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Chapter 2: Concentrations and Partial Pressures 
 

The euphotic zone is the layer in a natural body of water that can support photosynthesis. 
The euphotic zone extends to the depth that corresponds to 1% of the light flux incident 
on the surface. Colored dissolved organic matter, CDOM, is one component in the water 
column that limits the penetration of light in lakes and rivers. A typical component of 
CDOM has a molar absorption coefficient of 1.8x107 M-1 cm-1 and a concentration of 
2.7x10-10 M. Calculate the depth of the euphotic zone for this concentration. 

 
Before we begin our study of kinetics and chemical equilibrium, we need to discuss how 
concentrations and partial pressures are measured. In the last chapter we learned that the state of 
a system is defined by V, P, T, S, and the amounts of each substance. The amounts of substances 
can alternatively be specified using moles, concentrations, or partial pressures. The measurement 
of concentration is central to all aspects of chemistry. To study chemical reactivity we need to 
monitor changes in concentration during an experiment. Concentrations can be expressed in 
different ways. We start with gases and then discuss solutions. Hopefully, you are already quite 
familiar with most of this material on concentration measures from your General Chemistry 
course, and only a quick review is necessary. 
   We also consider systems with non-uniform concentrations, where molecular diffusion 
transports molecules from regions of high concentration to regions of low concentration. 
Molecular diffusion is an example of a generalized flux-force relationship. 
 
2.1 Gas Phase Concentrations and Partial Pressures 
 

Dalton’s Law of Partial Pressures states that the partial pressure of a gas, Pi, is the pressure the 
gas would exert if it were alone in the flask: 
 

 PiV = ni RT       (ideal gas)  2.1.1° 
 

The total pressure is the sum of the partial pressures, assuming an ideal mixture: 
 

 P = ∑
i=1

ns

 Pi        (ideal mixture)  2.1.2° 
 

for ns constituents. Since from Eq. 2.1.1°, Pi = ni RT/V, the total pressure is related to the total 
volume and temperature through Eq. 2.1.2°: 
 

 P = ∑
i=1

ns

 Pi = ∑
i=1

ns

 ni RT/V  =  
RT
V  ∑

i=1

ns

 ni = 
n RT

V   (ideal mixture of ideal gases) 2.1.3° 
 

given that the total number of moles of gas is: 
 

 n = ∑
i=1

ns

 ni          2.1.4 

 

In other words, PV = nRT for the mixture of gases. The ideal gas law assumes that the gas 
molecules have no volume and no forces between the molecules. An ideal mixture assumes that 
the forces between the different molecular species are equal to the forces between molecules of 
the same species. The ideal mixture approximation is better, in general, than the ideal gas law. 
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   The concentration of a species, ci, is given as ni/V in moles per m3 or moles per liter: 
 

 ci = 
ni

V = 
Pi

RT       (ideal gas)  2.1.5° 
 

The mole fraction of a species i, yi, is defined as: 
 

 yi = 
ni

∑
j=1

ns

 nj

 = 
ni

n          2.1.6 

 

For example, for a two-component mixture y1 = n1/(n1+ n2). We use yi for gas phase mole 
fractions and xi for solution phase mole fractions to avoid confusion when we discuss volatile 
liquid solutions. Mole fraction based concentrations are very useful because the fractions for all 
constituents add to one: 
 

 ∑
i=1

ns

 yi = 1          2.1.7 

 

We can relate the partial pressures to the total pressure by dividing Eq. 2.1.1° by PV = n RT for 
the total mixture: 
 

 
PiV
PV = 

ni RT
nRT      (ideal mixture of ideal gas) 2.1.8° 

 

Cancelling terms gives: 
 

 
Pi

P = 
ni

n = yi      (ideal mixture of ideal gases) 2.1.9° 
 

Solving for the partial pressure gives: 
 

 Pi = yi P      (ideal mixture of ideal gases) 2.1.10° 
 

where P is the total pressure of the mixture. Eqs. 2.1.1° and 2.1.10° are both expressions of 
Dalton’s Law of Partial Pressures. The concentrations, ci or yi, and the partial pressures, Pi, can 
all be used to study the concentration dependence of reaction rates and chemical equilibrium. 
   We often like to work with gases in equilibrium with aqueous solutions in the environment, for 
example gas exchange with the surface of lakes, streams, or the ocean. For these problems we 
need to take into account water vapor as one of the components of the gas phase. The vapor 
pressure of water, P*H2O, is given in Table 2.1.1. We will use the symbol θ for temperature in 
degrees Centigrade; T is always in kelvins. 
 
 

Table 2.1.1: Vapor Pressure of Water1. Values in kPa and torr. 
 

θ 
(°C) 

P*H2O 
(kPa) 

P*H2O 
(torr) 

θ 
(°C) 

P*H2O 

(kPa) 
P*H2O 
(torr) 

θ 
(°C) 

P*H2O 
(kPa) 

P*H2O 
(torr) 

0.0 0.611 4.579 20.0 2.339 17.535 50.0 12.344 92.51 
10.0 1.228 9.209 25.0 3.168 23.756 75.0 38.556 289.10 
15.0 1.705 12.788 36.6 6.140 46.050 90.0 70.117 525.76 
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The relative humidity of air is defined as the percentage ratio of the ambient vapor pressure of 
water to the equilibrium vapor pressure at the current temperature: 
 

 RH = 
PH2O

P*H2O
  (100%)         2.1.11 

 

 
              

Example 2.1.1:  Volume Fractions and Mole Fractions 
Dry air is 20.946% by volume O2 and 79.054% N2. For many partial pressure problems we need 
to know the mole fractions. Show that volume fractions are equivalent to mole fractions. 
 
 

Answer:  Assuming the system is at constant total pressure, P, the corresponding volume of O2 is 
given by: 
 

 PVO2 = nO2 RT 
 

where VO2 is the volume that the O2 would occupy if it were alone in the container. Using 
Dalton’s Law of Partial Pressures, the total pressure is given by Eq. 2.1.3°: 
 

 PV = (nO2 + nN2) RT 
 

Where V is the total volume, V = VO2 + VN2. Dividing these two equations gives: 
 

 
PVO2

PV   = 
nO2 RT

(nO2 + nN2) RT 
 

Canceling common factors gives the mole fraction from the volume fraction: 
 

 
VO2

V  = 
nO2

(nO2 + nN2)
 = yO2 

 

proving that volume fractions and mole fractions are identical. 
 
              

Example 2.1.2:  Partial Pressures and Relative Humidity 
Dry air is 20.946% by volume O2 and 79.054% N2. (a) Calculate the number of moles of O2 in 
1.00 m3 of dry air at 1.00 bar pressure at 298.15K. (b) Calculate the number of moles of O2 in 
1.00 m3 of air at a relative humidity of 60.0% for the same conditions as part (a). 
 
 

Answer:   (a.)   In dry air P = PO2 + PN2, with PO2 = nO2 RT/V and PN2 = nN2 RT/V giving: 
 

 P = nO2 RT/V + nN2 RT/V or    (nO2 + nN2) = PV/RT 
 

Noting that 1 bar = 1x105 Pa and using V in m3 and R in J mol-1 K-1 gives the total moles of gas: 
 

 (nO2 + nN2) = PV/RT = 
1.000x105 Pa (1.000 m3)

8.3145 J mol-1 K-1(298.15 K) = 40.34 mol 
 

Using the given mole fraction of O2 gives nO2 = yO2 (nO2 + nN2) = 0.20946 (40.34 mol) = 
8.450 mol. 
 

(b). In humid air P = PO2 + PN2 + PH2O. All we need to do is subtract the partial pressure of the 
water from both sides of the equation and then proceed as before: 
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 P – PH2O = PO2 + PN2 = nO2 RT/V + nN2 RT/V = (nO2 + nN2)RT/V 
 

Solving for the moles of O2 and N2 gives: 
 

 (nO2 + nN2) = (P – PH2O)V/RT 
 

At 298.15 K the equilibrium vapor pressure of water from Table 2.1.1 is 3.168 kPa. At 60.0% 
relative humidity the vapor pressure of water is PH2O = 0.600 (3.168 kPa) = 1.900 kPa = 
1.900x103 Pa = 0.01900x105 Pa. The moles of O2 and N2 are then: 
 

 (nO2 + nN2) = 
(P – PH2O)V

RT  = 
(1.000x105 – 0.01900x105 Pa) 1.000 m3

8.3145 J mol-1 K-1 (298.15 K)  = 39.57 mol 
 

The relative fractions of O2 and N2 are the same as for dry air. To see this, consider admitting a 
known number of moles of O2 and N2 into a constant pressure container. Now admit enough 
water vapor to reach the desired partial pressure of water; the number of moles of O2 and N2 
haven’t changed so that the relative ratio of O2 to N2 is constant, even though water vapor is 
present. Using the dry mole fraction to find the relative amounts of O2 and N2 gives nO2 = 
0.20946 (39.58 mol) = 8.289 mol. The net result is that there is about 2% less O2 available on the 
humid day. Air is actually a mixture of O2, N2, CO2, and Ar. No changes are needed for our 
calculation for O2 if we use PN2 to represent the combined partial pressure of N2, CO2, and Ar. 
              

 
 
2.2 Concentrations of Solutions 
 

  The mole fraction of a component i in solution, xi, is the most fundamental expression of 
concentration: 
 

 xi = 
ni

∑
j=1

ns

 nj

 = 
ni

n          2.2.1 

 

for ns constituents in solution. Just as for gases, the sum of all mole fractions is one: 
 

 ∑
i=1

ns

 xi = 1          2.2.2 
 

The concentration of the solvent in solution is almost always given in terms of mole fraction. 
The concentration of solutes can also be expressed in molar units, which is defined as the 
number of moles per liter of solution: 
 

 ci = ni/V          2.2.3 
 

The units are designated as “M.” The problem with molar concentration units is that they are 
temperature dependent. The temperature dependence results from the fact that the density and, 
therefore, the volume of a solution depends on temperature. To avoid the temperature 
dependence, a more useful measure of concentration, called the molality , is expressed as the 
number of moles of solute divided by the mass of the solvent in kg, wsolvent: 
 

 mi = 
ni

wsolvent
           2.2.4 
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The units for molality are “m.” Thermodynamic reference tables are often given assuming molal 
concentrations. In equilibrium expressions, the symbol [A] is often used for concentration, which 
can be expressed either in molar or molal units. Use the listed units in data tables to determine 
the concentration measure. Note that mole fraction is unitless, which is another good reason for 
using mole fractions. It is often necessary to convert among the concentration measures. 
   To convert from molarity to molality, assume an amount of a c molar solution of 1L total 
volume. The moles of solute is ni = c (1 L) and the mass of the solution is wsoln = 
(volume)(density of solution): 
 

 wsoln = 1000mL dsoln         2.2.5 
 

where dsoln  is the density of the solution in g mL-1. The mass of the solvent is calculated by 
difference: 
 

 wsolvent = mass of solution – mass of solute = 
1000mL dsoln – c (1L) MB

1000g/kg   2.2.6 
 

where MB is the molar mass of the solute, B, in g mol-1. The molality is then just the moles of 
solute divided by the mass of the solvent in kg, Eq. 2.2.4: 
 

 m =  
c (1L)

1000mL dsoln – c (1L) MB

1000g/kg

       2.2.7 

 

For dilute solutions, the mass of the solute is negligible compared to the mass of the solvent and 
Eq. 2.2.7 reduces to: 
 

 m ≅ 
c

dsoln
  






1L

1000 mL 




1000 g

1 kg      (very dilute)  2.2.8 
 

For very dilute solutions the density of the solution is very close to the density of water, Table 
2.2.1. For very dilute solutions at 25°C, the density of water is 0.99705 g mL-1 so that molarity 
and molality differ by 0.3%. 
 
 
   Table 2.2.1. Density of Water2 

 

Temperature (°C) d (g mL-1) Temperature (°C) d (g mL-1) 
0.0 0.9998425 30.0 0.9956502 
4.0 0.9999750 36.6 0.9934748 
10.0 0.9997026 50.0 0.9880393 
20.0 0.9982071 75.0 0.9748519 
25.0 0.9970479 100.0 0.9583665 
d = ao + a1θ + a2θ2 + a3 θ3,  with ao= 0.9998425, a1 = 5.3322x10-5, a2= –7.5899x10-6, 
 a3 = 3.6719x10-8 g mL-1. 

 
 
To convert molality to molarity, assume an amount of an m molal solution that contains 1 kg of 
solvent. The moles of solute is ni = m (1 kg) and the mass of the solution: 
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 wsoln = 1000g + m (1kg) MB        2.2.9 
 

 volume of solution = mass/density = 
1000g + m (1kg) MB

dsoln 1000 mL/L     2.2.10 
 

giving the molarity as: 
 

 c = 
m (1kg)

1000g + m (1kg) MB

dsoln 1000mL/L

         2.2.11 

 

and in very dilute solution, neglecting the mass of the solute compared to the solvent, Eq. 2.2.11 
reduces to: 
 

 c ≅ m dsoln 




1000 mL

1L 





1 kg

1000 g     (very dilute) 2.2.12 
 

Similarly, to convert from molality or molarity to mole fraction: 
 

 xB = 
mB (1kg)







1000g

MA
+mB (1kg)

        2.2.13 

 

 xB = 
cB (1L)







1000mL dsoln– cB (1L) MB

MA
 + cB (1L)

      2.2.14 

 

where MA is the molar mass of the solvent, A. The solvent is often water. In very dilute solution 
the amount of solute is negligible compared to the amount of solvent in the denominator and: 
 

 xB ≅ 
mB (1kg)







1000g

MA

  aqueous solutions:  xB ≅ 
mB (1kg)
55.51 mol  (very dilute) 2.2.15 

 

 xB ≅ 
cB (1L)







1000mL dsoln

MA

      (very dilute)  2.2.16 

 

and for water as the solvent at 25°C, 1L of water corresponds to 55.33 moles and then: 
 

 xB ≅ 
cB (1L)

55.33 mol      (very dilute)  2.2.17 
 

We will use these equations often in the chapters on solutions and equilibria. 
 
 
              

Example 2.2.1:  Molarity, Molality, and Mole Fraction 
A sodium chloride solution is prepared by adding 3.752 g of sodium chloride to a 100-mL 
volumetric flask and then diluting to the mark. The molar mass is 58.442 g mol-1. The final mass 
of the solution is 102.4 g. Calculate the molarity, molality, and the mole fraction of sodium 
chloride in this solution. Calculate the mole fraction of the solvent. 
 



  39 

 

Answer:  The number of moles of added NaCl is 0.06420 moles and the molarity is: 
 

 cB = 0.06420 mol/0.1000 L = 0.6420 M. 
 

The molality is based on the mass of the solvent, which is wA = 102.4 g – 3.752 g = 98.65 g. The 
molality is then m = 0.06420 mol/0.09865 kg = 0.6508 m. 
   In many problems, the density is given instead of the final total weight of the solution. Eq. 
2.2.7 must then be used to calculate the molality. Let’s do the problem using the density to gain 
some more experience with concentration conversions. The density of the solution is the final 
mass divided by the volume, d = 102.4 g/100.0 mL = 1.024 g mL-1. It is wise to write an Excel 
spreadsheet to do concentration conversions. You can use this example to test your spreadsheet. 
You will be doing these calculations often. Using Eq. 2.2.7, the molality is: 
 

 mB =  
c (1L)

1000mL dsoln – c (1L) MB

1000g/kg

 = 
0.6420 M (1L)

1000mL 1.024 g mL-1 – 0.6420 M (1L) 58.442 g mol-1

1000g/kg

 

 mB = 0.6508 m 
 

The mole fraction is given using Eq. 2.2.13: 
 

 xB = 
mB (1kg)







1000g

MA
+mB (1kg)

  =  
0.6508 m (1kg)







1000g

18.02 g mol-1 + 0.6508 m (1kg)
 

 xB = xNaCl = 0.01159 
 

We then calculate the mole fraction of the solvent by difference, since xA + xB = 1: 
 

 xH2O = 1 – 0.01159 = 0.9884 
 

Notice that the molarity and molality differ by 1.4%. This solution is within the salinity range of 
normal sea water. This solution is 3.66% NaCl by mass or 36.6 %o (%o indicates parts per 
thousand by mass, which is the concentration measure used by oceanographers for salinity). 
 
 
              

Example 2.2.2:  Solution Preparation by Mass 
Making up solutions by mass avoids the need for using volumetric glassware, and is usually 
more accurate. You can work with volumes smaller than your available volumetric glassware. A 
mass of 0.00987 g of levulose, molar mass 180.16 g mol-1, and 1.006 g of water were added to a 
small tube. Calculate the molality and molarity, if the density of the solution is 1.0039 g mL-1. 
 
 
Answer:  Remember that spreadsheet idea? A spreadsheet sure would make this calculation 
easier. Here are the results. The molality and molarity are: 
 

 m = 
moles solute
mass solvent = 

0.00987 g/180.16 g mol-1

1.006x10-3 kg   =  0.05446 m 
 

 c = 
m (1kg)

1000g + m (1kg) MB

dsoln 1000mL/L

  = 
0.0545 m (1kg)

1000g + 0.0545 m (1kg) 180.16 g mol-1

1.0039 g mL-1 1000mL/L

  =  0.05414 M 
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The results are almost good to four significant figures, since the mass of levulose was almost 
0.01000 g, which would have had four significant figures. When the last digit isn’t significant, 
the digit is shown in a smaller font, or underlined, 0.05414 M. Always carry more significant 
figures than you are allowed through intermediate calculations to avoid round-off error. 
              

 
 

2.3 Molecules in Motion—Mass Transport 
 

   Chemical systems are often dynamic. In other words, the concentrations of chemical species 
change as a function of time. Concentrations can change because of flow processes and chemical 
reactions. In flow processes, molecules move from place to place. In this section we consider the 
effect of flow processes. In the next chapter we will discuss the time dependence of chemical 
reactions. The flow of molecules is often called mass transport. Mass transport processes include 
bulk flow, convection, and diffusion. An example of bulk flow includes flow in pipes and tubing. 
An example of convection is the flow in stirred solutions. This type of flow is called streaming 
flow. In stationary, non-stirred solutions molecules move only by a random process called 
diffusion. Examples of systems where flow processes are important include membrane systems, 
flow reactors, electrochemistry, and chromatography. Most biological processes involve flow in 
some way or another, and many of the problems in energy applications involve overcoming flow 
restrictions. The change in the amount of a substance caused by a flow process is characterized 
as a flux. The concept of a flux is quite general and useful. Fluxes are used to characterize the 
flow of chemical species, charge, and energy. 
 

Fluxes measure flow:  The flux is the flow of something per unit time per unit area. We 
normalize to unit area because we often don’t care how large the system is; we want an intrinsic 
measure of the transport properties of the system for any size. The flows of matter, charge, or 
energy per unit area are all fluxes, Figure 2.3.1. Chemical fluxes involve the flow of chemical 
species. A flux of charge results if the chemical species are ions. Charge fluxes also occur from 
electron flow in a conductor. Light is one example of an energy flux. Energy transfer in the form 
of heat can also be treated as a flux. 
 
 
 
 
 
 
 
 

Figure 2.3.1: The flux is the flow of matter, charge, or energy through a surface of unit area 
per unit time. For uniform flow, the flux is independent of the size of the surface chosen, 
because the flux is normalized to unit area. For non-uniform flow, the flux is the average 
over the chosen surface. 

 
   The chemical flux, Jm, is given as the number of moles of a given species passing through a 
surface per unit area per unit time. Bulk flow is the simplest case. For a solution of concentration 
c flowing through a tube at velocity υ the flux is just Jm= cυ. If the solution velocity is not 
uniform, then the velocity is the local velocity at the point of interest. (Note that for pump-driven 

A 

flow 

J = flux = 
flow
A  
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flow through a tube that the solution close to the wall of the tube travels slower than the bulk of 
the solution.) Convection is quite analogous. The velocity is the local velocity of the stirred 
solution, and Jm= cυ applies as before. If the solute concentration is not uniform, then the 
concentration is the local concentration at the point of interest. 
   We can also relate the flux to the volumetric flow rate. If the volumetric flow rate, F, is given 
in L s-1 and the concentration of the solution, c, is given in mol L-1 then the flux is also Jm= Fc/A, 
where the cross-sectional area is usually given in m2. The flux calculated in this way is the 
average over the total flow area. 
   Once the flux is known, the change in moles of a given species, n, can be calculated. For a 
portion of the sample with cross sectional area A: 
 

 
dn
dt = JmA          2.3.1 

 

If the flux is constant, the number of moles of a species transported across this area in a time ∆t 
is given as: 
 

 n = Jm A ∆t        (cst. Jm) 2.3.2 
 
 
              

Example 2.3.1:  Flux and Moles 
Consider a large reservoir filled with 0.1 M sucrose that is emptied by a small tube with an 
internal diameter of 5.00 mm. Assume the reservoir empties at a rate of 1.00 mL s-1. (a) 
Calculate the average sucrose molar flux in mol m-2 s-1 across the tube. (b) From the flux, 
calculate the number of moles of sucrose delivered in 1.00 minute. 
 
Answer: (a) The cross sectional area of the tube is A = πr2 = 3.1416 (5.00x10-3 m/2)2 = 1.96x10-5 
m2. The velocity of the solution through the tube is the volumetric flow rate, F, divided by the 
cross sectional area: 
 υ = F/A = 1.00 mL s-1 (1 m3/1x106mL)/1.96x10-5 m2 = 0.0510 m s-1 
The molar flux is then: 
 Jm = cυ = 0.1 mol L-1 (1000 L/1m3) 0.0510 m s-1 = 5.10 mol m-2 s-1. 
(b) The amount of sucrose delivered in 1.00 minute using this flux and Eq. 2.3.2 is: 
 n = Jm A ∆t = 5.10 mol m-2 s-1 (1.96x10-5 m2)(60 s) = 6.00x10-3 mol 
 

As a check on our calculations, we can alternatively use the volumetric flow rate and 
concentration directly: n = Fc∆t = 1.00 mL s-1(0.1 mol L-1)(1 L/1000 mL)(60 s) = 6.00x10-3 mol. 
              

 
Concentration Gradients Are Reduced by Diffusion:  For a system at equilibrium, the 
concentrations of all species are uniform in each phase. For non-equilibrium systems, the 
concentrations can vary from place to place. The difference in concentration with position 
produces a concentration gradient. Without the input of energy or matter, concentration gradients 
disappear through diffusion, and the concentrations become uniform at equilibrium. A solution 
with a linear concentration gradient is diagrammed in Figure 2.3.2. To calculate the local 
concentration, the total volume is divided into small intervals, as indicated by the light gray lines. 
These light gray lines are not physical barriers, but are used only to delineate small equal 
increments. The concentration gradient is defined as the derivative of the concentration with 
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respect to distance, dc/dx. The gradient in Figure 2.3.2 is given in terms of the number of 
molecules in the volume increment, Vinc. The number of molecules is converted to molar units by 
division by the increment volume and Avogadro’s number, NA: 
 

 
dc
dx  =  

1
V inc NA

 
dN
dx         2.3.3 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3.2: A solution with a linear concentration gradient. The local concentration is 
calculated by dividing the total volume into small increments. The number of molecules in 
each volume increment is plotted as a histogram, with the horizontal axis indicating the 
position of the volume increment along the x axis. The concentration gradient is the 
derivative of the curve for the number of molecules per unit volume as a function of distance. 

 
 
More generally, if the concentration in a solution varies linearly between c and c' over a distance 
δ, then the gradient is: 
 

 
dc
dx = 

(c' – c)
δ        (linear gradient) 2.3.4 

 

   Molecules move through a solution by diffusion, which is characterized by a diffusion 
coefficient, D. The diffusion coefficient is dependent on the particular solute species and solvent. 
The larger the diffusion coefficient, the higher the intrinsic mobility of the species. The molar 
flux of a species through the solution is directly proportional to its concentration gradient: 
 

 Jm = – D 
dc
dx          2.3.5 

 

where Jm is the molar flux. In short, concentration gradients drive mass transfer from regions of 
high concentration to regions of low concentration. Eq. 2.3.5 is called Fick’s First Law . For a 
linear gradient, substituting Eq. 2.3.4 into Eq. 2.3.5, gives Fick’s First Law as: 
 

 Jm = –
D
δ  (c' – c)      (linear gradient) 2.3.6 

 

   The units of the flux are mol m-2 s-1. The units of the diffusion coefficient are m2 s-1, giving the 
corresponding units for the concentration gradient as mol m-4. Typical values for the diffusion 
coefficient are given in Table 2.3.1. 

x  (cm) 

8 
6 

4 

2 

0 

N 

1 2 3 4 

dN
dx  = –2 molecules cm-1 
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Table 2.3.1. Diffusion Coefficients in water at 293 K.3 
 

Species Molar Mass (g mol-1) D (m2 s-1) 
CH3OH 32 13.7x10-10 

urea, H2NCONH2 60 11.8x10-10 
sucrose 342 5.7x10-10 

insulin 41,000 8.2x10-11 
horse hemoglobin 68,000 6.3x10-11 

 
 
The data in Table 2.3.1 show an inverse relationship of molecular size with the diffusion 
coefficient. Large molecules move slowly. Diffusion coefficients also decrease as the viscosity 
of the solvent increases. 
 
 
              

Example 2.3.2:  Diffusion Across a Membrane 
A membrane is placed between two stirred solutions. The solution on the left of the membrane 
contains 0.010 M sucrose and on the right is pure water. The membrane is 0.100 mm thick and 
has an area of 5.00 cm2. Assume the diffusion coefficient of sucrose in the membrane is the same 
as in pure water, 5.7x10-10 m2 s-1. Calculate the number of moles of sucrose that diffuse across 
the membrane in one hour. 
 
 
Answer:  Assuming a linear change in concentration across the membrane, the concentration 
gradient using Eq. 2.3.4 is: 
 

 
dc
dx  =  

(c' – c)
δ   =  

0 – 0.01 mol L-1(1000L/1m3)
0.100 mm (1 m/1000 mm)  =  

–10. mol m-3

1.00x10-4m   =  –1.00x105 mol m-4 

 

Using Fick’s First Law, Eq. 2.3.5, the flux is given by: 
 

 Jm = – D 
dc
dx  =  – (5.7x10-10 m2 s-1)(–1.00x105 mol m-4) =  5.7x10-5 mol m-2 s-1 

 

The cross sectional area of the membrane is A = 5.00 cm2 (1 m/100 cm)2 = 5.00x10-4 m2 
The total amount of sucrose passing through the membrane in one hour is then: 
 

 n = Jm A ∆t = 5.7x10-5 mol m-2 s-1 (5.00x10-4 m2)(1 hr)(3600 s/1hr) = 1.03x10-4 mol 
 

This membrane is quite thin and the gradient is quite large. Even so, the amount of sucrose that is 
transported across the membrane is quite small. 
   Since we approximated the diffusion coefficient through the membrane as the diffusion 
coefficient in bulk water, this problem gives the same numerical result as diffusion through an 
equivalent slice of a bulk solution with a comparable gradient. In either the membrane or bulk 
solution case, we note that the diffusion of molecules is quite slow. That slow mobility is why 
vigorous stirring is necessary when making up solutions. Diffusion alone is insufficient; 
convection is also required for rapid mixing. 
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2.4 Experimental Determination of Concentration: Some Tools of the Trade 
 

   There are a vast variety of methods for determining concentrations in the gas phase and in 
solution. We will encounter many such methods throughout this text. As a prelude to kinetics 
and equilibrium studies, however, we will discuss just three representative techniques: UV-
visible absorption spectroscopy, emission spectroscopy, and conductivity. Within wide 
concentration ranges, these techniques show a linear or near-linear response with concentration. 
In general, most techniques for measuring concentration can be put into a linear form. These 
three methods will help you get a quick start on your experimental work. We discuss the 
theoretical background for these techniques later in the text. 
 

Absorption Spectroscopy:  The diagram of a simple absorbance spectrophotometer is shown in 
Figure 2.4.1. Light from a source is focused on a diffraction grating. The dispersed light from the 
grating passes through a slit selecting a narrow range of wavelengths. This arrangement of a 
grating with slits for selection of a small range of wavelengths is called a monochromator. The 
incident light flux on the sample is Jo. This flux is the energy per unit time per unit area. As with 
all fluxes, we normalize to unit area because we don’t care how large the incident light beam is; 
we want an intrinsic measure of the ability of the sample to absorb light for any size sample and 
incident beam area. How do we relate the light flux to the concentration of the sample? 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4.1: A simple absorbance spectrophotometer. A narrow band of excitation 
wavelengths is produced by a monochromator. 

 
 
   Let c be the concentration of the sample, l the path length of the cuvette, and β the intrinsic 
ability of the molecules in the sample to absorb light at the given wavelength. β is the fraction of 
the light flux absorbed by the molecules, which is the probability of absorbing photons. The units 
of the concentration are usually molar units, mol L-1, but molal units, mol kg-1, can also be used. 
The path length is usually measured in cm. The distance that the light has traveled through the 
sample is x. The light flux, J(x), decreases as it passes through the sample because of absorption 
by the molecules. Consider a thin slice of solution of thickness dx, Figure 2.4.2. 
   The change in flux over the distance dx is proportional to the intrinsic ability of the molecules 
to absorb light, the concentration of the sample, the light flux at distance x incident on the slice, 
and the thickness of the slice: 

Absorbance 
0.736 
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 dJ = – β c J(x) dx         2.4.1 
 

The negative sign is necessary because the flux decreases with distance. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4.2: Absorption of light by a thin slice of solution of thickness dx. 
 
 
Eq. 2.4.1 can easily be integrated, because it is in the general form of df = –a f dx given in 
general pattern ℘1 in Section 1.3. After separation of variables and setting the flux to Jo at x = 0 
and J at x = l: 
 

 
⌡

⌠

Jo

J dJ
J  = – ⌡⌠0

l  β c dx         2.4.2 

 ln 
J
Jo

 = – β l c          2.4.3 
 

 J = Jo e–β l c          2.4.4 
 

The flux is an exponentially decreasing function of distance through the sample. Multiplying 
Eq. 2.4.3 by –1 gives the Beer-Lambert Law: 
 

 ln(Jo/J) = β l c          2.4.5 
 

The absorbance of the solution is defined as: 
 

 A  ≡ log(Jo/J)          2.4.6 
 

using base 10 logarithms. To convert Eq. 2.4.5 from base-e logarithms to base-10, remember that 
ln x = 2.303 log x: 
 

 A = log 
Jo

J = 
β

2.303 l c         2.4.7 
 

Defining the molar absorption coefficient as ε ≡ β/2.303 gives the final linear result: 
 

 A = ε l c          2.4.8 
 

The importance of this equation is that the concentration of a solution can be easily obtained 
from the absorbance, if the molar absorption coefficient and path length of the cuvette are 

J(x) 

x 0
{  

x
{  

x+dx
{  

l 
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known. The value of ε is wavelength dependent, and is determined by calibration with solutions 
of known concentration at a fixed wavelength, Figure 2.4.3. Molecular spectra typically consist 
of more than one transition, each transition resulting from a different excited state of the 
molecule. The wavelength of maximum absorption for a band is usually used for determinations. 
The value of ε is typically in the range of zero to 105 M-1 cm-1. 
   The molar absorption coefficient is also alternatively called the extinction coefficient or the 
molar absorptivity. The units are L mol-1 cm-1, or M-1 cm-1. The light flux, J, is equivalent to the 
power per unit area, P, and also the intensity, I. The absorbance can be expressed using any of 
these equivalent measures of light intensity. The transmittance, T, is defined as the fraction of the 
light that is transmitted through the sample, T = I/Io, and the percent transmittance is just the 
transmittance on a percentage basis, %T = (I/Io) 100%: 
 

 A = log 
Jo

J  =  log 
Po

P  =  log 
Io

I   =  log 1/T = log 
100
%T     2.4.9 

 

Spectrophotometers may use any of these measures of light absorption. 
   Absorption spectroscopy isn’t always linear with concentration. Non-linearity results from 
equilibria that change the speciation of the substance that is being determined. For example, 
many dyes dimerize in solution, A + A →

← A2. Changes in pH or ionic strength can also cause non-
linearity. Highly absorptive solutions also show non-linearity caused by stray light in the 
monochromator. 
 

 
 (a)         (b) 
 

Figure 2.4.3: (a) Absorption spectrum of 8.00x10-5 M salicylaldehyde, for a 1 cm path length. 
The absorbance at 255 nm is 0.848 giving ε = A /(lc) = 10,600 M-1 cm-1 at 255 nm. The 
absorbance spectrum shows three absorption bands corresponding to three molecular 
electronic excited states. (b) The three excited states are shown in the corresponding energy 
level diagram. (There is no horizontal axis for an energy level diagram.) 

 
 
             

Example 2.4.1: Beer-Lambert Law and the Euphotic Zone 
The euphotic zone is the layer in a natural body of water that can support photosynthesis. The 
euphotic zone extends to the depth that corresponds to 1% of the light flux incident on the 
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surface. Colored dissolved organic matter, CDOM, is one component in the water column that 
limits the penetration of light in lakes and rivers. CDOM includes polyphenolic compounds that 
are secondary metabolites in plants. Anthocyanins are one class of polyphenolics that are 
responsible for the coloration of many fruits, berries, and some leaves. A typical anthocyanin, 
cyanidin 3-O-glucoside chloride, has a molar absorption coefficient at 525 nm of 
1.8x107 M-1 cm-1.4 Photosynthetically active light, or PAR, is in the 380-710 nm range. 
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O

OH
OH

OH

O
OH

OH
OH
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Figure 2.4.4: Cyanidin 3-O-glucoside chloride. 

 
 

The molar mass is 484.84 g mol-1. (a) What is the %T and absorbance from the surface to the 
bottom of the euphotic zone? (b) Calculate the absorbance at 525 nm of a 2.7x10-10 M solution of 
cyanidin 3-O-glucoside chloride for a 1.00 cm path length cuvette. (c) Calculate the depth of the 
euphotic zone for this concentration. 
 
 

Answer: (a) 1% of the light flux incident on the surface corresponds to 1 %T and the absorbance 
is A = log(Jo/J) = log(1/0.01) = 2 
(b) The absorbance is given by the Beer-Lambert Law: 
 

 A = εlc = 1.8x107 M-1 cm-1 (1.00 cm)(2.7x10-10 M) = 4.9x10-3 ≈ 0.005 
 

For a 1 cm path length the absorbance is quite small. 
(c) To find the euphotic zone depth, we set A = 2 and solve for the corresponding path length: 
 

 A = 2 = εlc = 1.8x107 M-1 cm-1 l (2.7x10-10 M) or l = 410 cm = 4.1 m 
 

The depth of the euphotic zone in a lake is usually measured using a Secchi disk, a disk with 
white and black areas that is lowered into the lake until the disk is no longer visible. A lake with 
a Secchi depth of 4 m looks clean. Such a lake would be classified as mesotrophic. Eutrophic 
lakes have Secchi depths in the 1-3 m range. Algae can be the major contributor to the light 
attenuation, which is in addition to CDOM. 
 
              

Example 2.4.2:  Concentration Determination Using Light Absorption 
The following solutions were prepared and the absorbance measured at 535 nm using a 1.00 cm 
path length. An unknown was determined to have an absorbance of 0.632 at 535 nm. Calculate 
the concentration of the unknown. 
 

concentration (M) 1.23x10-6 2.34 x10-5 3.52 x10-5 4.46 x10-5 5.45 x10-5 
absorbance 0.018 0.339 0.496 0.647 0.781 
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Answer:  Eq. 2.4.7, A = ε l c, is a linear function with zero intercept, that is y = mx + b with b=0 
and the slope m= εl. The best way to do this problem is to use least squares curve fitting in Excel 
or using a calculator. An Excel spreadsheet is shown below with the curve fit data, using the 
linest() function. The function output is a 5x2 array, and the values are labeled. The “ss” 
acronym stands for “sum of squares.” The best “goodness of fit” criteria are the uncertainties of 
the slope and the intercept, which are labeled with a “±”. The data point (0,0) should always be 
included for absorbance experiments, unless you have an experimental value for the absorbance 
at zero concentration that is different from zero. The resulting slope gives the molar absorption 
coefficient, which is 14349. ± 119. M-1 cm-1. The molar absorption coefficient is best reported as 
1.43x104 M-1 cm-1 if you are using significant figure rules to show the precision. The fit intercept 
is zero to within experimental uncertainty. The “fit absorbance” column is calculated using: 
 

 A
^

 = 14349.33 c + 7.69E-05,   that is, just y = mx + b. 
 

concentration (M) absorbance fit absorbance      
0 0 0.000   slope intercept  

1.23E-06 0.018 0.018  m 14349.33 7.69E-05 b 
2.34E-05 0.339 0.336  ± 118.9366 0.003989 ± 
3.52E-05 0.496 0.505  r2 0.999725 0.005992 st. dev. y 
4.46E-05 0.647 0.640  F 14555.66 4 df 
5.45E-05 0.781 0.782  ssregression 0.522527 0.000144 ssresidual  

 

The unknown absorbance is 0.632. Working backwards using A = ε l c: 
 

  0.632 = (14350. ± 120. M-1 cm-1)(1.00 cm) c 
 

giving c = 4.40x10-5 ± 0.04x10-5 M. 
 
              

 
 

Emission Spectroscopy:  Fluorescence and NMR are examples of emission spectroscopy. In 
fluorescence spectroscopy a sample is excited by a beam of light. The molecules in the sample 
absorb the input light and reemit light a short time later. The average time between the 
absorption and emission is called the fluorescence lifetime, which is typically in the ∼5 ns to 10 
µs range. Fluorescence is relatively rare but is a very sensitive technique for determining 
concentration. The spectrum of the fluorescence emission of a compound is determined using a 
spectrofluorimeter, Figure 2.4.5. The excitation wavelength is set to maximize the fluorescence 
intensity of the dye. The emission monochromator is then scanned to determine the fluorescence 
spectrum. Even though the fluorescence emission is isotropic, that is in all directions, the 
fluorescence is sampled at a 90° angle to the excitation light beam to minimize the amount of 
excitation light that reaches the emission monochromator. 
   Fluorescence, at low concentrations, and NMR are inherently linear. The signal intensity is 
directly proportional to concentration, If = k c, where k is a calibration constant. The calibration 
constant is determined from known solutions by linear curve fitting, similar to Example 2.4.2. 
   Fluorescence spectroscopy is complementary to absorption spectroscopy. When a molecule 
absorbs light, it is left in an excited state. Most often, the excited state loses the excess energy 
through collisions with the solvent and returns to the ground state with the production of heat. 
This process is called a non-radiative process. However, some molecules release their excess 
energy by emitting light. The emitted light is called fluorescence if the excited state lifetime is 
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∼5 ns to 10 µs. The emitted light is called phosphorescence for longer lifetimes. We will discuss 
fluorescence and phosphorescence in greater detail in the spectroscopy portion of this text. 
 

 
 Excitation 

monochromator 
Emission 
monochromator 

Grating Grating 

Xenon lamp 

Sample cuvette 

Detector 

 
Figure 2.4.5. Fluorescence Spectrophotometers use two monochromators (or filters), one for 
selection of the excitation wavelength and one for selection of the emission wavelength. 

 
 

The relationship of absorption spectroscopy to emission spectroscopy is shown by the Jablonski 
diagram in Figure 2.4.6. The energy difference for the transition, ∆E, is proportional to the 
frequency of the light; ∆E = hν. Fluorescence emission is redder, that is at longer wavelength, 
than the absorption. Remember from your General Physics and Chemistry courses that νλ = c, 
where ν is the frequency of the light, λ is the wavelength, and c is the speed of light. Redder light 
has a lower frequency and since λ = c/ν, redder corresponds to a longer wavelength. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4.6: The relationship between absorption and fluorescence. The molecule is excited 
into an excited state by the absorption of light. Fluorescence results in the emission of light 
as the molecule returns to its ground state. This figure is called a Jablonski diagram. 

 
 

   When molecules absorb visible or ultraviolet light, the molecule is excited into a higher energy 
molecular excited state and vibrational state. The range of excited vibrational states makes the 
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absorption bands broad, as we see in Figure 2.4.3. Without vibrational excitation, the absorption 
band for each excited state would be quite narrow. The range of vibrational excited states is 
indicated schematically by the closely spaced horizontal lines in Figures 2.4.3b and 2.4.6. After 
excitation, the molecule rapidly drops to the first excited state and loses excess vibrational 
energy through collisions with the solvent and the corresponding creation of heat. This rapid loss 
of vibrational energy is called vibrational relaxation. The molecule then fluoresces from the 
lowest energy vibrational state of the first excited state back down to the ground state. The 
reason that the fluorescence is redder than the absorption is explained by the transition arrows in 
Figure 2.4.6. A shorter arrow corresponds to a smaller change in energy, which corresponds to a 
longer, redder wavelength. Fluorescence is, therefore, a three step process: 
 

        absorbance        vibrational relaxation  fluorescence 
 A + hν  →  A*(electronic and vibrational)  →  A*(electronic)   →  A + hν(emission) 
            2.4.10 
 

The “*” is often used to symbolize a molecule in an excited state. The shift to longer wavelength 
makes it easy to discriminate between the excitation light and the fluorescence. Fluorescence is 
an absolute intensity measurement rather than a difference in intensity as is absorbance, which 
makes fluorescence more sensitive than absorbance spectroscopy. 
   Fluorescence isn’t always linear with concentration. For concentrated solutions, the 
fluorescence intensity becomes non-linear as the fluorescing molecules interact with each other 
and share excitation energy through molecular energy transfer. Fluorescence also can be 
susceptible to interferences through energy sharing with other solutes. Such concentration 
dependent transfer usually causes a decrease in the fluorescence, which is called quenching. 
   The distinction between fluorescence and phosphorescence can be illustrated using the electron 
configurations for the diatomic molecule Cl2, Figure 2.4.7. (Please review the section on 
molecular orbital theory from your General Chemistry text.)  The ground state of iodine has all 
spin-paired electrons, which results in a singlet state. If one of the outer electrons is excited, the 
resulting state can still have all paired electrons, half-up and half-down, which results in an 
excited singlet state. The excited electron can also undergo a spin flip to yield two electrons with 
parallel spins. Two electrons with parallel spins results in a triplet  state. 
 
 

 
 
 
 
  

 (a) ground state     (b). an excited singlet state        (c). an excited triplet state 
 

Figure 2.4.7: Ground and excited states for Cl2. 
 
 

Most molecules have singlet ground states. The absorption of light cannot flip the spin of the 
electron. Therefore, if the molecule has a ground singlet state, the excited state produced from 
the absorption of light will also be a singlet state. Emission of light from the excited singlet state 
back to the ground singlet state is called fluorescence. On the other hand, collisions of the 
molecule can result in a spin flip from the excited singlet state to produce an excited triplet state. 
This process is called intersystem crossing. Emission from the excited triplet state back to the 
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ground singlet state requires a change in energy and a spin flip, which requires a longer time than 
a fluorescent transition. The emission from the excited triplet state to the ground singlet state is 
called phosphorescence. Iodine can be detected with high sensitivity using laser induced 
phosphorescence. Glow-in-the-dark watch dials and plastic stick-on stars are examples of 
phosphorescent materials. Fluorescent light bulbs are actually based on phosphorescence. 
 

Conductivity:  Conductivity is a widely used technique for determining concentration. Many pH 
meters can be equipped with a conductivity probe, and dedicated meters are also common. 
Conductivity is widely used in water quality determinations for lakes and rivers and in 
oceanography for salinity determinations. Gas phase conductivity is used in fire alarms. Electron 
capture and photoionization detectors for gas chromatography are also based on conductivity. 
The theory of conductivity is central for separations techniques such as gel and capillary 
electrophoresis and electrodialysis. More importantly, however, conductivity is a general 
property of solids and solutions. The general theory of conductivity is particularly important for 
understanding membrane systems. Conductivity is an example of a generalized flux-force 
relationship. Understanding conductivity will be a good introduction to fluxes. 
   Ions conduct electric current through solutions. Solutions of ionic substances, like NaCl, are 
called electrolyte solutions. You are familiar with Ohm’s Law for metallic conductors, ∆φ = IR, 
and Ohm’s Law also holds for electrolyte solutions. Consider a solution with two electrodes of 
cross sectional area A, Figure 2.4.8. A small potential difference is placed across the two 
electrodes, ∆φ = φR – φL. Cations migrate to the cathode and anions will migrate to the anode. 
The measured current is given by ∆φ = IR, with R the resistance of the solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4.8: Electrical conductivity is determined by placing a potential difference between 
two electrodes, ∆φ, and measuring the current, I. 

 
 
   The resistance is inversely proportional to the concentration of the solution for a strong 
electrolyte. As the solute concentration increases the resistance decreases. A direct 
proportionality is more convenient than an inverse relationship. The solution is more directly 
characterized by the conductance, G, which is defined as the inverse of the resistance: 
 

 G ≡ 1/R          2.4.11 
 

The units are ohms-1; the SI units are called siemens, 1 S = 1 ohm-1. 

φR φL 

20.0 mV ~ – + 

Na+→ 
←Cl- 

l 
A l 

A 

∆φ 

Na+ 

φR 

φL 

x 



52 
 

 

   The conductance of the solution is directly proportional to the cross sectional area of the 
electrodes, A, and inversely proportional to the distance between the electrodes, l. Normalizing 
the conductance to these geometric variables provides an intrinsic measure of the solution to 
conduct current. The conductivity is defined as: 
 

 κ ≡ 
1
R  





l

A  = 
G l
A          2.4.12 

 

Conductivity meters give the conductivity directly. The units are S m-1 or S cm-1. For example, 
the recommended conductivity for a goldfish aquarium is 40 mS m-1, or equivalently,  
400 µS cm-1. The units are related by 1 mS m-1 = 1x10-3 S m-1 and 1 µS cm-1 = 1x10-6 S cm-1. 
Drinking water is usually below 150 µS cm-1. The conductivity depends on the solute 
concentration; the higher the concentration the higher the conductivity. The higher the 
conductivity the better the solution conducts electricity. The molar conductivity is defined as: 
 

 Λm = κ/c          2.4.13 
 

where c is the molar concentration. Extensive tables are available of molar conductivities. The 
use of conductivity for concentration determinations is based on Eq. 2.4.13; solving for the 
conductivity gives: 
 

 κ = Λm c          2.4.14 
 

The molar conductivity is just the proportionality constant for the linear dependence of 
conductivity on concentration. Conductivity can then be used to monitor the course of chemical 
reactions just like absorbance, fluorescence, and NMR measurements, as long as the reaction has 
a change in the conductivity. 
   Unfortunately, the molar conductivity is concentration dependent. For strong electrolytes, 
experimental data shows that the molar conductivity over a large concentration range is given by: 
 

 Λm = Λ°m – K c½       (strong electrolytes) 2.4.15 
 

where Λ°m is the limiting molar conductivity and K is a constant that is dependent on the 
electrolyte. The limiting molar conductivity, Λ°m, is the molar conductivity extrapolated to zero 
concentration, where the ions are infinitely far apart giving no forces between ions. The 
concentration dependence comes from the interactions among the ions; the attractions between 
cations and anions act as a drag that slows the ion movements. For example, the molar 
conductivity of 1 M HCl is about 25% less than the limiting molar conductivity. However, if the 
range of concentrations is kept small enough, linear behavior is observed and conductivity is an 
easy and general measurement of concentration for ionic substances. For strong electrolytes over 
larger concentration ranges or for more accurate concentration determinations, Eq. 2.4.15 can be 
substituted into Eq. 2.4.14 to give a non-linear calibration equation: 
 

 κ = (Λ°m – K c½ ) c = Λ°m c – K c3/2    (strong electrolytes) 2.4.16 
 

where Λ°m and K are available in reference tables or they can also be determined by calibration 
using known standard solutions. The conductivity of weak electrolytes is a strong function of 
concentration; we will consider the conductivity of weak electrolytes in the chapter on chemical 
equilibrium. 
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Example 2.4.3: Limiting Molar Conductivity 
The limiting molar conductivity can be calculated from contributions of individual ionic species 
using Λ°m = ν+λ+ + ν-λ - where ν+ and ν- are the number of ions in the formula, Mν+Xν-, while λ+ 
and λ - are limiting ionic conductivities. For example, CaCl2 corresponds to ν+  = 1 and ν- = 2. 
There are extensive compilations of limiting ionic conductivities in standard references.1 The 
limiting ionic conductivities of the Na+ and Cl- ions are 5.01 and 7.63 mS m2 mol-1, respectively. 
Calculate the NaCl concentration that corresponds to the recommended conductivity for a 
goldfish aquarium of 40 mS m-1, or equivalently, 400 µS cm-1. 
 
 
Answer:  For NaCl, ν+ = 1 and ν- = 1, giving the limiting molar conductivity for NaCl as: 
 Λ°m = ν+λ+ + ν-λ -  =  5.01 + 7.63 mS m2 mol-1  =  12.64 mS m2 mol-1 

Approximating the molar conductivity of the solution as the limiting value, Λm ≈ Λo
m and using 

Eq. 2.4.13 with the target conductivity gives: 

 c = 
κ

Λm
  =  

40 mS m-1

12.64 mS m2 mol-1  (1 m3/1000 L)  =  3.16x10-3 mol L-1 
 

How accurate is our approximation that Λm ≈ Λ°m? From standard reference tables, the molar 
conductivity of a 0.005 M solution of NaCl is 12.059 mS m2 mol-1, which is close enough to our 
concentration.1 So the error in using the limiting, zero concentration value of 12.64 compared to 
12.059 mS m2 mol-1 is 5%, which is good enough for many purposes. 
 

              

 
 
2.5 Generalized Flux-Force Relationships 
 

   Electrical conductivity involves the movement of ions through the solution as they are “pulled” 
by the applied electric potential. This motion of ions is a flux, and the flux is controlled by the 
applied potential. Electrophoresis uses this flux as a separations tool, and electro-blotting and 
related techniques use these fluxes to transfer ions from place to place. We now consider the 
electric potential dependence of the ion flux. Consider a surface, of area A, placed between the 
two electrodes, each of area A, in Figure 2.4.8. The electrical flux, Jel, is the flow of charge 
through this surface per unit time per unit area. The current through the cell is proportional to the 
flux and the surface area, I = –Jel A. The negative sign is necessary because, when the current in 
the external circuit flows from right to left, the corresponding current of cations in the solution is 
from left to right. The units of current are amps, or equivalently coulombs per second, 
1 amp = 1 C s-1. The units of the electric flux are amps per m2, or equivalently C m-2 s-1. Ohm’s 
Law can be rearranged to give the current, 
 

 I = 
1
R ∆φ          2.5.1 

 

Solving Eq. 2.4.12 for 1/R in terms of the conductivity and substituting into Eq. 2.5.1 gives: 
 

 I =  






κ A

l  ∆φ          2.5.2 
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Given that I = –Jel A, dividing both sides of Eq. 2.5.2 by the surface area, A, gives: 
 

 Jel = – κ 






∆φ

l           2.5.3 
 

This equation for the electric flux can be generalized by noting that the ∆φ/l term is the electric 
field between two parallel plates. In other words, the electric flux, which is the flow of charge, is 
proportional to the electric field that the ions experience. The greater the electric field the greater 
the “pull” on the ions. The electric field, Ex, is the negative of the gradient of the electric 
potential, which in turn is –∆φ/l for two parallel plates, Figure 2.5.1: 
 

 Ex =  –  
dφ
dx  = – 







(φR – φL)

l   = – 






∆φ

l        2.5.4 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.5.1: The electric potential decreases linearly between two parallel plates. The 
electric field is the negative of the gradient of the electric potential. 

 
 

Note the similarity of Eqs. 2.5.4 and 2.3.4. The magnitude of the electric field increases as the 
electrodes get closer together, for a fixed potential difference. For different geometries other than 
parallel plates, it is best to write Eq. 2.5.3 in terms of the electric field or the potential gradient. 
Substituting dφ/dx for ∆φ/l in Eq. 2.5.3, gives the electric flux in terms of the negative gradient of 
the electric potential: 
 

 Jel = – κ 
dφ
dx          2.5.5 

 

Cations flow from regions of high electric potential to regions of low electric potential. 
 
 
℘2              
General Pattern 2: Generalized Flux-Force relationships:  Fick’s First Law for diffusion, Eq. 
2.3.5, and electrical conductivity, Eqs. 2.5.3 and 2.5.5, are examples of generalized flux-force 
relationships. This form is quite general and we will encounter similar linear flux relationships 
when we consider conductive heat transfer and chemical reactions close to equilibrium. The 
general form is often written as: 
 

 Ji = Li Xi          2.5.6 
 

x 

φR 

φL φ 
Ex = – 

dφ
dx = – 







(φR – φL)

l  

0 l 

Na+  → 
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   where  Ji  is the flux, which is the flow per unit time per unit area 
   Xi  is the generalized force for transfer, which is a gradient with units per unit distance 
   and   Li  is a linear coefficient 
 

The generalized force is the gradient of an intensive parameter. For electrical conductivity, the 
force is the gradient of the electric potential and the linear coefficient is the conductivity, κ. The 
linear relationships make these flow processes easy to model. We will use the interactions of 
diffusion, conductive heat transfer, and chemical reactions when we consider non-equilibrium 
steady states. These ideas are central for understanding membrane potentials and membrane-
based energy transduction during metabolism and photosynthesis. One way to help understand 
these relationships is to compare generalized flux relationships with Ohm’s Law: 
 

 Ji = Li Xi ←→  I = 
1
R  ∆φ 

 

The flux is analogous to a current. The linear coefficient is a conductance, which increases with 
increasing ability of the system to conduct matter, charge, or energy. The force is the potential 
gradient. A potential gradient is a difference in potential divided by the distance. The gradient of 
the potential drives the flow. The difference between the flux equation and Ohm’s Law is that 
the flux is per unit area. 
   Fick’s First Law, Eq. 2.3.5, is also a linear flux-force relationship. The “generalized force” for 
concentration change is the concentration gradient. For diffusion, the concentration gradient is 
not an actual force, but rather an expression of the statistical probability for molecules to spread 
out over time. However, associating the concentration gradient with other generalized forces is a 
useful way of understanding molecular diffusion. Concentration gradients drive mass transfer. 
   Not all flux relationships are linear. For example, heat flux can be nonlinear for large 
temperature gradients. Flux-force relationships based on chemical reactions are often nonlinear. 
   For a system at equilibrium, all fluxes are equal to zero, averaged over time. A system in a 
steady state has at least one non-zero constant flux, since the steady state must be maintained 
away from equilibrium by the constant input of matter or energy. In the next chapter on kinetics, 
we consider fluxes that are caused by chemical reactions. 
            ℘2 
 
 

2.6 Absorbance of Mixtures 
 

UV-visible absorbance is particularly useful for measuring concentrations because the spectrum 
of a solution can be used to determine the concentration of more than one component. If the 
absorbance spectra of two constituents in solution have negligible overlap at the wavelengths of 
maximum absorption for the two components, then Eq. 2.4.6 can be solved separately for the two 
components. However, the absorption spectra for substances often show considerable overlap, 
Figure 2.6.1. The absorbance of a mixture is just the sum of the absorbances of the constituents, 
assuming that there are no interactions between the constituents. Consider a two-component 
mixture. Let constituent 1 have a molar absorbance coefficient at wavelength λ of ελ1 and 
constituent 2 have a molar absorbance coefficient at the same wavelength of ελ2. The absorbance 
of the solution is: 
 

 Aλ = ελ1 l c1 + ελ2 l c2         2.6.1 
 



56 
 

 

where the concentration of components 1 and 2 are c1 and c2, respectively. The molar absorption 
coefficients are determined by calibration on solutions with just constituent 1 or 2 alone. In the 
analysis of an unknown, Eq. 2.6.1 alone is not sufficient to determine the concentrations. A 
measurement at a second wavelength is necessary. Call the two wavelengths λ1 and λ2. The two 
measurements then provide two simultaneous equations with two unknowns: 
 

 A1  =  ε11 l c1 + ε12 l c2   ←  for λ1 
 A2  =  ε21 l c1 + ε22 l c2   ←  for λ2     2.6.2 
 

The molar absorbance coefficients are illustrated in Figure 2.6.1. For an unknown solution, the 
absorbances at the two wavelengths, A1 and A2, are determined and then Eqs. 2.6.2 are solved 
for the concentrations of the unknowns, c1and c2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6.1: Absorbance of a solution is the sum of the absorbances of the constituents. 
Measurements at two wavelengths are necessary to determine the composition of a two-
constituent solution if the absorbance bands overlap. The first subscript indexes the 
constituent and the second subscript indexes the wavelength. 

 
 
   We have an ulterior motive in dealing with absorbance of mixtures. We want to introduce you 
to a little matrix algebra. Matrix algebra is a general purpose tool for solving simultaneous 
equations, among many uses. Matrix algebra is also a handy way to simplify the way equations 
are written that helps us focus on the underlying issues. Matrix techniques will be central in 
several upcoming sections. This application to the solution of simultaneous equations will be a 
good way to help you get used to powerful matrix techniques. 
   Eqs. 2.6.2 are straightforward enough. However, it is often convenient to write simultaneous 
equations in matrix form. Assuming the path length, l, is 1 cm for convenience: 
 

     constituent 1   constituent 2 
        ↓  ↓ 

 



A1

A2
 = 






ε11 ε12

ε21 ε22
 


c1

c2
  

← λ1

← λ2
    (l = 1 cm) 2.6.3 

 

Eq. 2.6.3 and Eqs. 2.6.2 are completely equivalent. The absorbance vector and the concentrations 
vector are given symbols with one underscore “~”: 
 

wavelength 

λ (nm) 

ε 1
, ε

2 
(M

-1
 c

m
-1
) 

λ1 

ε11 

ε21 ε12 

ε22 

λ2 

Constituent 1 Constituent 2 

εi j 

constituent 

8000 

6000 

4000 

2000 
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 A∼  = 



A1

A2
  and    c∼ = 



c1

c2
         2.6.4 

 

You are familiar with vectors from General Physics; however, the vectors in General Physics had 
three components, one each for the x, y, and z directions. Vectors in general can have any 
number of components. In mechanics, you probably used a symbol like υ→ to indicate a vector. 
Both types of notation are used interchangeably. The matrix of coefficients for the simultaneous 
set of equations is given a symbol with an underscore “≈” to indicate it is a matrix: 
 

 ε≈ = 






ε11 ε12

ε21 ε22
          2.6.5 

 

Using this notation, Eq. 2.6.3 becomes: 
 

A∼  = ε≈ c∼        (l = 1 cm) 2.6.6 
 

Matrices in general have rows and columns: 
 

     column 1 column 2 
     ↓    ↓ 

row 1 →
row2 →     







ε11 ε12

ε21 ε22
 

 

For each element in the matrix, εij, the first index is for the row number and the second index is 
for the column number. Eq. 2.6.5 is a square matrix with 2 rows and 2 columns, that is, it is a 
2x2 matrix. For more information on matrix algebra, please consult the Addendum, Section 2.8. 
 
 
              

Example 2.6.1:  Matrices and the Absorbance of Mixtures 
Use Figure 2.6.1 to estimate the coefficient matrix for the corresponding set of linear 
simultaneous equations. 
 
 

Answer:   Following the dotted curve for constituent 1, the molar absorption coefficient at 
wavelength one is ε11 = 6000 M-1 cm-1, but the molar adsorption coefficent at wavelength 2 is 
much smaller, ε21 = 1000 M-1 cm-1. Following the solid curve for component 2, at wavelength 1 
the value is small, ε12 = 1800 M-1 cm-1, but much larger at wavelength 2, ε22 = 8000 M-1 cm-1. 
Building the matrix gives: 
 

 ε≈ = 






ε11 ε12

ε21 ε22
 = 






6000 1800

1000 8000
        2.6.7 

 
              

Example 2.6.2:  Absorbance of a Mixture 
Using the molar absorption coefficients from Eq. 2.6.7, assume that the concentration of 
constituent 1 is 2.54x10-5 M and constituent 2 is 0.86x10-5M, and a cuvette pathlength of 1 cm. 
Calculate the absorbance of the solution at the two wavelengths. Assume the molar absorption 
coefficients are known to three significant figures. 
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Answer: From Eq. 2.6.3: 

 A∼  = ε≈ c∼ = 






ε11 ε12

ε21 ε22
 


c1

c2
 = 






6000 1800

1000 8000
 



2.54x10-5 M

0.86x10-5 M  = 
 

 



A1

A2
 = 



6000(2.54x10-5) + 1800(0.86x10-5)

1000(2.54x10-5) + 8000(0.86x10-5)  = 



0.168

0.094  
 

The pattern for the multiplication can be seen from comparison of Eq. 2.6.2 and 2.6.3. The 
general case is discussed in the Addendum on matrix algebra, Section 2.8. The absorbance at the 
first wavelength is 0.168 and at the second is 0.094. 
              

 
 

   The form of the matrix in Eq. 2.6.7 is particularly useful. The elements ε11 and ε22 are called 
the diagonal elements; they lie along the main diagonal of the matrix. These coefficients show 
the major absorptions. The elements ε12 and ε21 are called off-diagonal elements. These off-
diagonal elements would be zero if the absorption bands of the two constituents showed no 
overlap. The non-zero values in our example show that the two components cause an interaction 
between the absorbances of the two constituents. In this case, there is no chemical interaction; 
the interaction is just that both components absorb at both wavelengths. In cases that we will see 
in later chapters, the off-diagonal elements indicate a chemical interaction or a coupling of 
processes. Putting the equations in matrix form helps to make these interactions easier to see—
it’s a “can’t see the forest for the trees” thing. 
   The big advantage of using matrix notation for simultaneous equations is that these equations 
have general solutions. In other words, the algebra is pretty much automatic, saving you a lot of 
work. The formal solution to Eq. 2.6.3 is calculated using the inverse of the matrix: 
 

ε≈
–1 A∼ = c∼        (l = 1 cm) 2.6.8 

 

If the path length is not 1 cm then including the path length gives (εl)≈
–1 A∼  = c∼. Eq. 2.6.8 looks a 

little abstruse, but it is really quite simple to implement, especially using Excel, a handheld 
calculator, or a mathematical analysis package like Mathematica, Maple, or MatLab. Let’s 
switch into general notation for a moment to highlight the general pattern in Eqs. 2.6.3 and 2.6.8. 
 
 

℘3              
General Pattern 3: The Matrix Solution of Simultaneous Linear Equations: 
   Consider the set of simultaneous linear equations: 
 

 a1  =  M11 b1 + M12 b2 
 a2  =  M21 b1 +  M22 b2         2.6.9 
 

The corresponding general matrix equation for the simultaneous linear equations is: 
 

 


a1

a2
 = 






M11 M12

M21 M22
 



b1

b2
        2.6.10 

 

which is equivalent to: 
 

 a∼ = M≈  b∼          2.6.11 
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where M≈  is the matrix of coefficients for the simultaneous set of equations. Assume the matrix M≈  
and the vector a∼ are known. We solve for the vector b∼ by multiplying from the left by M≈

–1: 
 

 M≈
–1 a∼ = b∼          2.6.12 

 

where M≈
–1 is the matrix inverse of M≈ : 

 






M11 M12

M21 M22

–1
  =  

1
|M| 






M22 –M12

 –M21 M11
       2.6.13 

 

and |M| is the determinant of the matrix: 
 

 |M| = M11 M22 – M12 M21        2.6.14 
 

The Addendum, Section 2.8, gives the instructions for calculating inverses for larger matrices 
and for using Excel to calculate Eq. 2.6.12. 
            ℘3 
 
 
             
Example 2.6.3:  Concentration Determination of Mixtures Using Light Absorption 
Using the molar absorption coefficients from Eq. 2.6.7, calculate the concentrations of 
constituents 1 and 2 given that the absorbance of an unknown at wavelength 1 is 0.168 and at 
wavelength 2 is 0.094. The cuvette path length is 1 cm. Assume the molar absorption coefficients 
are known to three significant figures. 
 
 
Answer:  We need to solve the equation Eq. 2.6.3, A∼  = ε≈ c∼ , for the concentration vector c∼. 

 



A1

A2
 = 






ε11 ε12

ε21 ε22
 


c1

c2
  or explicitly     



0.168

0.094  = 






6000 1800

1000 8000
 


c1

c2
 

 

The determinant of the matrix is |ε| = 6000(8000)-1000(1800) = 4.62x107. The inverse, using Eq. 
2.6.13 is: 
 

 ε≈
-1 = 

1
4.62x107 






8000 –1800

–1000  6000
  = 







1.732x10-4 –3.896x10-5

–2.164x10-5 1.299x10-4
 

 

Substitution into Eq. 2.6.8 gives: 
 

c∼ = ε≈
-1 A∼  = 







1.732x10-4 –3.896x10-5

–2.164x10-5 1.299x10-4
 



0.168

0.094   =  



2.54x10-5 M

0.86x10-5 M  
 

The concentration of constituent 1 is 2.54x10-5 M and constituent 2 is 0.86x10-5 M. Of course 
normally, we would just use Excel, but doing the problem by hand should help you feel more 
confident. This example is the reverse of Example 2.6.2, so we can compare to check that we got 
the correct answer and to look for self-consistency. See Problem 27 for suggestions on error 
analysis. 
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2.7 Summary—The Goal of Physical Chemistry 
 

Chemical systems can be at equilibrium with uniform concentrations in each phase. Chemical 
systems can also be quite dynamic, with chemical reactions and fluxes of chemical species, 
charge, and energy. Our goal now is to understand as completely as possible the response of 
chemical systems to changes in conditions and the approach to equilibrium. 
   Looking at the progression of this text, we first discuss the kinetics of chemical reactions. The 
remainder of Part 1 is devoted to equilibrium thermodynamics and linear non-equilibrium 
thermodynamics. Part 2 moves into the microscopic world to discuss the nature of the chemical 
bond and other quantum chemical concepts. Part 3 is devoted to statistical mechanics. Statistical 
mechanics is the bridge that joins the microscopic and macroscopic world. The goal of statistical 
mechanics is to derive the values of the equilibrium constants and rate constants for any 
chemical process from quantum chemical calculations or spectroscopic information. 
   The goal of physical chemistry is to be able to sit at our desk and make accurate quantitative 
predictions of the equilibrium constants and rate constants for any given chemical process. We 
then want to use that information to design solutions for life’s pressing needs. 
 
2.8 Addendum: A Brief Introduction to Matrix Algebr a 
 

General Properties of Matrices:  Matrices are characterized by the number of rows and columns: 
 

 A 2x4 matrix:  






2 3 1 5

3 7 1 0
  A 3x3 square matrix:  







2 5 0

3 5 1

4 5 1

 

 

A column vector is an nx1 matrix, which is a matrix with a single column. A row vector is a 1xn 
matrix, which is a matrix with a single row: 
 

 A 4x1 column vector: 







24

3
5

  A 1x4 row vector: ( )2 5 3 5  

 

Vectors follow the same algebra rules as matrices. Matrices add element by element for the 
matching row and column: 
 

 






M11 M12

M21 M22
 + 






N11 N12

N21 N22
 = 






M11+ N11 M12+ N12

M21+ N21 M22+ N22
     2.8.1 

 

Multiplication of each element of a matrix by a number is called scalar multiplication : 
 

 c 






M11 M12

M21 M22

M31 M32

 = 






c M11 c M12

c M21 c M22

c M31 c M32

       2.8.2 

 

The number, c, is called a scalar. To multiply a vector by a matrix, M≈  a∼, the row elements of the 
matrix are multiplied by the column elements of the vector. The first element in the result is: 
 
 
 
            2.8.3 






M11 M12

M21 M22
 



a1

a2
 



M11 a1 + M12 a2

—  = 
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For the second element in the result: 
 
 
 

            2.8.4 
 

Take a moment and verify the relationship between Eqs. 2.6.3, 2.8.3, and 2.8.4. A matrix 
multiplied by a matrix follows the same pattern, for each column of the product matrix: 
 







M11 M12

M21 M22
 






N11 N12

N21 N22
 = 






M11 N11+ M12 N21 M11 N12+ M12 N22

M21 N11+ M22 N21 M21 N12+ M22 N22
   2.8.5 

 

For matrix multiplication to work, the left matrix must have the same number of columns as the 
right matrix has rows. Note that the order of multiplication is important. Matrices are not 
commutative, that is M≈  N≈  ≠ N≈  M≈ , except for unusual circumstances. For example, notice that 
Eqs. 2.8.3 and 2.8.4 rearranged as a∼ M≈  does not work following the rules of matrix 
multiplication. 
   The unit matrix has 1’s on the diagonal and 0’s for the off-diagonal elements: 
 

 I≈ = 






1 0

0 1
          2.8.6 

 

The unit matrix is the identity element for matrix operations. The unit matrix acts just like the 
number 1 in multiplication: 
 

 M≈  I≈ = M≈           2.8.7 
 

The zero matrix has elements that are all zero: 
 

 0≈ = 






0 0

0 0
          2.8.8 

 

The zero matrix acts just like the number zero: 
 

 M≈  + 0≈ = M≈           2.8.9 
 

The transpose of a matrix exchanges all the rows for columns. The transpose of matrix M is 
indicated by M≈

T: 

 given   M≈  = 






2 3 1 5

4 7 6 0
 M≈

T = 









2 4

3 7

1 6

5 0

      2.8.10 

In other words, you just switch the subscripts: given matrix M≈  with elements Mij the transpose 
has elements Mji. The transpose of a column vector is a row vector. Notice that, because of the 
rules of matrix multiplication you can’t multiply a column vector by a column vector. However, 
you can multiply the transpose of a column vector by a column vector as long as both vectors 
have the same dimension: 
 

 A∼
T B∼ = 



A1

A2

T
 



B1

B2
  =  ( )A1A2  



B1

B2
  = A1 B1 + A2 B2    2.8.11 

 







M11 M12

M21 M22
 



a1

a2
 



M11 a1 + M12 a2

M21 a1 + M22 a2
 = 
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Notice that this result is the dot product of the two vectors, which you used many times in 

physics; A∼
T B∼ = A

→⋅B→. 

   The properties of matrices are almost the same as for scalar numbers, except the lack of matrix 
commutivity for multiplication. Given matrices A≈ , B≈, and C≈ and scalar numbers c and d, the 
general properties are given in Table 2.8.1. Note that a vector A∼  is just an nx1 or 1xn matrix, so 
row or column vectors can be substituted for any of the matrices, assuming the dimensions match 
the required values for the operation. 
 
 

Table 2.8.1: Properties of Matrices. For addition, matrices must have the same dimensions. 
For multiplication, the dimensions must match pxq with qxr. 

 

A≈+(B≈+C≈) = (A≈+B≈)+C≈ Additive associative law 

A≈+B≈ = B≈+A≈   Additive commutative law 

c(A≈+B≈) = cA≈+cB≈  Scalar distributive law 

(c+d) A≈  = cA≈+dA≈   Scalar distributive law 

A≈  (B≈C≈) = (A≈B≈)C≈  Multiplicative associative law 

A≈  (B≈+C≈) = A≈B≈ + A≈C≈  Distributive law 

(A≈+B≈)C≈ = A≈C≈ + B≈C≈  Distributive law 

(A≈+B≈)T = A≈
T + B≈

T  Transpose of a sum 

(cA≈)T = c(A≈
T)  Transpose of a scalar multiple 

(A≈B≈)T = B≈
TA≈

T  Transpose of a matrix product 

 
 
              

Example 2.8.1: 

Do the matrix multiplication:  






2 5 2

3 6 1
 








4

5
1

 

 
 

Answer:  For the first element in the result: 
 
 
 
 
For the second element: 
 
 
 
 

Giving the final result: 
 







2 5 2

3 6 1
 









4

5
1

 



2(4) + 5(5) + 2 (1)

—  = 







2 5 2

3 6 1
 









4

5
1

 



2(4) + 5(5) + 2 (1)

3(4) + 6(5) + 1(1) 
= 
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





2 5 2

3 6 1
 








4

5
1

 = 



35

43  

 

              

Example 2.8.2: 

The length of a vector can be calculated by |B∼| = B∼
TB∼ . Find the length of the vector 









4

5
1

. 

 

Answer:  B∼
TB∼  =  (4  5  1) 









4

5
1

  = 4(4) + 5(5) + 1(1) = 42. The length is then 42 = 6.48 

              

Example 2.8.3: 

Calculate 



1 3

2 4 



5 1

3 6  

 
 

Answer:  



1 3

2 4 



5 1

3 6   =  



1(5)+3(3) 1(1)+3(6)

2(5)+4(3) 2(1)+4(6)  =  



14 19

22 26  
              

 
 
Matrix Inverses:  When we want to solve a normal algebraic equation we use the inverse: 
 

 x y = z  solving for y  y = 





1

x  z = x–1 z    2.8.12 
 

where 1/x is the inverse of x;  x–1 = 1/x. We do a similar trick with matrices. The inverse of M≈  is 
defined so that: 
 

 M≈
–1 M≈  = I≈          2.8.13 

 

just like (1/x)(x) = 1. For the matrix equation: 
 

 a∼ = M≈  b∼          2.8.14 
 

we can solve for b∼ by multiplying both sides of Eq. 2.8.14 from the left by M≈
–1: 

 

 M≈
–1  a∼  = M≈

–1 M≈  b∼         2.8.15 
 

The right-hand side simplifies, using Eq. 2.8.13, to: 
 

 M≈
–1 a∼ = b∼          2.8.16 

 

All we need now is the inverse of our original matrix. The inverse of a 2x2 matrix is: 
 

 






M11 M12

M21 M22

–1
  =  

1
|M| 






M22 –M12

 –M21 M11
       2.8.17 

 

where |M| is the determinant of the matrix: 
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 |M| = M11 M22 – M12 M21        2.8.18 
 

You can visualize the determinant by following the multiplications: 
 

 
 
 
 

However, note the change in sign for the product of the off-diagonal elements. 
   The inverse of a 3x3 matrix is more complicated. We list the result to show you how it can be 
calculated. However, it will be much easier to use Excel, Mathematica, Maple, or a 
programmable calculator for normal use. The inverse of a 3x3 matrix is: 
 







M11 M12 M13

M21 M22 M23

M31 M32 M33

–1

  =  
1

|M| 







 M33M22–M32M23 –(M33M12–M32M13)  M23M12–M22M13

–(M33M21–M31M23)  M33M11–M31M13 –(M23M11–M21M13)

 M32M21–M31M22 –(M32M11–M31M12)  M22M11–M21M12

 

 

with |M|  =  M11(M33M22–M32M23)–M21(M33M12–M32M13)–M31(M23M12–M22M13)  2.8.19 
 

We will discuss a general algorithm for calculating determinants below. A matrix must be a 
square matrix to have an inverse. However, not all square matrices can be inverted; the 
determinant must be non-zero. 
   The MINVERSE() function in Excel is particularly handy for finding inverses. Here is an 
example solving a 3x3 matrix. We will solve the following equation for x, y, and, z: 
 

 








2

3
2

  =  






2 3 2

3 0 4

1 2 3

 








x

y
z

         2.8.20 

First input the matrix of coefficients, this example uses cells C6:E8, Figure 2.8.1. To calculate 
the inverse, you highlight the 3x3 range of cells in the spreadsheet where you want to place the 
inverse, and then input the array formula by pressing the fx button and setting up MINVERSE as 
=MINVERSE(C6:E8). 
 

 

 
 

Figure 2.8.1: Calculating the inverse of a matrix in Excel. To specify an array formula, after 
entering the formula, highlight the entire formula in the formula bar, press and hold “Ctrl” 
and “Shift”, and then press “Enter”. Excel enters the “{” and “}” for you. 









M11 M12

M21 M22
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The inverse matrix is an array, so you need to specify the formula as an array formula. An array 
is another name for a matrix. To do this, highlight the entire formula in the formula bar including 
the equals sign, and press and hold “Ctrl” and “Shift” and then press “Enter”. (For a Macintosh, 
the keys are the “Apple” key and “Return.”) Excel places braces, “{}”, around the formula and 
converts the currently highlighted range of cells in the spreadsheet to the corresponding array: 
{=MINVERSE(C6:E8)}. To do the matrix multiplication in Eq. 2.7.20, you use the =MMULT() 
function in a similar fashion. Highlight the column cells where you want to place the result, 
M6:M8 in our example, and then input the array formula by pressing the fx button and setting up 
MMULT. MMULT() is also an array formula so you need to do the same trick with “Ctrl” and 
“Shift”, and “Enter” to input the formula: {=MMULT(G6:I8,K6:K8)}. The completed 
spreadsheet is given in Figure 2.8.2: 
 

 
A2 B C D E F G H I J K L M 
3             
4  M =    M-1 =    a=  b= 
5             
6  2 3 2  0.4211 0.2632 -0.6316  2  0.3684 
7  3 0 4  0.2632 -0.2105 0.1053  3  = 0.1053 
8  1 2 3  -0.3158 0.0526 0.4737  2  0.4737 

 

Figure 2.8.2: Calculating the solution for three equations in three unknowns in Excel.  
 
 

The final answer is then x = 0.3684, y = 0.1053, and z = 0.4737. 
 
Calculating determinants:  The determinant of a 2x2 matrix is given by Eq. 2.8.18. How do you 
calculate determinants for larger matrices? Take the case of a 3x3 matrix: 
 

 | |M  = 








a b c

d e f
g h i

         2.8.21 

 

The determinant of a large matrix can be written in terms of smaller matrices called minors. The 
minor of a given element is the matrix obtained by striking out the row and column of the chosen 
element. For example, the minor for element a is given by: 
 

 








a b c

d e f
g h i

 = 



e f

h i         2.8.22 

 

Minors have an associated sign, alternating through the matrix: 
 

 







+ – + –

– + – +
+ – + –
– + – +

         2.8.23 

 

For example the minor for element a is positive and the minor for element d is negative. We can 
expand the determinant in terms of the minors of any row or column. For example, choosing the 
first column: 
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 | |M  = a 








a b c

d e f
g h i

– d 








a b c

d e f
g h i

+ g 








a b c

d e f
g h i

   2.8.24 

 

The resulting 2x2 determinants can be evaluated using Eq. 2.8.18: 
 

 | |M  = a 



e f

h i   – d 



b c

h i   +  g 



b c

e f        2.8.25 
 

The second term in this last equation is negative because the minor associated with element d has 
a negative sign, using Eq. 2.8.23. 
     We could also have expanded in terms of a row. For example, choosing the second row: 
 

 | |M  = – d 



b c

h i  + e 



a c

g i  – f 



a b

g h       2.8.26 
 

In general we pick the row or column with the most zeros for the expansion. 
   For larger matrices, the expansion is done in steps. For example, a 4x4 is expanded in terms of 
3x3 minors and then the 3x3 determinants are expanded in terms of 2x2 minors. 
 
 

              

Example 2.8.4: 

Find the determinant of the matrix:    M≈  = 








3 2 0

1 0 5
0 4 2

 

 

Answer:  We can expand across any row or down any column. Expanding across the first row, 
we need the first and second minors: 
 

 








3 2 0

1 0 5
0 4 2

  and   








3 2 0

1 0 5
0 4— 2

 

We need to take into account the signs of the associated minors:  








+ – +

– + –
+ – +

 

 

Expanding in terms of the minors gives: |M| = 3 



0 5

4 2 – 2 



1 5

0 2  

The determinants of the 2x2 minors are: 
 

 



0 5

4 2  = 0(2) – 4(5) = -20 and 



1 5

0 2  = 1(2) – 0(5) = 2 
 

giving the final determinant:  |M| = 3(-20) – 2(2) = -64. 
   Excel can be used to easily calculate determinants using the “=MDETERM()” function: 
 

A1 B C D E F G H 
2 
3 M= |M|= -64 
4 3 2 0 
5 1 0 5 
6 0 4 2 

 

The formula in H3 is “=MDETERM(C4:E6)”. 
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   Matrix algebra is widely used in statistics, economics, population biology, engineering, 
computer graphics, and in ranking sports teams. Knowing some matrix tricks will come in 
handy. 
 
 
 

Chapter Summary 
 

1. Dalton’s Law of Partial Pressures states that the partial pressure of a gas, Pi, is the pressure the 
gas would exert if it were alone in the flask: PiV = ni RT and Pi = yi P with Yi = ni/n. 

2. PV = n RT for the mixture of gases with n = ∑
i=1

ns

 ni. 

3. Gas phase concentrations are defined as ci = ni/V = Pi/RT. 

4. Mole fractions sum to one for a phase: ∑
i=1

ns

 yi = 1 for the gas phase, ∑
i=1

ns

 xi = 1 for solutions. 

5. Molarity is ci = ni/V, with V in liters. Molality is mi = ni/wsolvent, with wsolvent in kg. 

6. Mole fractions and molality are independent of temperature. Molarity depends on temperature. 

7. A flux is a flow per unit area per unit time for matter, charge, or energy. 

8. The molar flux for bulk flow or convection is Jm = cυ. 
9. Fick’s First Law shows that concentration gradients drive mass transfer through diffusion: 

 Jm = – D 
dc
dx . 

10. Light flux is the power per unit area or equivalently the intensity. 

11. Absorbance is defined as A = log(Jo/J). 

12. The Beer Lambert Law for absorption is A = ε l c. By using absorbance, instead of the flux or 
intensity directly, the relationship to concentration is linear. 

13. Emission intensity is also linear, or nearly-linear, with concentration, If = k c. 

14. Absorption and emission bands are broad because the molecules are changing molecular 
electronic states and vibrational states at the same time. The width of an absorption band or 
an emission band in solution is given by the range of vibrational excitations. 

15. Molecules have more than one excited state, and therefore often have more than one 
absorption band in the UV-visible range of the spectrum. 

16. Fluorescence is redder than the corresponding absorption. Fluorescence always occurs from 
the lowest vibrational energy state of the first molecular excited state. 

17. The loss of vibrational energy within a molecular excited state in absorption or the molecular 
ground state in emission is called vibrational relaxation. 

18. Conductance is defined as G = 1/R. Conductivity is normalized for the geometry of the 
conductance cell electrodes, κ = 1/R (l /A). 

19. Molar conductivity is defined as Λm = κ/c. 

20. For strong electrolytes, conductivity is approximately linear with concentration, κ = Λm c. 
However, see the following. 
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21. For strong electrolytes over wide concentration ranges, Λm = Λo
m – K c½. Λo

m is the limiting 
molar conductivity, which is the molar conductivity that is extrapolated to zero concentration 
so that the inter-ionic forces are negligible. 

22. Diffusion and electrical conductivity are examples of linear flux-force relationships. 

23. The absorbance of a mixture is the sum of the absorbances of the constituents. 

24. The simultaneous linear equations for the absorbance of mixtures can be expressed in matrix 
form, A∼  = εl≈ c∼, The matrix formulation allows the concentrations of an unknown to be 
calculated easily, εl≈

–1 A∼  = c∼. or more simply  ε≈
–1 A∼  = c∼.assuming l = 1 cm. 

 
℘2  Generalized flux-force relationships have the form Ji = Li Xi, with Li a linear coefficient and 

X i the generalized force for the transfer. The generalized force is the gradient of a potential. 
 
℘3  The set of simultaneous linear equations: 
 

 a1 = M11 b1 + M12 b2 
 a2 = M21 b1 + M22 b2 
 

can be written in matrix form: 
 

 


a1

a2
 = 






M11 M12

M21 M22
 



b1

b2
 or equivalently  a∼ = M≈  b∼ 

The solution to this equation for b∼ is:   M≈
–1 a∼ = b∼ 
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Chapter 2 Problems 
 

1.  A 1.00-L bulb containing H2 at a pressure of 2.50 bar is connected to a 2.00-L bulb containing 
N2 at a pressure of 1.50 bar, both at the same temperature. Calculate (a) the total pressure of the 
system, (b) the mole fraction of H2, and (c) the partial pressure of each gas. 
 
2.  Dry air is 20.946% by volume O2 and 79.054% N2. Consider a constant pressure piston filled 
with dry air at 1.000 atm or 1.01325 bar pressure at 298.2 K. A small amount of water is 
admitted and allowed to evaporate to give the equilibrium vapor pressure of water in the piston. 
Calculate the partial pressure of O2 at 298.2 K. 
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3.  Dry air is 20.946% by volume O2 and 79.054% N2. Consider a constant volume flask filled 
with dry air at 1.000 atm or 1.01325 bar pressure at 298.2 K. A small amount of water is 
admitted and allowed to evaporate to give the equilibrium vapor pressure of water in the constant 
volume flask. Calculate the partial pressure of O2 at 298.2 K. 
 
4.  An aqueous solution is prepared by adding 5.0822 g of ammonium sulfate, (NH4)2SO4, to a 
100-mL volumetric flask and then diluting to the mark. The final mass of the solution is 
102.97 g. Calculate the molarity, molality, and the mole fraction of ammonium sulfate in this 
solution. Calculate the mole fraction of the solvent. 

5.  An aqueous solution is prepared by adding 2.012 g of CaCl2⋅2H2O to a 100-mL volumetric 
flask and then diluting to the mark. The final mass of the solution is 101.26 g. Calculate the 
molarity, molality, and the mole fraction of CaCl2 in this solution. Calculate the mole fraction of 
the solvent. 
 
6.  Calculate the molality and mole fraction of an 0.851 M aqueous NH4Cl solution (MB = 53.50 
g mol-1). The density of the solution is 1.0140 g mL-1. 
 
7.  The intensity of a 552 nm light beam is decreased to 18.2% of its original intensity on passing 
through 3.00 cm of a 2.13x10-4 M solution of an absorbing solute. What is the molar absorption 
coefficient? 
 
8.  Explicitly do the integration of Eq. 2.4.1 to give Eq. 2.4.3. 
 
9.  Bipyridine forms an intense red color when mixed with aqueous solutions of Fe(II): 
 

 3 bipy + Fe2+ →←  Fe(bipy)32+ 
 

This complex is commonly used for low level spectrophotometric determinations of Fe(II) in 
natural waters. A standard solution of 5.04x10-4 M Fe(II) was added, using volumetric pipettes, 
to a series of 50.0-mL volumetric flasks and diluted to the mark with excess bipyridine solution 
according to the following table. The absorbance of the solutions was determined at the 
wavelength of maximum absorbance, 522 nm, using a cuvette path length of 1.00 cm. (a). What 
color corresponds to 522 nm? (b). Determine the molar absorption coefficient. (c). A 20.000-mL 
sample of water from a stream that drains a bog was treated in the same fashion producing an 
absorbance of 0.271. Calculate the concentration of Fe(II) in the stream. 
 

Fe(II) added, (mL) 2.00 4.00 6.00 8.00 10.00 
A 0.176 0.345 0.523 0.702 0.870 

 
10.  What is the absorbance of the column of water that corresponds to ¼, ½, and ¾ of the depth 
of the euphotic zone? What absorbance corresponds to the depth of the euphotic zone? 
 
11.  The concentration of quinine sulfate in tonic water can easily be determined using 
fluorescence emission. A series of standard solutions in 0.05 M sulfuric acid was prepared and 
the fluorescence emission at 470 nm was determined as shown below. The standard stock 
concentration was 1.00x10-3 g L-1 or 1.28x10-6 M. The volumes of the quinine stock solution, 
listed below, were added to 100–mL volumetric flasks and diluted to the mark with 0.05 M 
sulfuric acid. Fluorescence light fluxes, or intensities, are usually measured in arbitrary units, 
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which could be in millivolts or the unscaled computer digitized output from the detector. The 
units are immaterial since fluorescence must always be calibrated with standard solutions and 
then the fluorescence units cancel out. A commercial tonic water sample was diluted 0.5 mL to 
100 mL with 0.05 M sulfuric acid and the fluorescence intensity was determined to be 22167 
units. Determine the molar concentration of the quinine in the tonic water. 
 

stock added, (mL) 10.00 30.00 50.00 70.00 100.00 
fluorescence intensity 2741 8214 13586 18983 27319 

 
12. Photovoltaic cells convert sunlight into electrical energy. The units often used for the 
electrical energy are kW hours, or kWh. Calculate the conversion factor from kWh to joules. 
 
13.  The peak sun solar flux that reaches a surface pointed directly at the sun is about 
1000 W m-2. The solar insolation is the total amount of solar energy for a given location for a 
specific time. The solar insolation is the average incident energy for a specific time that takes 
into account the tilt of the sun during the day and the effects of clouds. The yearly average 
insolation for the United States is given below from data from the National Renewable Resource 
Laboratory, NREL, (http://www.nrel.gov/gis/solar.html). Calculate the factor for the conversion 
of the peak sun flux of 1000 W m-2 to the yearly average flux for Phoenix (6.08 kWh m-2 day-1), 
Seattle (3.69 kWh m-2 day-1), Boston (4.16 kWh m-2 day-1), and Miami (5.45 kWh m-2 day-1). 
 

 
 

Figure P2.1: Average Daily Solar Insolation. The solar insolation is the average daily energy 
falling on a surface parallel to the ground per day averaged over the year. (Map source: 
http://www.nrel.gov/gis/images/map_pv_us_annual10km_dec2008.jpg) 
 

Average Daily Solar Insulation 

kWh m-2 day-1 
3.5-4.0 
4.0-4.5 
4.5-5.0 
5.0-5.5 
5.5-6.0 
6.0-6.5 
6.5-7.0 
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14.  A photovoltaic panel can convert about 6-12% of the light flux into electrical power. The 
conversion of the DC power from a solar panel to AC power that can be used to power 
appliances or to feed into the power grid is about 77% efficient. Use the solar insolation values 
listed in Problem 13. (a) Calculate the AC power available per square meter per day from 
photovoltaic cells operating at 12% efficiency in each of the four cities. (b) A typical refrigerator 
requires 450 kW hours of energy per year. Calculate the photovoltaic panel area needed to 
provide all the energy for this refrigerator. 
 
15.  Calculate the value for the limiting molar conductivity, Λ°m, for CaCl2 from the following 
data, taken at 25°C. 
 

c (M) 1.00x10-3 2.00x10-3 10.00x10-3 0.100 
Λm (mS m2 mol-1) 26.386 26.072 24.850 24.072 

 
16.  Conductivity electrodes are calibrated using standard KCl solutions. The conductivity of 
0.001000 M KCl is 0.14695 S m-1. Many meters and texts list conductivities in mS m-1, S cm-1, 
mS cm-1, and µS cm-1. Find the conductivity of 0.001000 M KCl in these additional units. 
 
17.  Conductivity electrodes are calibrated using standard KCl solutions. The conductivity of 
0.01000 M KCl is 0.14127 S m-1 or 1412.7 µS cm-1. The resistance of a conductance cell 
containing 0.0100 M KCl is 552.2 ohm at 25ºC. The resistance of the same cell when filled with 
a solution containing 2.380 g of MgCl2 per liter is 151.0 ohm. (a). Calculate the cell constant, 
which is defined as (l /A), where l is the distance between the electrodes and A is the cross-
sectional area of the electrodes. (b). Calculate the conductivity of the MgCl2 solution. (c). 
Calculate the molar conductivity in mS m2 mol-1, S cm2 mol-1, and µS cm-1 mol-1. 
 
18.  Ammonia is a weak electrolyte and weak base:  NH3 + H2O →←  NH4

+ + OH-. The fraction of 
NH4OH is always small in aqueous solution, so the limiting molar conductivity cannot be 
measured directly. However, NH4Cl, NaCl, and NaOH are all strong electrolytes. Given 
Λ°m(NH4Cl) = 14.97 mS m2mol-1,  Λ°m(NaCl) = 12.64 mS m2mol-1, and  Λ°m(NaOH) = 
24.80 mS m2mol-1, calculate the limiting molar conductivity of NH4OH. 
 
19.  Thermal conductivity can be expressed as a linear flux-force relationship: 
 

 Jq = – κ 
dT
dx 

 

where κ is the thermal conductivity and dT/dx is the temperature gradient. The units of the 
thermal flux are J m-2 s-1 giving the units of κ as J m-1 K-1 s-1. Some manufactures sell 
thermopane windows with argon as the fill gas between the panes. Calculate the thermal flux 
with air and with argon as the fill gas in a thermopane window with a spacing of 2.00 mm 
between the panes of glass. Assume the outside air temperature is 0.0°C and the inside is 20.0°C. 
The thermal conductivity of air is 0.0252 and argon is 0.0233 J m-1 K-1 s-1 at 15°C and 1 atm. 
Assume a linear temperature gradient. 
 
20.  Thermal conductivity can be expressed as a linear flux-force relationship: 
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 Jq = – κ 
dT
dx 

 

where κ is the thermal conductivity and dT/dx is the temperature gradient. The units of the 
thermal flux are J m-2 s-1 giving the units of κ as J m-1 K-1 s-1. Why are stainless steel cooking 
pans often sold with a thin copper cladding on the bottom? The thermal conductivity of 
aluminum is 250, copper is 401, and stainless steel is 16 J m-1 K-1 s-1 at 25°C. 
 
21.  Often in practical applications of membrane diffusion the membrane thickness is not known. 
When the membrane thickness is not known, the flux across the membrane from Eqs. 2.3.3 and 
2.3.4 is written as: 
 

 Jm = – D 
(c' – c)

δ  = – P (c' – c) 
 

where the permeability, P, is defined as P = D/δ, and δ is the thickness of the membrane. A linear 
concentration gradient through the membrane is assumed. The permeability of a cellulose-based 
dialysis membrane was found to be 6.3x10-4 m s-1 for KCl. Calculate the initial flux of KCl 
through the membrane if one side of the membrane is a well-stirred solution of 0.100 M KCl and 
the other side is distilled water. 
 
22.  Assume two well-mixed compartments with volumes V1 and V2 are separated by a 
membrane. Substance X diffuses through the membrane, which has cross-sectional area A: 
 
 
 
 
 
 

 (a). Prove for diffusion of substance X across a membrane that the rate of concentration 
change in compartment 1 is given by: 
 

 
d[X]
dt  = 

dcX

dt   =  Jm (A/V1) 
 

(b). Using the data in the last problem calculate the initial rate for the concentration change for 
compartment 1 assuming a 3.00 cm diameter circular membrane and V1 = 50.0 mL. 

 
23.  A constant volume flow reactor is used to convert used vegetable oil to biodiesel fuel. The 
input stream contained vegetable oil, 1% KOH and 20% methanol. The yield of biodiesel for a 
constant flow at 50°C was 73.0% and the yield when the reactor was run at 65°C was 92.1%. 
Assume a constant flow. (a). Show that the ratio of the reaction yields under two different 
conditions is equal to the ratio of the product fluxes out of the reactor. Assume the flow cross-
sectional area for the input and output are the same. (b). Show that the ratio of the reaction yields 
is equal to the ratio of the average chemical reaction rates under the two different conditions. 
[Hint: the average reaction rate for the formation of product over the time interval ∆t is given by 
υ– = ∆[P]/∆t, where ∆[P] is the change in product concentration.] 
 

membrane 
cross-sectional area = A 

V1 V2 

X 
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24.  By drawing vectors in an x-y coordinate plot, show that matrix multiplication: a∼ = M≈  b∼ with 
the matrix: 
 

 M≈  = 






3/2 –1/2

1/2 3/2
 

corresponds to a rotation of the vector by 30° around the z-axis. Use b∼ = 






1/2

3/2
, which is 

diagrammed at right: 
 
 
 
 
 
 
25.  How are 3D computer graphics done? Many of the operations in computer games and 
molecular graphics correspond to rotation about the axis perpendicular to the computer screen. 
We showed in the last problem that matrix multiplication can generate such rotations. Show that 
the matrix, 
 

 R≈z(θ)  =  






cos θ –sin θ

sin θ cos θ
 

 

generates a rotation around the z-axis of θ degrees, by showing that R≈z(30°) gives the matrix in 
the last problem. 
 
26.  In computer graphics, the apparent distance between the observer and the object on the 
screen is determined by scaling the object. Show that the diagonal matrix: 
 

 M≈  = 






n 0

0 n
  with   a∼ = M≈  b∼ 

changes the length of the vector b∼ but not the direction. Use b∼ = 






1/2

3/2
, which is diagrammed in 

Problem 24. 
 
27.  The UV-visible absorption spectra of two compounds is shown below. The concentration of 
each is 5.00x10-5 M. The absorbencies at the two analytical wavelengths, λ1 and λ2 are listed in 
the figure. 
 
 
 
 
 
 
 
 
 
 

y 

x 0.5 

0.866 

wavelength (nm) 
300 400 500 600 

0.2 

0.4 

0.6 

0.8 

λ1 λ2 

A = 0.672 

A = 0.112 

A = 0.533 

A = 0.104 

A Compound 1 Compound 2 
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The path length of the cuvette is 1.00 cm. An unknown mixture has an absorbance of 0.419 at λ1 
and an absorbance of 0.546 at λ2. (a). Determine, without calculations, the component with the 
larger concentration. (b). Calculate the concentrations of the two compounds. 
 

28. Show that A≈  (B≈+C≈) = A≈B≈ + A≈C≈ explicitly using A≈  = 






a b

c d
 ,  B≈ = 







e f

g h
 , and C≈ = 







i j

k l
. 

 
29.  Find the determinant of the following matrix: 
 

 M≈  = 








2 0 1

3 5 0
0 1 4

 

 
30.  Find the determinant of the following matrix (which we will use in Chapter 6): 
 

 M≈  = 








–k1–λi 0 0

k1 –k1'–λi 0
0 k1' – λi

 


