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Chapter 18: Ideal Solutions

Calculate the Gibbs energy of mixing for the forimatof a solution of 0.500 mol of ethanol
with 0.500 mol of ethyl acetate, assuming an idedition.

Intermolecular forces in solution have an impottimpact on chemical reactivity. Solute-
solvent interactions shift the position of equilitn as compared to reactions in the gas phase or
reactions involving pure substances. In particule,unique properties of aqueous solutions are
important in biochemistry, medicinal chemistry, d@oenvironmental chemistry, and
oceanography. Solvation is one of the most impodagas of physical chemistry that is yet to be
adequately characterized by theory from first-pples.

Determining the Gibbs energy of solvation arehtthe Gibbs energy of a substance in
solution is the focus of the next two chapters. Gtieceptual model of an ideal solution is an
important first step in the development of the tlyeaf solvation. The ideal-dilute solution model
provides an understanding aflligative phenomenawhich include vapor pressure lowering,
boiling point elevation, freezing point depressiand osmotic pressure. The first step in
developing the theory of solutions is to deterntioe to recast the fundamental equations of
thermodynamics into terms appropriate for solutiditee concept gbartial molar properties
is the key new ingredient in finding the Gibbs gyenf a substance in solution. Partial molar
guantities allow the variation of the intermolecuiarces in solution to be easily accounted for
in thermodynamic relationships. Our treatment atipemolar effects begins with partial molar
volume, since volume changes in solution are easystialize.

18.1 Concentration Dependence is Expressed by PaftMolar Properties

Volumes Usually Don’t Add in Making Solution$/ixing 10.00 mL of ethanol and 10.00 mL of
water gives a solution of volume 19.20 mL. The terapure also increases by a small amount
upon mixing. The volume of the mixture is less tktag pure constituents because of favorable
interactions between the two substances, whichraldee formation of the solution exothermic.
The molar volume of pure ethanol is 58.46 mL thahd of water is 18.07 mL nmal The
“effective molar volume” of the ethanol in this stbn is 55.1 mL mot and the “effective

molar volume” of water is 17.74 mL mblwhich are less than the pure molar volumes. The
“effective molar volume” is called thgartial molar volume. The partial molar volume differs
from the pure molar volume because of solute-salwgaractions. The partial molar volumes
are usually strongly dependent on concentratiagyriei 18.1.1a. The partial molar volumes are
defined by the derivatives, Figure 18.1.1b:

Vaz (2L o [V
Vas (anAjT,P,FB Ve = (anB)T,P,m 18.1.1

We usually refer to the solvent as constituent A #re solute as constituent B. For pure
substances, the partial molar volumes are equaktpure molar volumes, A= Va and & =
V. The change in total volume of the solution atstant temperature and pressure is given by:
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oV oV _ B
dv= (_j dria + (_) drg = Va dna + Vg dre (cst. RP)  18.1.2
ona T,P,ns ong T,P,na
To find the total volume of the solution, we intatgr this differential at constant composition to

give (see Sec. 16.8 and Eq. 16.8.4):
V=Vama+Vens (cst. EP) 18.1.3

The total volume of the solution is an additivedtion of the composition, with the partial molar
volumes at the given final concentration. Also b partial molar volumes are sometimes
shown in bold without the “overbary’a andVes. How are we to interpret partial molar
properties?
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Figure 18.1.1: (a). Partial molar volumes of ethamal water in solution. (b). The volume of
solutions of MgS@, B, containing 1 kg of water (55.51 mol). The gdnnolar volume of
MgSQs is the derivative of the volume with respect te dhange in moles of MgS0O

keeping the moles of water constant. Note thatglarolar volume is negative if the
solution shrinks upon addition of solute.

Remember our discussion of the interpretatioderivatives in Sec. 8.4. Correspondingly, Eqs.
18.1.1 can be interpreted in two equivalent ways:

The partial molar volume is the derivative of tl@dume with respect to the change in
moles of the substance, keeping the moles of ther substance in solution constant.

The partial molar volume is the change in volunreafidding one mole of substance to
so large an amount of solution that the concentnagmains unchanged.

We can use the endpoints of the partial molar veleorve for ethanol in Figure 18.1.1a as
examples. Consider a swimming pool filled with waléhe partial molar volume of ethanol in
water atxeton = O is the change in volume when one mole of ethisradded to the swimming
pool, Veon= 54.95 mL mof. The change in concentration is negligible becaluiseswimming
pool has such a large volume. Now, consider a svimgmool filled with pure ethanol. The
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partial molar volume of ethanol &t:.on = 1 is the change in volume for adding one mole of
ethanol to a swimming pool filled with ethanol, whiis just the pure molar volume. Notice in
the figure that when the partial molar volume oé @onstituent increases, the partial molar
volume of the other constituent decreases.

The variation of the partial molar volume witbncentration results, in large part, from the
interaction of the solute and the solvent. Accogltiinwe expect that the partial molar volumes
of the solute and solvent are related. Considetdta differential of Eq. 18.1.3 for any possible
process at constant temperature and pressure; theipgoduct rule gives:

dV =Vadm + na dVa + Ve drg + ne dVe (cst. BP) 18.1.4

Both this general expression and Eq. 18.1.2 mustrbaltaneously satisfied. Subtraction of Eq.
18.1.2 from this last equation shows that the alamtiolar volumes are related by:

0=mdVa +ns dVs (cst. ®P) 18.1.5

Eq. 18.1.5 is called @ibbs-Duhem relationshig we will find corresponding relations for each
partial molar property. To show that the Gibbs-Duhrelationship allows the calculation of the
partial molar property of one constituent in saatirom the other, solve the last relationship for
dVs to give:

dVs =~ dVa (cst. EP)  18.1.6

The mole fractions are defined usixg= na/nwt andxs = ne/Niot, With not = Na + Ne and
Xa = 1 —xg. Dividing the numerator and denominator in Eq11Bby o gives:

- Na/Niot

— \/. — & \/. — A \/
dVs = ~ /Mot dVa = %a dVa =1 -xa dVa (cst. BP) 18.1.7

This form of the Gibbs-Duhem relationship for th®ume shows that the derivative of the
partial molar volume of the two constituents arpagite in sign; when one increases the other
decreases. Integration of this last equation ovange of concentrations allows the calculation
of the partial molar volume of one constituent frtra other (see below for an example of this
process using the chemical potential).

In the laboratory, the partial molar volume toé solute is easily evaluated by measuring the
volume or density of a series of solutions of knawwlality. The molality of the solute is given
as nmg = ne/wa, with wa the mass of the solvent in kg, Eq. 2.2.4. Forlat®m containing 1 kg of
solvent, m = ne/1 kg; the number of moles of solute in the soli®numerically equal to the
molality. We can then change variables for theiglamolar derivative using the chain rule:

o=@ () foms) v (1)
Ve _(anBjT,P,nA_ (amB)T,P,nA(anB TP \OMe )T pn\l K (cst. &P) 18.1.8

where VMK is the volume of a solution that contains 1 kgalent. A closely related property,
theapparent molar volume, is often used in practical circumstances in #imtatory. Consider
the volume of a solution ag moles of a solute are added to a fixadmoles of solvent, Figure
18.1.2. The volume due to the added solute per malalled the apparent molar volurfie;
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V solution— Vpure solvent_ V- VA
moles of solute =~ ng

w

(cst. BP) 18.1.9

Vg = slope at g

Volume

volume of pure solvent =V 5

Y

N8 ns (moles)

Figure 18.1.2: The total volume of a solution V eegs on the volume of the pure solvent
and the apparent molar volume of the soltie,

The volume V of the solution at any particular atldgemoles of solute is given by the
rearrangement of Eq. 18.1.9:

V=mVa+t % and =% +mg @ﬂ) (cst. &P) 18.1.10
Mg T,P,na

This first result shows that the apparent molauxdd ascribes all of the change in volume of the
solution to the solute. The effective volume of fadvent is assumed to be the pure molar
volume of the solvent, ¥ The apparent molar volume includes the volumiefsolute and the
change in volume of the solvent caused by theaotams of the solute with the solvent. The
partial molar volume, on the other hand, sharegliamge in volume between the effective
volume of the solute and the effective volume @f $blvent, both of which vary with
concentration. The apparent molar volume is pderbuuseful in biochemical determinations.

Example 18.1.1:Partial Molar Volume

The volume of solution that contains 1 kg of soten an aqueous solution of urea at@5s

given by the following polynomial as function oktimolality of urea. The volume is in mL.
Determine the partial molar volume of urea and wated the apparent molar volume of urea for
a 0.5000 m solution.

VI = -1.993x10%m; + 9.0378x102 mj, + 44.3638 mg + 1002.84

Answer For the partial molar volume of the solute udtty 18.1.8 at 0.5000 m gives:
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omg
= 3(-1.992x103)(0.5Y + 2(9.0378x10?)(0.5) + 44.3638= 44.4528 mL mot

The total volume at m = 0.5000 m using the givelympamial is \A*9 = 1025.04 mL. The partial
molar volume of the solvent, water, is given byaaj Eq. 18.1.3 for W with 1 kg of solvent:

_ avlk
Ve :( g)T 5 kg = 3(-1.992x10°%) mg + 2(9.0378x102) mg + 44.3638
,PNA

— - — 1000g -
VKO =Vana+Veng = VAWAQ-I_ Ve ms (1 kg)

1025.04 mL = Va (55.508 mol) + 44.4528 mL mbK0.5000 mol kg) (1 kg)
Va = 18.066 mL mot

The partial molar volume of water at this concamtrais almost equal to the pure molar volume

at 25C, Va = 9ta/da pure= 18.0153 g mo¥/0.9970479 g mtt = 18.069 mL mok(Table 2.2.1).
The apparent molar volume is given by Eq. 18.W$ng \A*9 gives n = (1000 gdia) and

noting that \i = 91a/da pure avoids round-off error from the uncertainty in thelar mass of the

solvent:

a oY Va _V9— (1000 gha) Va _ V29— (1000 g/@pure)
- S me (1 kg) - me (1 kg)

For urea at 0.5000 m and &= 0.9970479 g mt:

1025.04 mL — 1002.961 mL_ .
=" 0.5000 mol kg (1 kg) ~ +4-1omL mof

(cst. RP) 18.1.11

The Chemical Potential in Solution is a Partial MoQuantity The partial molar volume is just
one example of many partial molar properties. kangple, the partial molar enthalpy, entropy,
and Gibbs energy of a constituent in solution a&feneéd as:

o _(9H = _[9S __(G)  _
= (anijT,P,r) 5= (ani)T,p,r, G = (anJT'Pln— Hi 18.1.12

Comparison of the partial molar Gibbs energy with .6.9 shows the partial molar Gibbs
energy is just the chemical potential of the sulistaThe partial molar properties in Egs.
18.1.12 are the “chemically effective” enthalpytrepy, and Gibbs energy of a constituent in
solution. The partial molar properties include éfiects of the concentration dependent changes
in intermolecular interactions. The use of pammalar quantities allows the application of the
fundamental equations of thermodynamics to solstieithout further changes; for example
extending Eq. 18.1.2 for a two constituent solugores:

dH = Ha dm + Hg dre H=Hana+Hzne (cst. BP) 18.1.13
dS =5 dm + S dre S=Sm+Sne (cst. BP)  18.1.14
dG =pa dm + p drs G =pa Na + s N (cst. BP) 18.1.15

dG =-S dT +V dP Ha dm + g dre 18.1.16
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In this last equation, S =8G/0T)p,m,ne and V = 0G/OP)rn e are the total entropy and volume
at constant composition for the solution from Efg1.14 and 18.1.3. The change in chemical
potential for a change in pressure and temperag®en by Maxwell relationships, Eqs.
16.6.15-16.6.18:

o ol
dui :(JJ—) dT +( ) dP cst. R&N 18.1.17
Hi aT P,m,ne oP T,Ma,Ne ( RENe)
dui =-SdT +Vi dP (cst. k&ng) 18.1.18

This last expression is the “per mole” solutionsien of dG = - S dT + V dP. The chemical
potentials of the solute and solvent are relatethbyGibbs-Duhem relationship, derived as in
Eq. 18.1.7:

O=mdua +medus  giving: dis = —ﬁ dua (cst. &P) 18.1.19
These equations form an exact theoretical founddtionon-ideal gas mixtures, solutions, and
chemical equilibria. We now show how to apply thedationships.

The Thermodynamics of Solutions is Based on ChéPatantials Consider mixing two
constituents to form a solution. Fot moles of A and ;moles of B the Gibbs energy of mixing
is given by Eq. 16.8.6:

AmixG = m(Ua — Ha) + ne(ie — Mp) (cst. BP) (16.7.6)18.1.20

If A is taken as the solvent and 1s one mole of solute, the Gibbs energy of mixstheGibbs
energy of solvationat the specified concentratials.Gs(xs). The Gibbs energy of solvation is a
sensitive measure of the forces that act in salufitie Gibbs energy of formation for a
substance in solutiodG°(xg), is the sum of the Gibbs energy of formationhaf pure solid,
liquid, or gas and the Gibbs energy of solvation:

MG (xg) = AGg(pure) +AsoGe(Xs) (cst. BP) 18.1.21

To make further progress, we need to determinethevehemical potential varies with
concentration for a substance and how we can me#seichemical potential.

18.2 Ideal Solutions Follow Raoult’s Law

The first step in understanding solutions idéwelop a simple conceptual model of solution
behavior, called an ideal solution. A good starfagnt for this discussion is to consider the
mixing of ideal gases, as a point of comparisorseBizon the chemical potential of an ideal gas,
Egs. 16.8.18 we showed that the enthalpy of mixing of ideaegais zero, the entropy of
mixing is independent of the identity of the comeots, and the Gibbs energy of mixing is
purely entropy driven, Egs. 16.8°1¥6.8.18. After determining the chemical potential of a
constituent in solution we consider mixing of catusnts to form a solution.

Partial Vapor Pressure is a Function of Concentoati The chemical potential of a constituent
in solution can be determined from its vapor pressgionsider a pure substance in equilibrium
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with its pure vapor at vapor pressurg, Pigure 18.2.1a. The chemical potential of theovap
assuming ideal gas behavior, is given by Eq. 16°6.2

HA(9) =HR(9) + RT In RA/P° (pure) 18.221
At equilibrium, the pure liquid and its vapor hate same chemical potential:
Ha() = pa(9) =pR(9) + RT In B/P° (pure) 18.2°2

wherep(l) is the chemical potential of the pure liquidden its own equilibrium vapor pressure.
Now consider a solution with two constituents, Al in equilibrium with the vapor above the
solution. The equilibrium partial vapor pressurés@nd B are R and R, respectively. The
chemical potential of A in the solution, at coneatibnxa, is equal to the chemical potential of
A in the vapor, Figure 18.2.1b:

HA(Xa) = Ha(9) =HA(Q) + RT In R/P° 18.23
P Ha(Q) Pa R | pa@  us(9)

e I s | I
Xa= 1 Ha(l) XA Xe Ma(Xa)  HB(XB)

(a). pure (b). solution

Figure 18.2.1: (a). A pure liquid under its owrui@rium vapor pressure. (b). A solution
under the equilibrium partial vapor pressurgsaRd B. The partial vapor pressure of a
constituent is the “escaping tendency” and is asmeaof the chemical potential in solution.

Subtracting Eq. 18.2°4rom Eq. 18.2.3allows us to compare the chemical potential of the
substance in solution to the chemical potentidhefpure substance:

Ha(Xa) —HA() = RT In PA/P° = RT In B/P° = RT In R/Pj (cst. T) 18.2.4

The chemical potential of the pure substance uitsi@ure vapor pressure, Rcan be taken as
the reference state, which is the standard statééosolution chemical potential. Adding the
pure chemical potential to both sides of Eq. 18gd/és the chemical potential of a substance in
solution as:

Ha(Xa) = Ha(D) + RT In Pa/Pj (cst. T)  18.25

Corresponding equations are written for each custt in solution. If the vapor phase is not
ideal, the partial vapor pressure, i replaced by the corresponding fugadity In summary, at
equilibrium, the solution and vapor chemical poigatfor each constituent are the same. In turn,
the vapor chemical potential is determined by thgov pressure of the substance. A useful
interpretation of Eq. 18.2.5 is that the partigheapressure is a direct measure of the chemical
potential of a constituent in solution. A large gapressure corresponds to a large chemical
potential for the substance. For this reason, tfodibrium partial vapor pressure of a substance
is called theescaping tendencylf the solution environment is unfavorable fasubstance, the
chemical potential of the substance is large aad/épor pressure is increased because the
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substance has an increased tendency to escapéeaulution and enter the vapor phase.
Conversely, favorable solute-solvent interactidabitize the solution, lower the chemical
potential of the substance, and decrease the tepadéhe substance to escape into the vapor,
lowering the vapor pressure. Our understandingtefactions in solution can now be guided by
measurements of the partial vapor pressures abevsotution.

Chemical Potentials Depend on Concentratid@@onsider a range of concentrations for a
solution, from very dilute Axa [J0, to pure Axa = 1. Whenxa = 0, no A is present and the
vapor pressure of A is zero. When= 1, the vapor pressure is the pure vapor presBire

Using these limiting values, the simplest possadaecentration dependence for the partial vapor
pressure of the constituent in solution is thedmelationship:

Pa =Xa Py (ideal solution) 18.2.6

Constituents that follow this relationship are daidbe ideal. The expression is calRdoult’s
Law. If all constituents obey Raoult’'s Law, the solatis anideal solution. The equation
numbers for relationships that apply to ideal sohd are shown with a “*.” Raoult’s Law plays
the same role for solutions as the ideal gas lass dor gases. However, few solutions are truly
ideal. Raoult’s Law is never-the-less an excelpmint of comparison.

The total vapor pressure above a solution withitleal constituents is given using Raoult’s
Law for each constituent:

Pot = Pa + Ps =xa Py + X8 Ps (ideal solution) 18.2.7
The mole fractions are related, singe= 1 —xa, and then:
Pot =Xa Pa + (1 —xa) P5 = (Py —F%) xa + 5 (ideal solution) 18.2.8

Figure 18.2.2 shows the behavior of the vapor piressfor an ideal solution. The partial vapor
pressures of the constituents vary linearly witHeriaction according to Raoult’s Law, and the
total vapor pressure above the solution is al$oealt function between the two pure vapor
pressures with slope {P-F%).

slope = (R -F)

. cst. T
Pe

Prot

g »

< R PR

d g
Pa

pureB 0 0_15 1 pure A

XA -
« XB

Figure 18.2.2: The total vapor pressure aboveleal isolution is a linear function of
concentration. Both constituents obey Raoult’s lfaman ideal solution. Pis the partial
vapor pressure of A,gHs the partial vapor pressure of B, and iB the total vapor pressure,
Pot = Pa + Bs.



617

Most importantly, Raoult’'s Law allows the detémation of the concentration dependence of
the chemical potential for a constituent, assuniiegl behavior. Solving Eq. 18.2.®r the
ratio of the partial vapor pressure above the goiub the pure vapor pressure/Pi= xa, and
substitution into Eg. 18.2.5 gives:

Ha(Xa) = Ha(l) + RT InXa (ideal solution) 18.2.9

The chemical potential of a constituent in an idedlition is always less than the pure
constituent, since the mole fraction of the solvsraiways less than one in a mixture. This ideal
solution expression for the chemical potential hggnple interpretation. The concentration
dependence of the chemical potential is determsira@ly by the number of molecules of the
substances that make up the solution. The changjeemical potential is purely statistical. The
concentration dependence is independent of theitger the substance. The chemical potential
of a constituent in solution is in the same forntheeschemical potential of an ideal gas, Egs.
16.8.10. We can then conclude that Egs. 16.8.16.8.18 also hold for ideal solutions, after

the substitution of the solution mole fractiorsfor the gas phase mole fractiogs,

C
AriS = — R D X In X (ideal solution, cst.dP) 18.2.10
i=1

(o}
AmixG = NoRT X X In X (ideal solution, cst.dP)  18.2.11

i=1
The conclusions are: the enthalpy of mixing foideal solution is zero, the entropy of mixing is
purely statistical, and the Gibbs energy of mixmegntirely entropicAnxG = — TAmS, Figure
16.8.2b. However, where an ideal gas mixture hasteomolecular forces, a solution must have
strong intermolecular forces; otherwise the conddnqshase wouldn’t form. For ideal solutions
all the intermolecular forces are the same strerigthA—-A, B—B, and A-B forces are all equal.
Ideal solution behavior has further implications thee thermodynamic forces that are based on
the chemical potential.

The pressure derivative of the chemical poténfia constituent in solution is the partial molar

volume, Eq. 16.6.16. However, substituting the lidetution chemical potential from Eq.
18.2.9 gives the result:

al—_lA) _ (a(u}i +RT InxA)j _ (au}i) o .
= = =V deal) 18.2.12
(ap T,na,nB GP T,na,Ns 6P T,na,NB A (I )

The mole fractiorxa is a constant becausg and i are constant. The partial molar volume of
an ideal constituent is equal to its pure molaumt, Va = V4. The consequence is that volumes
are additive for ideal constituents. The Gibbs-Hwdite relationship, Eq 16.3.11, relates the
chemical potential to the partial molar enthalpyhstituting in Eq. 18.2.9gives:

Fa_ (ag”A/T)) _ (a(u,:/T)j .\ (6((RT In xA)/T)) _ Ha
T2 aT P,m,ns aT P,m,ns aT P,m,ns T2

Va

(ideal) 18.2.13

Again, for an ideal solution, the partial molarteadpy is equal to the pure molar enthalpy for the
constituent, W = Ha. The consequence is that the enthalpy of miximgfoideal solution is
zero. These ideal solution results will providefussimplifications when we consider practical
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examples. However, we first need to consider thigitsaof the ideal solution model for real
systems.

Example 18.2.1tdeal Mixing of Solutions
Calculate the Gibbs energy of mixing for the forimatof a solution of 0.500 mol of ethanol
with 0.500 mol of ethyl acetate, assuming an ide&ltion at constant pressure and 298.15 K.

Answer Using Eq. 18.2.11xa =X = 0.500, and & = 1.000 mol:

AnikG = NotRT (Xa In Xa + Xs In X5)
=1.00 mol (8.3145 JKmol!)(298.15 K) (0.5 In 0.5 + 0.5 In 0.5)(1 kJ/1000 J)
=-1.72 kJ

which is the composition that gives the most fabteasibbs energy of mixing, Figure 16.8.2b.

18.3 Ideal-Dilute Solutions

The Behavior of the Solute in Dilute Solution is€éed by Henry’s Law The vapor pressure
diagram for a solution of heptane, A, and 1-brontabe, B, is shown in Figure 18.3.1a atG#
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(@). (b).

Figure 18.3.1: (a). A solution of heptane, A, arddrdmobutane, B, shows positive
deviations from ideality.(Raoult’'s Law: — — — —) (b). The dilute constitt@pproaches
Henry's Law while the solvent approaches RaoultsvL(Henry's Law: ----).

Deviations from ideality are judged using the @dntapor pressure, which is the escaping
tendency. Solutions with positive deviations frafeality have partial vapor pressures greater
than predicted by Raoult’s Law. Conversely, soliavith negative deviations from ideality
have partial vapor pressures less than predictdidoylt’'s Law. Solutions of 1-bromobutane
and heptane show positive deviations from Raoukis. Positive deviations result when the
forces that act in solution are unfavorable comghdmethe forces in the pure liquids;



619

A-B < A-A, B—-B. Negative deviations result when fbeces that act in solution are favorable
compared to the forces in the pure liquids; A-B-AAB-B.

Notice that aga approaches 1, that heptane’s vapor pressure appo&aoult’'s Law. Ass
approaches 1, 1-bromobutane’s vapor pressure pfsoaches Raoult’'s Law. In this sense,
Raoult’'s Law is a limiting law. Whera = 1, heptane can be considered as the solvent and th
vapor pressure of the solvent follows Raoult’'s L&w= xa P{. Whenxs = 1, 1-bromobutane
can be considered as the solvent and the vapasyseesf the solvent, one again, follows
Raoult’s Law, B = xs Pz. On the other hand, the dilute constituent algw@gches linear
behavior, but the slope of the vapor pressure chagea different slope than the Raoult’'s Law
prediction, Figure 18.3.1b. For example, at thatrglde of the vapor pressure diagram where
= 0, the vapor pressure curve for B approachesahtrline:

Ps = kug Xs (dilute solute) 18.3M

This expression iBlenry’s Law, andkug is theHenry’s Law constant for B acting as the
solute in dilute solutiorkn g is the limiting slope of the vapor pressure cuasgs — 0. The
Henry’s Law constant for B is also obtained by agtiating the dilute solution partial vapor
pressure of B tag = 1, as shown in the figure. Solutions that folleenry’s law for the solute
and Raoult’'s Law for the solvent are callddal-dilute solutions Henry’s Law is also a limiting
law; all solutions approach ideal-dilute behaviothe dilute solution limit. The equation
numbers for relationships that apply to ideal-dilsblutions are shown with &™ Similarly, at
the left side of the vapor pressure diagram, ctuesit A can be considered the solute in a dilute
solution in B as the solvent, for which Henry’'s L&\Px = Xa kna.

Henry’s Law constants can be interpreted intlaffithe forces that act in solution.

A B \ /B A ‘ A B ‘ B
A B B B’
] / o . ~,.. “¢‘ . ~,..
A B A B
(@). pure A (b). pure B (c). dilgalution (d). Henry’s Law model

Figure 18.3.2: (a). In pure A, A molecules arasuinded by only A molecules with A—A
forces. (b). In pure B, B molecules are surrounggdnly B molecules with B-B forces. (c).
In dilute solution, B molecules are surrounded bmélecules with A-B forces. (d). The
Henry’s Law constant is the vapor pressure of B hgpothetical “pure” substance, but with
the A-B forces that act in dilute solution.

kn,s is the dilute solution partial vapor pressure ah@rapolated teg =1. The Henry's Law
constant for a substance can then be thoughtthieagapor pressure the substance would exert if
the forces that act in a solution of pure B ardaegd by the forces that act in dilute solution,
Figure 18.3.2d. Such a model is “hypothetical; aatual solution withe = 1 has the vapor
pressure, B But, thinking of the Henry’s Law constant usiisthypothetical model provides a
useful interpretation of this important quantityn@&her way to consider the forces that act in
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dilute solution is to note that Henry’'s Law canrbarranged to give an expression thatksas
acting as an equilibrium constant for thesolvationprocess:

K
B (x8) = B (gas, B) kn,B =% and AdesoG° = — RT Inku 18.3.2

Remember from General Chemistry that standard sgatgion Gibbs energies and equilibrium
constants are related ByG° = — RT In Keq For the specific process in Eq. 183 RiesoG° is

the Gibbs energy of desolvatiorfrom dilute solution to give the substance inglas phase.
Note thatAgesoG° = —AsolG for the_gas phase of the substance, Mtiis° as defined in Eq.
18.1.20. The substance partitions between theignlahd the gas phase with the equilibrium
ratio ku s = Ps/Xs.

Henry’'s Law is introduced in General Chemisexyts with reference to gases dissolved in
solution. Henry's Law can be thought of as the Isitily of a gas at partial pressure @ give a
solution at concentratioxs. However, Henry’s Law holds for all solutions, wgas, liquid, and
solid solutes, in the dilute solution limit. Secammly to the chemical potential, Henry’s Law is
the most fundamental thermodynamic construct thava the study of intermolecular forces in
solution. Henry's Law has many practical conseqasn€he equilibrium concentration of
oxygen in water is determined by Henry’s Law, whichurn determines the availability of
oxygen for aguatic organisms. Henry's Law constantselate strongly with the ability of an
environmental pollutant to migrate in ground watextensive tabulations of aqueous Henry’s
Law constants have been established for this re¥Siost importantly, Gibbs energies of
desolvation are used to estimate Gibbs energismftion for substances in solution based on
the gas phase results from molecular mechanicsmathecular orbital calculatiors.

Vapor phase and solution phase concentrationiar terms are often more convenient,
instead of the vapor pressure in bars and the freatgon in solution, Table 18.3.1. The
conversion to concentration units is based g B RT for the gas phase and Egs. 2.2.16-
2.2.17 for the solution concentration. Henry’s Leam be written in alternate units @s:

vapor pressure and solution concentratiofs = kpcgC8  AdesoGpe = — RT Inkpe 18.3.3
B= kpm,B Me AdesoG;m =—RT |nkpm,B 1834‘
vapor and solution concentrations @(0) =kKecsCs  AdesoG2.=—RT Inkees  18.3.3

wherekpcis the Henry's Law constant for the vapor presgiven as a function of the solution
molarity, kpmis the Henry’s Law constant for the vapor presgiven as a function of the
solution molality, andk. is the Henry’s Law constant for the vapor phasgeatration as a
function of the solution molarity. Henry’s Law helch the limit of very dilute solutions, for
which the conversion from mole fraction to concatitm is given by Eqgs. 2.2.15-2.216:

K@D kke) k@D
koc8 =T7000 ML doota ~ K*™B=T000 gba KB~ (1000 ML @on/MA)RT

In aqueous solution at 26, kpc,g = kn,8/55.34 mol L2, kom,g = kn,8/55.51 mol kg, andkee g =
kn,8/(55.34 RT). Graphically, the Henry’s Law constamterms of molarity or molality can also
be determined by extrapolating dilute solution lvdrato unit concentration on a molarity or
molality scale, Figure 18.3.3. Tlkgm form is in the appropriate units for the calcudatbf the
standard state Gibbs energy of formation of a sulggtin solution at unit molality from the pure

18.3.6
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substance Gibbs energies of formation using Ed..28. Thek.c form is in the appropriate units
for the calculation of the Gibbs energy of formatmf a substance in solution from molecular
mechanics and molecular orbital internal energgutations, at constant volurfie.

Table 18.3.1°9 Henry's Law constants and Gibbs energies of dasotv. The number in
parenthesis is the literature source for that sulest and following substances. The literature
value is shown in bold. The remaining values arévdd using Egs. 18.3'218.3.6.*

substance ki Kec Koc Adesof3°  AdesoGl.  AdesoGp,
bar unitless  bar L mdl kJ mol* kJ mot! kJ mot?

benzene (6) 296. 0.216 5.35 -14.11 3.80 -4.16
methylt-butyl ether 29.6 0.0216 0.54 -8.40 9.51 1.55
trichloroethylene (7) 538. 0.392 9.72 -15.59 2.32 -5.64
carbon tetrachloride 1.71x30 1.244 30.84 -18.45 -0.54 -8.50
methane (8) 4.19x10 30.5 757. -26.38 -8.48 -16.43
Oz 4.40x10 32.1 795. -26.50 -8.60 -16.56
CO+H,CO; (pure HO) 1.67x16 1.20 30.2 -18.40 -0.49 -8.45
CO,+H,COs (sea HO,9) 1.9x1C 1.38 34.3 -18.72 -0.81 -8.77

*The Sl units are Pa ¥mol?; example: for benzerlg: = 5.35 bar L mo}(100 Pa bat m® LY) = 535. Pa rhmol™.

A A
P PA
P Neo, A | Pa = x4 P
o~
Kiig ’/' AN L Ps =ku,B X8
pure B 0’ = pure A

Xa —

(a). Mole Fraction

-
-
-

__--Ps=kpcpes

1M Ca

(b). Molarity

M)

Figure 18.3.3: The Henry's Law constants and cporeding standard states are extrapolated
values at unit concentration. (a). On a mole foachasis, a Raoult’'s Law standard statexat P
is usually chosen for the solvent and a Henry’s stamdard state &t g is chosen for the

solute. (b). To use molarity, the solute vapor gues data is replotted versus molarity. The
solute standard state is at unit concentration Réth kpcg(1 M).

Example 18.3.1:Using Henry’s Law

The standard state Gibbs energy of formation ofpfase ethylene is 68.15 kJ mait 25C.
The Henry’s Law constant for ethylene in aqueoust®m iskq = 1.13x10 bar. Calculate the
standard state Gibbs energy of formation of ethgylerwater at 28C assuming molar

concentrations.
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Answer The gas phase standard state’is B bar. The solution standard state concentragion
1 M, if the concentration is expressed in termmofarity. The units for the Henry’s Law
constant that correspond to these standard ssakassiin bar L mof'. Using Egs. 18.36

_ Kip _1.13x10 bar
kocB=35534 mol [ ~ 55.34 mol L2

= 2042 bar L mott

The corresponding Gibbs energy of desolvationvsmgby Egs. 18.3'3

AdesoSp, = — RT Inkpe,p = — 8.3145 J K mol(298.15 K)(1 kJ/1000 J) In 204.
=-13.19 kJ mal

Noting thatAsolG® = —AdesoGy gives the standard state Gibbs energy of formdtioaqueous
ethylene as, Eq. 18.1.21:

AG°(aq) =AG°(g) +AsoG® = 68.15 kJ mot + 13.19 kJ mot = 81.34 kJ mot

Example 18.3.2:Calculating Henry’s Law Constants
The vapor pressure of 1-bromobutane as a funcficorcentration in heptane is given by the
following power series fit to the experimental daalculate the Henry’'s Law constant.

Prap = axs® + bxg? + Cxs
with a=0.0734 0.00514, b =-0.148680.0075, c =0.2445% 0.0026 bar

Answer The slope of the vapor pressure curve is giwethb derivative with respect to the
mole fraction:

dPRvap

— 2
dxe =3axg“+2bxs+cC

In the dilute solution limitxg — 0 givingkng = (dRag/dxg| = ¢ =0.2445 0.0026 bar or

183.4+ 1.9 torr, Figure 18.3.1b.

Xs =0

Few solutions are ideal for both the solvent soidte. However, all solutions approach ideal-
dilute behavior in the dilute solution limit. Inldie solution, we describe the behavior of the
solvent using Raoult’'s Law and the solute usingrifsri_aw.

Ideal-Dilute Solutions Assume a Raoult’'s Law Staddtate for the Solvent and a Henry’s Law
Standard State for the SolutelThe chemical potential of the solvent in araiedilute solution is
given by Eq. 18.2/9 based on Raoult’s Law. The standard state fostheent is the pure liquid
with vapor pressure P Figure 18.3.3a, and the standard state chemitahpal is given by Eq.
18.2.2. However, the solute in an ideal-dilute solutien'i accurately described by Eq. 18:2.9
because the solute follows Henry's Law. The appat@istandard state vapor pressure for the
solute isky,s not B. Describing the chemical potential of the idedlisodirectly in terms of the
solute mole fraction requires a change in standtat. Substituting Henry’s Lawg P kn g Xs,

into the general equation for the chemical potéritg. 18.2.8, gives for the solute:
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He(xg) = U3(Q) + RT Inku,g Xa/P° (dilute solute) 18.3!7
He(Xg) = M3(g) + RT Inkus/P° + RT Inxs (dilute solute) 18.3'8

Eq. 18.3.7 can be conveniently written in the same form as1B.9 if we define a new
Henry's Law standard statefor the soluteug(l):

ui() = p3(g) + RT Inkns/P° 18.3.9

Substitution of the Henry’s Law standard state Btp 18.3.7 gives the chemical potential of
the solute in an ideal-dilute solution as:

He(xe) = pi(l) + RT Inxa (ideal dilute solute) 18.3710

To convert from mole fraction based standard stat@solarity or molality standard states, we
simply express Henry’s Law in terms of molarityroolality, Eqgs. 18.3.318.3.4:

us =ug(l) + RTIn ca/c®  with u3(l) = p3(g) + RTIn koe,g/P°  (ideal dilute) 18.3.11
U = "pa(l) + RTIn me/m° with ™ug(l) = pg(g) + RTInkomeg/P (ideal dilute) 18.3.172

where the standard state chemical potential§@rer "ug. The superscripts “c” or “m” indicate
that the concentration is expressed as a molarityatality in defining the standard state.

Keeping the same equation forms for the chenpiotdntial of the solvent and the solute
simplifies derivations of solution properties; ttange between the solvent and solute, we just
switch standard states arg s, or ms for xa. A Raoult’'s Law standard state is used for the
solvent and a Henry’s Law standard state is usethésolute, by convention. This choice of
standard states guarantees that when the solvieavé®ideally, the solute also behaves ideally,
and Egs. 18.2:918.3.10-18.3.12 accurately represent the chemical potentialsérstiiution.
This convention also allows the use of a Raoultis/Istandard state for the solvent for any
solution, ideal or real. Raoult’'s Law is the bdsisthe treatment of distillation and colligative
properties.

18.4 Phase Transitions for Binary Mixtures

We begin the discussion of phase transitions iafyisystems with liquid-vapor transitions in
binary mixtures of two volatile components. Theattyeof solutions with two volatile
components provides an explanation of distillation.

Raoult’'s Law is Used to Understand DistillatioDistillation is an important method for
purifying substances. What level of purity can b&amed using a simple distillation? Raoult’s
Law provides the underlying theory. Conventionatitlations are done at constant pressure,
while changing the temperature. However, distlas are also often done at constant
temperature, while changing the total pressureuBed pressure distillations lower the
temperature for the separation, which helps avwednbal decomposition. We begin our
discussion with examples based on reduced predsiiiéation, and then we discuss constant
pressure distillation. Assume a binary mixturedwal, volatile components, A and B. We begin
by summarizing the relationships that determinectipglibrium state of the system as a function
of concentration for ideal solutions:
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* In solution—Raoult’s Law: 2= xaPa R = xsP& (ideal) (18.27
« In the vapor—Dalton’s Law: &= Pa + Ps = xaPa + xgP5 (ideal) (18.2F
Rot = XaPa + (1 —xa)Ps (ideal) (18.28
R =Yya Pot Or ya = Pa/Puot (ideal) (2.1.190
» xaPA XaPA . \

gving Ya="p_ "= B ¢ (1 —xaPR) (ideal) 1841

Consider a constant temperature, reduced presstittation with na = 1 mol and p =2 mol.
Assume the vapor pressure of pure A is 0.200 bautla vapor pressure of pure B is 0.100 bar.
The system is closed so the overall compositiamomstant. However, as the distillation
proceeds, A and B are transferred from the liqindse into the vapor phase. kgtbe the

overall composition of the system, including treuld and the vapor. For this exampe=

na/net = 1/3. In the phase diagram for the binary mixttine total vapor pressure above the
solution is plotted as a function of the compositid the liquid xa, Figure 18.4.1a. The
composition axis is also used for the compositibthe vapor that is in equilibrium with the
solution,ya. At high pressure only the liquid phase existdpatpressure only the vapor exists,
and for intermediate pressures, two-phases exexjuilibrium. The two-phase region is bounded
by the liquid and vapor composition curves. Theorgpessure of pure A is at pomtand the
vapor pressure of pure B is at pdintPictorial representations of the other labelatestduring
the distillation are shown in Figure 18.4.1b.

A distillation begins with only the liquid mixte present at high pressure, panthe total
pressure is lowered until thiest vapor appears, at poirt with xa = za, which corresponds to
the beginning of the distillation. The compositimirthe first vapor is richer than the liquid in the
more volatile component, poiet The line connecting the liquid and vapor composg at a
given total pressure is calledia line. The liquid and vapor compaositions at the endheftie
line are at equilibrium; the chemical potentialeath component are equal in the two phases.

cst. 1
A \P*
liquid A ‘
0.2 composition 840.2 @ @ g — Q
—~ C.
E =
2
o o O
N Xa = 2 _
g-igg tion C. liquid only ~ d-e first vapor f-g. intermediate i-h. last liquid
0.1
Ps
0 0.33 0.5 1
Xa, YA -

Figure 18.4.1: (a). Total vapor pressure as a fonaf the composition of the solution and
the vapor for a reduced-pressure, single-platdldigin, assuming ideal solution behavior at
constant temperature. (b). The system correspondilapeled points during the distillation.

As the distillation proceeds, the liquid is depl of the more volatile component, A. The
composition of the remaining liquid has smakerand the tie line moves to the left as the total
pressure is decreased, pdinthe distillation continues as the total presssireduced to point
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h. At pointh, the vapor composition equals the overall systemposition,ya = za, indicating
that all the liquid has been vaporized. The daiiin is then complete. The composition of the
last remaining drop of liquid is determined by fimglthe intersection of the tie line with the
liquid composition curve, point

In practical distillations, the vapor is withdna and condensed to form ttestillate. The flask
containing the original solution is called thet. The more volatile substance is recovered from
the distillate and the less volatile from the gdtis type of distillation is called single-plate
distillation, since the vapor is always in equilim with the original solution in the pot. In this
single-plate distillation, the purest that A maydieained is from the first vapor at poatAs
the distillation proceeds, the composition of thg@ar has decreased purity for A. The purest that
B may be obtained is from the pot for st liquid, pointi. This example single-plate
distillation does not significantly increase theifguof either A in the distillate or B in the pot.
Distillations are not an efficient means for puimiy substances, unless the pure vapor pressures
of the substances are very different. In additiba,energy necessary to do the distillation is
roughly the sum of the enthalpies of vaporizationthe two substances. The energy necessary
to separate ethanol from water is one of the reattwat replacing petroleum with corn-based
ethanol as the primary transportation fuel was dbaed in the US in 2009. However, ethanol-
gasoline mixtures are useful to build the octatiega

Example 18.4.1:First Vapor

Calculate the total pressure and composition ofiteevapor that forms for a solution of 1.00
mol of A and 2.00 mol of B, if the pure vapor press are P= 0.200 bar and#g>= 0.100 bar
(pointein Figure 18.4.1). Assume an ideal solution.

Answer The composition of the solution when the firsiadl amount of vapor forms is
essentially the bulk compositiory = za = 0.333xg = 0.667. Using Eq. 18.Z.Tor the total
equilibrium vapor pressure gives:

Pt = XaPa + xsPs = 0.333(0.200 bar) + 0.667(0.100 bar) = 0.133 bar

The composition of the vapor is given by Daltonaa, Eq. 2.1.18 and Raoult’'s Law for the
solution, Eq. 18.276

YA = Pa/Prot = XaPa/ Pt = 0.333(0.200 bar)/0.133 bar = 0.500

which is the highest purity for A possible, as nemr@d by condensing this first vapor. The vapor
is richer in the more volatile constituent, A, apected.

Example 18.4.2:Last Liquid

Calculate the total pressure and composition ofaseliquid that remains for a solution of 1.00
mol of A and 2.00 mol of B, if the pure vapor press are P= 0.200 bar and#g>= 0.100 bar
(pointi in Figure 18.4.1). Assume an ideal solution.
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Answer The composition of the vapor that is in equilibn with the last liquid is essentially the
bulk compositionya =za = 0.333. Using Eq. 18.4.1*, we can solve for tbkison composition
that is in equilibrium with the vapor:

0.333 Xa(0.200 bar)
222 7X(0.200 bar) + (1 %a)(0.100 bar)

Solving for the solution composition gives = 0.200, which is the highest purity for B possibl
as recovered from the pot from this last drop. Waentuse Eq. 18.2.8* to find the total pressure
for this last liquid:

Pot = XaPa + (1 —xa)P& = 0.200(0.200 bar) + (1 — 0.200)(0.100 bar) = 0.aar

The liquid-vapor phase diagram at constant pres®r a binary solution of two-volatile
components is a plot of the boiling-point as a fiorcof composition of the solution and the
vapor, Figure 18.4.2. To construct the phase dimagtiae Clausius-Clapeyron equation, Eq.
17.1.13 or 17.1.14, is used to find the temperature variation ofwApor pressure of the two
pure components. Raoult’s Law then allows the pldgsgram for liquid-vapor equilibrium at
constant pressure to be plotted. The boiling pafinbhe solution is the equilibrium temperature at
which the total vapor pressure is equal to theiaggiressure. The high temperature phase is the
vapor phase, and the low temperature phase igjhid phase. The endpoints of the solution and
vapor composition curves are the pure componetinggoints, ta and be. The next example
shows how to construct the phase diagram at canstessure.

cst.P,=1ba
A

vapor

Tb*BA
107.7 vapor
composition

1004
T(°C)

| »two phase region
iquid [V oy

liquid *
composition Toa

0 0.202 0.409 1
2-methylpropanol Xa, YA — 2-propanol

Figure 18.4.2: Liquid-vapor phase diagram at camgpressure for a binary solution of two-
volatile components; the boiling-point as a funetad composition. Data shown is for 2-
propanol and 2-methyl-1-propanol, which form araidsolution. The tie line joins the
solution and vapor compositions that are at equilib at the given temperature.

Example 18.4.3:Boiling point versus composition

2-Propanol and 2-methylpropanol form an ideal sofutCalculate the composition of the
solution and vapor that boils at 1000and an ambient pressure of 1.00 bar. The vagsspre
of pure 2-propanol is 202.3 kPa and the vapor pressf pure 2-methylpropanol is 74.1 kPa at

100°C.
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Answer The total vapor pressure is equal to the amipesgsure at the boiling point. Let A be
2-propanol. Converting to bar and using Eq. 18.8i8es the composition of the solution from:

Prot = XaPA + (1 —Xa)P& = xa(2.023 bar) + (1 %a)(0.741 bar) = 1.00 bar
Solving for the solution concentration of Axa = 0.202.

The vapor phase concentration is calculated ustqn@H.10 and Raoult’s Law for A, Eq.
18.2.6:

YA = Pa/Prot = XaPa/Prot = 0.202(2.023 bar)/1.00 bar = 0.409

As a check on this calculation, we note that th@ovas richer in the more volatile component,
A, as expected. These points are included in Fifj8ré.2. A tie line is drawn between the
solution and vapor compositions that are in equiin at the chosen temperature.

This last example only generates two pointshenphase diagram. To complete the phase
diagram, additional calculations are necessaryrange of boiling points betweemaland Toe.
Liquid-vapor phase diagrams are used to understanstant pressure distillations. Using
Example 18.4.3, if the initial pot in the distilla has a composition for A of 0.202 then the first
vapor has a composition of 0.409 at AOPwhich is the highest purity for A possible isiagle-
plate distillation starting from the initial condestion. Once again a single-plate distillation is
seen to be an ineffective way to achieve a separati

Fractional distillations are necessary to aahieffective separations. A bubble-cap distillation
column is convenient for describing fractional dlistion, Figure 18.4.3a. The initial pot
concentration is poird in the phase diagram, Figure 18.4.3b. The compasif the vapor
above the pot is on the right end of the firstihe, pointb.
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Figure 18.4.3: (a). A bubble-cap fractional diatilbn column. (b). A fractional distillation
with four theoretical plates. An exhaustive frantabdistillation for an ideal solution gives
pure A, the more volatile component, in the diatéland pure B in the pot.
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During the distillation this vapor condenses omi® first plate, which is at the same
concentration as the vapor but on the liquid cupagntc. As the temperature rises, the
condensate on the first plate at paittoils producing vapor with a composition at the efthe
second tie line, poird. This vapor condenses on the second plate, poirte vapor from the
second plate, poirif condenses on the third plate, p@nthis process continues for as many
plates as there are in the column. Vapor flows ugvr@m each plate to the next, and excess
solution at each plate overflows back to the prexedlate. At each successive plate, the
condensate composition becomes richer in the nmlegile component. Each successive plate
corresponds to equilibrium at the respective teaipee as represented by the corresponding tie
line. Anexhaustive fraction distillation is the logical extreme for an infinite number tdtps.

An exhaustive fractional distillation for an idesllution gives pure A, the more volatile
component, in the distillate. As A is removed ir thistillate, the pot becomes richer in B. In an
exhaustive fractional distillation, pure B is reeoad from the pot.

Each plate can be separately drained by anapel petroleum industry, the different taps
produce different products of successively highaling range: fuel oil and diesel, 250-3%0)
kerosene, 175-32E; gasoline, 40-20%; ligroin, 60-100C. Gaseous nitrogen is separated from
liquid oxygen in liquid air by fractional distilletn. Bubble cap columns are not used in the
laboratory; instead, glass columns are packed glébs spirals or stainless steel ribbons, or are
indented to produce greater surface area. In aggaoddumn, the length of column that gives a
composition enhancement equivalent to a tie linéherphase diagram is called tineght
equivalent of the theoretical plate, HETP The length of the column divided by the HTEP
gives the number of effective plates for the colu@uar predictions so far are based on ideal
solution theory. Practical systems often show stradeviations from ideality.

Favorable interactions in solution, A-B >> A-B;B, cause large negative deviations from
ideality. In extreme cases, negative deviationslt@s a minimum in the vapor pressure phase
diagram and a corresponding maximum in the bopioigpt phase diagram, Figure 18.4.4ab. On
the other hand, very weak interactions in solutanse a maximum in the vapor pressure
diagram and a corresponding minimum in the boipomt phase diagram.

cst. 1 vapor cst.P cst.P
L A A A A
A liquid AP* { A FT mas
A-B>>A-A, B-B A Tma
P T a T a
Pé' Tb*B Tb*B-
liquid [ Toa [ Ton
vapor
0 Yz 1 0 Xaz 1 0 Yoz Xaz 1
Xa, YA — XA, YA — XA YA
(a. (b). (c).

Figure 18.4.4: (a) Vapor pressure phase diagrara fystem with strong negative deviations
from ideality, giving a maximum boiling azeotroffk). Boiling point diagram for a system
with a maximum boiling azeotrope. (c). Treat thagdam on either side of the azeotrope as a
separate, simple, binary liquid-vapor phase diagram
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The composition that gives the extreme boiliogpis called thezeotropic compositiorAn
azeotropebehaves as if the solution were a pure substambegddistillation. The vapor above a
solution at the azeotropic composition has the saongposition as the solution. Binary
azeotropes cannot be purified by distillation. Amalg a phase diagram that has an azeotrope
can be simplified by treating the azeotrope aspthetical pure substance and dividing the
phase diagram to either side as separate binaignsysFigures 14.4c.

Example 18.4.4:Azeotropes

Chloroform and acetone form a maximum boiling amgud. Figure 18.4.4 is a schematic
representation of the phase diagram, with acetsrm®m@ponent A. Consider distilling a solution
with xa = 0.33. What will be recovered in the distillatelgot from an exhaustive fractional
distillation?

Answer Using Figure 18.4.4c, the initial concentratipninta, is less than the azeotropic
concentration. The tie line extends to lower cotregions for A. An exhaustive fractional
distillation gives component B, chloroform, in tHistillate and azeotrope in the pot. The
maximum concentration of acetone for this disiilatis the azeotropic concentration.

Ethanol and water form a minimum boiling azep&ovith a composition of 95.6% ethanol by
volume, 89.5 mol% ethanol at 78.1 °C and one atimargp The concentration of ethanol from
fermentation reaches a maximum of about 15%. Fenaatidistillation produces azeotrope as the
distillate, which is the maximum concentration tifamol available from distillation of
ethanol/water binary mixtures from fermentationt &se in transportation fuels, ethanol must
contain less than 0.7% water. The final step inon@ng water is by dehydration with a zeolite,
which is a type of molecular sieve. The dehydratbethanol by zeolites is very efficient.
However, regenerating the zeolite for repeatedsisaergy intensivédgenyd = 86 kJ mott.1°
Zeolites are dehydrated under vacuum at elevatepdarature.

Colligative Properties are a Function Only of ther@@entration of the Solute A colligative
property is a property of a solution that depends onlyl@ndoncentration of the solute and not
the chemical properties or specific identity of Hudute. The colligative properties include vapor
pressure lowering, boiling point elevation, freggpoint depression, and osmotic pressure.
Independence of the identity of the solute requtines colligative properties are applicable only
in the dilute solution limit, so that the solutimnapproximated as an ideal-dilute solution. The
solvent chemical potential is then determined usagult's Law, Eq. 18.2°9For vapor
pressure lowering, boiling point elevation, and osmpressure, the colligative properties are
restricted to non-volatile solutes, since the expents all involve equilibrium with the vapor
phase. Freezing point depression is a colligatrepgrty for volatile and non-volatile solutes.
However, freezing point depression is a colligapveperty only for solutes that are immiscible
with the solvent in the solid phase. In other wotts solvent forms a pure solid phase upon
freezing with no contamination from the solute.
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Vapor pressure lowering is directly expressedbypult’'s Law, R = xa Px. The vapor pressure
of the solvent in an ideal-dilute solution is I&isan the pure vapor pressure, since the mole
fraction of the solvent is always less than onee ffeezing point and boiling point for a solution
can be predicted by modifying Figure 17.1.1 fobluon using Raoult’'s Law as shown in
Figure 18.4.5. Assume that the solute is non-Velaid immiscible in the solid solvent. The
vapor phase and the solid phase only contain tlversto Then the chemical potential of the
vapor is the chemical potential of the pure solweor,pa(g) = 1a(g), and the chemical
potential of the solid phase is the chemical paéof the pure solid solvenga(s) =Ha(s), both
identical to Figure 17.1.1. The chemical potertiahe solvent in the solution is decreased
compared to the pure solvent, Eq. 18.2The intersection of the chemical potential curfees
the solid and solution phase, wheigs) =pa(xa), shows that the freezing point is depressed
compared to the pure solvent: € Tm. The intersection of the chemical potential curfoeghe
solution and vapor phase, whergxa) =pia(9), shows that the boiling point is elevated
compared to the pure solvent ¥ Tp. The assumption of Raoult’'s Law behavior for thivent
allows the quantitative prediction of the boilingipt elevation, freezing point depression, and
osmotic pressure.

solvent in solution

Ha pure solvent

~

1
~
1
1
1
1
1
1
1
1
1
1
1
!
T

T Tm To To T

Figure 18.4.5: Only the chemical potential of sadution is lowered by the presence of a
solute that is non-volatile and immiscible in tldics solvent. The freezing point of the
solution is depressed and the boiling point is &led. (Compare to Figure 17.1.1.)

The Boiling Point is Elevated for an Ideal-Dilutel&®ion of a Non-volatile SoluteThe boiling
point of a solution corresponds to the temperadtikghich the total vapor pressure is equal to
the ambient pressure. The variation of the vapesgure of a pure substance is given by the
Clausius-Clapeyron equation, Eq. 17.2.8817.1.14, Figure 18.4.6. The total vapor pressure
of a solution of a non-volatile solute is just tragor pressure of the solvent. For an ideal or
ideal-dilute solution, the vapor pressure of theesat is lower than the vapor pressure of the
pure solvent, as given by Raoult’s Law, so thattémeperature of the solution must be increased
to reach the boiling point as compared to the goteent. At equilibrium, the chemical

potentials of the solvent in the vapor and solutiom equalpia(g) = pa(xa). Using Raoult’'s Law

for the solvent, the chemical potential of the salvin solution is given by Eq. 18.2.9

HA(Q) =pa(Xa) = pa(l) + RT InXa (equilibrium, ideal solvent, cst. P) 18.14.2
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A pure solutior
1bal b

Pa

PA = XAP*

T
Figure 18.4.6: The vapor pressure of the sol&decreased in solution, so that the
temperature of the solution must be increasedaolréhe boiling point, as compared to the

pure solvent. At equilibrium, the chemical potelstiaf the solvent in the vapor and solution
are equal.

The molar Gibbs energy of vaporization of the pokvent at temperature T is given by

AvaGa(T) = pa(g) —pa(l). Solving for the concentration of the solvematt gives the solution
boiling point at temperature T using Eq. 18'4®es:

In xa = “A(g)g_IElA(XA) = A"af_l/f(T) (ideal solvent, cst. P) 18.4.3

For the pure solvenxa = 1, and the equilibrium temperature is the bgilioint of the pure
solvent at the ambient pressure, Te= T

A Th
In 1 :—Va%—bl (pure solvent, cst. P) 18.4.4

We can compare the solution to the pure solverstiigracting Eq. 18.4'4rom 18.4.3:

Xa AvapGA(T) AvapGA(TE)) .
nT="prrt - RT, (ideal solvent, cst. P) 18.4.5

We can separate enthalpy and entropy effects UsipGa(T) = AvapHa(T) — T AvapSa(T). Being
careful to keep track of the specific temperatdoegach term gives:

I xa = (AvapHA(T) AvapSA(T)) 3 (AvapHA(TE\) AvapSA(TE\))

RT R

RTh R
(ideal solvent, cst. P) 18.4.6

The change in boiling point is typically only a felegrees. Assuming thA{agHa andAvapSa are
constant over this small temperature range resuttse cancellation of the terms in the entropy:

AvagHA(T)  AvapHa(Th) .
In xa = vaRT - VaRTE (ideal solvent, cstaByapS3) 18.4.7

Avagl !A (l i)
R \T T

In Xa = (ideal solvent, cst./RapH3&AvapSs) 18.4.8
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whereAvapHa is the average enthalpy of vaporization of theesal over the temperature range.
This last equation shows that the boiling poinvat®sn is independent of the identity of the
solute, since only the mole fraction of the solvsequired. The boiling point elevation is
defined adT =T — Ti:

N X = VapHA( 'T'Tb ﬁpH—( ) (ideal solvent, cst. ByagH3&Avap?) 18.4.9

For small changes in boiling point, negligible datahial error is introduced by approximating
TTpr OTe?, Eq. 3.5.135eneral Patterri] 4:

Dva RTy .
In Xa = _(Fjl%) AT or AT= _(Avap:IA) In Xa (very dilute, cst. P) 18.4.10

However, for very dilute solutions, thexa term can be approximated using a Taylor series in
the mole fraction of the solute:

In Xa =In(1 —xg) O—xg + G+ ... (very dilute) 18.4.11

Keeping only the first term in the Taylor expansibmxa = —xg, and substitution into Eq.
18.4.9 gives the approximate expressions:

AvapHa RTh? .
X8 D( R -rkzj AT or AT D(A d:A) X8 (very dilute, cst. P) 18.4.12
\Va

We often express concentration in molality instefchole fraction. For very dilute solutions,
substituting Eq. 2.2.15 for the mole fraction ifg. 18.4.12 gives the result often introduced in
General Chemistry texts:

RTp?9ma (1 kg)j
AT D(1000 GPagHn

or AT OKp ms with Kp = (

(very dilute, cst. P) 18.413

RT?91a (1 kg)j
1000 gAvapHA

where K is themolal boiling point elevation constantor ebullioscopic constantwhich is
extensively tabulated. Note that Bnly depends on the properties of the solvengéxagcted for
a colligative property. While Egs. 18.4"are commonly used, Eq. 18.4i8 applicable over a
wider concentration range and is the basis fod#termination of activities in real solutions. A
parallel treatment also applies to freezing pogfréssion.

(very dilute, cst. P) 18.4.14

The Freezing Point is Depressed for an Ideal-Dil8tdution The freezing point or melting
point of a solution is the equilibrium phase tréinsi temperature such that the chemical
potentials of the solvent in the pure solid phas&the solution are equaia(s) =pa(xa). The
equality of the chemical potentials is identicathie case for boiling point elevation except that
the pure phase for freezing point depression isalveéemperature phase. Then using Raoult’s
Law for the solvent in solution gives exactly tlaere results as for boiling point elevation,
except for a change in sign:
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MusHa (1 1 :
In xa = _% (T _T:J (ideal solvent, cst. P) 18.415
_ AfusHA) _ (R r?]z) .
In Xa = —(—R T2 AT or AT=- ArccHn In Xa (very dilute, cst. P) 18.4.16
ArusHa (AT) ( RTEF} _
xe 0= p— (772 or AT O|x -] (very dilute, cst. P) 18.4.17
RTm?0na (1 kg)) .
AT D( 1000 ghutia ) T (very dilute, cst. P) 18.4.18
AT OK ith K = (RT;"Z%* < kg)) dilute, cst. P)  18.4.19
f Mg with Kt = 1000 ghrHa (very dilute, cst. P) 4.

whereAwsHa is the enthalpy of fusion of the solvent; iE the freezing point of the pure solvent,
T is the freezing point of the solution, and theefring point depression is defined as
AT =T — T, which is a positive number; i themolal freezing point depression constantr
cryoscopic constant

The molality of the solute, gnincludes all solute species in solution. Forigalive
phenomena, the identity of the solute is immates@aimolecular solutes and individual ionic
species have the same effect. For strong eleatrebjutions, the molality of the solute and the
corresponding mole fraction of the solvent musirimalified to account for ionic dissociation,
mg =V M, wherev is the number of ions that result from the disgtien of the strong electrolyte
and m is the analytical concentration the solute.eéxample, for NaCl and Cus@ = 2, while
for N&SQs and Cu(NQ)2, v = 3. lonic solutions show stronger deviations frideality than
molecular solutions, so the concentration rangedeal-dilute behavior is greatly decreased.

Example 18.4.5:Cooking spaghetti

Calculate the boiling point elevation and freezouoint depression for a solution of 0.500 g of
NaCl in 1.000 kg of water. This concentration isnp@rable to the conditions used in cooking
spaghetti. For water, the enthalpy of vaporizaiso40.7 kJ mot at 100C and the enthalpy of
fusion is 6.01 kJ mdiat C°C.

Answer The molar mass of NaCl is 58.44 g thaThe corresponding molality of NaCl is then
Mnaci = 0.500 g/58.44 g mol1.000 kg = 8.56x1®m. However, since NaCl is a stong
electrolyte, NaCl (aq)> Na" + CI, the concentration of all solute species in sotuts

Mg = 2 myaci = 0.0171 m. The mole fraction of solute is theregiby Eq. 2.2.13 ag =
3.082x10, giving the mole fraction of water &0 = 1 —xg = 0.999692. The ebullioscopic and
cryoscopic constants are, respectively:

K = (RTEZ@KA (1 kg ‘= (RT&Z@KA (1 kg
®=11000 gAvapHA =\ 1000 gAwsHA

Giving the final results, with different levels approximation for comparison:

)j =0.512 mol kg K )) = 1.86 mof kg K
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Approximation Freezing Boiling

AT C — (RTu?/AyHa) In xa 0.0318 K 0.0087D K
AT C (RTu?/AvHa) Xs 0.0318K 0.0087% K
AT L Ky mg 0.0318 K 0.00876 K

The approximatiomAT = — (RTv?/ArHa) In xa, agrees with Egs. 18.4.8r 18.4.1% to better than
four significant figures. (However, even at thigrlooncentration, a 3% deviation from ideality
is found. We’'ll deal with real solutions in the nekapter.) Freezing point depression can be
determined with better precision than boiling palgvation, because freezing point depression
has a larger magnitude. Adding salt to the watatendooking spaghetti has a negligible effect
on the boiling point. Salt is added for flavor, h@change the cooking temperature.

Eq. 18.4.16is used to determine the purity of samples byedéffitial scanning calorimetry.
Purity determinations are routinely used in therpteceutical industry for quality control and
research. The DSC melting curve of an impure substés broadened compared to a pure
substance, Figure 18.4.7d%The mole fraction of the impurity in the final m& determined
by the freezing point depressiasl. However, applying Eq. 18.4.16r a general organic
substance, the enthalpy of fusion and the pureimggbint are usually not known. The area
under the DSC melting curve givAsHa for the substance. A simple extrapolation procedur
based on partial areas of the melting curve is tsetermine the pure melting point and an
accurate value of the freezing point depressiothauit knowledge of the identity of the
impurities.

F=0 F=YsF=Y%F=1(
s i solutior }2_‘@_‘_ 2%
s S pd | X6
FEE i pure solid /4 g pEEE
purﬁ reference impure sa;nple T3 T, Ta T,QA)
|
dgp '
A4 Bt T
dt Tof
! h
Tm T 0 1.0 1/2F.O 3.0
(). (b). ©).

Figure 18.4.7. Freezing point depression solid-isaibie impurities: (a). A pure reference
sample gives a narrow melting range. (b). The mgltange for an impure sample gives the
mole fraction impurity. F is the fraction meltedb €orrect for slow instrument response, the
partial areas are bounded by a line with slope lequhae leading edge of the melting curve
for a pure reference compound {}. (c). The intermediate melting points extrapelet give
the pure melting point and the slope gives thezirggpoint depression.
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The solution in equilibrium with the solid phaeea melting experiment is called theelt.
Consider heating an impure solid, A, with impustibat are soluble in the melt but are not
soluble in the pure solid substance. At the onsetedting, all impurities dissolve in the initial
melt. As the temperature increases, more A mehg;iwdecreases the concentration of the
impurities in the melt. As the concentration of timpurities in the melt decreases, the
equilibrium melting point of the solution increasés the last solid melts, the concentration of
the impurities in the melt equals the concentratibmpurities in the original solid sample, and
the final equilibrium melting point gives the fréeg point depressio®\T. The concentration of
the impurities in the melt at each stage is inugrgeportional to the fraction of the solid that
has melted. The DSC melting curve is divided insequence of partial areas, each partial area
beginning at the onset of melting. The ratio ofreatthe partial areas to the total area under the
melting curve is proportional to the fraction oétbolid that has melted, F.# is the
concentration of all the impurities in the origirsample, the concentration of impurities in the
melt isxs/F. Solving Eq. 18.4.17or the melting point, T = #a — (RTm%AwsHa) xs/F, a plot of
the temperature that corresponds to each pargal\arsus the inverse of the fraction melted,
Figure 18.4.7c, gives an intercept equal to the poelting point of the solid and slope equal to
the freezing point depressiohT = (RTn%/AwsHa) xs. Since Eqgs. 18.4.18.4.17 are restricted
to ideal-dilute solutions, this method is only ddior purities greater than about 98 mol%.

Example 18.4.6:Purity Determination

The partial areas and corresponding temperatunes thhe melting curve for methyl-4-(2,4-
dichlorophenoxy)butyrate are given in the tablebel* The sample mass was 2.2850 mg with a
molar mass of 263.12 g méIThe partial areas are in arbitrary units, withtihtal area under

the curve, 3302, gives the enthalpy of the tramsiéis 0.2749 J. Calculate the sample purity.

T (K) 308.119 308.256 308.422 308.590
Partial area 483 577 802 1212

Answer The enthalpy of fusion is determined from thialt@rea under the melting curve on a
per mole basis:

AusHa = AH/NA = 0.2749 J (263.12 g méi2.2850x1¢F g)(1 kJ/1000 J) = 31.65 kJ miol

A plot of T vs. 1/F gives the intercept agal= 308.89+ 0.01 K andAT = — slope = 0.1129
0.0025 K.

T(K) Partial Area F 1/F 309

308.119 483 0.146 6.84 s TN v=-0.1120x+308.89
308.256 577 0.1745.72 308.7 A
308.422 802 0.242 4.12 3086 |
308.590 1212 0.3a72.72 (0 3%21
Total 3302 s |
308.1 A
308 T T T |
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The mole fraction is given by Eq. 18.4'16

1y, < usHa (AT) _ 31.65x16J mol* (0.1129
NXa="R *2) =8.3145 J K mor* 308.89

@ = 4.5m10° Xa = 0.9955

The sample purity is 99.55 mol%.

In summary, the plot of the freezing point ofideal solvent as a function of composition
using Eq. 18.4.1T6approaches linear behavior in the dilute soluliimit, xa — 1, Figure 18.4.8.
The limiting linear behavior is given by Eq. 18.4" with slope = RTa%AwsHa. For moderately
concentrated solutions, the freezing point depoesisi greater than the linear prediction. In
general, the colligative properties become linsas@utions approach the dilute solution limit,
where Eqgs. 18.4.1218.4.14 and 18.4.1% 18.4.19 are applicable.

275 *
T mA
* 2

AfusHA

65 - limiting slope=

2
T (K)

255 -

245

0 015 1

Xp —
Figure 18.4.8: Freezing point of an ideal solhest function of composition. The dilute
solution limit,xa — 1, gives linear behavior, Egs. 18.4-178.4.19.

Osmotic Pressure Results from Equilibrium acro&eai-Permeable MembraneRed blood
cells burst when suspended in pure water. Cellakmbranes are selectively permeable; they
allow water to pass but not some solutes. The tarigemical potential of the pure water outside
the cells compared to the water in the cytoplasth@fcells causes a transfer of water into the
red blood cells, increasing the pressure insidedtis by osmosis until the cell membranes
burst. Osmaotic pressure is a general phenomensenoifpermeable membrane systems and is
an important property in the laboratory, in biolegisystems, and especially in medicine.
Consider a membrane that is permeable to solvehtdi to a given solute, Figure 18.4.9. The
membrane separates two compartments, one contginnegsolvent and one containing a
solution of a solute that is not transported thiotige membrane. The concentration of the
solvent in the solution isa. Assume that the solution is sufficiently dilutelte considered an
ideal or an ideal-dilute solution. The chemicalgmtial of the solvent in the solution is less than
the pure solvengia(xa) = pa(l) + RT Inxa. The solvent flows across the membrane from the
region of high chemical potential of the pure salv® the region of low chemical potential in
the solution. The transfer causes an increasesindlume of the solution, generating a
hydrostatic head that gives an increase in pres8elhe pressure increase is determined by
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the difference in height of the solution compamdthie pure solvent, h, and the density of the
solution:AP = dgh, Eq. 1.3.2.

_f G AP G = AP
AP = dgh HA(P) Ha(P+m) = HA(P)

solution solvent Ha(P)

Xa T R -
solution solvent solution solvent

]

initial equilibrium
semi-permeable membrane
Figure 18.4.9: Osmotic pressure is establishetthéyqualization of the chemical potential
of the solvent across a semi-permeable membrameer8dlows from the region of high
chemical potential to the region of low chemicalguial.

At equilibrium, the pressure increase is the osomtessurel\Peq = 1t The equilibrium osmotic
pressure is established when the chemical potesftiake solvent is equalized between the
solution and the pure solvent:

Ha(Xa,P+10) = pa(l,P) (equilibrium) 18.4.20

To calculate the osmotic pressure, we need toitakieaccount the effects of concentration and
pressure on the chemical potential. The chemidai@al of a constituent in solution at a
pressure of P AP is given by integrating Eq. 18.1.18 with dT £20:

P+AP
ui(m,PmP):ui(m,P)+fP VidP (cst. T)  18.4.21

wherepi(x,P) is the chemical potential in solution at ambjanessure, P. For moderate changes
in pressure, the partial molar volume of the salveronstant and the integralA®Vi:

li(xi,P+AP) =pi(xi,P) +APV; (cst. T, small\P) 18.4.22

The ideal concentration dependence of the chempaahtial from Eqgs. 18.2.@nd 18.3.10are
then substituted for the solution chemical potéstd ambient pressure giving for the solvent
and solute, respectively:

Ha(Xa,P+AP) =pa(l,P) + RT Inxa + APVa (ideal solvent, cst. T)  18.4123
He(xe,P+AP) =pul(I,P) + RT Inxs + APVs (solute, ideal-dilute, cst. T) 18.4.24

where we use a Raoult’s Law standard state fosdheent, A, and a Henry’s Law standard state
for the solute, B. These expressions for the Gértesgy in solution are centrally important for
applications in bioenergetiééWe will extend these equations for use with restsons in the
next chapter.

For the determination of osmotic pressure atliégum, APeq = T, the chemical potentials of
the solvent in the two compartments are equal. ¢JBip. 18.4.20 for the left side of Eq. 18.4.23
gives:
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HA(LP) =pa(l,P) + RT Inxa + TiVa (equilibrium, ideal-dilute, cst. T) 18.4125

Cancelling the pure liquid standard state from lsodles of the last equation and solving for the
osmotic pressure term gives:

VA =—RT Inxa (ideal-dilute, cst. T) 18.4726

This result is called thean't Hoff equation. For very dilute solutions, this last equation ban
simplified further and related directly to the del@oncentratiornss. As before, note that

xa =1 —xg, and that we can expand the logarithm in a Tasgoies, Table 1.5.3, keeping only
the leading term to give In(1xs) [J—xg. In addition, using Eq. 18.2.12, the partial molar
volume of an ideal constituent is equal to the poodar volume: | = V. Substituting these
approximations into Eq. 18.4.2§ives:

iV Oxs RT (ideal-dilute, cst. T) 18.4127
In addition, for very dilute solutions, the moladtion of the solute can be approximated as:

Nne N
0—
Na

Xg = (ideal-dilute, cst. T) 18.4728

T Nate
Substitution of this approximation givesVa = ne/na RT. Multiplying both sides of this
equation by g gives:

nV Ong RT with VOnVa (ideal-dilute, cst. T) 18.4729

where the volume of the pure solventyR, is approximately equal to the volume of the
solution, V. The resemblance of this last equatiothe ideal gas law is notable, however, the
similarity is not theoretically significant. Furthehe concentration of the solute is given by
cs = ne/V so the van't Hoff equation can be written as:

nOcs RT (ideal-dilute, cst. T) 18.4'30

For strong electrolytesge v ¢, with ¢ the analytical concentration. Eqs. 1#%and 18.4.30
are given in General Chemistry texts. However, B34.26 is applicable over a wider
concentration range. Eq. 18.4'28so clearly shows that in the dilute solutionitithe osmotic
pressure is independent of the identity of thetsolas are all colligative properties. The
application of this theory for the reverse procesgerse osmosisplays an important role in
water purification.

Application of a pressure greater than the dguilm osmotic pressure to the solution
compartment in Figure 18.4.9 causes the chemidahgal of the solution to exceed the pure
solvent, which reverses the direction of solveowvil Solvent is transferred from the solution to
the pure solvent. This reverse osmosis processeid im laboratory water systems and other
water purification applications, because it is memergy efficient than distillation. Reverse
osmosis is, however, still very energy intensivevé&se osmosis is also used in the food
industry, for example in the production of mapleugy Most importantly, reverse osmosis is
used in desalination for the production of potatéer, water for agricultural uses, and for
environmental remediation. Safe drinking water esatler suitable for agriculture is in critically-
short supply in many parts of the wotftiThe World Bank has predicted that clean water bell
the most critical natural resource issue in the fgarel* Water shortages have been identified
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as causes of civil unrest and large scale humaratiogs in Africa. Even in the United States
for example, the Salt River in Arizona no long@wk in its natural channel because it has been
pumped dry. The Colorado and Rio Grande would saityildry up, were it not for treaty
obligations with Mexico. The only water that reasdexico in the Colorado River is
agricultural waste water. A large-scale reverseasssplant on the Colorado in Yuma, AZ, was
designed for treatment of agricultural run-off fiojection back into the river channel. The
research need in this area is the developmengbfermeability, mechanically robust, semi-
permeable membranes or alternative purificatiorhou.

Example 18.4.7:0smotic Pressure

Plot the chemical potential of water in 0.01000 lrese as a function of applied pressiie,
and hydrostatic head, h, at°®5 Reference the chemical potential to the purecsi)
Ha(Xa,P+AP) —pa(l,P). The density of the solution is 0.99836 gL

Answer This solution is sufficiently ideal so that tphartial molar volume may be replaced by
the pure molar volume of the solventy ¥ V, = 18.069 mL mot. Using Eq. 2.2.16, the mole
fraction of 0.01000 M sucrosexs = 1.810x10“. The mole fraction of water is then =
0.999819. Using Eq. 18.4.23he difference between the chemical potentighefsolvent in

solution and the pure solvent is:
HA(Xa,P+AP) —pa(1,P) = RT Inxa + APVA
=8.314 J K mol}(298.15 K) In(0.999819)
+AP(18.069 mL mot)(1 m¥/1x1¢ mL)(1x1C Pa/lbar)

At AP = 0, the chemical potential difference betweensiblution and the pure solvent is

Ha(Xa,PHAP) —pa(l,P) = -0.4488 J mdi. At AP =Ttthe difference is zero, since the system is at
equilibrium, Figure 18.4.10.

0.1 4

o Jo  Purewater . e
-0.1 A T
-0.2 A 1=0.248 bar
-0.3 ~

-0.4 -

Ha(P+AP)-p,*(P) (J mol?)

-0.5

0 0.14P (bar) 0.2 0.3

0.0 1.0 h (m)Z.O 3.0

Figure 18.4.10: The solvent chemical potentiad fisnction of applied pressure for a
0.01000 M sucrose solution. The chemical potediiéérence between the solution and the
pure solvent is zero &P =11, the equilibrium osmotic pressure.
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The osmotic pressure, assuming ideal behavior1§4.28, is:

m=— (RT Inxa)/Vp
=—0.083145 L bar Kmol! (298.15 K) (In 0.999819)/(0.018069 L myk= 0.2483 bar
In comparison, the approximation using Eq. 18.4¢0esm= 6z RT = 0.2479 bar, which is

sufficient for three-significant figure accuracythis low concentration. The height of the
column of solution necessary to develop the equilib osmotic pressure is given A = dgh:

h =AP/(dg) = 0.2483 bar/(998.36 kgi®.80665 m ¥) (1x1(F Pa/lbar) = 2.537 m

A convenient equation for the chemical potentiahaf solvent in solution can be obtained by
substituting Eq. 18.4.26nto Eq. 18.4.2812

Ha(Xa,PHAP) =pa(l,P) + AP —T)V A (cst. BVa) 18.4.31

This last result shows the plot in Figure 18.4.28 & slope given by the partial molar volume of
the solvent and an intercept of1f¥a). Eq. 18.4.31 is not restricted to ideal-dilutéusons, if
the exact osmotic pressure is used.

Example 18.4.8: Osmotic Pressure and Chemical Potential

A 0.01000 M aqueous sucrose solution and pure vaateseparated by a membrane that is
impermeable to sucrose and permeable to wateg°& @nd 1 bar. Calculate the chemical
potential of the water and the sucrose at equilibriThe density of the solution is

0.99836 g mitand the partial molar volume of sucrose is2/211.52 mL mot.

Answer The osmotic pressure of this system is calcdlateéhe last example: witks =
1.81(x10* 1= 0.2483 bar. At equilibrium the chemical potehntibithe water in the solution is
equal to the chemical potential of pure waggi(xa,P+10) = pa(l,P). For the solute, Eq.
18.4.24gives the chemical potential at equilibrium wWiR =Tt

He(xe,P+10) = pl(L,P) + RT Inxg + Vs
=pi(1,P) + 8.3145 J Rmol%(298.15 K) In 1.818x10*

+0.2483 bar(211.52 mL mig{1x1PPa/1bar)(1 fi1x1 mL)
=pg(I,P) + (-2.16x16 J mot*) + 5.25 J mot

The concentration dependent term dominates thegehanchemical potential for the solute
compared to the pure substance. See Problem Bdgrartial molar volume of sucrose.

Phase Diagrams for Binary Solid-Liquid EquilibriunThe theory of freezing point depression
can also be used to construct the phase diagrabrfary solid-liquid equilibrium, Figure

18.4.11. Consider a binary solution at constangégaree with constituents that are immiscible in
the solid phase; both A and B freeze out of sofuéie pure solids. The phase diagram is a plot of
the freezing point of the solution as a functiorcomposition. A plot of the freezing point of a
solution based on Eq. 18.41i6 shown in Figure 18.4.8 and is replotted onritet side of the
phase diagram fota — 1. On the right side of the phase diagram, A astthe solvent and B is
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the solute. However, on the left side of the plthagram, asx — 1, B acts as the solvent and A
is the solute. Switching the roles of the solverd solute in Eq. 18.4.1&nd plotting the

freezing point as a function & = 1 —xa gives the left side of the phase diagram. Thezinge
point curve for A, acting as the solvent, intersebe temperature axis at the pure melting point
of A, Tma. The corresponding two-phase region is for theliggum between the solution and
pure solid A. The freezing point curve for B, agtis the solvent, intersects at the pure melting
point of B, Tme. The corresponding two-phase region is for theliégium between the solution
and pure solid B. The phase diagram can be usaasiwer a useful question. Consider adding a
solute to a solvent to lower the freezing pointn @ze freezing point of the solution be decreased
to an arbitrary value, or is there a minimum fregzpoint? The point where the two freezing
point curves meet on the phase diagram is the mimirineezing point. The minimum freezing
point is called theutectic temperature Te. The mole fraction at the eutectic temperatutbes
eutectic composition xe. Below the eutectic temperature, only pure solidndl pure solid B

exist. Solder for electronics applications is aetit mixture of tin and lead with a eutectic
temperature of 18& at 63% by mass Sn.
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liquid = liquid
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Solid B solidr,)A_&Zsolid B Solid A
EO 0 pure B )2 pure A y
d)££ 0 E 1 ﬁ
1 XA — 0

Figure 18.4.11: Binary solid-liquid phase diagralmts the freezing point of the solution as
a function of composition. On the left side of thagram, B acts as the solvent and A is the
dilute solute. On the right side of the diagramgdis as the solvent and B is the dilute solute.
This example assumes complete solid-immiscibility.

The number of homogeneous phases presentvaitiadle, p. At high temperature, only the
solution phase exists, p = 1. At low temperaturdy pure solid A and pure solid B exist, p = 2.
At intermediate temperatures the solution and eplee solid A or pure solid B can be at
equilibrium, p = 2. The phase diagram can be erpatally constructed by determining cooling
curves for a series of initial concentrations, Fegli8.4.12. Consider a solution with a
composition greater than the eutectic compositrahat high temperature, poiat The solution
cools rapidly until pure solid A begins to crysi#l out of solution, poirth. The corresponding
temperature is the freezing point of the solutibime slope of the cooling curve is moderated
because the freezing of the solid from solutioexisthermic. As pure solid A crystallizes from
solution, the solution concentration becomes righ& and the solution concentration moves to
the left on the phase diagram. The increasing saaomcentration lowers the melting point of the
solution, so the equilibrium temperature decreaselsthe system follows the equilibrium
freezing point curve to the left. The solution centration continues to be enriched in B and the
freezing point continues to drop until the comgositreaches the eutectic composition, paint



642

At the eutectic point, pure solid B begins to cajiste from solution along with pure solid A.
The temperature remains constant at the euteatipdrature, &, until all the solution has
frozen, poind. At that point only pure solid A and pure solichB present, which cool rapidly,
since no exothermic phase changes remain.

* cstF
Tms liquid A& B @ 1

T i .
T P LN
! solution, pure A & B in equilibrium
Te C d': ————————————————————— o5
! lid A& B
solid A & solid B e: pure soli

pure B pure A - >
0 1 time -

XA—»

solution

solution & pure solid A in equilibrium

Figure 18.4.12: Cooling curve for a binary soligdid system. The first change in slope
occurs ab, the freezing point of the solution;. TThe second change in slope occurs at the
eutectic temperature, the minimum melting poininpo. The last change in slope occurs
when all the solution has frozen into pure solid&l pure solid B, poird.

A A A
b
dgp ddp dgp
A dt A dt A dt
. et = N
Te Toa T Te TiTia T Te Toa T
(a). Eutectic composition (M > xe (c). Pure A

Figure 18.4.13: DSC heating curves (a). at theaiat composition, (b). for the same
composition points as in Figure 18.4.12, and @) plure A. For the formation of a non-
eitectic solution, peaks occur at the eutectic enapire and the melting/freezing point of the
solution for the given composition.

Binary solid-liquid phase diagrams can also tm@veniently determined using differential
scanning calorimetry, DSC, Figure 18.4.13. A puwiessance has a sharp melting curve, Figure
18.4.13c. A typical melting curve is shown in Figu8.4.13b for the same composition points as
in Figure 18.4.12. Starting with a solid mixturetioé two pure constituents, pomtthe
temperature is raised until the eutectic tempeeasireached, poirtt The sample begins to
melt, to produce a solution at the eutectic contposipointc. Melting continues until the solid
phase is exhausted in the B component. As the textyse rises the sample continues to melt,
however, only pure solid A remains. As A melts soéution becomes richer in A, and the
solution composition moves to the right. As thauioh becomes richer in A the melting point
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rises until all the remaining A has melted, pdinAt pointb, the composition of the solution is
the starting composition of the original solid nois¢t, and the melting point is at the maximum
for the given concentration, which is the soluticeezing point, T. Conversely, a thermogram
of a mixture at the eutectic composition exhibisragle sharp melting peak, Figure 18.4.8a.

The phase diagram of a binary system is seldosinaple as in this example. Some binary
systems exhibit the phenomenon of compound formatitnere a mixture of the two
components, generally with a simple stoichiometrglts as if it were a pure substance. Water
and NaCl are an example. The dihydrate of NaCl, IN#B,0), acts like a pure substance at low
temperature. The eutectic temperature betweenvpater ice and Na&(H20) is -21.2C and
the eutectic composition is 23.3 % by mass Na@later. In other words the minimum melting
point for NaCl solutions is -21°C. Solid-liquid phase diagrams are a central fafusaterials
science and geochemistry.

Boiling Point Elevation is Used in Making Hard CandThe colligative properties have wide-
ranging applications in many practical circumstané2ne application of boiling-point elevation
is the production of candy. In making candy, suggdutions are boiled to decrease the water
content. As the sugar content of the solution iases the boiling point increases, Table 18.4.1.
However, sugar solutions are probably not ideahart due to impurities Candy thermometers
are common kitchen utensils. Other applicationfsedzing point depression include spreading
salts on roads and walkways to remove ice. Propytgycol is used for airplane de-icing and
ethylene glycol is used for automobile cooling systanti-freeze.

Table 18.4.1: The stages of candy production astored by boiling point elevation.

Stage Temperature mass % sugar
Thread 110-112C 80%

Soft-ball 112-113C 85%

Firm-ball 118-120C 87%

Hard-ball 121-130C 92%

Soft-crack 132-143C 95%

Hard-crack 146-154C 99%

sucrose(sy 186°C >09.9%

Solutions that exhibit the same osmotic presatgesotonic. For example, isotonic solutions
are used in intravenous rehydration therapy angsoe culture growth-media. The medical
conditions hyponatremia and hypernatremia correspom deficiency or excess of electrolytes
in blood plasma, respectively. Extreme hyponatrdeads to congestive heart failure.
Osmometry is crucial in clinical settings. All thelligative property methods are
interchangeable. For a given solution concentratismotic pressure provides the largest
magnitude effect and therefore is the most preélsavever, equilibrium is established slowly in
osmotic pressure determinations. Most commercialooseters are based on freezing point
depression, although vapor pressure osmometessareommon. Over 100,000 freezing point
osmometry determinations are performed per dayldweide, making freezing point depression
the most common thermochemical measurement. Faraecwork, including medical and
pharmaceutical applications, the effects of sotution-idealities need to be included.
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18.5 The Gibbs Phase Rule Determines the Number lofdependent Variables

At Equilibrium the Chemical Potential of each Comeuot is “Everywhere Equal” Binary
liquid-vapor and solid-liquid phase diagrams shbat two phases can exist at equilibrium only
over a narrow range of temperatures and presstiggses 18.4.1, 18.4.2, and 18.4.11. Three
phases coexist at equilibrium at the triple poird pure substance and at the eutectic
temperature for a binary mixture. What are the garemnditions for equilibrium when multiple
phases and components are present? Gibbs devaamacbral procedure for counting the
number of independent variables that is called3ids Phase RuleThe number of
independent intensive variables is the numbeéh@fmodynamic degrees of freedonor the
variance and is symbolized by “f.” The variance is the n@mbf intensive variables that can be
changed independently without disturbing the nundbgrhases in equilibrium. The variance is
also the number of independent intensive variathlasappear in the expression for the total
differential of the Gibbs energy. The number ofrthedynamic degrees of freedom and the
number of molecular degrees of freedom that weudsed in conjunction with the Equipartition
Principle in Sec. 8.4 are different concepts, dmaukl not be confused.

The variance of the system is determined bythaber of phases in equilibrium and the
number of components. The number of homogeneousepha equilibrium is denoted by “p.”
The phases include gas, homogeneous liquid phasgé$omogeneous solid phases. The
number of components is “c” and is discussed in $¢2, Eqg. 14.2.1. We will develop the
Gibbs phase rule using a simple example. Considaryliquid-vapor equilibrium, Figures
18.4.2 and 18.5.1.

— f'=c—p+1 P =cst
v =1 ~_ T vapor 'A_& B
YATYB =L | A&B 1 a(g)  ue(0) =2
A T
A&B “A(XA) “B(XB)
liquid
xa+xe =1 | oo liquid A & B -
oA f'=2 PA
O 1
O XA, yA g
(a). (b).

Figure 18.5.1: (a). Two volatile components incaid mixture under their equilibrium

partial vapor pressures. The chemical potentiglaah component is equal in each phase at
equilibrium. (b). The corresponding phase diagranhtonstant pressure, showing the
variances at equilibrium.

In general to completely specify all the intensiagiables for the system we need to know: T, P,
YA, V8, Xa, X8. The total number of intensive variables is gibgrthe number of components
multiplied by the number of phases in additionhte overall temperature and pressure:

total intensive variables =cp + 2 (every congydrin every phase) 185.1
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assuming each component can occur in each phaseuvdn the mole fractions sum to one in
each phase:

yat+ys =1
Xa+xg =1 18.5.2

There are p such equations, one for each phask.dtat of mole fractions decreases the
number of independent variables by one. Subtratihiagnole fraction constraints from Eq.
18.5.1:

total intensive variables=cp+2—-p (evergnponent in every phase) 18.5.3

In addition at equilibrium, the chemical potentihleach component is equal in each phase. As
we have stressed, the chemical potential is “evieeya/equal” at equilibrium:

Ha(Xa) = Ha(Q)
He(xe) = Ka(Q) (equilibrium) 18.5.4

For each component, there are (p — 1) equationseXample, for three phases for each
component, there are two relationships(s) =pa(l) andpa(l) = pa(g). In general, for c
components there are c(p — 1) equations, oveoalthk equality of the chemical potential.
Subtracting the chemical potential constraints fiegqn 18.5.3 gives the variance:

f = independent intensive variables=cp + 2—qfp — 1) (equilibrium) 18.5.5
Canceling common terms in the last equation gt¢és:
f=c—p+2 (every component in every phasjuilibrium) 18.5.6

This relationship is th&ibbs Phase Ruleand is quite general for any number of componients
any number of phases. There are two common spmxsak. When the temperature or pressure is
constrained, the variance is given by f', with:

f'=c—-p+1 (every component in every phase libguim, cst. T or P) 18.5.7
If both temperature and pressure are constantathance is given by f ", with:
f"=c-p (every component in every phase, equuli, cst. T& P) 18.5.8

For example, the phase diagram for binary liewagdor equilibrium is shown in Figure
18.5.1b. The experiment is done at constant presaunich decreases the variance by one, f'. At
temperatures above the vapor composition curve,tbel vapor phase exists. Then p =1, and
the variance is f= 2 — 1 + 1 = 2. The systembsvariant. The temperature can vary over a wide
range for each composition. In the two-phase regath the liquid and vapor in equilibrium, p
=2 and the variance is £'2 — 2 + 1 = 1. In the two-phase region, choosisglution
composition fixes the boiling point, or conversehoosing a boiling point fixes the composition.
Only one variable may be changed independentlyanthié system consists of two phases in
equilibrium. The system ignivariant. At temperatures below the liquid composition eyrv
only the liquid phase exists and p = 1. At low temgtures the system is bivariant.

Another example is binary solid-liquid equiliam, Figures 18.4.6 and 18.5.2a, assuming that
solid A and B are immiscible. The experiment isiagd constant pressure, so we use f'. At high
temperatures, only the liquid phase exists, aswigo of A and B. With only one phase, p=1
andf'=c—-p+1= 2-1+1=2. The temperature Gy wver a wide range for each
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composition. In the two-phase regions, with thedsahd liquid in equilibrium, p = 2 and the
variance at constant pressure isf2 -2 + 1 = 1. In the two phase regions, chooaisglution
composition fixes the melting point. The systeransvariant. At the eutectic temperature, the
liquid phase and two solid phases co-exist andBmiving f '=2 — 3 + 1 = 0. The eutectic
temperature is amvariant point at constant pressure. The eutectic temperattcurs at one
specific composition and one specific temperattige specified constant pressure.

f'=c-p+1

melting curve:

P =cs . p=2,f:1,f'=0
. solid: p=1
liquid A& B P f=2,f'= liquid: p=1
T fr=2 f=of'=1 vapor pressure curve:
' ’ =2,f=1,f'=0
fr=1 i = id A l1bard- - b P
i i Ig. & soli | | i =
lig. & solid B ‘ q.& tripld point | vapor: p =1
solidA&solidB | ~° P=31=0s7 =2t
._sublimation curve:
0 1 p=2,f=1,f'=
Xa - T T
T To
(a). (b).

Figure 18.5.2: (a). Binary solid-liquid equilibriyrat constant pressure, showing the
variances at equilibrium. At the eutectic tempeamtliquid, solid A, and solid B are in
equilibrium and the system is invariant. (b). Thédsliquid-vapor equilibrium for a pure
substance.

Example 18.5.1:
Find the variances for the solid-liquid-vapor phaaasitions of a pure substance in general and
at constant pressure.

Answer For a pure substance c = 1, Figure 18.5.2bafsingle solid, liquid, or vapor phase
alone,p=1andf=c—-p+2=2. There are terisive degrees of freedom. The temperature
and pressure of the vapor, for example, can bedaver a wide range subject only to the
equation of state: ¥= RT/P. If the pressure is constaritzfc — p + 1 = 1, then only the
temperature may be changed independently.

The coexistence curves are the melting cuneeyéipor pressure curve, and the sublimation
curve. Along the coexistence curves, there arepimases in equilibrium, p=2. Thenf=c-p +
2 = 1: one variable may be changed while maintgitwo phases in equilibrium. For example,
the temperature may be changed over a wide rang#d vapor pressure is fixed by the chosen
temperature to lie along the equilibrium vapor ptes curve. At constant pressure on the
coexistence curves; £ c—p + 1 =0, and the system is invariant. &@mple, at a constant
pressure of 1 bar, the temperature is fixed astaedard melting point and the vapor pressure is
fixed at the standard boiling point, if the corresgding phases are in equilibrium.
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The Gibbs Phase Rule is a summary of equilibriuenabal potential relationships that guides
the interpretation of complex systems. However niost important application of the Phase
Rule is in delineating the functional dependencthefGibbs energy.

Add One Extensive Independent Variable for EachsBhmtensive properties are independent
of the size of each phase. The Gibbs energy, oattiex hand, is an extensive state function. In
determining the Gibbs energy of the system we ne¢ake into account the size of each phase.
The relative amounts of each component in eachepliasthen governed by the concentrations,
and the system is then completely determined. dta¢ humber of independent variables needed
to describe the system is called D, for degredeeetiom:

D=f+p 18.5.9

D is the number of independent variables that appethe expression for the total differential of
the Gibbs energy.

Example 18.5.2:Independent Variables for the Gibbs Energy

A small amount of benzene is added to a separédanel containing octanol and water. Octanol
and water form two immiscible layers and the sopa#itions between the two phases. Find the
variance, thermodynamic degrees of freedom, arekpression for dG, at constant temperature
and pressure. Include only the liquid phases.

Answer There are three components, octanol, waterpandene; ¢ = 3. There are two phases;
p = 2. At constant temperature and pressure,d —p=1land D=f"+p=1+2=3. There
are multiple ways to express the Gibbs energythimiexpression can include only'B 3
independent variables. The simplest at constamdTPais written in terms of the total amounts
of each component: dG joctanol dMoctanol + H20 dMhz0 + s dre. Call the octanol rich phase the
(oct) phase and the water rich phase the (aq) pttemeds = dns(oct) + dre(aq). There are

only three independent variables because thellisioh of the three components between the
two phases is determined by the equivalence ofltieenical potentials in the two phases:
Hoctano(OCt) =Hoctano(@q), HHzo(0Ct) =pr0(aq), andus(oct) =ps(aq). For example, for benzene:

xB(oct)) _ pg(oct) —pg(aq)
xs(aq)) RT

pHi(org) + RT Inxg(oct) =pl(aq) + RT Inxg(aq) or |

The concentrations can alternatively be given asnties instead of mole fractions.

18.6 Structure-Function Relationships and Solvatio

Solvation plays an important role in moleculgeractions. Gibbs energies of solvation are
commonly used in characterizing substances foctire-activity studies of biological function.
Parameters that are used to characterize a substasitucture-activity studies are called
descriptors. Other common descriptors include dipole momentdecular mechanics steric
energies, molecular volumes, and surface areasmmblse commonly used descriptolagP,
which characterizes solvation. Log P is theidayf the octanol/water partition coefficient:
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cs(oct
P= cs(aq) 18.6.1

The octanol/water partition coefficient is measubgdlacing the compound under study in a
separatory funnel with octanol and water. Octanadl water are immiscible, and the compound
partitions between the two phases. The concentrafithe compound in the two phases and
hence the patrtition coefficient are a measure @htydrophobic-hydrophilic character of the
compound. The more hydrophobic, the larger aredAl@gP. LogP is a common descriptor in
biological function studies because drugs musnaftess membranes. Cell membranes are
composed of phospholipids, which have hydrophdadils that produce a very hydrophobic
environment in the middle of the membrane bila@reater hydrophobic character for a drug
enhances diffusive transport across membranes.

Log P is directly related to Gibbs energies edalvation. P is the equilibrium constant for:

B (aq) = B (oct) AGE =—RTInP=-RT2.303 log P 18.6.2

andA.Gg is the corresponding Gibbs energy change. Thigsys also introduced in Example
18.5.2, withAGg = “pg(oct) —“ug(aq) in molar terms. The partitioning can be brokea two
separate processes. The first is desolvation fratemvwhich using Eq. 18.3.Bives:

B (aq) - B (9) Adesof33(aq) = — RT Inkpc s(aq) 18.6.3

wherekyc,s(aq) is the Henry’s Law constant for substance B inewablution. The second is the
desolvation from octanol:

B (oct) = B (9) AdesoGg(oct) = — RT Inkpe e(oct) 18.6.4

wherekyc g(octanol)is the Henry’s Law constant for substance B iraoet solution. Subtracting
Eq. 18.6.4 from Eq. 18.6.8gives Eq. 18.6.2 with the Gibbs energies related b

APGE = AdeSOGE(aq) - AdesoGE(OCt) 18.6.5

Log P can then be calculated using Eg. 18.6.%gdéemental values for log P are not known,
log P can be estimated from Gibbs energies of datoh.

The key insight of chemistry is the relationshgiween molecular structure and molecular
function. Medicinal chemistry is a particularlyiexample of the use of structure-function
relationshipsQuantitative Structure Activity Relationships, QSAR, are used to find
correlations of biological activity with moleculatructure Quantitative Structure Property
Relationships QSPR, extend the same idea to chemical property priedicT he relationships
are often expressed by a linear equation thatelablecular descriptors;,xo the desired
biological activity, A, for compound i. With q descriptors, the biologiaetivity of the molecule
is modeled by the multi-variable linear relatiomshi

q
A=Y mxj+b 18.6.6
=1
where the mand b values are fit coefficients determined usimgar least squares curve fitting.
An example of a QSAR study is the isonarcotic distiof esters, alcohols, ketones, and ethers

with tadpoles, Table 18.7.1. Various organic conmusuwere added to water with tadpoles. The
swimming speed of the tadpoles was observed anantloeint of the compound that was
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necessary to slow the tadpoles was determinednceffective compound has a low
concentration for the production of the desire@@tf The activity of the compound is defined to
provide a larger activity for a compound with higle#ficacy:

Ai = log(1/g) 18.6.7

Table 18.7.1: Isonarcotic Activity of Esters, Alad, Ketones, and Ethers with Tadpol@s.

Compound log(l/c) logP

CHsOH 0.30 -1.27

C,HsOH 0.50 -0.75 25 4

CH3;COCHs 0.65 -0.73 .

(CH3).CHOH 0.90 -0.36 2 -

(CH3)sCOH 0.90 0.07

CHsCH,CH,OH 1.00 -0.23 15 |

CHsCOOCH 1.10 -0.38 -

C:HsCOCHs 1.10 -0.27 =

HCOOGH:s 1.20 -0.38 °

C:HsCOGHs 1.20 0.59 0s |

(CH3)2C(C;Hs)OH 1.20 0.59 '

CHs(CH,)30H 1.40 0.29

(CH3):CHCH,OH 1.40 0.16 0 S L o i )
CHsCOOGHs 1.50 0.14 log P

C2HsCOGHs 1.50 0.31

CHs(CHg)4OH 1.60 0.81 Figure 18.6.1. Isonarcotic Activity of Esters,
CHCH.CHCOCH  1.70 0.31 Alcohols, Ketones, and Ethers with Tadpoles.
CHsCOOCHC;Hs 2.00 0.66

C,HsCOOGHSs 2.00 0.66

(CH3),CHCOOGHs  2.20 1.05

After linear least squares regression, Figure 18t6e resulting QSAR equation is:
log(1/G) = 0.731 log P+ 1.22 n=20 r=0.881 18.6.8

The data is reasonably correlated with a regressiefficient of 0.881. In this study only one
descriptor is necessary to build an adequate naidke structure-function relationships, but
often many descriptors are needed. Solvation, @asuned using log P @desoG°, is often a
determining factor in correlations of structuretwlitiological activity in medicinal chemistry.

18.7 Summary — Looking Ahead

Partial molar properties enable the fundamesdahtions of thermodynamics to be easily
applied to solutions. For ideal solutions, theiparholar volume is the pure molar volume, the
partial molar enthalpy is the pure molar enthabng the Gibbs energy of solution is purely
statistically driven. Raoult’'s Law and Henry’s Lane the basis for the treatment of ideal and
ideal-dilute solutions. The Henry's Law constandetermined by the solute-solvent
intermolecular forces. Raoult's and Henry’s Law #re basis for the appropriate standard states
for components in solution. The standard statesdaad standard states; the values of the
standard state properties are determined by exatamo of the dilute solution environment to
unit concentration, giving the ideal limit. The at®of the standard states allows the calculation
of the chemical potential of the solvent and solétesquilibrium the chemical potential of each
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component is the equal in all phases. The equallitie chemical potential is the basis for
understanding phase transitions in multi-composgstems. Measurements based on the
colligative properties are some of the most comyamde determinations in clinical, industrial,
and research laboratories.

The Gibbs phase rule and detailed balance adafuental principles that govern all chemical
phenomena. These two, central generalizations ibedtre interrelationships between different
aspects of chemical reactivity and delineate thenbdaries for possible chemical processes. Each
principle is a simple statement with wide rangiamifications.

Most solutions are far from ideal. Experimemteadthods based on the colligative properties,
for example, are independent of the identity ofgbkite only for very dilute solutions. The
properties of real solutions are a function ofdlavity of the components, rather than the
analytical concentration. We introduce the conoéictivity in the next chapter. Chemical
potentials are then put to use in the study of e¢balnequilibria in Chapter 20. The theory
developed in this chapter allows the predictiostaiicture-function relationships in solution.

Chapter Summary
1. The partial molar volumes are defined by thevdéves:

(v N
Vas (anAjT,P,nB Ve = (anB)T,P,nA

2. The total differential of the volume at cons$t@irand P is determined by the partial molar
volumes: dV =\ dma + Ve drs

3. Integration of the differential of the volumiecanstant composition gives the volume of the
solution as V =¥ na + Vg ng.

4. The partial molar volume is the change in vauor adding one mole of substance to so
large an amount of solution that the concentratémnains unchanged.

5. Gibbs-Duhem relationships give the partial mpl@perty of one constituent in terms of the
other. The partial molar volumes and chemical pidés) at constant temperature and
pressure, are related by:

- XA = Xa
dVe = T —xa dVa dus = T —xa dua

6. Vs the volume of a solution that contains 1 kgalfent. The partial molar volume of the
solute is given by:

B, e,
B~ one TP \OMe )T P\l K

7. The apparent molar volume is the volume dubemdded solute per mole:

V solution— Vpure solvent_ V- VA
moles of solute =~ ng

8. The thermodynamic properties of solutions arefions of the partial molar enthalpy,
entropy, and Gibbs energy of the constituents.@dréal molar Gibbs energy is the chemical
potential. At constant temperature and pressure:

dH =Ha dna + Hs drs H=Hana+Hgns

o =



651

dS =S dm+ S dns S=Sm+Snm
dG =pa dna + ps dre G =pana+ s e
In general, dG =-S dT +V dPph dna + ps dre and ¢y =—-SdT + Vi dP.
9. For m moles of A and smmoles of B the Gibbs energy of mixing is given by:
AmixG = G — G1 = Ma(Ha — Ha) + ne(Us — M)
10. The molar Gibbs energy of mixing of a solgt¢hie Gibbs energy of solvatiahGe(xz).
The Gibbs energy of formation in solutionA8G°(xg) = AtGg(pure) +AsolGe(Xs).

11. The Gibbs energy of mixing for ideal solutiesientirely entropicAmxG = — TAmxS.
C [
Atconstant T and PAmS =—mR Y X InX  AmG =neRT Y X Inx  AnmxH =0

i=1 i=1
12. The chemical potential of A in solution, ahcentratiorxa, is equal to the chemical
potential of A in the vapor at equilibriumua(xa) = pa(g) + RT In R/P°.

13. The chemical potential of a constituentigxa) = pa(l) + RT In Py/Py, using the pure
liquid standard stateua(l) = pa(g) + RT In B/P°, where R is the vapor pressure of the pure
liquid and R is the partial vapor pressure of the substanegunlibrium with the solution.
14. The equilibrium partial vapor pressure of bstance is called the escaping tendency.
15. The partial vapor pressure of a constitueatvalan ideal solution is given by Raoult’s Law:
Pa = xa Pa. If all constituents obey Raoult’s Law, the sabatis an ideal solution.
16. The equilibrium state for ideal solutions ey by Raoult’'s and Dalton’s Laws:
« In solution—Raoult’s Law: R=xaPa R = xgPs
« In the vapor—Dalton’s Law: R = Pa + Ps = xaPa + xsP
ot = XaPA + (1 —xa)Ps ) )
= P = & = XaPa = XaPa
P =Y Plot OF YA =B = Pt = XaPh + (1 —XaPA)
17. For an ideal constituemta(xa) = Ha(l) + RT InXa.

18. For an ideal solution, the partial molar vo&uai a constituent is the pure molar volume,
Va = V,, the partial molar enthalpy is the pure molar alpth, Fa = Ha, and the partial
molar entropy is 8= Sy — R Inxa (see Problems 16 and 17).

19. The solute in dilute solution obeys Henry'sv_ & = kn,s X8, Wherekn g is the Henry’s Law
constant for Bkng is the limiting slope of the partial vapor pressaurve ass — O.

20. Solutions that follow Henry’s law for the stdand Raoult’'s Law for the solvent are called
ideal-dilute solutions. Raoult’'s and Henry’s Laws Amiting laws; all solutions approach
ideal-dilute behavior in the dilute solution limiy, — 1 andxs — O.

21. The Henry's Law constaid; g, is the equilibrium constant for the desolvatioagess:

B (xs) = B(gas, B) kig = Ps/xs  and AdesoG° = — RT Inkus

wherelAdesoG° is the Gibbs energy of desolvation from diluteusioh to give the substance
in the gas phaséyesoG° = —AsolG for the_gas phase of the substance,

22. Henry’'s Law can be written in concentratioftsi(see Summary Table). Henry's Law in
terms of vapor and solution concentrations in nitylarcs(g) =kec s and
DdesoGye = — RT Inkec  defines the unitless Henry's Law constdey,
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23. The chemical potential of a ideal-dilute cansnt is:ps(xs) = pi(l) + RT Inxe, using a
Henry's Law standard state](l) = u3(g) + RT Inkug/P°.

24. The chemical potential of an ideal-dilute $®lcan also be expressed is terms of molarity or
molality by changing the standard state to unitarity, ‘ug, or unit molality,"us, instead of
unit mole fraction, as listed in the Summary Table.

25. ldeal-dilute solutions, by convention, assaniaoult’'s Law standard state for the solvent
and a Henry's Law standard state for the solutechvbuarantees that when the solvent
behaves ideally, the solute also behaves ideally.

26. The liquid and vapor compositions at the esfdstie line are at equilibrium; the chemical
potentials of each component are equal in the twases.

27. The length of a separation column that givesmaposition enhancement equivalent to a tie
line on the phase diagram is called the heightvedemt of the theoretical plate, HETP.

28. Anazeotropebehaves as if the solution were a pure substamdegddistillation. The vapor
above a solution at the azeotropic compositionthasame composition as the solution.

29. A colligative property is a property of diligelutions that depends only on the
concentration of the solute and not the chemiaap@rties or specific identity of the solute.

30. The boiling point elevation and freezing paapression for an ideal-dilute solution at
constant pressure, assumiiigHia andAxSa are constant and the solute is only found in the
solution phase, for successively more dilute sohgiare:

o7 =) L
o7 laan) w2
soem os(Tomir)  aroem e (TRged)

31. For strong electrolytes, for the colligativeerties, m =v m or @ =V ¢, wherev is the
number of ions from the dissociation of the stretegtrolyte.

32. The chemical potentials in an ideal-diluteusoh at a total pressure of AR are:

solvent: Ha(Xa,P+AP) =pa(l,P) + RT Inxa + APVa
Ha(Xa,PHAP) =pa(l,P) + AP —)Va
solute: Ha(xe,P+AP) =pl(I,P) + RT Inxs + APVs

where W and &, the partial molar volumes, are assumed constaertthe pressure range.
33. The osmotic pressure witla(xa,P+m) = pa(l,P) for successively more dilute solutions is:
tVa == RT Inxa nVa ORT xs nV Oxs RT nlcs RT

34. For solid-liquid equilibrium, the minimum fraag point is called the eutectic temperature
and the mole fraction at the eutectic temperatithe eutectic composition.

35. The variance, f, is the number of independdrnsive variables at equilibrium. The Gibbs
Phase Rule, assuming every component occurs iy phase, isf c—p + 2. At constant T
orP,f'=c—-p+1, and at constant T and P=f¢ — p.



653

36. The total number of independent variables egé¢d describe a system is D =f + p. D is the
number of independent variables in the total déifeial of the Gibbs energy.

37. Log P is a measure of the hydrophobic-hydiaptiharacter of the compound:

. cs(octanol) o
B (aq) = B (octanol) P _—CB(Water) AG° = —RT 2.303log P
with AG® = A...G°(ag) — AyesS° (0ctanol).
38. QSAR is used to find correlations of biologjigetivity with molecular structure using linear
equations that relate molecular descriptoystoathe desired biological activity, Aor
compound i:

q
Ai=> mxj+h where the prand b values are fit coefficients.
=1

Summary TableSolution Standard States in the Ideal-Dilute Sotulimit.

Raoult's Law: Solven Henry's Law: Solute  Henry’s Law: Solute Henry’s Law: Solute
xa = 1 standard state xg = 1 standard state m°=1m c°=1M
Pa =Xa Px Ps = ku,g Xe Ps = kom,z Mg Ps = Koc,8 Ca
AdesoG° = — RT Inky g AdesoGpm = — RT Inkom s AdesoGp = — RT Inkoc s
_ ky,g (1 kg) _ Ky (1 L)
Pm.B=1000 ghiia P8 =1000 ML Qor/9Ma

Kom,e = ku,8/55.51mol kg* (*) Kpc,s = Kn,8/55.34mol L (*)
Ha(Xa) = pA() + RT Inxa [us(xg) = u;(l)+RT Inxg s ="u&()+RTIn me/m° Me = U8()+RT In cs/c°
pa(l) = R(Q)+RTIN PaP° (1) = p3(g)+RTIn kna/P® Mp3(1) = pg(9)+RTIN kome/P° FUE(T) = pg(9)+RTIN Ko gP°
pa(l) = AGR(pure) 1) Mua() =AGi(Am) 0 el =AGaAM) ()
(*) Aqueous at 298.15 K (°) Referenced to the pure elements in their stansiateds.
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Problems: Ideal Solutions

1. The volume of a solution of methanol in wateleiss than the corresponding sum of the pure
components. The solution temperature rises upommixa). Does this solution show positive or
negative deviations from ideality? (b). Are theckes better described as A-B > A-A, B-B or
rather A-B < A-A, B-B? (c). Is the vapor pressufdéhe solution greater than or less than
predicted using Raoult’'s Law? (d). Is the escapamglency of methanol from the solution
greater than or less than that predicted using Raduaw? (e). Is the boiling point of the

solution greater than or less than predicted uRBiagult's Law? (f). Which is larger, the pure
vapor pressure of methanol or the Henry’'s Law aomtséf methanol in water?
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2. A 2.412 m solution of ethanol in water contaghiL000.00 g of solvent has a total volume of
1133.08 mL. The partial molar volume of ethandlhiis solution is 53.890 mL mdl Calculate
the partial molar volume of water in this solution.

3. The density of a solution can be accuratelgmeined by measuring the vibration frequency
of a U-shaped tube filled with the solution. Théwne of a solution containing 1 kg of solvent
can be determined from the density of the solutfah.Show that:

Nadta + Neg 1000 g + g (1 kgpis
d B d
wheredla is the molar mass of the solveaitg is the molar mass of the solutes i the
molality of the solute, and d is the density of sméution.
(b). The density of a 5.4266 m solution of ethanalater is 0.96808 g mtat 25C. The partial

molar volume of ethanol in this solution is 54.18B mol?. Calculate the partial molar volume
of water in this solution.

Vlkg =

4. The relationship between density and the volofreolution that contains 1 kg of solvent is
(derived in Problem 3):

Nadta + Neig 1000 g + g (1 kgprs

1kg —
V= d d

The density at 2% as a function of the concentrationpatoluenesulfonic acid in water is given
below. The molar mass pftoluenesulfonic acid is 172.205 g molCalculate the partial molar
volumes ofp-toluenesulfonic acid and water at 2.0000 m &€25

mg (mol kg?) 0.0000 0.5000 1.0000 2.0000 3.0000 4.0003 4.5005
d (g mLh 0.99707 1.02159 1.04334 1.07970 1.10846 1.13178 1.14187

5. Prove the relationship for the partial molaluwoe in Egs. 18.1.10:

. * — a (N
Given V=nVa+tn% show that ¥ =% + mg (a_mB)T 5
P

6. The apparent molar volume of sucrose in watgnien by the following power series
expansiort.

W=Ve+RT[%AM+Y3BME+Y%Cni+YsDmi]

where \§ is the partial molar volume of the solute at iitérdilution, and A, B, C, and D are
constants and R is in units of L atmt knol. All five coefficients are determined using non-
linear least squares curve fitting of experimedtdh. (a). Find the partial molar volume of the
solute as a function ofg/A, B, C, and D. (b). The fit coefficients for sose at 25C are: \§ =
0.21149 L mof, A = 1.107x1¢" kg mof! atnt?, B = -1.64x1 kg® mol3 atm?, C = 1.15x16

kg* mor atnit, and D = 0. Find the partial molar volume of 0.0Q0n sucrose at 26.

7. Calculate the entropy and Gibbs energy of ngixih0.80 moles of HD(l) and 0.20 moles of
ethanol at 298.15 K. Assume an ideal solution.
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8. Ethanol from the fermentation of corn or othmrmass has been proposed as a replacement
for petroleum based transportation fuels. For ngeainsportation fuels, ethanol must contain
less than 0.7% water. Calculate the minimum eneeggssary to produce one mole of ethanol,
with a concentration of 99.3% ethanol by volum@%(C, from a fermentation broth containing
15% by volume ethanol. Assume ideal behavior. Camfglas minimum separation requirement
to the Gibbs energy of combustion of ethanol. Tésesity of ethanol is 0.789 g riL

9. At 50.0C the vapor pressure of pure hexane and pure heeptar0.534 bar and 0.188 bar,
respectively. The two liquids form nearly an idsalution. (a) For a solution with a mole
fraction of 0.670 heptane, calculate the total vapessure and the mole fraction of each
component in the vapor phasb) The total vapor pressure of a heptane-hexalogien is
0.405 bar. Calculate the mole fraction of heptanthe solution, the partial vapor pressures of
each component, and the mole fractions in the vppase.

10. At 30.0C the vapor pressure of pure toluene and pure bereme 36.7 and 118.2 torr,
respectively. The two liquids form a nearly idealusion. (a) For a solution containing 50.0
mole % of toluene, calculate the total vapor pressmnd the mole fraction of each component in
the vapor phase. (b) What is the composition aflat®n of benzene and toluene that will boil
at 30.0C at a pressure of 50.0 torr?

11. 2-Propanol and 2-methylpropanol form an ige&lition. (a). Calculate the composition of
the solution and vapor that boils at F€C&nd an ambient pressure of 1.00 bar. The standard
boiling point of pure 2-propanol is 822 and the enthalpy of vaporization at the standard
boiling point is 43.61 kJ mdl The standard boiling point of pure 2-methyl-pnoplas 107.7C
and the enthalpy of vaporization is 46.26 kJfn@). What is the highest purity attainable from
a single-plate distillation starting with the comsgimn in Part (a)?

12. The standard state Gibbs energy of formatfaneshanol in the gas phase at@5s
-161.96 kJ mot. The Henry's Law constant isde 4.51x1@ bar L mot. (a). Calculate the
standard state Gibbs energy of formation of aquemethanol at 28C. (b). Calculate the
concentration of methanol in an aqueous solutigargan equilibrium vapor pressure for
methanol above the solution of 0.0100 bar (1.00&PA50 torr).

13. The vapor pressure of heptane in solution dwkitomobutane is given in the table below, at
50°C.3 Calculate the Henry's Law constarks, ke, andkpc, for heptane. The data is plotted in
Figure 18.3.1. The density of 1-bromobutane &C255 1.276 g mi! and the molar mass is
137.02 g mot. Assume the density is roughly independent of tnaoire for this small
temperature difference.

x(bromobutane) 0 0.1171 0.2362 0.3329 0.4323 0.5182 0.5836 0.6333
P.ag(heptane, torr) 140.0 125.8 110.6 98.4 86.1 74.8 66.4 59.6
x(bromobutane) 0.65880.7123 0.7935 0.8805 0.9521 1
P.ag(heptane, torr) 57.3 49 37.2 23.3 9.6 0

14. The Henry’'s Law constants,, for O; and N in water at 25C are 4.40x1Hbar and

8.68x10d bar, respectively. Calculate the equilibrium sdltypof O, and N in water at 25C in
units of molarity and ppm by weight. Find the radfoO, to N> in moles. Assume that air is 20.0
mole % Q and 80.0 mole % Nat a total pressure of 1.00 bar.
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15. The Henry’s Law constant for @@an be expressed using the concentration of dsgol
CQOy, only, or the concentration of G@nd carbonic acid:

1 —_ @ kp —_ L
©C® 7 Ceoe ¢Ce = oot Gacos

The equilibrium constant for the dehydration ofozanic acid is about 650:
H2COs (ag) = CCz (aq) + RO (1) K =650

The Henry's Law constant for G@n sea water at 2& is Koc,co = -1.53% Show thakpe,co O
Koc.cee, Within experimental error.

16. Show that the temperature dependence of #michl potential for an ideal constituent is
given by: @pa/oT)p , 1y = —S = - S+ R Inxa, where & is the pure molar entropy of the
substance A and the concentration in the solusag. i

17. The partial molar entropy of a constituentnndeal solution, at constant temperature and
pressure, iSiS S — R Inx, where $is the pure molar entropy of the substance i had t
concentration of i in the solutionxs (See the previous problem for a proof of thisagun.)
Show that the entropy of mixing of an ideal binaojution iSAmxS = — MR (Xa In Xa + X N Xg)
at constant temperature and pressure.

18. Show that the Raoult’'s Law and Henry’'s Law dtad states for a solute are related by:
Hi() = pe(l) + RT Inkue/Ps

19. Using the binary liquid-vapor phase diagramvahbelow, (a). what would be recovered
from the distillate and from the pot for an exhatestractional distillation, starting with the
solution with compositiom. (b). Does this solution show positive or negatiegiations from
ideality. Discuss the forces that act in solutisrcampared to the forces that act in the pure
liquids.

vapor cst.P
A
Tmad
T
ToB
liquid N
1
. |
0 Xaz X1 1
XA, YA -

20. When 640. mg of naphthalene is dissolved i §®f chloroform, the boiling point of the
solution is 0.455°C higher than that of pure soty@a = 61.2°C). Calculate (a) the molal
boiling point elevation constant, and (b) the ma@athalpy of vaporization of chloroform.
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21. (a). The freezing point depression of a sotutif 1.433x1¢ g of butanol in 1.000 g of
water is 0.035588 R Calculate the molar mass of butanol. The enthafdysion of water is
6.008 kJ mot at 273.15 K. (b). The freezing point depressioa eblution of 2.951x18g of
butanol in 1.000 g of water is 0.07300 K. Calculie molar mass of butanol again and
compare.

22. A sample of benzene has a freezing point4af°g. Calculate the purity of the benzene in
mole %. Assume the solution is ideal and the infasriare insoluble in solid benzene. The
standard melting point of pure benzene is 848nd the enthalpy of fusion is 10.59 kJ that
the standard melting point.

23. A DSC melting curve was determined for a saapltetracosane,@so. The sample

weight was 2.21 mg. Partial areas were determindchge reported in the table below, in
arbitrary units (as shown schematically in Figue417). The total area under the melting curve
was 7.351, which corresponds to 0.3919 J. Fingbtine melting point, molar enthalpy of fusion,
and mol % impurity for the sample. The molar masgwacosane is 338.66 g ol

T (K) 322.39 322.44 32251 322.58
Partial area 1.450 1.669 2.122 2.866

24. Prove that the dependence of the freezing pbia solution on the concentration of the
solvent is given by (start with the chemical potstof the pure solvent and the solution):

AtusHa (l 1)
R

In % = T T

25. Polyvinyl alcohol is often used in lecture aerstrations to make “slime.” A 4.00% by mass
solution of polyvinyl alcohol was placed in an osmeger. The height of the solution above the
surface of the pure water at equilibrium was 26at 25.0C. Assume the density of the
solution is that of pure water. Calculate the agpnate molar mass of the polyvinyl alcohol and
the average number of monomers, n, linked in thgnper. [Hint: Polyvinyl alcohol is
CH3CH(OH)[CH.CH(OH)]1.CH2CH20OH, so use —CHCH(OH)- for the monomer molar mass.]

26. Osmotic pressure is used to determine thermudas of polymers. However, Eq. 18.4.30
assumes ideal behavior. For real solutions, Ee.3d.gives areffectivemolar mass. For

careful determinations, theffectivemolar mass of a sample is determined at several
concentrations and extrapolated to zero conceotratihere Eq. 18.4.3®ecomes exact. The
osmotic pressure of a sample of polystyrene iretoduwas determined at several concentrations
at 25C. Find the molar mass of the polystyrene sarfiple.

Cs(gLh)  2.60 5.16 6.54 9.19
n (Pa) 9.80 32.0 51.0 107.

27. A 0.1000 m agueous urea solution and purenaateseparated by a membrane that is
impermeable to urea and permeable to water, & 28d 1 bar. Calculate the chemical potential
of urea in the solution, relative to the standdatleschemical potential, at equilibrium. The
density of the solution is 0.99873 g rfind the data necessary to obtain the partial molar
volume of urea is given in Example 18.1.1.
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28. Calculate the chemical potential of water ;200 M solution of sucrose at 10.00 bar and
25°C. The partial molar volume of water in this sabatis well approximated by the pure molar
volume.

29. Starting with the expression for the chempzakntial of the solvent in an ideal-dilute
solution, prove Eq. 18.4.15

30. Consider the solubility of a pure solid, Baisolvent at temperature T. Assume that the
solution is ideal-dilute and at constant press{ae.Show that:ps(s) =pi(l) + RT Inxe.

(b). The standard state Gibbs energy of soluticth@foure solid at temperature T is defined as:
AsolG8(T) = pi(l) — pa(s). Show that the solubility of the solute isxin= -AsoG8(T)/RT.

(c). At reference temperatureg the solubility isxs.. Show that the temperature dependence of
the solubility is given by:

& _ _AsoIHg (1 1)

.= R \T (ideal-dilute, cst. P) P18.29.1

T To
31. (a). Show that for small changes in tempeea\if = T — To, Eq. P18.29.1reduces to:

_ AsoHE Xgo
o =v00 SR a7

(b). Show that this equation and LeChéatelier’s pie are consistent.

32. Many binary solid-liquid phase diagrams arearamplex than Figure 18.4.11. Some
systems show the formation of a stable birmmpoundin the solid phase. Compounds
typically have simple stoichiometries, such a8 Ahat are stabilized by strong intermolecular
forces, like hydrogen bonding, or favorable crygi@tking forces. The compound components
are not covalently bound, and the compound doesiet in the liquid phase. An example of a
compound in the phase diagram for NaCl in waténésdehydrate, NaQ2(H20). The solid-
liquid phase diagram for a system with a stablelssthte compound, 8, is shown below.
Analyzing a phase diagram that shows compound ficomaan be simplified by treating the
compound as a hypothetical pure substance andmiivide phase diagram to either side as
separate binary systems. Describe the phase toassihat occur along the cooling curve at the
indicated compositiorx;.

cstF

TmB

liquid A& B
T
. Tma
4[soln.
& solid /soln.
Te , AB \ & solifl A
solid Be 1 :
. I solid A:B &
solid AB ! solid A
pure 150 X 0.667 1 pure A
Xa — AB

33. Relate the changes in the slopes of the segroarthe cooling curve, Figure 18.4.12, and
the widths of the peaks on the DSC melting curugyie 18.4.13, to the variances of the system
at constant pressure. Discuss segments b-c and c-d.
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34. The following DSC melting thermograms wereant¢d from a range of starting
compositions of Sn and Pb. The compositions arergas % by mass. The baselines of the
thermograms are offset for clarity. Sketch the birsalid-liquid phase diagram. Use % by mass
Sn as the composition axis, instead of mole frac#o by mass gives a more convenient plot for
this systent.

A
100% SA— | \
2|32°C
79 369 |
dt :
221°C
63% S
38% Sn—/ ,
1;33°C 2212°C
100% Ph .

3|27°C T,(°C)

35. Find the variance for a gas in equilibriumhaain aqueous solution of the gas. Give an
expression for the general differential of the Gilelmergy, the change in Gibbs energy at
constant temperature, and the change in Gibbs gaépnstant temperature and pressure.
Discuss the independent variables.

36. Two patrtially miscible liquids, A and B, forantwo-phase liquid system at equilibrium. One
phase is mostly A with a small amount of B anddtieer phase is mostly B with a small amount
of A. Consider only the liquid phases. Give an espion for the general differential of the
Gibbs energy, the change in Gibbs energy at contamperature, and the change in Gibbs
energy at constant temperature and pressure. Biticeisndependent variables. Most non-polar
organic liquids and water are examples of this gfdeehavior; small amounts of water dissolve
in the organic layer and small amounts of orgaalistance dissolve in the aqueous layer.

37. A system containing three components is uramarHow many phases are present?

38. Show that for a pure substance the largesbruwf phases that can coexist is three.
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39. Determine if the following statements are wudalse. If the statement is false, describe the
changes that are necessary to make the statemenif possible. If the statement is true but too
restrictive, give the more general statement.

(a). A champagne toast was used to celebraterihkdiages of the construction of a
transportation tunnel under the Thames River indomm in November 182%The celebration
fell flat because at the higher ambient pressuthartunnel, the Henry’s Law solubility of the
CQO. in the wine increased, making the champagne tiagtdarticipants also suffered gastric
distress upon regaining ground level. This eveatpsactical example of Henry’s Law.

(b). Soft drinks may be kept from “defizzing” bymping air into the empty space above the
soft drink in a partially filled bottle.

(c). Consider a two-phase region for a binary shdjdid equilibrium system at constant
pressure, with solution in equilibrium with purdidd, Figure 18.4.12. At a fixed
temperature, the solution composition may be amyevalong the tie line.

(d). A solution has a minimum freezing point (theeetic temperature) because at the
minimum temperature, the both the solute and theesbhave limited solubility in solution.

(e). The theory of ideal-dilute solutions doesakd solute-solvent forces into account.

(f). The boiling point is elevated and the freezpaint is depressed in a dilute solution of
methanol in water.

(9). Two phases cannot be in equilibrium unless@thponents occur in each phase.

40. For many binary solid-liquid systems, the setids are partially miscible. The solid phases
consist of a phase rich in A with small amount8pthea phase, and a phase rich in B with
small amounts of A, thg phase. Cooling a solution of A and B, with anialitoncentration
greater than the eutectic composition, freezesolid o. Cooling a solution of A and B, with an
initial concentration less than the eutectic contmy gives solid3. Below the eutectic
temperature, soliff and solida are in equilibrium. The compositions of the twdidphases
depend on temperature. The phase diagram for aytso&ad-liquid system with partial
miscibility is shown below, at constant pressures@ibe the phases in equilibrium in each part
of the phase diagram. Give the variancefdr each accessible region of the phase diagram.
cstF

T
me liquid A & B
T Ta
solidB_| 7 c>so|id a
9 solid B & solid a \i
pure B ; pure A
0 Xe 1

XA—»
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41. For many binary solid-liquid systems, the swtids are partially miscible. The solid phases
consist of a phase rich in A with small amount8ptheao phase, and a phase rich in B with
small amounts of A, thg phase. Below the eutectic temperature, $okohd solido are in
equilibrium. The compositions of the two solid pbaslepend on temperature. The phase
diagram for a binary solid-liquid system with pattmiscibility is shown below, at constant
pressure. Describe the phase changes that octhe aslution starting at poiatis cooled to

below the eutectic temperature, pant
cstF
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42. Consider a binary solid-liquid system with gmments that are completely immiscible in the
solid phase, Figure 18.4.11. Below the eutectigtnature, only pure solid A and pure solid B
are present. The general form of the Gibbs Phate Ruc — p + 2, does not apply to this region
because the components A and B don’t occur irhalphases. Determine the variance in the
two-phase solid region below the eutectic tempeediar immiscible components.
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