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Chapter 18: Ideal Solutions 
 
 
Calculate the Gibbs energy of mixing for the formation of a solution of 0.500 mol of ethanol 
with 0.500 mol of ethyl acetate, assuming an ideal solution. 
 
 
   Intermolecular forces in solution have an important impact on chemical reactivity. Solute-
solvent interactions shift the position of equilibrium as compared to reactions in the gas phase or 
reactions involving pure substances. In particular, the unique properties of aqueous solutions are 
important in biochemistry, medicinal chemistry, biogeoenvironmental chemistry, and 
oceanography. Solvation is one of the most important areas of physical chemistry that is yet to be 
adequately characterized by theory from first-principles. 
   Determining the Gibbs energy of solvation and then the Gibbs energy of a substance in 
solution is the focus of the next two chapters. The conceptual model of an ideal solution is an 
important first step in the development of the theory of solvation. The ideal-dilute solution model 
provides an understanding of colligative phenomena, which include vapor pressure lowering, 
boiling point elevation, freezing point depression, and osmotic pressure. The first step in 
developing the theory of solutions is to determine how to recast the fundamental equations of 
thermodynamics into terms appropriate for solutions. The concept of partial molar properties  
is the key new ingredient in finding the Gibbs energy of a substance in solution. Partial molar 
quantities allow the variation of the intermolecular forces in solution to be easily accounted for 
in thermodynamic relationships. Our treatment of partial molar effects begins with partial molar 
volume, since volume changes in solution are easy to visualize. 
 
18.1  Concentration Dependence is Expressed by Partial Molar Properties 
 
Volumes Usually Don’t Add in Making Solutions:   Mixing 10.00 mL of ethanol and 10.00 mL of 
water gives a solution of volume 19.20 mL. The temperature also increases by a small amount 
upon mixing. The volume of the mixture is less than the pure constituents because of favorable 
interactions between the two substances, which also make formation of the solution exothermic. 
The molar volume of pure ethanol is 58.46 mL mol-1 and of water is 18.07 mL mol-1. The 
“effective molar volume” of the ethanol in this solution is 55.1 mL mol-1 and the “effective 
molar volume” of water is 17.74 mL mol-1, which are less than the pure molar volumes. The 
“effective molar volume” is called the partial molar volume. The partial molar volume differs 
from the pure molar volume because of solute-solvent interactions. The partial molar volumes 
are usually strongly dependent on concentration, Figure 18.1.1a. The partial molar volumes are 
defined by the derivatives, Figure 18.1.1b: 
 

 V–A ≡ 






∂V

∂nA T,P,nB

   V–B ≡ 






∂V

∂nB T,P,nA

    18.1.1 
 

We usually refer to the solvent as constituent A and the solute as constituent B. For pure 
substances, the partial molar volumes are equal to the pure molar volumes, V–

A = V *
A and V–B = 

V *
B. The change in total volume of the solution at constant temperature and pressure is given by: 
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 dV = 






∂V

∂nA T,P,nB

dnA + 






∂V

∂nB T,P,nA

dnB = V–A dnA + V–B dnB  (cst. T&P) 18.1.2 
 

To find the total volume of the solution, we integrate this differential at constant composition to 
give (see Sec. 16.8 and Eq. 16.8.4): 
 

 V = V–A nA + V–B nB       (cst. T&P) 18.1.3 
 

The total volume of the solution is an additive function of the composition, with the partial molar 
volumes at the given final concentration. Also note that partial molar volumes are sometimes 
shown in bold without the “overbar,” VA and VB. How are we to interpret partial molar 
properties? 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

   (a).       (b). 
 

Figure 18.1.1: (a). Partial molar volumes of ethanol and water in solution. (b). The volume of 
solutions of MgSO4, B, containing 1 kg of water (55.51 mol). The partial molar volume of 
MgSO4 is the derivative of the volume with respect to the change in moles of MgSO4, 
keeping the moles of water constant. Note that partial molar volume is negative if the 
solution shrinks upon addition of solute. 

 
 
   Remember our discussion of the interpretation of derivatives in Sec. 8.4. Correspondingly, Eqs. 
18.1.1 can be interpreted in two equivalent ways: 
 

The partial molar volume is the derivative of the volume with respect to the change in 
moles of the substance, keeping the moles of the other substance in solution constant. 

 

The partial molar volume is the change in volume for adding one mole of substance to 
so large an amount of solution that the concentration remains unchanged. 

 

We can use the endpoints of the partial molar volume curve for ethanol in Figure 18.1.1a as 
examples. Consider a swimming pool filled with water. The partial molar volume of ethanol in 
water at xEtOH = 0 is the change in volume when one mole of ethanol is added to the swimming 
pool, V–EtOH = 54.95 mL mol-1. The change in concentration is negligible because the swimming 
pool has such a large volume. Now, consider a swimming pool filled with pure ethanol. The 
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partial molar volume of ethanol at xEtOH = 1 is the change in volume for adding one mole of 
ethanol to a swimming pool filled with ethanol, which is just the pure molar volume. Notice in 
the figure that when the partial molar volume of one constituent increases, the partial molar 
volume of the other constituent decreases. 
   The variation of the partial molar volume with concentration results, in large part, from the 
interaction of the solute and the solvent. Accordingly, we expect that the partial molar volumes 
of the solute and solvent are related. Consider the total differential of Eq. 18.1.3 for any possible 
process at constant temperature and pressure; using the product rule gives: 
 

 dV = V–A dnA + nA dV–A + V–B dnB + nB dV–B    (cst. T&P) 18.1.4 
 

Both this general expression and Eq. 18.1.2 must be simultaneously satisfied. Subtraction of Eq. 
18.1.2 from this last equation shows that the partial molar volumes are related by: 
 

 0 = nA dV–A + nB dV–B       (cst. T&P) 18.1.5 
 

Eq. 18.1.5 is called a Gibbs-Duhem relationship; we will find corresponding relations for each 
partial molar property. To show that the Gibbs-Duhem relationship allows the calculation of the 
partial molar property of one constituent in solution from the other, solve the last relationship for 
dV–B to give: 
 

 dV–B = – 
nA

nB
 dV–A       (cst. T&P) 18.1.6 

 

The mole fractions are defined using xA = nA/ntot and xB = nB/ntot, with ntot = nA + nB and 
xA = 1 – xB. Dividing the numerator and denominator in Eq. 18.1.6 by ntot gives: 
 

 dV–B = – 
nA/ntot

nB/ntot
 dV–A = – 

xA

xB
 dV–A = – 

xA

1 – xA
 dV–A   (cst. T&P) 18.1.7 

 

This form of the Gibbs-Duhem relationship for the volume shows that the derivative of the 
partial molar volume of the two constituents are opposite in sign; when one increases the other 
decreases. Integration of this last equation over a range of concentrations allows the calculation 
of the partial molar volume of one constituent from the other (see below for an example of this 
process using the chemical potential). 
   In the laboratory, the partial molar volume of the solute is easily evaluated by measuring the 
volume or density of a series of solutions of known molality. The molality of the solute is given 
as mB = nB/wA, with wA the mass of the solvent in kg, Eq. 2.2.4. For a solution containing 1 kg of 
solvent, mB = nB/1 kg; the number of moles of solute in the solution is numerically equal to the 
molality. We can then change variables for the partial molar derivative using the chain rule: 
 

 V–B = 






∂V

∂nB T,P,nA

= 






∂V

∂mB T,P,nA





∂mB

∂nB T,P,nA

= 






∂V1kg

∂mB T,P,nA





1

1 kg  (cst. T&P) 18.1.8 
 

where V1kg  is the volume of a solution that contains 1 kg of solvent. A closely related property, 
the apparent molar volume, is often used in practical circumstances in the laboratory. Consider 
the volume of a solution as nB moles of a solute are added to a fixed nA moles of solvent, Figure 
18.1.2. The volume due to the added solute per mole is called the apparent molar volume, φV: 
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 φV ≡ 
Vsolution – Vpure solvent

moles of solute  = 
V – nA V *

A

nB
    (cst. T&P) 18.1.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.1.2: The total volume of a solution V depends on the volume of the pure solvent 
and the apparent molar volume of the solute, φV. 

 
 
The volume V of the solution at any particular added nB moles of solute is given by the 
rearrangement of Eq. 18.1.9: 
 

 V = nA V *
A+ nB 

φV  and    V–B = φV + mB 






∂ φV

∂mB T,P,nA

 (cst. T&P) 18.1.10 
 

This first result shows that the apparent molar volume ascribes all of the change in volume of the 
solution to the solute. The effective volume of the solvent is assumed to be the pure molar 
volume of the solvent, V*A. The apparent molar volume includes the volume of the solute and the 
change in volume of the solvent caused by the interactions of the solute with the solvent. The 
partial molar volume, on the other hand, shares the change in volume between the effective 
volume of the solute and the effective volume of the solvent, both of which vary with 
concentration. The apparent molar volume is particularly useful in biochemical determinations. 
 
 
              

Example 18.1.1: Partial Molar Volume 
The volume of solution that contains 1 kg of solvent for an aqueous solution of urea at 25°C is 
given by the following polynomial as function of the molality of urea. The volume is in mL. 
Determine the partial molar volume of urea and water, and the apparent molar volume of urea for 
a 0.5000 m solution. 
 

 V1kg = -1.9934x10-3m
3
B + 9.03779x10-2 m

2
B + 44.36388 mB + 1002.842 

 
 
Answer:  For the partial molar volume of the solute using Eq. 18.1.8 at 0.5000 m gives: 
 

V
o

lu
m

e 

nB  (moles) 

volume due to added solute = nB φV 

volume of pure solvent = nAV *
A 

V–B = slope at nB 

nB 



613 
 

 V–B = 






∂V1kg

∂mB T,P,nA

kg-1 = 3(-1.9934x10-3) m
2
B + 2(9.03779x10-2) mB + 44.36388 

      = 3(-1.9934x10-3)(0.5)2 + 2(9.03779x10-2)(0.5) + 44.36388 = 44.4528 mL mol-1 
 

The total volume at m = 0.5000 m using the given polynomial is V1kg = 1025.046 mL. The partial 
molar volume of the solvent, water, is given by solving Eq. 18.1.3 for V–

A with 1 kg of solvent: 
 

 V1kg = V–A nA + V–B nB = V–A 
1000 g
MA

 + V–B mB (1 kg) 

 1025.046 mL = V–A (55.508 mol) + 44.4528 mL mol-1 (0.5000 mol kg-1) (1 kg) 

 V–A = 18.066 mL mol-1 
 

The partial molar volume of water at this concentration is almost equal to the pure molar volume 
at 25°C, V*

A = MA/dA,pure = 18.0153 g mol-1/0.9970479 g mL-1 = 18.069 mL mol-1(Table 2.2.1). 
   The apparent molar volume is given by Eq. 18.1.9. Using V1kg gives nA = (1000 g/MA) and 
noting that V*

A = MA/dA,pure avoids round-off error from the uncertainty in the molar mass of the 
solvent: 
 

 φV = 
V – nA V *

A

nB
 = 

V1kg – (1000 g/MA) V *
A

mB (1 kg)  = 
V1kg – (1000 g/dA,pure)

mB (1 kg)      (cst. T&P) 18.1.11 
 

For urea at 0.5000 m and dA,pure = 0.9970479 g mL-1: 
 

      = 
1025.046 mL – 1002.961 mL

0.5000 mol kg-1 (1 kg)  = 44.170 mL mol-1 
 
              

 
 
The Chemical Potential in Solution is a Partial Molar Quantity:  The partial molar volume is just 
one example of many partial molar properties. For example, the partial molar enthalpy, entropy, 
and Gibbs energy of a constituent in solution are defined as: 
 

 H– i ≡ 






∂H

∂ni T,P,nj

  S–i ≡ 






∂S

∂ni T,P,nj

  G– i ≡ 






∂G

∂ni T,P,nj

≡ µi   18.1.12 
 

Comparison of the partial molar Gibbs energy with Eq. 16.6.9 shows the partial molar Gibbs 
energy is just the chemical potential of the substance. The partial molar properties in Eqs. 
18.1.12 are the “chemically effective” enthalpy, entropy, and Gibbs energy of a constituent in 
solution. The partial molar properties include the effects of the concentration dependent changes 
in intermolecular interactions. The use of partial molar quantities allows the application of the 
fundamental equations of thermodynamics to solutions without further changes; for example 
extending Eq. 18.1.2 for a two constituent solution gives: 
 

 dH = H–A dnA + H–B dnB  H = H–A nA + H–B nB  (cst. T&P) 18.1.13 
 dS = S–A dnA + S–B dnB   S = S–A nA + S–B nB  (cst. T&P) 18.1.14 
 dG = µA dnA + µB dnB   G = µA nA + µB nB  (cst. T&P) 18.1.15 
 dG = –S dT + V dP + µA dnA + µB dnB      18.1.16 
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In this last equation, S = –(∂G/∂T)P,nA,nB and V = (∂G/∂P)T,nA,nB are the total entropy and volume 
at constant composition for the solution from Eqs. 18.1.14 and 18.1.3. The change in chemical 
potential for a change in pressure and temperature is given by Maxwell relationships, Eqs. 
16.6.15-16.6.18: 
 

 dµi = 






∂µi

∂T P,nA,nB

dT + 






∂µi

∂P T,nA,nB

dP     (cst. nA&nB) 18.1.17 

 dµi = – S–i dT + V– i dP       (cst. nA&nB) 18.1.18 
 

This last expression is the “per mole” solution version of dG = – S dT + V dP. The chemical 
potentials of the solute and solvent are related by the Gibbs-Duhem relationship, derived as in 
Eq. 18.1.7: 
 

 0 = nA dµA + nB dµB     giving:  dµB = – 
xA

1 – xA
 dµA  (cst. T&P) 18.1.19 

 

These equations form an exact theoretical foundation for non-ideal gas mixtures, solutions, and 
chemical equilibria. We now show how to apply these relationships. 
 
The Thermodynamics of Solutions is Based on Chemical Potentials:  Consider mixing two 
constituents to form a solution. For nA moles of A and nB moles of B the Gibbs energy of mixing 
is given by Eq. 16.8.6: 
 

 ∆mixG = nA(µA – µ*
A) + nB(µB – µ*

B)         (cst. T&P)  (16.7.6)18.1.20 
 

If A is taken as the solvent and nB is one mole of solute, the Gibbs energy of mixing is the Gibbs 
energy of solvation at the specified concentration, ∆solGB(xB). The Gibbs energy of solvation is a 
sensitive measure of the forces that act in solution. The Gibbs energy of formation for a 
substance in solution, ∆fG°(xB), is the sum of the Gibbs energy of formation of the pure solid, 
liquid, or gas and the Gibbs energy of solvation: 
 

 ∆fG°(xB) = ∆fG°B(pure) + ∆solGB(xB)     (cst. T&P) 18.1.21 
 

To make further progress, we need to determine how the chemical potential varies with 
concentration for a substance and how we can measure the chemical potential. 
 
18.2  Ideal Solutions Follow Raoult’s Law 
 

   The first step in understanding solutions is to develop a simple conceptual model of solution 
behavior, called an ideal solution. A good starting point for this discussion is to consider the 
mixing of ideal gases, as a point of comparison. Based on the chemical potential of an ideal gas, 
Eqs. 16.8.10°, we showed that the enthalpy of mixing of ideal gases is zero, the entropy of 
mixing is independent of the identity of the components, and the Gibbs energy of mixing is 
purely entropy driven, Eqs. 16.8.17°-16.8.18°. After determining the chemical potential of a 
constituent in solution we consider mixing of constituents to form a solution. 
 
Partial Vapor Pressure is a Function of Concentration:  The chemical potential of a constituent 
in solution can be determined from its vapor pressure. Consider a pure substance in equilibrium 
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with its pure vapor at vapor pressure, P*
A, Figure 18.2.1a. The chemical potential of the vapor, 

assuming ideal gas behavior, is given by Eq. 16.6.20°: 
 

 µA(g) = µ°A(g) + RT ln P*
A/P°      (pure)           18.2.1° 

 

At equilibrium, the pure liquid and its vapor have the same chemical potential: 
 

 µ*
A(l) = µA(g) = µ°A(g) + RT ln P*

A/P°     (pure)           18.2.2° 
 

where µ*
A(l) is the chemical potential of the pure liquid under its own equilibrium vapor pressure. 

Now consider a solution with two constituents, A and B, in equilibrium with the vapor above the 
solution. The equilibrium partial vapor pressures of A and B are PA and PB, respectively. The 
chemical potential of A in the solution, at concentration xA, is equal to the chemical potential of 
A in the vapor, Figure 18.2.1b: 
 

 µA(xA) = µA(g) = µ°A(g) + RT ln PA/P°               18.2.3° 
 
 
 
 
 
 
 

 (a). pure   (b). solution 
 

Figure 18.2.1:  (a). A pure liquid under its own equilibrium vapor pressure. (b). A solution 
under the equilibrium partial vapor pressures PA and PB. The partial vapor pressure of a 
constituent is the “escaping tendency” and is a measure of the chemical potential in solution. 

 
 
Subtracting Eq. 18.2.2° from Eq. 18.2.3° allows us to compare the chemical potential of the 
substance in solution to the chemical potential of the pure substance: 
 

 µA(xA) – µ*
A(l) = RT ln PA/P° – RT ln P*

A/P° = RT ln PA/P*
A       (cst. T) 18.2.4 

 

The chemical potential of the pure substance under its pure vapor pressure, P*
A, can be taken as 

the reference state, which is the standard state for the solution chemical potential. Adding the 
pure chemical potential to both sides of Eq. 18.2.4 gives the chemical potential of a substance in 
solution as: 
 

 µA(xA) = µ*
A(l) + RT ln PA/P*

A           (cst. T) 18.2.5 
 

Corresponding equations are written for each constituent in solution. If the vapor phase is not 
ideal, the partial vapor pressure, PA, is replaced by the corresponding fugacity, fA. In summary, at 
equilibrium, the solution and vapor chemical potentials for each constituent are the same. In turn, 
the vapor chemical potential is determined by the vapor pressure of the substance. A useful 
interpretation of Eq. 18.2.5 is that the partial vapor pressure is a direct measure of the chemical 
potential of a constituent in solution. A large vapor pressure corresponds to a large chemical 
potential for the substance. For this reason, the equilibrium partial vapor pressure of a substance 
is called the escaping tendency. If the solution environment is unfavorable for a substance, the 
chemical potential of the substance is large and the vapor pressure is increased because the 

P*
A 

xA= 1 

PA      PB 

xA      xB µ*
A(l) 

µA(g) 
|| 

µA(xA) 

µA(g) 
|| 

µB(xB) 

µB(g) 
|| 
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substance has an increased tendency to escape from the solution and enter the vapor phase. 
Conversely, favorable solute-solvent interactions stabilize the solution, lower the chemical 
potential of the substance, and decrease the tendency of the substance to escape into the vapor, 
lowering the vapor pressure. Our understanding of interactions in solution can now be guided by 
measurements of the partial vapor pressures above the solution. 
 
Chemical Potentials Depend on Concentration:  Consider a range of concentrations for a 
solution, from very dilute A, xA ≅ 0, to pure A, xA = 1. When xA = 0, no A is present and the 
vapor pressure of A is zero. When xA = 1, the vapor pressure is the pure vapor pressure, P*

A. 
Using these limiting values, the simplest possible concentration dependence for the partial vapor 
pressure of the constituent in solution is the linear relationship: 
 

 PA = xA P*
A       (ideal solution)         18.2.6* 

 

Constituents that follow this relationship are said to be ideal. The expression is called Raoult’s 
Law. If all constituents obey Raoult’s Law, the solution is an ideal solution. The equation 
numbers for relationships that apply to ideal solutions are shown with a “*.” Raoult’s Law plays 
the same role for solutions as the ideal gas law does for gases. However, few solutions are truly 
ideal. Raoult’s Law is never-the-less an excellent point of comparison. 
   The total vapor pressure above a solution with two ideal constituents is given using Raoult’s 
Law for each constituent: 
 

 Ptot = PA + PB = xA P*
A + xB P*

B     (ideal solution)         18.2.7* 
 

The mole fractions are related, since xB = 1 – xA, and then: 
 

 Ptot = xA P*
A + (1 – xA) P*

B = (P*
A –P*

B) xA + P*
B   (ideal solution)         18.2.8* 

 

Figure 18.2.2 shows the behavior of the vapor pressures for an ideal solution. The partial vapor 
pressures of the constituents vary linearly with mole fraction according to Raoult’s Law, and the 
total vapor pressure above the solution is also a linear function between the two pure vapor 
pressures with slope (P*

A –P*
B). 

 
 
 
 
 
 
 
 
 
 
 

Figure 18.2.2:  The total vapor pressure above an ideal solution is a linear function of 
concentration. Both constituents obey Raoult’s Law for an ideal solution. PA is the partial 
vapor pressure of A, PB is the partial vapor pressure of B, and Ptot is the total vapor pressure, 
Ptot = PA + PB. 
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   Most importantly, Raoult’s Law allows the determination of the concentration dependence of 
the chemical potential for a constituent, assuming ideal behavior. Solving Eq. 18.2.6* for the 
ratio of the partial vapor pressure above the solution to the pure vapor pressure, PA/P*

A= xA, and 
substitution into Eq. 18.2.5 gives: 
 

 µA(xA) = µ*
A(l) + RT ln xA        (ideal solution)     18.2.9* 

 

The chemical potential of a constituent in an ideal solution is always less than the pure 
constituent, since the mole fraction of the solvent is always less than one in a mixture. This ideal 
solution expression for the chemical potential has a simple interpretation. The concentration 
dependence of the chemical potential is determined simply by the number of molecules of the 
substances that make up the solution. The change in chemical potential is purely statistical. The 
concentration dependence is independent of the identity of the substance. The chemical potential 
of a constituent in solution is in the same form as the chemical potential of an ideal gas, Eqs. 
16.8.10°. We can then conclude that Eqs. 16.8.17°-16.8.18° also hold for ideal solutions, after 
the substitution of the solution mole fractions, xi, for the gas phase mole fractions, yi: 
 

 ∆mixS = – ntotR ∑
i=1

c

 xi ln xi     (ideal solution, cst. T&P)     18.2.10* 

 ∆mixG = ntotRT ∑
i=1

c

 xi ln xi     (ideal solution, cst. T&P)     18.2.11* 

 

The conclusions are: the enthalpy of mixing for an ideal solution is zero, the entropy of mixing is 
purely statistical, and the Gibbs energy of mixing is entirely entropic, ∆mixG = – T ∆mixS, Figure 
16.8.2b. However, where an ideal gas mixture has no intermolecular forces, a solution must have 
strong intermolecular forces; otherwise the condensed phase wouldn’t form. For ideal solutions 
all the intermolecular forces are the same strength; the A–A, B–B, and A–B forces are all equal. 
Ideal solution behavior has further implications for the thermodynamic forces that are based on 
the chemical potential. 
   The pressure derivative of the chemical potential of a constituent in solution is the partial molar 
volume, Eq. 16.6.16. However, substituting the ideal solution chemical potential from Eq. 
18.2.9* gives the result: 
 

 V–A = 






∂µA

∂P T,nA,nB

= 






∂(µ*

A + RT ln xA)
∂P T,nA,nB

= 






∂µ*

A

∂P T,nA,nB

= V *
A        (ideal)   18.2.12* 

 

The mole fraction xA is a constant because nA and nB are constant. The partial molar volume of 
an ideal constituent is equal to its pure molar volume, V–A = V*

A. The consequence is that volumes 
are additive for ideal constituents. The Gibbs-Helmholtz relationship, Eq 16.3.11, relates the 
chemical potential to the partial molar enthalpy; substituting in Eq. 18.2.9* gives: 
 

     – 
H–A

T2  = 






∂(µA/T)

∂T P,nA,nB

= 






∂(µ*

A/T)
∂T P,nA,nB

+ 






∂((RT ln xA)/T)

∂T P,nA,nB

= – 
H*

A

T2          (ideal) 18.2.13* 
 

Again, for an ideal solution, the partial molar enthalpy is equal to the pure molar enthalpy for the 
constituent, H–A = H*

A. The consequence is that the enthalpy of mixing for an ideal solution is 
zero. These ideal solution results will provide useful simplifications when we consider practical 
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examples. However, we first need to consider the validity of the ideal solution model for real 
systems. 
 
 
              

Example 18.2.1: Ideal Mixing of Solutions 
Calculate the Gibbs energy of mixing for the formation of a solution of 0.500 mol of ethanol 
with 0.500 mol of ethyl acetate, assuming an ideal solution at constant pressure and 298.15 K. 
 
 
Answer:  Using Eq. 18.2.11*, xA = xB = 0.500, and ntot = 1.000 mol: 
 

 ∆mixG = ntotRT (xA ln xA + xB ln xB) 
  = 1.00 mol (8.3145 J K-1 mol-1 )(298.15 K) (0.5 ln 0.5 + 0.5 ln 0.5)(1 kJ/1000 J) 
  = -1.72 kJ 
 

which is the composition that gives the most favorable Gibbs energy of mixing, Figure 16.8.2b. 
 
              

 
 
18.3  Ideal-Dilute Solutions 
 

The Behavior of the Solute in Dilute Solution is Described by Henry’s Law:   The vapor pressure 
diagram for a solution of heptane, A, and 1-bromobutane, B, is shown in Figure 18.3.1a at 50°C.2 

 

   
 (a).            (b). 
 

Figure 18.3.1: (a). A solution of heptane, A, and 1-bromobutane, B, shows positive 
deviations from ideality.2 (Raoult’s Law: – – – –)  (b). The dilute constituent approaches 
Henry’s Law while the solvent approaches Raoult’s Law. (Henry’s Law: ----). 

 
 
Deviations from ideality are judged using the partial vapor pressure, which is the escaping 
tendency. Solutions with positive deviations from ideality have partial vapor pressures greater 
than predicted by Raoult’s Law. Conversely, solutions with negative deviations from ideality 
have partial vapor pressures less than predicted by Raoult’s Law. Solutions of 1-bromobutane 
and heptane show positive deviations from Raoult’s Law. Positive deviations result when the 
forces that act in solution are unfavorable compared to the forces in the pure liquids; 
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A–B < A–A, B–B. Negative deviations result when the forces that act in solution are favorable 
compared to the forces in the pure liquids; A–B > A–A, B–B. 
   Notice that as xA approaches 1, that heptane’s vapor pressure approaches Raoult’s Law. As xB 
approaches 1, 1-bromobutane’s vapor pressure also approaches Raoult’s Law. In this sense, 
Raoult’s Law is a limiting law. When xA ≈ 1, heptane can be considered as the solvent and the 
vapor pressure of the solvent follows Raoult’s Law, PA = xA P*A. When xB ≈ 1, 1-bromobutane 
can be considered as the solvent and the vapor pressure of the solvent, one again, follows 
Raoult’s Law, PB = xB P*B. On the other hand, the dilute constituent also approaches linear 
behavior, but the slope of the vapor pressure curve has a different slope than the Raoult’s Law 
prediction, Figure 18.3.1b. For example, at the right side of the vapor pressure diagram where xB 
≈ 0, the vapor pressure curve for B approaches a straight line: 
 

 PB = kH,B xB        (dilute solute) 18.3.1† 
 

This expression is Henry’s Law, and kH,B is the Henry’s Law constant for B acting as the 
solute in dilute solution. kH,B is the limiting slope of the vapor pressure curve as xB → 0. The 
Henry’s Law constant for B is also obtained by extrapolating the dilute solution partial vapor 
pressure of B to xB = 1, as shown in the figure. Solutions that follow Henry’s law for the solute 
and Raoult’s Law for the solvent are called ideal-dilute solutions. Henry’s Law is also a limiting 
law; all solutions approach ideal-dilute behavior in the dilute solution limit. The equation 
numbers for relationships that apply to ideal-dilute solutions are shown with a “†.” Similarly, at 
the left side of the vapor pressure diagram, constituent A can be considered the solute in a dilute 
solution in B as the solvent, for which Henry’s Law is PA = xA kH,A. 
   Henry’s Law constants can be interpreted in light of the forces that act in solution. 
 
 
 
 
 
 
 
 
 (a). pure A           (b). pure B      (c). dilute solution         (d). Henry’s Law model 
 

Figure 18.3.2:  (a). In pure A, A molecules are surrounded by only A molecules with A–A 
forces. (b). In pure B, B molecules are surrounded by only B molecules with B–B forces. (c). 
In dilute solution, B molecules are surrounded by A molecules with A–B forces. (d). The 
Henry’s Law constant is the vapor pressure of B as a hypothetical “pure” substance, but with 
the A–B forces that act in dilute solution. 

 
 
   kH,B is the dilute solution partial vapor pressure of B extrapolated to xB =1. The Henry’s Law 
constant for a substance can then be thought of as the vapor pressure the substance would exert if 
the forces that act in a solution of pure B are replaced by the forces that act in dilute solution, 
Figure 18.3.2d. Such a model is “hypothetical;” an actual solution with xB = 1 has the vapor 
pressure, P*B. But, thinking of the Henry’s Law constant using this hypothetical model provides a 
useful interpretation of this important quantity. Another way to consider the forces that act in 
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dilute solution is to note that Henry’s Law can be rearranged to give an expression that has kH,B 
acting as an equilibrium constant for the desolvation process: 
 

  kH,B 

 B (xB)  →←  B (gas, PB)  kH,B = 
PB

xB
 and   ∆desolG° = – RT ln kH,B  18.3.2† 

 

Remember from General Chemistry that standard state reaction Gibbs energies and equilibrium 
constants are related by ∆rG° = – RT ln Keq. For the specific process in Eq. 18.3.2†, ∆desolG° is 
the Gibbs energy of desolvation from dilute solution to give the substance in the gas phase. 
Note that ∆desolG° = – ∆solG for the gas phase of the substance, with ∆solG° as defined in Eq. 
18.1.20. The substance partitions between the solution and the gas phase with the equilibrium 
ratio kH,B = PB/xB. 
   Henry’s Law is introduced in General Chemistry texts with reference to gases dissolved in 
solution. Henry’s Law can be thought of as the solubility of a gas at partial pressure PB to give a 
solution at concentration xB. However, Henry’s Law holds for all solutions, with gas, liquid, and 
solid solutes, in the dilute solution limit. Second only to the chemical potential, Henry’s Law is 
the most fundamental thermodynamic construct that allows the study of intermolecular forces in 
solution. Henry’s Law has many practical consequences. The equilibrium concentration of 
oxygen in water is determined by Henry’s Law, which in turn determines the availability of 
oxygen for aquatic organisms. Henry’s Law constants correlate strongly with the ability of an 
environmental pollutant to migrate in ground water. Extensive tabulations of aqueous Henry’s 
Law constants have been established for this reason.3,4 Most importantly, Gibbs energies of 
desolvation are used to estimate Gibbs energies of formation for substances in solution based on 
the gas phase results from molecular mechanics and molecular orbital calculations.5 

   Vapor phase and solution phase concentrations in molar terms are often more convenient, 
instead of the vapor pressure in bars and the mole fraction in solution, Table 18.3.1. The 
conversion to concentration units is based on PB = cB RT for the gas phase and Eqs. 2.2.16-
2.2.17 for the solution concentration. Henry’s Law can be written in alternate units as:6 

 

   vapor pressure and solution concentration:  PB = kpc,B cB    ∆desolG°pc = – RT ln kpc,B 18.3.3† 

        PB = kpm,B mB    ∆desolG°pm = – RT ln kpm,B 18.3.4† 

   vapor and solution concentrations:           cB(g) = kcc,B cB    ∆desolG°cc = – RT ln kcc,B 18.3.5† 
 

where kpc is the Henry’s Law constant for the vapor pressure given as a function of the solution 
molarity, kpm is the Henry’s Law constant for the vapor pressure given as a function of the 
solution molality, and kcc is the Henry’s Law constant for the vapor phase concentration as a 
function of the solution molarity. Henry’s Law holds in the limit of very dilute solutions, for 
which the conversion from mole fraction to concentration is given by Eqs. 2.2.15-2.216: 
 

    kpc,B = 
kH,B (1 L)

1000 mL dsoln/MA
    kpm,B = 

kH,B (1 kg)

1000 g/MA
     kcc,B = 

kH,B (1 L)

(1000 mL dsoln/MA)RT 18.3.6† 
 

In aqueous solution at 25°C, kpc,B = kH,B/55.34 mol L-1, kpm,B = kH,B/55.51 mol kg-1, and kcc,B = 
kH,B/(55.34 RT). Graphically, the Henry’s Law constant in terms of molarity or molality can also 
be determined by extrapolating dilute solution behavior to unit concentration on a molarity or 
molality scale, Figure 18.3.3. The kpm form is in the appropriate units for the calculation of the 
standard state Gibbs energy of formation of a substance in solution at unit molality from the pure 
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substance Gibbs energies of formation using Eq. 18.1.21. The kcc form is in the appropriate units 
for the calculation of the Gibbs energy of formation of a substance in solution from molecular 
mechanics and molecular orbital internal energy calculations, at constant volume.6 
 
 

Table 18.3.1:(DS) Henry's Law constants and Gibbs energies of desolvation. The number in 
parenthesis is the literature source for that substance and following substances. The literature 
value is shown in bold. The remaining values are derived using Eqs. 18.3.2†-18.3.6†.* 

 

substance kH kcc kpc ∆desolG° ∆desolG°cc ∆desolG°pc 
bar unitless bar L mol-1 kJ mol-1 kJ mol-1 kJ mol-1 

benzene (6) 296. 0.216 5.35 -14.11 3.80 -4.16 
methyl-t-butyl ether 29.6 0.0216 0.54 -8.40 9.51 1.55 
trichloroethylene (7) 538. 0.392 9.72 -15.59 2.32 -5.64 
carbon tetrachloride 1.71x103 1.244 30.84 -18.45 -0.54 -8.50 
methane (8) 4.19x104 30.5 757. -26.38 -8.48 -16.43 
O2 4.40x104 32.1 795. -26.50 -8.60 -16.56 
CO2+H2CO3  (pure H2O) 1.67x103 1.20 30.2 -18.40 -0.49 -8.45 
CO2+H2CO3  (sea H2O,9) 1.9x103 1.38 34.3 -18.72 -0.81 -8.77 
*The SI units are Pa m3 mol-1; example: for benzene kpc = 5.35 bar L mol-1(100 Pa bar-1 m3 L-1) = 535. Pa m3 mol-1. 

 
 
 
 
 
 
 
 
 
 
 

 (a).  Mole Fraction    (b).  Molarity 
 

Figure 18.3.3: The Henry’s Law constants and corresponding standard states are extrapolated 
values at unit concentration. (a). On a mole fraction basis, a Raoult’s Law standard state at P*A 
is usually chosen for the solvent and a Henry’s Law standard state at kH,B is chosen for the 
solute. (b). To use molarity, the solute vapor pressure data is replotted versus molarity. The 
solute standard state is at unit concentration with PB = kpc,B(1 M). 

 
 
              

Example 18.3.1: Using Henry’s Law 
The standard state Gibbs energy of formation of gas phase ethylene is 68.15 kJ mol-1 at 25°C. 
The Henry’s Law constant for ethylene in aqueous solution is kH = 1.13x104 bar. Calculate the 
standard state Gibbs energy of formation of ethylene in water at 25°C assuming molar 
concentrations. 
 
 

Pi 

P*B 
P*A 

kH,B 

pure B pure A 

xA → 

PA = xA P*A 
 
PB = kH,B xB 

 
0 1 cB (M) 

PB 

P*B 

 

kpc,B • 

1 M 

PB = kpc,B cB 
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Answer:  The gas phase standard state is P° = 1 bar. The solution standard state concentration is 
1 M, if the concentration is expressed in terms of molarity. The units for the Henry’s Law 
constant that correspond to these standard states is kpc,B in bar L mol-1. Using Eqs. 18.3.6†: 
 

 kpc,B = 
kH,B

55.34 mol L-1 = 
1.13x104 bar
55.34 mol L-1 = 204.2 bar L mol-1 

 

The corresponding Gibbs energy of desolvation is given by Eqs. 18.3.3†: 
 

 ∆desolG°pc = – RT ln kpc,B = – 8.3145 J K-1 mol-1(298.15 K)(1 kJ/1000 J) ln 204.2 
     = -13.19 kJ mol-1 

 

Noting that ∆solG° = – ∆desolG°pc gives the standard state Gibbs energy of formation for aqueous 
ethylene as, Eq. 18.1.21: 
 

 ∆fG°(aq) = ∆fG°(g) + ∆solG° = 68.15 kJ mol-1 + 13.19 kJ mol-1 = 81.34 kJ mol-1 
 
              

Example 18.3.2: Calculating Henry’s Law Constants 
The vapor pressure of 1-bromobutane as a function of concentration in heptane is given by the 
following power series fit to the experimental data. Calculate the Henry’s Law constant. 
 

 Pvap = a xB
3 + b xB

2 + c xB 

 with   a = 0.0734 ± 0.00514,  b = -0.14869 ± 0.0075,  c = 0.2445 ± 0.0026 bar 
 
 
Answer:  The slope of the vapor pressure curve is given by the derivative with respect to the 
mole fraction: 
 

 
dPvap

dxB
 = 3 a xB

2 + 2 b xB + c 
 

In the dilute solution limit, xB → 0 giving kH,B = (dPvap/dxB|xB = 0 = c = 0.2445 ± 0.0026 bar or 
183.4 ± 1.9 torr, Figure 18.3.1b. 
 
              

 
 
   Few solutions are ideal for both the solvent and solute. However, all solutions approach ideal-
dilute behavior in the dilute solution limit. In dilute solution, we describe the behavior of the 
solvent using Raoult’s Law and the solute using Henry’s Law. 
 
Ideal-Dilute Solutions Assume a Raoult’s Law Standard State for the Solvent and a Henry’s Law 
Standard State for the Solute:   The chemical potential of the solvent in an ideal-dilute solution is 
given by Eq. 18.2.9*, based on Raoult’s Law. The standard state for the solvent is the pure liquid 
with vapor pressure P*A, Figure 18.3.3a, and the standard state chemical potential is given by Eq. 
18.2.2°. However, the solute in an ideal-dilute solution isn’t accurately described by Eq. 18.2.9*, 
because the solute follows Henry’s Law. The appropriate standard state vapor pressure for the 
solute is kH,B not P*

B. Describing the chemical potential of the ideal solute directly in terms of the 
solute mole fraction requires a change in standard state. Substituting Henry’s Law, PB = kH,B xB, 
into the general equation for the chemical potential, Eq. 18.2.3°, gives for the solute: 
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 µB(xB) = µ°B(g) + RT ln kH,B xB/P°     (dilute solute) 18.3.7† 
 µB(xB) = µ°B(g) + RT ln kH,B/P° + RT ln xB    (dilute solute) 18.3.8† 
 

Eq. 18.3.7† can be conveniently written in the same form as Eq. 18.2.9* if we define a new 
Henry’s Law standard state for the solute, µ†

B(l): 
 

 µ†
B(l) ≡ µ°B(g) + RT ln kH,B/P°        18.3.9† 

 

Substitution of the Henry’s Law standard state into Eq. 18.3.7† gives the chemical potential of 
the solute in an ideal-dilute solution as: 
 

 µB(xB) = µ†
B(l) + RT ln xB             (ideal dilute solute)    18.3.10† 

 

To convert from mole fraction based standard states to molarity or molality standard states, we 
simply express Henry’s Law in terms of molarity or molality, Eqs. 18.3.3†-18.3.4†: 
 

 µB = cµ°B(l) + RT ln cB/c°     with   cµ°B(l) ≡ µ°B(g) + RT ln kpc,B/P°   (ideal dilute)   18.3.11† 
 

 µB = mµ°B(l) + RT ln mB/m°  with   mµ°B(l) ≡ µ°B(g) + RT ln kpm,B/P°   (ideal dilute)   18.3.12† 
 

where the standard state chemical potentials are cµ°B or mµ°B. The superscripts “c” or “m” indicate 
that the concentration is expressed as a molarity or molality in defining the standard state. 
   Keeping the same equation forms for the chemical potential of the solvent and the solute 
simplifies derivations of solution properties; to change between the solvent and solute, we just 
switch standard states and xB, cB, or mB for xA. A Raoult’s Law standard state is used for the 
solvent and a Henry’s Law standard state is used for the solute, by convention. This choice of 
standard states guarantees that when the solvent behaves ideally, the solute also behaves ideally, 
and Eqs. 18.2.9*, 18.3.10†-18.3.12† accurately represent the chemical potentials in the solution. 
This convention also allows the use of a Raoult’s Law standard state for the solvent for any 
solution, ideal or real. Raoult’s Law is the basis for the treatment of distillation and colligative 
properties. 
 
18.4  Phase Transitions for Binary Mixtures 
 

We begin the discussion of phase transitions in binary systems with liquid-vapor transitions in 
binary mixtures of two volatile components. The theory of solutions with two volatile 
components provides an explanation of distillation. 
 
Raoult’s Law is Used to Understand Distillation:  Distillation is an important method for 
purifying substances. What level of purity can be obtained using a simple distillation? Raoult’s 
Law provides the underlying theory. Conventional distillations are done at constant pressure, 
while changing the temperature. However, distillations are also often done at constant 
temperature, while changing the total pressure. Reduced pressure distillations lower the 
temperature for the separation, which helps avoid thermal decomposition. We begin our 
discussion with examples based on reduced pressure distillation, and then we discuss constant 
pressure distillation. Assume a binary mixture of ideal, volatile components, A and B. We begin 
by summarizing the relationships that determine the equilibrium state of the system as a function 
of concentration for ideal solutions: 
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 • In solution—Raoult’s Law:    PA = xAP*
A    PB = xBP*

B         (ideal)   (18.2.6*) 
 • In the vapor—Dalton’s Law:  Ptot = PA + PB = xAP*

A + xBP*
B        (ideal)   (18.2.7*) 

        Ptot = xAP*
A + (1 – xA)P*

B         (ideal)   (18.2.8*) 
        PA = yA Ptot or   yA = PA/Ptot        (ideal)   (2.1.10°) 

     giving    yA = 
xAP*

A

Ptot
 = 

xAP*
A

xAP*
A + (1 – xAP*

A)        (ideal) 18.4.1* 
 

Consider a constant temperature, reduced pressure distillation with nA = 1 mol and nB = 2 mol. 
Assume the vapor pressure of pure A is 0.200 bar and the vapor pressure of pure B is 0.100 bar. 
The system is closed so the overall composition is constant. However, as the distillation 
proceeds, A and B are transferred from the liquid phase into the vapor phase. Let zA be the 
overall composition of the system, including the liquid and the vapor. For this example, zA = 
nA/ntot  = 1/3. In the phase diagram for the binary mixture, the total vapor pressure above the 
solution is plotted as a function of the composition of the liquid, xA, Figure 18.4.1a. The 
composition axis is also used for the composition of the vapor that is in equilibrium with the 
solution, yA. At high pressure only the liquid phase exists, at low pressure only the vapor exists, 
and for intermediate pressures, two-phases exist in equilibrium. The two-phase region is bounded 
by the liquid and vapor composition curves. The vapor pressure of pure A is at point a, and the 
vapor pressure of pure B is at point b. Pictorial representations of the other labeled states during 
the distillation are shown in Figure 18.4.1b. 
   A distillation begins with only the liquid mixture present at high pressure, point c. The total 
pressure is lowered until the first vapor  appears, at point d with xA = zA, which corresponds to 
the beginning of the distillation. The composition of the first vapor is richer than the liquid in the 
more volatile component, point e. The line connecting the liquid and vapor compositions at a 
given total pressure is called a tie line. The liquid and vapor compositions at the ends of the tie 
line are at equilibrium; the chemical potentials of each component are equal in the two phases. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.4.1: (a). Total vapor pressure as a function of the composition of the solution and 
the vapor for a reduced-pressure, single-plate distillation, assuming ideal solution behavior at 
constant temperature. (b). The system corresponding to labeled points during the distillation. 

 
 
   As the distillation proceeds, the liquid is depleted of the more volatile component, A. The 
composition of the remaining liquid has smaller xA and the tie line moves to the left as the total 
pressure is decreased, point f. The distillation continues as the total pressure is reduced to point 
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h. At point h, the vapor composition equals the overall system composition, yA = zA, indicating 
that all the liquid has been vaporized. The distillation is then complete. The composition of the 
last remaining drop of liquid is determined by finding the intersection of the tie line with the 
liquid composition curve, point i. 
   In practical distillations, the vapor is withdrawn and condensed to form the distillate. The flask 
containing the original solution is called the pot. The more volatile substance is recovered from 
the distillate and the less volatile from the pot. This type of distillation is called a single-plate 
distillation, since the vapor is always in equilibrium with the original solution in the pot. In this 
single-plate distillation, the purest that A may be obtained is from the first vapor at point e. As 
the distillation proceeds, the composition of the vapor has decreased purity for A. The purest that 
B may be obtained is from the pot for the last liquid , point i. This example single-plate 
distillation does not significantly increase the purity of either A in the distillate or B in the pot. 
Distillations are not an efficient means for purifying substances, unless the pure vapor pressures 
of the substances are very different. In addition, the energy necessary to do the distillation is 
roughly the sum of the enthalpies of vaporization for the two substances. The energy necessary 
to separate ethanol from water is one of the reasons that replacing petroleum with corn-based 
ethanol as the primary transportation fuel was abandoned in the US in 2009. However, ethanol-
gasoline mixtures are useful to build the octane rating. 
 
 
              

Example 18.4.1: First Vapor 
Calculate the total pressure and composition of the first vapor that forms for a solution of 1.00 
mol of A and 2.00 mol of B, if the pure vapor pressures are P*A = 0.200 bar and P*B = 0.100 bar 
(point e in Figure 18.4.1). Assume an ideal solution. 
 
 

Answer:  The composition of the solution when the first small amount of vapor forms is 
essentially the bulk composition, xA = zA = 0.333, xB = 0.667. Using Eq. 18.2.7* for the total 
equilibrium vapor pressure gives: 
 

 Ptot = xAP*
A + xBP*

B = 0.333(0.200 bar) + 0.667(0.100 bar) = 0.133 bar 
 

The composition of the vapor is given by Dalton’s Law, Eq. 2.1.10°, and Raoult’s Law for the 
solution, Eq. 18.2.6*: 
 

 yA = PA/Ptot = xAP*
A/ Ptot = 0.333(0.200 bar)/0.133 bar = 0.500 

 

which is the highest purity for A possible, as recovered by condensing this first vapor. The vapor 
is richer in the more volatile constituent, A, as expected. 
 
              

Example 18.4.2: Last Liquid 
Calculate the total pressure and composition of the last liquid that remains for a solution of 1.00 
mol of A and 2.00 mol of B, if the pure vapor pressures are P*A = 0.200 bar and P*B = 0.100 bar 
(point i in Figure 18.4.1). Assume an ideal solution. 
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Answer:  The composition of the vapor that is in equilibrium with the last liquid is essentially the 
bulk composition, yA = zA = 0.333. Using Eq. 18.4.1*, we can solve for the solution composition 
that is in equilibrium with the vapor: 
 

 0.333 = 
xA(0.200 bar)

xA(0.200 bar) + (1 – xA)(0.100 bar) 
 

Solving for the solution composition gives xA = 0.200, which is the highest purity for B possible, 
as recovered from the pot from this last drop. We then use Eq. 18.2.8* to find the total pressure 
for this last liquid: 
 

 Ptot = xAP*
A + (1 – xA)P*

B = 0.200(0.200 bar) + (1 – 0.200)(0.100 bar) = 0.120 bar 
 
              

   The liquid-vapor phase diagram at constant pressure for a binary solution of two-volatile 
components is a plot of the boiling-point as a function of composition of the solution and the 
vapor, Figure 18.4.2. To construct the phase diagram, the Clausius-Clapeyron equation, Eq. 
17.1.13° or 17.1.14°, is used to find the temperature variation of the vapor pressure of the two 
pure components. Raoult’s Law then allows the phase diagram for liquid-vapor equilibrium at 
constant pressure to be plotted. The boiling point of the solution is the equilibrium temperature at 
which the total vapor pressure is equal to the applied pressure. The high temperature phase is the 
vapor phase, and the low temperature phase is the liquid phase. The endpoints of the solution and 
vapor composition curves are the pure component boiling points, T*

bA and T*
bB. The next example 

shows how to construct the phase diagram at constant pressure. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.4.2:  Liquid-vapor phase diagram at constant pressure for a binary solution of two-
volatile components; the boiling-point as a function of composition. Data shown is for 2-
propanol and 2-methyl-1-propanol, which form an ideal solution. The tie line joins the 
solution and vapor compositions that are at equilibrium at the given temperature. 

 
 
              

Example 18.4.3: Boiling point versus composition 
2-Propanol and 2-methylpropanol form an ideal solution. Calculate the composition of the 
solution and vapor that boils at 100.0°C and an ambient pressure of 1.00 bar. The vapor pressure 
of pure 2-propanol is 202.3 kPa and the vapor pressure of pure 2-methylpropanol is 74.1 kPa at 
100°C. 
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Answer:  The total vapor pressure is equal to the ambient pressure at the boiling point. Let A be 
2-propanol. Converting to bar and using Eq. 18.2.8* gives the composition of the solution from: 
 

 Ptot = xAP*
A + (1 – xA)P*

B = xA(2.023 bar) + (1 – xA)(0.741 bar) = 1.00 bar 
 

Solving for the solution concentration of A:   xA = 0.202. 
 

The vapor phase concentration is calculated using Eq. 2.1.10° and Raoult’s Law for A, Eq. 
18.2.6*: 
 

 yA = PA/Ptot = xAP*
A/Ptot = 0.202(2.023 bar)/1.00 bar = 0.409 

 

As a check on this calculation, we note that the vapor is richer in the more volatile component, 
A, as expected. These points are included in Figure 18.4.2. A tie line is drawn between the 
solution and vapor compositions that are in equilibrium at the chosen temperature. 
 
              

 
 
   This last example only generates two points on the phase diagram. To complete the phase 
diagram, additional calculations are necessary at a range of boiling points between T*

bA and T*
bB. 

Liquid-vapor phase diagrams are used to understand constant pressure distillations. Using 
Example 18.4.3, if the initial pot in the distillation has a composition for A of 0.202 then the first 
vapor has a composition of 0.409 at 100°C, which is the highest purity for A possible in a single-
plate distillation starting from the initial concentration. Once again a single-plate distillation is 
seen to be an ineffective way to achieve a separation. 
   Fractional distillations are necessary to achieve effective separations. A bubble-cap distillation 
column is convenient for describing fractional distillation, Figure 18.4.3a. The initial pot 
concentration is point a in the phase diagram, Figure 18.4.3b. The composition of the vapor 
above the pot is on the right end of the first tie line, point b.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a).      (b). 
 

Figure 18.4.3: (a). A bubble-cap fractional distillation column. (b). A fractional distillation 
with four theoretical plates. An exhaustive fractional distillation for an ideal solution gives 
pure A, the more volatile component, in the distillate and pure B in the pot. 
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During the distillation this vapor condenses onto the first plate, which is at the same 
concentration as the vapor but on the liquid curve, point c. As the temperature rises, the 
condensate on the first plate at point c boils producing vapor with a composition at the end of the 
second tie line, point d. This vapor condenses on the second plate, point e. The vapor from the 
second plate, point f, condenses on the third plate, point g. This process continues for as many 
plates as there are in the column. Vapor flows upward from each plate to the next, and excess 
solution at each plate overflows back to the preceding plate. At each successive plate, the 
condensate composition becomes richer in the more volatile component. Each successive plate 
corresponds to equilibrium at the respective temperature as represented by the corresponding tie 
line. An exhaustive fraction distillation is the logical extreme for an infinite number of plates. 
An exhaustive fractional distillation for an ideal solution gives pure A, the more volatile 
component, in the distillate. As A is removed in the distillate, the pot becomes richer in B. In an 
exhaustive fractional distillation, pure B is recovered from the pot. 
   Each plate can be separately drained by a tap. In the petroleum industry, the different taps 
produce different products of successively higher boiling range: fuel oil and diesel, 250-350°C; 
kerosene, 175-325°C; gasoline, 40-205°C; ligroin, 60-100°C. Gaseous nitrogen is separated from 
liquid oxygen in liquid air by fractional distillation. Bubble cap columns are not used in the 
laboratory; instead, glass columns are packed with glass spirals or stainless steel ribbons, or are 
indented to produce greater surface area. In a packed column, the length of column that gives a 
composition enhancement equivalent to a tie line on the phase diagram is called the height 
equivalent of the theoretical plate, HETP. The length of the column divided by the HTEP 
gives the number of effective plates for the column. Our predictions so far are based on ideal 
solution theory. Practical systems often show strong deviations from ideality. 
   Favorable interactions in solution, A-B >> A-A, B-B, cause large negative deviations from 
ideality. In extreme cases, negative deviations result in a minimum in the vapor pressure phase 
diagram and a corresponding maximum in the boiling point phase diagram, Figure 18.4.4ab. On 
the other hand, very weak interactions in solution cause a maximum in the vapor pressure 
diagram and a corresponding minimum in the boiling point phase diagram. 
 
 
 
 
 
 
 
 
 
 
 
 

(a).     (b).    (c). 
 

Figure 18.4.4: (a) Vapor pressure phase diagram for a system with strong negative deviations 
from ideality, giving a maximum boiling azeotrope. (b). Boiling point diagram for a system 
with a maximum boiling azeotrope. (c). Treat the diagram on either side of the azeotrope as a 
separate, simple, binary liquid-vapor phase diagram. 
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   The composition that gives the extreme boiling point is called the azeotropic composition. An 
azeotrope behaves as if the solution were a pure substance during distillation. The vapor above a 
solution at the azeotropic composition has the same composition as the solution. Binary 
azeotropes cannot be purified by distillation. Analyzing a phase diagram that has an azeotrope 
can be simplified by treating the azeotrope as a hypothetical pure substance and dividing the 
phase diagram to either side as separate binary systems, Figures 14.4c. 
 
 
              

Example 18.4.4: Azeotropes 
Chloroform and acetone form a maximum boiling azeotrope. Figure 18.4.4 is a schematic 
representation of the phase diagram, with acetone as component A. Consider distilling a solution 
with xA = 0.33. What will be recovered in the distillate and pot from an exhaustive fractional 
distillation? 
 
 
Answer:  Using Figure 18.4.4c, the initial concentration, point a, is less than the azeotropic 
concentration. The tie line extends to lower concentrations for A. An exhaustive fractional 
distillation gives component B, chloroform, in the distillate and azeotrope in the pot. The 
maximum concentration of acetone for this distillation is the azeotropic concentration. 
 
              

 
 
   Ethanol and water form a minimum boiling azeotrope with a composition of 95.6% ethanol by 
volume, 89.5 mol% ethanol at 78.1 °C and one atmosphere. The concentration of ethanol from 
fermentation reaches a maximum of about 15%. Fractional distillation produces azeotrope as the 
distillate, which is the maximum concentration of ethanol available from distillation of 
ethanol/water binary mixtures from fermentation. For use in transportation fuels, ethanol must 
contain less than 0.7% water. The final step in removing water is by dehydration with a zeolite, 
which is a type of molecular sieve. The dehydration of ethanol by zeolites is very efficient. 
However, regenerating the zeolite for repeated use is energy intensive, ∆dehydH ≈ 86 kJ mol-1.10 
Zeolites are dehydrated under vacuum at elevated temperature. 
 
Colligative Properties are a Function Only of the Concentration of the Solute:   A colligative 
property  is a property of a solution that depends only on the concentration of the solute and not 
the chemical properties or specific identity of the solute. The colligative properties include vapor 
pressure lowering, boiling point elevation, freezing point depression, and osmotic pressure. 
Independence of the identity of the solute requires that colligative properties are applicable only 
in the dilute solution limit, so that the solution is approximated as an ideal-dilute solution. The 
solvent chemical potential is then determined using Raoult’s Law, Eq. 18.2.9*. For vapor 
pressure lowering, boiling point elevation, and osmotic pressure, the colligative properties are 
restricted to non-volatile solutes, since the experiments all involve equilibrium with the vapor 
phase. Freezing point depression is a colligative property for volatile and non-volatile solutes. 
However, freezing point depression is a colligative property only for solutes that are immiscible 
with the solvent in the solid phase. In other words, the solvent forms a pure solid phase upon 
freezing with no contamination from the solute. 
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   Vapor pressure lowering is directly expressed by Raoult’s Law, PA = xA P*
A. The vapor pressure 

of the solvent in an ideal-dilute solution is less than the pure vapor pressure, since the mole 
fraction of the solvent is always less than one. The freezing point and boiling point for a solution 
can be predicted by modifying Figure 17.1.1 for a solution using Raoult’s Law as shown in 
Figure 18.4.5. Assume that the solute is non-volatile and immiscible in the solid solvent. The 
vapor phase and the solid phase only contain the solvent. Then the chemical potential of the 
vapor is the chemical potential of the pure solvent vapor, µA(g) = µ*

A(g), and the chemical 
potential of the solid phase is the chemical potential of the pure solid solvent, µA(s) = µ*

A(s), both 
identical to Figure 17.1.1. The chemical potential of the solvent in the solution is decreased 
compared to the pure solvent, Eq. 18.2.9*. The intersection of the chemical potential curves for 
the solid and solution phase, where µ*

A(s) = µA(xA), shows that the freezing point is depressed 
compared to the pure solvent: Tm < T*

m. The intersection of the chemical potential curves for the 
solution and vapor phase, where µA(xA) =µ*

A(g), shows that the boiling point is elevated 
compared to the pure solvent: Tb > T*

b. The assumption of Raoult’s Law behavior for the solvent 
allows the quantitative prediction of the boiling point elevation, freezing point depression, and 
osmotic pressure. 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.4.5:  Only the chemical potential of the solution is lowered by the presence of a 
solute that is non-volatile and immiscible in the solid solvent. The freezing point of the 
solution is depressed and the boiling point is elevated. (Compare to Figure 17.1.1.) 

 
 
The Boiling Point is Elevated for an Ideal-Dilute Solution of a Non-volatile Solute:  The boiling 
point of a solution corresponds to the temperature at which the total vapor pressure is equal to 
the ambient pressure. The variation of the vapor pressure of a pure substance is given by the 
Clausius-Clapeyron equation, Eq. 17.1.13° or 17.1.14°, Figure 18.4.6. The total vapor pressure 
of a solution of a non-volatile solute is just the vapor pressure of the solvent. For an ideal or 
ideal-dilute solution, the vapor pressure of the solvent is lower than the vapor pressure of the 
pure solvent, as given by Raoult’s Law, so that the temperature of the solution must be increased 
to reach the boiling point as compared to the pure solvent. At equilibrium, the chemical 
potentials of the solvent in the vapor and solution are equal, µ*

A(g) = µA(xA). Using Raoult’s Law 
for the solvent, the chemical potential of the solvent in solution is given by Eq. 18.2.9*: 
 

 µ*
A(g) = µA(xA) = µ*

A(l) + RT ln xA    (equilibrium, ideal solvent, cst. P) 18.4.2† 
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Figure 18.4.6:  The vapor pressure of the solvent is decreased in solution, so that the 
temperature of the solution must be increased to reach the boiling point, as compared to the 
pure solvent. At equilibrium, the chemical potentials of the solvent in the vapor and solution 
are equal. 

 
 
The molar Gibbs energy of vaporization of the pure solvent at temperature T is given by 
∆vapGA(T) = µ*

A(g) – µ*
A(l). Solving for the concentration of the solvent that gives the solution 

boiling point at temperature T using Eq. 18.4.2† gives: 
 

 ln xA = 
µ*

A(g) – µ*
A(xA)

RT  = 
∆vapGA(T)

RT     (ideal solvent, cst. P) 18.4.3† 

 

For the pure solvent, xA = 1, and the equilibrium temperature is the boiling point of the pure 
solvent at the ambient pressure, T = T*

b: 
 

 ln 1 = 
∆vapGA(T*

b)
RT*

b
      (pure solvent, cst. P) 18.4.4† 

 

We can compare the solution to the pure solvent by subtracting Eq. 18.4.4† from 18.4.3†: 
 

 ln 
xA

1  = 
∆vapGA(T)

RT  – 
∆vapGA(T*

b)
RT*

b
    (ideal solvent, cst. P) 18.4.5† 

 

We can separate enthalpy and entropy effects using ∆vapGA(T) = ∆vapHA(T) – T ∆vapSA(T). Being 
careful to keep track of the specific temperatures for each term gives: 
 

 ln xA = 






∆vapHA(T)

RT  – 
∆vapSA(T)

R  – 






∆vapHA(T*

b)
RT*

b
 – 

∆vapSA(T*
b)

R  

         (ideal solvent, cst. P) 18.4.6† 
 

The change in boiling point is typically only a few degrees. Assuming that ∆vapHA and ∆vapSA are 
constant over this small temperature range results in the cancellation of the terms in the entropy: 
 

 ln xA = 
∆vapHA(T)

RT  – 
∆vapHA(T*

b)
RT*

b
             (ideal solvent, cst. P&∆vapS°B) 18.4.7† 

 ln xA = 
∆vapHA

R  






1

T – 
1
T*

b
             (ideal solvent, cst. P,∆vapH°B&∆vapS°B) 18.4.8† 
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where ∆vapHA is the average enthalpy of vaporization of the solvent over the temperature range. 
This last equation shows that the boiling point elevation is independent of the identity of the 
solute, since only the mole fraction of the solvent is required. The boiling point elevation is 
defined as ∆T ≡ T – T*

b: 
 

 ln xA = 
∆vapHA

R  






T*

b – T
TT*

b
 = – 

∆vapHA

R  






∆T

TT*
b

 (ideal solvent, cst. P,∆vapH°B&∆vapS°B) 18.4.9† 
 

For small changes in boiling point, negligible additional error is introduced by approximating 
TT*

b ≅ T*
b
2, Eq. 3.5.13-General Pattern ℘ 4: 

 

 ln xA = – 






∆vapHA

R T*
b
2  ∆T     or ∆T = – 







RT*

b
2

∆vapHA
 ln xA  (very dilute, cst. P)  18.4.10† 

 

However, for very dilute solutions, the ln xA term can be approximated using a Taylor series in 
the mole fraction of the solute: 
 

 ln xA = ln(1 – xB) ≅ – xB + x2
B+ ...     (very dilute)   18.4.11 

 

Keeping only the first term in the Taylor expansion, ln xA = – xB, and substitution into Eq. 
18.4.9† gives the approximate expressions: 
 

 xB ≅ 






∆vapHA

R T*
b
2  ∆T or ∆T ≅ 







RT*

b
2

∆vapHA
 xB   (very dilute, cst. P)   18.4.12† 

 

We often express concentration in molality instead of mole fraction. For very dilute solutions, 
substituting Eq. 2.2.15 for the mole fraction into Eq. 18.4.12† gives the result often introduced in 
General Chemistry texts: 
 

 ∆T ≅ 






RT*

b
2MA (1 kg)

1000 g ∆vapHA
 mB      (very dilute, cst. P)   18.4.13† 

or  ∆T ≅ Kb mB   with  Kb ≡ 






RT*

b
2MA (1 kg)

1000 g ∆vapHA
   (very dilute, cst. P)   18.4.14† 

 

where Kb is the molal boiling point elevation constant or ebullioscopic constant, which is 
extensively tabulated. Note that Kb only depends on the properties of the solvent, as expected for 
a colligative property. While Eqs. 18.4.14† are commonly used, Eq. 18.4.8† is applicable over a 
wider concentration range and is the basis for the determination of activities in real solutions. A 
parallel treatment also applies to freezing point depression. 
 
 
The Freezing Point is Depressed for an Ideal-Dilute Solution:   The freezing point or melting 
point of a solution is the equilibrium phase transition temperature such that the chemical 
potentials of the solvent in the pure solid phase and the solution are equal, µ*

A(s) = µA(xA). The 
equality of the chemical potentials is identical to the case for boiling point elevation except that 
the pure phase for freezing point depression is the low temperature phase. Then using Raoult’s 
Law for the solvent in solution gives exactly the same results as for boiling point elevation, 
except for a change in sign: 
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 ln xA = – 
∆fusHA

R  






1

T – 
1

T *
m

     (ideal solvent, cst. P) 18.4.15† 
 

 ln xA = – 






∆fusHA

R T*
m

2  ∆T     or ∆T = – 






RT*

m
2

∆fusHA
 ln xA  (very dilute, cst. P)    18.4.16† 

 

 xB ≅ 
∆fusHA

R  






∆T

T *
m

2      or ∆T ≅ 






RT*

m
2

∆fusHA
 xB  (very dilute, cst. P)    18.4.17† 

 

 ∆T ≅ 






RT*

m
2MA (1 kg)

1000 g ∆fusHA
 mB     (very dilute, cst. P)    18.4.18† 

 ∆T ≅ Kf mB   with  Kf ≡ 






RT*

m
2MA (1 kg)

1000 g ∆fusHA
  (very dilute, cst. P)    18.4.19† 

 

where ∆fusHA is the enthalpy of fusion of the solvent, T*
m is the freezing point of the pure solvent, 

T is the freezing point of the solution, and the freezing point depression is defined as 
∆T ≡ T*

m – T, which is a positive number. Kf is the molal freezing point depression constant or 
cryoscopic constant. 
   The molality of the solute, mB, includes all solute species in solution. For colligative 
phenomena, the identity of the solute is immaterial, so molecular solutes and individual ionic 
species have the same effect. For strong electrolyte solutions, the molality of the solute and the 
corresponding mole fraction of the solvent must be modified to account for ionic dissociation, 
mB = ν m, where ν is the number of ions that result from the dissociation of the strong electrolyte 
and m is the analytical concentration the solute. For example, for NaCl and CuSO4, ν = 2, while 
for Na2SO4 and Cu(NO3)2, ν = 3. Ionic solutions show stronger deviations from ideality than 
molecular solutions, so the concentration range for ideal-dilute behavior is greatly decreased. 
 
 
              

Example 18.4.5: Cooking spaghetti 
Calculate the boiling point elevation and freezing point depression for a solution of 0.500 g of 
NaCl in 1.000 kg of water. This concentration is comparable to the conditions used in cooking 
spaghetti. For water, the enthalpy of vaporization is 40.7 kJ mol-1 at 100°C and the enthalpy of 
fusion is 6.01 kJ mol-1 at 0°C. 
 
 
Answer:  The molar mass of NaCl is 58.44 g mol-1. The corresponding molality of NaCl is then 
mNaCl = 0.500 g/58.44 g mol-1/1.000 kg = 8.56x10-3 m. However, since NaCl is a stong 
electrolyte, NaCl (aq) → Na+ + Cl–, the concentration of all solute species in solution is 
mB = 2 mNaCl = 0.0171 m. The mole fraction of solute is then given by Eq. 2.2.13 as xB = 
3.082x10-4, giving the mole fraction of water as xH2O = 1 – xB = 0.999692. The ebullioscopic and 
cryoscopic constants are, respectively: 
 

 Kb ≡ 






RT*

b
2MA (1 kg)

1000 g ∆vapHA
 = 0.512 mol-1 kg K     Kf ≡ 







RT*

m
2MA (1 kg)

1000 g ∆fusHA
 = 1.86 mol-1 kg K 

 

Giving the final results, with different levels of approximation for comparison: 
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Approximation Freezing Boiling 
∆T ≅ – (RT*

tr
2/∆trHA) ln xA 0.03182 K 0.008770 K 

∆T ≅ (RT*
tr

2/∆trHA) xB 0.03175 K 0.008754 K 
∆T ≅ Ktr mB 0.03183 K 0.008761 K 

 

The approximation, ∆T = – (RT*
tr

2/∆trHA) ln xA, agrees with Eqs. 18.4.8† or 18.4.15† to better than 
four significant figures. (However, even at this low concentration, a 3% deviation from ideality 
is found. We’ll deal with real solutions in the next chapter.) Freezing point depression can be 
determined with better precision than boiling point elevation, because freezing point depression 
has a larger magnitude. Adding salt to the water while cooking spaghetti has a negligible effect 
on the boiling point. Salt is added for flavor, not to change the cooking temperature. 
 
              

 
 
   Eq. 18.4.16† is used to determine the purity of samples by differential scanning calorimetry. 
Purity determinations are routinely used in the pharmaceutical industry for quality control and 
research. The DSC melting curve of an impure substance is broadened compared to a pure 
substance, Figure 18.4.7a-b.11 The mole fraction of the impurity in the final melt is determined 
by the freezing point depression, ∆T. However, applying Eq. 18.4.16† for a general organic 
substance, the enthalpy of fusion and the pure melting point are usually not known. The area 
under the DSC melting curve gives ∆trHA for the substance. A simple extrapolation procedure 
based on partial areas of the melting curve is used to determine the pure melting point and an 
accurate value of the freezing point depression, without knowledge of the identity of the 
impurities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (a).    (b).          (c). 
 

Figure 18.4.7. Freezing point depression solid-immiscible impurities: (a). A pure reference 
sample gives a narrow melting range. (b). The melting range for an impure sample gives the 
mole fraction impurity. F is the fraction melted. To correct for slow instrument response, the 
partial areas are bounded by a line with slope equal to the leading edge of the melting curve 
for a pure reference compound (- - -). (c). The intermediate melting points extrapolate to give 
the pure melting point and the slope gives the freezing point depression. 
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   The solution in equilibrium with the solid phase in a melting experiment is called the melt. 
Consider heating an impure solid, A, with impurities that are soluble in the melt but are not 
soluble in the pure solid substance. At the onset of melting, all impurities dissolve in the initial 
melt. As the temperature increases, more A melts, which decreases the concentration of the 
impurities in the melt. As the concentration of the impurities in the melt decreases, the 
equilibrium melting point of the solution increases. As the last solid melts, the concentration of 
the impurities in the melt equals the concentration of impurities in the original solid sample, and 
the final equilibrium melting point gives the freezing point depression, ∆T. The concentration of 
the impurities in the melt at each stage is inversely proportional to the fraction of the solid that 
has melted. The DSC melting curve is divided into a sequence of partial areas, each partial area 
beginning at the onset of melting. The ratio of each of the partial areas to the total area under the 
melting curve is proportional to the fraction of the solid that has melted, F. If xB is the 
concentration of all the impurities in the original sample, the concentration of impurities in the 
melt is xB/F. Solving Eq. 18.4.17† for the melting point, T = T*mA – (RT*

m
2/∆fusHA) xB/F, a plot of 

the temperature that corresponds to each partial area versus the inverse of the fraction melted, 
Figure 18.4.7c, gives an intercept equal to the pure melting point of the solid and slope equal to 
the freezing point depression, ∆T = (RT*

m
2/∆fusHA) xB. Since Eqs. 18.4.16†-8.4.17† are restricted 

to ideal-dilute solutions, this method is only valid for purities greater than about 98 mol%. 
 
 
              

Example 18.4.6: Purity Determination 
The partial areas and corresponding temperatures from the melting curve for methyl-4-(2,4-
dichlorophenoxy)butyrate are given in the table below.11 The sample mass was 2.2850 mg with a 
molar mass of 263.12 g mol-1. The partial areas are in arbitrary units, with the total area under 
the curve, 3302, gives the enthalpy of the transition as 0.2749 J. Calculate the sample purity. 
 

T (K) 308.119 308.256 308.422 308.590 
Partial area 483 577 802 1212 

 
Answer:  The enthalpy of fusion is determined from the total area under the melting curve on a 
per mole basis: 
 

 ∆fusHA = ∆H/nA = 0.2749 J (263.12 g mol-1/2.2850x10-3 g)(1 kJ/1000 J) = 31.65 kJ mol-1 

 

A plot of T vs. 1/F gives the intercept as T*
mA = 308.89 ± 0.01 K and ∆T = – slope = 0.1129 ± 

0.0025 K-1. 
 

T (K) Partial Area F 1/F  
308.119 483 0.1463 6.84 
308.256 577 0.1747 5.72 
308.422 802 0.2429 4.12 
308.590 1212 0.3671 2.72 
    
Total 3302   
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The mole fraction is given by Eq. 18.4.16†: 
 

 ln xA = 
∆fusHA

R  






∆T

T *
m

2  = 
31.65x103J mol-1

8.3145 J K-1 mol-1 




0.1129 K

 308.89 K = 4.504x10-3   xA = 0.9955 
 

The sample purity is 99.55 mol%. 
 
              

 
 
   In summary, the plot of the freezing point of an ideal solvent as a function of composition 
using Eq. 18.4.16† approaches linear behavior in the dilute solution limit, xA → 1, Figure 18.4.8. 
The limiting linear behavior is given by Eq. 18.4.17† with slope = RT*

mA
2/∆fusHA. For moderately 

concentrated solutions, the freezing point depression is greater than the linear prediction. In 
general, the colligative properties become linear as solutions approach the dilute solution limit, 
where Eqs. 18.4.12†- 18.4.14† and 18.4.17†- 18.4.19† are applicable. 
 

 
Figure 18.4.8:  Freezing point of an ideal solvent as a function of composition. The dilute 
solution limit, xA → 1, gives linear behavior, Eqs. 18.4.17†- 18.4.19†. 

 
 
Osmotic Pressure Results from Equilibrium across a Semi-Permeable Membrane:   Red blood 
cells burst when suspended in pure water. Cellular membranes are selectively permeable; they 
allow water to pass but not some solutes. The larger chemical potential of the pure water outside 
the cells compared to the water in the cytoplasm of the cells causes a transfer of water into the 
red blood cells, increasing the pressure inside the cells by osmosis until the cell membranes 
burst. Osmotic pressure is a general phenomenon of semi-permeable membrane systems and is 
an important property in the laboratory, in biological systems, and especially in medicine. 
Consider a membrane that is permeable to solvent, but not to a given solute, Figure 18.4.9. The 
membrane separates two compartments, one containing pure solvent and one containing a 
solution of a solute that is not transported through the membrane. The concentration of the 
solvent in the solution is xA. Assume that the solution is sufficiently dilute to be considered an 
ideal or an ideal-dilute solution. The chemical potential of the solvent in the solution is less than 
the pure solvent; µA(xA) = µ*

A(l) + RT ln xA. The solvent flows across the membrane from the 
region of high chemical potential of the pure solvent to the region of low chemical potential in 
the solution. The transfer causes an increase in the volume of the solution, generating a 
hydrostatic head that gives an increase in pressure, ∆P. The pressure increase is determined by 
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the difference in height of the solution compared to the pure solvent, h, and the density of the 
solution: ∆P = dgh, Eq. 1.3.2. 
 
 
 
 
 
 
 
 
 
 

Figure 18.4.9:  Osmotic pressure is established by the equalization of the chemical potential 
of the solvent across a semi-permeable membrane. Solvent flows from the region of high 
chemical potential to the region of low chemical potential. 

 
 
At equilibrium, the pressure increase is the osmotic pressure, ∆Peq = π. The equilibrium osmotic 
pressure is established when the chemical potential of the solvent is equalized between the 
solution and the pure solvent: 
 

 µA(xA,P+π) = µ*
A(l,P)       (equilibrium) 18.4.20 

 

To calculate the osmotic pressure, we need to take into account the effects of concentration and 
pressure on the chemical potential. The chemical potential of a constituent in solution at a 
pressure of P + ∆P is given by integrating Eq. 18.1.18 with dT = 0:12 
 

 µi(xi,P+∆P) = µi(xi,P) + ⌡
⌠

P

P+∆P
 V– i dP         (cst. T) 18.4.21 

 

where µi(xi,P) is the chemical potential in solution at ambient pressure, P. For moderate changes 
in pressure, the partial molar volume of the solvent is constant and the integral is ∆PV– i: 
 

 µi(xi,P+∆P) = µi(xi,P) + ∆PV– i     (cst. T, small ∆P) 18.4.22 
 

The ideal concentration dependence of the chemical potential from Eqs. 18.2.9* and 18.3.10† are 
then substituted for the solution chemical potentials at ambient pressure giving for the solvent 
and solute, respectively:12 

 

 µA(xA,P+∆P) = µ*
A(l,P) + RT ln xA + ∆PV–A       (ideal solvent, cst. T)     18.4.23† 

 µB(xB,P+∆P) = µ†
B(l,P) + RT ln xB + ∆PV–B         (solute, ideal-dilute, cst. T)    18.4.24† 

 

where we use a Raoult’s Law standard state for the solvent, A, and a Henry’s Law standard state 
for the solute, B. These expressions for the Gibbs energy in solution are centrally important for 
applications in bioenergetics.12 We will extend these equations for use with real solutions in the 
next chapter. 
   For the determination of osmotic pressure at equilibrium, ∆Peq = π, the chemical potentials of 
the solvent in the two compartments are equal. Using Eq. 18.4.20 for the left side of Eq. 18.4.23† 
gives: 
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 µ*
A(l,P) = µ*

A(l,P) + RT ln xA + πV–A   (equilibrium, ideal-dilute, cst. T)   18.4.25† 
 

Cancelling the pure liquid standard state from both sides of the last equation and solving for the 
osmotic pressure term gives: 
 

 π V–A = – RT ln xA              (ideal-dilute, cst. T)   18.4.26† 
 

This result is called the van't Hoff equation. For very dilute solutions, this last equation can be 
simplified further and related directly to the solute concentration, xB. As before, note that 
xA = 1 – xB, and that we can expand the logarithm in a Taylor series, Table 1.5.3, keeping only 
the leading term to give ln(1 – xB) ≅ – xB. In addition, using Eq. 18.2.12, the partial molar 
volume of an ideal constituent is equal to the pure molar volume: V–A = V *

A. Substituting these 
approximations into Eq. 18.4.26† gives: 
 

 π V *
A ≅ xB RT                (ideal-dilute, cst. T)   18.4.27† 

 

In addition, for very dilute solutions, the mole fraction of the solute can be approximated as: 
 

 xB = 
nB

nA + nB
 ≅ 

nB

nA
                (ideal-dilute, cst. T)   18.4.28† 

 

Substitution of this approximation gives π V *
A  = nB/nA RT. Multiplying both sides of this 

equation by nA gives: 
 

 π V ≅ nB RT  with V ≅ nAV *
A             (ideal-dilute, cst. T)   18.4.29† 

 

where the volume of the pure solvent, nAV *
A, is approximately equal to the volume of the 

solution, V. The resemblance of this last equation to the ideal gas law is notable, however, the 
similarity is not theoretically significant. Further, the concentration of the solute is given by 
cB = nB/V so the van't Hoff equation can be written as: 
 

 π ≅ cB RT               (ideal-dilute, cst. T)    18.4.30† 
 

For strong electrolytes, cB = ν c, with c the analytical concentration. Eqs. 18.4.29† and 18.4.30† 
are given in General Chemistry texts. However, Eq. 18.4.26† is applicable over a wider 
concentration range. Eq. 18.4.26† also clearly shows that in the dilute solution limit the osmotic 
pressure is independent of the identity of the solute, as are all colligative properties. The 
application of this theory for the reverse process, reverse osmosis, plays an important role in 
water purification. 
   Application of a pressure greater than the equilibrium osmotic pressure to the solution 
compartment in Figure 18.4.9 causes the chemical potential of the solution to exceed the pure 
solvent, which reverses the direction of solvent flow. Solvent is transferred from the solution to 
the pure solvent. This reverse osmosis process is used in laboratory water systems and other 
water purification applications, because it is more energy efficient than distillation. Reverse 
osmosis is, however, still very energy intensive. Reverse osmosis is also used in the food 
industry, for example in the production of maple syrup. Most importantly, reverse osmosis is 
used in desalination for the production of potable water, water for agricultural uses, and for 
environmental remediation. Safe drinking water and water suitable for agriculture is in critically-
short supply in many parts of the world.13 The World Bank has predicted that clean water will be 
the most critical natural resource issue in the near future.14 Water shortages have been identified 
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as causes of civil unrest and large scale human migrations in Africa. Even in the United States 
for example, the Salt River in Arizona no longer flows in its natural channel because it has been 
pumped dry. The Colorado and Rio Grande would similarly dry up, were it not for treaty 
obligations with Mexico. The only water that reaches Mexico in the Colorado River is 
agricultural waste water. A large-scale reverse osmosis plant on the Colorado in Yuma, AZ, was 
designed for treatment of agricultural run-off for injection back into the river channel. The 
research need in this area is the development of high permeability, mechanically robust, semi-
permeable membranes or alternative purification methods. 
 
 
              

Example 18.4.7: Osmotic Pressure 
Plot the chemical potential of water in 0.01000 M sucrose as a function of applied pressure, ∆P, 
and hydrostatic head, h, at 25°C. Reference the chemical potential to the pure solvent, 
µA(xA,P+∆P) – µ*

A(l,P). The density of the solution is 0.99836 g mL-1. 
 
 
Answer:  This solution is sufficiently ideal so that the partial molar volume may be replaced by 
the pure molar volume of the solvent, V–

A = V*
A = 18.069 mL mol-1. Using Eq. 2.2.16, the mole 

fraction of 0.01000 M sucrose is xB = 1.8103x10-4. The mole fraction of water is then xA = 
0.999819. Using Eq. 18.4.23†, the difference between the chemical potential of the solvent in 
solution and the pure solvent is: 
 

 µA(xA,P+∆P) – µ*
A(l,P) = RT ln xA + ∆PV*

A 
     = 8.314 J K-1 mol-1(298.15 K) ln(0.999819) 
         + ∆P(18.069 mL mol-1)(1 m3/1x106 mL)(1x105 Pa/1bar) 
 

At ∆P = 0, the chemical potential difference between the solution and the pure solvent is 
µA(xA,P+∆P) – µ*

A(l,P) = -0.4488 J mol-1. At ∆P = π the difference is zero, since the system is at 
equilibrium, Figure 18.4.10. 
 

 
Figure 18.4.10:  The solvent chemical potential as a function of applied pressure for a 
0.01000 M sucrose solution. The chemical potential difference between the solution and the 
pure solvent is zero at ∆P = π, the equilibrium osmotic pressure. 
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The osmotic pressure, assuming ideal behavior, Eq. 18.4.26†, is: 
 

 π = – (RT ln xA)/V *
A 

    = – 0.083145 L bar K-1 mol-1 (298.15 K) (ln 0.999819)/(0.018069 L mol-1) = 0.2483 bar 
 

In comparison, the approximation using Eq. 18.4.30† gives π = cB RT = 0.2479 bar, which is 
sufficient for three-significant figure accuracy at this low concentration. The height of the 
column of solution necessary to develop the equilibrium osmotic pressure is given by ∆P = dgh: 
 

 h = ∆P/(dg) = 0.2483 bar/(998.36 kg m-3 9.80665 m s-2) (1x105 Pa/1bar) = 2.537 m 
 

A convenient equation for the chemical potential of the solvent in solution can be obtained by 
substituting Eq. 18.4.26† into Eq. 18.4.23†:12 

 

 µA(xA,P+∆P) = µ*
A(l,P) + (∆P – π)V–A     (cst. T&V–A) 18.4.31 

 

This last result shows the plot in Figure 18.4.10 has a slope given by the partial molar volume of 
the solvent and an intercept of (– πV–A). Eq. 18.4.31 is not restricted to ideal-dilute solutions, if 
the exact osmotic pressure is used. 
 
              

Example 18.4.8:  Osmotic Pressure and Chemical Potential 
A 0.01000 M aqueous sucrose solution and pure water are separated by a membrane that is 
impermeable to sucrose and permeable to water, at 25°C and 1 bar. Calculate the chemical 
potential of the water and the sucrose at equilibrium. The density of the solution is 
0.99836 g mL-1and the partial molar volume of sucrose is V–

B = 211.52 mL mol-1. 
 
 
Answer:  The osmotic pressure of this system is calculated in the last example: with xB = 
1.8103x10-4, π = 0.2483 bar. At equilibrium the chemical potential of the water in the solution is 
equal to the chemical potential of pure water, µA(xA,P+π) = µ*

A(l,P). For the solute, Eq. 
18.4.24†gives the chemical potential at equilibrium with ∆P = π: 

 µB(xB,P+π) = µ†
B(l,P) + RT ln xB + πV–B 

         = µ†
B(l,P) + 8.3145 J K-1 mol-1(298.15 K) ln 1.8103x10-4 

        + 0.2483 bar(211.52 mL mol-1)(1x105Pa/1bar)(1 m3/1x106 mL) 
        = µ†

B(l,P) + (-2.16x104 J mol-1) + 5.25 J mol-1 

 

The concentration dependent term dominates the change in chemical potential for the solute 
compared to the pure substance. See Problem 6 for the partial molar volume of sucrose. 
 
              

 
 
Phase Diagrams for Binary Solid-Liquid Equilibrium:  The theory of freezing point depression 
can also be used to construct the phase diagram for binary solid-liquid equilibrium, Figure 
18.4.11. Consider a binary solution at constant pressure with constituents that are immiscible in 
the solid phase; both A and B freeze out of solution as pure solids. The phase diagram is a plot of 
the freezing point of the solution as a function of composition. A plot of the freezing point of a 
solution based on Eq. 18.4.16† is shown in Figure 18.4.8 and is replotted on the right side of the 
phase diagram for xA → 1. On the right side of the phase diagram, A acts as the solvent and B is 
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the solute. However, on the left side of the phase diagram, as xB → 1, B acts as the solvent and A 
is the solute. Switching the roles of the solvent and solute in Eq. 18.4.16† and plotting the 
freezing point as a function of xB = 1 – xA gives the left side of the phase diagram. The freezing 
point curve for A, acting as the solvent, intersects the temperature axis at the pure melting point 
of A, T *

mA. The corresponding two-phase region is for the equilibrium between the solution and 
pure solid A. The freezing point curve for B, acting as the solvent, intersects at the pure melting 
point of B, T *

mB. The corresponding two-phase region is for the equilibrium between the solution 
and pure solid B. The phase diagram can be used to answer a useful question. Consider adding a 
solute to a solvent to lower the freezing point. Can the freezing point of the solution be decreased 
to an arbitrary value, or is there a minimum freezing point? The point where the two freezing 
point curves meet on the phase diagram is the minimum freezing point. The minimum freezing 
point is called the eutectic temperature, TE. The mole fraction at the eutectic temperature is the 
eutectic composition, xE. Below the eutectic temperature, only pure solid A and pure solid B 
exist. Solder for electronics applications is a eutectic mixture of tin and lead with a eutectic 
temperature of 183°C at 63% by mass Sn. 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.4.11:  Binary solid-liquid phase diagram plots the freezing point of the solution as 
a function of composition. On the left side of the diagram, B acts as the solvent and A is the 
dilute solute. On the right side of the diagram, A acts as the solvent and B is the dilute solute. 
This example assumes complete solid-immiscibility. 

 
 
   The number of homogeneous phases present is the variable, p. At high temperature, only the 
solution phase exists, p = 1. At low temperature, only pure solid A and pure solid B exist, p = 2. 
At intermediate temperatures the solution and either pure solid A or pure solid B can be at 
equilibrium, p = 2. The phase diagram can be experimentally constructed by determining cooling 
curves for a series of initial concentrations, Figure 18.4.12. Consider a solution with a 
composition greater than the eutectic composition and at high temperature, point a. The solution 
cools rapidly until pure solid A begins to crystallize out of solution, point b. The corresponding 
temperature is the freezing point of the solution. The slope of the cooling curve is moderated 
because the freezing of the solid from solution is exothermic. As pure solid A crystallizes from 
solution, the solution concentration becomes richer in B and the solution concentration moves to 
the left on the phase diagram. The increasing solute concentration lowers the melting point of the 
solution, so the equilibrium temperature decreases and the system follows the equilibrium 
freezing point curve to the left. The solution concentration continues to be enriched in B and the 
freezing point continues to drop until the composition reaches the eutectic composition, point c. 
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At the eutectic point, pure solid B begins to crystallize from solution along with pure solid A. 
The temperature remains constant at the eutectic temperature, TE, until all the solution has 
frozen, point d. At that point only pure solid A and pure solid B are present, which cool rapidly, 
since no exothermic phase changes remain. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.4.12: Cooling curve for a binary solid-liquid system. The first change in slope 
occurs at b, the freezing point of the solution, T1. The second change in slope occurs at the 
eutectic temperature, the minimum melting point, point c. The last change in slope occurs 
when all the solution has frozen into pure solid A and pure solid B, point d. 

 
 
 
 
 
 
 
 
 
 

   (a). Eutectic composition (b). xA > xE         (c). Pure A 
 

Figure 18.4.13:  DSC heating curves (a). at the eutectic composition, (b). for the same 
composition points as in Figure 18.4.12, and (c). for pure A. For the formation of a non-
eitectic solution, peaks occur at the eutectic temperature and the melting/freezing point of the 
solution for the given composition. 

 
 
   Binary solid-liquid phase diagrams can also be conveniently determined using differential 
scanning calorimetry, DSC, Figure 18.4.13. A pure substance has a sharp melting curve, Figure 
18.4.13c. A typical melting curve is shown in Figure 18.4.13b for the same composition points as 
in Figure 18.4.12. Starting with a solid mixture of the two pure constituents, point e, the 
temperature is raised until the eutectic temperature is reached, point d. The sample begins to 
melt, to produce a solution at the eutectic composition, point c. Melting continues until the solid 
phase is exhausted in the B component. As the temperature rises the sample continues to melt, 
however, only pure solid A remains. As A melts the solution becomes richer in A, and the 
solution composition moves to the right. As the solution becomes richer in A the melting point 
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rises until all the remaining A has melted, point b. At point b, the composition of the solution is 
the starting composition of the original solid mixture, and the melting point is at the maximum 
for the given concentration, which is the solution freezing point, T1. Conversely, a thermogram 
of a mixture at the eutectic composition exhibits a single sharp melting peak, Figure 18.4.8a. 
   The phase diagram of a binary system is seldom as simple as in this example. Some binary 
systems exhibit the phenomenon of compound formation, where a mixture of the two 
components, generally with a simple stoichiometry, melts as if it were a pure substance. Water 
and NaCl are an example. The dihydrate of NaCl, NaCl·2(H2O), acts like a pure substance at low 
temperature. The eutectic temperature between pure water ice and NaCl·2(H2O) is -21.1°C and 
the eutectic composition is 23.3 % by mass NaCl in water. In other words the minimum melting 
point for NaCl solutions is -21.1°C. Solid-liquid phase diagrams are a central focus of materials 
science and geochemistry. 
 
Boiling Point Elevation is Used in Making Hard Candy:  The colligative properties have wide-
ranging applications in many practical circumstances. One application of boiling-point elevation 
is the production of candy. In making candy, sugar solutions are boiled to decrease the water 
content. As the sugar content of the solution increases the boiling point increases, Table 18.4.1. 
However, sugar solutions are probably not ideal, in part due to impurities.15 Candy thermometers 
are common kitchen utensils. Other applications of freezing point depression include spreading 
salts on roads and walkways to remove ice. Propylene glycol is used for airplane de-icing and 
ethylene glycol is used for automobile cooling system anti-freeze. 
 

Table 18.4.1: The stages of candy production as monitored by boiling point elevation. 
 

Stage Temperature mass % sugar 
Thread 110-112°C 80% 
Soft-ball 112-115°C 85% 
Firm-ball 118-120°C 87% 
Hard-ball 121-130°C 92% 
Soft-crack 132-143°C 95% 
Hard-crack 146-154°C 99% 
sucrose(s)15 186°C >99.9% 

 
 
   Solutions that exhibit the same osmotic pressure are isotonic. For example, isotonic solutions 
are used in intravenous rehydration therapy and in tissue culture growth-media. The medical 
conditions hyponatremia and hypernatremia correspond to a deficiency or excess of electrolytes 
in blood plasma, respectively. Extreme hyponatremia leads to congestive heart failure. 
Osmometry is crucial in clinical settings. All the colligative property methods are 
interchangeable. For a given solution concentration, osmotic pressure provides the largest 
magnitude effect and therefore is the most precise. However, equilibrium is established slowly in 
osmotic pressure determinations. Most commercial osmometers are based on freezing point 
depression, although vapor pressure osmometers are also common. Over 100,000 freezing point 
osmometry determinations are performed per day, world-wide, making freezing point depression 
the most common thermochemical measurement. For accurate work, including medical and 
pharmaceutical applications, the effects of solution non-idealities need to be included. 
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18.5  The Gibbs Phase Rule Determines the Number of Independent Variables 
 

At Equilibrium the Chemical Potential of each Component is “Everywhere Equal”:   Binary 
liquid-vapor and solid-liquid phase diagrams show that two phases can exist at equilibrium only 
over a narrow range of temperatures and pressures, Figures 18.4.1, 18.4.2, and 18.4.11. Three 
phases coexist at equilibrium at the triple point of a pure substance and at the eutectic 
temperature for a binary mixture. What are the general conditions for equilibrium when multiple 
phases and components are present? Gibbs developed a general procedure for counting the 
number of independent variables that is called the Gibbs Phase Rule. The number of 
independent intensive variables is the number of thermodynamic degrees of freedom or the 
variance and is symbolized by “f.” The variance is the number of intensive variables that can be 
changed independently without disturbing the number of phases in equilibrium. The variance is 
also the number of independent intensive variables that appear in the expression for the total 
differential of the Gibbs energy. The number of thermodynamic degrees of freedom and the 
number of molecular degrees of freedom that we discussed in conjunction with the Equipartition 
Principle in Sec. 8.4 are different concepts, and should not be confused. 
   The variance of the system is determined by the number of phases in equilibrium and the 
number of components. The number of homogeneous phases in equilibrium is denoted by “p.” 
The phases include gas, homogeneous liquid phases, and homogeneous solid phases. The 
number of components is “c” and is discussed in Sec. 14.2, Eq. 14.2.1. We will develop the 
Gibbs phase rule using a simple example. Consider binary liquid-vapor equilibrium, Figures 
18.4.2 and 18.5.1. 
 
 
 
 
 
 
 
 
 
 
 (a).      (b). 
 

Figure 18.5.1: (a). Two volatile components in a liquid mixture under their equilibrium 
partial vapor pressures. The chemical potential of each component is equal in each phase at 
equilibrium. (b). The corresponding phase diagram, at constant pressure, showing the 
variances at equilibrium. 

 
 
In general to completely specify all the intensive variables for the system we need to know: T, P, 
yA, yB, xA, xB. The total number of intensive variables is given by the number of components 
multiplied by the number of phases in addition to the overall temperature and pressure: 
 

 total intensive variables = c p + 2  (every component in every phase) 18.5.1 
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assuming each component can occur in each phase. However, the mole fractions sum to one in 
each phase: 
 

 yA + yB = 1 
 xA + xB = 1          18.5.2 
 

There are p such equations, one for each phase. Each sum of mole fractions decreases the 
number of independent variables by one. Subtracting the mole fraction constraints from Eq. 
18.5.1: 
 

 total intensive variables = c p + 2 – p  (every component in every phase) 18.5.3 
 

In addition at equilibrium, the chemical potential of each component is equal in each phase. As 
we have stressed, the chemical potential is “everywhere equal” at equilibrium: 
 

 µA(xA) = µA(g) 
 µB(xB) = µB(g)        (equilibrium) 18.5.4 
 

For each component, there are (p – 1) equations. For example, for three phases for each 
component, there are two relationships: µA(s) = µA(l) and µA(l) = µA(g). In general, for c 
components there are c(p – 1) equations, overall, for the equality of the chemical potential. 
Subtracting the chemical potential constraints from Eq. 18.5.3 gives the variance: 
 

 f = independent intensive variables = c p + 2 – p – c( p – 1)  (equilibrium) 18.5.5 
 

Canceling common terms in the last equation gives:16,17 

 

 f = c – p + 2          (every component in every phase, equilibrium) 18.5.6 
 

This relationship is the Gibbs Phase Rule and is quite general for any number of components in 
any number of phases. There are two common special cases. When the temperature or pressure is 
constrained, the variance is given by f ', with: 
 

 f ' = c – p + 1   (every component in every phase, equilibrium, cst. T or P )  18.5.7 
 

If both temperature and pressure are constant, the variance is given by f ", with: 
 

 f " = c – p    (every component in every phase, equilibrium, cst. T &  P )  18.5.8 
 

   For example, the phase diagram for binary liquid-vapor equilibrium is shown in Figure 
18.5.1b. The experiment is done at constant pressure, which decreases the variance by one, f '. At 
temperatures above the vapor composition curve, only the vapor phase exists. Then p = 1, and 
the variance is f ' = 2 – 1 + 1 = 2. The system is bivariant . The temperature can vary over a wide 
range for each composition. In the two-phase region, with the liquid and vapor in equilibrium, p 
= 2 and the variance is f ' = 2 – 2 + 1 = 1. In the two-phase region, choosing a solution 
composition fixes the boiling point, or conversely choosing a boiling point fixes the composition. 
Only one variable may be changed independently while the system consists of two phases in 
equilibrium. The system is univariant . At temperatures below the liquid composition curve, 
only the liquid phase exists and p = 1. At low temperatures the system is bivariant. 
   Another example is binary solid-liquid equilibrium, Figures 18.4.6 and 18.5.2a, assuming that 
solid A and B are immiscible. The experiment is again at constant pressure, so we use f '. At high 
temperatures, only the liquid phase exists, as a solution of A and B. With only one phase, p = 1 
and f ' = c – p + 1 =  2 – 1 + 1 = 2. The temperature can vary over a wide range for each 
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composition. In the two-phase regions, with the solid and liquid in equilibrium, p = 2 and the 
variance at constant pressure is f ' = 2 – 2 + 1 = 1. In the two phase regions, choosing a solution 
composition fixes the melting point. The system is univariant . At the eutectic temperature, the 
liquid phase and two solid phases co-exist and p = 3 giving f ' = 2 – 3 + 1 = 0. The eutectic 
temperature is an invariant  point at constant pressure. The eutectic temperature occurs at one 
specific composition and one specific temperature at a specified constant pressure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a).       (b). 
 

Figure 18.5.2: (a). Binary solid-liquid equilibrium, at constant pressure, showing the 
variances at equilibrium. At the eutectic temperature, liquid, solid A, and solid B are in 
equilibrium and the system is invariant. (b). The solid-liquid-vapor equilibrium for a pure 
substance. 

 
 
              

Example 18.5.1: 
Find the variances for the solid-liquid-vapor phase transitions of a pure substance in general and 
at constant pressure. 
 
 
Answer:  For a pure substance c = 1, Figure 18.5.2b. For a single solid, liquid, or vapor phase 
alone, p = 1 and f = c – p + 2 = 2. There are two intensive degrees of freedom. The temperature 
and pressure of the vapor, for example, can be varied over a wide range subject only to the 
equation of state: Vm = RT/P. If the pressure is constant, f ' = c – p + 1 = 1, then only the 
temperature may be changed independently. 
   The coexistence curves are the melting curve, the vapor pressure curve, and the sublimation 
curve. Along the coexistence curves, there are two phases in equilibrium, p = 2. Then f = c – p + 
2 = 1: one variable may be changed while maintaining two phases in equilibrium. For example, 
the temperature may be changed over a wide range, but the vapor pressure is fixed by the chosen 
temperature to lie along the equilibrium vapor pressure curve. At constant pressure on the 
coexistence curves, f ' = c – p + 1 = 0, and the system is invariant. For example, at a constant 
pressure of 1 bar, the temperature is fixed at the standard melting point and the vapor pressure is 
fixed at the standard boiling point, if the corresponding phases are in equilibrium. 
 
              

vapor: p = 1 
f = 2, f ' = 1 

vapor pressure curve: 
p = 2, f = 1, f ' = 0 

sublimation curve: 
p = 2, f = 1, f ' = 0 

P 

T Ttp 

liquid: p = 1 
f = 2, f ' = 1 

melting curve: 
p = 2, f = 1, f ' = 0 

triple point: 
p = 3, f = 0 

solid: p = 1 
f = 2, f ' = 1 

1 bar 

T*
b T *

m 

P = cst 

0 1 xA → 

solid A & solid B 

liquid A & B 
T 

f ' =1 
liq. & solid B 

f ' =1 
liq. & solid A 

f ' =0 

f ' =2 

f ' = c – p + 1 
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The Gibbs Phase Rule is a summary of equilibrium chemical potential relationships that guides 
the interpretation of complex systems. However, the most important application of the Phase 
Rule is in delineating the functional dependence of the Gibbs energy. 
 
Add One Extensive Independent Variable for Each Phase:  Intensive properties are independent 
of the size of each phase. The Gibbs energy, on the other hand, is an extensive state function. In 
determining the Gibbs energy of the system we need to take into account the size of each phase. 
The relative amounts of each component in each phase are then governed by the concentrations, 
and the system is then completely determined. The total number of independent variables needed 
to describe the system is called D, for degrees of freedom: 
 

 D = f + p          18.5.9 
 

D is the number of independent variables that appear in the expression for the total differential of 
the Gibbs energy. 
 
 
              

Example 18.5.2: Independent Variables for the Gibbs Energy 
A small amount of benzene is added to a separatory funnel containing octanol and water. Octanol 
and water form two immiscible layers and the solute partitions between the two phases. Find the 
variance, thermodynamic degrees of freedom, and an expression for dG, at constant temperature 
and pressure. Include only the liquid phases. 
 
 

Answer:  There are three components, octanol, water, and benzene; c = 3. There are two phases; 
p = 2. At constant temperature and pressure, f " = c – p = 1 and D " = f " + p = 1 + 2 = 3. There 
are multiple ways to express the Gibbs energy; but the expression can include only D " = 3 
independent variables. The simplest at constant T and P is written in terms of the total amounts 
of each component: dG = µoctanol dnoctanol + µH2O dnH2O + µB dnB. Call the octanol rich phase the 
(oct) phase and the water rich phase the (aq) phase, then dnB = dnB(oct) + dnB(aq). There are 
only three independent variables because the distribution of the three components between the 
two phases is determined by the equivalence of the chemical potentials in the two phases: 
µoctanol(oct) = µoctanol(aq),  µH2O(oct) = µH2O(aq),  and  µB(oct) = µB(aq). For example, for benzene: 
 

 µ†
B(org) + RT ln xB(oct) = µ†

B(aq) + RT ln xB(aq)     or   ln 






xB(oct)

xB(aq)  = 
µ†

B(oct) – µ†
B(aq)

RT  
 

The concentrations can alternatively be given as molarities instead of mole fractions. 
 
              

 
 
18.6  Structure-Function Relationships and Solvation 
 

   Solvation plays an important role in molecular interactions. Gibbs energies of solvation are 
commonly used in characterizing substances for structure-activity studies of biological function. 
Parameters that are used to characterize a substance in structure-activity studies are called 
descriptors. Other common descriptors include dipole moments, molecular mechanics steric 
energies, molecular volumes, and surface areas. The most commonly used descriptor is logP, 
which characterizes solvation. Log P is the log10 of the octanol/water partition coefficient: 
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 P = 
cB(oct)
cB(aq)          18.6.1 

 

The octanol/water partition coefficient is measured by placing the compound under study in a 
separatory funnel with octanol and water. Octanol and water are immiscible, and the compound 
partitions between the two phases. The concentration of the compound in the two phases and 
hence the partition coefficient are a measure of the hydrophobic-hydrophilic character of the 
compound. The more hydrophobic, the larger are P and logP. LogP is a common descriptor in 
biological function studies because drugs must often cross membranes. Cell membranes are 
composed of phospholipids, which have hydrophobic tails that produce a very hydrophobic 
environment in the middle of the membrane bilayer. Greater hydrophobic character for a drug 
enhances diffusive transport across membranes. 
   Log P is directly related to Gibbs energies of desolvation. P is the equilibrium constant for: 
 

B (aq) →← B (oct)   ∆PG°B = – RT ln P = – RT 2.303 log P  18.6.2 
 

and ∆PG°B is the corresponding Gibbs energy change. This system is also introduced in Example 
18.5.2, with ∆PG°B = cµ°B(oct) – cµ°B(aq) in molar terms. The partitioning can be broken into two 
separate processes. The first is desolvation from water, which using Eq. 18.3.2† gives: 
 

B (aq) →← B (g)    ∆desolG°B(aq) = – RT ln kpc,B(aq)   18.6.3† 

 

where kpc,B(aq) is the Henry’s Law constant for substance B in water solution. The second is the 
desolvation from octanol: 
 

B (oct) →← B (g)   ∆desolG°B(oct) = – RT ln kpc,B(oct)  18.6.4† 

 

where kpc,B(octanol) is the Henry’s Law constant for substance B in octanol solution. Subtracting 
Eq. 18.6.4† from Eq. 18.6.3† gives Eq. 18.6.2 with the Gibbs energies related by: 
 

∆PG°B = ∆desolG°B(aq) – ∆desolG°B(oct)       18.6.5 
 

Log P can then be calculated using Eq. 18.6.2. If experimental values for log P are not known, 
log P can be estimated from Gibbs energies of desolvation. 
   The key insight of chemistry is the relationship between molecular structure and molecular 
function. Medicinal chemistry is a particularly rich example of the use of structure-function 
relationships. Quantitative Structure Activity Relationships, QSAR, are used to find 
correlations of biological activity with molecular structure. Quantitative Structure Property 
Relationships, QSPR, extend the same idea to chemical property prediction. The relationships 
are often expressed by a linear equation that relates molecular descriptors, xij, to the desired 
biological activity, Ai, for compound i. With q descriptors, the biological activity of the molecule 
is modeled by the multi-variable linear relationship: 
 

 Ai = ∑
j=1

q
 mj xij + b         18.6.6 

 

where the mj and b values are fit coefficients determined using linear least squares curve fitting. 
An example of a QSAR study is the isonarcotic activity of esters, alcohols, ketones, and ethers 
with tadpoles, Table 18.7.1. Various organic compounds were added to water with tadpoles. The 
swimming speed of the tadpoles was observed and the amount of the compound that was 
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necessary to slow the tadpoles was determined, ci. An effective compound has a low 
concentration for the production of the desired effect. The activity of the compound is defined to 
provide a larger activity for a compound with higher efficacy: 
 

 Ai = log(1/ci)          18.6.7 
 

Table 18.7.1: Isonarcotic Activity of Esters, Alcohols, Ketones, and Ethers with Tadpoles.18 
 
 

Compound log(1/c) log P 
CH3OH 0.30 -1.27 
C2H5OH 0.50 -0.75 
CH3COCH3 0.65 -0.73 
(CH3)2CHOH 0.90 -0.36 
(CH3)3COH 0.90 0.07 
CH3CH2CH2OH 1.00 -0.23 
CH3COOCH3 1.10 -0.38 
C2H5COCH3 1.10 -0.27 
HCOOC2H5 1.20 -0.38 
C2H5COC2H5 1.20 0.59 
(CH3)2C(C2H5)OH 1.20 0.59 
CH3(CH2)3OH 1.40 0.29 
(CH3)2CHCH2OH 1.40 0.16 
CH3COOC2H5 1.50 0.14 
C2H5COC2H5 1.50 0.31 
CH3(CH2)4OH 1.60 0.81 
CH3CH2CH2COCH3 1.70 0.31 
CH3COOCH2C2H5 2.00 0.66 
C2H5COOC2H5 2.00 0.66 
(CH3)2CHCOOC2H5 2.20 1.05 

 

 

 
 
 
 

 

Figure 18.6.1. Isonarcotic Activity of Esters, 
Alcohols, Ketones, and Ethers with Tadpoles. 

 

 

After linear least squares regression, Figure 18.6.1, the resulting QSAR equation is: 
 

 log(1/ci) = 0.731 log Pi + 1.22 n = 20  r = 0.881   18.6.8 
 

The data is reasonably correlated with a regression coefficient of 0.881. In this study only one 
descriptor is necessary to build an adequate model of the structure-function relationships, but 
often many descriptors are needed. Solvation, as measured using log P or ∆desolG°, is often a 
determining factor in correlations of structure with biological activity in medicinal chemistry. 
 
18.7  Summary – Looking Ahead 
 

   Partial molar properties enable the fundamental equations of thermodynamics to be easily 
applied to solutions. For ideal solutions, the partial molar volume is the pure molar volume, the 
partial molar enthalpy is the pure molar enthalpy, and the Gibbs energy of solution is purely 
statistically driven. Raoult’s Law and Henry’s Law are the basis for the treatment of ideal and 
ideal-dilute solutions. The Henry’s Law constant is determined by the solute-solvent 
intermolecular forces. Raoult’s and Henry’s Law are the basis for the appropriate standard states 
for components in solution. The standard states are ideal standard states; the values of the 
standard state properties are determined by extrapolation of the dilute solution environment to 
unit concentration, giving the ideal limit. The choice of the standard states allows the calculation 
of the chemical potential of the solvent and solute. At equilibrium the chemical potential of each 
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component is the equal in all phases. The equality of the chemical potential is the basis for 
understanding phase transitions in multi-component systems. Measurements based on the 
colligative properties are some of the most commonly made determinations in clinical, industrial, 
and research laboratories. 
   The Gibbs phase rule and detailed balance are fundamental principles that govern all chemical 
phenomena. These two, central generalizations describe the interrelationships between different 
aspects of chemical reactivity and delineate the boundaries for possible chemical processes. Each 
principle is a simple statement with wide ranging ramifications. 
   Most solutions are far from ideal. Experimental methods based on the colligative properties, 
for example, are independent of the identity of the solute only for very dilute solutions. The 
properties of real solutions are a function of the activity of the components, rather than the 
analytical concentration. We introduce the concept of activity in the next chapter. Chemical 
potentials are then put to use in the study of chemical equilibria in Chapter 20. The theory 
developed in this chapter allows the prediction of structure-function relationships in solution. 
 
 

Chapter Summary 
 

1.  The partial molar volumes are defined by the derivatives: 

 V–A ≡ 






∂V

∂nA T,P,nB

   V–B ≡ 






∂V

∂nB T,P,nA

 

2.  The total differential of the volume at constant T and P is determined by the partial molar 
volumes:  dV = V–A dnA + V–B dnB 

3.  Integration of the differential of the volume at constant composition gives the volume of the 
solution as V = V–A nA + V–B nB. 

4.  The partial molar volume is the change in volume for adding one mole of substance to so 
large an amount of solution that the concentration remains unchanged. 

5.  Gibbs-Duhem relationships give the partial molar property of one constituent in terms of the 
other. The partial molar volumes and chemical potentials, at constant temperature and 
pressure, are related by: 

 dV–B = – 
xA

1 – xA
 dV–A   dµB = – 

xA

1 – xA
 dµA 

6.  V1kg is the volume of a solution that contains 1 kg of solvent. The partial molar volume of the 
solute is given by: 

 V–B = 






∂V

∂nB T,P,nA

= 






∂V1kg

∂mB T,P,nA





1

1 kg  

7.  The apparent molar volume is the volume due to the added solute per mole: 

 φV ≡ 
Vsolution – Vpure solvent

moles of solute  = 
V – nA V *

A

nB
 

8.  The thermodynamic properties of solutions are functions of the partial molar enthalpy, 
entropy, and Gibbs energy of the constituents. The partial molar Gibbs energy is the chemical 
potential. At constant temperature and pressure: 

 dH = H–A dnA + H–B dnB   H = H–A nA + H–B nB 
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 dS = S–A dnA + S–B dnB   S = S–A nA + S–B nB 

 dG = µA dnA + µB dnB   G = µA nA + µB nB 

In general,  dG = –S dT + V dP + µA dnA + µB dnB  and  dµi = – S–i dT + V– i dP. 
9.  For nA moles of A and nB moles of B the Gibbs energy of mixing is given by: 

 ∆mixG = G2 – G1 = nA(µA – µ*
A) + nB(µB – µ*

B) 

10.  The molar Gibbs energy of mixing of a solute is the Gibbs energy of solvation, ∆solGB(xB). 
The Gibbs energy of formation in solution is: ∆fG°(xB) = ∆fG°B(pure) + ∆solGB(xB). 

11.  The Gibbs energy of mixing for ideal solutions is entirely entropic, ∆mixG = – T ∆mixS. 

 At constant T and P:   ∆mixS = – ntotR ∑
i=1

c

 xi ln xi    ∆mixG = ntotRT ∑
i=1

c

 xi ln xi ∆mixH = 0 

12.  The chemical potential of A in solution, at concentration xA, is equal to the chemical 
potential of A in the vapor at equilibrium:  µA(xA ) = µ°A(g) + RT ln PA/P°. 

13.  The chemical potential of a constituent is: µA(xA) = µ*
A(l) + RT ln PA/P*

A, using the pure 
liquid standard state, µ*

A(l) = µ°A(g) + RT ln P*
A/P°, where P*A is the vapor pressure of the pure 

liquid and PA is the partial vapor pressure of the substance in equilibrium with the solution. 

14.  The equilibrium partial vapor pressure of a substance is called the escaping tendency. 

15.  The partial vapor pressure of a constituent above an ideal solution is given by Raoult’s Law: 
PA = xA P*

A. If all constituents obey Raoult’s Law, the solution is an ideal solution. 
16.  The equilibrium state for ideal solutions is given by Raoult’s and Dalton’s Laws: 
 • In solution—Raoult’s Law:   PA = xAP*

A    PB = xBP*
B 

 • In the vapor—Dalton’s Law: Ptot = PA + PB = xAP*
A + xBP*

B 
       Ptot = xAP*

A + (1 – xA)P*
B 

       PA = yA Ptot  or   yA = 
PA

Ptot
 = 

xAP*
A

Ptot
 = 

xAP*
A

xAP*
A + (1 – xAP*

A) 

17.  For an ideal constituent: µA(xA) = µ*
A(l) + RT ln xA. 

18.  For an ideal solution, the partial molar volume of a constituent is the pure molar volume, 
V–A = V*

A, the partial molar enthalpy is the pure molar enthalpy, H–A = H*
A, and the partial 

molar entropy is S–
A = S*

A – R ln xA (see Problems 16 and 17). 

19.  The solute in dilute solution obeys Henry’s Law, PB = kH,B xB, where kH,B is the Henry’s Law 
constant for B. kH,B is the limiting slope of the partial vapor pressure curve as xB → 0. 

20.  Solutions that follow Henry’s law for the solute and Raoult’s Law for the solvent are called 
ideal-dilute solutions. Raoult’s and Henry’s Laws are limiting laws; all solutions approach 
ideal-dilute behavior in the dilute solution limit, xA → 1 and xB → 0. 

21.  The Henry’s Law constant, kH,B, is the equilibrium constant for the desolvation process: 
 B (xB)  →←  B (gas, PB)  kH,B = PB/xB and   ∆desolG° = – RT ln kH,B 

where ∆desolG° is the Gibbs energy of desolvation from dilute solution to give the substance 
in the gas phase; ∆desolG° = – ∆solG for the gas phase of the substance, 

22.  Henry’s Law can be written in concentration units (see Summary Table). Henry’s Law in 
terms of vapor and solution concentrations in molarity:  cB(g) = kcc cB   and 
∆desolG°cc = – RT ln kcc   defines the unitless Henry’s Law constant, kcc. 
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23.  The chemical potential of a ideal-dilute constituent is: µB(xB) = µ†
B(l) + RT ln xB, using a 

Henry’s Law standard state, µ†
B(l) ≡ µ°B(g) + RT ln kH,B/P°. 

24.  The chemical potential of an ideal-dilute solute can also be expressed is terms of molarity or 
molality by changing the standard state to unit molarity, cµ°B, or unit molality, mµ°B, instead of 
unit mole fraction, as listed in the Summary Table. 

25.  Ideal-dilute solutions, by convention, assume a Raoult’s Law standard state for the solvent 
and a Henry’s Law standard state for the solute, which guarantees that when the solvent 
behaves ideally, the solute also behaves ideally. 

26.  The liquid and vapor compositions at the ends of a tie line are at equilibrium; the chemical 
potentials of each component are equal in the two phases. 

27.  The length of a separation column that gives a composition enhancement equivalent to a tie 
line on the phase diagram is called the height equivalent of the theoretical plate, HETP. 

28.  An azeotrope behaves as if the solution were a pure substance during distillation. The vapor 
above a solution at the azeotropic composition has the same composition as the solution. 

29.  A colligative property is a property of dilute solutions that depends only on the 
concentration of the solute and not the chemical properties or specific identity of the solute. 

30.  The boiling point elevation and freezing point depression for an ideal-dilute solution at 
constant pressure, assuming ∆trHA and ∆trSA are constant and the solute is only found in the 
solution phase, for successively more dilute solutions are: 

 ln xA = 
∆vapHA

R  






1

T – 
1
T*

b
    ln xA = – 

∆fusHA

R  






1

T – 
1

T *
m

 

 ∆T = – 






RT*

b
2

∆vapHA
 ln xA    ∆T = – 







RT*

m
2

∆fusHA
 ln xA 

 ∆T ≅ 






RT*

b
2

∆vapHA
 xB     ∆T ≅ 







RT*

m
2

∆fusHA
 xB 

 ∆T ≅ Kb mB Kb ≡ 






RT*

b
2MA (1 kg)

1000 g ∆vapHA
  ∆T ≅ Kf mB       Kf ≡ 







RT*

m
2MA (1 kg)

1000 g ∆fusHA
 

31.  For strong electrolytes, for the colligative properties, mB = ν m or cB = ν c, where ν is the 
number of ions from the dissociation of the strong electrolyte. 

32.  The chemical potentials in an ideal-dilute solution at a total pressure of P +∆P are: 
 solvent: µA(xA,P+∆P) = µ*

A(l,P) + RT ln xA + ∆PV–A 
   µA(xA,P+∆P) = µ*

A(l,P) + (∆P – π)V–A 
 solute:  µB(xB,P+∆P) = µ†

B(l,P) + RT ln xB + ∆PV–B 

 where V–A and V–B, the partial molar volumes, are assumed constant over the pressure range. 

33.  The osmotic pressure with µA(xA,P+π) = µ*
A(l,P) for successively more dilute solutions is: 

 π V–A = – RT ln xA  π V–A ≅ RT xB  π V ≅ xB RT     π ≅ cB RT 
34.  For solid-liquid equilibrium, the minimum freezing point is called the eutectic temperature 

and the mole fraction at the eutectic temperature is the eutectic composition. 

35.  The variance, f, is the number of independent intensive variables at equilibrium. The Gibbs 
Phase Rule, assuming every component occurs in every phase, is f = c – p + 2. At constant T 
or P, f ' = c – p + 1, and at constant T and P, f " = c – p. 
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36.  The total number of independent variables needed to describe a system is D = f + p. D is the 
number of independent variables in the total differential of the Gibbs energy. 

37.  Log P is a measure of the hydrophobic-hydrophilic character of the compound: 

B (aq) →← B (octanol)  P = 
cB(octanol)
cB(water)   ∆PG° =  – RT 2.303 log P 

with ∆PG° = ∆desolG°(aq) – ∆desolG°(octanol). 

38.  QSAR is used to find correlations of biological activity with molecular structure using linear 
equations that relate molecular descriptors, xij, to the desired biological activity, Ai, for 
compound i: 

 Ai = ∑
j=1

q
 mj xij + b  where the mj and b values are fit coefficients. 

 
Summary Table: Solution Standard States in the Ideal-Dilute Solution limit. 
 

Raoult’s Law: Solvent, 
    xA = 1 standard state 

Henry’s Law: Solute, 
    xB = 1 standard state 

Henry’s Law: Solute, 

    m° = 1 m 

Henry’s Law: Solute, 

    c° = 1 M 

PA = xA P*
A PB = kH,B xB PB = kpm,B mB PB = kpc,B cB 

 ∆desolG° = – RT ln kH,B ∆desolG°pm = – RT ln kpm,B ∆desolG°pc = – RT ln kpc,B 

  
kpm,B = 

kH,B (1 kg)

1000 g/MA
 kpc,B = 

kH,B (1 L)

1000 mL dsoln/MA
 

  kpm,B = kH,B/55.51 mol kg-1  (*) kpc,B = kH,B/55.34 mol L-1 (*)  
µA(xA) = µ *A(l) + RT ln xA µB(xB) = µ†

B
(l)+RT ln xB µB = mµ°B(l)+RT ln mB/m° µB = cµ°B(l)+RT ln cB/c° 

µ *
A(l) = µ°A(g)+RT ln P*

A/P° µ†
B(l) ≡ µ°B(g)+RT ln kH,B/P° mµ°B(l) ≡ µ°B(g)+RT ln kpm,B/P° cµ°B(l) ≡ µ°B(g)+RT ln kpc,B/P° 

µ*
A(l) = ∆fG°A(pure)       (°)  mµ°B(l) = ∆fG°B(1 m)       (°) cµ°B(l) = ∆fG°B(1 M)        (°) 

(*) Aqueous at 298.15 K (°) Referenced to the pure elements in their standard states. 
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Problems: Ideal Solutions 
 

1.  The volume of a solution of methanol in water is less than the corresponding sum of the pure 
components. The solution temperature rises upon mixing. (a). Does this solution show positive or 
negative deviations from ideality? (b). Are the forces better described as A-B > A-A, B-B or 
rather A-B < A-A, B-B? (c). Is the vapor pressure of the solution greater than or less than 
predicted using Raoult’s Law? (d). Is the escaping tendency of methanol from the solution 
greater than or less than that predicted using Raoult’s Law? (e). Is the boiling point of the 
solution greater than or less than predicted using Raoult’s Law? (f). Which is larger, the pure 
vapor pressure of methanol or the Henry’s Law constant of methanol in water? 
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2.  A 2.412 m solution of ethanol in water containing 1000.00 g of solvent has a total volume of 
1133.08 mL. The partial molar volume of ethanol in this solution is 53.890 mL mol-1. Calculate 
the partial molar volume of water in this solution. 
 

3.  The density of a solution can be accurately determined by measuring the vibration frequency 
of a U-shaped tube filled with the solution. The volume of a solution containing 1 kg of solvent 
can be determined from the density of the solution. (a). Show that: 
 

 V1kg = 
nAMA + nBMB

d  = 
1000 g + mB (1 kg)MB

d  
 

where MA is the molar mass of the solvent, MB is the molar mass of the solute, mB is the 
molality of the solute, and d is the density of the solution. 
(b). The density of a 5.4266 m solution of ethanol in water is 0.96808 g mL-1 at 25°C. The partial 
molar volume of ethanol in this solution is 54.183 mL mol-1. Calculate the partial molar volume 
of water in this solution. 
 

4.  The relationship between density and the volume of solution that contains 1 kg of solvent is 
(derived in Problem 3): 
 

 V1kg = 
nAMA + nBMB

d  = 
1000 g + mB (1 kg)MB

d  
 

The density at 25°C as a function of the concentration of p-toluenesulfonic acid in water is given 
below. The molar mass of p-toluenesulfonic acid is 172.205 g mol-1. Calculate the partial molar 
volumes of p-toluenesulfonic acid and water at 2.0000 m at 25°C.1 
 

mB (mol kg-1) 0.0000 0.5000 1.0000 2.0000 3.0000 4.0003 4.5005 
d (g mL-1) 0.99707 1.02159 1.04334 1.07970 1.10846 1.13178 1.14187 

 
5.  Prove the relationship for the partial molar volume in Eqs. 18.1.10: 
 

 Given  V = nA V *
A+ nB 

φV show that    V–B = φV + mB 






∂ φV

∂mB T,P,nA

 

 

6.  The apparent molar volume of sucrose in water is given by the following power series 
expansion.2 
 

 φV =  V
–o-

B + RT [ ½ A mB + 1/3 B m2
B + ¼ C m3

B + 1/5 D m4
B ] 

 

where V
–o-

B is the partial molar volume of the solute at infinite dilution, and A, B, C, and D are 
constants and R is in units of L atm K-1 mol-1. All five coefficients are determined using non-
linear least squares curve fitting of experimental data. (a). Find the partial molar volume of the 
solute as a function of V

–o-
B, A, B, C, and D. (b). The fit coefficients for sucrose at 25°C are: V

–o-
B = 

0.21149 L mol-1, A = 1.107x10-4 kg mol-1 atm-1, B = -1.64x10-5 kg3 mol-3 atm-1, C = 1.15x10-6 
kg4 mol-4 atm-1, and D = 0. Find the partial molar volume of 0.01000 m sucrose at 25°C. 
 

7.  Calculate the entropy and Gibbs energy of mixing of 0.80 moles of H2O(l) and 0.20 moles of 
ethanol at 298.15 K. Assume an ideal solution. 
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8.  Ethanol from the fermentation of corn or other biomass has been proposed as a replacement 
for petroleum based transportation fuels. For use in transportation fuels, ethanol must contain 
less than 0.7% water. Calculate the minimum energy necessary to produce one mole of ethanol, 
with a concentration of 99.3% ethanol by volume at 25°C, from a fermentation broth containing 
15% by volume ethanol. Assume ideal behavior. Compare this minimum separation requirement 
to the Gibbs energy of combustion of ethanol. The density of ethanol is 0.789 g mL-1. 
 

9.  At 50.0°C the vapor pressure of pure hexane and pure heptane are 0.534 bar and 0.188 bar, 
respectively. The two liquids form nearly an ideal solution. (a) For a solution with a mole 
fraction of 0.670 heptane, calculate the total vapor pressure and the mole fraction of each 
component in the vapor phase.3 (b) The total vapor pressure of a heptane-hexane solution is 
0.405 bar. Calculate the mole fraction of heptane in the solution, the partial vapor pressures of 
each component, and the mole fractions in the vapor phase. 
 

10. At 30.0°C the vapor pressure of pure toluene and pure benzene are 36.7 and 118.2 torr, 
respectively. The two liquids form a nearly ideal solution. (a) For a solution containing 50.0 
mole % of toluene, calculate the total vapor pressure and the mole fraction of each component in 
the vapor phase. (b) What is the composition of a solution of benzene and toluene that will boil 
at 30.0°C at a pressure of 50.0 torr? 
 

11.  2-Propanol and 2-methylpropanol form an ideal solution. (a). Calculate the composition of 
the solution and vapor that boils at 90.0°C and an ambient pressure of 1.00 bar. The standard 
boiling point of pure 2-propanol is 82.2°C and the enthalpy of vaporization at the standard 
boiling point is 43.61 kJ mol-1. The standard boiling point of pure 2-methyl-propanol is 107.7°C 
and the enthalpy of vaporization is 46.26 kJ mol-1. (b). What is the highest purity attainable from 
a single-plate distillation starting with the composition in Part (a)? 
 

12.  The standard state Gibbs energy of formation of methanol in the gas phase at 25°C is 
-161.96 kJ mol-1. The Henry’s Law constant is kpc = 4.51x10-3 bar L mol-1. (a). Calculate the 
standard state Gibbs energy of formation of aqueous methanol at 25°C. (b). Calculate the 
concentration of methanol in an aqueous solution given an equilibrium vapor pressure for 
methanol above the solution of 0.0100 bar (1.00 kPa or 7.50 torr). 
 

13.  The vapor pressure of heptane in solution with 1-bromobutane is given in the table below, at 
50°C.3 Calculate the Henry’s Law constants, kH, kcc, and kpc, for heptane. The data is plotted in 
Figure 18.3.1. The density of 1-bromobutane at 25°C is 1.276 g mL-1 and the molar mass is 
137.02 g mol-1. Assume the density is roughly independent of temperature for this small 
temperature difference. 
 

x(bromobutane) 0 0.1171 0.2362 0.3329 0.4323 0.5182 0.5836 0.6333 
Pvap(heptane, torr) 140.0 125.8 110.6 98.4 86.1 74.8 66.4 59.6 
x(bromobutane) 0.6588 0.7123 0.7935 0.8805 0.9521 1 
Pvap(heptane, torr) 57.3 49 37.2 23.3 9.6 0 

 
14.  The Henry’s Law constants, kH, for O2 and N2 in water at 25°C are 4.40x104 bar and 
8.68x104 bar, respectively. Calculate the equilibrium solubility of O2 and N2 in water at 25°C in 
units of molarity and ppm by weight. Find the ratio of O2 to N2 in moles. Assume that air is 20.0 
mole % O2 and 80.0 mole % N2 at a total pressure of 1.00 bar. 
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15.  The Henry’s Law constant for CO2 can be expressed using the concentration of dissolved 
CO2, only, or the concentration of CO2 and carbonic acid: 
 

 k 'pc,CO2 = 
PCO2

cCO2
   kpc,CO2 = 

PCO2

cCO2 + cH2CO3
 

 

The equilibrium constant for the dehydration of carbonic acid is about 650:4 

 

 H2CO3 (aq) →← CO2 (aq) + H2O (l)  K = 650 
 

The Henry’s Law constant for CO2 in sea water at 25°C is pkpc,CO2 = -1.53.4 Show that kpc,CO2 ≅ 
k 'pc,CO2, within experimental error. 
 

16.  Show that the temperature dependence of the chemical potential for an ideal constituent is 
given by: (∂µA/∂T)P,nA,nB

 = – S–A = – S*
A+ R ln xA, where S*A is the pure molar entropy of the 

substance A and the concentration in the solution is xA. 
 

17. The partial molar entropy of a constituent in an ideal solution, at constant temperature and 
pressure, is S–

i = S*
i  – R ln xi, where S*i  is the pure molar entropy of the substance i and the 

concentration of i in the solution is xi. (See the previous problem for a proof of this equation.) 
Show that the entropy of mixing of an ideal binary solution is ∆mixS = – ntotR (xA ln xA + xB ln xB) 
at constant temperature and pressure. 
 

18. Show that the Raoult’s Law and Henry’s Law standard states for a solute are related by: 
 

 µ†
B(l) = µ*

B(l) + RT ln kH,B/P*
B 

 

19.  Using the binary liquid-vapor phase diagram shown below, (a). what would be recovered 
from the distillate and from the pot for an exhaustive fractional distillation, starting with the 
solution with composition x1. (b). Does this solution show positive or negative deviations from 
ideality. Discuss the forces that act in solution as compared to the forces that act in the pure 
liquids. 
 
 
 
 
 
 
 
 
 
 
 
 

20.  When 640. mg of naphthalene is dissolved in 40.0 g of chloroform, the boiling point of the 
solution is 0.455°C higher than that of pure solvent (T*

A = 61.2°C). Calculate (a) the molal 
boiling point elevation constant, and (b) the molar enthalpy of vaporization of chloroform. 
 

T *
bA 

T *
bB 

T 

0 1 

xA, yA → 

liquid 

vapor cst. P 

xaz x1 

Tmax 
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21.  (a). The freezing point depression of a solution of 1.433x10-3 g of butanol in 1.000 g of 
water is 0.035588 K.5 Calculate the molar mass of butanol. The enthalpy of fusion of water is 
6.008 kJ mol-1 at 273.15 K. (b). The freezing point depression of a solution of 2.951x10-3 g of 
butanol in 1.000 g of water is 0.07300 K. Calculate the molar mass of butanol again and 
compare. 
 

22.  A sample of benzene has a freezing point of 3.44°C. Calculate the purity of the benzene in 
mole %. Assume the solution is ideal and the impurities are insoluble in solid benzene. The 
standard melting point of pure benzene is 5.46°C and the enthalpy of fusion is 10.59 kJ mol-1 at 
the standard melting point. 
 

23.  A DSC melting curve was determined for a sample of tetracosane, C24H50. The sample 
weight was 2.21 mg. Partial areas were determined and are reported in the table below, in 
arbitrary units (as shown schematically in Figure 18.4.7). The total area under the melting curve 
was 7.351, which corresponds to 0.3919 J. Find the pure melting point, molar enthalpy of fusion, 
and mol % impurity for the sample. The molar mass of tetracosane is 338.66 g mol-1. 
 

T (K) 322.39 322.44 322.51 322.58 
Partial area 1.450 1.669 2.122 2.866 

 

24.  Prove that the dependence of the freezing point of a solution on the concentration of the 
solvent is given by (start with the chemical potentials of the pure solvent and the solution): 
 

 ln xA = – 
∆fusHA

R  






1

T – 
1

T *
m  

 

25.  Polyvinyl alcohol is often used in lecture demonstrations to make “slime.” A 4.00% by mass 
solution of polyvinyl alcohol was placed in an osmometer. The height of the solution above the 
surface of the pure water at equilibrium was 21.6 cm at 25.0°C. Assume the density of the 
solution is that of pure water. Calculate the approximate molar mass of the polyvinyl alcohol and 
the average number of monomers, n, linked in the polymer. [Hint: Polyvinyl alcohol is 
CH3CH(OH)[CH2CH(OH)]n-2CH2CH2OH, so use –CH2CH(OH)- for the monomer molar mass.] 
 

26.  Osmotic pressure is used to determine the molar mass of polymers. However, Eq. 18.4.30† 
assumes ideal behavior. For real solutions, Eq. 18.4.30† gives an effective molar mass. For 
careful determinations, the effective molar mass of a sample is determined at several 
concentrations and extrapolated to zero concentration, where Eq. 18.4.30† becomes exact. The 
osmotic pressure of a sample of polystyrene in toluene was determined at several concentrations 
at 25°C. Find the molar mass of the polystyrene sample.6 

 

CB (g L-1) 2.60 5.16 6.54 9.19 
π (Pa) 9.80 32.0 51.0 107. 

 

27.  A 0.1000 m aqueous urea solution and pure water are separated by a membrane that is 
impermeable to urea and permeable to water, at 25°C and 1 bar. Calculate the chemical potential 
of urea in the solution, relative to the standard state chemical potential, at equilibrium. The 
density of the solution is 0.99873 g mL-1and the data necessary to obtain the partial molar 
volume of urea is given in Example 18.1.1. 
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28.  Calculate the chemical potential of water in a 0.200 M solution of sucrose at 10.00 bar and 
25°C. The partial molar volume of water in this solution is well approximated by the pure molar 
volume. 
 

29.  Starting with the expression for the chemical potential of the solvent in an ideal-dilute 
solution, prove Eq. 18.4.15†. 
 

30.  Consider the solubility of a pure solid, B, in a solvent at temperature T. Assume that the 
solution is ideal-dilute and at constant pressure. (a). Show that:  µ*

B(s) = µ†
B(l) + RT ln xB. 

(b). The standard state Gibbs energy of solution of the pure solid at temperature T is defined as: 
∆solG°B(T) = µ†

B(l) – µ*
B(s). Show that the solubility of the solute is: ln xB = –∆solG°B(T)/RT. 

(c). At reference temperature To the solubility is xBo. Show that the temperature dependence of 
the solubility is given by: 
 

 ln 
xB

xBo
 = – 

∆solH°B
R  







1

T – 
1
To

    (ideal-dilute, cst. P)      P18.29.1† 

 

31.  (a). Show that for small changes in temperature, ∆T ≡ T – To, Eq. P18.29.1† reduces to: 
 

 xB = xBo + 






∆solH°B xBo

RT2
o

 ∆T 

(b). Show that this equation and LeChâtelier’s Principle are consistent. 
 

32.  Many binary solid-liquid phase diagrams are more complex than Figure 18.4.11. Some 
systems show the formation of a stable binary compound in the solid phase. Compounds 
typically have simple stoichiometries, such as A2B, that are stabilized by strong intermolecular 
forces, like hydrogen bonding, or favorable crystal packing forces. The compound components 
are not covalently bound, and the compound doesn’t exist in the liquid phase. An example of a 
compound in the phase diagram for NaCl in water is the dehydrate, NaCl ⋅2(H2O). The solid-
liquid phase diagram for a system with a stable solid-state compound, A2B, is shown below. 
Analyzing a phase diagram that shows compound formation can be simplified by treating the 
compound as a hypothetical pure substance and dividing the phase diagram to either side as 
separate binary systems. Describe the phase transitions that occur along the cooling curve at the 
indicated composition, x1. 
 
 
 
 
 
 
 
 
 
 
33.  Relate the changes in the slopes of the segments on the cooling curve, Figure 18.4.12, and 
the widths of the peaks on the DSC melting curve, Figure 18.4.13, to the variances of the system 
at constant pressure. Discuss segments b-c and c-d. 
 

T *
mB 

T *
mA 

cst P 

0 1 
xA → 

solid B & 
 solid A2B 

liquid A & B 
T 

pure A pure B 

soln. 
& solid B 

TEB 

0.667
A2B 

soln. 
& solid 
A2B 

soln. 
& solid 
A2B 

soln. 
& solid A 

solid A2B & 
 solid A 

x1 
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34.  The following DSC melting thermograms were obtained from a range of starting 
compositions of Sn and Pb. The compositions are given as % by mass. The baselines of the 
thermograms are offset for clarity. Sketch the binary solid-liquid phase diagram. Use % by mass 
Sn as the composition axis, instead of mole fraction; % by mass gives a more convenient plot for 
this system.7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35.  Find the variance for a gas in equilibrium with an aqueous solution of the gas. Give an 
expression for the general differential of the Gibbs energy, the change in Gibbs energy at 
constant temperature, and the change in Gibbs energy at constant temperature and pressure. 
Discuss the independent variables. 
 

36.  Two partially miscible liquids, A and B, form a two-phase liquid system at equilibrium. One 
phase is mostly A with a small amount of B and the other phase is mostly B with a small amount 
of A. Consider only the liquid phases. Give an expression for the general differential of the 
Gibbs energy, the change in Gibbs energy at constant temperature, and the change in Gibbs 
energy at constant temperature and pressure. Discuss the independent variables. Most non-polar 
organic liquids and water are examples of this type of behavior; small amounts of water dissolve 
in the organic layer and small amounts of organic substance dissolve in the aqueous layer. 
 

37.  A system containing three components is univariant. How many phases are present? 
 

38.  Show that for a pure substance the largest number of phases that can coexist is three. 
 

100% Pb 

38% Sn 

63% Sn 

86% Sn 

100% Sn 

T (°C) 

∆
dqP

dt  

232°C 

221°C 

242°C 183°C 

327°C 
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39.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a). A champagne toast was used to celebrate the final stages of the construction of a 
transportation tunnel under the Thames River in London, in November 1827.8 The celebration 
fell flat because at the higher ambient pressure in the tunnel, the Henry’s Law solubility of the 
CO2 in the wine increased, making the champagne taste flat. Participants also suffered gastric 
distress upon regaining ground level. This event is a practical example of Henry’s Law. 
 

(b). Soft drinks may be kept from “defizzing” by pumping air into the empty space above the 
soft drink in a partially filled bottle. 
 

(c). Consider a two-phase region for a binary solid-liquid equilibrium system at constant 
pressure, with solution in equilibrium with pure solid A, Figure 18.4.12. At a fixed 
temperature, the solution composition may be any value along the tie line. 
 

(d). A solution has a minimum freezing point (the eutectic temperature) because at the 
minimum temperature, the both the solute and the solvent have limited solubility in solution. 
 

(e). The theory of ideal-dilute solutions doesn’t take solute-solvent forces into account. 
 

(f). The boiling point is elevated and the freezing point is depressed in a dilute solution of 
methanol in water. 
 

(g). Two phases cannot be in equilibrium unless all components occur in each phase. 
 

40.  For many binary solid-liquid systems, the two solids are partially miscible. The solid phases 
consist of a phase rich in A with small amounts of B, the α phase, and a phase rich in B with 
small amounts of A, the β phase. Cooling a solution of A and B, with an initial concentration 
greater than the eutectic composition, freezes out solid α. Cooling a solution of A and B, with an 
initial concentration less than the eutectic composition, gives solid β. Below the eutectic 
temperature, solid β and solid α are in equilibrium. The compositions of the two solid phases 
depend on temperature. The phase diagram for a binary solid-liquid system with partial 
miscibility is shown below, at constant pressure. Describe the phases in equilibrium in each part 
of the phase diagram. Give the variance, f ', for each accessible region of the phase diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T *
mB 

T *
mA 

cst P 

0 1 
xA → 

solid β & solid α 
 

liquid A & B 
T 

pure A pure B 
xE 

solid α solid β 
TE 
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41.  For many binary solid-liquid systems, the two solids are partially miscible. The solid phases 
consist of a phase rich in A with small amounts of B, the α phase, and a phase rich in B with 
small amounts of A, the β phase. Below the eutectic temperature, solid β and solid α are in 
equilibrium. The compositions of the two solid phases depend on temperature. The phase 
diagram for a binary solid-liquid system with partial miscibility is shown below, at constant 
pressure. Describe the phase changes that occur as the solution starting at point a is cooled to 
below the eutectic temperature, point e. 
 
 
 
 
 
 
 
 
 
 
42.  Consider a binary solid-liquid system with components that are completely immiscible in the 
solid phase, Figure 18.4.11. Below the eutectic temperature, only pure solid A and pure solid B 
are present. The general form of the Gibbs Phase Rule, f = c – p + 2, does not apply to this region 
because the components A and B don’t occur in all the phases. Determine the variance in the 
two-phase solid region below the eutectic temperature for immiscible components. 
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