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Chapter 17: Phase Transitions in Pure Substances

The standard boiling point of ethanol is 7&0and the standard enthalpy of vaporization is
38.56 kJ mot. Calculate the vapor pressure at 26.0

The sudden change in properties of a pure subsias it melts, boils, or sublimes is quite
striking. Why do the density and entropy of a sabsé abruptly change at some fixed
temperature? Why does the temperature remain cdangkale two phases are in contact at
equilibrium? Why does the magnetic field of a femegnet drop to zero at a fixed temperature?
Phase transitions have great value in helping tertgtand the physical structure of matter; phase
transitions are a window into intermolecular forad8ases would not liquefy if there were no
intermolecular attractions. Strong intermolecutacés result in high melting points and boiling
points. Phase equilibrium also has important pcattmplications.

Phase transitions are important in biogeochdmigdes. For example, the polar ice sheets are
major reservoirs of pure water. Some chemical re@astin the troposphere occur on the surface
of ice or on a thin surface layer of liquid waterioe particles.Phase transitions also have
important applications in thermal energy storage: emergy transfer. Steam is the most
commonly used thermal energy transfer medium. Binphase transitions have important
technological applications in areas such as phassfer data storage on compact disks.

17.1 The Chemical Potentials of the Phases are Edwd Equilibrium

Phase Transitions Minimize the Chemical Potentidlhe chemical potential of a pure substance
is just the Gibbs energy per mole. The variatiothefchemical potential with temperature and
pressure for phase i is given by dG = - S dT + \indférms of molar quantities:

dui =—-SdT + Vi dP (pure substance) 17.1.1

where $is the molar entropy and; 6 the molar volume for the pure substance irptmticular
phase. The slope of chemical potential versus testynre at constant pressure for each
individual phase is given by the first term in Bd.1.1:

(%%') =-S (pure substance) 17.1.2
P

The molar entropy of a substance is always posithaking the chemical potential decrease
with temperature, Figure 17.1.1. Since the molarogry increases for each subsequent phase,
Si(s) < ¥(I) << S(g), the slopes of the lines are steeper in pregrgdrom solid to liquid to gas.
The temperature dependence of the chemical potentgeeatest for gases.

Follow the chemical potential curve for a saitdrting at low temperature. As a solid is heated,
the chemical potential decreases. At low tempeeathie chemical potential for the liquid phase
is higher than the solid, but the chemical potémbiathe liquid also decreases with temperature.
The chemical potential curves for the solid andiliiccross at the melting point, wharés) =
K(h). Above the melting point, the substance candoits chemical potential by dropping from
the solid curve to the liquid curve. In other wotde chemical potential is minimized by
melting. As we continue to heat the substance, e boiling point the chemical potential
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for the vapor phase drops below the liquid phaskth@ substance minimizes the chemical
potential by evaporating.
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Figure 17.1.1: (a). The slope of the chemical pidémersus temperature at constant
pressure is the negative of the entropy for eadlvidual phase. (b). An increase in pressure
increases the chemical potential of each phaspppiional to the pure molar volume of the
phase, resulting in an increase in melting andrgppoints, assumingi{s) < Vi(l).

As we proved in Eg. 15.2.25, the chemical pagésdf the two phases are equal at
equilibrium. If the chemical potentials are not aa spontaneous process results, increasing
one phase at the expense of the other until otteegbhases disappears. The temperature remains
constant as long as two phases are in contacttagldibrium. Energy transferred into the
system converts one phase into the other insteeisohg the temperature. Once one of the
phases is exhausted, thermal energy input theaases the temperature of the one-phase
system.

Consider the extensions of the chemical poteotiiaves for the phases above or below the
normal transition temperatures. These extensianstawn as dashed lines in Figure 17.1.1a.
Can a solid continue along the solid phase cherpmi@ntial curve above the melting point? A
solid can exist above its melting point, at leastshort periods of time. Similarly, if cooled
rapidly, a liquid can exist below its melting poiktowever, if a dust particle lands on the surface
of the liquid or the container is bumped, the laqguickly crystallizes into the solid phase. A
solid or a liquid above its normal transition temgiare is said to beuper-heated and a liquid
or a vapor below its normal transition temperaisrealledsuper-cooled Super-heated or super-
cooled phases are metastable. Metastable phasesatieally trapped in the higher chemical
potential phase. The “bumping” phenomena duringlidison is an example of the sudden
vaporization of a liquid that is heated above dsmmal boiling point. Super-cooled liquids are
commonly encountered during recrystallizations. 8tmes getting crystals to form from a melt
is difficult; scratching the surface of the beawdth a stirring rod or adding a seed crystal
initiates the formation of the solid by providinghacleation site.

Phase transitions occur to minimize the chenpo#&ntial of a substance, but what does this
tell us about the effects of intermolecular forc€shsider the balance of the enthalpy and
entropy for a phase transition at a particular teraureAxG =AyH — T AxS. The enthalpy
change for a phase transitidiaH, is endothermic because of the energy necessaryercome
the intermolecular attractions. The forces inclv@@& der Waals, electrostatic, and hydrogen-
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bonding interactions. Melting, sublimation, or vapation weaken these attractions. At low
temperature the enthalpy term dominates. The phidkdhe strongest intermolecular forces is
the stable phase at low temperature. Intermoledotaes also have an effect on the entropy
change for a phase transition, but the biggestitanion to the entropy change is the increased
energy dispersal from forming a more mobile phasdigh temperature, the entropy term
dominates and the higher entropy, more mobile phaske stable phase.

How does pressure effect phase transitionspidssure dependence of the chemical potential
for a phase is given by the molar volume of thesph&q. 16.6.16:

@a} -V,
(ap LTV 17.1.3

The chemical potential of a phase always increassincreasing pressure. For example, for

the liquid phase in Figure 17.1.1b, the chemicatpial curve at a higher pressure corresponds
to moving each point on the liquid curve upwardapyroximately the same amount. The change
is biggest for the gas phase, which has the highekir volume. For most substancegsy/<

Vi(l) << Vi(g) and the intersection of both the solid-liquidiahe liquid-vapor chemical

potential curves are at higher temperature fonarease in pressure. Therefore, the melting
point for most substances and the boiling pointeéase with increasing pressure. A clearer way
to diagram the pressure and temperature depenftanglease equilibria is to draw a phase
diagram in the P-T plane, Figure 17.1.2.
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Figure 17.1.2: Phase diagram for first order tr@mss. Thea phase is the low temperature
phase and th@ phase is the high temperature phase: (a). matifigsion, solid— liquid,

(b). boiling, liquid - vapor. (c). The solid, liquid, and vapor regiofishe phase diagram

are separated by coexistence curves that fix #xespre at a given temperature if the phases
are in contact at equilibrium«Ts the triple point, ' is the standard melting pointy i the
standard boiling point, and. s the critical point.

The solid, liquid, and vapor regions of the ghdggram are separated by coexistence curves
that describe the P-T relationships when the phasem contact at equilibrium. The properties
of the system are constrained to lie along the ist&xce curves if the corresponding phases are
present and at equilibrium. The coexistence cuovéhfe solid-liquid transition, the melting
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curve, plots the change in melting point with apglpressure. The coexistence curve for the
liquid-vapor transition, the vapor pressure cuptets the change in vapor pressure of the liquid
with temperature. The coexistence curve for thels@por transition, the sublimation curve,
plots the sublimation pressure as a function otéheperature. The vapor pressure curve ends in
the gas-liquid critical point. Compare Figure 1Z.With Figure 7.5.2. The vapor pressure curve
in the P-T diagram corresponds to the “side vieithe two-phase region in the P-V diagram.

The molar volume of most all liquids is gredten the solid, and the corresponding melting
curve has a positive slope; for most substancem#iéng point increases with pressure.
Correspondingly, the density of the solid is gre#étan the liquid and the solid sinks in the melt.
However, for water, bismuth, and antimony the matdume of the liquid is less than the solid
and the melting curve has a negative slope. Thénggloint of water, bismuth, and antimony
decreases with increasing pressure, as indicatéldebyashed curve in Figure 17.1.2a.
Correspondingly, the liquid is denser than thedsphase and the solid floats in the melt.

The three coexistence curves meet at one gbatriple point. At the triple point the chemical
potentials of all three phases are equal. Theetppint occurs at one specific, fixed pressure and
temperature. The phase diagram qualitatively dessrihe P-T relationships. We now need to
derive the equations for the coexistence curves.

The Chemical Potentials of the Two Phases are E4floalg the Coexistence CurveBy
convention, we write the phase transition in theation from the low temperature phase to the
high temperature phase:— 3. For example, for melting we assume the directian-s| and

for vaporization |- g. At the equilibrium phase transition temperafiorea given pressure P,
the chemical potential of the two phases is edu@l,15.2.25:

pa(phasen,P,T) =pa(phase3,P,T) (equilibrium) 17.1.4

This equality fixes the phase transition temperafar a given pressure. Consider the vapor
pressure curve as an example. The system stahtsheitiquid and vapor at equilibrium at
temperature T and pressure P. If the temperatuigaisged by an amount dT to the new
temperature T' =T + dT, the change in pressuressacy to keep the two phases at equilibrium
is dP with the corresponding new pressure P' =dP.+The change in chemical potential for the
two phases must be equal for the chemical potsrdiathe new conditions to remain equal:

dui(a,P',T) = qu(B,P",T") (equilibrium) 17.1.5
Using Eqg. 17.1.1 for each phase gives the changes:
— §(0) dT + Vi(a) dP = — S(B) dT + Vi(B) dP (equilibrium) 17.1.6

Solving for the change in pressure necessary taireat equilibrium for a change in
temperature gives:

dP_ S(B)—=S(a) AxS
dT ™ Vi(B) — Vi(a) ~ AuVi

using the definitionsA«S = S(B) — S(a) andAxVi = Vi(B) — Vi(a). For the phase transition at
the equilibrium temperature, the entropy is givgrely. 13.3.2:
ArHi

AvS =75 (equilibrium) (13.3.2)

(equilibrium) 17.1.7
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Substituting this last equation for the entropyrd®into Eq. 17.1.7 gives:

d_P _ AtrHi
dT T AuVi

This expression is called ti@dapeyron equation, which holds for any equilibrium phase
transition that has non-zeraH; andAyVi. The pressure derivative is not a partial derieati
because the requirement of equal chemical poterdaistrains the system to lie on the
coexistence curve. We can make useful approximatiothe Clapeyron equation to determine
the equations of the three coexistence curves.

(equilibrium) 17.1.8

The Change in Vapor Pressure with Temperature Dégpen the Enthalpy ChangeThe
coexistence curve for the liquid-vapor transitisritie vapor pressure curve. For liquid-vapor
equilibrium, the molar volume of the vapor is muygkater than the liquid,ifwapor) >>
Vi(liquid). The change in molar volume for the traiosi is then to a good approximation given
by just the volume of the vapaxyVi = Vi(vapor). If we treat the vapor as an ideal gas, the
change in molar volume for the transition is:

AvVi = Vi(vapor)= RT.T (equilibrium, ideal gas) 17.2.9
Substituting this last approximation into the Chajo& equation gives:

S—I.? :A;{r—l_jli.f (equilibrium, ideal gas) 17.1710
We need to integrate this derivative to find thpargpressure curve. Separating variables gives:

%3=$QL.IH.£ dT (equilibrium, ideal gas) 17.1°11

This expression is called ti@ausius-Clapeyronequation. For predicting the vapor pressure of
a liquid as a function of temperatufeHi = AvagHi and T is the temperature of the vapor and
liquid at equilibrium. The approximations used arigding the Clausius-Clapeyron equation also
hold for sublimation, wherAyHi = AsuHi. Integrating Eq. 17.1.2between the equilibrium
vapor pressures;Rnd B at the corresponding temperaturesamd & and assuming the
transition enthalpy is constant over the tempeeatange gives:

fpzﬁ)_ T2 AyHi

= 2 (equilibrium, ideal gas) 17.1°12
P - RT

P1
P AvHi (1 1 I .
In(;i) = —% (T_z —T—J (equilibrium, ideal gas, cshyH;)) 17.1.13
Exponentiating both sides of the last equationsoiding for B in terms of R gives:

_ALH(;_;)
p=pe R\l2'T (equilibrium, ideal gas, csiyHi) 17.1.14

These last two results are examples of the exp@héamnperature dependence discussed in
General Patterrid 4. The integrals can also be done as indefinite rateg



590

ArHi .

INP+c==pF +cC (equilibrium, ideal gas, catyHi)) 17.1.18

The integration constants can be combined and reda® IrC = (c' — c) to give:

AwHi —_ :
InP = —% +InC (equilibrium, ideal gas, csiyHi) 17.1.18

This relationship shows that a plot of In P vers(isgives a straight line with slope = —
AvrHim/R. Exponentiating both sides of this last equatigain shows the general form of the
exponential temperature dependenc&émeral Patterri] 4.

p=ce RT (equilibrium, ideal gas, cstyHi) 17.1.17

The plot of the vapor pressure of a liquid or thblsnation pressure of a solid as a function of
the temperature follows the general exponentigbshia Figure 3.5.1. The form of Eq. 17.1°13
is used if only two data points are known. The plidin P versus 1/T or a non-linear plot fit
directly to Eq. 17.1.1%is used if multiple experimental values are a\ddaThese integrated
forms of the Clausius-Clapeyron equation can b ts@redict the vapor pressure of a
substance as a function of temperature, predidboiieng point of a substance as a function of
applied pressure, or determine the enthalpy of Waaton or sublimation of a substance.

Example 17.1.1:
The standard boiling point of ethanol is 7&0and the standard enthalpy of vaporization is
38.56 kJ mot. Calculate the vapor pressure at 26.0

Answer The standard boiling point corresponds to tinepierature for which the vapor pressure
equals 1 bar. Giveft,apH°® = 38.56 kJ mot = 3.856x160 J mot* and Eq. 17.1.13

| [ P, )_ 3.856x16Jm0I1( 1 1 )_ > 347
N1.00 bay ~ ~8.3145 J K molt\298.15 K~ 351.55K) ~ <

P> = 0.095% bar = 0.0948atm = 71.7 torr

Example 17.1.2:

Organic chemists often use reduced pressure digiitls to limit thermal degradation during the
purification of a substance. The normal boilingmaf cyclohexane is 80°C. Use Trouton’s

rule to estimate the standard enthalpy of vapaamaCalculate the boiling point of cyclohexane
if the applied pressure is 200. torr.

Answer The normal boiling point corresponds to the terapure for which the vapor pressure
equals 1 atm. Don’t forget to convert to absoletaperatures: 80°C = 353.8 K. From



591

Sec. 13.3AvapS’° = AvapH®/Tp = 10.5 R from Trouton’s rule for unassociated liquiBolving for
AvagH®:

AvapH® = Tp AvapS® = 353.8& K(87.3 J K mor?) = 309 kJ mot?
Using Eq. 17.1.13

(200. torg_ 3.00x10* J mot* (i 1 )
"\760. tor K

| =-1.33%

8.3145 J KK molt\T, " 353.%
T,=314. K = 42C

Notice that you can use any pressure units, she@itessure enters the calculation as a ratio.
You can check that there are three significantregun 314. K, assuming two significant figures
in AvapH®, by repeating the calculation witliapH® = 32. kJ mot and noting the change. The
literature value for the enthalpy of vaporizatidrcgclohexane is 29.97 kJ mbl

Example 17.1.3:

The vapor pressure of water at 2000s 23.38 mbar. The standard boiling point of wete
99.6°C. Calculate the enthalpy of vaporization of watsisuming a constant enthalpy over the
temperature range.

Answer The standard boiling point corresponds to tinepierature for which the vapor pressure
equals 1 bar. Don’t forget to convert to absoletaperatures: 20.00 = 293.15 K and 99.6C
=372.76 K. Using Eq. 17.1.13

| (23.38 mbaJ_ AvapH® ( 1 1 }J
N1000 mbay ~ ~8.3145 J K mol\293.15 K~ 372.76

AvaH®
78.3145 J K mo
AvaH® = 42.86 kJ mot

This value differs from the literature valugapH°® = 42.00 kJ mot, because we didn’t take into
account the non-ideality of the vapor and the teaipee dependence of the enthalpy of
vaporization. See Problems 10 and 13 for the mxaeteexpressions.

-3.755 = i1 (7.288x10* K™)

09

General Pattern 9: Exponential Temperature DepepdatinP/dT =4H/RT?: Eq. 17.1.10is a
commonly occurring form of exponential temperatdependence. An alternate way of writing
the Clausius-Clapeyron equation in differentiahfids based on the identity:

dP ) dP
deInP S|ncefF:IdlnP:InP+c 17.1.18

Substitution of this identity into Eq. 17.1°1fesults in:
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AvHi dIinP_ AyHi —_ :
dinP =05 rT2| daT or 4T =ﬁ (equilibrium, ideal gas) 17.1°19

This last equation is in the same form as the Avilneeexpression for the temperature
dependence of the rate constant, Sec. 4.4:

dink Ea

dT -RT? (cst. V) (4.4.25)

We will show in Chap. 20 that the temperature ddpane of the equilibrium constant also has
the same form:

ok o (equilibrium) (20.1.26)

These expressions integrate to:
@R -EEY ey
PJTT R \T. T T. T Koy, R\T2TT
(cstAyHi, Ea, AH®) 17.1.20
This last expression is discussed in many Gendrah@stry texts. In addition we can note that:

T 1 1
T2 = _ C(T) since % = _f d(?) = —T +C 17.1.21
Substitution of this identity into Eqs. 17.1°19.4.25, and 20.1.26 gives:
AtrH| l _ Ea l ArHo l
dinP == R d(T) dink= R d(T) dink=- (T) 17.1.22

Egs. 17.1.13 17.1.18, 17.1.20, and 17.1.22 show that a plot of In K, lar In K, versus 1/T
gives a straight line with slopeArHi/R, —E/R, and A/H°/R, respectively. This general type of
temperature dependence lead&#emeral Patterril 4, which shows how to manipulate the
general integrated form.

09

The Melting Point can Increase or Decrease withsBtege The coexistence curve for the solid-
liquid transition is the melting curve. The meltiogrve determines the change in melting point
with applied pressure. For solid-liquid equilibriuthe change in molar volume for melting is a
weak function of pressure. @aisVm can be taken as a constant over a moderate rénge o
pressures. The change in melting point is smadinder very large applied pressures. Therefore,
to an excellent approximation, the transition elthas also constant, except for extreme
geological circumstances. Using these two approtans, the right-hand side of the Clapeyron
equation, Eq. 17.1.8, for melting transitions foradl changes in melting point is a constant. The
infinitesimals in dP and dT can then be immediateiggrated to give:

E _ ArusHi

AT = T AV (equilibrium, moderataP) 17.1.23
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with T, the melting point of the solid. Solving for theatige in melting point gives:

_ Tm ArsVi

AT = — AP (equilibrium, moderatdP) 17.1.24
ArusHi

Now we see why the melting curve in Figure 17.1as & positive slope for most substances; for
most substances the liquid has a higher molar veltiran the solid, givingwsVi =
Vi(l) — Vi(s) > 0. The phase transition is endothermic, kthalconstant terms on the right of
Egs. 17.1.8 and 17.1.24 are positive. Howevemater, bismuth, and antimony, the liquid has a
smaller molar volume than the solfl,sVi < 0 and the melting curve then has a negativeeslop
The unusual change in molar volume for water isfl@ction of the extensive hydrogen bonding
network in ice that increases the distance betwl@molecules. When ice melts, this hydrogen
bonding network partially collapses, decreasingniodar volume.

The decrease of the melting point for ice witbgsure makes ice skating possible. The skate
blade has a very small contact area with the iegtimg a large applied pressure. The increase in
pressure lowers the melting point, which melts soifrthe ice to provide a lubricating surface.

Example 17.1.4:

Calculate the contact area that is necessary terltve melting point of ice initially at 1.000 bar
by 2.00C for a 70.0 kg skater. The densities of wateriaadit 0.00°C are 1.000 g crand
0.9168 g cri, respectively. The enthalpy of fusion is 6.008ndl™ at 273.15 K.

Answer The change in molar volume is

AwsVi = Vi(l) = Vi(s) = 18.02 g mot (1/1.000 g crif — 1/0.9168 g crd)
=-0.7278 crimol?! = -7.278x10 m® mol*

Using Eq. 17.1.24:

Tm AfusVi AP _273.15 K(-7.278X107 m? morl)
AusHi B 6.008x18 J mott

AT = -3.309x1¢ K Pal AP = -2.00 K
AP = 604.4x10Pa
The applied pressure is given by the force peranaa:

AP = f/A = mg/A = 70.0 kg(9.807 m&¥/A = 604.4x16 Pa
A =1.136x1¢ m? = 1.136x1¢ m? (1000 cm/1 A= 11.36 mm

which is why skate blades have a gentle curve firomt to back and are hollow ground{J.

AT = AP

The decrease in molar volume upon melting otexainly plays an important role in the
distribution of aquatic life in temperate regiolisce was denser than liquid water, lakes would
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freeze from the bottom up, which would force anyates organisms to the surface and
subsequent exposure to harsh winter temperatucedesiccation.

The Vapor Pressure of a Liquid Increases with lasieg Total Applied PressureThe
Clausius-Clapeyron equation applies to a liquidennts own pure vapor pressure. Is the vapor
pressure of a substance the same when the vainaihis presence of other gases? In particular,
is the vapor pressure the same when the systepersto the atmosphere? Consider the vapor
pressure of a substance, Rith a total applied pressure of P. Assume thatother components
of the gas phase (e.g., nitrogen and oxygen) ddissblve in the liquid. If the mole fraction of
the substance in the vapolyjs then the partial vapor pressure is given by Dédthaw of

partial pressures gk yg P. As the applied pressure is increaggdnd B both increase. With a
change in applied pressure from P to P', the chamgeemical potential of the vapor and the
liquid must be equal for the system to remain ailégium, Eq. 17.1.5

dui(a,P', T = qu(B,P', T") (equilibrium, cst. T) 17.1.25

The chemical potential of the liquid is changedHwy change in total pressure, dP. At constant
temperature, from Eq. 17.1.6:

Vi(a) dP = qu(B,P', T") (equilibrium, cst. T) 17.1.26

where \(a) is the molar volume of the liquid. The chemicatgntial of the ideal vapor is
dependent on the partial vapor pressure abovediie | Eq. 16.6.20

ui (@) =pi°(g) + RT In R/P° (ideal vapor) 17.1.27
The change in chemical potential is given as:
dui (@) =RTdInR (ideal vapor) 17.1.28

Substitution of this last equation into Eqg. 17.1gAés the dependence of the partial vapor
pressure on applied pressure:

RT dIn R = Vi(a) dP (equilibrium, ideal vapor, cst. T) 129

Integration of this last equation from the init@por pressuregR and applied pressure @ the
final vapor pressuregR and applied pressure,Rssuming that the molar volume of the liquid is
constant, gives:

Ps2  Vi(a)
In = 2 = IIQT P.—P) (equilibrium, ideal vapor, cst. T) 17.1°30
p

As the applied pressure increases, the vapor preessireases. In effect, increasing applied
pressure “squeezes” molecules into the vapor plibsgever, the effect is not large. The molar
volume of liquid water at 2& is 18.0 crdmol? or 1.80x1@® m* mol. The vapor pressure of
water at 28C is 3.168 kPa, or 23.76 torr, Table 2.1.1. Forawander its own pure vapor
pressure, in Eq. 17.1.31he initial pressures are B B;1 = 3.168x160 Pa. For water open to the
atmosphere at2® 1 bar = 1.00x1TPa, the saturated vapor pressure of water incréases
3.170 kPa, or 23.78 torr. The pure vapor pressuagiquid in a closed container is essentially
identical to the saturated partial vapor presstisgraospheric pressure in air. Significant
changes in vapor pressure occur only at high aghpliessures.
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17.2 Second Order Transitions Have a Discontinuityn the Heat Capacity with
Temperature

The phase transitions that we have been disasse calledirst-order phase transitions
because they have a finite transition enthalpyaahge in molar volume. The Clapeyron
equation holds for all first-order phase transiodowever, many types of phase transitions
occur without a transition enthalpy. How do we auéerize thesehigher-order” phase
transitions?

Consider a first-order phase transition. Thes@nee of two phases is often discovered by
observing a reflection from the interface betwdenttvo phases. The reflection occurs because
the index of refraction of light in the two phaseslifferent. When light passes from one
medium to another with a different index of refrant some of the light is reflected. The two
phases have a different index of refraction becatitiee difference in density. The difference in
density corresponds to a difference in molar volude9i/Vm. The change in molar volume
between the phases corresponds to a discontimuitysudden change, in the properties of the
two phases. In other words, some property of tlhstsmce must have a discontinuous change
for a phase transition to occur.

First-Order Phase Transitions Have a Change in iyt and Entropy The phase transition

temperature corresponds to a discontinuous chanihe islope of the chemical potential curve,
Figure 17.1.1. The slopes for the two phases @rsition, from Eq. 17.1.2, are:

(%#_)p =—S(@)  and (%ﬂ, =-S(B) 17.2.1

For the equilibrium phase transition, then, théedénce in slope of the chemical potential curves
at the equilibrium temperature is given by:

aAtrlJ-) _ (5%) (auuj
(aT o \aT ) \aT e 17.2.2

Substitution of Eqs. 17.2.1 into Eq. 17.2.2 gives ¢change in entropy for the phase transition as:

DS = —(%E) (equilibrium) 17.2.3
P

From the entropy change for a phase transition,1B@.2, the corresponding change in enthalpy
for the transition is given by:
AvHi = Te AvS (equilibrium) 17.2.4

The enthalpy change for the phase transition & @#ied thdatent heat The change in molar
volume for the transition is similarly related teetchange in slope of the chemical potential with
respect to pressure:

oA oM oM, e
AyVi= ( a;“)T = (GFEJT_(OI;)T (equilibrium) 17.2.5

The change in molar volume produces a discontinagbasge in the density.
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The Ehrenfest Criteria Some phase transitions occur without a disoootis change in
enthalpy or molar volume. Transitions in this caiggare calledigher-order or second-order
transitions, depending on the details of the pre@cégamples include the gas-liquid critical point
and super-conducting, ferroelectric, and ferrom#gneansitions. What property of the
substance changes discontinuously for these tramsit The temperature dependence of the
chemical potential for a first-order transition amdecond-order transition are shown
schematically in Figure 17.2.1. The entropy vetsasperature curve is given by Eq. 17.2.1 as
the negative of the derivative of the chemical po# versus temperature. The result for a first-
order transition is a sudden increase in entropytfe phase transition. For a second-order
transition, the chemical potential changes smoaotlily temperature, with the result that the
entropy curve shows a sudden change in slope atathgition temperature, but not a
discontinuity.

The heat capacity is also related to a temperaterivative of the entropy and chemical
potential. Using Eq. 12.2.32 and solving for thatheapacity gives:

2
ds :%.E dT Gi=T (%); - T(%)P (cst. P) 17.2.6
The last equality results from substitution of E@.1.2 for the entropy. Consider a first-order
transition, Figure 17.2.1. The slope of the entrepssus temperature curve is roughly constant
before and after the transition givingS{oT)r as a relatively constant value and a
correspondingly slowly varying heat capacity befanel after the transition. Just at the

transition, the slope is infinite giving rise to iafinite heat capacity at the transition
temperature. An infinite heat capacity seems ssirggiat first. However, for a phase transition,
heat transfer into the system occurs without a gbam temperature, s,& dqy/dT — . For a
second-order phase transition, the slope of th@gytversus temperature curve increases as the
transition is approached, which in turn resultamnincreasing heat capacity with temperature. At
the transition temperature, the entropy versus é&atpre curve has a sudden change in slope,
resulting in a discontinuous heat capacity. Summragithen, to detect a phase transition, some
property of the substance must exhibit a discomtynwith temperature. For a first-order
transition, the first derivative of the chemicatgutial curve is discontinuous, leading to a
transition entropy and enthalpy. For a second-atr@@sition, the second derivative of the
chemical potential with temperature is discontimjdaading to a discontinuity in the heat
capacity. Since the second derivative is discoptiisuthe resulting transition is called a second-
order transition. These expectations for the agrear of discontinuities are called the

Ehrenfest criteria.

The Ehrenfest criteria are idealized requiremémat are probably only met exactly by
superconducting transitions in metallic systems.rRost higher-order transitions, the heat
capacity curve appears atmbda-transition, as shown schematically in Figure 17.2.1. This
type of phase transition gets its name becaudeediitmilarity of the shape of the heat capacity
curve with the Greek letter lambda, The distinguishing characteristic is the strozmperature
dependence of the heat capacity as the substapoeaapes the transition. The heat capacity
may approach a finite limiting value at the traiosittemperature or diverge to infinity.
Experimental determination of the type of divergerscdifficult. The phase transition
temperature in second-order or lambda-type tramstis called theritical temperature, and
phase transitions with second-order or lambda-tsgesitions are callecritical phenomena
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Examples of lambda-transitions include the gastiguitical point, smectic liquid crystals (LCD
displays), superfluid helium, binary mixture solitgi(e.g., nitroethane, 3-methylpentane),
ferromagnets (permanent magnets), ferroelectriesr¢phone and acoustic guitar transducers),
and other order-disorder transitions (thermochrasuizstances, which are used in color
changing drinking straws). Lamda-transitions refolin long-range cooperativity near the
critical temperature.
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Figure 17.2.1: First-order transitions show a digicwity in the first derivative of the chemical
potential with respect to temperature or pressseeond-order transitions show a discontinuity
in the second derivative of the chemical potentigh respect to temperature or pressure, but the
heat capacity varies gradually near the transigomperature. Lambda transitions show a
divergent heat capacity near the transition tentpergwhich may or may not go to infinity).

Second-Order Transitions Show Pre-Transition Effedtirst-order phase transitions are
completelycooperative The molecules cooperate with each other in gginew motional
freedom; when one molecule gains motional energg tither nearby molecules find it easier to
add motional energy. The motions of the molecutescarrelated throughout the phase at the
phase transition temperature. In a first-order ptieensition all the molecules undergo the phase
transition together, subject only to the availapitf thermal energy. A pure first-order transition
has an infinitely sharp transition. In second-onplease transitions, the formation of cooperative,
correlated motions has a limited range. In apprivgctihe transition temperature from below, the
molecules begin to reorganize and to move in canaén each other. As the temperature
approaches the critical temperature, the distaaioger of this cooperation increases. This
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distance range is called therrelation length. Near the phase transition temperature, islands of
molecules in the more mobile phase intermix with l'sss mobile phase. These islands of
disorder are calledomains The domains anticipate the transition or “sthet transition” early,
which broadens the transition pye-transition effects. The number of molecules on average in
these disordered domains is calleddbeperative unit C.U. The larger the cooperative unit

and correlation length, the narrower the phasesitian temperature range. In the limit of

infinite correlation length, the transition beconfiest order.

The gas-liquid critical point is a typical exampf a cooperative phase transition. The
approach to the critical point and the correspogdgrease in correlation length can be
measured by laser light scattering, as well as\bseases in the heat capacity. The formation of
correlated domains near the critical temperatuoseslocal changes in the index of refraction.
Light scattering results when the correlation lérgpproaches the wavelength of the light. The
phase appears cloudy as the critical temperatapepsached.

The Nematic to Isotropic Phase Transition in LigQiystals is Mixed First and Second Order
Liquid crystalline phases are liquid-like phases that exist betweemormal isotropic-liquid
phase and the normal crystalline solid phase. Higuystalline phases are liquid-like because
they can be poured like a liquid, but they alsoehlawmg-range correlated motions of the
molecules. Liquid crystals are formed from long-fik@ molecules. In liquid crystalline phases,
the molecules tend to align along their long aé® same effect is seen if you put pencils in a
box in random orientations, and then shake the Sexeral types of liquid crystalline phases
exist, depending on the degrees of freedom thdtraited, Figure 17.5.1. In the normal liquid
phase, the molecular orientations and diffusioagaire isotropic (independent of direction). In
thenematic phase the molecules tend to orient along theiy bptis and diffusion rates differ in
the direction parallel and perpendicular to theglames of the molecules. In temectic-Aphase
the molecules align in sheets and diffusion witthi@ sheets is much faster than between the
sheets. In themectic-Cphase, the molecules have a net tilt within treeeth The liquid
crystalline phases show significant light scattgricaused by long-range correlation of the
molecular motions
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\\ /\\\ \‘\/| /\///\ W/ 20171711
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Figure 17.5.1: Liquid Crystalline Phases. Motiodegjrees of freedom are lost in progressing
from the high temperature, high entropy, isotrdjjaid phase to the lower temperature
phases. Not all liquid crystals display each phit®e ordered phases are also possible.

The nematic to isotropic phase transition shpeestransition effects, caused by the long-range
correlations, and a small transition enthalpy, Fegli7.5.2. Such phase transitions are said to be
mixed first and second ord&f.Liquid crystalline displays for consumer electamare made
from a thin film of a chiral liquid crystal in th@mectic-C phase held between two plastic sheets.
One of the plastic sheets is made from a polarimatgrial.
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Figure 17.5.2: (ap-Methoxybenzylidengy-n-butylaniline, MBBA, is in the nematic phase
at room temperature. (b). The nematic to isotrdippgid phase transition for MBBA is
mixed first and second order. The transition shprestransition effects and a discontinuity
at the critical temperature.

Transitions in Phospholipid Bilayers are CooperativThe gel to liquid-crystalline phase
transition of phospholipid bilayers is another epéarof a cooperative transition. The gel to
liquid-crystalline phase transition is also mix@dtfand second order. Phospholipids have
hydrophilic headgroups and hydrophobic acyl-td&lsospholipids spontaneously assemble into
bilayer structures in aqueous solution in whichhieadgroups are on the surfaces exposed to
water and the hydrophilic tails are directed invgafeigure 17.5.3. Dipalmitoyl
phosphatidylcholine is a typical phospholipid. EHssembly of the bilayer is entropy driven due
to the release of water molecules from the solwagizell of the phospholipids, as the lipids
aggregate into the bilayer. Liposomes are prodwdezh the phospholipid bilayer forms around
an aqueous cavity. Liposomes are a good modelmyfsiethe cell membrane. Cell membranes,
however, also contain embedded proteins and aihids) such as cholesterol. Liposomes are
useful in their own right, as aids in pharmaceltigdivery and in cosmetic preparations.
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Figure 17.5.3. Liposome formed from a phosphollpldyer. Dipalmitoyl
phosphatidylcholine (DPPC, 16:0 PC, dipalmitoyitlen).
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The phospholipids in the lower temperature tglksare tightly packed by Van der Waals
forces. At the onset of the phase transition, ti@spholipids cooperatively melt, Figure 17.5.4.
In the resulting liquid-crystalline state, the pploslipids are more loosely associated, owing to
weakened van der Waals forces between the acyhghaeakened polar interactions of the
phospholipid headgroups, and a lateral expansiohesécyl chaing”’ Much of the added energy
is in increased chain torsional vibrations. In Bf&C of synthetic phospholipids, a small peak at
a lower temperature than the main melting pealksis seert:® This small initial peak is a gel
state to gel state molecule packing reorganization.
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Figure 17.5.4: Differential scanning calorimetrgiimogram of DPPC showing pre-transition
broadening of the gel to liquid crystalline phasasition.

Phase-Change Data Storage Uses a First-Order Ttamsfrom Crystalline to Amorphous
Forms Rewritable computer storage media, CD-RW andERM, store information by
converting a chalcogenide between crystalline andrphous forms by heating. The crystalline
and amorphous forms have markedly different indetesfraction, which can be sensed by
scanning a laser over the recording surface. AgleSg an example of a chalcogenide used in
data storage. The chalcogenide forms a meta-statdephous phase when heated above the
melting point and then rapidly cooled. Then heatlmgyamorphous chalcogenide above a
characteristic temperature called the crystallarapoint, but below the melting point, forms an
ordered crystalline state. A pulsed, tightly foaisefrared laser produces the heating. The
amorphous state might represent digital “1’s” dmel d¢rystalline state digital “0’s”. Amorphous
phases are super-cooled liquids and are oftendcglésses. Window glass is amorphous silica
with added calcium and sodium oxide. Phase-chahglea@genide glasses, such as&igTes,

are also used in non-volatile computer memory, Wwisadesignated PC-RAM or chalcogenide-
RAM. GeShTes has markedly different electrical conductivityii® amorphous and crystalline
forms? PC-RAM has lower energy requirements and is maralde than flash memory.

17.3 Summary-Looking Ahead

Phase transitions minimize the chemical poteofithe substance. At equilibrium, the
chemical potential is everywhere equal. At a gigesssure, the constraint of equal chemical
potentials for two phases in contact at equilibriiixes the phase transition temperature. Phase
transitions result in a discontinuity in some pmbpef the substance. First-order phase
transitions have a discontinuity in the entropy armaar volume. The entropy change for the
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phase transition results in an enthalpy changéhtransitionAxS =A«H/Ty. The boiling
points and melting points of substances have atdiedationship to the intermolecular forces.
We need to understand phase equilibrium in pubstances before we consider the theory of
solutions and phase transitions in multi-compomsgatems. For example, the variation of vapor
pressure with temperature is central in understandistillations. The activities of the solvent
and solute in a solution can be determined byopilioint elevation or freezing point
depression. For another example, as we saw in €h&pthe interface between phases can act as
a site of adsorption and heterogeneous catalysesphase transitions of water among solid ice,
liquid water, and water vapor are the underlyingmmena determining the biogeochemical
cycle for water. The unusual properties of watay role in the evolution of biological
diversity in temperate climates. In the next thekapters we consider the theory of multi-
component systems, the formation of solutions,cdramnical equilibrium.

Chapter Summary

1. The chemical potential of a pure substance&psessed in terms of molar quantities:
dui =—-SdT +V, dP
2. The variation of the chemical potential forlagsubstance, i, with T and P are:

@ﬁ) _ s (Qﬁ) _vy
(aT o TS op). =V

. The slopes of the chemical potential are disooaus at the equilibrium phase transition
temperature for a first order phase transition:

(aAtruj _ (augj (aqu AS = (aAtrg) AV _(amg)
oT Jp \ 0T Jp \OT Jp =TT AT T oP )t

4. At the equilibrium phase transition temperattine chemical potentials of the two phases are
equal:pa(phasen,P,T) =pa(phase3,P,T), which fixes the phase transition temperatorex
given pressure.

5. For first-order phase transitions at equilibrjuhe Clapeyron equation determines the
coexistence curves:

ﬁ)_ ArHi
dT ~TAuwVi

5. For vaporization and sublimation at equilibriand treating the vapor as an ideal gas, the
Clausius-Clapeyron equation is:

w

dP_AdH |r(ﬂj— AcHi (; %) PZ_HG_%H(%_%)
P RT P/ R \T.7T =
AvHi
_ AHi (1 _ AgHi _ _—RT
dinP=—p d(.l.) INP==p7 +InC P=Ce
6. The change in melting point for moderate changeressure is:
AT = Tm AnsVi AP

AsusHi
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7. The vapor pressure of a liquid increases witingasing total applied pressure:

b2V o,

where the initial vapor pressure ig:Rat applied pressure Bnd the final vapor pressure is
Ps,2 at applied pressureRFand assuming the vapor is ideal and the molamelof the liquid,
Vi(a), is constant.

8. The heat capacity is given by the second devevaf the chemical potential versus

temperature:
oS QZB)
G T(aT) T(aT2 p

9. Ehrenfest criteria for phase transitions spetiat, for a first-order transition, the first
derivative of the chemical potential curve is distiouous, leading to a transition entropy and
enthalpy. For a second-order transition, the sedanative of the chemical potential with
temperature is discontinuous, leading to a disoorty in the heat capacity.

10.

11.

12.

13.

14.
15.

16.

For most higher-order transitions, the heptaicaly curve appears as a lambda-transition,
giving a strong temperature dependence of thedageicity as the substance approaches the
transition.

The phase transition temperature in secondrandlambda-type transitions is called the
critical temperature, and phase transitions wittoed-order or lambda-type behavior are
called critical phenomena.

First-order phase transitions are completebperative. In second-order phase transitions,
the formation of cooperative, correlated motions adimited range. The distance range for
the correlation is called the correlation length.

Near the phase transition temperature, doniitie more mobile phase intermix with the
less mobile phase. The domains anticipate theiti@mswhich broadens the transition by
pre-transition effects. The size of the domairgiven by the correlation length.

The lambda transition at the gas-liquid caitigoint is studied using laser light scattering.

Liquid crystalline phases are liquid-like pbsishat exist between the normal isotropic-liquid
phase and the crystalline solid phase and havertmge correlated motions of the
molecules. Cheese is a liquid crystalline material.

The nematic to isotropic-liquid transitionliguid crystals and the gel to liquid crystal
transitions in phospholipid bilayers are mixedtfaad second order.

General Pattern 9: Exponential Temperature DependatinP/dT =4H/RT?:  Using the
alternate forms for the differentials:

dP
=dln =47

the temperature dependence of the vapor presbarsublimation pressure, the rate constant in
chemical kinetics and the thermodynamic equilibriconstant have the same general form:

dinP_ AyxHi dink Ea din AH° I
= :# T TR T‘I’KE FETZ (equilibrium)




603

AtrH| l _ Ea l _ AH® l
dIn R d(T) dInk-—Rd(T) dinks=-"5 d(T)

These expressions integrate for constaitm, Es, andAH® to:

“{33_ AnHi(iiJ Ir(sz Ea( 1) KT ArH°(iiJ
PU)TT R T, T T~ Kor, ~ R \T2 T

General Patterrid 4 is a continuation of this general pattern.

Literature Cited

1. A. R. Ravishankara, C. A. Longfellow, “ReacBam tropospheric condensed mattéhys.
Chem. Chem. Phy4999 1, 5433-5441.

. K. Denbigh;The Principles of Chemical Equilibrium: with Apg@itons in Chemistry and
Chemical Engineering,"4Ed., Cambridge University Press, Cambridge, Englang8118p.
114-116, 203-205.

3. A. Pines, J. J. Chang, “Study of the isotrapécratic-solid transitions in a liquid crystal by
carbon-13-proton double resonandetiys. Rev. A1974 10(3), 946-9.

4. S.Jan, N. A. Clark, P. S. Pershan, E. B. Bejgs‘Raman Scattering from a Nematic Liquid
Crystal: Orientational StatisticsPhys. Rev. Lett1973 31(26) 1552-1556.

5. D. Chapman, “Phase transitions and fluidityrabteristics of lipids and cell membranes,”
Quarterly Reviews of Biophysjd975 8, pp. 185-235.

6. R. Szoka, D. Papahadjopoulos, “Comparativegntgs and methods of preparation of lipid
vesicles (liposomes)Annu. Rev. Biophys. Bioen980,9, 467-508.

7. J. Mason, “Investigation of phase transitianbilayer membranesMethods Enzymal.
1998,295 468-494.

8. S. M. Ohline, M. L. Campbell, M. T. Turnbull, & Kohler, “Differential Scanning
Calorimetric Study of Bilayer Membrane Phase Tramss: A Biophysical Chemistry
Experiment,”J.Chem. Ed.2001 78(9), 1251-6.

9. R. Zhao, T. C. Chong, L. P. Shi, P. K. TanMéng, Xiang, Hu, K. B. Li, and A. Y. Du,
“Study of the Structural Transformation of £&&Tes Induced by Current Pulse in Phase
Change Memory,” from Phase Change and Nonmagnetterals for Data Storage
Symposium, J. Ahner, L. Hesselink, J. Levy, eadsAdvanced Data Storage Materials and
Characterization Techniques MRS Proceedings VolBd3sMaterials Research Society,
Warrendale, PA, 2003.

N

Further Reading

Critical Phenomena
H. E. Stanley|ntroduction to Phase Transitions and Critical Ploemena Oxford, New York,
NY, 1971.



604

Liquid Crystals
P. J. CollingsLiquid Crystals: Nature's Delicate Phase of Matt&and Ed, Princeton University
Press, Princeton, NJ, 2001.

Phospholipid Bilayers

J. M. Sturtevant, "Biochemical Applications of [&fential Scanning Calorimetry,” f&nn. Rev.
Phys. ChemH. L. Strauss, G. T. Babcock, C. B. Moore, edanual Reviews, Palo Alto,
CA, 1987 38, 466-476.

G. Cevc, D. MarshPhospholipid Bilayers: Physical Principles and Mtgjé&Viley, New York,
NY, 1987, pp 2-48.

Ferroelectric, Ferromagnetic, and other Order-Disler Phase Transitions
S. P. Parker, edSolid-State Physics Source BoMcGraw-Hill, New York, NY, 1988.

Problems: Phase Transitions in Pure Substances

1. Prove that the dependence of the freezing poirthe pressure for a pure substance for large
changes in pressure is given by:

T=Tng o st

2. Calculate the change in the melting point fatew ice for an increase in pressure of 10.00 bar
starting from the melting point at 1.00 bar. Thesiges of water and ice at 0.00°C are 1.000 g
cm® and 0.917 g cr, respectively. The enthalpy of fusion is 6.008ndl™* at 273.15 K.

3. The vapor pressure of acetone is 0.377 bad.8t@G and 0.817 bar at 500. Calculate (a)
the enthalpy of vaporization of acetone and (b)tvenal boiling point.

4. The normal boiling point of methanol is 6435 The vapor pressure of methanol at 280
is 0.1530 bar. Calculate the enthalpy of vaporratf methanol.

5. The vapor pressure of solid Csl at several exatpres is given in the following table.
Calculate the enthalpy of sublimation of Csl.

T (K) 7672  801.8 816.3 830.3 8468
P/106 (bar)  2.03 745 125 205  36.4

6. The vapor pressure of ethanol as a functideraperature is given in the table below.
Determine the enthalpy of vaporization of ethafalculate the standard boiling point of
ethanol.

T (°C) -2.3 19.0 34.9 63.5 78.4
Pvap (Mbar) 13.3 53.3 133.3 533.3 1013.
Pvap (Mmm Hg) 10.0 40.0 100.0 400.0 760.0
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7. The vapor pressure of benzoic acid is 0.133b&86.2C and 0.533 bar at 2270.
Calculate the standard boiling point.

8. For methanol, the enthalpy of fusion is 3.2151ol* and the volume change on melting is
2.75 mL mot* at the standard melting point of 175.59 Khe enthalpy of vaporization is 35.21
kJ mot! at the standard boiling point of 337.8 K. Estimihie triple point temperature and
pressure for methanol. Assume constant transititimadpies over the temperature range. [Hint:
you may use the Goal Seek option in Excel.]

9. The sublimation pressure versus temperatuagnofionia is In P = 23.03 — 3754./T. The
vapor pressure of liquid ammoniais In P = 19.80D63./T. (a) Find the enthalpy of sublimation
and the enthalpy of vaporization. (b). Calculaéetriple point for ammonia. (c). Find the
enthalpy of fusion at the triple poifit.

10. Integrate the differential form of the ClawsiDlapeyron equation:

AtrHi
dInP “RT2 dT

from an initial temperature ofoo a final temperature of T. In this equation The equilibrium
phase transition temperature at the given pressgsime the phase transition has a molar
enthalpy change given by:

AeHiT = AvHi 1o + AeCp,i (T = To)

whereAyCp m is the change in heat capacity for the phaseitramswhich is assumed to be a
constant. Show that the result is:

E) A”Hi,To (l i) AxC ) l) AxC ,iTO (l i)
'”(Po "R T T,/ R '”( JTTR T T,
1. Reference handbooks sometimes list the vapsspre of liquids in the form:

B
InP:A—T —-CInT+DT
Show that the result from the last problem cangvgitten in this form. Us&eneral Pattern
O 4: Exponential Temperature Dependerasea guide.

12. Long’'s Peak in the Colorado Rocky Mountain8962. m high. What is the boiling point of
water at this altitude? Assume a constant temperaif20.0C (see Problem 1.15) and the
pressure at sea level is 1.00 atm. The enthalpgpdrization of water is 42.00 kJ rrfol

13. For non-ideal gases, from Eq. 7.5.2, PV = Z.riRnd the corresponding integrated form of
the Clausius-Clapeyron equation for liquid-vaposolid-vapor equilibrium. In other words,
correct Eq. 17.1.T3for vapor non-ideality. Assume z angHm are constant over the
temperature range for the integration.
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14. Calculate the vapor pressure of methanol & €Qunder a total ambient pressure of
10.0 bar of air. The vapor pressure of methan@2Da8dC’C is 0.1530 bar, under its own vapor
pressure.

15. Particulates released from volcanic eruptaarsbe a significant source of heavy metals in
the environment. The magma under a volcano isgt teimperature and total pressure. Under
these circumstances, normally non-volatile subgtsuean have a significant vapor pressure.
NaCl and heavy metal chlorides are found in theovg@hase at high total pressure as volatile
molecular species. The concentration of Pb in theerals formed from the vapor phase in a
volcano is much higher than in the original magAishigh pressure, the vapor above a magma
is non-ideal and the fugacity must be used. EdL.3@.assumes the vapor behaves as an ideal
gas. Let R, be the vapor pressure of the pure liquid undgsute vapor pressure. Assume the
pure vapor pressure at the given temperature fgigutly small that the pure vapor is ideal,
giving fp,o = Bs0. Show that the fugacity of the vap®s;, in equilibrium with the pure liquid at the
elevated total pressure, P, is then:

f .
g _Vi(@)
In PB.O - RT (P_ I:13,0)

16. Redraw Figure 17.1.1 for water.

17. Some property needs to be discontinuous terebs phase transition. What property is
discontinuous in a pure Ehrenfest second-orderetiassition?

18. Find the difference in slope across the mgltiansition for the chemical potential versus
temperature curvegQul/oT)p , at standard pressure.

A (8&@)
aT ),

solid liquid

Tm T
19. Draw the chemical potential versus pressureesufor the solid, liquid, and vapor phases of

a pure substance, at constant temperature. Ashah¥(s) < Vi(l). Describe the process that
occurs at the intersection of the chemical poténtiaves.

20. (a). Sketch the chemical potential curvesugetemperature for the solid, liquid, and vapor
phases of substance at a constant pressure beddwtle point and (b) for a substance at the
triple point pressure.

21. If first-order phase transitions are “complet®moperative,” how can two-phase systems
exist at equilibrium? For example, how can ice kauaid water coexist at equilibrium at the
equilibrium phase transition temperature?
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22. Use the concept of correlation length and dorsiae to explain why the heat capacity of a
substance increases as the temperature increasesaatical point.

23. The monoclinic and orthorhombic unit cells itestrated, below. The unit cell lengths for
both unit cells are all different,7zab # c. The orthorhombic unit cell has all°98ngles between
the unit cell directionsy =3 =y = 9C°. The monoclinic unit cell has one angle not eqo&C,
a=y=90C,B.

{

O
SN

Monoclinic Orthorhombic

Methanol crystallizes into long hydrogen-bondedichalhere are two crystalline forms. Crystal
Il has a monoclinic unit cell and is the low temgdere form. Crystal | has an orthorhombic unit
cell and is the high temperature form. The diffeeers a small displacement of the hydrogen-
bonded chains in the direction perpendicular tadihection of the chains. The solid-solid phase
transition temperature is 157.4 K at 1 atm. Thediteon was reported to be second-order.
Carlson and Westrum redetermined the heat capaicitgry pure methanol samples to
determine the thermodynamic parameters for thegptraasition, Figure P174Crystal |

readily super-cools, so heat capacity data forgha&se is available below the equilibrium phase
transition temperature. Is the transition firssecond order?
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Figure P17.1: Heat capacity data for 99.98 mol%hared! near the solid-solid phase
transition at 157.4 K.

24. NiCk has a solid-state magnetic phase transition & e low temperature phase is anti-
ferromagnetic, and the high temperature phaseramgnetic. Antiferromagnetic phases are an
ordered lattice of unpaired electrons that alterisgin-up and spin-down. In the absence of an
external magnetic field, paramagnetic phases ase hn equal, or nearly equal, number of
electrons spin-up and spin-down, distributed atloam The paramagnetic phase is at higher
entropy at a given finite temperature. A plot of tieat capacity as a function of temperature is
shown below?’. Characterize this solid-state phase transition.
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