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Chapter 2: Concentrations and Partial Pressures

The euphotic zone is the layer in a natural bodyater that can support photosynthesis.
The euphotic zone extends to the depth that carretspto 1% of the light flux incident
on the surface. Colored dissolved organic mattBxO®l, is one component in the wate
column that limits the penetration of light in |akand rivers. A typical component of
CDOM has a molar absorption coefficient of 1.8kM* cm! and a concentration of
2.7x10'° M. Calculate the depth of the euphotic zone f& toncentration.

=

Before we begin our study of kinetics and chemazplilibrium, we need to discuss how
concentrations and partial pressures are meadardte last chapter we learned that the state of
a system is defined by V, P, T, S, and the amoaineéach substance. The amounts of substances
can alternatively be specified using moles, conegions, or partial pressures. The measurement
of concentration is central to all aspects of clstryi To study chemical reactivity we need to
monitor changes in concentration during an expantnf@oncentrations can be expressed in
different ways. We start with gases and then dssotutions. Hopefully, you are already quite
familiar with most of this material on concentratimeasures from your General Chemistry
course, and only a quick review is necessary.

We also consider systems with non-uniform cotre¢ions, where molecular diffusion
transports molecules from regions of high conceioinao regions of low concentration.
Molecular diffusion is an example of a generalilad-force relationship.

2.1 Gas Phase Concentrations and Partial Pressures

Dalton’s Law of Partial Pressures states that #rég) pressure of a gas, B the pressure the
gas would exert if it were alone in the flask:

PV =n RT (ideal gas) 2.1°1
The total pressure is the sum of the partial pressassuming an ideal mixture:
Ns
P=>PR (ideal mixture) 2.1°2
i=1

for ns constituents. Since from Eq. 2.1.B = n RT/V, the total pressure is related to the total
volume and temperature through Eq. 21.2

Ne Ne RT s n RT , , ,
P=>PR=>nRT/N = V2 2N =V (ideal mixture of ideal gases) 2.1.3
i=1 i=1 i=1

given that the total number of moles of gas is:
Ns
n=2n 2.1.4
i=1

In other words, PV = nRT for the mixture of gasHse ideal gas law assumes that the gas
molecules have no volume and no forces betweemtiecules. An ideal mixture assumes that
the forces between the different molecular spesiesqual to the forces between molecules of
the same species. The ideal mixture approximasidneiter, in general, than the ideal gas law.
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The concentration of a speciesisgiven as iV in moles per mor moles per liter:

n_ R : o
G =v' :R_'II' (ideal gas) 2.1°5

The mole fraction of a speciesyi, is defined as:

N N
yi = '=ﬁ 2.1.6

Ns
2N
=1

For example, for a two-component mixtyie= m/(n1+ nz). We usey; for gas phase mole
fractions and for solution phase mole fractions to avoid cordasivhen we discuss volatile
liquid solutions. Mole fraction based concentrasi@me very useful because the fractions for all
constituents add to one:

Ns
Syi=1 21.7
i=1

We can relate the partial pressures to the toessure by dividing Eq. 2.2.by PV = nRT for
the total mixture:

PV n RT . . .
W :ﬁ (ideal mixture of ideal gas) 2.1.8

Cancelling terms gives:

P n . . .
BI = FI =y (ideal mixture of ideal gases) 2.1.9

Solving for the partial pressure gives:
P=viP (ideal mixture of ideal gases) 2.2.10

where P is the total pressure of the mixture. BEds1° and 2.1.10are both expressions of
Dalton’s Law of Partial Pressures. The concentnatig oryi, and the partial pressures, €an
all be used to study the concentration dependeh@action rates and chemical equilibrium.
We often like to work with gases in equilibrivmith aqueous solutions in the environment, for
example gas exchange with the surface of lakesarsis, or the ocean. For these problems we
need to take into account water vapor as one ofdahgonents of the gas phase. The vapor
pressure of water, R, is given in Table 2.1.1. We will use the symBdor temperature in
degrees Centigrade; T is always in kelvins.

Table 2.1.1: Vapor Pressure of Watafalues in kPa and torr.

0 P*h20 P*H20 0 P*h20 P*h20 0 P*h20 P*h20

(°cC) (kPa) (torr) (°cC) (kPa) (torr) (°cC) (kPa) (torr)

0.0 0.611 4,579 20.0 2.339 17.535 50.0 12.344 92.51
10.0 1.228 9.209 25.0 3.168 23.756 75.0 38.556 1239.
15.0 1.705 12.788 36.6 6.140 46.050 90.0 70.117 .7625
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The relative humidity of air is defined as the gerage ratio of the ambient vapor pressure of
water to the equilibrium vapor pressure at theenirtemperature:

Ph20
e 0
RH =5 (100%) 2.1.11

Example 2.1.1: Volume Fractions and Mole Fractions
Dry air is 20.946% by volume£and 79.054% B For many partial pressure problems we need
to know the mole fractions. Show that volume fraies are equivalent to mole fractions.

Answer: Assuming the system is at constant total presstirthe corresponding volume of i®
given by:

PVo, = no; RT

where \6; is the volume that theQvould occupy if it were alone in the containerirgs
Dalton’s Law of Partial Pressures, the total pressigiven by Eq. 2.1°3

PV = (rbz + n\lz) RT
Where V is the total volume, V =d¥ + V.. Dividing these two equations gives:

PVo, _ No: RT
PV — (n02 + n\lz) RT

Canceling common factors gives the mole fractiomfthe volume fraction:

Vo, No2 _
V " (noz+ ) Yo

proving that volume fractions and mole fractions igientical.

Example 2.1.2: Partial Pressures and Relative Humidity

Dry air is 20.946% by volume£and 79.054% B (a) Calculate the number of moles ofi®
1.00 n? of dry air at 1.00 bar pressure at 298.15K. (Hy@ate the number of moles ok @
1.00 n¥ of air at a relative humidity of 60.0% for the sagonditions as part (a).

Answer: (a.) Indry air P =& + Py, with P, = no, RT/V and R. = nv. RT/V giving:
P=m RT/V+m.RT/V or (m.+mn)=PV/IRT
Noting that 1 bar = 1xPPa and using V in frand R in J mot K gives the total moles of gas:

1.000x10 Pa (1.000 rf)

(no> + ) = PVIRT =g3145 3 mot K3(298.15 K)~ 40-34 mol

Using the given mole fraction of2@ives . = Yoz (No2 + Nv2) = 0.20946 (40.34 mol) =
8.450 mol.

(b). In humid air P = & + Py, + P40. All we need to do is subtract the partial pressafrthe
water from both sides of the equation and thengedas before:
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P — R0 = Poz + P2 = o RT/V + v, RT/V = (Mo + i) RT/V

Solving for the moles of £and N gives:
(Noz + Nn2) = (P- R|20)V/R-|-

At 298.15 K the equilibrium vapor pressure of wdtem Table 2.1.1 is 3.168 kPa. At 60.0%
relative humidity the vapor pressure of waterigoP= 0.600 (3.168 kPa) = 1.900 kPa =
1.900x18 Pa = 0.01900xT0Pa. The moles of £and N are then:

4y _(P=Reg)V _ (1.000x16 — 0.01900x10Pa) 1.000 rh
(Noz + Me) =7 = 3145 J mot K~ (298.15 K)

= 39.57 mol

The relative fractions of £and N are the same as for dry air. To see this, consideritting a
known number of moles of£and N into a constant pressure container. Now admit ginou
water vapor to reach the desired partial pressineater; the number of moles ob@nd N
haven’t changed so that the relative ratio ot@N; is constant, even though water vapor is
present. Using the dry mole fraction to find thiatige amounts of @and N gives . =
0.20946 (39.58 mol) = 8.289 mol. The net resulh&t there is about 2% less @vailable on the
humid day. Air is actually a mixture of20ON2, CO,, and Ar. No changes are needed for our
calculation for Q if we use R, to represent the combined partial pressure-ofdD,, and Ar.

2.2 Concentrations of Solutions

The mole fraction of a component i in solutignjs the most fundamental expression of
concentration:

N N
X=% = 2.2.1
xn
=1

for ns constituents in solution. Just as for gases, the af all mole fractions is one:
Ns
>x=1 2.2.2
i=1

The concentration of the solvent in solution is@tralways given in terms of mole fraction.
The concentration of solutes can also be expraagedlar units, which is defined as the
number of moles per liter of solution:

G ="My 2.2.3

The units are designated as “M.” The problem withlanconcentration units is that they are
temperature dependent. The temperature dependendesifrom the fact that the density and,
therefore, the volume of a solution depends on &atpre. To avoid the temperature
dependence, a more useful measure of concentraidad themolality, is expressed as the
number of moles of solute divided by the mass efdblvent in kg, éeni

Ni

Wsolvent

2.2.4

mi
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The units for molality are “m.” Thermodynamic reface tables are often given assuming molal
concentrations. In equilibrium expressions, thelsyinpA] is often used for concentration, which
can be expressed either in molar or molal unitg e listed units in data tables to determine
the concentration measure. Note that mole fraciamitless, which is another good reason for
using mole fractions. It is often necessary to @hamong the concentration measures.

To convert from molarity to molality, assumeamnount of a ¢ molar solution of 1L total
volume. The moles of solute is=c (1 L) and the mass of the solution igimw=
(volume)(density of solution):

Wsoln = 1000mL oin 2.2.5

where doin is the density of the solution in g MLThe mass of the solvent is calculated by
difference:

B f solut £ sol .1000mL doin—c (1L)91s 226
Wsolvent= mMass of solution — mass of solute—= 1000g/kg 2.
wheredig is the molar mass of the solute, B, in g hdlhe molality is then just the moles of

solute divided by the mass of the solvent in kg, Z19.4:
_ c (1L)
M = 7000mL don— ¢ (1L)9s 2.2.7
1000g/kg

For dilute solutions, the mass of the solute idigdxe compared to the mass of the solvent and
Eq. 2.2.7 reduces to:

C 1L 1000 :
m Ddsoln (1000 m ( 1kg (very dilute) 2.2.8

For very dilute solutions the density of the salatis very close to the density of water, Table

2.2.1. For very dilute solutions atZ5, the density of water is 0.99705 g théo that molarity
and molality differ by 0.3%.

Table 2.2.1. Density of Water

Temperature°C) d (g mLY) Temperature’C)  d (g mL?Y)

0.0 0.9998425 30.0 0.9956502
4.0 0.9999750 36.6 0.9934748
10.0 0.9997026 50.0 0.9880393
20.0 0.9982071 75.0 0.9748519
25.0 0.9970479 100.0 0.9583665

d=a+ab + &b’ + &6° with a= 0.9998425, a= 5.3322x16, a= —7.5899x10,
a = 3.6719x1¢ g mL™

To convert molality to molarity, assume an amourdrom molal solution that contains 1 kg of
solvent. The moles of solute issam (1 kg) and the mass of the solution:
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Wsoin = 1000g + m (1kgYrs 2.2.9

_ ~1000g + m (1kgprs
volume of solution = mass/density =deam 1000 mL/L 2.2.10

giving the molarity as:
_ m (1kg)
€ =1000g + m (1kgprs
dsoln 1000mL/L

2.2.11

and in very dilute solution, neglecting the masthefsolute compared to the solvent, Eg. 2.2.11
reduces to:

1000 ml_)( 1 kg

cOm dsoln( 1L (very dilute) 2.2.12

1000
Similarly, to convert from molality or molarity tmole fraction:
o = To00g 2.2.13
1000
TP AL (1kg)

_ cs (1L)

X8 = 71000mL doir 05 (1L) Ot 2.2.14
M + o (1L)

wheredia is the molar mass of the solvent, A. The solvermifien water. In very dilute solution
the amount of solute is negligible compared toatm®unt of solvent in the denominator and:

me (1kg) . mg (1kQg) '
xg U (1000 aqueous solutionsts Uze 51 mol (very dilute) 2.2.15

Ma

ce (1L) .
X8 D(lOO?)mL Qloln) (very dilute) 2.2.16

Ma

and for water as the solvent at’@5 1L of water corresponds to 55.33 moles and then:

- cs (1L)
X8 U55.33 mol

We will use these equations often in the chaptersabutions and equilibria.

(very dilute) 2.2.17

Example 2.2.1: Molarity, Molality, and Mole Fraction

A sodium chloride solution is prepared by addingb2.g of sodium chloride to a 100-mL
volumetric flask and then diluting to the mark. Thelar mass is 58.442 g molThe final mass
of the solution is 102.4 g. Calculate the molanityglality, and the mole fraction of sodium
chloride in this solution. Calculate the mole frantof the solvent.
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Answer: The number of moles of added NaCl is 0.06420=1ahd the molarity is:
cs = 0.06420 mol/0.1000 L = 0.6420 M.

The molality is based on the mass of the solvehichvis wa = 102.4 g — 3.752 g = 9&@. The
molality is then m = 0.06420 mol/0.098kg = 0.65@ m.

In many problems, the density is given instefithe final total weight of the solution. Eq.
2.2.7 must then be used to calculate the moldlays do the problem using the density to gain
some more experience with concentration conversibms density of the solution is the final
mass divided by the volume, d = 102.4 g/100.0 nmiLG24 g mL™. It is wise to write an Excel
spreadsheet to do concentration conversions. Yowsea this example to test your spreadsheet.
You will be doing these calculations often. Using E.2.7, the molality is:

3 c (1L) 3 0.6420 M (1L)
M8 = 7000mL doin— ¢ (1L)91s ~ 1000mL 1.024 g mE — 0.6420 M (1L) 58.442 g midl
1000g/kg 1000g/kg
mg = 0.65@ m
The mole fraction is given using Eq. 2.2.13:
mg (1kg) 3 0.65@ m (1kg)

XB = -
(12&0%% (1kg) (ﬂg—} 0.65@® m (1kg)

18.02 g mof
X8 = Xnaci = 0.011%
We then calculate the mole fraction of the sohmntlifference, sinc& + xg = 1:
XHeo =1 —0.0118=0.9884

Notice that the molarity and molality differ by %4 This solution is within the salinity range of
normal sea water. This solution is 3.66% NaCl bgsnar 36.6 % (%o indicates parts per
thousand by mass, which is the concentration meased by oceanographers for salinity).

Example 2.2.2: Solution Preparation by Mass

Making up solutions by mass avoids the need fargugolumetric glassware, and is usually
more accurate. You can work with volumes smallantiiour available volumetric glassware. A
mass of 0.00987 g of levulose, molar mass 180m8Ig, and 1.006 g of water were added to a
small tube. Calculate the molality and molaritythié density of the solution is 1.0039 g taL

Answer: Remember that spreadsheet idea? A spreadshieetsuld make this calculation
easier. Here are the results. The molality and ntglare:

_moles solute 0.00987 g/180.16 g mdl
M =nass solvent 1.006x10° kg

_ m (1kg) _ 0.0545 m (1kg)
¢ ~1000g + m (1kgprs ~ 1000g + 0.0545 m (1kg) 180.16 g mo
dsoin 1000mL/L 1.0039 g mt* 1000mL/L

= 0.0544 m

T 0.0541 M
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The results are almost good to four significantifegs, since the mass of levulose was almost
0.01000 g, which would have had four significagufies. When the last digit isn’t significant,
the digit is shown in a smaller font, or underlin@d5414 M. Always carry more significant
figures than you are allowed through intermedialeldations to avoid round-off error.

2.3 Molecules in Motion—Mass Transport

Chemical systems are often dynamic. In otheda/athe concentrations of chemical species
change as a function of time. Concentrations camgé because of flow processes and chemical
reactions. In flow processes, molecules move frtanepto place. In this section we consider the
effect of flow processes. In the next chapter wikdiscuss the time dependence of chemical
reactions. The flow of molecules is often calledseransport. Mass transport processes include
bulk flow, convection, and diffusion. An examplekaflk flow includes flow in pipes and tubing.
An example of convection is the flow in stirredwg@ns. This type of flow is called streaming
flow. In stationary, non-stirred solutions moleautaove only by a random process called
diffusion. Examples of systems where flow processesmportant include membrane systems,
flow reactors, electrochemistry, and chromatograhyst biological processes involve flow in
some way or another, and many of the problemsanggrapplications involve overcoming flow
restrictions. The change in the amount of a subbstaaused by a flow process is characterized
as a flux. The concept of a flux is quite general aseful. Fluxes are used to characterize the
flow of chemical species, charge, and energy.

Fluxes measure flow: The flux is the flow of something per unit tiper unit area. We
normalize to unit area because we often don't bare large the system is; we want an intrinsic
measure of the transport properties of the systerarfy size. The flows of matter, charge, or
energy per unit area are all fluxes, Figure 2.8Hemical fluxes involve the flow of chemical
species. A flux of charge results if the chemigades are ions. Charge fluxes also occur from
electron flow in a conductor. Light is one examplean energy flux. Energy transfer in the form
of heat can also be treated as a flux.

flow
J = flux :ﬂOTW
A
Figure 2.3.1: The flux is the flow of matter, cheygr energy through a surface of unit area
per unit time. For uniform flow, the flux is indepaent of the size of the surface chosen,
because the flux is normalized to unit area. Formoiform flow, the flux is the average
over the chosen surface.

The chemical flux,nd is given as the number of moles of a given spge#ssing through a
surface per unit area per unit time. Bulk flowhs simplest case. For a solution of concentration
c flowing through a tube at velocitythe flux is just = cv. If the solution velocity is not
uniform, then the velocity is the local velocitythe point of interest. (Note that for pump-driven
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flow through a tube that the solution close towadl of the tube travels slower than the bulk of
the solution.) Convection is quite analogous. Téleeity is the local velocity of the stirred
solution, and = cv applies as before. If the solute concentratiamisuniform, then the
concentration is the local concentration at thepof interest.

We can also relate the flux to the volumetrowfirate. If thevolumetric flow rate, F, is given
in L st and the concentration of the solution, c, is giemol L then the flux is alsonk Fc/A,
where the cross-sectional area is usually given?inThe flux calculated in this way is the
average over the total flow area.

Once the flux is known, the change in moles givan species, n, can be calculated. For a
portion of the sample with cross sectional area A:

dn
dt ~ 2.3.1

If the flux is constant, the number of moles opaaes transported across this area in a fime
is given as:

n=2JmAAt (cst. @) 2.3.2

Example 2.3.1: Flux and Moles

Consider a large reservoir filled with 0.1 M su@adkat is emptied by a small tube with an
internal diameter of 5.00 mm. Assume the resemwipties at a rate of 1.00 mit.ga)
Calculate the average sucrose molar flux in mélghacross the tube. (b) From the flux,
calculate the number of moles of sucrose delivardd00 minute.

Answer: (a) The cross sectional area of the tube is#?= 3.1416 (5.00x1®m/2y = 1.96x1¢
m?2. The velocity of the solution through the tubéhis volumetric flow rate, F, divided by the
cross sectional area:
L =F/A=1.00mL % (1 m¥1x1PmL)/1.96x10° m* = 0.0510 m$
The molar flux is then:
Jn = =0.1 mol I} (1000 L/1n?) 0.0510 m 3 = 5.10 mol n? s.
(b) The amount of sucrose delivered in 1.00 mimsiag this flux and Eq. 2.3.2 is:
n=JyAAt=5.10 mol nf s (1.96x10° n?)(60 s) = 6.00x18 mol

As a check on our calculations, we can alternatiusk the volumetric flow rate and
concentration directly: n = B¢ = 1.00 mL (0.1 mol LY)(1 L/1000 mL)(60 s) = 6.00x10dmol.

Concentration Gradients Are Reduced by Diffusion: For a system at equilibrium, the
concentrations of all species are uniform in edwsp. For non-equilibrium systems, the
concentrations can vary from place to place. THer@ince in concentration with position
produces a concentration gradient. Without thetigbe@nergy or matter, concentration gradients
disappear through diffusion, and the concentratm@tome uniform at equilibrium. A solution
with a linear concentration gradient is diagramnmeBigure 2.3.2. To calculate the local
concentration, the total volume is divided into 8nmdervals, as indicated by the light gray lines.
These light gray lines are not physical barriett,dve used only to delineate small equal
increments. The concentration gradient is defireetha derivative of the concentration with
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respect to distance, dc/dx. The gradient in FiQu8e2 is given in terms of the number of
molecules in the volume incrementy/ The number of molecules is converted to molatsuoy
division by the increment volume and Avogadro’s toem Na:

dc 1 dN
dX = Vino Na dx 233
L: o ® : ° . o ® Iy
Y [ ] g [ ] P [ ] ® L
8 \ d
N
N 6- ax = —2 molecules crh

0 >
1 2 3 4 x (cm)

Figure 2.3.2: A solution with a linear concentratgradient. The local concentration is
calculated by dividing the total volume into smalirements. The number of molecules in
each volume increment is plotted as a histograrh the horizontal axis indicating the
position of the volume increment along the x aXise concentration gradient is the
derivative of the curve for the number of molecyes unit volume as a function of distance.

More generally, if the concentration in a soluti@ries linearly between ¢ and c' over a distance
0, then the gradient is:

dc _(c'-¢)
dx = &
Molecules move through a solution by diffusianich is characterized by a diffusion
coefficient, D. The diffusion coefficient is depamd on the particular solute species and solvent.
The larger the diffusion coefficient, the highee ihtrinsic mobility of the species. The molar
flux of a species through the solution is diregiigportional to its concentration gradient:

In=-— Dg—;: 2.3.5

(linear gradient) 2.34

where 4 is the molar flux. In short, concentration gradsetirive mass transfer from regions of
high concentration to regions of low concentratigq. 2.3.5 is calleéick’s First Law . For a
linear gradient, substituting Eq. 2.3.4 into E@.2, gives Fick’s First Law as:

D
In = =5 (c'—=c) (linear gradient) 2.3.6
The units of the flux are molAs™. The units of the diffusion coefficient aré s, giving the

corresponding units for the concentration gradésnmol mf. Typical values for the diffusion
coefficient are given in Table 2.3.1.
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Table 2.3.1. Diffusion Coefficients in water at 203

Species Molar Mass (gmyl D (n?s?)
CHsOH 32 13.7x16°
urea, HNCONH, 60 11.8x10°¢
sucrose 342 5.7x1%6
insulin 41,000 8.2x18
horse hemoglobin 68,000 6.3x10

The data in Table 2.3.1 show an inverse relatignehimolecular size with the diffusion
coefficient. Large molecules move slowly. Diffusionefficients also decrease as the viscosity
of the solvent increases.

Example 2.3.2: Diffusion Across a Membrane

A membrane is placed between two stirred soluti®hs. solution on the left of the membrane
contains 0.010 M sucrose and on the right is puaew The membrane is 0.100 mm thick and
has an area of 5.00 énAssume the diffusion coefficient of sucrose ia thembrane is the same
as in pure water, 5.7x10m? s*. Calculate the number of moles of sucrose thétiskfacross

the membrane in one hour.

Answer: Assuming a linear change in concentration adfessnembrane, the concentration
gradient using Eq. 2.3.4 is:

dc _(c'—=c) 0-0.01 mol }(1000L/1n¥) _ —10. mol n?
dx = & ~ 0.100 mm (1 m/1000 mm)~ 1.00x10’m

= —1.00x16mol m*

Using Fick’s First Law, Eq. 2.3.5, the flux is givey:

In=- Dg—i = — (5.7x10° m? s1)(-1.00x16 mol m*) = 5.7x1 mol m? s?

The cross sectional area of the membrane is A& & (1 m/100 cmd = 5.00x10* n?
The total amount of sucrose passing through thelirame in one hour is then:

n=Jn A At = 5.7x10 mol m? s* (5.00x10* m?)(1 hr)(3600 s/1hr) = 13%10* mol

This membrane is quite thin and the gradient isegarge. Even so, the amount of sucrose that is
transported across the membrane is quite small.

Since we approximated the diffusion coefficidmbugh the membrane as the diffusion
coefficient in bulk water, this problem gives ttaarge numerical result as diffusion through an
equivalent slice of a bulk solution with a compdeatradient. In either the membrane or bulk
solution case, we note that the diffusion of molesus quite slow. That slow mobility is why
vigorous stirring is necessary when making up smhgt Diffusion alone is insufficient;
convection is also required for rapid mixing.
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2.4 Experimental Determination of Concentration: Sane Tools of the Trade

There are a vast variety of methods for determgiconcentrations in the gas phase and in
solution. We will encounter many such methods tghmut this text. As a prelude to kinetics
and equilibrium studies, however, we will discusst jthree representative techniques: UV-
visible absorption spectroscopy, emission specd@gcand conductivity. Within wide
concentration ranges, these techniques show a limegear-linear response with concentration.
In general, most techniques for measuring concmtraan be put into a linear form. These
three methods will help you get a quick start onry@xperimental work. We discuss the
theoretical background for these techniques laténe text.

Absorption Spectroscopy: The diagram of a simple absorbance spectrophetms shown in
Figure 2.4.1. Light from a source is focused oriffaadtion grating. The dispersed light from the
grating passes through a slit selecting a narragegaf wavelengths. This arrangement of a
grating with slits for selection of a small rangen@avelengths is calledrmonochromator. The
incident light flux on the sample is.Jhis flux is the energy per unit time per ungarAs with

all fluxes, we normalize to unit area because we&tdmre how large the incident light beam is;
we want an intrinsic measure of the ability of #aenple to absorb light for any size sample and
incident beam area. How do we relate the light flukhe concentration of the sample?

Monochromatc

Grating

e 5 D 0.736
o : =y

Sample Lens Detector

Slit

Lens (@)

Figure 2.4.1: A simple absorbance spectrophotomAtearrow band of excitation
wavelengths is produced by a monochromator.

Let ¢ be the concentration of the samplke path length of the cuvette, ghthe intrinsic
ability of the molecules in the sample to absaghtliat the given wavelengtfi.is the fraction of
the light flux absorbed by the molecules, whickhis probability of absorbing photons. The units
of the concentration are usually molar units, mié) hut molal units, mol kg, can also be used.
The path length is usually measured in cm. Thewdcs that the light has traveled through the
sample is x. The light flux, J(x), decreases aa#ses through the sample because of absorption
by the molecules. Consider a thin slice of solutéthickness dx, Figure 2.4.2.

The change in flux over the distance dx is propoal to the intrinsic ability of the molecules
to absorb light, the concentration of the samle light flux at distance x incident on the slice,
and the thickness of the slice:
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dJ =3 ¢ J(x) dx 2.4.1
The negative sign is necessary because the flueases with distance.

DN N
A ! e
J(x)
| [ | =
] ] ] > X
0 xx+dx ¢

Figure 2.4.2: Absorption of light by a thin slicesmlution of thickness dx.

Eq. 2.4.1 can easily be integrated, becauserittisa general form of df = —a f dx given in
general patterl 1 in Section 1.3. After separation of variables aatling the flux toglat x =0
and Jatx %

JdJ :

—=—]"Bcdx 2.4.2
=,
I J { 2.4.3
nJO——B c 4.
J=3eblc 244

The flux is an exponentially decreasing functiomstance through the sample. Multiplying
Eq. 2.4.3 by —1 gives thHgeer-Lambert Law:

In(k/5) =B tc 2.4.5
The absorbance of the solution is defined as:
A = log(/y) 2.4.6

using base 10 logarithms. To convert Eq. 2.4.5 foaise-e logarithms to base-10, remember that
In x = 2.303 log x:

e __B
A =log 3=2303'C 2.4.7

Defining themolar absorption coefficientase = 3/2.303 gives the final linear result:
A=grc 2.4.8

The importance of this equation is that the comregioh of a solution can be easily obtained
from the absorbance, if the molar absorption coeffit and path length of the cuvette are
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known. The value of is wavelength dependent, and is determined bipredion with solutions

of known concentration at a fixed wavelength, Fegr4.3. Molecular spectra typically consist
of more than one transition, each transition r@sgyitrom a different excited state of the
molecule. The wavelength of maximum absorptiorefand is usually used for determinations.
The value of is typically in the range of zero to 3B cmrt,

The molar absorption coefficient is also altéiredy called the extinction coefficient or the
molar absorptivity. The units are L miotni?, or M cmit. The light flux, J, is equivalent to the
power per unit area, P, and also the intensifihé absorbance can be expressed using any of
these equivalent measures of light intensity. Taesmittance, T, is defined as the fraction of the
light that is transmitted through the sample, Tls &nd the percent transmittance is just the
transmittance on a percentage basis, %T 3) (100%:

P I 100
A= Iog% = IogE0 = IogT0 = log 1/T = Io% 2.4.9

Spectrophotometers may use any of these measulightadbsorption.

Absorption spectroscopy isn’'t always linear watincentration. Non-linearity results from
equilibria that change the speciation of the sulzstdhat is being determined. For example,
many dyes dimerize in solution, A + AA,. Changes in pH or ionic strength can also cause no
linearity. Highly absorptive solutions also showndmearity caused by stray light in the
monochromator.

excited state 3 excited state 1 A =
I excreastae 2 (A0 = citedstates
Energy t
1.60 excitedstate2
1.40 - > | —
(@) f—
1.20 - E =
100 w ;i excitedstatel
< 0.80 +
0.60 -
0.40 - AE =hy
0.20 -
0.00 : ‘ ‘ : ‘ : ‘ =
210 230 250 270 290 310 330 350 370 0 = ngUﬂdState

w avelength (nm)
(a) (b)
Figure 2.4.3: (a) Absorption spectrum of 8.00X M salicylaldehyde, for a 1 cm path length.
The absorbance at 255 nm is 0.848 givirgA /(ic) = 10,600 M cnit at 255 nm. The
absorbance spectrum shows three absorption banm@sjgonding to three molecular

electronic excited states. (b) The three excitatestare shown in the corresponding energy
level diagram. (There is no horizontal axis foresmergy level diagram.)

Example 2.4.1:Beer-Lambert Law and the Euphotic Zone
The euphotic zone is the layer in a natural bodyater that can support photosynthesis. The
euphotic zone extends to the depth that corresponti® of the light flux incident on the
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surface. Colored dissolved organic matter, CDONnie component in the water column that
limits the penetration of light in lakes and rive@DOM includes polyphenolic compounds that
are secondary metabolites in plants. Anthocyama®ae class of polyphenolics that are
responsible for the coloration of many fruits, besy and some leaves. A typical anthocyanin,
cyanidin 3-O-glucoside chloride, has a molar absonpoefficient at 525 nm of

1.8x10 M cnil. Photosynthetically active light, or PAR, is in tB80-710 nm range.

Figure 2.4.4: Cyanidin 3-O-glucoside chloride.

The molar mass is 484.84 g mo(a) What is the %T and absorbance from the saiathe
bottom of the euphotic zone? (b) Calculate the dizswe at 525 nm of a 2.7x10M solution of
cyanidin 3-O-glucoside chloride for a 1.00 cm platigth cuvette. (c) Calculate the depth of the
euphotic zone for this concentration.

Answer: (a) 1% of the light flux incident on the surfam@responds to 1 %T and the absorbance
is A = log(dJ) =10g(1/0.01) =2
(b) The absorbance is given by the Beer-Lambert: Law

A =¢gic = 1.8x10 M1 cnt? (1.00 cm)(2.7x18° M) = 4.9x10° = 0.005

For a 1 cm path length the absorbance is quitelsmal
(c) To find the euphotic zone depth, we set A & solve for the corresponding path length:

A=2=gc=1.8x16 M cmly (2.7x10'° M) or {=410cm=4.1m

The depth of the euphotic zone in a lake is usualhasured using a Secchi disk, a disk with
white and black areas that is lowered into the lakd the disk is no longer visible. A lake with
a Secchi depth of 4 m looks clean. Such a lake avbelclassified as mesotrophic. Eutrophic
lakes have Secchi depths in the 1-3 m range. Adlgadbe the major contributor to the light
attenuation, which is in addition to CDOM.

Example 2.4.2: Concentration Determination Using Light Absorption

The following solutions were prepared and the dimace measured at 535 nm using a 1.00 cm
path length. An unknown was determined to havebsorance of 0.632 at 535 nm. Calculate
the concentration of the unknown.

concentration (M) 1.23x1® 2.34 x10° 3.52x10° 4.46 x1®® 5.45 x10°
absorbance 0.018 0.339 0.496 0.647 0.781
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Answer: EQ. 2.4.7, A =< (c, is a linear function with zero intercept, tleay = mx + b with b=0

and the slope mg. The best way to do this problem is to use leqsaes curve fitting in Excel
or using a calculator. An Excel spreadsheet is shiogslow with the curve fit data, using the
linest() function. The function output is a 5x2atrand the values are labeled. The “ss”
acronym stands for “sum of squares.” The best “gesd of fit” criteria are the uncertainties of
the slope and the intercept, which are labeled aits’. The data point (0,0) should always be
included for absorbance experiments, unless yoa hawexperimental value for the absorbance
at zero concentration that is different from zéroe resulting slope gives the molar absorption
coefficient, which is 1434% 119. M! cn. The molar absorption coefficient is best repoesd
1.43x1d M cnt? if you are using significant figure rules to shthwe precision. The fit intercept
is zero to within experimental uncertainty. Thd dbsorbance” column is calculated using:

N
A = 14349.33 ¢ + 7.69E-05, that is, just y = mx + b.
concentration (M) | absorbance | fit absorbance
0 0 0.000 slope intercept

1.23E-06 0.018 0.018 m 14349.33 | 7.69E-05 | b
2.34E-05 0.339 0.336 * 118.9366 | 0.003989 | *
3.52E-05 0.496 0.505 r2 0.999725 | 0.005992 | st. dev.y
4.46E-05 0.647 0.640 F 14555.66 4 | df
5.45E-05 0.781 0.782 SSregression 0.522527 0.000144 | ssSresidual

The unknown absorbance is 0.632. Working backwasdsy A =g ¢ c:

0.632 = (14350t 120. M* cnt?)(1.00 cm) ¢
giving ¢ = 4.40x10 + 0.04x10° M.

Emission Spectroscopy: Fluorescence and NMR are examples of emissieatsgscopy. In
fluorescencespectroscopy a sample is excited by a beam df lidie molecules in the sample
absorb the input light and reemit light a shortdilater. The average time between the
absorption and emission is called the fluorescéifetane, which is typically in théb ns to 10
us range. Fluorescence is relatively rare but ierg sensitive technique for determining
concentration. The spectrum of the fluorescences&on of a compound is determined using a
spectrofluorimeter, Figure 2.4.5. The excitatiorvelangth is set to maximize the fluorescence
intensity of the dye. The emission monochromattinén scanned to determine the fluorescence
spectrum. Even though the fluorescence emissimoisopic, that is in all directions, the
fluorescence is sampled at & @hgle to the excitation light beam to minimize #meount of
excitation light that reaches the emission monatiator.

Fluorescence, at low concentrations, and NMRrdrerently linear. The signal intensity is
directly proportional to concentration,d k ¢, where Kk is a calibration constant. Thelration
constant is determined from known solutions bydmeurve fitting, similar to Example 2.4.2.

Fluorescence spectroscopy is complementary sorpbon spectroscopy. When a molecule
absorbs light, it is left in an excited state. Mofien, the excited state loses the excess energy
through collisions with the solvent and returngtie ground state with the production of heat.
This process is called ron-radiative process. However, some molecules release the@sexc
energy by emitting light. The emitted light is eallfluorescence if the excited state lifetime is
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[b ns to 1Qus. The emitted light is callgghosphorescencdor longer lifetimes. We will discuss
fluorescence and phosphorescence in greater dethg spectroscopy portion of this text.

Excitation Emission
monochromatc monochromator
Grating Grating

W K27,
SO Z

~ -
@ Q
Xenon lam| Detector

Sample cuvette

Figure 2.4.5. Fluorescence Spectrophotometerswsenonochromators (or filters), one for
selection of the excitation wavelength and ones@ection of the emission wavelength.

The relationship of absorption spectroscopy to simisspectroscopy is shown by theblonski
diagram in Figure 2.4.6. The energy difference for th@sraon, AE, is proportional to the
frequency of the lightAE = hv. Fluorescence emission is redder, that is at lowgeelength,
than the absorption. Remember from your Generasiebynd Chemistry courses that= c,
wherev is the frequency of the lighk,is the wavelength, and c is the speed of lighddre light
has a lower frequency and since ch, redder corresponds to a longer wavelength.

E 1 1 excited state

vibrational relaxation

fluorescence

excitatior

(@)~

ground state

Figure 2.4.6: The relationship between absorptimhfuorescence. The molecule is excited
into an excited state by the absorption of lighiioFescence results in the emission of light
as the molecule returns to its ground state. Tigigé is called a Jablonski diagram.

When molecules absorb visible or ultraviolehtighe molecule is excited into a higher energy
molecular excited state and vibrational state. fEmge of excited vibrational states makes the
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absorption bands broad, as we see in Figure 2WMitBout vibrational excitation, the absorption
band for each excited state would be quite narfidve. range of vibrational excited states is
indicated schematically by the closely spaced ool lines in Figures 2.4.3b and 2.4.6. After
excitation, the molecule rapidly drops to the festited state and loses excess vibrational
energy through collisions with the solvent anddbeesponding creation of heat. This rapid loss
of vibrational energy is called vibrational relaxat The molecule then fluoresces from the
lowest energy vibrational state of the first exa¢tig¢ate back down to the ground state. The
reason that the fluorescence is redder than thartioen is explained by the transition arrows in
Figure 2.4.6. A shorter arrow corresponds to a lemahange in energy, which corresponds to a
longer, redder wavelength. Fluorescence is, thezgtothree step process:

absorbance vibrational relaxation fluorescence
A+ hv - A*(electronic and vibrational)-. A*(electronic) - A + hv(emission)
2.4.10

The “*” is often used to symbolize a molecule inextited state. The shift to longer wavelength
makes it easy to discriminate between the excitdight and the fluorescence. Fluorescence is
an absolute intensity measurement rather tharfexrelifce in intensity as is absorbance, which
makes fluorescence more sensitive than absorbaectrascopy.

Fluorescence isn't always linear with concemratFor concentrated solutions, the
fluorescence intensity becomes non-linear as tlerdscing molecules interact with each other
and share excitation energy througblecular energy transfer Fluorescence also can be
susceptible to interferences through energy shavitigother solutes. Such concentration
dependent transfer usually causes a decrease flundhescence, which is callepienching

The distinction between fluorescence and phagstence can be illustrated using the electron
configurations for the diatomic moleculex(Figure 2.4.7. (Please review the section on
molecular orbital theory from your General Chenyiséixt.) The ground state of iodine has all
spin-paired electrons, which results ieiaglet state. If one of the outer electrons is excitbd, t
resulting state can still have all paired electrdvadf-up and half-down, which results in an
excited singlet state. The excited electron cam atglergo a spin flip to yield two electrons with
parallel spins. Two electrons with parallel spiasuits in driplet state.

- ol —+— O intersystem —_
E «  hv E T crossing *
-1 77 4 T T T
7 T T T3 T n —+1— T+t T
- T o 1 o 7 o

(a) ground state (b). an excited singlet state (c). an excitelet state

Figure 2.4.7: Ground and excited states for Cl

Most molecules have singlet ground states. Therpben of light cannot flip the spin of the
electron. Therefore, if the molecule has a groungdlst state, the excited state produced from
the absorption of light will also be a singlet staEmission of light from the excited singlet state
back to the ground singlet state is called fluozese. On the other hand, collisions of the
molecule can result in a spin flip from the excigdaglet state to produce an excited triplet state.
This process is callddtersystem crossing Emission from the excited triplet state backhe t
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ground singlet state requires a change in enerdyaapin flip, which requires a longer time than
a fluorescent transition. The emission from thatexldriplet state to the ground singlet state is
called phosphorescence. lodine can be detectedhigithsensitivity using laser induced
phosphorescence. Glow-in-the-dark watch dials dastip stick-on stars are examples of
phosphorescent materials. Fluorescent light bulbsetually based on phosphorescence.

Conductivity: Conductivity is a widely used technique for detming concentration. Many pH
meters can be equipped with a conductivity probd,dedicated meters are also common.
Conductivity is widely used in water quality detémations for lakes and rivers and in
oceanography for salinity determinations. Gas pleagductivity is used in fire alarms. Electron
capture and photoionization detectors for gas chtography are also based on conductivity.
The theory of conductivity is central for separaidgechniques such as gel and capillary
electrophoresis and electrodialysis. More impolyamtowever, conductivity is a general
property of solids and solutions. The general th@bdrconductivity is particularly important for
understanding membrane systems. Conductivity sxample of a generalized flux-force
relationship. Understanding conductivity will bg@od introduction to fluxes.

lons conduct electric current through solutiddslutions of ionic substances, like NaCl, are
called electrolyte solutions. You are familiar witthm’s Law for metallic conductorAg = IR,
and Ohm’s Law also holds for electrolyte solutioiensider a solution with two electrodes of
cross sectional area A, Figure 2.4.8. A small pmdedifference is placed across the two
electrodesA@ = ¢z — @.. Cations migrate to the cathode and anions wijrate to the anode.
The measured current is givendyg = IR, with R the resistance of the solution.

[e—

o Ao —y

A |

Figure 2.4.8: Electrical conductivity is determin@gplacing a potential difference between
two electrodesi\@, and measuring the current, I.

The resistance is inversely proportional todbecentration of the solution for a strong
electrolyte. As the solute concentration incredsegesistance decreases. A direct
proportionality is more convenient than an inverdationship. The solution is more directly
characterized by theonductance G, which is defined as the inverse of the reststa

G=1/R 24.11
The units are ohm's the Sl units are called siemens, 1 S = 1éhm
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The conductance of the solution is directly mmipnal to the cross sectional area of the
electrodes, A, and inversely proportional to theahce between the electrodedlormalizing
the conductance to these geometric variables pee\ad intrinsic measure of the solution to
conduct current. Theonductivity is defined as:

1 /¢ Gy
K Eﬁ (K) = 2.4.12

Conductivity meters give the conductivity directlhe units are S thor S cm. For example,
the recommended conductivity for a goldfish aquaris 40 mS m, or equivalently,

400puS cm. The units are related by 1 mS'm 1x10° S m* and 1uS cm? = 1x10° S cm.
Drinking water is usually below 1565 cm?. The conductivity depends on the solute
concentration; the higher the concentration thédrighe conductivity. The higher the
conductivity the better the solution conducts eleity. The molar conductivity is defined as:

/\m = K/C 2.4.13

where c is the molar concentration. Extensive t&hte available of molar conductivities. The
use of conductivity for concentration determinasiasmbased on Eq. 2.4.13; solving for the
conductivity gives:

K=AmC 2.4.14

The molar conductivity is just the proportionalgdgnstant for the linear dependence of
conductivity on concentration. Conductivity canrili used to monitor the course of chemical
reactions just like absorbance, fluorescence, ai&k Measurements, as long as the reaction has
a change in the conductivity.

Unfortunately, the molar conductivity is conaatibn dependent. For strong electrolytes,
experimental data shows that the molar conductwisr a large concentration range is given by:

Am =A% —K " (strong electrolytes) 2.4.15

where/An is the limiting molar conductivity angf is a constant that is dependent on the
electrolyte. The limiting molar conductivitj\m, is the molar conductivity extrapolated to zero
concentration, where the ions are infinitely faadmiving no forces between ions. The
concentration dependence comes from the interactiorong the ions; the attractions between
cations and anions act as a drag that slows themeuements. For example, the molar
conductivity of 1 M HClI is about 25% less than lineiting molar conductivity. However, if the
range of concentrations is kept small enough, tibeaavior is observed and conductivity is an
easy and general measurement of concentratiooriar substances. For strong electrolytes over
larger concentration ranges or for more accurateaatration determinations, Eq. 2.4.15 can be
substituted into Eq. 2.4.14 to give a non-linedibcation equation:

K=(N\n—%KC%)c=A%c—-%KC? (strong electrolytes) 2.4.16

where/Am andx are available in reference tables or they canlastdetermined by calibration
using known standard solutions. The conductivitwetk electrolytes is a strong function of
concentration; we will consider the conductivityvedak electrolytes in the chapter on chemical
equilibrium.
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Example 2.4.3:Limiting Molar Conductivity

The limiting molar conductivity can be calculatedrh contributions of individual ionic species
using/Am =Vv+A+ + VA - wherev. andv. are the number of ions in the formulay-My-, while A+
andA - are limiting ionic conductivities. For example,@acorresponds to+ =1 andv. = 2.
There are extensive compilations of limiting ion@nductivities in standard referenéeBhe
limiting ionic conductivities of the Nlaand Clions are 5.01 and 7.63 m$ mol?, respectively.
Calculate the NaCl concentration that correspoadsd recommended conductivity for a
goldfish aquarium of 40 mStor equivalently, 40QS cm.

Answer: For NaClyv+ =1 andv. = 1, giving the limiting molar conductivity for N4 as:
AR =ViAs +VA. = 5.01 + 7.63 mS fimol! = 12.64 mS rmmol?

Approximating the molar conductivity of the solutias the limiting value)\m = Am and using
Eq. 2.4.13 with the target conductivity gives:
K 40 mS mt

LS - -1
c A = 12.64 mS Amol (1 m¥1000 L) = 3.16x18 mol L

How accurate is our approximation thihat = An? From standard reference tables, the molar
conductivity of a 0.005 M solution of NaCl is 12DmS nt mol?, which is close enough to our
concentratiort.So the error in using the limiting, zero concettravalue of 12.64 compared to
12.059 mS rhimol! is 5%, which is good enough for many purposes.

2.5 Generalized Flux-Force Relationships

Electrical conductivity involves the movementafs through the solution as they are “pulled”
by the applied electric potential. This motion @hs$ is a flux, and the flux is controlled by the
applied potential. Electrophoresis uses this flsxa@eparations tool, and electro-blotting and
related techniques use these fluxes to transferfram place to place. We now consider the
electric potential dependence of the ion flux. Gdeisa surface, of area A, placed between the
two electrodes, each of area A, in Figure 2.4.& @lectrical flux, ¢, is the flow of charge
through this surface per unit time per unit ardge Turrent through the cell is proportional to the
flux and the surface area, | =+A. The negative sign is necessary because, wieecutinent in
the external circuit flows from right to left, tlherresponding current of cations in the solution is
from left to right. The units of current are ampsgquivalently coulombs per second,

1 amp = 1 C&. The units of the electric flux are amps pér ar equivalently C M st. Ohm’s
Law can be rearranged to give the current,

1
= RA(p 251

Solving Eqg. 2.4.12 for 1/R in terms of the condwtyiand substituting into Eq. 2.5.1 gives:

KA
| = (T) A 25.2
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Given that | = —J A, dividing both sides of Eg. 2.5.2 by the surfacea, A, gives:

Jol = —K (%(P) 253
This equation for the electric flux can be geneeadiby noting that thag/t term is the electric
field between two parallel plates. In other wottti®, electric flux, which is the flow of charge, is
proportional to the electric field that the iongpexence. The greater the electric field the greate
the “pull” on the ions. The electric fieldy, is the negative of the gradient of the electric
potential, which in turn isAq/'t for two parallel plates, Figure 2.5.1:

b (e (20

Figure 2.5.1: The electric potential decreasesliyebetween two parallel plates. The
electric field is the negative of the gradientloé electric potential.

Note the similarity of Egs. 2.5.4 and 2.3.4. Theggmtude of the electric field increases as the
electrodes get closer together, for a fixed potduifference. For different geometries other than
parallel plates, it is best to write Eq. 2.5.3@mts of the electric field or the potential gradien
Substituting @/dx for A@'rin Eq. 2.5.3, gives the electric flux in termstloé negative gradient of
the electric potential:

d
1= _Ka‘f 2.5.5

Cations flow from regions of high electric potehtaregions of low electric potential.

02
General Pattern 2: Generalized Flux-Force relationships: Fick’s First Law for diffusion, Eq.
2.3.5, and electrical conductivity, Egs. 2.5.3 aril5, are examples of generalized flux-force
relationships. This form is quite general and wk @icounter similar linear flux relationships
when we consider conductive heat transfer and at@meactions close to equilibrium. The
general form is often written as:

J =L Xi 2.5.6
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where i is the flux, which is the flow per unit time panit area
Xi is the generalized force for transfer, which gradient with units per unit distance
and L is alinear coefficient

The generalized force is the gradient of an intenparameter. For electrical conductivity, the
force is the gradient of the electric potential #mellinear coefficient is the conductivity, The
linear relationships make these flow processes wasydel. We will use the interactions of
diffusion, conductive heat transfer, and chemieakttions when we consider non-equilibrium
steady states. These ideas are central for unddistamembrane potentials and membrane-
based energy transduction during metabolism antbpiiothesis. One way to help understand
these relationships is to compare generalizedrifiationships with Ohm’s Law:

1
J=LiXi - - |:§A(p

The flux is analogous to a current. The linear toent is a conductance, which increases with
increasing ability of the system to conduct mattegrge, or energy. The force is the potential
gradient. A potential gradient is a difference atgntial divided by the distance. The gradient of
the potential drives the flow. The difference begwehe flux equation and Ohm’s Law is that
the flux is per unit area.

Fick’s First Law, Eq. 2.3.5, is also a lineandforce relationship. The “generalized force” for
concentration change is the concentration gradientdiffusion, the concentration gradient is
not an actual force, but rather an expressionesthtistical probability for molecules to spread
out over time. However, associating the concemtnagradient with other generalized forces is a
useful way of understanding molecular diffusionnCentration gradients drive mass transfer.

Not all flux relationships are linear. For exdeyheat flux can be nonlinear for large
temperature gradients. Flux-force relationshipgtas chemical reactions are often nonlinear.

For a system at equilibrium, all fluxes are dqoaero, averaged over time. A system in a
steady state has at least one non-zero constansihce the steady state must be maintained
away from equilibrium by the constant input of reatbr energy. In the next chapter on kinetics,
we consider fluxes that are caused by chemicaticeec

02

2.6 Absorbance of Mixtures

UV-visible absorbance is particularly useful forasaring concentrations because the spectrum
of a solution can be used to determine the conatoir of more than one component. If the
absorbance spectra of two constituents in soldtenwe negligible overlap at the wavelengths of
maximum absorption for the two components, thenZ=}6 can be solved separately for the two
components. However, the absorption spectra fostanbes often show considerable overlap,
Figure 2.6.1. The absorbance of a mixture is justsum of the absorbances of the constituents,
assuming that there are no interactions betweeodhstituents. Consider a two-component
mixture. Let constituent 1 have a molar absorbaoedficient at wavelength of ex1 and
constituent 2 have a molar absorbance coefficietiteasame wavelength ef.. The absorbance
of the solution is:

Ar=EnilCL+ el 2.6.1
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where the concentration of components 1 and 2;aaacd e, respectively. The molar absorption
coefficients are determined by calibration on soha with just constituent 1 or 2 alone. In the
analysis of an unknown, Eg. 2.6.1 alone is notigefit to determine the concentrations. A
measurement at a second wavelength is necessdirth&€avo wavelengtha: andA»2. The two
measurements then provide two simultaneous eqatvih two unknowns:

A1 = €110CL+E120C ~ foral
A2 = €210C1+E20C ~ forA2 2.6.2

The molar absorbance coefficients are illustrateBigure 2.6.1. For an unknown solution, the
absorbances at the two wavelengthsaAd A, are determined and then Egs. 2.6.2 are solved
for the concentrations of the unknowngrd e.

— Constituent 1 Constituent 2

E 800C T

< €ij

= 600C T M \§

N—r

(§\]

w 41 .

5 400C wavelength constituent
200C T

Figure 2.6.1: Absorbance of a solution is the sfith@ absorbances of the constituents.
Measurements at two wavelengths are necessarydordee the composition of a two-
constituent solution if the absorbance bands opeillae first subscript indexes the
constituent and the second subscript indexes thelemgth.

We have an ulterior motive in dealing with alisorce of mixtures. We want to introduce you
to a little matrix algebra. Matrix algebra is a gead purpose tool for solving simultaneous
eguations, among many uses. Matrix algebra isatsndy way to simplify the way equations
are written that helps us focus on the underlygsges. Matrix techniques will be central in
several upcoming sections. This application tosthlation of simultaneous equations will be a
good way to help you get used to powerful matrohteques.

Egs. 2.6.2 are straightforward enough. Howevés ,often convenient to write simultaneous
equations in matrix form. Assuming the path lengtts, 1 cm for convenience:

constituent 1 constituent 2

€11 €12 (CD M
{=1cm 2.6.
(AZJ (821 822)C = A2 ( cm) 6.3
Eq. 2.6.3 and Egs. 2.6.2 are completely equivaTléhrEt absorbance vector and the concentrations
vector are given symbols with one underscore “~":
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(a2) @)

ﬁ‘(Az and = \c, 2.6.4

You are familiar with vectors from General Physiosyever, the vectors in General Physics had
three components, one each for the x, y, and ztdires. Vectors in general can have any
number of components. In mechanics, you probaleyg assymbol likej to indicate a vector.

Both types of notation are used interchangeablg. mhatrix of coefficients for the simultaneous
set of equations is given a symbol with an undeestd’ to indicate it is a matrix:

€11 €
g:( 1 12) 265
=~ €21 €22

Using this notation, Eq. 2.6.3 becomes:
ﬁzgﬁ (=1cm) 2.6.6

Matrices in general have rows and columns:

column1l column 2
! !
row 1 - ( €11 €12 j

row2 — €21 €22

For each element in the matrgg, the first index is for the row number and thessetindex is
for the column number. EQ. 2.6.5 is a square matiilx 2 rows and 2 columns, that is, itis a
2x2 matrix. For more information on matrix algelpplgase consult the Addendum, Section 2.8.

Example 2.6.1: Matrices and the Absorbance of Mixtures
Use Figure 2.6.1 to estimate the coefficient mdtin¢he corresponding set of linear
simultaneous equations.

Answer: Following the dotted curve for constituentle molar absorption coefficient at
wavelength one is;1 = 6000 M cmt, but the molar adsorption coefficent at waveleryit
much smallergz1 = 1000 M* cnmt. Following the solid curve for component 2, at efangth 1
the value is smalki2 = 1800 M* cni?, but much larger at wavelengthe2z = 8000 M* crmt.
Building the matrix gives:

_ (811 elzj _ (eooo 180 0 6.7
£ =1 e, 00 ~ L1000 800 e

Example 2.6.2: Absorbance of a Mixture

Using the molar absorption coefficients from Ed&.?2, assume that the concentration of
constituent 1 is 2.54x10M and constituent 2 is 0.86x3®BI, and a cuvette pathlength of 1 cm.
Calculate the absorbance of the solution at thewaxelengths. Assume the molar absorption
coefficients are known to three significant figures
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Answer: From Eq. 2.6.3:
B B (811 812) (CD B (6000 180 (2.54X105 M) _
BTEE™ ¢y, £00) \c2) = 1000 8000 \0.86x10° M)
@D B (6000(2.54x1(§) + 1800(0.86x16)) _ (0.16
~\1000(2.54x106) + 8000(0.86x16)) ~ \0.09

The pattern for the multiplication can be seen fmymparison of Eq. 2.6.2 and 2.6.3. The
general case is discussed in the Addendum on nagebra, Section 2.8. The absorbance at the
first wavelength is 0.168 and at the second is4.09

The form of the matrix in Eq. 2.6.7 is partialjyauseful. The elements; ande,; are called
the diagonal elements; they lie along the mainahatjof the matrix. These coefficients show
the major absorptions. The elemesitsandez: are called off-diagonal elements. These off-
diagonal elements would be zero if the absorptemdis of the two constituents showed no
overlap. The non-zero values in our example shawttie two components cause an interaction
between the absorbances of the two constituenthidicase, there is no chemical interaction;
the interaction is just that both components ababiinmth wavelengths. In cases that we will see
in later chapters, the off-diagonal elements indi@achemical interaction or a coupling of
processes. Putting the equations in matrix forrped make these interactions easier to see—
it's a “can’t see the forest for the trees” thing.

The big advantage of using matrix notation forgtaneous equations is that these equations
have general solutions. In other words, the algebpaetty much automatic, saving you a lot of
work. The formal solution to Eq. 2.6.3 is calcuthtesing the inverse of the matrix:

ETA=E (=1cm) 2.6.8

If the path length is not 1 cm then including tlahplength givesgf)‘lﬁ =5 Eq. 2.6.8 looks a

little abstruse, but it is really quite simple toglement, especially using Excel, a handheld
calculator, or a mathematical analysis packageNtthematica, Maple, or MatLab. Let’s

switch into general notation for a moment to hightithe general pattern in Egs. 2.6.3 and 2.6.8.

03
General Pattern 3: The Matrix Solution of Smultaneous Linear Equations:
Consider the set of simultaneous linear equation

a = Mirbr + M2 b
& = Maibr+ M by 2.6.9

The corresponding general matrix equation for thrikaneous linear equations is:

ar) _(Mu Mlzj (bj
(az) _(le Moo/ \b: 2.6.10

which is equivalent to:
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where Mis the matrix of coefficients for the simultanemas of equations. Assume the matgix M
and the vectop,are known. We solve for the vectﬁbp multiplying from the left by:|\7|1:

M™a=h 2.6.12

where M is the matrix inverse of M

(Mll Mlzj‘l _ i( M2z —Mlz) 2613
M21 M22 M\ =M21 M11
and |M| is the determinant of the matrix:

IM| = M11M22 — M12M21 2.6.14

The Addendum, Section 2.8, gives the instructiensélculating inverses for larger matrices
and for using Excel to calculate Eq. 2.6.12.
O3

Example 2.6.3: Concentration Determination of Mixtures Using Light Absorption

Using the molar absorption coefficients from E@.2, calculate the concentrations of
constituents 1 and 2 given that the absorbanca ahknown at wavelength 1 is 0.168 and at
wavelength 2 is 0.094. The cuvette path lengthasmm1Assume the molar absorption coefficients
are known to three significant figures.

Answer: We need to solve the equation Eq. 2.%%, gﬁ, for the concentration vectpy ¢
(ﬁj _(811 slzj (CD < explicit (0.16 _(eooo 180 (CD
“lenen) or expicttly: 10.094' =\ 1000 8000 \c

The determinant of the matrix & £ 6000(8000)-1000(1800) = 4.62X1The inverse, using Eq.
2.6.13 is:

a1 (8000 -180 _( 1.732x10" —3.896xlC?)
£ =4.62x10\-1000 6000 ~\-2.164x10 1.299x10"

Substitution into Eg. 2.6.8 gives:

. _( 1.732x1¢' —3.896x165) (0.16 _ (2.54x105M)
572 87216410 1.299x10* /10.094 = l0.86x10° M

The concentration of constituent 1 is 2.54XMand constituent 2 is 0.86x2M. Of course
normally, we would just use Excel, but doing thelgpem by hand should help you feel more
confident. This example is the reverse of Exampbe2?2 so we can compare to check that we got
the correct answer and to look for self-consistes®e Problem 27 for suggestions on error
analysis.
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2.7 Summary—The Goal of Physical Chemistry

Chemical systems can be at equilibrium with unif@encentrations in each phase. Chemical
systems can also be quite dynamic, with chemieadtiens and fluxes of chemical species,
charge, and energy. Our goal now is to understarabapletely as possible the response of
chemical systems to changes in conditions andgpeoach to equilibrium.

Looking at the progression of this text, wetfatscuss the kinetics of chemical reactions. The
remainder of Part 1 is devoted to equilibrium thedynamics and linear non-equilibrium
thermodynamics. Part 2 moves into the microscopiddmo discuss the nature of the chemical
bond and other quantum chemical concepts. Parti®vsted to statistical mechanics. Statistical
mechanics is the bridge that joins the microscapit macroscopic world. The goal of statistical
mechanics is to derive the values of the equilibrzonstants and rate constants for any
chemical process from quantum chemical calculatayrepectroscopic information.

The goal of physical chemistry is to be ablsit@t our desk and make accurate quantitative
predictions of the equilibrium constants and ratestants for any given chemical process. We
then want to use that information to design sohditor life’s pressing needs.

2.8 Addendum: A Brief Introduction to Matrix Algebr a
General Properties of Matrices: Matrices are characterized by the number of ramd columns:

250

2315
A 2x4 matrix: A 3x3 square matrix} 3 5 1
3710 451

A column vector is an nx1 matrix, which is a matnh a single column. A row vector is a 1xn
matrix, which is a matrix with a single row:

4
A 4x1 column vectorf 5 A 1x4 row vector{ 2 5 3 5)

Vectors follow the same algebra rules as matrigkedrices add element by element for the
matching row and column:

(Mn Mlz) N (Nn lej z( M1+ N1z Moot lej
M21 M22 N21 N22 M21+ N21 M2+ N2z
Multiplication of each element of a matrix by a renis calledscalar multiplication:
Mi11 M12 C M11 ¢ M12
c| M21 M22 [ =] ¢ M21 ¢ M2z 2.8.2

M31 M3z C M31 ¢ M3

28.1

The number, c, is called a scalar. To multiply eteeby a matrix,:l\/% the row elements of the
matrix are multiplied by the column elements of Wleetor. The first element in the result is:
S

() ) = s

M21 Moz 2.8.3
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For the second element in the result:

( Mi1 Mlzj l@el) — (I\/Illa1+|\/|12§3
—_—
Mzi Mo Mas &+ Mz2 2.8.4

Take a moment and verify the relationship betwegs E.6.3, 2.8.3, and 2.8.4. A matrix
multiplied by a matrix follows the same pattern, éach column of the product matrix:

(Mll Mlzj (Nll lej _( M11 N1+ M12 N21 Ma1 Niz+ M12N22 )

= 2.8.
M21 M22/ \ N21 N2z M21 N11+ M22 N21 - M21 Nio+ Mo2 N2o 8.5

For matrix multiplication to work, the left matrmust have the same number of columns as the
right matrix has rows. Note that the order of nplitiation is important. Matrices are not
commutative, that ig NN # N M, except for unusual circumstances. For examplicethat
Egs. 2.8.3and 2.8.4 rearrangeq]ag does not work following the rules of matrix
multiplication.

The unit matrix has 1's on the diagonal andf@fghe off-diagonal elements:

,_(1ﬂ 2.8.6
:_01 .O.

The unit matrix is the identity element for matogerations. The unit matrix acts just like the
number 1 in multiplication:

MI=M 2.8.7

~-L L)

The zero matrix has elements that are all zero:

0= (O O) 2.8.8

= \00 -
The zero matrix acts just like the number zero:

M+0=M 2.8.9

The transpose of a matrix exchanges all the rowsdlumns. The transpose of matrix M is
indicated by M:

2 4

given M:(Z >t 5) MT = 37 2.8.10
= 4760 = 16
50

In other words, you just switch the subscriptsegivnatrix Mwith elements Mthe transpose
has elements M The transpose of a column vector is a row vedlotice that, because of the
rules of matrix multiplication you can’t multiply@lumn vector by a column vector. However,
you can multiply the transpose of a column vectoalzolumn vector as long as both vectors
have the same dimension:

ﬁT B= @DT (ED = (A1A2) (ED =AiB1+A2B2 2.8.11
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Notice that this result is the dot product of twe tvectors, which you used many times in
physics;@T B= ALB.

The properties of matrices are almost the sanferascalar numbers, except the lack of matrix
commutivity for multiplication. Given matrices, 8, and_Cand scalar numbers ¢ and d, the
general properties are given in Table 2.8.1. Nud¢ & vectorméis just an nx1 or 1xn matrix, so

row or column vectors can be substituted for anthefmatrices, assuming the dimensions match
the required values for the operation.

Table 2.8.1: Properties of Matrices. For additimatrices must have the same dimensions.
For multiplication, the dimensions must match pxthwgxr.

A+(B+C) = (A+B)+C | Additive associative law

A+B =B+A Additive commutative law
C(A+B) = cA+cB Scalar distributive law

(c+d) A= cA+dA Scalar distributive law

A (BC) = (AB)C Multiplicative associative law

A (B+C) = AB + AC | Distributive law
(A+B)C=AC+BC | Distributive law

(A+B)" = AT+ BT Transpose of a sum
(cé)T = C(éT) Transpose of a scalar multiple
(AB)"=B'AT Transpose of a matrix product
Example 2.8.1:
2 52\(4
Do the matrix multiplication: 5
361

Answer: For the first element in the result:
—_—

(2 5 2) l4 _ (2(4)+5(5)+2(1
36 1 > o

For the second element:

2 5 2 a ( \
(—>3 5 1} lS 3(4) + 6(5) + 1(1)

Giving the final result:
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S

Example 2.8.2:

4
The length of a vector can be calculatedﬁyc@/%% . Find the length of the vect&ii].

4
Answer: B'B = (4 5 1{?] = 4(4) + 5(5) + 1(1) = 42. The length is th¢a2 = 6.48

Example 2.8.3:

13Y51
Ca'cu'at{z 4)(3 6)

o (34) 3 6) = (teyrace 2] = (2220

Matrix Inverses. When we want to solve a normal algebraic eqnatie use the inverse:

: 1 .
Xy=2z solving for y y¥y)z=x"2

2.8.12

where 1/x is the inverse of x: %= 1/x. We do a similar trick with matrices. Theémse of:Mis

defined so that:
M™M=

just like (1/x)(x) = 1. For the matrix equation:

A=Mp
we can solve fohlb)y multiplying both sides of Eq. 2.8.14 from tledt by Ml:

ua =ty

The right-hand side simplifies, using Eq. 2.8.13, t
M7 a=p
All we need now is the inverse of our original matiThe inverse of a 2x2 matrix is:

(Mn Mlz)_l 1 ( M22 —Mlzj

M21 M2» - M —M21 M11

where |M| is the determinant of the matrix:

2.8.13

2.8.14

2.8.15

2.8.16

2.8.17
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IM| = Mi1M22 — M12M21 2.8.18

You can visualize the determinant by following thaltiplications:

[ |V|11><1|V|12 J
M21 M2

However, note the change in sign for the produc¢hefoff-diagonal elements.

The inverse of a 3x3 matrix is more complicat®f@ list the result to show you how it can be
calculated. However, it will be much easier to Egeel, Mathematica, Maple, or a
programmable calculator for normal use. The invefse 3x3 matrix is:

M11 M12 M13\-1 M3sM22-M3M23  —(M3sM12-M32M13)  M23Mi12-M22Mi3
M21 M22 M23 = W1| —(M3sM21—M31M23)  M33sM1:—M31M1z  —(M23sM11—M21M13)
Mz1 Ms2 Mas M3zoM21—M3iM22  —(M32M11—M3iM12)  M2oM11—M2iM 12
with M| = Miy(M33M22-M32M 23)—M21(M33M 12-M32M 13)—M31(M 23M 12-M22M 13) 2.8.19

We will discuss a general algorithm for calculatdegerminants below. A matrix must be a
square matrix to have an inverse. However, naqlbre matrices can be inverted; the
determinant must be non-zero.

The MINVERSE() function in Excel is particulaftyandy for finding inverses. Here is an
example solving a 3x3 matrix. We will solve theldaling equation for x, y, and, z:

o 2 3 2\
@ =304 [y} 2.8.20
123/\Z

First input the matrix of coefficients, this exampises cells C6:E8, Figure 2.8.1. To calculate
the inverse, you highlight the 3x3 range of call$he spreadsheet where you want to place the
inverse, and then input the array formula by presgiefx button and setting up MINVERSE as
=MINVERSE(C6:ES8).

b @ Security... £| S g G 2

GE - £ I=MINVERSE(CE: EB))
AJBIC|D]E]F G [ H [ 1 T

Wl = M'1:

0.421053 1 0263158 063158
0203158 021083 0.105263
031578 0.052632 0.473654

LOul [l VN (B R =S Y U
— L] k2
[N RN
D0 | b B2

10

Figure 2.8.1: Calculating the inverse of a matnEkcel. To specify an array formula, after
entering the formula, highlight the entire formiriahe formula bar, press and hold “Ctrl”
and “Shift”, and then press “Enter”. Excel entdrs t{” and “}" for you.
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The inverse matrix is an array, so you need toipte formula as an array formula. An array
is another name for a matrix. To do this, highlitite entire formula in the formula bar including
the equals sign, and press and hold “Ctrl” and ftShnd then press “Enter”. (For a Macintosh,
the keys are the “Apple” key and “Return.”) Excges braces, “{}", around the formula and
converts the currently highlighted range of cellshie spreadsheet to the corresponding array:
{=MINVERSE(C6:E8)}. To do the matrix multiplicatiom Eg. 2.7.20, you use the =MMULT()
function in a similar fashion. Highlight the coluralls where you want to place the result,
M6:M8 in our example, and then input the array folarby pressing thgbutton and setting up
MMULT. MMULTY() is also an array formula so you netaldo the same trick with “Ctrl” and
“Shift”, and “Enter” to input the formula: {=MMULTG6:18,K6:K8)}. The completed
spreadsheet is given in Figure 2.8.2:

)
@
(@]
O
m
M

G H | J | K L M

M= ML= a= b=

0.4211

0.2632

-0.6316

0.3684

0.2632

-0.2105

0.1053

0.1053

o|~N|o (oW >

P WN

3
0
2

2
4
3

-0.3158

0.0526

0.4737

2
3
2

0.4737

Figure 2.8.2: Calculating the solution for thre@i@ipns in three unknowns in Excel.

The final answer is then x = 0.3684, y = 0.1053| arr 0.4737.

Calculating determinants. The determinant of a 2x2 matrix is given by E®.18. How do you
calculate determinants for larger matrices? TakecHse of a 3x3 matrix:

abec
def
g h i

M|= 2.8.21

The determinant of a large matrix can be writteterms of smaller matrices called minors. The
minor of a given element is the matrix obtainedstiiking out the row and column of the chosen
element. For example, the minor for element avemby:

a b <

f
d e f :‘ﬁ‘ 2.8.22
. [
g h i
Minors have an associated sign, alternating thrabhghmatrix:
+ — + —
-+ — +
o+ 2.8.23
-+ — +

For example the minor for element a is positive toedminor for element d is negative. We can
expand the determinant in terms of the minors gfraw or column. For example, choosing the
first column:
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a b € a b c a b c
M|=a| ¢ e f|-d| & e {f|+g| & e f 2.8.24
g h i g h i g h i
The resulting 2x2 determinants can be evaluatetyusq. 2.8.18:
e f b c b c
Ml[=a| | —d| g i‘ tO|le f 2.8.25

The second term in this last equation is negateabse the minor associated with element d has
a negative sign, using Eq. 2.8.23.
We could also have expanded in terms of a Faw.example, choosing the second row:
‘ ac
g i
In general we pick the row or column with the moestos for the expansion.

For larger matriceshe expansion is done in steps. For example, addedpanded in terms of
3x3 minors and then the 3x3 determinants are exgghmdterms of 2x2 minors.

b c ab
R S e I 2.8.26

Example 2.8.4:

320
Find the determinant of the matrix:_ w{l 0 5]
0 42

Answer: We can expand across any row or down any coliirpanding across the first row,
we need the first and second minors:

320 3 2 0
05 and |1 © 5

042 0 4 2

+ — +
We need to take into account the signs of the imsambminors:( -+ —}
+ — +

_ . . 5 15
Expanding in terms of the minors gives: |M| %% > ‘— 2 ‘ 0 2 ‘
The determinants of the 2x2 minors are:

‘22 =0(2) -4(5)=-20 and ‘é §\=1(2)—o<5>=2

giving the final determinant: |[M| = 3(-20) — 2)64.
Excel can be used to easily calculate deternsnasing the “=MDETERM()” function:

Al B C D [E [F |G [H
2

3 M= M= | -64
4 3 2] 0

5 1 0| 5

6 0 41 2

The formula in H3 is “=MDETERM(C4:E6)".
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Matrix algebra is widely used in statistics, momics, population biology, engineering,
computer graphics, and in ranking sports teamswimpsome matrix tricks will come in
handy.

Chapter Summary

1. Dalton’s Law of Partial Pressures states thaptrtial pressure of a gas, IB the pressure the
gas would exert if it were alone in the flaskV B ny RT and P=y; P with Y; = n/n.
Ns
2. PV = nRT for the mixture of gases with nXx n;.
i=1
3. Gas phase concentrations are defined a8ty = P/RT.
Ns Ns
. Mole fractions sum to one for a pha3ey: = 1 for the gas phasg; x = 1 for solutions.
i=1 i=1
. Molarity is ¢ = n/V, with V in liters. Molality is m = n/Wsolveny With Wsoiventin kg
. Mole fractions and molality are independenteshperature. Molarity depends on temperature.
. A flux is a flow per unit area per unit time foatter, charge, or energy.
. The molar flux for bulk flow or convection is & .
. Fick’s First Law shows that concentration gratBedrive mass transfer through diffusion:

dc

© 00 N o o1 b

10. Light flux is the power per unit area or eqlévely the intensity.

11. Absorbance is defined as A = lag).

12. The Beer Lambert Law for absorption is & &c. By using absorbance, instead of the flux or
intensity directly, the relationship to concentwatis linear.

13. Emission intensity is also linear, or nearhehr, with concentratiory,  k c.

14. Absorption and emission bands are broad be¢haseolecules are changing molecular
electronic states and vibrational states at theesame. The width of an absorption band or
an emission band in solution is given by the ramfgabrational excitations.

15. Molecules have more than one excited statettardfore often have more than one
absorption band in the UV-visible range of the $pguo.

16. Fluorescence is redder than the correspondisgrption. Fluorescence always occurs from
the lowest vibrational energy state of the firsi@calar excited state.

17. The loss of vibrational energy within a molecwgxcited state in absorption or the molecular
ground state in emission is called vibrationalxaten.

18. Conductance is defined as G = 1/R. Conductigityormalized for the geometry of the
conductance cell electrodess= 1/R (/A).
19. Molar conductivity is defined asn = K/c.

20. For strong electrolytes, conductivity is appneately linear with concentratior,= Amc.
However, see the following.
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21. For strong electrolytes over wide concentrateomges/\m = Am—K.C% Any is the limiting
molar conductivity, which is the molar conductivityat is extrapolated to zero concentration
so that the inter-ionic forces are negligible.

22. Diffusion and electrical conductivity are exdaegpof linear flux-force relationships.
23. The absorbance of a mixture is the sum of tiserdances of the constituents.
24. The simultaneous linear equations for the ddasuare of mixtures can be expressed in matrix

form, A =g g, The matrix formulation allows the concentratiafign unknown to be
calculated easil)e;:f'1 ﬁ = or more simplyg1 ﬁ = ﬁassuming =1cm.

O 2 Generalized flux-force relationships have the fdrm Li X, with L; a linear coefficient and
Xi the generalized force for the transfer. The gdizexcforce is the gradient of a potential.

O 3 The set of simultaneous linear equations:

a=Muibi+ M2l
&=Mo1 b1+ M2 b

can be written in matrix form:

a) _(Mu l\/llzj (bj .
(a) = (le Moo b or equivalently &= M by
The solution to this equation fﬁib: Mlg= B
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Chapter 2 Problems

1. A 1.00-L bulb containing tat a pressure of 2.50 bar is connected to a 2.00Hk containing
N at a pressure of 1.50 bar, both at the same teyper Calculate (a) the total pressure of the
system, (b) the mole fraction obHand (c) the partial pressure of each gas.

2. Dry air is 20.946% by volume>@nd 79.054% B Consider a constant pressure piston filled
with dry air at 1.000 atm or 1.01325 bar pressui298.2 K. A small amount of water is
admitted and allowed to evaporate to give the éxiin vapor pressure of water in the piston.
Calculate the partial pressure of & 298.2 K.
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3. Dry air is 20.946% by volume>@nd 79.054% B Consider a constant volume flask filled
with dry air at 1.000 atm or 1.01325 bar pressui298.2 K. A small amount of water is

admitted and allowed to evaporate to give the dxwiin vapor pressure of water in the constant
volume flask. Calculate the partial pressure pa0298.2 K.

4. An aqueous solution is prepared by adding 2@8&f ammonium sulfate, (NSO, to a
100-mL volumetric flask and then diluting to thenal he final mass of the solution is
102.97 g. Calculate the molarity, molality, and thele fraction of ammonium sulfate in this
solution. Calculate the mole fraction of the solven

5. An aqueous solution is prepared by adding 2g0&42CaCt[2H,0O to a 100-mL volumetric
flask and then diluting to the mark. The final masghe solution is 101.26 g. Calculate the
molarity, molality, and the mole fraction of Ca@ this solution. Calculate the mole fraction of
the solvent.

6. Calculate the molality and mole fraction ofGaB51 M aqueous NALI solution @iig = 53.50
g mot?). The density of the solution is 1.0140 gL

7. The intensity of a 552 nm light beam is decedas 18.2% of its original intensity on passing
through 3.00 cm of a 2.13x*M solution of an absorbing solute. What is the analbsorption
coefficient?

8. Explicitly do the integration of Eq. 2.4.1 tvg Eq. 2.4.3.

9. Bipyridine forms an intense red color when rdixath aqueous solutions of Fe(ll):
3 bipy + Fé" = Fe(bipy}**

This complex is commonly used for low level speghatometric determinations of Fe(ll) in
natural waters. A standard solution of 5.04%M Fe(ll) was added, using volumetric pipettes,
to a series of 50.0-mL volumetric flasks and ditlte the mark with excess bipyridine solution
according to the following table. The absorbancthefsolutions was determined at the
wavelength of maximum absorbance, 522 nm, usingratte path length of 1.00 cm. (a). What
color corresponds to 522 nm? (b). Determine theamadbsorption coefficient. (c). A 20.000-mL
sample of water from a stream that drains a bogtweased in the same fashion producing an
absorbance of 0.271. Calculate the concentratidre(f) in the stream.

Fe(ll) added, (mL) 2.00 4.00 6.00 8.00 10.00
A 0.176 0.345 0.523 0.702 0.870

10. What is the absorbance of the column of wiaitgtrcorresponds to %, %2, and % of the depth
of the euphotic zone? What absorbance corresporttie depth of the euphotic zone?

11. The concentration of quinine sulfate in tomater can easily be determined using
fluorescence emission. A series of standard selstio 0.05 M sulfuric acid was prepared and
the fluorescence emission at 470 nm was deternasethown below. The standard stock
concentration was 1.00x2@ L™ or 1.28x16 M. The volumes of the quinine stock solution,
listed below, were added to 100—mL volumetric fiaakd diluted to the mark with 0.05 M
sulfuric acid. Fluorescence light fluxes, or inéies, are usually measured in arbitrary units,
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which could be in millivolts or the unscaled congrutligitized output from the detector. The
units are immaterial since fluorescence must alvisysalibrated with standard solutions and
then the fluorescence units cancel out. A commktanc water sample was diluted 0.5 mL to
100 mL with 0.05 M sulfuric acid and the fluorescerntensity was determined to be 22167
units. Determine the molar concentration of thenong in the tonic water.

stock added, (mL) 10.00 30.00 50.00 70.00 100.00
fluorescence intensity 2741 8214 13586 18983 27319

12. Photovoltaic cells convert sunlight into elaezt energy. The units often used for the
electrical energy are kW hours, or kWh. Calculaedonversion factor from kWh to joules.

13. The peak sun solar flux that reaches a sudacged directly at the sun is about

1000 W . The solar insolation is the total amount of selaergy for a given location for a
specific time. The solar insolation is the averagédent energy for a specific time that takes
into account the tilt of the sun during the day #meleffects of clouds. The yearly average
insolation for the United States is given belownirdata from the National Renewable Resource
Laboratory, NREL, (http://www.nrel.gov/gis/solamti). Calculate the factor for the conversion
of the peak sun flux of 1000 W-frto the yearly average flux for Phoenix (6.08 kWH day?),
Seattle (3.69 kWh rhday?'), Boston (4.16 kwWh riday?), and Miami (5.45 kWh r day?).

kWh nm? day?
[13.5-4.0
[C14.0-45
[J4.5-5.0
[5.0-55
E5.5-6.0
BN 6.0-6.5
G 5-7.0 -

Figure P2.1: Average Daily Solar Insolation. Thasmsolation is the average daily energy
falling on a surface parallel to the ground per dagraged over the year. (Map source:
http://www.nrel.gov/gis/images/map_pv_us_annuall0#et2008.jpg)
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14. A photovoltaic panel can convert about 6-12%he light flux into electrical power. The
conversion of the DC power from a solar panel topg@er that can be used to power
appliances or to feed into the power grid is aldi% efficient. Use the solar insolation values
listed in Problem 13. (a) Calculate the AC poweaaikmble per square meter per day from
photovoltaic cells operating at 12% efficiency achk of the four cities. (b) A typical refrigerator
requires 450 kW hours of energy per year. Calculsehotovoltaic panel area needed to
provide all the energy for this refrigerator.

15. Calculate the value for the limiting molar dantivity, Ay, for CaCh from the following
data, taken at 2&.

c (M) 1.00x10° 2.00x10° 10.00x1CG° 0.100
Am (mS n¥f mol!) 26.386 26.072 24.850 24.072

16. Conductivity electrodes are calibrated ustagdard KCI solutions. The conductivity of
0.001000 M KCl is 0.14695 S‘tnMany meters and texts list conductivities in m$, ® cm?,
mS cmt, and puS cm. Find the conductivity of 0.001000 M KClI in thesgditional units.

17. Conductivity electrodes are calibrated ustagdard KCI solutions. The conductivity of
0.01000 M KCl is 0.14127 Shor 1412.7 uS crh The resistance of a conductance cell
containing 0.0100 M KCl is 552.2 ohm at 25°C. Teésistance of the same cell when filled with
a solution containing 2.380 g of Mg(er liter is 151.0 ohm. (a). Calculate the celistant,
which is defined ag (A), wherer is the distance between the electrodes and Aeisribss-
sectional area of the electrodes. (b). Calculaectimductivity of the MgGlsolution. (c).
Calculate the molar conductivity in m&mof?, S cnt mol?, anduS cm* mol?.

18. Ammonia is a weak electrolyte and weak badlds + H:O = NHs;" + OH. The fraction of
NH4OH is always small in aqueous solution, so thetiimgimolar conductivity cannot be
measured directly. However, NElIl, NaCl, and NaOH are all strong electrolytes.&aiv
AR(NH4CI) = 14.97 mS rfmol?, A%(NaCl) = 12.64 mS gmol?, and A(NaOH) =

24.80 mS rfmol?, calculate the limiting molar conductivity of N&H.

19. Thermal conductivity can be expressed aseatiflux-force relationship:

dT
d=-K dx

wherek is the thermal conductivity and dT/dx is the tenapare gradient. The units of the
thermal flux are J rAs? giving the units ok as J mt K s1. Some manufactures sell
thermopane windows with argon as the fill gas betwiae panes. Calculate the thermal flux
with air and with argon as the fill gas in a thepane window with a spacing of 2.00 mm
between the panes of glass. Assume the outsidenajrerature is O%C and the inside is 20G.
The thermal conductivity of air is 0.0252 and arg®0.0233 J MK ! st at 15C and 1 atm.
Assume a linear temperature gradient.

20. Thermal conductivity can be expressed aseatiflux-force relationship:
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dT
d=-K dx

wherek is the thermal conductivity and dT/dx is the tenapare gradient. The units of the
thermal flux are J ras? giving the units ok as J mt K2 s1. Why are stainless steel cooking
pans often sold with a thin copper cladding ondbtom? The thermal conductivity of
aluminum is 250, copper is 401, and stainless &8 J m' K1 st at 25C.

21. Often in practical applications of membrarféudion the membrane thickness is not known.
When the membrane thickness is not known, thedlimss the membrane from Egs. 2.3.3 and
2.3.4 is written as:

(c'=c)

=-P(c'-0)

where the permeability, P, is defined as P & @hdd is the thickness of the membrane. A linear
concentration gradient through the membrane isnasduThe permeability of a cellulose-based
dialysis membrane was found to be 6.3%19 s for KCI. Calculate the initial flux of KCI

through the membrane if one side of the membraneansli-stirred solution of 0.100 M KCI and
the other side is distilled water.

22. Assume two well-mixed compartments with volsrive and s are separated by a
membrane. Substance X diffuses through the memjondneh has cross-sectional area A:

membrane
/‘ cross-sectional area = A

Vi V,

- X

(a). Prove for diffusion of substance X acrossesiorane that the rate of concentration
change in compartment 1 is given by:

d[X] dcx
Jd_tl=ﬁ = I (AV1)

(b). Using the data in the last problem calculbteinitial rate for the concentration change for
compartment 1 assuming a 3.00 cm diameter circoéanbrane and M= 50.0 mL.

23. A constant volume flow reactor is used to @hused vegetable oil to biodiesel fuel. The
input stream contained vegetable oil, 1% KOH an 20ethanol. The yield of biodiesel for a
constant flow at 5TC was 73.0% and the yield when the reactor wast@¥C was 92.1%.
Assume a constant flow. (a). Show that the ratithefreaction yields under two different
conditions is equal to the ratio of the produckds out of the reactor. Assume the flow cross-
sectional area for the input and output are thees#n). Show that the ratio of the reaction yields
is equal to the ratio of the average chemical reactates under the two different conditions.
[Hint: the average reaction rate for the formatdmproduct over the time interval is given by

L = A[P]/At, whereA[P] is the change in product concentration.]
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24. By drawing vectors in an x-y coordinate pitpw that matrix multiplicatior]:]a M Bwith
the matrix:

(\/é/z —1/2j
1/2 [3/2

1/2
corresponds to a rotation of the vector by 8bund the z-axis. Usﬁjb(\/élz)’ which is

diagrammed at right:
'ag 'g 0.866

y

0.t X

25. How are 3D computer graphics done? Many obfferations in computer games and
molecular graphics correspond to rotation abousthe perpendicular to the computer screen.
We showed in the last problem that matrix multiglion can generate such rotations. Show that
the matrix,

cosO —sin ej
sin® cosb

RA(6) = (

generates a rotation around the z-axi@ dégrees, by showing that(B0°) gives the matrix in
the last problem.

26. In computer graphics, the apparent distantedasn the observer and the object on the
screen is determined by scaling the object. Shavttte diagonal matrix:

_(n 0 _ _
M = on with g=Mp,

o 1/2 L :
changes the length of the vecﬁ)blht not the direction. Us&zb \/§/ , Which is diagrammed in
Problem 24.

27. The UV-visible absorption spectra of two comnpas is shown below. The concentration of

each is 5.00x1IBM. The absorbencies at the two analytical wavelesg: andA; are listed in
the figure.
0.8

A=0.672

0.6~

Compound 1 Compound 2
0.4 ’

0.2

A=0.112
1 L

1 1 1
300 A, 400 500 ), 600
wavelength (nm)
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The path length of the cuvette is 1.00 cm. An umkmanixture has an absorbance of 0.41R8;at
and an absorbance of 0.546\at(a). Determine, without calculations, the comparveith the
larger concentration. (b). Calculate the conceiatnatof the two compounds.

¢ o
28. Show that AB+C) = AB + AC explicitly using A= (2 db) , B= (S h) , and C= G( J| )

29. Find the determinant of the following matrix:
201
M: 350
- (014

30. Find the determinant of the following matwxhich we will use in Chapter 6):

—k1—=Ai 0 0
M= ki —ki'-Ai O

0 Ki'  —A



