assume that the derivatives are all approximately equal, 
then the last equation reduces to: 
 

 2b  



∂b

∂y

2
 
i=1

n

 2yi  or 



2b

n–1   



∂b

∂y

2
 





i=1

n
 2yi

n–1  

 

Dividing both sides of the equation by n–1 converts the uncertainties to variances, sb and sy. 
Taking the square root and inverting the derivative gives: 
 

  sb   
1





∂y

∂b

 sy 

 

where (y/b) is approximately evaluated numerically as the change in a typical y value for a 
small change in the fit parameter: 
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 



∂y

∂b  = 
f(b+b,x) – f(b,x)

b
 

 

where x is a typical x-value and b is a small change in the fit parameter. The derivative is easily 
calculated by finding the y-value for the optimal b-value , f(b,x), and then changing b by a small 
amount and finding the new y-value, f(b+b,x). 
   Using these last two equations, find the uncertainty in the association constant for the previous 
fluorescence quenching problem. 
 
 
Answer:  For the last problem the yi values are the experimental HG values. The adjustable 
parameter is b = K[H]o. The x values are the eosin concentrations. Focus on data point 3 for x = 
2.00x10-5 M eosin as a typical value, in the spreadsheet in the last problem. The fit value for 
HG,3 is 0.4664 with b = K[H]o= 0.141. Now change b to 0.142. The new value of HG,3 is 
0.4681. The derivative is then: 
 

 



∂y

∂b  = 
f(b+b,x) – f(b,x)

b
 = 

0.4681 – 0.4664
0.001  = 1.70 

 

The standard deviation of the y values from spreadsheet cell H13 is sy = 0.0278, at the optimum 
value for K[H]o = 0.141. The estimate for the uncertainty in the variable parameter b = K[H]o is 
then: 
 

 b   
1





∂y

∂b

 sy =  
1

1.70 (0.0278) = 0.0164    or    
0.0164
0.141  100% = 11.6% 

 

Giving the uncertainty in the association constant as K = 4.7x104  0.5x104. The dissociation 
constant is KD = 1/K = 2.13x10-5 0.25x10-5. 
 
 
31.  NMR is an important technique for measuring formation constants in guest-host chemistry. 
For example, if a given proton in the host shows a chemical shift difference between the free and 
bound forms, then the chemical shift of the proton is strongly concentration dependent. The 
dependence is due to changes in the mole fractions of the free and bound forms. Assume the 
reactions are rapid on the NMR time scale: rate > 1/o with o the resonance frequency. If H is 
the chemical shift of the free form of the host and HG is the chemical shift of the bound form of 
the host, then the observed chemical shift is the mole fraction weighted average, assuming the 
reactions are rapid: 
 

 obs = H H + HG HG 
 

where H is the mole fraction of the free host, H = nH/(nH + nHG) = [H]/[H]o, and HG is the 
mole fraction of the guest-host complex, HG = nHG/(nH + nHG) = [HG]/[H]o. Given that H + HG 
= 1, the observed chemical shift reduces to: 
 

 obs = (1 – HG) H + HG HG = (HG – H) HG + H 
 

The mole fraction of the bound guest-host complex is calculated by Eq 20.5.22: 
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 obs = (HG – H) 





(1+K[H]o (1+r)) – (1+K[H]o (1+r))2 – 4K2[H]o

2 r
2K[H]o

 + H 
 

Although somewhat daunting looking, this equation is easily used in non-linear curve fitting with 
the “Nonlinear Least Squares Curve Fitting” applet on the text Web site and the companion CD. 
In particular, the guest and host can be a hydrogen-bonded pair. NMR is an important technique 
in studies of hydrogen bonding. 
   The formation of the hydrogen bond between the sterically crowded alcohol, below, and 
pyridine has been studied:5 

 

CH3

CH3

CH3

CH3

CH3 CH3

OH

H
N  

 
 2,2,4,4-tetramethyl-pentan-3-ol pyridine 
 
Consider the alcohol as the host and pyridine as the guest. The chemical shift of the alcohol 
hydrogen is given in the table, below, as a function of the concentration of pyridine in benzene 
solution. The alcohol concentration is fixed in each solution at 0.100 M. The chemical shift of 
the free alcohol is H = 1.105 ppm. The chemical shift difference, (HG – H), and K[H]o are 
treated as the two variable parameters in the curve fitting. The binding constant is expected to be 
1, since the formation of a single hydrogen bond is a weak interaction. 
 

[G]o (M) 0 0.136 0.271 0.543 0.814 1.628 3.799 
obs (ppm) 1.105 1.594 2.000 2.630 3.111 3.970 4.901 

 
 
Answer:   The guest/host ratios, r, are calculated using the spreadsheet below and the r and obs 
values are used in non-linear curve fitting using the “Nonlinear Least Squares Curve Fitting” 
applet on the text Web site and the companion CD. The fit function is listed in the applet as: 
 

 a{(1+b(1+x)) - sqrt[(1+b(1+x))^2 - 4(b^2)x]}/2b + c 
 

where a = HG – H, b = K[H]o, and c = H. The c value is treated as a fixed constant, c = 1.105 
ppm. If initial guesses of a = 8 and b = 0.1 are used, the fit doesn’t converge. After this first 
attempt, the non-converged fit values are listed by the applet as a = 4.96 and b = 0.8754, which 
are used as guesses for a second attempt that does converge. The results are listed and plotted 
below. 
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[G]o (M) r obs (ppm) 
0 0.000 1.105 

0.136 1.357 1.594 
0.271 2.713 2.000 
0.543 5.427 2.630 
0.814 8.140 3.111 
1.628 16.281 3.970 
3.799 37.989 4.901 
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======================   Results   ========================= 
 a= 4.9609 +- 0.043 
 b= 0.087502 +- 0.000062 
______________________ Output Data _________________________ 
     x              y         y(fit)   residual 
  -0.0        1.105      1.102    0.003   
   1.357      1.594      1.59388  0.00012 
   2.713      2.0        2.00167 -0.00167 
   5.427      2.63       2.63642 -0.00642 
   8.14       3.111      3.10462  0.00638 
  16.281      3.97       3.97322 -0.00322 
  37.989      4.901      4.89762  0.00338 
------------------------------------------------------------ 
 sum of squared residuals= 0.0001156 
 stand. dev. y values= 0.004808 
 correlation between a & b= -0.9949 

 
The value for the binding constant is K = b/[H]o = 0.08750/0.100 = 0.875. 
   The between fit parameters correlation is very large, at -0.9949. Large between fit parameters 
correlations are a typical problem in guest-host chemistry for weak interactions. Authors support 
their results by independent measurements of the chemical shift of the completely complexed 
species, and by independent repetitions of the experiment.5 Even so, there are often large 
inconsistencies between laboratories for the values of binding constants. The uncertainty 
obtained from the least squares fitting procedure underestimates the true uncertainty of the 
binding constant (you can prove this to yourself by changing the first chemical shift at [G]o = 0 
to 1.102 ppm and noting the difference in K, for example). Titration calorimetry is often used as 
an independent and, in most cases, more accurate method for determining binding constants. 
However, titration calorimetry is not applicable for all reactions. 
 
 
32.  Derive Eq. 20.5.23. 
 
 
Answer:  The plan is to recast the equilibrium expression in terms of [H]o, [G]o, and free guest, 
[G] using the mass balance. Then the equilibrium expression is used to solve for [G]. 
   The mass balance equations are given by Eqs. 20.5.3 and 20.5.15: 
 

 [H]o = [H] + [HG]        (20.5.3) 
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 [G]o = [G] + [HG]        (20.5.15) 
 

Solving Eq. 20.5.15 for the complex concentration, [HG]: 
 

 [HG] = [G]o – [G]            1 
 

Solving Eq. 20.5.3 for the free host concentration and then using Eq. 1 for [HG] gives: 
 

 [H] = [H]o – [HG] =[H]o – [G]o + [G]          2 
 

Substitution of the mass balances into the equilibrium expression, Eq. 20.5.1, results in: 
 

 K = 
[G]o – [G]

([H]o – [G]o + [G])[G] = 
[G]o – [G]

([H]o – [G]o)[G] + [G]2       3 
 

Cross-multiplying and rearranging gives a quadratic expression: 
 

 K[G]2 + (1 + K([H]o – [G]o)) [G] – [G]o = 0         4 
 

Substitution of the coefficients into the quadratic formula gives: 
 

 [G] = 
–(1+K([H]o–[G]o)) ± (1+K([H]o–[G]o))2 + 4K[G]o

2K        5 
 

Only the positive root gives meaningful concentrations. To express [G] as a function of the mole 
ratio of the guest and host, multiply and divide the equilibrium constant by [H]o to give: 
 

 [G] = 
–(1+K[H]o (1–[G]o/[H]o)) + (1+K[H]o (1–[G]o/[H]o))2 + 4K[H]o [G]o/[H]o

2K[H]o/[H]o
      6 

 

The mole ratio of the guest to host is r  [G]o/[H]o giving: 
 

 [G] = [H]o 





–(1+K[H]o (1–r)) + (1+K[H]o (1–r))2 + 4K[H]o r

2K[H]o
     (20.5.23) 

 
 
33.  Derive Eq. 20.5.24. 
 
 
Answer:  The plan is to recast the equilibrium expression in terms of [H]o, [G]o, and free host, 
[H] using the mass balance. Then the equilibrium expression is used to solve for [H]. 
   The mass balance equations are given by Eqs. 20.5.3 and 20.5.15: 
 

 [H]o = [H] + [HG]        (20.5.3) 
 [G]o = [G] + [HG]        (20.5.15) 
 

Solving Eq. 20.5.3 for the complex concentration, [HG]: 
 

 [HG] = [H]o – [H]            1 
 

Solving Eq. 20.5.15 for the free guest concentration and then using Eq. 1 for [HG] gives: 
 

 [G] = [G]o – [HG] = [G]o – [H]o + [H]         2 
 

Substitution of the mass balances into the equilibrium expression, Eq. 20.5.1, results in: 
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 K = 
[H]o – [H]

[H] ([G]o – [H]o + [H]) = 
[H]o – [H]

([G]o – [H]o)[H] + [H]2       3 
 

Cross-multiplying and rearranging gives a quadratic expression: 
 

 K[H]2 + (1 + K([G]o – [H]o)) [H] – [H]o = 0         4 
 

Substitution of the coefficients into the quadratic formula gives: 
 

 [H] = 
–(1+K([G]o–[H]o)) ± (1+K([G]o–[H]o))2 + 4K[H]o

2K        5 
 

Only the positive root gives meaningful concentrations. To express [G] as a function of the mole 
ratio of the guest and host, multiply and divide the equilibrium constant by [H]o to give: 
 

 [H] = 
–(1+K[H]o ([G]o/[H]o– 1)) + (1+K[H]o ([G]o/[H]o– 1))2 + 4K[H]o

2K[H]o/[H]o
     6 

 

The mole ratio of the guest to host is r  [G]o/[H]o giving: 
 

 [H] = [H]o 





–(1+K[H]o (r–1)) + (1+K[H]o (r–1))2 + 4K[H]o

2K[H]o
     (20.5.24) 

 
 
34.  An alternative form for the concentration of the guest-host complex often encountered in 
biochemical studies is based on the dissociation equilibria: 
 

 HG  H + G   KD = 
[H] [G]
[HG]  

 

where KD is the dissociation constant. The relationship to the association constant and Eq. 20.5.1 
is KD = 1/K. (a). Show that the guest-host concentration is given by: 
 

 [HG] = 
([H]o +[G]o +KD) – ([H]o +[G]o +KD)2 – 4 [H]o [G]o

2  
 

(b). Find the relationship in terms of the guest-host ratio, r = [G]o/[H]o. 
 
 
Answer:  The plan is to recast the equilibrium expression in terms of [H]o, [G]o, and the guest-
host complex, [HG], using the mass balance. Then the equilibrium expression is used to solve for 
[HG]. 
   The mass balance equations are given by Eqs. 20.5.3 and 20.5.15: 
 

 [H]o = [H] + [HG]        (20.5.3) 
 [G]o = [G] + [HG]        (20.5.15) 
 

Solving Eqs. 20.5.3 and 20.5.15 for the free host and free guest concentrations: 
 

 [H] = [H]o – [HG] 
 [G] = [G]o – [HG] 
 

Substitution of the mass balances into the dissociation equilibrium expression results in: 
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 KD = 
[H] [G]
[HG]  = 

([H]o – [HG])([G]o – [HG])
[HG]  = 

[H]o[G]o – ([H]o+[G]o)[HG] + [HG]2

[HG]  
 

Cross-multiplying and rearranging gives a quadratic expression: 
 

 [HG]2 – ([H]o + [G]o + KD) [HG] + [H]o [G]o = 0 
 

Substitution of the coefficients into the quadratic formula gives: 
 

 [HG] = 
([H]o +[G]o +KD) – ([H]o +[G]o +KD)2 – 4 [H]o [G]o

2  
 

Only the negative root gives meaningful concentrations. To express [HG] as a function of the 
mole ratio of the guest and host, factor out [H]o to give: 
 

 [HG] = [H]o  
(1 +[G]o/[H]o +KD/[H]o) – (1 +[G]o/[H]o +KD/[H]o)2 – 4 [G]o/[H]o

2  
 

The mole ratio of the guest to host is r  [G]o/[H]o giving: 
 

 [H] = [H]o 





(1+ r + KD/[H]o) – (1 + r + KD/[H]o)2 – 4 r

2  
 

The fit parameters for non-linear least-square curve fitting are a = [H]o and b = KD/[H]o. 
 
 
35. Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true, but too 
restrictive, give the more general statement. 
 

(a). The relationship rG = –RT ln Kp shows that rG is the reaction Gibbs energy at 
equilibrium. 
(b). The position of equilibrium for a constant volume process is determined by the extent of 
the reaction, . 
(c). The position of equilibrium is unaffected by addition of an inert gas, such as helium, since 
the inert gas will not participate in the reaction. 
(d). The position of equilibrium for the reaction types 2A  B + C and A + B  C + D will be 
the same if the equilibrium constants are the same. 
(e). The rate of the reaction 2A  B + C increases with temperature so the equilibrium 
position of the reaction shifts to the right with an increase in temperature. 
(f). The rate of the reaction 2A  B + C is fast so the equilibrium constant for the reaction is 
large. 

 
 
Answer: (a). False: The reaction Gibbs energy at equilibrium is zero. The standard state reaction 
Gibbs energy corresponds to each pure reactant and product under standard state conditions, P = 
1 bar. It is highly unlikely that the reaction will be at equilibrium with pure reactants and 
products for each substance at Pi = 1 bar, which is required to give rG = 0. 
(b). True but too restrictive: The statement is true for constant V, P, and T. The statement should 
be: The position of equilibrium is determined by the extent of the reaction, . 
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(c). The effect of an inert gas depends on the conditions. The statement is true for a constant 
volume reaction and false for a constant pressure problem if rng  0. At constant pressure the 
addition of an inert gas changes the volume of the system, lowering the partial pressure for each 
gaseous reactant and product. The statement also neglects changes in activity coefficients and the 
changes in chemical potentials of solids, liquids, and solutions for large changes in total pressure. 
The statement should be: The position of equilibrium for a reaction at constant volume is 
unaffected by addition of an inert gas, for moderate changes in total pressure. 
(d). False: The reactant for 2A  B + C has no entropy of mixing while the reactants in A + B  
C + D do have an entropy of mixing. The favorable entropy of mixing for the reactants for 
A + B  C + D will lower the Gibbs energy of the reactants compared to the pure constituents 
and shift the position of equilibrium to the left compared to 2A  B + C. The statement should 
be: The position of equilibrium for the reaction 2A  B + C will be to the right of the position of 
equilibrium for A + B  C + D, assuming comparable equilibrium constants. 
(e). False: don’t confuse kinetic and equilibrium considerations. The equilibrium constant is the 
ratio of the forward and reverse overall reaction rates, Kp = kf/kr. Both forward and reverse 
reaction rates change with temperature. The equilibrium position can shift left or right with an 
increase in forward reaction rate. The correct statement is: The shift in equilibrium position with 
temperature is determined by the standard state reaction enthalpy. 
(f). False: don’t confuse kinetic and equilibrium considerations. The equilibrium constant is the 
ratio of the forward and reverse overall reaction rates, Kp = kf/kr. The reverse reaction rate can be 
faster than the forward reaction rate, which would make the equilibrium constant small. 
 
 

36.  The ITC titration of the enzyme ribonuclease A with the ligand 2'CMP is given in the table 
below. Consider ribonuclease A as the host and 2'CMP as the guest. The host concentration in 
the titration cell was 6.272x10-5 M, the guest concentration in the automated buret was 
2.19x10-3 M, the titration cell volume was 1.4389 mL, and the titrant was added in 9.00 L 
increments. The association constant was determined to be 6.99x105 and the reaction enthalpy 
was -70.6 kJ mol-1 using non-linear curve fitting. (a). Calculate rGº  and rSº . (b). Use the fit 
values to reproduce the titration curve. Neglect any corrections for exclusion of material from the 
constant volume titration cell (as discussed in the addendum). [Hint: construct a spreadsheet 
using Eq. 20.5.22. Show the titration curve with the calculated and experimental values, for 
comparision.] 
 

i Vinj (L) 9 18 27 36 45 54 63 72 81 90 99 

q/ninj (kJ mol-1) -68.3 -67.3 -64.2 -56.3 -35.6 -14.6 -6.41 -3.61 -2.33 -1.64 -1.3 

 
 

Answer: (a). rGº = – RT ln K = -33.4 kJ mol-1 and: 
 

 rS = 
rH – rG

T  = 
(-70. 6 kJ mol-1 – (-33.4 kJ mol-1))(1000 J/1 kJ)

298.15 K  = -125. J K-1 mol-1 

 

which completes the thermodynamic characterization of the reaction. 
 

(b). The plan is to use Eqs. 20.6.3 and 20.6.4 to find [G]o and r = [G]o/[H]o. Eq. 20.5.22 is then 
used to find [HG]. Eqs. 20.6.5-20.6.7 are then used to calculate the enthalpy change per mole of 
added titrant at each step of the titration, which is compared to the experimental values. 



Chapter 20: Equilibrium   37 

   The spreadsheet is: 
 

A1 B C D E F G H I J 
2          
3 host [H]o =  6.272E-05 M K= 6.99E+05    
4 titrant [G]o =  2.190E-03 M rH= -70600 J/mol   
5 cell Vcell =  1.4389 mL      
6 titrant add Vinj =  9 uL      
7          
8 volume titrant:         
9 i Vinj (L) [G]o r=[G]o/[H]o 1+K[H]o(1+r) factor [HG] (M) nHG,i (mol) qi (mJ) qi/ninj (kJ mol-1) 
10 9 1.37E-05 0.218 54.416 35.805 1.33E-05 1.92E-08 -1.352 -68.613 
11 18 2.74E-05 0.437 63.991 27.141 2.64E-05 1.88E-08 -1.325 -67.242 
12 27 4.11E-05 0.655 73.566 19.356 3.88E-05 1.79E-08 -1.262 -64.003 
13 36 5.48E-05 0.874 83.141 14.000 4.95E-05 1.54E-08 -1.085 -55.046 
14 45 6.85E-05 1.092 92.716 14.167 5.62E-05 9.68E-09 -0.684 -34.684 
15 54 8.22E-05 1.310 102.291 19.717 5.91E-05 4.14E-09 -0.292 -14.838 
16 63 9.59E-05 1.529 111.865 27.571 6.03E-05 1.77E-09 -0.125 -6.343 
17 72 1.10E-04 1.747 121.440 36.262 6.09E-05 9.10E-10 -0.064 -3.259 
18 81 1.23E-04 1.966 131.015 45.311 6.13E-05 5.42E-10 -0.038 -1.940 
19 90 1.37E-04 2.184 140.590 54.540 6.16E-05 3.56E-10 -0.025 -1.276 
20 99 1.51E-04 2.402 150.165 63.870 6.17E-05 2.51E-10 -0.018 -0.900 

 

The terms in Eq. 20.5.22 were separated to make the calculations easier and to provide the 
opportunity to check for mistakes. The factor term is:  factor = (1+K[H]o (1+r))2 – 4K2[H]o

2 r. 
 

The formulas are:  C10:  =B10/1000000*$D$4/$D$5*1000 
   D10: =C10/$D$3 
   E10: =1+$G$3*$D$3*(1+D10) 
   F10: =SQRT(E10^2-4*$G$3^2*$D$3^2*D10) 
   G10: =$D$3*((E10-F10)/2/$G$3/$D$3) 
   H10: =G10*$D$5/1000 
   H11: =(G11-G10)*$D$5/1000 
   I10: =H10*$G$4*1000 
   J10: =(I10/1000000)/($D$6/1000000*$D$4) 
 

A plot of the modeled qi/ninj and experimental values is: 
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r = [G]o/[H]o  
 

The modeled values are shown with outlined symbols and the experimental values are shown 
with solid symbols. The discrepancies are in part caused by neglecting the volume exclusion 
corrections. 
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37.  Eq. 20.5.22 can be used directly in non-linear curve fitting for finding association constants 
from ITC titration curves. The results for each step in an ITC experiment are given by Eqs. 
20.6.5-20.6.7. Consider the first two steps in the titration. The sum of the qi,m values for the first 
two steps gives, using Eqs. 20.6.6 and 20.6.7: 
 

 qtot = q1,m + q2,m = q2/ninj + q1/ninj = (nHG,2 + nHG,2) rHº/ninj 
 

Then using Eq. 20.6.5 the total calorimetric enthalpy is given in terms of [HG] as: 
 

 qtot = q1,m + q2,m = q2/ninj + q1/ninj = ([HG]2 – [HG]1 + [HG]1 – [HG]o) rHº Vcell/ninj 
 

 qtot = q1,m + q2,m = q2/ninj + q1/ninj = [HG]2 rHº Vcell/ninj 
 

since [HG]o = 0. Solving for [HG]2 rHº gives: 
 

 qtot ninj/Vcell = rHº [HG]2 
 

In a similar fashion, if we add the calorimetric enthalpies for the first n steps: 
 

 qtot ninj/Vcell = (q1,m + q2,m + …+ q2,n) ninj/Vcell = rHº [HG]n 
 

Eq. 20.5.22 can then be used to calculate the concentration of the host-guest complex: 
 

 qtot 



ninj

Vcell [H]o
 = rHº 






(1+K[H]o (1+r)) – (1+K[H]o (1+r))2 – 4K2[H]o

2 r
2K[H]o

 
 

where r is the guest-host ratio at the nth step of the titration. The two adjustable parameters for 
curve fitting are a = rHº and b = K[H]o. 
   Use the data in the last problem to find the association constant and reaction enthalpy for the 
binding of ribonuclease A with 2'CMP. 
 
 
Answer:  The plan is to use Eqs. 20.6.3 and 20.6.4 to find [G]o and r = [G]o/[H]o. The value for 
qtot ninj/(Vcell [H]o) is then calculated as discussed in the problem introduction. The spreadsheet is: 
 

A1 B C D E F G 
2       
3 host [H]o =  6.272E-05 M   
4 titrant [G]o =  2.190E-03 M   
5 cell Vcell =  1.4389 mL   
6 titrant add Vinj =  9 uL   
7       
8 volume titrant:     
9 i Vinj (L) [G]o exp (kJ mol-1) qi/ninj (kJ mol-1) r=[G]o/[H]o qi  (J mol-1) 
10 9 1.37E-05 -68.3 -68.3 0.218 -1.492E+04 
11 18 2.74E-05 -67.3 -135.6 0.437 -2.961E+04 
12 27 4.11E-05 -64.2 -199.8 0.655 -4.364E+04 
13 36 5.48E-05 -56.3 -256.1 0.874 -5.593E+04 
14 45 6.85E-05 -35.6 -291.7 1.092 -6.371E+04 
15 54 8.22E-05 -14.6 -306.3 1.310 -6.690E+04 
16 63 9.59E-05 -6.41 -312.71 1.529 -6.830E+04 
17 72 1.10E-04 -3.61 -316.32 1.747 -6.908E+04 
18 81 1.23E-04 -2.33 -318.65 1.966 -6.959E+04 
19 90 1.37E-04 -1.64 -320.29 2.184 -6.995E+04 
20 99 1.51E-04 -1.3 -321.59 2.402 -7.023E+04 

 
The column labeled “exp” gives the experimental qi/ninj values from the calorimeter. The first 
qi/ninj column is the successive sum of the experimental enthalpies, qtot = (qi/ninj). The guest-
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host ratio is calculated using Eq. 20.6.4. The last column is the value for qtot ninj/(Vcell [H]o) in 
units of joules per mol for the reaction. Cell G10 is: 
 

 “=D10*1000*$D$4*$D$6*0.000001/$D$5/0.001/$D$3”. 
 

The final two columns are used as input in non-linear curve fitting using the “Nonlinear Least 
Squares Curve Fitting” applet on the text Web site and the companion CD. The fit function is: 
 

 a{(1+b(1+x)) - sqrt[(1+b(1+x))^2 - 4(b^2)x]}/2b + c 
 

with fixed c = 0. The results are shown below. 
 

==================   Results   ===================== 
 a= -71422 +- 188 
 b= 39 +- 1.4 
__________________ Output Data ____________________ 
     x        y      y(fit)   residual 
   0.218   -14920.0     -15079.9659  159.9659  
   0.437   -29610.0     -29893.45311 283.45311 
   0.655   -43640.0     -43866.56378 226.56378 
   0.874   -55930.0     -55853.66829 -76.33171 
   1.092   -63710.0     -63439.95773 -270.04227 
   1.31    -66900.0     -66841.80936 -58.19064 
   1.529   -68300.0     -68357.87206  57.87206 
   1.747   -69080.0     -69146.2291   66.2291  
   1.966   -69590.0     -69621.5504   31.5504  
   2.184   -69950.0     -69934.19432 -15.80568 
   2.402   -70230.0     -70155.46303 -74.53697 
-------------------------------------------------- 
 sum of squared residuals= 253900 
 stand. dev. y values= 168 
 correlation between a & b= 0.9463 

 
The final results are rHº = -71.42  0.19 kJ mol-1 and  
 

 K = [H]o b = 6.272x10-5 (39.) = 6.22x105  0.22x10-5 
 

Notice that the between fit parameter correlation is high, but acceptable, at 0.9463. The results 
deviate from the values listed in the last problem, K = 6.99x105 and rHº = -70.6 kJ mol-1, 
because we didn’t correct for exclusion of material from the constant volume titration cell (as 
discussed in the addendum). 
 
 
38.  Comparison of Eqs. 20.1.17 and 20.1.5 might at first seem conflicting: 
 

 G = nA µA + nB µB + nC µC + nD µD      (20.1.17) 

 rG = c µC + d µD – a µA – b µB      (20.1.5) 
 

Derive Eq. 20.1.5 from Eq. 20.1.17, thus showing that the two equations are consistent. [Hint: 
remember that the reaction Gibbs energy is the Gibbs energy for the products minus the Gibbs 
energy for the reactants.] 
 
Answer:  Write the reaction as:   a A + b B    c C  d D. We note using Eq. 3.1.4, dni = id, that 
as the reaction proceeds from reactants to products, for a given extent, ni changes from: 
 

 ni:  ni,o   ni,o + i          1 
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where ni,o is the initial amount of constituent i. For the reaction run to completion: 
 

 : 0  1,  nA:   nA,o  nA,o – a  nB:   nB,o  nB,o – b 
   nC:   nC,o  nC,o + c  nD:   nD,o  nD,o + d   2 
 

Finally: rG = Gproducts(=1) – Greactants(=0). Substituting Eqs. 2 into Eq at  = 1 and 
 = 0 gives: 
 

       rG = Gproducts – Greactants  
       = [(nA,o– a)µA + (nB,o– b)µB + (nC,o+ c)µC + (nD,o+ d)µD] – [nA,o µA + nB,o µB + nC,o µC + nD,o µD] 
 

       rG = Gproducts – Greactants = [c µC + d µD] – [a µA + b µB] 
 

which is Eq. 20.1.5. 
   The alternative path is to note that both 20.1.17 and 20.1.5 result from integration of the total 
differential of the Gibbs energy, Eq. 20.1.2. Correspondingly, Eq. 20.1.17 is the Gibbs energy for 
the reaction mixture at some point during the reaction and rG is the change in Gibbs energy for 
the reaction of a-moles of A and b-moles of B to give c-moles of C and d-moles of D. Eq. 
20.1.17 is valid at any point during the reaction, while Eq. 20.1.5 corresponds to the change for 
the reaction run to completion. 
 
 
39.  Calculate the equilibrium constant for the anti- to gauche-conformers for dichloroethane 
from rGº and also the statistical approach. Use molecular mechanics to estimate of the 
difference in steric energy. Assume no significant change in vibrations between the two 
conformers. 
 
 
Answer:  The MMFF94x gas phase steric energy difference for anti- and gauche-dichloroethane 
is -5.143 kJ mol-1. Using MM3, the difference is -4.325 kJ mol-1. Just as for butane, Example 
20.4.1, there are two equivalent gauche-conformers and one anti-conformer. The reaction 
entropy for the conformational change is, assuming no significant change in vibrations (or 
rotational constants): 
 

 rSº = Santi – Sgauche = R ln (1/2) = -5.763 J K-1 mol-1 
Then  rGº = Ganti – Ggauche = rHº – TrSº using the MMFF values gives: 
 

 rGº = -5.143 kJ mol-1 – (298.2 K)(-5.763 J K-1 mol-1)(1 kJ/1000 J) 
 rGº = -3.425 kJ mol-1 (MMFF)  or  -2.607 kJ mol-1 (MM3) 
 

giving: K = e–rGº/RT = 
[anti]

[gauche] = 3.981 (MMFF)  or   2.862 (MM3) 
 

The anti-conformer has the lowest energy, which we assign as anti = 0. Then the gauche-
conformer has an energy gauche = 5.143 kJ mol-1 above the anti-state using MMFF or gauche = 
4.325 kJ mol-1 using MM3. The table, below, gives the calculation for the probabilities using Eq. 
20.4%.1 and the MMFF steric energy difference at 298.15 K. 
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Conformation i   (kJ mol-1) i/RT e–i/RT e–i/RT/q 

gauche 5.143 2.075 0.1256 0.1004 

gauche 5.143 2.075 0.1256 0.1004 
anti 0 0 1 0.7992 
   q=1.2512  

 
To calculate q we sum the weighting factors in column 4. Then we use q to calculate the 
probabilities in the last column. The ratio the anti- to gauche-probabilities is: 
 

 K = 
 probabilities for anti

 probabilities for gauche
 = 

0.7992

0.1004+ 0.1004
 = 3.981 (MMFF)    or    2.862 (MM3) 

 

There are roughly four molecules in the anti-conformation for every molecule in a gauche-
conformation at 25°C, using the MMFF results. 
 
 
40.  The dimer of methylvinylketone is shown below, at left. The bond with free rotation is 
marked. Consider only the axial conformer for the –CO–CH3 side chain. Calculate the 
equilibrium constant for the two low energy conformers. (b). Which face of the carbonyl is more 
susceptible to nucleophilic attack? Nucleophilic attack will be perpendicular to the trigonal plane 
of the sp2 hybridized carbon, as shown by the arrows for one possible conformation at right. 
According to Cram's rule, the less hindered side is most susceptible to attack by nucleophiles. 
You may use molecular mechanics, semi-empirical AM1, ab initio HF/6-31G*, or 
B3LYP/6-31G* density functional methods to determine the energies. 
 

O

OCH3

O

CH3

O
 

 
 
Answer:  The plan is to first determine the low energy conformers about the side-chain C-C bond 
to the ring. A conformational search around this bond can be done or several possible starting 
conformations can be minimized. The less sterically hindered side of the low energy conformer 
is noted. Space filling models are helpful in looking at steric influences. 
   For this problem we will study just the axial conformer for the -CO-CH3 side chain. The 
energy differences and Boltzmann weighting factors are given below using gas phase 
MMFF94x, MM3, AM1, HF/6-31G(d), and B3LYP/6-31G(d). The starting structures for the 
molecular orbital calculations were the MMFF minimized conformers. The equilibrium constant 
is given for the reaction written as:  anti   syn , where the anti conformer is the low energy 
conformer: 
 

 K = [syn]/[anti] 
 

The anti-conformer has the O–C–C=O dihedral near -144º and the syn- near -4º using MMFF. 
 

i 

(k
J 

m
ol
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5 

pi = e–i/RT/q 

0.7992 

0.1004 
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high   
(kJ mol-1) 

low  
(kJ mol-1) 

  
(kJ mol-1)   e-/RT    q     p0     p1      K 

MMFF 81.7867 64.19009 17.5966 0.000826 1.000826 0.999175 0.000825 8.3x10-4 

MM3 61.8918 41.79398 20.0978 0.000301 1.000301 0.999699 0.000301 3.0x10-4 

AM1 -313.709 -319.661 5.95132 0.090639 1.090639 0.916894 0.083106 0.0906 
HF -1206787. -1206799. 11.6751 0.009005 1.009005 0.991075 0.008925 9.0x10-3 

B3LYP -1214304. -1214315. 10.4392 0.014826 1.014826 0.985390 0.014610 0.0148 

 
The favored direction of attack changes with conformation of the side chain. There are two low 
energy conformers; the lowest energy conformer of the axial isomer is shown below. The arrow 
shows the side of the carbonyl that is preferentially attacked by nucleophiles. 
 

O
O

 
 
 
41.  The next two problems develop a model for the equilibrium profile of NO in the lower 
troposphere. In the atmosphere, NO and NO2 approach equilibrium (see Problem 16 and Ch. 5 
Problems 10-12): 
 

 NO (g) + ½ O2 (g)  NO2(g)               P20.41.1 
 

In a given initial volume, let the number of moles of NO be “a”, the moles of O2 be “b”, and the 
moles of other gases in the atmosphere be “n”. These last contributions include primarily N2 with 
small amounts of H2O vapor, CO2, and Ar. Assume that the initial amount of NO2 is zero and the 
reaction runs at constant total pressure, P. To help simplify the relationships for the mole 
fractions, define   /a as the fraction of NO oxidized, r  b/a, and q  n/a. Show that the 
equilibrium expression is: 
 

 Kp = 


1 –  






1 + r + q – /2

r – /2

½
 (P/P)–½            P20.41.2 

 

The concentration of NOx in the atmosphere is typically in the ppm range. Correspondingly, r 
and q are much larger than . Let PNO,o be the initial partial pressure of NO, before any oxidation 
occurs. Show that an excellent approximation is then: 
 

 Keff  


1 –       with  Keff = Kp 



r

r + q
½

 (P/P)½  (PNO,o << PO2, PN2)  P20.41.3 

 
 
Answer:  Assume that the initial amount of NO2 is zero. The total moles at equilibrium is then: 
 

 ntot = (a – ) + (b – /2) +  + n = a + b + n – /2     1 
 

The relationship of the mole amounts to the partial pressures is then: 
 

  NO (g)        +        ½ O2 (g)             NO2 (g) 
  moles:  a –             b – /2                
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    Yi:      
a – 

a + b + n – /2
     

b – /2
a + b + n – /2

       


a + b + n – /2
 

 

    Yi:   
1 – 

1 + b/a + n/a – /2
   

b/a – /2
1 + b/a + n/a – /2

    


1 + b/a + n/a – /2
 

 

    Yi:      
1 – 

1 + r + q – /2
      

r – /2
1 + r + q – /2

       


1 + r + q – /2
   2 

 

To obtain the final listed mole fractions, we divided by the moles of a in the numerator and 
denominator and substituted  = /a to measure the degree of the reaction.  is the fraction of 
NO oxidized or alternatively the fraction of NO2 formed. We then define r  b/a and q  n/a. For 
the total pressure dependence, rng = -½. The equilibrium expression is then: 
 

 Kp = 
(PNO2/P)

(PNO/P)(PO2/P)½ = Kx (P/P)rng = 








1 + r + q – /2







1 – 

1 + r + q – /2
 






r – /2

1 + r + q – /2

½ (P/P)–½ 

      = 


1 –  






1 + r + q– /2

r – /2

½
 (P/P)–½        (P20.41.1) 

 

The maximum value of  is 1 for the reaction as written. The concentration of NO in the 
atmosphere is typically in the ppm range. Then r and q are much larger than . An excellent 
approximation is then to neglect the 1 and  terms to give: 
 

 Kp  


1 –  



r + q

r
½

 (P/P)–½     (PNO,o << PO2, PN2) 3 
 

where PNO,o is the initial partial pressure of NO before oxidation. An effective equilibrium 
constant can then be defined to simplify the calculations: 
 

 Keff  


1 –   with Keff = Kp 



r

r + q
½

 (P/P)½   (P20.41.2) 
 

The effective equilibrium constant, Keff, is a constant at a given altitude. 
 
 
42.  Use Eq. P20.41.2 to determine the equilibrium partial pressure of NO up to an altitude of 
2000 m in the troposphere. Use the barometric formula, Eqs. 1.3.16 and 1.3.17, to estimate the 
total pressure as a function of altitude. Assume that r and q are constant with altitude (that is, the 
atmosphere is well-mixed before any oxidation occurs). Assume also that the temperature in the 
troposphere decreases 6.0 K per 1000 m: the environmental lapse rate is  = -0.006 K m-1. For 
the oxidation, Eq. P20.41.1, rG = -35.24 kJ mol-1 and rH = -57.07 kJ mol-1. Assume rH is 
constant over the temperature range. Assume the temperature is 298.15 K and the total pressure 
is 1.00 bar at sea level. The initial partial pressure at sea level for O2 is 0.200 bar and for NO is 
1.00x10-5 bar (10 ppm) before any oxidation. 
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   The barometric formula is derived assuming the temperature is constant at each altitude. 
However, for a realistic model, we also need to take into account the decrease in temperature 
with altitude. An easy way to take both pressure and temperature effects into account is to use an 
average temperature of 282.7 K with the barometric formula to calculate the pressure profile in 
the atmosphere. Separately, the variation of temperature is then determined using  = -0.006 K 
m-1 starting at 298.2 K at sea level, h = 0. 
 
 
Answer:  The spreadsheet and the plot of the partial pressure of NO as a function of altitude are 
given below. The barometric formula, Eq. 1.3.16, is used with the average molar mass of air of 
28.8 g mol-1 and the average effective temperature in the lower troposphere of 282.7 K to 
calculate the pressure as a function of altitude in column D. The temperature profile in column E 
starts at 298.2 K and decreases -0.006 K m-1 as the altitude increases. The initial Kp at 298.2 K is 
calculated using Kp = e–rG/RT = 1.492x106. The Kp at decreasing temperature (increasing 
altitude) is calculated using Eq. 20.1.29 and listed in column F: 
 

 Kp,T2 = Kp,T1 e
–∆rH

R 



1

T2
 – 

1
T1  = 1.492x106 e

–(-5.707x104J mol-1)
8.314 J K-1 mol-1 



1

T2
 – 

1
298.2 K  

 

The molar ratio of O2 to NO is given by the initial conditions at sea level: 
 

 r = b/a = nO2,o/nNO,o = (nO2,o RT/V)/(nNO,o RT/V) = PO2,o /PNO,o 
   = 0.200/1.00x10-5 = 2.00x104 
 

where nNO,o is the initial amount of NO at sea level before any oxidation. The change in partial 
pressure of O2 during the reaction is negligible. The partial pressure of N2 and other minor 
constituents in air at sea level is given by Dalton’s law of partial pressures: PN2 = Ptot – PO2 – PNO 
= (1.00 – 0.200 – 1.00x10-5) bar. The molar ratio of N2 to NO from the initial conditions at sea 
level is q = n/a = PN2/PNO = 8.00x104. The effective equilibrium constant at a given altitude is 
calculated using Eq. P20.41.2 assuming r and q are constant with altitude. The degree of 
reaction  = NO is then calculated using Eq. P20.41.2 in column H. The partial pressure of NO 
is then given in column I using Problem 41 Eq. 2 for the mole fraction of NO: 
 

 PNO(h) = 






1 – 

1 + r + q – /2
 P(h) 

 

where P(h) is the total pressure at the given altitude. Finally the accuracy of the calculation is 
checked by using the partial pressures to calculate Q at equilibrium, which should be equal to the 
equilibrium constant: 
 

 Q = 
(PNO2(h)/P)

(PNO(h)/P)(PO2(h)/P)½ 
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A1 B C D E F G H I J 
2 Mair 28.8 g mol-1 rG -35.24 kJ mol-1    
3 T 282.7 K rH -57.07 kJ mol-1    
4 R 8.3145 J K-1 mol-1 Kp (298 K) 1.492E+06     
5 g 9.8067 m s-1 Po(NO) 1.00E-05 bar    
6 Po 1 bar Po(O2) 0.2 bar    
7  -0.006 K m-1 r= b/a = 2.00E+04     
8    q= n/a = 8.00E+04 (q+r/r)1/2 =  2.2361   
9         check Kp 
10  h P T (K) Kp Kp*(Pr/q+r)1/2 NO P(NO) Q 
11  0 1 298 1.492E+06 6.672E+05 0.999998501 1.50E-11 1.492E+06 
12  200 0.976 296.8 1.638E+06 7.236E+05 0.999998618 1.35E-11 1.638E+06 
13  400 0.953 295.6 1.799E+06 7.853E+05 0.999998727 1.21E-11 1.799E+06 
14  600 0.930 294.4 1.977E+06 8.530E+05 0.999998828 1.09E-11 1.977E+06 
15  800 0.908 293.2 2.175E+06 9.272E+05 0.999998921 9.80E-12 2.175E+06 
16  1000 0.887 292 2.395E+06 1.009E+06 0.999999009 8.79E-12 2.395E+06 
17  1200 0.866 290.8 2.639E+06 1.098E+06 0.999999089 7.88E-12 2.639E+06 
18  1400 0.845 289.6 2.910E+06 1.196E+06 0.999999164 7.06E-12 2.910E+06 
19  1600 0.825 288.4 3.212E+06 1.305E+06 0.999999234 6.32E-12 3.212E+06 
20  1800 0.806 287.2 3.547E+06 1.424E+06 0.999999298 5.66E-12 3.547E+06 
21  2000 0.786 286 3.922E+06 1.555E+06 0.999999357 5.06E-12 3.922E+06 
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Figure P20.42.1: Equilibrium Partial Pressure of NO as a function of Altitude in the 
Troposphere. 

 
The formulas are: D12: “=$C$6*EXP(-$C$2/1000*$C$5*C12/$C$4/$C$3)” 
   E12: “=E11+$C$7*(C12-C11)” 
   F12: “=$F$4*EXP(-$F$3*1000/$C$4*(1/E12-1/$E$11))” 
   G12: “=F12*SQRT(D12)/$H$8” 
   H12: “=G12/(1+G12)” 
   I12: “=(1-H12)/(1+$F$7+$F$8-H12/2)*D12” 
   J12: “=($F$5*D12-I12)/I12/SQRT(0.2*D12)” 
 

You can change the acceleration of gravity to zero to see the effect of temperature alone. The 
equilibrium shifts in the exothermic direction with increasing height, which favors NO2 at 
altitude. You can change  to zero to see the effect of pressure alone. The equilibrium shifts to 
the left with increasing height, which favors NO at altitude, although rG is so negative that 
NO2 remains the predominant species. 
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43.  Consider the reaction A + B  C + D in solution from a thermodynamic perspective and 
from a kinetic perspective. The equilibrium constant is a function of the solution activities, but 
the rate law is conventionally written in terms of the concentrations: 
 

 Ka = 
aC aD

aA aB
    = 

1
V 

d
dt  = kf [A][B] – kr[C][D] 

 

(a). Use detailed balance to prove that the rate law is also expressible in terms of the solution 
activities: 
 

  = 
1
V 

d
dt  = kf' aA aB – kr' aC aB 

 

(b). Relate the two sets of rate constants, kf and kr with kf' and kr', given the activity coefficients 
for each species. 
 
 
Answer:  Detailed balance requires that the forward and reverse rates are equal for a reaction at 
equilibrium and that the ratio of the forward and reverse rate constants gives the equilibrium 
constant. Since the true thermodynamic equilibrium constant must be specified in terms of 
activities, the equilibrium constant that results from the kinetic rate law must also be written in 
terms of activities: 
 

  = 
1
V 

d
dt  = kf' aA aB – kr' aC aB = 0  Ka = 

kf'
kr'

 = 
aC aD

aA aB
 

 

with aA = A [A], aB = B [B], etc. 
(b).  The rate constants for the reaction rate written in terms of concentration and in terms of 
activities are then related through the activity coefficients using: 
 

  = 
1
V 

d
dt  = kf' A B [A][B] – kr' C D [C][D] 

 

Comparing with the rate law in terms of concentrations gives: 
 

  = 
1
V 

d
dt  = kf' A B [A][B] – kr' C D [C][D] 

          

  = 
1
V 

d
dt  =     kf   [A][B]    –     kr    [C][D] 

 

to give:     kf = kf' A B   and    kr = kr' C D. 
 

In other words, by convention for concentration based kinetic expressions, the activity 
coefficients of the reactants and products are incorporated into the rate constants. The 
corresponding true thermodynamic equilibrium constant is given by: 
 

 Ka = 
kf'
kr'

 = 






C D

A B
 
kf

kr
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As a case in point, we will use Debye-Hückel electrostatic theory to understand the kinetic salt 
effect in the chapter on molecular reaction dynamics. The energetic relationships are explored 
further in the next problem. 
 
 
44.  Challenge Problem: In the previous problem, we showed that the rate law for a reaction is 
best expressed in terms of activities, rather than concentrations, for consistency with detailed 
balance. However, by convention in concentration based kinetic expressions, the activity 
coefficients of the reactants and products are incorporated into the rate constants. The activity of 
a species deviates from the analytical concentration because of solute-solvent interactions. 
Rationalize the fact that solute-solvent interactions of the reactants and products have an effect 
on chemical reactions rates. However, be careful to separate thermodynamic and kinetic 
concerns. Assume that the kinetics follow Arrhenius behavior, and reason through the reaction 
profile, Figure 4.5.2. 
 
 
Answer:  We first must avoid using thermodynamic arguments to make a kinetic point. Consider 
a gas phase reaction and the same reaction in solution. For a particular example, assume an 
exothermic reaction and that the reactants and products are stabilized by solute-solvent forces 
while the transition state is destabilized by solute-solvent forces, as shown in the following 
figure. 
 
 
 
 
 
 
 
 
 
 
 (a). gas phase    (b). in solution 
 
   We assume a constant volume process, so that the internal energy or Helmholtz energies are 
the appropriate thermodynamic variables. The parameters ofr the solution reaction are listed with 
primes, e.g. rU'. First take the thermodynamic perspective. rU and rU' are independent of 
the transition state energy, and clearly have an effect on the equilibrium constant through rA' = 
rU' –T rS'. The standard states are typically chosen as Henry’s Law standard states for the 
reactants and products, and therefore include solute-solvent interactions. rU' is changed, 
compared to the gas phase, if the reactants and products are stabilized by solute-solvent 
interactions to a different extent. Now take the kinetic perspective. 
   Detailed balance requires that Eaf – Ear = rU for the gas phase reaction and Eaf' – Ear' = rU' 
for the solution phase reaction. The rates of the reaction, forward and reverse are strong 
functions of the activation energies. There are four possibilities: 

reaction progress 
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rUo < 0 

reaction progress 
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Eaf' Ear' 

rUo' < 0 
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   1.  For the particular example in the figure, if the reactants and products are stabilized by 
solute-solvent interactions and the transition state is destabilized, then the activation energies are 
increased and the reaction rates decrease. 
   2.  However, if the reactants and products are stabilized by solute-solvent interactions and the 
transition state is also stabilized to a similar degree, then the activation energies are little 
changed. 
   3.  Alternately, if the reactants and products are destabilized by solute-solvent interactions and 
the transition state is destabilized, then the activation energies are little changed. 
   4.  Or, the final possibility is if the reactants and products are destabilized by solute-solvent 
interactions and the transition state is stabilized, then the activation energies are decreased and 
the reaction rates increase. 
 

   In any event, the effect of solute-solvent forces is to change the energies of the reactants and 
products, which in turn changes the activation energy: Eaf = Etransition-state – Ereactants and 
Ear = Etransition-state – Eproducts . At thermodynamic equilibrium the transition-state energy cancels 
out: 
 

 rU = Eaf – Ear = (Etransition-state – Ereactants) – (Etransition-state – Eproducts) = Eproducts – Ereactants 
 

The activity coefficients then have an effect on both the thermodynamic equilibrium and the 
reaction rates through changes in energy or chemical potential of each reactant and product: 
 

 i = i  + RT ln ici 
 

   In summary, it matters little in the final effect if the rate law is written in terms of 
concentrations or activities; energetic interactions of the solutes with the solvent have an effect 
on the rates and equilibria of chemical reactions. 
 

  = 
1
V 

d
dt  = kf [A][B] – kr[C][D] or  = 

1
V 

d
dt  = kf' aA aB – kr' aC aB 

 

The kinetic changes are difficult to predict, however, because the effect of the solvent on the 
transition state must also be determined. Even if the transition state is traversed in a non-
equilibrium, purely dynamical way, the effective activation energy still depends on the energies 
of the reactants and products. The energies of the reactants and products are altered by 
interactions with the solvent. 
   One deficiency in our argument is that we have considered energetic issues and have ignored 
entropic considerations. Certainly, solvation effects can have large entropic contributions. 
Entropic contributions to reaction rate constants are expressed primarily through the pre-
exponential factor, A, in the Arrhenius expression k2 = A e–Ea/RT. Similar arguments can be 
framed through changes in the pre-exponential factors with entropic changes caused by 
solvation. The pre-exponential factor is referenced to the entropy of the reactants or products, for 
the forward and reverse reactions, respectively. 
 
 

45.  The temperature dependence of isomerization is conveniently followed by experimental 
techniques that have additive response of the two forms in equilibrium. The equilibrium constant 
of the two forms is given by: 
 

 A  B    with K = [B]/[A]      P20.45.1 
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One example of an experimental technique with additive response is infrared spectroscopy. The 
wave number of an IR band is the mole fraction weighted average of the two forms: 

 ~obs = ~A xA + ~B xB     (additive response) P20.45.2 
 

where xA and xB are the mole fractions of A and B, respectively. The absorption wave numbers 
of the pure components are ~A and ~B, respectively. 
  (a).  Let the total analytical moles be a, with nA + nB = a, where nA and nB are the number of 
moles of A and B. The total volume of the solution is V. Show that the corresponding 
concentrations are related by [A] + [B] = [a], with concentrations in moles per liter. 
  (b).  Show that the observed wave number is given in terms of the concentrations as: 
 

 ~obs = ~A 
[A]
[a]  + ~B 

[B]
[a]      (additive response) P20.45.3 

 

  (c).  Using P20.43.1 show that the equilibrium concentrations are given by: 
 

 [A] =  
1

1+K [a]  [B] = 
K

1+K [a]      P20.45.4 
 

  (d).  Using Eqs. P20.43.2-P20.43-4, show that the equilibrium constant is determined by: 

 K = 
~obs – ~A

~B – ~obs
      (additive response) P20.45.5 

 
 

Answer:  (a). The mole fractions and concentrations of the two forms are given by the numbers 
of moles of the two forms, nA and nB, and the total analytical moles, a: 
 

 xA= nA/a xB = nB/a   nA + nB = a and  xA + xB = 1 1 
 

 [A] = nA/V [B] = nB/V    [a] = a/V      2 
 

Substituting the concentrations into the mass balance, nA + nB = a, gives: 
 

 [A] + [B] = [a]          3 
 

(b).  The observed frequency can be written in terms of the concentrations of the two forms and 
the total analytical concentrations, [A], [B], [a], respectively using Eq. 20.45.2: 
 

 ~obs = ~A xA + ~B xB = ~A nA/a + ~B nB/a = ~A 
nA/V
a/V  + ~B 

nB/V
a/V     4 

 ~obs = ~A 
[A]
[a]  + ~B 

[B]
[a]        (P20.45.3) 5 

 

(c).  From the mass balance, Eq. 3, [A] = [a] – [B] giving the equilibrium constant as: 
 

 K = 
[B]

[a] – [B]   solving for [B] gives:   [B] = 
K

1+K [a]  (P20.45.4) 6 
 

Solving for [A] using the mass balance gives: 
 

 [A] = [a] – [B] = ( 1 – 
K

1+K ) [a] = 
1

1+K [a]    (P20.45.4) 7 
 

(d).  The observed frequency from Eqs. 5, 6, and 7 is then: 
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 ~obs = ~A 
1

1+K + ~B 
K

1+K = 
 ~A + ~B K

1+K        8 
 

Cross multiplying by 1+K gives: 

 ~obs + ~obsK = ~A + ~B K or  K = 
~obs – ~A

~B – ~obs

   (P20.45.5) 9 

 

The last equation allows the equilibrium constants to be determined completely from the shift in 
the band frequency. 
 
 

46.  The infrared absorption of an intramolecular hydrogen-bonded amine (see Problem Ch. 
10.13: N-[2-(dimethylamino)ethyl]-N-methylguanidium ion) as a function of temperature is at: 
 

T (C) 25.0 30.0 35.0 40.0 45.0 

~obs (cm-1) 1520 1540 1548 1570 1573 
 

Equilibrium is established between the closed and open forms; the closed form is hydrogen-
bonded and the open form is not hydrogen-bonded: C  O. The wave number of the closed form 
is: ~C = 1505 cm-1 and the open form is ~O = 1580 cm-1. Using Eq. P20.45.5, determine the 
equilibrium constant and reaction Gibbs energy as a function of temperature. 
 
 

Answer:  The plan is to note that the equilibrium constant for an isomerization is determined 
completely from the observed band shifts using Eq. P20.45.5, while the linearized form of the 
temperature dependence is: ln K = –rHº/RT + ln c. 
   A spreadsheet was set up using Eq. P20.45.5 using the association of C  O with A  B: 

 

T (K) 
obs 
(cm-1) K 1/T (K-1) ln K 

rG 
(kJ mol-1) 

298.15 1520 0.2500 0.003354 -1.38629 3.437 
303.15 1540 0.8750 0.003299 -0.13353 0.337 
308.15 1548 1.3438 0.003245 0.295464 -0.757 
313.15 1570 6.5000 0.003193 1.871802 -4.874 
318.15 1573 9.7143 0.003143 2.273598 -6.014 

 
slope -17704 58.0673 intercept 
 1846.3 5.99645 
r2 0.9684 0.30777 s(y) 
F 91.943 3 df 
ssreg 8.7092 0.28417 ssresid 

 

 

 

y = -17704x + 58.067
R² = 0.9684

-2

-1

0

1

2

3

0.0031 0.0032 0.0033 0.0034

ln
 K

1/T (K-1)

 
The reaction enthalpy is then determined from the slope of ln K vs. 1/T giving rHº = – slope(R) 
= 147.  15. kJ mol-1. The reaction Gibbs energies are then given by rGº = –RT ln K. Assuming 
an uncertainty of 2 cm-1 in the observed wave numbers, the uncertainty in the Gibbs energy is 
 0.005 kJ mol-1. The reaction enthalpy is much larger than the hydrogen bond strength since 
proton transfer reactions accompany the formation of the hydrogen bond and shifts in pH occur 
with the changes in temperature. 
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