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Chapter 19 Problems: Real Solutions  
 
 
1. A solution of solvent A and solute B has relative forces A-A, B-B < A-B. Are the activity 
coefficients for the solvent less than one or greater than one? 
 
 
Answer:  The A-B forces are favorable giving negative deviations from ideality and A < 1 for 
the solvent. We always assume a Raoult’s Law standard state for the solvent. 
 
 
2. The partial pressure of acetone over a solution of acetone in ether at 30°C is 0.120 bar at 
xacetone = 0.200. The partial pressure of ether at this same concentration is 0.713 bar. Calculate the 
activity coefficients for ether and acetone given that vapor pressure of pure acetone is 0.377 bar 
and of pure ether is 0.861 bar. 
 
 
Answer:  On a Raoult’s Law standard state basis, Eqs. 19.1.5 and 19.1.7, with P*

acetone = 0.377 bar 
and P*

ether = 0.861 bar, the activities are: 
 

 aA = PA/P
A
 = 0.120/0.377 = 0.318   A = aA/xA = 0.318/0.200 = 1.59 

 

 aE = PE/P
E
 = 0.713/0.861 = 0.828   E = aE/xE = 0.828/0.800 = 1.04 

 
 
3. The pure vapor pressure of substance A is 28.2 torr. The mole fraction of A in the vapor above 
a solution is 0.0432 while the mole fraction of A in the solution is 0.672. Calculate the activity 
coefficient for A in this solution on a Raoult’s Law basis. The total vapor pressure is 760.0 torr. 
 
 
Answer:  The plan is to use Dalton’s Law to find the partial vapor pressure of A and then aA = 
PA/P

A. 
   Dalton’s Law gives the partial vapor pressure of A in the gas phase: 
 

 PA = yA P = 0.0432 (760 torr) = 32.8 torr 
 

On a Raoult’s Law standard state basis, Eqs. 19.1.5 and 19.1.7 give: 
 

 aA = PA/P
A
 = 32.8/28.2 = 1.16   A = aA/xA = 1.16/0.672 = 1.73 

 

Vapor phase composition data is easily obtained using gas-phase UV or IR absorption 
spectroscopy or gas chromatography. 
 
 
4. Under what circumstances can the activity coefficient of the solvent be greater than one, but in 
the same solution, the activity coefficient of the solute be less than one (or visa versa)? 
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Answer:  The situation is likely when a Raoult’s Law standard state is used for the solvent and a 
Henry’s Law standard state is used for the solute. For example, if the solvent activity coefficient 
is greater than one, the solution has positive deviations from ideality, as in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
From the figure, for the solvent A, PA > PRa

A
oult  giving A > 1. For the solute B, PB < PHe

B
nry giving 

B < 1. At intermediate concentration, the behavior of each component is intermediate between 
Raoult’s Law (for example, positive deviations) and Henry’s Law (corresponding negative 
deviations). 
 
 
5. (a). Calculate the activity coefficient for B at xB =0.667 with a Raoult's Law and a Henry's 
Law standard state. (b). Characterize the relative forces, AB versus (AA+ BB)/2. (c). Find the 
vapor pressure of pure B and the Henry’s Law constant for B from the plot. Find the Raoult’s 
Law and Henry’s Law predictions for the vapor pressure of B at xB =0.667. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Answer:  The plan is to note that PA = 15.0 torr, PB = 64.0 torr, PRa

B
oult = 86.7 torr, and PHe

B
nry = 

33.4 torr at xB = 1 – xA = 0.667. 
 

(a).  Using Eq. 19.1.9 for a Raoult’s Law standard state gives: 
 

 B = PB/PRa
B

oult = 64.0/86.7 = 0.738 
 

   Using Eq. 19.1.16 for a Henry’s Law standard state gives: 
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 B = PB/PHe
B

nry = 64.0/33.4 = 1.92 
 

At this intermediate concentration, the behavior of B is intermediate between Raoult’s Law (with 
negative deviations) and Henry’s Law (with positive deviations), as expected. 
 

(b).  Because the vapor pressures are less than the Raoult’s Law predictions, this solution shows 
negative deviations from ideality; |AB| > |(AA+ BB)/2|. 
   It is best to deal with magnitudes, since the forces are all attractive, AB, AA, BB < 0. Using 
simple solution theory, noting Eq. 19.6.4, then AB is more favorable than  (AA+ BB) so that AB 
< (AA+ BB)/2 gives solG < 0. 
 

(c).  Visually, the vapor pressure of B at xB = 1 is P*
B = 130. torr. The Raoult’s Law prediction is: 

 

 PRa
B

oult = xB P*
B = 0.667(130. torr) = 86.7 torr  as shown in the figure. 

 

Visually, from the intersection of the Henry’s Law line at xB = 1, kH,B = 50.0 torr. The Henry’s 
Law prediction is: 
 

 PHe
B

nry = xB kH,B = 0.667(50.0 torr) = 33.4 torr  as shown in the figure. 
 
 
6.  The partial vapor pressure of heptane above a solution of heptane and 1-bromobutane was 
0.0885 bar for a heptane mole fraction of 0.4164. The vapor pressure of pure heptane is 0.187 
bar. The Henry’s Law constant for heptane was determined in Problem 18.13 to be kH,heptane = 
0.265 bar. Calculate the activity coefficients on both a Raoult’s Law and Henry’s Law basis. 
 
 
Answer:  On a Raoult’s Law standard state basis, Eqs. 19.1.5 and 19.1.7 give: 
 

 aA = PA/P
A
 = 0.0885/0.187 = 0.473   A = aA/xA = 0.473/0.4164 = 1.14 

 

The solution has positive deviations from ideality, overall. On a Henry’s Law standard state 
basis, using Eq. 19.1.14 for heptane as the solute B: 
 

 aB = PB/kH,B = 0.0885/0.265 = 0.334  B = aB/xB = 0.334/0.4164 = 0.802 
 

The vapor pressure of heptane is less than that predicted from the dilute solution environment. 
The behavior of heptane is intermediate between Raoult’s Law (positive deviations) and Henry’s 
Law (negative deviations) as you might expect since the solution is intermediate in 
concentration. 
 
 
7.  The freezing point depression for a 10.00 % by weight solution of acetone in water is 3.29C. 
Calculate the activity, activity coefficient, and osmotic coefficient. Calculate the osmotic 
pressure of the solution at 25C assuming the activity coefficient and osmotic coefficient are 
constant over the given temperature range and the partial molar volume of the solvent is the pure 
molar volume. The molar mass of acetone is 58.05 g mol-1. The enthalpy of fusion of water is 
6.008 kJ mol-1. 
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Answer:  We follow Example 19.1.2. The mole fraction of the solvent, assuming 100.0 g of 
solution, is: 
 

 xA = 
90.00 g/MA

90.00 g/MA + 10.00 g/MB
 = 

90.0 g/18.0153 g mol-1

90.0 g/18.0153 g mol-1 + 10.00 g/58.05 g mol-1 = 

0.96667 
 

The molality of the solute, assuming 100.0 g of solution, is: 
 

 mB = 
10.00 g/MB

90.00 g (1 kg/1000 g) = 
10.0 g/58.05 g mol-1

90.0 g (1 kg/1000 g) = 1.914 m 
 

Using Eq. 19.1.4 with the melting point of the solution, T = 273.15 K – 3.29 K = 269.86 K, and 
assuming a constant enthalpy of fusion: 
 

 ln aA = – 
fusHA

R  



1

T – 
1

T*
m

 = – 
6.008x103 J mol-1

8.3145 J K-1 mol-1 



1

269.86 K – 
1

273.15 K  = -0.032252 

 aA = 0.96826 
 

The activity coefficient is A = aA/xA = 0.96826/0.96667 = 1.00164. 
The osmotic coefficient is given by Eq. 19.1.20 or directly using Eq. 19.1.23: 
 

  = – (55.51 mol kg-1 ln aA)/mB = 
fusHA

R mB/(55.51 mol kg-1) 



1

T – 
1

T*
m

 

    = – 55.51(-0.032252)/1.914 m 
    = 0.93538 
 

The osmotic coefficient has a larger difference from one than the activity coefficient, as 
designed. 
   The pure molar volume of water is V*

A = MA/dA,pure = 18.069 mL = 0.018069 L. The osmotic 
pressure can be calculated from Eq. 18.4.23† with the activity substituted or Eq. 19.1.24 using 
the osmotic coefficient: 
 

  V– A = – RT ln aA = – 0.083145 bar L K-1 mol-1(298.15 K)(-0.032252)   giving 
  = 44.25 bar  alternatively: 

  V– A = RT  mB/(55.51 mol kg-1)    giving    = 44.25 bar 
 

The ideal prediction using Eq. 18.4.26† is 46.5 bar, which corresponds to a 5% error neglecting 
the activity coefficient. Electrolyte solutions show much larger deviations from ideality.  
 
 
8.  The freezing point depression for a 10.00 % by weight solution of MgCl2 in water is 7.91C. 
Calculate the activity, activity coefficient, and osmotic coefficient. Calculate the osmotic 
pressure of the solution at 25C assuming the activity coefficient and osmotic coefficient are 
constant over the given temperature range and the partial molar volume of the solvent is the pure 
molar volume. The molar mass of MgCl2 is 95.23 g mol-1. The enthalpy of fusion of water is 
6.008 kJ mol-1. 
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Answer:  We follow Example 19.1.2 with mB = mMgCl2 and = 3. The mole fraction of the 
solvent, assuming 100.0 g of solution, is: 
 

 xA = 
90.00 g/MA

90.00 g/MA + 3(10.00 g/MB) = 
90.0 g/18.0153 g mol-1

90.0 g/18.0153 g mol-1 + 3(10.00 g/95.23 g mol-1) 

     = 0.94068 
 

The molality of the solute particles, assuming 100.0 g of solution, is: 
 

 mB = 3 



10.00 g/MB

90.00 g (1 kg/1000 g)  = 3 



10.0 g/95.23 g mol-1

90.0 g (1 kg/1000 g)  = 3.5003 m 
 

Using Eq. 19.1.4 with the melting point of the solution, T = 273.15 K – 7.91 K = 265.24 K, and 
assuming a constant enthalpy of fusion: 
 

 ln aA = – 
fusHA

R  



1

T – 
1

T*
m

 = – 
6.008x103 J mol-1

8.3145 J K-1 mol-1 



1

265.24 K – 
1

273.15 K  = -0.078891 

 aA = 0.92414 
 

The activity coefficient is A = aA/xA = 0.92414/0.94068 = 0.98242. 
The osmotic coefficient is given by Eq. 19.1.20 or directly using Eq. 19.1.23: 
 

  = – (55.51 mol kg-1 ln aA)/mB = 
fusHA

R mB/(55.51 mol kg-1) 



1

T – 
1

T*
m

 

    = – 55.51(-0.078891)/3.5003 m 
    = 1.2511 
 

The osmotic coefficient has a larger difference from one than the activity coefficient, as 
designed. 
   The pure molar volume of water is V*

A = MA/dA,pure = 18.069 mL = 0.018069 L. The osmotic 
pressure can be calculated from Eq. 18.4.23† with the activity substituted or Eq. 19.1.24 using 
the osmotic coefficient: 
 

  V– A = – RT ln aA = – 0.083145 bar L K-1 mol-1(298.15 K)( -0.078891)  = 108.2 bar 

  V– A = RT  mB/(55.51 mol kg-1)   = 108.2 bar 
 

The ideal prediction using Eq. 18.4.26† is 83.9 bar, which corresponds to a 22% error neglecting 
the activity coefficient. 
 
9.  Eqs. 18.4.8†, 18.4.15†, and 19.1.4 assume the phase transition enthalpy of the solvent is 
constant. For careful determinations of the activity with large freezing point changes, the 
temperature dependence of the enthalpy of fusion should be taken into account:  fusHA(T) = 
fusHA(T*

A) + fusCp,A (T – T*
A). Use this temperature dependence to find a better approximation to 

Eq. 19.1.4 by completing the following steps. 
(a). At equilibrium for a solid-liquid phase transition, the equivalence of the chemical potentials 
gives *

A(s) = *
A(l) + RT ln xA, which is the analog to Eq. 18.4.2†. Convert the last equation into 

the corresponding equation for a real solution. The Gibbs energy of fusion for the pure solvent is 
fusGA = *

A(l) – *
A(s). Use the Gibbs-Helmholtz relationship, Eq. 16.3.12, to show: 
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





 ln aA

T P
 = 
fusHA

RT2  

 

(b). Use the temperature dependence of the enthalpy to integrate this last equation from T*
A to T. 

Note that aA = 1 and ln aA = 0 at the pure standard melting point T*
A. The result is: 

 

 ln aA = – 





fusHA(T*

A) – fusCp,A T*
A

R  



1

T – 
1

T*
A

 + 
fusCp,A

R  ln(T/T*
A
) 

 
 
Answer:  (a). To convert the ideal solution equation to a real solution, we simply replace xA with 
aA. The difference in the chemical potentials gives: fusGA = *

A(l) – *
A(s) = – RT ln aA. Then the 

Gibbs-Helmholtz expression, Eq. 16.3.12, gives: 
 

 











fusGA

T
T P

 = – 
fusHA

T2  

 

Since ln aA = –fusGA/RT, dividing both sides of the last equation by –R gives: 
 

 






 ln aA

T P
 = 
fusHA

RT2  
 

(b). Integrating this last equation from T*
A to T and using fusHA(T) = fusHA(T*

A) + fusCp,A (T – 
T*

A): 
 

 ln aA(T*
A)

ln aA(T)    d ln aA = 



T*
A

T

 
fusHA(T*

A)
RT2  dT + 





T*
A

T

 
fusCp,A

RT  dT – 




T*
A

T

 
fusCp,A T*

A

RT2  dT 

 

Since at the pure standard melting point, aA = 1 and ln aA = 0, the integral on the left is just ln aA 
at the final temperature. The first integral on the right gives the standard form of the equation, 
Eq. 18.4.15†. The remaining two terms are the corrections: 
 

 ln aA =  – 
fusHA(T*

A)
R  



1

T – 
1

T*
A

 + 
fusCp,A

RT  ln(T/T*
A
) + 

fusCp,A T*
A

R  



1

T – 
1

T*
A

 
 

Combining the first and last terms on the right gives the final result: 
 

 ln aA = – 





fusHA(T*

A) – fusCp,A T*
A

R  



1

T – 
1

T*
A

 + 
fusCp,A

R  ln(T/T*
A
) 

 

For water, fusHA(T*
A) = 6.008 ± 0.004 kJ mol-1, T*

A = 273.15 K, and fusCp,A = 38.1 ± 0.2 J K-1 
mol-1. Substituting these values into equation 13 gives: 
 

 ln aA = 529.16 



1

T – 
1

273.15  + 4.583 ln(T/273.15) 
 

So the result is actually easy to use. 
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10.  Freezing point depression and boiling point elevation are used to determine the activity of 
the solvent at the measured phase transition temperature for the solution. We usually need to 
know the activity at 25C. Find an expression for the temperature dependence of the activity of a 
substance by completing the following steps. (a). The chemical potential of the solvent in 
solution is A(xA) = 
*

A(l) + RT ln aA, Eq. 19.1.3. The partial molar Gibbs energy of solution for the solvent is 
solḠA = A(xA) – *

A(l). Use the Gibbs-Helmholtz relationship, Eq. 16.3.12, to show: 
 

 






 ln aA

T P
 = – 

solH̄A

RT2  

 

where solH̄A is the partial molar enthalpy of solution. (b). Integrate this equation from T1 to T2. 
Assume the enthalpy of solution is constant over the temperature range. Show that the result is: 
 

 ln



aA(T2)

aA(T1)
 = – 






solH̄A

R  



1

T2
 – 

1
T1

 

 
 
Answer:  The plan is to use the same approach as the last problem, which is also based on the 
Gibbs-Helmholtz equation. 
(a). The difference in the chemical potentials gives: fusḠA = A(xA) – *

A(l) = RT ln aA. Then the 
Gibbs-Helmholtz expression, Eq. 16.3.12, gives: 
 

 
















solḠA

T
T P

 = – 
solH̄A

T2  

 

Since ln aA = solḠA/RT, dividing both sides of the last equation by R gives: 
 

 






 ln aA

T P
 = – 

solH̄A

RT2  

 

(b). Integrating this last equation from T1 to T2 and assuming fusH̄A is independent of 
temperature gives: 
 

 ln aA(T1)

ln aA(T2)   d ln aA = – 




T1

T2

 
solH̄A

RT2  dT 

 

 ln



aA(T2)

aA(T1)
 = 





solH̄A

R  



1

T2
 – 

1
T1

 
 

For an ideal solution solH̄A is zero, and the activity is then temperature independent. For real 
solutions, for narrow temperature ranges, the change in activity is often small. For large changes 
in temperature correction terms may be added to take into account the temperature dependence 
of the enthalpy of solvation, analogous to the approach in the last problem. 
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11.  The osmotic coefficient for aqueous n-propanol solutions is:  – 1 = a mB
3 + b mB

2 + c mB, 
with:  a = -4.73 kg3 mol-3,  b = 2.21 kg2 mol-2, and  c = -0.365 kg mol-1 at 0C, where mB is the 
molality of n-propanol. Determine the activity coefficients for n-propanol and water at 0.100 m. 
 
 
Answer: Doing the integral in Eq. 19.1.26 with the cubic polynomial gives: 
 

 ln mB = (m) – 1 + 



0

m

 



a mB

2 + b mB

mB
 d mB = (m) – 1 + 

a
3 m3 + 

b
2 m2 + c m 

 

For a 0.100 m solution:  (m) – 1 = -4.73 m3 + 2.21 m2 + (-0.365) m = -0.1913 
 

 ln mB = (-0.1913) +(-4.73) m3/3 + 2.21 m2/2 + (-0.365) m = -0.04616 
 

giving mB = 0.955 on a molal basis. For water, using Eq. 19.1.21, the activity is: 
 

 ln aA = –  mB/55.51 mol kg-1 = (1 – 0.1913) 0.100 mol kg-1/55.51 mol kg-1 = 1.457x10-3 

 aA = 1.001 
 

The mole fractions for n-propanol and water are given by Eq. 2.2.13: 
 

 xB = 
0.100 mol kg-1 (1 kg)

55.51 mol + 0.100 mol kg-1 (1 kg) = 1.7982x10-3  and xA= 1 – xB = 0.99820 
 

giving the activity coefficient for water as xA = aA/xA = 1.001/0.99820 = 1.003. 
 
 
12.  Find the overall solution activity in terms of the mean ionic activity coefficient and the 
solution molality, m, for: (a). KNO3, (b). CaCl2, (c). LaCl3, (d). CuSO4. 
 
 
Answer:  (a). Using Eq. 19.4.9, m+ = m- = m for a 1:1 electrolyte: 
 

 a(KNO3) = a+ a- = 






2

± m+ m-

m2  = 






2

± m2

m2  = 2
±
 (m/m)2 

 

(b).  Using Eq. 19.4.16, m+ = mCa2+ = m and  m- = mCl- = 2m for a 1:2 electrolyte: 
 

 a(CaCl2) = aCa2+ a 2
Cl

- = 






3

± (m) (2m)2

m3  = 4 3
±
 (m/m)3 

 

(c).  For LaCl3, m+ = mLa3+ = m and  m- = mCl- = 3m for a 1:3 electrolyte: 
 

 a(LaCl3) = aLa3+ a 3
Cl

- = 






4

± (m) (3m)3

m4  = 27 4
±
 (m/m)4 

 

(d). Using Eq. 19.4.9 for CuSO4, m+ = m- = m for a 1:1 electrolyte: 
 

 a(CuSO4) = a+ a- = 






2

± m+ m-

m2  = 






2

± m2

m2  = 2
±
 (m/m)2 
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13.  Find the ionic strength in terms of the molality, m, for the following strong electrolytes 
dissolved in pure water:  (a). CaCl2, (b). LaCl3, (c). CuSO4 (neglect any hydrolysis). 
 
 
Answer:  Using Eq. 19.4.22: 
 

 (a). For CaCl2, z+ = 2, z- = -1, mCa2+ = m and mCl- = 2 m: 

  I = ½  z2
i 

mi

m = ½ [(2)2 m + (-1)2 (2m)]/m = 3 m/m 

 

 (b). For LaCl3, z+ = 3, z- = -1, mLa3+ = m and mCl- = 3 m: 

  I = ½  z2
i 

mi

m = ½ [(3)2 m + (-1)2 (3m)]/m = 6 m/m 

 

 (b). For CuSO4, z+ = 2, z- = -2, mCu2+ = m and mSO42- = m: 

  I = ½  z2
i 

mi

m = ½ [(2)2 m + (-2)2 (m)]/m = 4 m/m 

 

Why did we specify that hydrolysis should be neglected? The sulfate ion can hydrolyze by: 
 

 SO4
2- + H2O  HSO4

- + OH-    Kb = Kw/Ka,2 = 9.71x10-13 

 

However, this equilibrium won’t have a significant effect on the ionic strength. The hydrolysis 
will make the solution slightly basic, however. 
 
 
14.  Write the solubility product equilibrium expressions for the sparingly soluble salts: (a). 
Ag2CrO4, (b). Cr(OH)3, (c). Ca3(PO4)2. 
 
 
Answer:  Let ms be the moles of salt dissolved per kg of solvent. Using Eq. 19.4.16: 
(a). For Ag2CrO4, m+ = mAg+ = 2ms and m- = mCrO42- = ms for a 2:1 electrolyte: 
 

 Ksp = (aAg+)2 aCrO4
2- = 







3

± (2ms)2
 (ms)

m3  = 4 3
±
 (ms/m)3 

 

(b). For Cr(OH)3, m+ = mCr3+ = ms and  m- = mOH- = 3ms for a 1:3 electrolyte: 
 

 Ksp = aCr3+ a 3
OH

- = 






4

± (ms) (3ms)3

m4  = 27 4
±
 (ms/m)4 

 

(c). For Ca3(PO4)2, m+ = mCa2+= 3ms and m- = mPO43- = 2ms for a 3:2 electrolyte: 
 

 Ksp = (aCa2+)3 (aPO43-)2 = 






5

± (3ms)3
 (2ms)2

m5  = 108 5
±
 (ms/m)5 
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15.  Calculate the mean ionic activity coefficient for a 0.100 m aqueous solution of CaCl2 at 
25C using the Debye-Hückel approximation. 
 
 
Answer:  The ionic strength for CaCl2 is given in Problem 2a as I = 3 m/m. For the given 
concentration: 
 

 I = 3 m/m = 0.300 
 

For CaCl2 , z+ = 2 and z- = -1. Using Eq. 19.4.23: 
 

 ln ± = -1.171 |z+ z-| I½ = -1.171 |(2)(-1)| (0.300)½ = -1.2828 
or log ± = -0.509 |z+ z-| I½ = -0.509 |(2)(-1)| (0.300)½ = -0.55758 
 

  giving  ± = 0.277. 
 
 
16.  Mercury pollution is an increasing problem in northern lakes. The source of the mercury is 
primarily coal combustion. Mercury compounds can be carried long distances by atmospheric 
aerosols. Calculate the solubility of mercury(I)chloride, Hg2Cl2, in pure water and in 0.0100 m 
KNO3, Ksp = 1.2x10-18. Remember that the dissociation is given by: 
 

 Hg2Cl2 (s)  Hg2
2+ + 2 Cl- 

 
 
Answer:  For Hg2

2+, z+ = 2, and for Cl- z- = -1. For this 1:2 electrolyte, m+ = mHg22+ = m and m- = 
mCl- = 2m. In pure water the ionic strength is given by: 
 

 I = ½  z2
i 

mi

m = ½ [(2)2 m + (-1)2 (2m)]/m = 3 m/m 

 

However, we don’t know the concentration of dissolved Hg2Cl2. We can estimate the solubility 
by neglecting the activity coefficients: 
 

 Ksp  [Hg2
2+][Cl-]2 = (ms/m)(2ms/m)2 = 4 ms

3 
 

giving  ms/m  (1.2x10-18/4)1/3  6.694x10-7 
 

With this approximate concentration, the ionic strength is I = 3 m/m = 2.008x10-6. Using the 
Debye-Hückel approximation gives the mean ionic activity coefficient: 
 

 ln ± = -1.171 |z+ z-| I½ = -1.171 |(2)(-1)| (2.008x10-6)½ = -3.319x10-3 

or log ± = -0.509 |z+ z-| I½ = -0.509 |(2)(-1)| (2.008x10-6)½ = -1.443x10-3 
 

giving  ± = 0.997. The solubility in pure water is then: 
 

 Ksp = (aHg22+) (aCl-)2 = 






3

±
(ms) (2ms)2

m3  = 4 3
±
 (ms/m)3 

 

giving  ms = m (1.2x10-18/4/(0.997)3)1/3 = 6.714x10-7 m 
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The effect of the non-ideality is well within the limits of the experimental uncertainty. However, 
with the non-participating electrolyte, the ionic strength will be dominated by the 0.0100 m 
KNO3: 
 

 I = ½ [(2)2 mHg22+ + (-1)2 (2mCl-) + (1)2 mK+ + (-1)2 mNO3
-]/m = 0.0100 

 I = ½ [(2)2 6.7x10-7 + (-1)2 2 (6.7x10-7) + (1)2 0.0100 + (-1)2 0.0100]/m = 0.0100 
 

[For a 1:1, uni-positive-uni-positive electrolyte the ionic strength is equal to the molality.] The 
mean ionic activity coefficient in 0.0100 m KNO3 is then: 
 

 ln ± = -1.171 |z+ z-| I½ = -1.171 |(2)(-1)| (0.0100)½ = -0.2342 

or log ± = -0.509 |z+ z-| I½ = -0.509 |(2)(-1)| (0.0100)½ = -0.1018 
 

giving  ± = 0.791. The solubility in 0.0100 m KNO3 is then: 
 

 ms = m (1.2x10-18/4/(0.791)3)1/3 = 8.46x10-7 m 
 
 
17. Write the acid dissociation equilibrium expressions in terms of the concentration of the 
undissociated acid, mHA, the H+ concentration, mH+, and the mean ionic activity coefficient, for 
the weak acids: (a). CH3COOH, acetic acid (HOAc),  (b). H2S (for the first dissociation only). 
 
 
Answers:  The plan is to write the expression as you would for General Chemistry with [H+], [A-

], and [HA] and then replace the concentrations by activities. The activity based acid dissociation 
constant is Ka. The acid dissociation constant written in terms of concentrations is called the 
effective equilibrium constant, Ka,eff, which is ionic strength dependent. 
 

(a). For the dissociation:  HOAc (aq)  H+ + OAc- , mH+ = m+ = m- : 
 

 Ka,eff = 
[H+] [OAc-]

[HOAc]   Ka = 
(aH+)(aOAc-)

aHOAc
 = 

2
 (m+/m)(m-/m)

mHA/m  = 
2
 (mH+/m)2

mHA/m  
 

Note that if the analytical concentration of the weak acid is mHA,o then at equilibrium 
mHA = mHA,o – mH+. The final pH = – log aH+ = – log( mH+). 
 

(b) For the dissociation:  H2S (aq)  H+ + HS- , again mH+ = m+ = m- (neglecting further 
dissociation): 
 

 Ka,eff = 
[H+] [HS-]

[H2S]   Ka,1 = 
(aH+)(aHS-)

aH2S
 = 

2
 (m+/m)(m-/m)

mH2A/m  = 
2
 (mH+/m)2

mH2A/m  
 

If the analytical concentration of the weak acid is mH2A,o then at equilibrium mH2A = mH2A,o – 
mH+. 
 
 
18.  Using Eqs. 19.5.12, 19.5.18 and 19.5.19, derive Eq. 19.5.20. 
 
 
Answer:  The charge density is written in terms of  by substituting Eq. 19.5.19 into Eq. 19.5.18: 
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 i(r) = – 
i(r)e2

kT
 

j=1

s

 z2
j 

Nj 

V  = – ro i(r) 2 

 

Dividing by (r) = or for a uniform permittivity gives: 
 

 
i(r)
(r)

 = – 2 i(r) 

 

and then substitution into Eq. 19.5.12 gives: 
 

 
1
r

 
2(r i(r))

r2  = 2 i(r) 

 

Multiplying both sides of this equation by r gives Eq. 19.5.20: 
 

 
2(r i(r))

r2  = 2 (r i(r)) 

 
 

19.  Show that i(r) = 
C
r  e

–r
is the solution to the Eq. 19.5.20.

 
 

Answer:  With (r i(r)) = C e
–r

, taking the second derivative on the left-hand side of Eq. 19.5.20 
gives: 
 

 
2(r i(r))

r2  = 
2(C e

-r
)

r2  = 2 C e
-r

 = 2 (r i(r)) 

 

The result is the right-hand side of Eq. 19.5.20, proving that i(r) is a solution to the equation. 
 
 
20.  (a). Starting with Eq. 19.5.19, for an aqueous solution containing one pure electrolyte, show 
that: 


2 = 
e2 1000 L m-3 do NA m

ro kT
 




z

2
+ 

m+

m + z
2
-  

m -

m     P19.20.1 
 

(b).  Given the definition of ionic strength in Eq. 19.5.25, show from Eq. P19.20.1 that: 
 

 = 
2 e2 1000 L m-3 do NA m

ro kT
  I1/2      P19.20.2 

 

(c).  Starting with Eq. P19.20.2 and rD = 1/, prove that Eq. 19.5.7 gives the Debye length for 
aqueous solutions of unipositive-uninegative electrolytes, at concentration m molal, at 298.15 K. 
In Eq. 19.5.7 the constant is given as 305 pm; in your answer give the constant to at least four 
significant figures. 
(d).  Find the Debye length for a 0.0100 m and 0.100 m solution of KCl. 
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Answer:  (a).  From Eq. 19.5.23, solving for the concentration ratio: 

Nj

V = 1000 L m-3 d NA mj 

where d is the density of the solution. In dilute solution, the density of the solution is 
approximately the density of the pure solvent, d  do. The standard state concentration is 
introduced by multiplying and dividing each term in the concentration sum by m. Substituting 
for the cationic and anionic terms for N+/V and N-/V in in terms of the molalities gives Eq. 
P19.20.1. 
 

(b).  From the definition of ionic strength, (z2
+
 m+/m + z2

- 
m -/m) = 2I, then taking the square 

root of Eq. P19.20.1 gives Eq. P19.20.2. 
 

(c).  The Debye length is rD =1/. For a unipositive-uninegative electrolyte I = m/m. Using 
e = 1.602177x10-19 C, d = 0.997048 g/cm3, 1 g/cm3 = 1 kg L-1, o = 8.85419x10-12 J-1C2m-1, r = 
78.54, k = 1.38066x10-23 J K-1, and T = 298.15K in Eq. P19.20.2 gives: 
 

  rD =1/ = 
304.73 pm
(m/m)½  

 

(d).  At m = 0.0100 m, rD = 3050 pm = 30.5 Å while at 0.100 m, rD = 964. pm = 9.64 Å. 
 
 
21.  Taking the limit as r  0 of Eq. 19.5.27 using l'Hôpital's rule, prove that the electric 
potential at the central ion caused by the ionic atmosphere is given by Eq. 19.5.28. 
 
 
22.  Plot the screened Coulomb potential for a 0.0100 m and 0.100 m NaCl solution. 
 
 
23.  (a). Show that the charge density for the screened Coulomb potential can be written in terms 
of  as: 
 

 i(r) = – 
qi 2

4 r
 e–r 

 

(b). Find the maximum of the radial probability distribution for the charge density, 4r2i, in 
terms of . 
 
 
Answer:  The charge density is written in terms of  by substituting Eq. 19.5.19 into Eq. 19.5.18: 
 

 i(r) = – 
i(r)e2

kT
 

j=1

s

 z2
j 

Nj 

V  = – ro i(r) 2 

 

The screened Coulomb potential is given by Eq. 19.5.22; substitution gives: 
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 i(r) =  – ro 2 
qi

4or r
 e–r = – 

qi 2

4 r
 e–r 

 

This result shows that the charge density has a sign opposite to the central charge. In other 
words, the charge density surrounding a cation is net negative. The radial probability distribution 
for the charge density is given by multiplying this last equation by 4r2: 
 

 4r2i(r) = – qi 2 r e–r 
 

The maximum in the radial probability function is given by taking the derivative using the 
product rule: 
 

 
d 4r2i(r)

dr  = – qi 2 [r (–)e–r + e–r] = 0 
 

which gives the radius of maximum probability, rD, the Debye length. Dividing by all the common 
factors gives: 
 

 [– rD + 1] = 0  or  = 1/rD 
 

as given in Eq. 19.5.7. 
 
 
24.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a).  The ionic halo of an ion contains only ions of opposite charge. 
 

(b).  For a simple symmetric solution, the activity coefficient of the solute depends only on the mole 
fraction of the solvent. The deviatons from ideality are dominated by changes in solvent-solvent forces. 
 

(c).  For a fixed ionic strength, as the relative permittivity of the solvent increases, the Debye length 
increases, because the counter ions in the ionic halo are less tigthly held. 
 
 
Answers: (a). False: the ionic atmopshere of a ion is determined by ions of both charges, from all sources, 
including supporting electrolytes and buffers. Near a central cation, the concentration of anions is 
greater than the bulk and the concentration of cations is less than the bulk, but both are present, 
Eq. 19.5.17. The correct statement is: The neighborhood near an ion is dominated by ions of 
opposite charge. 
 

(b).  False: While Eq. 19.2.7 is written only as a function of the mole fraction of the solvent, xA + 
xB = 1, so the mole fractions of the solvent and solute are directly related. Using xA = 1 – xB 
gives: 
x2

A = (1 – xB)2 = 1 – 2 xB + x2
B   and the activity coefficient: 

 ln B = 
a

RT x2
A = 

a
RT (1 – 2 xB + x2

B) 
 

The dependence of ln B on the concentration of B is quite strong. For example, starting with a 
solution with xB = 0.001 and xA = 0.999, doubling the concentration of B only changes the 
solvent concentration to xA = 0.998, or a 0.2% change. The probability of a B-B contact, x2

B, is 
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quite small for dilute solution, but increases rapidly with increasing solute concentration. The 
correct statement is: For the solute in dilute solution, A-B forces dominate. As the solute 
concentration increases, for moderate concentrations, B-B forces dominate the change in activity 
coefficient for the solute. 
 

(c). True:  Solvents, or solvent mixtures, with high relative permittivity provide enhanced 
dielectric screening, weakening the ionic interactions. The counter ions around a central ion are 
less tightly held, expanding the ionic atmosphere. Electrostatic interactions are weaker in water 
than in hexane. One common binding motif in protein-substrate binding is the formation of salt 
bridges. Salt bridges are ion pairs commonly formed from positive and negative charged amino 
acid sidechains. Salt bridges are not stabilizing in aqueous solution. However, salt bridges that 
form in the interior of a protein are in a low permittivity environment that strengthens the 
electrostatic interaction. The relative permittivity inside a globular protein is often estimated as 
~4. 
 


