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Chapter 18: Ideal Solutions 

Chapter 18 Problems: Ideal Solutions  
 
 
1.  The volume of a solution of methanol in water is less than the corresponding sum of the pure 
components. The solution temperature rises upon mixing. (a). Does this solution show positive or 
negative deviations from ideality? (b). Are the forces better described as A-B > A-A, B-B or 
rather A-B < A-A, B-B? (c). Is the vapor pressure of the solution greater than or less than 
predicted using Raoult’s Law? (d). Is the escaping tendency of methanol from the solution 
greater than or less than that predicted using Raoult’s Law? (e). Is the boiling point of the 
solution greater than or less than predicted using Raoult’s Law? (f). Which is larger, the pure 
vapor pressure of methanol or the Henry’s Law constant of methanol in water? 
 
 
Answers: (a). Negative deviations; the combined volume is less than the corresponding sum of 
the pure components. (b). A-B > A-A, B-B; the forces are favorable in solution. (c). The partial 
vapor pressures of each component and the total vapor pressures are less than predicted by 
Raoult’s Law. (d). The escaping tendency is measured by the vapor pressure; the escaping 
tendency of methanol from the solution is less than predicted by Raoult’s Law. (e). Since the 
vapor pressures are less, the solution must be heated to a higher temperature to have the total 
vapor pressure of the solution equal to ambient pressure, as compared to the Raoult’s Law 
prediction. (f). P*

B > kH,B, as is diagrammed in Figure 18.3.3a for negative deviations from 
ideality. 
 
 
2.  A 2.412 m solution of ethanol in water containing 1000.00 g of solvent has a total volume of 
1133.08 mL. The partial molar volume of ethanol in this solution is 53.890 mL mol-1. Calculate 
the partial molar volume of water in this solution. 
 
 
Answer:  The number of moles of solute in a solution containing 1000.00 g of solvent is: 
 

 nB = mB (1 kg) 
 

For a 2.412 m solution containing 1000.00 g of solvent, nB= 2.412 mol. Using Eq. 18.1.3: 

 V = V– A nA + V– B nB 

 1133.08 mL = V– A 1000.0 g/18.0153 g mol-1 + 53.890 mL mol-1(2.412 mol) 

 V– A = (1133.08 mL – 129.98 mL)(18.0153 g mol-1/1000.0 g) = 18.0711 mL mol-1 

 
 
3.  The density of a solution can be accurately determined by measuring the vibration frequency 
of a U-shaped tube filled with the solution. The volume of a solution containing 1 kg of solvent 
can be determined from the density of the solution. (a). Show that: 
 

 V1kg = 
nAMA + nBMB

d  = 
1000 g + mB (1 kg)MB

d  
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where MA is the molar mass of the solvent, MB is the molar mass of the solute, mB is the 
molality of the solute, and d is the density of the solution. 
(b). The density of a 5.4266 m solution of ethanol in water is 0.96808 g mL-1 at 25C. The partial 
molar volume ethanol in this solution is 54.183 mL mol-1. Calculate the partial molar volume of 
water in this solution. 
 
 
Answer:  (a). The number of moles of solute in a solution containing 1000.00 g of solvent is: 
nB = mB (1 kg). The total mass of the solution, solute plus solvent, is nAMA + nBMB. The volume 
of the solution is the mass divided by the density: 
 

 V1kg = 
mass solution

density of solution = 
nAMA + nBMB

d  = 
1000 g + mB (1 kg)MB

d  
 

For the particular solution in this problem with MB = 46.06904 g mol-1 for ethanol: 
 

 V1kg = 
1000.00 g + 5.4266 m (1 kg)(46.06904 g mol-1)

0.96808 g mL-1  = 1291.214 mL 
 

Using Eq. 18.1.3 to find the partial molar volume of the solvent: 

 V = V– A nA + V– B nB 

 1291.214 mL = V– A 1000.0 g/18.0153 g mol-1 + 54.183 mL mol-1(5.4266 mol) 

 V– A = (1291.214 mL – 294.029 mL)(18.0153 g mol-1/1000.0 g) = 17.9646 mL mol-1 

 
 
4.  The relationship between density and the volume of solution that contains 1 kg of solvent is 
(derived in Problem 3): 
 

 V1kg = 
nAMA + nBMB

d  = 
1000 g + mB (1 kg)MB

d  
 

The density at 25C as a function of the concentration of p-toluenesulfonic acid in water is given 
below. The molar mass of p-toluenesulfonic acid is 172.205 g mol-1. Calculate the partial molar 
volumes of p-toluenesulfonic acid and water at 2.0000 m at 25C.1 
 

mB (mol kg-1) 0.0000 0.5000 1.0000 2.0000 3.0000 4.0003 4.5005 
d (g mL-1) 0.99707 1.02159 1.04334 1.07970 1.10846 1.13178 1.14187 

 
 
Answer:   The plan is to calculate V1kg for each solution and fit the results to a cubic polynomial 
in the molality. Then Eq. 18.1.8 is used to find the partial molar volume of the solute and Eq. 
18.1.3 is used to find the partial molar volume of the solvent, as in Example 18.1.1. 
   A spreadsheet was set up to do the calculations. The V1kg vs. mB values were fit to a cubic 
polynomial using the 4-parameter version of the “Non-Linear Least Squares” applet on the 
textbook Web site or the companion CD. The applet allowed the determination of the 
uncertainties of the fit parameters. The fit parameters were entered into the spreadsheet and Eq. 
18.1.8 was used to calculate the partial molar volumes: 
 



3 
Chapter 18: Ideal Solutions 

 V– B = 






V

mB T,P,nA

kg-1 = 3(-0.0221) m2 + 2(0.708) m + 119.81 mL mol-1 

 
MA 18.0153 g mol-1 
MB 172.205 g mol-1 
a -0.0221  0.0152 
b 0.708  0.1 
c 119.81  0.19 

mB 
(mol kg-1) d (g mL-1) V1kg (mL) 

VB 
(mL mol-1) 

VA 
(mL mol-1) 

0.0000 0.99707 1002.939 119.810 18.068 
0.5000 1.02159 1063.149 120.501 18.068 
1.0000 1.04334 1123.512 121.160 18.058 
2.0000 1.07970 1245.17 122.377 18.023 
3.0000 1.10846 1368.218 123.461 17.976 
4.0003 1.13178 1492.226 124.413 17.917 
4.5005 1.14187 1554.475 124.840 17.883 

 

 

 

y = -0.0221x3 + 0.7076x2 + 
119.81x + 1003
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The partial molar volumes of the solvent are then calculated using Eq. 18.1.3: 
 

 V1kg = V– A 
1000 g

MA
 + V– B mB (1 kg) 

 

and solving for the partial molar volume of the solvent, for example at 2.000 m: 
 

 V– A = 
[V1kg – V– B mB (1 kg)]MA

1000 g   

       = 
[1245.17 mL – 122.377 mL mol-1(2.000 mol kg-1)(1 kg)]18.0153 g mol-1

1000 g  

       = 18.023 mL mol-1 

 

Notice that as the partial molar volume of p-toluenesulfonic acid increases that the partial molar 
volume of water decreases, as required by the Gibbs-Duhem relationship. One caution, however: 
a cubic curve fit isn’t statistically justified with only seven data points. The original literature 
reference had more data points, but some points were dropped to make the problem more 
tractable for this homework. Never-the-less, the results here are sufficiently close to the literature 
values. 
 
 
5.  Prove the relationship for the partial molar volume in Eqs. 18.1.10: 
 

 Given  V = nA V*
A+ nB 

V show that    V– B = V + mB 





 V

mB T,P,nA

 

 
 
Answer:  Using the definition of partial molar volume from Eq. 18.1.8 and the volume in terms 
of the apparent molar volume gives: 
 

 V– B = 






V

nB T,P,nA

 = 






 nAV*

A

nB T,P,nA

 + 






 nB 

V
nB T,P,nA
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The first term is zero because nA and the pure molar volume of the solvent are constants. Using 
the product rule for the second term gives: 
 

 V– B = V + nB 






V

nB T,P,nA

 
 

We can change the independent variable to molality by using the definition, mB = nB/wA, with 
the mass of solvent, wA, a constant: 
 

 V– B = V + nB 






V

mB T,P,nA





mB

nB T,P,nA

 = V + 
nB

wA
 






V

mB T,P,nA





nB

nB T,P,nA

 
 

 V– B = V + mB 





 V

mB T,P,nA

 

 
 
6.  The apparent molar volume of sucrose in water is given by the following power series 
expansion.2 
 

 V =  V
– o-

B + RT [ ½ A mB + 1/3 B m2
B + ¼ C m3

B + 1/5 D m4
B ] 

 

where V
– o-

B is the partial molar volume of the solute at infinite dilution, and A, B, C, and D are 
constants and R is in units of L atm K-1 mol-1. All five coefficients are determined using non-
linear least squares curve fitting of experimental data. (a). Find the partial molar volume of the 
solute as a function of V

– o-
B, A, B, C, and D. (b). The fit coefficients for sucrose at 25C are: V

– o-
B = 

0.21149 L mol-1, A = 1.107x10-4 kg mol-1 atm-1, B = -1.64x10-5 kg3 mol-3 atm-1, C = 1.15x10-6 
kg4 mol-4 atm-1, and D = 0. Find the partial molar volume of 0.01000 m sucrose at 25C. 
 
 
Answer:  (a). Using Eqs. 18.1.10 and the given power series expansion of the apparent molar 
volume, the derivative gives: 
 

 V– B = V + mB 





 V

mB T,P,nA

 

     = V + mB RT [ ½ A + 2/3 B mB + 3/4 C m2
B + 4/5 D m3

B ] 
 

Substituting in the power series for V: 
 

    V– B = V
– o-

B + RT[½AmB + 1/3Bm2
B + ¼Cm3

B + 1/5Dm4
B] + RT[½A mB + 2/3Bm2

B + 3/4Cm3
B + 4/5Dm4

B] 

 V– B = V
– o-

B + RT [A mB + B m2
B + C m3

B + D m4
B ] 

 

(b). Using the given fit coefficients and mB = 0.0100 m gives: 
 

 V– B = 0.21149 L mol-1 + 0.082058 L atm K-1mol-1(298.15 K)∙ 
  [ 1.107x10-4 (0.01000) + (-1.64x10-5) (0.01000)2 + 1.15x10-6 (0.01000)3 ]atm-1 

 V– B = 0.21152 L = 211.52 mL 
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This partial molar volume was used in Example 18.4.8. The density of pure sucrose is dpure = 
1.588 g mL-1. The partial molar volume of sucrose is not far from the pure molar volume, 
V*

B = MB/dB,pure = 342.30 g mol-1/1.588 g mL-1 = 215.5 mL. The pure molar volume could have 
been used for Example 18.4.8 without excessive error, since the concentration dependent term is 
so large. 
 
 
7.  Calculate the entropy and Gibbs energy of mixing of 0.80 moles of H2O(l) and 0.20 moles of 
ethanol at 298.15 K. Assume an ideal solution. 
 
 
Answer:  Using Eqs. 18.2.10 and 18.2.11 or 16.8.16: 
 

 mixS = – ntotR 
i=1

ns

 xi ln xi = – 1.00 mol(8.3145 J K-1 mol-1)[0.80 ln 0.80 + 0.20 ln 0.20] 

         = 4.16 J K-1 

 

 mixG = – T mixS = – 298.15 K(4.16 J K-1)(1 kJ/1000 J) = -1.24 kJ mol-1 

 
 
8.  Ethanol from the fermentation of corn or other sources of biomass has been proposed as a 
large scale replacement for petroleum based transportation fuels. For use in transportation fuels, 
ethanol must contain less than 0.7% water. Calculate the minimum energy necessary to produce 
one mole of ethanol, with a concentration of 99.3% ethanol by volume at 25C, from a 
fermentation broth containing 15% by volume ethanol. Assume ideal behavior. Compare this 
minimum separation requirement to the Gibbs energy of combustion of ethanol. The density of 
ethanol is 0.789 g mL-1. 
 
 
Answer:  The molar mass of ethanol is 46.07 g mol-1. Assuming a total volume of 100 mL, 15% 
by volume corresponds to mole amounts: nEtOH = 15 mL(0.789 g mL-1)/46.07 g mol-1 = 
0.257 mol and nH2O = 85 mL(0.9971 g mL-1)/18.02 g mol-1 = 4.70 mol. The mole fractions are: 
 

 xEtOH = 
0.257 mol

4.70 mol + 0.257 mol = 0.0518 and   xH2O = 1 – 0.0518 = 0.948 
 

After the separation, 100 mL of 99.3% ethanol by volume corresponds to nEtOH = 99.3 mL(0.789 
g mL-1)/46.07 g mol-1 = 1.701 mol and nH2O = 0.7 mL(0.9971 g mL-1)/18.02 g mol-1 = 
0.039 mol. The mole fractions are: 
 

 xEtOH = 
1.701 mol

0.039 mol + 1.701 mol = 0.978 and   xH2O = 1 – 0.978 = 0.022 
 

For the 15% solution, one mole of ethanol is contained in ntot = 1 mol/xEtOH = 1/0.0518 = 
19.31 mol of total solution. For the 99.3% solution, one mole of ethanol is contained in ntot = 
1 mol/xEtOH = 1/0.978 = 1.02 mol of total solution. The Gibbs energy of mixing, using Eqs. 
18.2.10* and 18.2.11*, for the 15% ethanol solution is: 
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 mixS = – ntotR 
i=1

ns

 xi ln xi 

          = – 19.31 mol(8.314 J K-1 mol-1)[ 0.0518 ln 0.0518 + 0.948 ln 0.948] 
          = 32.7 J K-1 

 

 mixG = – T mixS = – 298.15 K(32.7 J K-1)(1 kJ/1000 J) = -9.76 kJ  (15 % v/v) 
 

The Gibbs energy of mixing for the 99.3% ethanol solution is: 
 

 mixS = – ntotR 
i=1

ns

 xi ln xi  

          = – 1.02 mol(8.314 J K-1 mol-1)[ 0.978 ln 0.978 + 0.022 ln 0.022] 
          = 0.897 J K-1 

 

 mixG = – T mixS = – 298.15 K(0.897 J K-1)(1 kJ/1000 J) = -0.267 kJ (99.3 % v/v) 
 

The Gibbs energy to prepare one mole of ethanol is then the difference: 
 

 G = -0.267 kJ – (-9.76 kJ) = 9.49 kJ 
 

The molar Gibbs energy of combustion of ethanol is: 
 

 CH3CH2OH (l) + 7/2 O2 (g)    2 CO2 (g)  + 3 H2O (l) units 
    fG      -174.78         0     -394.36 -237.13 kJ mol-1 

 

 combG = [2(-394.36) + 3(-237.13)] – [-174.78] kJ mol-1 = -1325.33 kJ mol-1 
 

The ideal minimum Gibbs energy for the separation is a small fraction of the Gibbs energy of 
combustion, suggesting that biomass conversion to ethanol is an excellent candidate for 
replacing petroleum. However, distillation and zeolite based drying of ethanol are inefficient 
processes. All energy inputs need to be considered as well as soil depletion and especially water 
use. Forest and agricultural waste and hemi-celluose, a bi-product of the paper industry, are good 
candidates for conversion to ethanol. 
 
 
9.  At 50.0C the vapor pressure of pure hexane and pure heptane are 0.534 bar and 0.188 bar, 
respectively. The two liquids form nearly an ideal solution. (a) For a solution with a mole 
fraction of 0.670 heptane, calculate the total vapor pressure and the mole fraction of each 
component in the vapor phase.3 (b) The total vapor pressure of a heptane-hexane solution is 
0.405 bar. Calculate the mole fraction of heptane in the solution, the partial vapor pressures of 
each component, and the mole fractions in the vapor phase. 
 
 
Answer:  (a). Use an “X” subscript for hexane and a “P” subscript for heptane: P *

X = 0.534 bar, 
P*

P = 0.188 bar, xP = 0.670, xX = (1 – xP) = 0.330. The total pressure, using Raoult’s law for both 
components, Eq. 18.2.7*, is: 
 Ptot = xX P*

X + xP P*
P = 0.330(0.534 bar) + 0.670(0.188 bar) = 0.302 bar 

 

Using Dalton’s Law of partial pressures for the vapor phase with, PP = yP Ptot, Eq. 18.4.1*: 
 

 yP = PP/Ptot = xP P*
P/Ptot = 0.670(0.188 bar)/0.302 bar = 0.417 
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 and yX = 1 – yP = 1 – 0.417 = 0.583 
 

As a check we note that the vapor is richer than the solution in the more volatile component, 
hexane, as expected. The literature value for the total pressure is 0.293 bar, so the solution shows 
small negative deviations from ideality.3 

(b). This part of the problem works in the opposite direction as in part (a). Using Eq. 18.2.8*, 
xX = (1 – xP), and solving for xP: 
 

 Ptot = xX P*
X + xP P*

P = (1 – xP) P*
X + xP P*

P = P*
X + xP (P*

P – P*
X) 

 xP = 
Ptot – P*

X

P*
P – P*

X
 

 

and for Ptot = 0.405 bar: 
 

 xP = 
0.405 – 0.534
0.188 – 0.534 = 0.373 and xX = 1 – xP = 0.627 

 

Using Raoult’s Law for both components in solution, the partial vapor pressures are: 
 

 PX = xX P*
X = 0.627(0.534 bar) = 0.335 PP = xP P*

P = 0.373(0.188 bar) = 0.070 
 

As a check on the calculations, we should verify the total pressure as the sum of the partial vapor 
pressures from the last calculation, Ptot = PX+ PP = 0.335 + 0.070 = 0.405, as given. Finally, 
using Dalton’s Law for each component in the vapor phase, the vapor phase mole fractions are, 
Eq. 2.1.10: 
 

 yX = PX/Ptot = 0.335/0.405 = 0.827 and yP = 1 – yX = 0.173 
 

As a check we note that the vapor is richer than the solution in the more volatile component, 
hexane, as expected. The literature value for the mole fraction of heptane in this solution is xP = 
0.358 for only a 4% error, caused by the assumption of ideal behavior.3 
 
 
 
10. At 30.0C the vapor pressure of pure toluene and pure benzene are 36.7 and 118.2 torr, 
respectively. The two liquids form a nearly ideal solution. (a) For a solution containing 50.0 
mole % of toluene, calculate the total vapor pressure and the mole fraction of each component in 
the vapor phase. (b) What is the composition of a solution of benzene and toluene that will boil 
at 30.0C at a pressure of 50.0 torr? 
 
 
Answer:  (a). Use a “T” subscript for toluene and a “B” subscript for benzene: P*

T = 36.7 torr, P*
B 

= 118.2 torr, xT = 0.500, xB = 0.500. The total pressure, using Raoult’s law for both components, 
is, Eq. 18.2.7*: 
 

 Ptot = xT P*
T + xB P*

B = 0.500(36.7 torr) + 0.500(118.2 torr) = 77.5 torr 
 

We use Dalton’s law of partial pressures for the vapor phase with, PT = yT Ptot, Eq. 18.4.1*: 
 

 yT = PT/Ptot = xT P*
T/Ptot = 0.500(36.7 torr)/77.5 torr = 0.237 

 and yB = 1 – yT = 1 – 0.237 = 0.763 
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As a check, we note that the vapor is richer in the more volatile component, benzene, than the 
liquid, as expected. 
(b). This part of the problem corresponds to a reduced pressure distillation. If the solution is 
boiling, the vapor pressure is equal to the ambient pressure, Ptot = 50 torr: 
 

 Ptot = xT P*
T + xB P*

B = 50 torr 
 

Substituting in the pure vapor pressures and noting that xB = 1 – xT: 
 

 Ptot = 50 torr = xT(36.7 torr) + (1 – xT)(118.2 torr) 
gives xT = 0.837  and  xB = 1 – xT = 0.163 
 
 
 
11.  2-Propanol and 2-methylpropanol form an ideal solution. (a). Calculate the composition of 
the solution and vapor that boils at 90.0C and an ambient pressure of 1.00 bar. The standard 
boiling point of pure 2-propanol is 82.2C and the enthalpy of vaporization at the standard 
boiling point is 43.61 kJ mol-1. The standard boiling point of pure 2-methyl-propanol is 107.7C 
and the enthalpy of vaporization is 46.26 kJ mol-1. (b). What is the highest purity attainable from 
a single-plate distillation starting with the composition in Part (a)? 
 
 
Answer:  The plan is to use the Clausius-Clapeyron equation to calculate the pure vapor 
pressures at 90.0C. Example 18.4.3 then describes the remaining steps to find the corresponding 
compositions in Figure 18.4.2. 
   Using Eq. 17.1.14 for 2-propanol, with T*

b = 355.4 K at 1 bar, gives the vapor pressure at 
90.0C, 363.2 K, as: 
 

 P2 = P1 e
– 

∆trHm

R ( )1
T2

 – 
1
T1  = 1 bar e

– 
43.61x103 J mol-1

8.3145 J K-1 mol-1( )1
363.2 K – 

1
355.4 K  = 1.374 bar 

 

and for 2-methyl-propanol, with T*
b = 380.9 K: 

 

 P2 = 1 bar e
– 

46.26 J mol-1

8.3145 J K-1 mol-1( )1
363.2 K – 

1
380.9 K  = 0.491 bar 

 

   Let A be 2-propanol. Using Eq. 18.2.8* with the total vapor pressure of 1 bar gives the 
composition of the solution from: 
 

 Ptot = xAP*
A + (1 – xA)P*

B = xA(1.374 bar) + (1 – xA)(0.491 bar) = 1 bar 
 

Solving for the solution concentration of A:   xA = 0.576. 
 

The vapor phase concentration is calculated using Eq. 18.4.1*: 
 

 yA = PA/Ptot = xAP*
A/Ptot = 0.576(1.374 bar)/1.00 bar = 0.791 

 

These points are consistent with Figure 18.4.2. (b). For a distillation, if the initial pot 
concentration is xA = 0.576, the solution boils at 90.0C in equilibrium with the vapor at yA = 
0.791. In other words, starting with xA = 0.576, the highest purity that may be achieved for 
2-propanol in a single-plate distillation is 79.1 mol%, but only for the first drop of distillate. 
Continued distillation produces distillate with lower purity. 
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12.  The standard state Gibbs energy of formation of methanol in the gas phase at 25C is 
-161.96 kJ mol-1. The Henry’s Law constant is kpc = 4.51x10-3 bar L mol-1. (a). Calculate the 
standard state Gibbs energy of formation of aqueous methanol at 25C. (b). Calculate the 
concentration of methanol in an aqueous solution given an equilibrium vapor pressure for 
methanol above the solution of 0.0100 bar (1.00 kPa or 7.50 torr). 
 
 
Answer:  (a). Follow Example 18.3.1. The small Henry’s Law constant shows that methanol is 
very soluble in water. Methanol-water hydrogen bonds contribute to the stability of the solution. 
The corresponding Gibbs energy of desolvation is given by Eqs. 18.3.3†: 
 

 desolGpc = – RT ln kpc = – 8.3145 J K-1 mol-1(298.15 K)(1 kJ/1000 J) ln 4.51x10-3 
     = 13.39 kJ mol-1 

 

Noting that solG = – desolGpc gives the standard state Gibbs energy of formation for aqueous 
methanol as: 
 

 fG(aq) = fG(g) + solG = -161.96 kJ mol-1 + (-13.39 kJ mol-1) = -175.35 kJ mol-1 
 

(b).  Using Eq. 18.3.3†, PB = kpc cB: 
 

 cB = PB/kpc = 0.0100 bar/4.51x10-3 bar L mol-1 = 2.22 M 
 

The concentration of methanol in water must be quite large, 2.22 M (~7% by weight), to 
establish a vapor pressure of 0.0100 bar (7.5 torr). This concentration assumes ideal-dilute 
behavior, and so is a lower limit, since negative deviations from ideality are expected. 
 
 
 
13.  The vapor pressure of heptane in solution with 1-bromobutane is given in the table below, at 
50C.3 Calculate the Henry’s Law constants, kH, kcc, and kpc, for heptane. The data is plotted in 
Figure 18.3.1. The density of 1-bromobutane at 25C is 1.276 g mL-1 and the molar mass is 
137.02 g mol-1. Assume the density is roughly independent of temperature for this small 
temperature difference. 
 

x(bromobutane) 0 0.1171 0.2362 0.3329 0.4323 0.5182 0.5836 0.6333 
Pvap(heptane, torr) 140.0 125.8 110.6 98.4 86.1 74.8 66.4 59.6 
x(bromobutane) 0.6588 0.7123 0.7935 0.8805 0.9521 1 
Pvap(heptane, torr) 57.3 49 37.2 23.3 9.6 0 

 
 
Answer:  The plan is to fit the vapor pressure data to a cubic polynomial with a constant 
coefficient of zero, and then follow Example 18.3.2. Alternatively the data could be carefully 
plotted and then a straight edge used to extrapolate the dilute solution behavior to xA = 1. 
   The mole fraction of heptane and vapor pressure in bar were calculated using the following 
spreadsheet and fit to a cubic polynomial using the “Non-linear least Squares Applet,” on the 
textbook Web site or companion CD, y = a x3 + b x2 + c x + d. The d-parameter was fixed at 
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zero, since the vapor pressure goes to zero at xA = 0. The Henry’s Law constant is the value of 
the dilute solution line extrapolated to xA = 1. The c-fit coefficient is the Henry’s Law constant, 
kH,A = c = 0.2654  0.0038 bar. 
 
 

xbutylbromide Pvap (torr)   xheptane Pvap (bar) 
0 140 1 0.1867 

0.1171 125.8 0.8829 0.1677 
0.2362 110.6 0.7638 0.1475 
0.3329 98.4 0.6671 0.1312 
0.4323 86.1 0.5677 0.1148 
0.5182 74.8 0.4818 0.0997 
0.5836 66.4 0.4164 0.0885 
0.6333 59.6 0.3667 0.0795 
0.6588 57.3 0.3412 0.0764 
0.7123 49 0.2877 0.0653 
0.7935 37.2 0.2065 0.0496 
0.8805 23.3 0.1195 0.0311 
0.9521 9.6 0.0479 0.0128 

1 0 0 0 
 

 

 

y = 0.0759x3 - 0.1538x2 + 0.2654x

0.00

0.05
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Then substituting Eq. 2.2.16 for the mole fraction into Eq. 18.3.1† gives the conversion: 
 

 PA = kH,A xA = kH,A 
cA (1 L)





1000 mL dsoln

MA

 = kpc,A cA  with kpc,A = 
kH,A (1 L)





1000 mL dsoln

MA

 

 

Assuming the density of the solution is the density of the solvent, 1-bromobutane, gives: 
 

 kpc,A = 
0.2654 bar (1 L)





1000 mL 1.276 g mL-1

137.02 g mol-1

 = 
0.2654 bar L
9.313 mol  = 0.0285 bar L mol-1 = 2.85 Pa m3 mol-1 

 

The unitless Henry’s Law constant uses concentration in the gas phase as well as the solution 
phase: 
 

 kcc,A = 
kH

9.313 mol L-1 RT = 
0.2654 bar

9.313 mol L-1(0.083145 bar L K-1mol-1)(323.15 K) = 1.06x10-3 
 

The units for R are chosen to cancel the units for kH. 
   Note that a “quick and dirty” approach for calculating the Henry’s Law constant is to calculate 
the slope using the data point with the lowest concentration: kH  0.0128 bar/0.0479  0.27 bar. 
 
 
14.  The Henry’s Law constants, kH, for O2 and N2 in water at 25C are 4.40x104 bar and 
8.68x104 bar, respectively. Calculate the equilibrium solubility of O2 and N2 in water at 25C in 
units of molarity and ppm by weight. Find the ratio of O2 to N2 in moles. Assume that air is 20.0 
mole % O2 and 80.0 mole % N2 at a total pressure of 1.00 bar. 
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Answer:  The plan is to convert the gas phase mole fractions to partial pressures, convert kH to 
kpc, and then find the equilibrium concentrations. The concentrations are then converted to ppm. 
   Using Dalton’s Law for the gas phase gives, PO2 = yO2 P = 0.20 bar and PN2 = yN2 P = 0.80 bar. 
We next convert kH to kpc using Eq. 18.3.6†. For O2: 
 

 kpc,O2 = 
kH

55.34 mol L-1 = 
4.40x104 bar
55.34 mol L-1 = 795.1 bar L mol-1 

 

and cO2 = PO2/kpc,O2 = 0.20 bar/795.1 bar L mol-1 = 2.5x10-4 M 
 

In ppm, assuming the density of the solution is the density of pure water: 
 

 cO2 = 2.5x10-4 mol L-1(1 L)(32.0 g mol-1)( 1 L/1000 mL)/0.9971 g mL-1 (1x106 ppm) 
       = 8.0 ppm 
 

For N2: 

 kpc,N2 = 
kH

55.34 mol L-1 = 
8.68x104 bar
55.34 mol L-1 = 1568. bar L mol-1 

 

and cN2 = PN2/kpc,N2 = 0.80 bar/1568. bar L mol-1 = 5.1x10-4 M 
 

 cN2 = 5.1x10-4 mol L-1(1 L)(28.02 g mol-1)( 1 L/1000 mL)/0.9971 g mL-1 (1x106 ppm) 
       = 14. ppm 
 

The mole ratio of oxygen to nitrogen in equilibrium in solution at 25C is: 
 

 nO2/nN2 = 2.5x10-4 M/5.1x10-4 M = 0.49  ½ 
 
 
15.  The Henry’s Law constant for CO2 can be expressed using the concentration of dissolved 
CO2, only, or the concentration of CO2 and carbonic acid: 
 

 k 'pc,CO2 = 
PCO2

cCO2
   kpc,CO2 = 

PCO2

cCO2 + cH2CO3
 

 

The equilibrium constant for the dehydration of carbonic acid is about 650:4 

 

 H2CO3 (aq)  CO2 (aq) + H2O (l)  K = 650 
 

The Henry’s Law constant for CO2 in sea water at 25C is pkpc,CO2 = -1.53.4 Show that kpc,CO2  
k 'pc,CO2, within experimental error. 
 
 
Answer:  Doing the logarithmic conversion for pkpc,CO2 gives kpc,CO2 = 0.0295  0.0007, or 2.4% 
error. Equivalently, the result should be expressed with two significant figures: kpc,CO2 = 0.0295, 
which agrees with the normal significant figure rules. The relationship between the two forms of 
the Henry’s Law constant is given by: 
 

 k 'pc,CO2 = kpc,CO2 



cCO2 + cH2CO3

cCO2
 

 

We next need to find (cCO2 + cH2CO3)/cCO2 . The equilibrium expression for the dehydration of 
carbonic acid is: 
 



12 
 

 K = 
cCO2

cH2CO3
  and  cH2CO3 = cCO2/K giving     



cCO2 + cH2CO3

cCO2
 = 1 + 1/K 

 

Since K is large, K = 650, the predominant form for CO2 in aqueous solution at equilibrium is as 
dissolved CO2, not carbonic acid. The relationship between the two forms of the Henry’s Law 
constant is then: 
 

 k 'pc,CO2 = kpc,CO2 (1 + 1/K) = kpc,CO2 (1 + 1/650) = kpc,CO2 1.0015 
 

The two constants differ by 0.15%, which is negligible compared to the experimental uncertainty 
in kH,PC. Note, however, that the total solubility of all carbonate species, CT = cCO2+ cH2CO3 + 
cHCO3- + cCO32-, increases with pH and is significantly larger than cCO2 alone near neutral pH (see 
Section 6.1). 
 
 
16.  Show that the temperature dependence of the chemical potential for an ideal constituent is 
given by: (µA/T)P,nA,nB

 = – S–A = – S*
A+ R ln xA, where S*

A is the pure molar entropy of the 
substance A and the concentration in the solution is xA. 
 
 
Answer:  The plan is to use the same reasoning that we used to derive Eq. 18.2.12*, except 
finding temperature derivative. 
   The temperature dependence of the chemical potential for a component in solution is given by 
the partial molar entropy, Eqs. 18.1.17-18.1.18: 
 

 






µA

T P,nA,nB

= – S–A 

 

Using Eq. 18.2.9* for the concentration dependence of the chemical potential for an ideal 
component, A(xA) = *

A + RT ln xA, and the product rule gives: 
 

    – S–A = 






µA

T P,nA,nB

= 






(µ*

A + RT ln xA)
T P,nA,nB

     (ideal) 

 = 






µ*

A

T P,nA,nB

+ RT 





 ln xA

T P,nA,nB

+ R ln xA 





T

T P,nA,nB

   (ideal) 

 

The derivative of ln xA is zero because xA is constant when nA and nB are constant: 
 

 – S–A = 






µ*

A

T P,nA,nB

+ R ln xA = – S*
A + R ln xA     (ideal) 

 

The slope of the chemical potential versus temperature curve is – S *
A + R ln xA, as shown in 

Figure 18.4.5. Or finally, the partial molar entropy of an ideal constituent is: 
 

 S–A = S*
A – R ln xA        (ideal) 

 

The entropy of mixing for an ideal solution follows directly from this last equation. 
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17. The partial molar entropy of a constituent in an ideal solution, at constant temperature and 
pressure, is S–i = S*

i – R ln xi, where S*
i is the pure molar entropy of the substance i and the 

concentration of i in the solution is xi. (See the previous problem for a proof of this equation.) 
Show that the entropy of mixing of an ideal binary solution is mixS = – ntotR (xA ln xA + xB ln xB) 
at constant temperature and pressure. 
 
 
Answer:  The plan is to adapt the derivation for the Gibbs energy of mixing, Eqs. 16.8.6, 
16.8.11-16.8.13. 
   Let S2 be the final entropy for the solution and S1 be the initial total entropy for the two pure 
constituents with nA moles of A with nB moles of B: 
 

 mixS = S2 – S1 = (nA S
–

A + nB S
–

B) – (nAS*
A + nBS*

B) = nA(S–A – S*
A) + nB(S–B – S*

B) 
 

Using S–A = S*
A – R ln xA and S–B = S*

B – R ln xB for the two ideal constituents gives: 
 

 mixS = – nA R ln xA – nB R ln xB 
 

The pure molar entropy terms cancel. Let ntot = nA + nB, with xA = nA/ntot and xB = nB/ntot. 
Dividing and multiplying each term by ntot and factoring out the common factor of – ntotR gives: 
 

 mixS = – ntotR 



nA

ntot
 ln xA + 

nB

ntot
 ln xB  

 mixS = – ntotR (xA ln xA + xB ln xB)     (18.2.10*) 
 

which is the analogous expression to Eq. 16.8.14 for ideal gas mixing. 
 
 
18. Show that the Raoult’s Law and Henry’s Law standard states for a solute are related by: 
 

 †
B(l) = *

B(l) + RT ln kH,B/P*
B 

 
 
Answer:  The definitions of the standard states applied to the solute, B, are: 
 

 *
B(l) = B(g) + RT ln P*

B/P      (Raoult, pure) (18.2.2) 
 †

B(l)  B(g) + RT ln kH,B/P      (Henry, solute) (18.3.9†) 
 

Subtracting Eq. 18.2.2 from Eq. 18.3.9† gives: 
 

 †
B(l) – *

B(l) = B(g) + RT ln kH,B/P –  B(g) – RT ln P*
B/P 

 †
B(l) – *

B(l) = RT ln kH,B/P*
B 

 

Adding *
B(l) to both sides of the last equation gives: †

B(l) = *
B(l) + RT ln kH,B/P*

B. 

 
 
19.  Using the binary liquid-vapor phase diagram shown below, (a). what would be recovered 
from the distillate and from the pot for an exhaustive fractional distillation, starting with the 
solution with composition x1. (b). Does this solution show positive or negative deviations from 
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ideality. Discuss the forces that act in solution as compared to the forces that act in the pure 
liquids. 
 
 
 
 
 
 
 
 
 
 
 
 
Answer:  (a). Starting from a solution with concentration greater than the azeotropic 
concentration, the more volatile component (lower boiling point) is pure A. Pure A would be 
recovered from the distillate and azeotrope would be recovered from the pot. 
   (b). Deviations from ideality are judged from the perspective of the vapor pressure. This 
system has a maximum boiling azeotrope; the solution temperature must be increased above the 
pure boiling points of either pure A or B to attain a vapor pressure equal to the ambient pressure. 
The azeotrope is harder to vaporize than pure A or pure B. The solution shows strong negative 
deviations from ideality: A-B >> A-A, B-B. 
 
 
 
20. When 640. mg of naphthalene is dissolved in 40.0 g of chloroform, the boiling point of the 
solution is 0.455°C higher than that of pure solvent (T*

A = 61.2°C). Calculate (a) the molal 
boiling point elevation constant, and (b) the molar enthalpy of vaporization of chloroform. 
 
 
Answer:  The molar mass of naphthalene is MNaph = 128.2 g mol-1 and chloroform is Mchloroform = 
119.37 g mol-1. This problem is a colligative properties problem with T = Kb mB. (a). In this 
equation mB is the solute molality: 
 

 mB = 
nB

wsolvent
 = 

0.640 g (1 mol/128.2 g mol-1)
0.0400 kg  = 0.1248 mol kg-1 = 0.1248 m 

 

Solving for the molal boiling point elevation constant gives: 
 

 Kb = 
T
mB

 = 
0.455 K

0.1248 mol kg-1 = 3.646 K kg mol-1 
 

(b). The molal boiling point elevation constant is related to the enthalpy of vaporization of the 
solvent by Eqs. 18.4.14†: 
 

 Kb = 
RT*

A
2 MA (1 kg)

vapHA (1000 g)
 

 

T *
bA 

T *
bB 

T 

0 1 

xA, yA  

liquid 

vapor cst. P 

xaz x1 

Tmax 
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where all the quantities are related to properties of the pure solvent. Solving for the enthalpy 
change: 
 

 vapHA  =  
RT*

A
2 MA (1 kg)

Kb(1000 g)   =  
8.314 J K-1 mol-1(334.4 K)2(119.37 g mol-1)(1 kg)

3.646 K kg mol-1(1000 g)  

              = 3.044x104 J mol-1 = 30.4 kJ mol-1 
 
 
21.  The freezing point depression of a solution of 1.433x10-3 g of butanol in 1.000 g of water is 
0.035588 K.5 Calculate the molar mass of butanol. The enthalpy of fusion of water is 
6.008 kJ mol-1 at 273.15 K. (b). The freezing point depression of a solution of 2.951x10-3 g of 
butanol in 1.000 g of water is 0.07300 K. Calculate the molar mass of butanol again and 
compare. 
 
 
Answer:  (a). From Eqs. 18.4.19†, the cryoscopic constant for water is: 
 

 Kf  






RT*

m
2MA (1 kg)

1000 g fusHA
 = 



8.3145 J K-1mol-1(273.15 K)2(18.0153 g mol-1) (1 kg)

1000 g (6.008x103 J mol-1)  

      = 1.861 mol-1 kg K 
 

The concentration is given by: 
 

 T  Kf mB  and     mB = TKf = 0.035588 K/1.861 mol-1 kg K = 0.019123 mol kg-1 
 

Then using the given masses, the molality and molar mass of the solute are related by: 
 

 mB = 
wB/MB

wA
 = 

1.433x10-3 g /MB

1.000 g (1 kg/1000 g)  giving MB = 74.94 g mol-1 
 

The literature molar mass of butanol is 74.15 g mol-1. 
(b). Repeating the calculations with the more concentrated solution gives: 
 

 mB = 0.07300 K/1.861 mol-1 kg K = 0.039226 mol kg-1 
 

 mB = 
wB/MB

wA
 = 

2.951x10-3 g /MB

1.000 g (1 kg/1000 g)  giving MB = 75.23 g mol-1 
 

For an ideal solution, parts (a) and (b) would give the same result. Butanol-water solutions show 
small but significant deviations from ideal behavior. The more dilute result is potentially more 
accurate, since the solution is closer to an ideal solution, but the freezing point depression is less 
precise since it is a smaller value. 
 
 
22.  A sample of benzene has a freezing point of 3.44C. Calculate the purity of the benzene in 
mole %. Assume the solution is ideal and the impurities are insoluble in solid benzene. The 
standard melting point of pure benzene is 5.46C and the enthalpy of fusion is 10.59 kJ mol-1 at 
the standard melting point. 
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Answer:  The plan is to use Eq. 18.4.16† with benzene as the solvent. The solution freezing point 
is 276.59 K, the pure freezing point is 278.61 K, andT = (278.61 – 276.59 K) = 2.02 K 
   The freezing point depression is most conveniently given in terms of the mole fraction of the 
solvent using Eq. 18.4.16† with: 
 

 K ' = 



fusHA

R T*
m

2  = 



10.59x103 J mol-1

8.3145 J K-1 mol-1(278.61 K)2  = 0.016408 K-1 
 

 ln xA = K ' T = -0.016408 K-1(2.02 K)  giving  xA = 0.967 
 

The purity is 96.7 mol%. See the next problem for the DSC method that is used when the pure 
substance standard melting point and enthalpy of fusion are not known. 
 
 
23.  A DSC melting curve was determined for a sample of tetracosane, C24H50. The sample 
weight was 2.21 mg. Partial areas were determined and are reported in the table below, in 
arbitrary units (as shown schematically in Figure 18.4.7). The total area under the melting curve 
was 7.351, which corresponds to 0.3919 J. Find the pure melting point, molar enthalpy of fusion, 
and mol % impurity for the sample. The molar mass of tetracosane is 338.66 g mol-1. 
 

T (K) 322.39 322.44 322.51 322.58 
Partial area 1.450 1.669 2.122 2.866 

 
 
Answer:  The plan is to determine fusHA using the total area under the melting curve, sample 
mass, and molar mass. The fraction of the sample melted, F, is given by the ratio of the partial 
area to the total area under the melting curve. The pure melting point and freezing point 
depression are found from a plot of melting point versus 1/F. Eq. 18.4.16† for the freezing point 
depression gives the mole fraction of the solvent, with tetracosane as the solvent. 
   The molar enthalpy of fusion is given by the total area under the melting curve in joules and 
then converting to the molar quantity: 
 

 fusHA = H/nA = 
0.3919 J (338.66 g mol-1)

2.21x10-3 g  (1kJ/1000 J) = 60.05 kJ mol-1 
 

The plot was set-up using the following spreadsheet: 
 

total area 7.351 
part.area F 1/F T (K) 

1.45 0.197252 5.069655 322.39 
1.669 0.227044 4.404434 322.44 
2.122 0.288668 3.464185 322.51 
2.866 0.389879 2.564899 322.58 

 
slope -0.07572 322.7735 intercept 
± 0.000537 0.002141 ± 
r2 0.9999 0.001017 s(y) 
F 19917.64 2 df 
ssreg 0.020598 2.07E-06 ssresid 

 
 

 

 

y = -0.07572x + 322.77347

322.35
322.40
322.45
322.50
322.55
322.60
322.65
322.70
322.75
322.80

0 2 4 6

T (K)

1/F
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   The intercept is the pure melting point and the slope is the freezing point depression, T, 
Figure 18.4.7c. The freezing point depression is given directly in terms of the mole fraction of 
the solvent using Eq. 18.4.16† as: 
 

 ln xA = – 



fusHA

R T*
m

2  T 
 

with 



fusHA

R T*
m

2  = 



60.05x103 J mol-1

8.3145 J K-1 mol-1(322.774 K)2  = 0.069323 K-1 
 

 ln xA = -0.069323 K-1(0.07572 K)  giving  xA = 0.9948 
 

The purity is 99.48 mol%, using propagation of errors to determine the final number of 
significant figures. 
 
 
24.  Prove that the dependence of the freezing point of a solution on the concentration of the 
solvent is given by (start with the chemical potentials of the pure solvent and the solution): 
 

 ln xA = – 
∆fusHA

R  



1

T – 
1

T*
m  

 
 
Answer:  At equilibrium the chemical potential of the pure solid is equal to the chemical potential 
of the solvent in solution. Assuming an ideal dilute solution gives PA = xA P*

A: 
 

 *
A(s) = A(xA) = *

A(l) + RT ln xA       1 
 

Solving for the logarithm of the concentration: 
 

 ln xA =   
*

A(s) – *
A(l)

RT          2 
 

The Gibbs energy of fusion is given by ∆fusGA = *
A(l) – *

A(s). For example for aqueous 
solutions the ∆fusGA corresponds to the transition written as H2O (s)  H2O(l), with the liquid 
phase being the “products” and the solid phase the “reactants.” Substitution of ∆fusGA into Eq. 2 
gives: 
 

 ln xA =  – 
∆fusGA(T)

RT       (solution)  3 
 

For comparison for a pure solution, xA = 1 and the melting point is the pure solvent melting 
point, T = T*

m; substitution into Eq. 3 gives for the pure solvent: 
 

 ln 1  =  – 
∆fusGA(T *m)

RT*
m

      (pure solvent)  4 
 

Subtracting Eq. 4 from Eq. 3: 
 

 ln 
xA

1   =  – 
∆fusGA(T)

RT  +  
∆fusGA(T*

m)
RT*

m
       5 
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Expanding the Gibbs energy in terms of the enthalpy and entropy changes for the phase 
transition gives: 
 

 ln xA = – 



∆fusHA(T)

RT  – 
∆fusSA(T)

R  + 



∆fusHA(T*

m)
RT*

m
 – 

∆fusSA(T*
m)

R    6 
 

Assuming the temperature change for the phase transition is small, we can assume that ∆fusHA 
and ∆fusSA are constant over the temperature range and cancelling the entropy terms gives: 
 

 ln xA = – 
∆fusHA(T)

RT  + 
∆fusHA(T*

m)
RT*

m
  = – 

∆fusHA

R  



1

T – 
1

T*
m     7 

 
 
25.  Polyvinyl alcohol is often used in lecture demonstrations to make “slime.” A 4.00% by mass 
solution of polyvinyl alcohol was placed in an osmometer. The height of the solution above the 
surface of the pure water at equilibrium was 21.6 cm at 25.0C. Assume the density of the 
solution is that of pure water. Calculate the approximate molar mass of the polyvinyl alcohol and 
the average number of monomers, n, linked in the polymer. [Hint: Polyvinyl alcohol is 
CH3CH(OH)[CH2CH(OH)]n-2CH2CH2OH, so use –CH2CH(OH)- for the monomer molar mass.] 
 
 
Answer:  The osmotic pressure is given by Eq. 1.3.2 and h = 21.6 cm = 0.216 m: 
 

  = dgh = 0.9971 g mL-1(1 kg/1000 g)(1x106mL/1 m3)(9.8067 m s2)(0.216 m) 
    = 2.112x103 Pa = 0.02112 bar 
 

Using Eq. 18.4.30†, since this is such a dilute solution, gives the concentration as: 
 

 cB = /RT = 
0.02112 bar

0.083145 bar L mol-1 K-1 298.15 K = 8.52x10-4 mol L-1 
 

The solution concentration is used to calculate the molar mass from the definition of molarity: 
 

 cB = nB/Vsoln = wB/MB/Vsoln  or solving for MB: MB = wB/cB/Vsoln 
 

were wB is the mass of solute in a volume of solution, Vsoln. Assume 100.0 g of solution. The 
mass of the solute is wB= 4.00 g and the volume of the solution is 
Vsoln = wsoln/dsoln = 100.0 g/0.9971 g mL-1 (1 L/1000 mL) = 0.1003 L giving: 
 

 MB = wB/cB/Vsoln = 4.00 g/8.52x10-4 mol L-1/0.1003 L = 4.68x104 g mol-1 
 

The monomer weight, -CH2CH(OH)-, is 44.06 g mol-1, neglecting the difference in mass 
between the two ends. The average number of monomers per polymer molecule is then: 
 

 n = 4.68x104 g mol-1/44.06 g mol-1 = 1062. = 1.06x103 
 

The large molecular mass is not at all unusual for commercial polymers. Even though the 
solution concentration is quite small, 8.52x10-4M, the osmotic pressure is easily measured to 
high precision. 
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26.  Osmotic pressure is used to determine the molar mass of polymers. However, Eq. 18.4.30† 
assumes ideal behavior. For real solutions, Eq. 18.4.30† gives an effective molar mass. For 
careful determinations, the effective molar mass of a sample is determined at several 
concentrations and extrapolated to zero concentration, where Eq. 18.4.30† becomes exact. The 
osmotic pressure of a sample of polystyrene in toluene was determined at several concentrations 
at 25C. Find the molar mass of the polystyrene sample.6 

 

CB (g L-1) 2.60 5.16 6.54 9.19 
 (Pa) 9.80 32.0 51.0 107. 

 
 
Answer: Eq. 18.4.30† was used to determine the effective molar concentration, cB = /RT, and 
the effective molar mass was determined using the definition of molarity: 
 

 cB = nB/Vsoln = wB/MB/Vsoln  or solving for MB: MB = wB/cB/Vsoln 
 

were wB is the mass of solute in a volume of solution, Vsoln. The concentrations in the table are 
given in g mol-1, CB. Assume 1.000 L of solution. The mass of the solute is wB= CB(1 L): 
 

 MB = CB(1 L)/cB/1 L = CB/cB 
 

The calculations were implemented in a short spreadsheet: 
 

CB (g L-1)  (Pa) cB (mol L-1) Meff (g mol-1) 
2.6 9.8 3.953E-06 6.576E+05 

5.16 32 1.291E-05 3.997E+05 
6.54 51 2.057E-05 3.179E+05 
9.19 107 4.317E-05 2.129E+05 
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The linear intercept gives the molar mass, MB = 8.x105 g mol-1. If more data points are available, 
a non-linear curve fit is appropriate and provides better accuracy.6 The large change in effective 
molar mass with concentration shows significant deviations from ideality, even at these low 
concentrations. 
 
 
27.  A 0.1000 m aqueous urea solution and pure water are separated by a membrane that is 
impermeable to urea and permeable to water, at 25C and 1 bar. Calculate the chemical potential 
of urea in the solution, relative to the standard state chemical potential, at equilibrium. The 
density of the solution is 0.99873 g mL-1and the data necessary to obtain partial molar volume is 
given in Example 18.1.1. 
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Answer:  Using Eq. 2.2.13, the mole fraction of 0.1000 m urea is xB = 1.7983x10-3. For a dilute 
solution of a non-electrolyte, the partial molar volume of the solvent is well approximated by the 
pure molar volume, V*

A = MA/dA,pure = 18.069 mL. The osmotic pressure in terms of the mole 
fraction of solute is given by Eq. 18.4.27†: 
 

  = xB RT/V*
A = 1.7983x10-3(0.083145 bar L K-1 mol-1)(298.15 K)/0.018069 L 

    = 2.467 bar 
 

For the partial molar volume of the solute using Eq. 18.1.8 at 0.1000 m gives: 
 

 V– B = 






V1kg

mB T,P,nA

kg-1 = 3(-1.9934x10-3) m
2
B + 2(9.03779x10-2) mB + 44.36388 

      = 3(-1.9934x10-3)(0.1)2 + 2(9.03779x10-2)(0.1) + 44.36388 = 44.382 mL mol-1 
 

For the solute, Eq. 18.4.24†gives the chemical potential at equilibrium with P = : 
 

 B(xB,P+) = †
B(l,P) + RT ln xB + BV– B 

         = †
B(l,P) + 8.3145 J K-1 mol-1(298.15 K) ln 1.7983x10-3 

        + 2.467 bar(44.382 mL mol-1)(1x105Pa/1bar)(1 m3/1x106 mL) 
        = †

B(l,P) + (-15.67 kJ mol-1) + 0.011 kJ mol-1 

 

The concentration dependent term dominates the change in chemical potential for the solute 
compared to the standard state. On the other hand, for the solvent, which occurs on both sides of 
the membrane, the concentration dependent term and the osmotic pressure term cancel at 
equilibrium. 
 
 
28.  Calculate the chemical potential of water in a 0.200 M solution of sucrose at 10.00 bar and 
25C. The partial molar volume of water in this solution is well approximated by the pure molar 
volume. 
 
 
Answer:  The plan is to use Eq. 18.4.30† to calculate the equilibrium osmotic pressure and then 
Eq. 18.4.31 to find the chemical potential of the solvent. 
   The equilibrium osmotic pressure is given by Eq. 18.4.30†: 
 

  = cB RT = 0.200 mol L-1(0.083145 L bar K-1 mol-1)(298.15 K) = 4.96 bar 
 

The partial molar volume of water in this dilute solution is not far from the pure molar volume, 
V*

A = MA/dA,pure = 18.0153 g mol-1/0.997045 g mL-1 = 18.069 mL mol-1.The chemical potential 
for water as the solvent is then given by Eq. 18.4.31: 
 

 A(xA,P+P) = *
A(l,P) + (P – )V– A 

  = *
A(l,P) + ( – 4.96 bar) 18.069 mL mol-1 (1x105 Pa/1 bar)(1 m3/1x106 mL) 

  = *
A(l,P) + (9.11 J mol-1) 

 

The chemical potential of pure water is just the Gibbs energy per mole. The standard state Gibbs 
energy of formation of water is -237.13 kJ mol-1, so the effect of the pressure is small. However, 
the difference is not negligible since the 10 bar applied pressure corresponds to a hydrostatic 
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head of 102 m and the osmotic pressure corresponds to 51 m. Small differences in chemical 
potential correspond to large differences in osmotic pressure. 
 
 
29.  Starting with the expression for the chemical potential of the solvent in an ideal-dilute 
solution, prove Eq. 18.4.15†. 
 
 
Answer:  The freezing point or melting point of a solution is the equilibrium phase transition 
temperature giving A(xA) = *

A(s). Using Raoult’s Law for the solvent, the chemical potential of 
the solvent in solution is given by Eq. 18.2.9*: 
 

 *
A(s) = A(xA) = *

A(l) + RT ln xA 
 

The molar Gibbs energy of fusion of the pure solvent at temperature T is given by ∆fusGA(T) = 
*

A(l) – *
A(s). Solving for the concentration of the solvent that gives the solution freezing point at 

temperature T gives: 
 

 ln xA = 
*

A(s) – *
A(l)

RT  = – 
∆fusGA(T)

RT
 

 

For the pure solvent, xA = 1, and the equilibrium temperature is the melting point of the pure 
solvent at the ambient pressure, T = T *

m: 
 

 ln 1 = – 
fusGA(T*

m)
RT*

m
 

 

We can compare the solution to the pure solvent by subtracting the last two equations: 
 

 ln 
xA

1  = – 
∆fusGA(T)

RT  + 
∆fusGA(T*

m)
RT*

m
 

 

We can separate enthalpy and entropy effects using ∆fusGA(T) = ∆fusHA(T) – T ∆fusSA(T): 
 

 ln xA = – 



fusHA(T)

RT  – 
fusSA(T)

R  + 



fusHA(T*

m)
RT*

m
 – 
fusSA(T*

m)
R  

 

where fusHA is the enthalpy of fusion of the solvent. The change in freezing point is typically 
only a few degrees. Assuming that ∆fusHA and ∆fusSA are constant over this small temperature 
range results in the cancellation of the entropy terms: 
 

 ln xA = – 
fusHA

RT  + 
fusHA

RT*
m

 
 

Collecting terms gives exactly the same results as for boiling point elevation, except for a change 
in sign: 
 

 ln xA = – 
fusHA

R  



1

T – 
1

T*
m

   (ideal solvent, cst. P, fusHB & fusSB) 
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30.  Consider the solubility of a pure solid, B, in a solvent at temperature T. Assume that the 
solution is ideal-dilute and at constant pressure. (a). Show that:  *

B(s) = †
B(l) + RT ln xB. 

(b). The standard state Gibbs energy of solution of the pure solid at temperature T is defined as: 
solGB(T) = †

B(l) – *
B(s). Show that the solubility of the solute is: ln xB = –solGB(T)/RT. 

(c). At reference temperature To the solubility is xBo. Show that the temperature dependence of 
the solubility is given by: 
 

 ln 
xB

xBo
 = – 

solHB
R  



1

T – 
1
To

    (ideal-dilute, cst. P)      P18.29.1† 

 
 
Answer:  The plan is to set the chemical potential of pure solute B equal to its chemical potential 
in solution. The steps in the derivation parallel Eqs. 18.4.2†-18.4.8†, but focus on the solute. 
(a). At equilibrium, the chemical potential of a solute is equal to the solute’s chemical potential 
in solution, *

B(s) = B(xB). The chemical potential of the solute is given by Eq. 18.3.10†, 
assuming an ideal-dilute solution: 
 

 *
B(s) = B(xB) = †

B(l) + RT ln xB 
 

where xB is the solubility, the concentration that is in equilibrium with the pure solid. The 
difference in standard states is the standard state Gibbs energy of solution, solGB = †

B(l) – *
B(s) 

at temperature T. Solving for the solubility gives: 
 

 ln xB = [*
B(s) – †

B(l)]/RT = –solGB(T)/RT 
 

At reference temperature To the solubility is xBo.  
 

 ln xBo = –solGB(To)/RTo 
 

The difference in solubilities at T and To is then: 
 

 ln xB – ln xBo = –solGB(T)/RT + solGB(To)/RTo 
 

The Gibbs energy of solution can be split into enthalpic and entropic terms: 
 

 solGB = solHB – TsolSB 
 ln xB/xBo = –solHB(T)/RT + solSB(T)/R + solHB(To)/RTo – solSB(To)/R 
 

Assuming that solHB and solSB are constant over the temperature range, the entropy terms 
cancel: 
 

 ln 
xB

xBo
 = – 

solHB
R  



1

T – 
1
To

    (ideal-dilute, cst. P, solHB & solSB) 
 

Solubility is another example of General Pattern 4: Exponential Temperature Dependence, 
e-E/RT, and may be rearranged in the same ways. 
 
 
31.  (a). Show that for small changes in temperature, T  T – To, Eq. P18.29.1† reduces to: 
 

 xB = xBo + 



solHB xBo

RT2
o

 T 
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(b). Show that this equation and LeChâtelier’s Principle are consistent. 
 
Answer:  The plan is to parallel the approximations in Eqs. 18.4.9†-18.4.14† and General Pattern 
. 
(a). Set T  T – To. Following General Pattern 4, Eq. 3.5.13, for small changes in 
temperature, TTo  T2

o. Substitution into Eq. P18.29.1† gives: 
 

 ln 
xB

xBo
 = – 



solHB

R  



To – T

T To
= 



solHB

RT2
o

 T 
 

For small changes in temperature, the change in solubility is small and xB/xBo  1. Using the 
Taylor series approximation, Table 1.5.3, ln x  x – 1 near xo  1 gives: 
 

 
xB

xBo
 – 1 = 



solHB

RT2
o

 T 
 

Solving for xB: 
 

 xB = xBo + 



solHB xBo

RT2
o

 T    (ideal-dilute, small T) 
 

(b). If the enthalpy of solution is endothermic, the constant in parentheses is positive and the 
solubility increases with an increase in temperature. Think of the equilibrium solubility as a 
chemical reaction, B(s)  B(xB). According to LeChâtelier’s Principle, a reaction shifts in the 
endothermic direction with an increase in temperature. Increasing solubility corresponds to a 
shift to the right. The last equation and LeChâtelier’s Principle are consistent. 
 
 
32.  Many binary solid-liquid phase diagrams are more complex than Figure 18.4.11. Some 
systems show the formation of a stable binary compound in the solid phase. Compounds 
typically have simple stoichiometries, such as A2B, that are stabilized by strong intermolecular 
forces, like hydrogen bonding, or favorable crystal packing forces. The compound components 
are not covalently bound, and the compound doesn’t exist in the liquid phase. An example of a 
compound in the phase diagram for NaCl in water is the dehydrate, NaCl(H2O)2. The solid-
liquid phase diagram for a system with a stable solid-state compound, A2B, is shown below. 
Analyzing a phase diagram that shows compound formation can be simplified by treating the 
compound as a hypothetical pure substance and dividing the phase diagram to either side as 
separate binary systems. Describe the phase transitions that occur along the cooling curve at the 
indicated composition, x1. 
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Answer:  Start at high temperature, with solution only, point a. When the temperature drops to 
point b, solid compound A2B begins to crystallize out of solution. The solution, which is also 
called the melt, becomes richer in B and the freezing point decreases. When the temperature 
drops to the eutectic temperature, between pure B and A2B, solid A2B begins to crystallize out of 
solution. The temperature remains constant until all the solution has solidified. The bulk 
composition is then at point d. 
 
 
 
 
 
 
 
 
 
 
 
33.  Relate the changes in the slopes of the segments on the cooling curve, Figure 18.4.12, and 
the widths of the peaks on the DSC melting curve, Figure 18.4.13, to the variances of the system 
at constant pressure. Discuss segments b-c and c-d. 
 
Answer:  The corresponding regions and variances are diagrammed, below. For segment b-c the 
solution is in equilibrium with pure solid A. The variance of the system is f ' = 1. One intensive 
variable may be changed independently. For example, for a chosen composition, with freezing 
point of the solution is fixed. In segment b-c on the cooling curve, the temperature decreases as 
the solution become richer in B. The freezing point is depressed with increasing concentration of 
B in the solution. The corresponding melting peak in the DSC melting curve is broad. However, 
once the solution reaches the eutectic composition, the variance drops to f ' = 0, there are no 
independent variables. The temperature must then be fixed at the eutectic temperature. The 
cooling curve becomes flat at the eutectic temperature and the DSC melting peak at the eutectic 
temperature is narrow, comparable to the width of the melting peak of a pure substance. (The 
width of the eutectic melting peak is determined by instrument response times and the 
temperature scan rate.)  
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34.  The following DSC melting thermograms were obtained from a range of starting 
compositions of Sn and Pb. The compositions are given as % by mass. The baselines of the 
thermograms are offset for clarity. Sketch the binary solid-liquid phase diagram. Use % by mass 
Sn as the composition axis, instead of mole fraction; % by mass gives a more convenient plot for 
this system.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Answer:  The sharp, low temperature transitions for the mixtures occur at the eutectic 
temperature. An easy way to think of building the phase diagram is to tilt the thermograms on 
their sides and replot them along the composition axis. Then connecting the melting temperatures 
by lines delineates the two-phase regions. 
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35.  Find the variance for a gas in equilibrium with an aqueous solution of the gas. Give an 
expression for the general differential of the Gibbs energy, the change in Gibbs energy at 
constant temperature, and the change in Gibbs energy at constant temperature and pressure. 
Discuss the independent variables. 
 
 
Answer:  The two components are H2O and the gas, c = 2. The two phases are the solution and 
the vapor, p = 2. The variances using Eq. 18.5.6 are: 
 

 f = c – p + 2 = 2 at constant T:  f ' = 1  and at constant T & P:   f " = 0 
 D = c + p = 4    D ' = 3        D " = 2 
 

Call the gas M; examples include methanol, CH4, CHCl3, O2, and N2. The change in Gibbs 
energy for a general process written in terms of all the possible terms is: 
 

    dG = – S dT + V dP + H2O(xH2O) dnH2O,l + H2O(g) dnH2O,g + M(xM) dnM,l + M(g) dnM,g 
          (with 4 independent) 
 

The Gibbs Phase Rule points out that since the chemical potentials of each component are equal 
in the liquid and vapor, in addition to xH2O + xM = 1 and yH2O + yM = 1, there are only two degrees 
of freedom for the intensive variables. An equivalent way of noting this decrease in variance is 
that at equilibrium the vapor pressure of water is determined by Raoult’s Law and the vapor 
phase pressure of the dissolved gas is given by Henry’s Law. Following the allowed variance and 
arbitrarily focusing on the solution: 
 

 dG = – S dT + V dP + H2O(xH2O)dnH2O + M(xM)dnM   (D = 4) 
 dG =   V dP + H2O(xH2O)dnH2O + M(xM)dnM   (cst.T: D ' = 3) 
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 dG =    H2O(xH2O)dnH2O + M(xM)dnM   (cst. T&P: D " = 2) 
 

where dnH2O = dnH2O,l + dnH2O,g and dnM = dnM,l + dnM,g (the chemical potential of the 
components in each phase are equal, so it doesn’t matter which phase the components are in for 
calculating the overall Gibbs energy). The final expression for dG can often be written in various 
equivalent ways; however, f and D provide a check that you haven’t included dependent terms. 
 
 
36.  Two partially miscible liquids, A and B, form a two-phase liquid system at equilibrium. One 
phase is mostly A with a small amount of B and the other phase is mostly B with a small amount 
of A. Consider only the liquid phases. Give an expression for the general differential of the 
Gibbs energy, the change in Gibbs energy at constant temperature, and the change in Gibbs 
energy at constant temperature and pressure. Discuss the independent variables. Most non-polar 
organic liquids and water are examples of this type of behavior; small amounts of water dissolve 
in the organic layer and small amounts of organic substance dissolve in the aqueous layer. 
 
 
Answer:  The two components are A and B, c = 2. The two phases are the solution rich in A, the 
α phase, and the solution rich in B, the  phase, so that p = 2. The variances are using Eq. 18.5.6: 
 

 f = c – p + 2 = 2 at constant T:  f ' = 1  and at constant T & P:   f " = 0 
 D = c + p = 4    D ' = 3        D " = 2 
 

The change in Gibbs energy for a general process written in terms of all the possible terms is: 
 

    dG = – S dT + V dP + A(xA,α) dnA,α + A(xA,) dnA, + B(xB,α) dnB,α + B(xB,) dnB, 
          (with 4 independent) 
 

with xA,α the concentration of A in the alpha phase and xA, the concentration of A in the beta 
phase. The Gibbs Phase Rule points out that since the chemical potentials of each component are 
equal in both liquid phases, in addition to xA,α + xB,α = 1, and xA, + xB, = 1, there are only two 
degrees of freedom for the intensive variables. 
 

 dG = – S dT + V dP + A(xA,α)dnA + B(xB,α)dnB   (D = 4) 
 dG =   V dP + A(xA,α)dnA + B(xB,α)dnB   (cst.T: D ' = 3) 
 dG =    A(xA,α)dnA + B(xB,α)dnB   (cst. T&P: D " = 2) 
 

where dnA = dnA,α + dnA, and dnB= dnB,α + dnB, are the changes in total moles of A and B in 
both phases (the chemical potential of the components in each phase are equal, so it doesn’t 
matter which phase the components are in for calculating the overall Gibbs energy). The final 
expression for dG can often be written in various equivalent ways; however, f and D provide a 
check that you haven’t included dependent terms. 
 
 
37.  A system containing three components is univariant. How many phases are present? 
 
 
Answer:  The Gibbs Phase Rule, Eq. 18.5.6, determines the variance. For a univariant system, f = 
1, and with c = 3: 
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 f = c – p + 2 
 1 = 3 – p + 2  giving   p = 4 
 
 
38.  Show that for a pure substance the largest number of phases that can coexist is three. 
 
 
Answer:  For a pure substance c = 1. Since there are no composition variables, the only intensive 
variables are the temperature and pressure and the variance is f = 2. The Gibbs Phase Rule, Eq. 
18.5.6, then determines the phases: 
 
 f = c – p + 2 
 2 = 1 – p + 2  giving p = 3 
 
 
39.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a). A champagne toast was used to celebrate the final stages of the construction of a 
transportation tunnel under the Thames River in London, in November 1827.8 The celebration 
fell flat because at the higher ambient pressure in the tunnel, the Henry’s Law solubility of the 
CO2 in the wine increased, making the champagne taste flat. Participants also suffered gastric 
distress upon regaining ground level. This event is a practical example of Henry’s Law. 
 

(b). Soft drinks may be kept from “defizzing” by pumping air into the empty space above the soft 
drink in a partially filled bottle. 
 

(c). Consider a two-phase region for a binary solid-liquid equilibrium system at constant 
pressure, with solution in equilibrium with pure solid A, Figure 18.4.12. At a fixed temperature, 
the solution composition may be any value along the tie line. 
 

(d). A solution has a minimum freezing point (the eutectic temperature) because at the minimum 
temperature, the both the solute and the solvent have limited solubility in solution. 
 

(e). The theory of ideal-dilute solutions doesn’t take solute-solvent forces into account. 
 

(f). The boiling point is elevated and the freezing point is depressed in a dilute solution of 
methanol in water. 
 

(g). Two phases cannot be in equilibrium unless all components occur in each phase. 
 
 
Answers: (a). False: Henry’s Law, pCO2 = kH,CO2 xCO2, depends on the partial pressure of CO2, not 
the total pressure. The partial pressure of CO2 at equilibrium in a bottle of champagne is near 6 
atm. The partial pressure of CO2 in ambient air is 0.0003 atm.9 The increased ambient pressure at 
the bottom of the tunnel does not significantly increase the CO2 partial pressure in the 
atmosphere, compared to the 6 atm equilibrium partial pressure. Rather, the effect is caused by 
the kinetics of bubble formation. The kinetics of nucleation and bubble growth as the bubble 
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rises in the solution is dependent on total pressure.9 The correct statement is: the equilibrium 
solubility of CO2 in beverages is essentially independent of total applied pressure of air. 
However, please see Eq. 17.1.30 for extreme changes in total pressure. 
 

(b). False: pumping air into the empty space in a partially filled bottle increases the total 
pressure, but the partial pressure of CO2 remains essentially unchanged. The partial pressure of 
CO2 in the atmosphere is negligible in this regard, at 0.0003 atm. Henry’s Law, 
pCO2 = kH,CO2 xCO2, depends on the partial pressure of CO2, not the total pressure. The increase in 
total pressure does decrease the rate of bubble nucleation and bubble growth, but the equilibrium 
is unaffected. In addition, 80% of the transfer of CO2 into the gas phase is by direct transfer from 
the surface of the solution (for further information see part (a) and Ref. 9). The correct statement: 
bottle-top pressure pumps do not prevent “defizzing” of soft drinks at equilibrium. 
 

(c).  False: the solution composition is at the solution end of the tie line, on the freezing point 
coexistence curve. The solid-phase composition is at the solid-phase end of the tie lie, which is 
pure A. The solution composition is fixed at a single value, subject to the system temperature. 
The corrected statement is: the overall system composition, zB, may be any value along the tie 
line.  
 

(d).  True: thinking of the system from the perspective of freezing point depression, as the 
temperature of the solution is lowered, the solvent freezes out of solution. As the solute 
concentration increases the freezing point is depressed further. However, at some low 
temperature the solute also crystallizes out of solution, because the solute has limited solublility 
in the solution. At the eutectic temperature, both solute and solvent crystallize out of solution. 
 

(e).  False: The Henry’s Law constant is the hypothetical vapor pressure of pure solute, assuming 
the forces are the same as between the solute and solvent. So, the solute-solvent forces are 
explicitly accounted for, in the dilute solution limit. Another way of seeing that the solute-
solvent forces are carefully accounted for is to note that the Henry’s Law constant for the solute 
is extrapolated from very dilute solution, where the only forces that affect the solute are the 
solute-solvent forces. Ideal-dilute solution theory does not take into account the concentration 
dependent changes as the forces shift from the solute-solvent forces in very dilute solution to 
solute-solute forces in pure solute, as xB  1. The concentration dependent effects are resolved 
by the definition of activity in the next chapter. The correct statement is: ideal-dilute solution 
theory accounts for solute-solvent forces in the dilute solution limit, for which the only forces are 
the solute-solvent interaction. 
 

(f). False/True:  The freezing point is depressed in dilute methanol solutions. However, methanol 
is a volatile solute, so the colligative laws don’t apply to the vapor above methanol-water 
solutions. Instead the binary liquid-vapor phase diagram is applicable, Figure 18.4.2, with water 
the less volatile component having the higher boiling point. At equilibrium the vapor pressures 
of methanol and water add, so the boiling point is lower for methanol-water solutions than pure 
water. The correct statement is: the boiling point is lowered and the freezing point is depressed in 
a dilute solution of methanol in water. 
 

(g). True with a qualification: if two phases are in contact and a component occurs in one phase 
but not the other, then a concentration gradient will exist, and the component will diffuse into the 
other phase. The flux continues until the chemical potential of the component is equal in both 
phases. However, to be careful a qualification should be added: In the absence of a physical 
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constraint, two phases cannot be in equilibrium unless all components occur in each phase. A 
semi-permeable membrane is such a constraint. 
 
 
40.  For many binary solid-liquid systems, the two solids are partially miscible. The solid phases 
consist of a phase rich in A with small amounts of B, the α phase, and a phase rich in B with 
small amounts of A, the  phase. Cooling a solution of A and B, with an initial concentration 
greater than the eutectic composition, freezes out solid α. Cooling a solution of A and B, with an 
initial concentration less than the eutectic composition, gives solid . Below the eutectic 
temperature, solid  and solid α are in equilibrium. The compositions of the two solid phases 
depend on temperature. The phase diagram for a binary solid-liquid system with partial 
miscibility is shown below, at constant pressure. Describe the phases in equilibrium in each part 
of the phase diagram. Give the variance, f ', for each accessible region of the phase diagram. 
 
 
 
 
 
 
 
 
 
 
 
Answer:  The plan is to base the description on Figure 18.5.2a and the Gibbs Phase Rule, Eq. 
18.5.6. The experiment is at constant pressure, so we use f '. 
   At high temperatures, only the liquid phase exists, as a solution of A and B. With only one 
phase, p = 1 and f ' = c – p + 1 =  2 + 1 – 1 = 2. The temperature can vary over a wide range for 
each composition.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the solid-liquid two-phase regions, with the solid and liquid in equilibrium, p = 2 and the 
variance at constant pressure is f ' = 2 – 2 + 1 = 1. On the left side of the phase diagram the 
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solution is in equilibrium with the solid rich in B, solid . On the right side the solution is in 
equilibrium with the A rich solid, solid α. At the eutectic temperature, the liquid phase, solid , 
and solid α co-exist and p = 3 giving f ' = 2 – 3 + 1 = 0. The eutectic temperature is an invariant 
point at constant pressure. Below the eutectic temperature, solid  and solid α are in equilibrium. 
The specific concentrations for the two solid phases are temperature dependent. The cross-
hatched areas are not accessible starting from a homogeneous solution of A and B. 
 
 
41.  For many binary solid-liquid systems, the two solids are partially miscible. The solid phases 
consist of a phase rich in A with small amounts of B, the α phase, and a phase rich in B with 
small amounts of A, the  phase. Below the eutectic temperature, solid  and solid α are in 
equilibrium. The compositions of the two solid phases depend on temperature. The phase 
diagram for a binary solid-liquid system with partial miscibility is shown below, at constant 
pressure. Describe the phase changes that occur as the solution starting at point a is cooled to 
below the eutectic temperature, point e. 
 
 
 
 
 
 
 
 
 
 
Answer:  Cooling the solution of A and B starting at point a, the first phase change occurs when 
the temperature reaches the freezing point of the solution, point b. At point b, the solution is in 
equilibrium with solid α, with the composition given by the right side of the tie line at point f, in 
the diagram below. As solid α freezes out of solution, the solution composition becomes richer in 
B; the solution composition moves to the left on the co-existence curve and the freezing point of 
the solution decreases. The temperature continues to drop until the eutectic temperature is 
reached, point c. At the eutectic temperature, solid  crystallizes out of solution along with solid 
α. The temperature remains constant (the eutectic point is an invariant point at constant 
pressure), until the solution has completely frozen into a heterogeneous mixture of crystallites of 
solid α and solid . The compositions of the two solid phases are at the ends of the tie line at the 
eutectic temperature, points g and h.  
 
 
 
 
 
 
 
 
 
 

T *
mB 

T *
mA 

cst P 

0 1 
xA  

solid  & solid α 
 

liquid A & B 
T 

pure A pure B 
xE 

solid α solid  
TE 

a 

b 

c d 
e 

f 

g h 

T *
mB 

T *
mA 

cst P 

0 1 
xA  

solid  & solid α 
 

liquid A & B 
T 

pure A pure B 
xE 

solid α solid  
TE 

a 

b 

c d 
e 



32 
 

Below the eutectic temperature, the combined concentration of the solid phases is equal to the 
original solution concentration, point d, but no single phase has the composition at point d. The 
system continues to cool to point e. As the solution cools below the eutectic temperature, the 
composition of the solid phases at equilibrium change. However, establishing equilibrium is a 
very slow process in the solid state. 
 
 
42.  Consider a binary solid-liquid system with components that are completely immiscible in the 
solid phase, Figure 18.4.11. Below the eutectic temperature, only pure solid A and pure solid B 
are present. The general form of the Gibbs Phase Rule, f = c – p + 2, does not apply to this region 
because the components A and B don’t occur in all the phases. Determine the variance in the 
two-phase solid region below the eutectic temperature for immiscible components. 
 
 
Answer:  There are only two intensive variables in the solid two-phase region: T and P. The 
concentrations are fixed, since the phases are pure. For the solid A phase xA = 1 and for the solid 
B phase xB = 1. The variance is then f = 2, accounting for the temperature and pressure variation. 
At constant pressure, f ' = 1, and the system is univariant. Only the temperature may be varied at 
constant pressure. Please see Problems 39-40 for the more realistic case of partial miscibility. 
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