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Chapter 17: Phase Transitions in Pure Substances 
 

The standard boiling point of ethanol is 78.0°C and the standard enthalpy of vaporization is 
38.56 kJ mol-1. Calculate the vapor pressure at 25.0°C. 

 
 
   The sudden change in properties of a pure substance as it melts, boils, or sublimes is quite 
striking. Why do the density and entropy of a substance abruptly change at some fixed 
temperature? Why does the temperature remain constant while two phases are in contact at 
equilibrium? Why does the magnetic field of a ferromagnet drop to zero at a fixed temperature? 
Phase transitions have great value in helping to understand the physical structure of matter; phase 
transitions are a window into intermolecular forces. Gases would not liquefy if there were no 
intermolecular attractions. Strong intermolecular forces result in high melting points and boiling 
points. Phase equilibrium also has important practical implications. 
   Phase transitions are important in biogeochemical cycles. For example, the polar ice sheets are 
major reservoirs of pure water. Some chemical reactions in the troposphere occur on the surface 
of ice or on a thin surface layer of liquid water on ice particles.1 Phase transitions also have 
important applications in thermal energy storage and energy transfer. Steam is the most 
commonly used thermal energy transfer medium. Finally, phase transitions have important 
technological applications in areas such as phase transfer data storage on compact disks. 
 
17.1 The Chemical Potentials of the Phases are Equal at Equilibrium 
 

Phase Transitions Minimize the Chemical Potential:   The chemical potential of a pure substance 
is just the Gibbs energy per mole. The variation of the chemical potential with temperature and 
pressure for phase i is given by dG = – S dT + V dP in terms of molar quantities: 
 

 dµi = – Si dT + Vi dP      (pure substance) 17.1.1 
 

where Si is the molar entropy and Vi is the molar volume for the pure substance in the particular 
phase. The slope of chemical potential versus temperature at constant pressure for each 
individual phase is given by the first term in Eq. 17.1.1: 
 

 






∂µi

∂T P
 = – Si       (pure substance) 17.1.2 

 

The molar entropy of a substance is always positive, making the chemical potential decrease 
with temperature, Figure 17.1.1. Since the molar entropy increases for each subsequent phase, 
Si(s) < Si(l) << Si(g), the slopes of the lines are steeper in progressing from solid to liquid to gas. 
The temperature dependence of the chemical potential is greatest for gases. 
   Follow the chemical potential curve for a solid starting at low temperature. As a solid is heated, 
the chemical potential decreases. At low temperature, the chemical potential for the liquid phase 
is higher than the solid, but the chemical potential for the liquid also decreases with temperature. 
The chemical potential curves for the solid and liquid cross at the melting point, where µ(s) = 
µ(l). Above the melting point, the substance can lower its chemical potential by dropping from 
the solid curve to the liquid curve. In other words the chemical potential is minimized by 
melting. As we continue to heat the substance, beyond the boiling point the chemical potential 
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for the vapor phase drops below the liquid phase and the substance minimizes the chemical 
potential by evaporating. 
 
 
 
 
 
 
 
 
 
 
 
 (a).            (b). 
 

Figure 17.1.1: (a). The slope of the chemical potential versus temperature at constant 
pressure is the negative of the entropy for each individual phase. (b). An increase in pressure 
increases the chemical potential of each phase, proportional to the pure molar volume of the 
phase, resulting in an increase in melting and boiling points, assuming Vi(s) < Vi(l). 

 
 
   As we proved in Eq. 15.2.25, the chemical potentials of the two phases are equal at 
equilibrium. If the chemical potentials are not equal, a spontaneous process results, increasing 
one phase at the expense of the other until one of the phases disappears. The temperature remains 
constant as long as two phases are in contact and at equilibrium. Energy transferred into the 
system converts one phase into the other instead of raising the temperature. Once one of the 
phases is exhausted, thermal energy input then increases the temperature of the one-phase 
system. 
   Consider the extensions of the chemical potential curves for the phases above or below the 
normal transition temperatures. These extensions are shown as dashed lines in Figure 17.1.1a. 
Can a solid continue along the solid phase chemical potential curve above the melting point? A 
solid can exist above its melting point, at least for short periods of time. Similarly, if cooled 
rapidly, a liquid can exist below its melting point. However, if a dust particle lands on the surface 
of the liquid or the container is bumped, the liquid quickly crystallizes into the solid phase. A 
solid or a liquid above its normal transition temperature is said to be super-heated, and a liquid 
or a vapor below its normal transition temperature is called super-cooled. Super-heated or super-
cooled phases are metastable. Metastable phases are kinetically trapped in the higher chemical 
potential phase. The “bumping” phenomena during distillation is an example of the sudden 
vaporization of a liquid that is heated above its normal boiling point. Super-cooled liquids are 
commonly encountered during recrystallizations. Sometimes getting crystals to form from a melt 
is difficult; scratching the surface of the beaker with a stirring rod or adding a seed crystal 
initiates the formation of the solid by providing a nucleation site. 
   Phase transitions occur to minimize the chemical potential of a substance, but what does this 
tell us about the effects of intermolecular forces? Consider the balance of the enthalpy and 
entropy for a phase transition at a particular temperature: ∆trG = ∆trH – T ∆trS. The enthalpy 
change for a phase transition, ∆trH, is endothermic because of the energy necessary to overcome 
the intermolecular attractions. The forces include Van der Waals, electrostatic, and hydrogen-
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bonding interactions. Melting, sublimation, or vaporization weaken these attractions. At low 
temperature the enthalpy term dominates. The phase with the strongest intermolecular forces is 
the stable phase at low temperature. Intermolecular forces also have an effect on the entropy 
change for a phase transition, but the biggest contribution to the entropy change is the increased 
energy dispersal from forming a more mobile phase. At high temperature, the entropy term 
dominates and the higher entropy, more mobile phase, is the stable phase. 
   How does pressure effect phase transitions? The pressure dependence of the chemical potential 
for a phase is given by the molar volume of the phase, Eq. 16.6.16: 
 

 






∂µi

∂P T
 = Vi          17.1.3 

 

The chemical potential of a phase always increases with increasing pressure. For example, for 
the liquid phase in Figure 17.1.1b, the chemical potential curve at a higher pressure corresponds 
to moving each point on the liquid curve upward by approximately the same amount. The change 
is biggest for the gas phase, which has the highest molar volume. For most substances, Vi(s) < 
V i(l) << Vi(g) and the intersection of both the solid-liquid and the liquid-vapor chemical 
potential curves are at higher temperature for an increase in pressure. Therefore, the melting 
point for most substances and the boiling point increase with increasing pressure. A clearer way 
to diagram the pressure and temperature dependence for phase equilibria is to draw a phase 
diagram in the P-T plane, Figure 17.1.2. 
 
 
 
 
 
 
 
 
 
 
 
 

       (a).     (b).        (c). 
 

Figure 17.1.2: Phase diagram for first order transitions. The α phase is the low temperature 
phase and the β phase is the high temperature phase: (a). melting or fusion, solid → liquid, 
(b). boiling, liquid → vapor. (c). The solid, liquid, and vapor regions of the phase diagram 
are separated by coexistence curves that fix the pressure at a given temperature if the phases 
are in contact at equilibrium. Ttr is the triple point, Tm is the standard melting point, Tb is the 
standard boiling point, and Tc is the critical point. 

 
 
   The solid, liquid, and vapor regions of the phase diagram are separated by coexistence curves 
that describe the P-T relationships when the phases are in contact at equilibrium. The properties 
of the system are constrained to lie along the coexistence curves if the corresponding phases are 
present and at equilibrium. The coexistence curve for the solid-liquid transition, the melting 
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curve, plots the change in melting point with applied pressure. The coexistence curve for the 
liquid-vapor transition, the vapor pressure curve, plots the change in vapor pressure of the liquid 
with temperature. The coexistence curve for the solid-vapor transition, the sublimation curve, 
plots the sublimation pressure as a function of the temperature. The vapor pressure curve ends in 
the gas-liquid critical point. Compare Figure 17.1.2 with Figure 7.5.2. The vapor pressure curve 
in the P-T diagram corresponds to the “side view” of the two-phase region in the P-V diagram. 
   The molar volume of most all liquids is greater than the solid, and the corresponding melting 
curve has a positive slope; for most substances the melting point increases with pressure. 
Correspondingly, the density of the solid is greater than the liquid and the solid sinks in the melt. 
However, for water, bismuth, and antimony the molar volume of the liquid is less than the solid 
and the melting curve has a negative slope. The melting point of water, bismuth, and antimony 
decreases with increasing pressure, as indicated by the dashed curve in Figure 17.1.2a. 
Correspondingly, the liquid is denser than the solid phase and the solid floats in the melt. 
   The three coexistence curves meet at one point, the triple point. At the triple point the chemical 
potentials of all three phases are equal. The triple point occurs at one specific, fixed pressure and 
temperature. The phase diagram qualitatively describes the P-T relationships. We now need to 
derive the equations for the coexistence curves. 
 
The Chemical Potentials of the Two Phases are Equal Along the Coexistence Curve:   By 
convention, we write the phase transition in the direction from the low temperature phase to the 
high temperature phase: α → β. For example, for melting we assume the direction is s → l and 
for vaporization l → g. At the equilibrium phase transition temperature for a given pressure P, 
the chemical potential of the two phases is equal, Eq. 15.2.25: 
 

 µA(phase α,P,T) = µA(phase β,P,T)     (equilibrium) 17.1.4 
 

This equality fixes the phase transition temperature for a given pressure. Consider the vapor 
pressure curve as an example. The system starts with the liquid and vapor at equilibrium at 
temperature T and pressure P. If the temperature is changed by an amount dT to the new 
temperature T' = T + dT, the change in pressure necessary to keep the two phases at equilibrium 
is dP with the corresponding new pressure P' = P + dP. The change in chemical potential for the 
two phases must be equal for the chemical potentials at the new conditions to remain equal: 
 

 dµi(α,P',T') = dµi(β,P',T')      (equilibrium) 17.1.5 
 

Using Eq. 17.1.1 for each phase gives the changes: 
 

 – Si(α) dT + Vi(α) dP =  – Si(β) dT + Vi(β) dP   (equilibrium) 17.1.6 
 

Solving for the change in pressure necessary to remain at equilibrium for a change in 
temperature gives: 
 

 
dP
dT = 

Si(β) – Si(α)
V i(β) – Vi(α)

 = 
∆trSi

∆trV i
      (equilibrium) 17.1.7 

 

using the definitions: ∆trSi ≡ Si(β) – Si(α) and ∆trV i ≡ Vi(β) – Vi(α). For the phase transition at 
the equilibrium temperature, the entropy is given by Eq. 13.3.2: 
 

 ∆trSi = 
∆trHi

T         (equilibrium) (13.3.2) 
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Substituting this last equation for the entropy change into Eq. 17.1.7 gives: 
 

 
dP
dT = 

∆trHi

T ∆trV i
       ` (equilibrium) 17.1.8 

 

This expression is called the Clapeyron equation, which holds for any equilibrium phase 
transition that has non-zero ∆trHi and ∆trV i. The pressure derivative is not a partial derivative 
because the requirement of equal chemical potentials constrains the system to lie on the 
coexistence curve. We can make useful approximations to the Clapeyron equation to determine 
the equations of the three coexistence curves. 
 
The Change in Vapor Pressure with Temperature Depends on the Enthalpy Change:   The 
coexistence curve for the liquid-vapor transition is the vapor pressure curve. For liquid-vapor 
equilibrium, the molar volume of the vapor is much greater than the liquid, Vi(vapor) >> 
V i(liquid). The change in molar volume for the transition is then to a good approximation given 
by just the volume of the vapor, ∆trV i = Vi(vapor). If we treat the vapor as an ideal gas, the 
change in molar volume for the transition is: 
 

 ∆trV i ≈ Vi(vapor) = 
RT
P         (equilibrium, ideal gas)   17.1.9° 

 

Substituting this last approximation into the Clapeyron equation gives: 
 

 
dP
dT = 

∆trHi P
R T2           (equilibrium, ideal gas)   17.1.10° 

 

We need to integrate this derivative to find the vapor pressure curve. Separating variables gives: 
 

 
dP
P  = 

∆trHi

R T2 dT          (equilibrium, ideal gas)   17.1.11° 
 

This expression is called the Clausius-Clapeyron equation. For predicting the vapor pressure of 
a liquid as a function of temperature, ∆trHi = ∆vapHi and T is the temperature of the vapor and 
liquid at equilibrium. The approximations used in deriving the Clausius-Clapeyron equation also 
hold for sublimation, where ∆trHi = ∆subHi. Integrating Eq. 17.1.11° between the equilibrium 
vapor pressures P1 and P2 at the corresponding temperatures T1 and T2 and assuming the 
transition enthalpy is constant over the temperature range gives: 
 

 
⌡

⌠

P1

P2

 
dP
P  = 

⌡

⌠

T1

T2

 
∆trHi

R T2 dT         (equilibrium, ideal gas)   17.1.12° 
 

 ln






P2

P1
 = – 

∆trHi

R  






1

T2
 – 

1
T1

   (equilibrium, ideal gas, cst. ∆trHi)   17.1.13° 
 

Exponentiating both sides of the last equation and solving for P2 in terms of P1 gives: 
 

 P2 = P1 e
– 
∆trHi

R ( )1
T2

 – 
1
T1    (equilibrium, ideal gas, cst. ∆trHi)   17.1.14° 

 

These last two results are examples of the exponential temperature dependence discussed in 
General Pattern ℘4. The integrals can also be done as indefinite integrals: 
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 ln P + c = – 
∆trHi

RT   + c'    (equilibrium, ideal gas, cst. ∆trHi)   17.1.15° 
 

The integration constants can be combined and renamed as ln C = (c' – c) to give: 
 

 ln P = – 
∆trHi

RT  + ln C    (equilibrium, ideal gas, cst. ∆trHi)   17.1.16° 
 

This relationship shows that a plot of ln P versus 1/T gives a straight line with slope = – 
∆trHim/R. Exponentiating both sides of this last equation again shows the general form of the 
exponential temperature dependence in General Pattern ℘4: 
 

 P = C e
– 
∆trHi

RT      (equilibrium, ideal gas, cst. ∆trHi)   17.1.17° 
 

The plot of the vapor pressure of a liquid or the sublimation pressure of a solid as a function of 
the temperature follows the general exponential shape in Figure 3.5.1. The form of Eq. 17.1.13° 
is used if only two data points are known. The plot of ln P versus 1/T or a non-linear plot fit 
directly to Eq. 17.1.17° is used if multiple experimental values are available. These integrated 
forms of the Clausius-Clapeyron equation can be used to predict the vapor pressure of a 
substance as a function of temperature, predict the boiling point of a substance as a function of 
applied pressure, or determine the enthalpy of vaporization or sublimation of a substance. 
 
 
              

Example 17.1.1: 
The standard boiling point of ethanol is 78.0°C and the standard enthalpy of vaporization is 
38.56 kJ mol-1. Calculate the vapor pressure at 25.0°C. 
 
 
Answer:  The standard boiling point corresponds to the temperature for which the vapor pressure 
equals 1 bar. Given ∆vapH° = 38.56 kJ mol-1 = 3.856x104 J mol-1 and Eq. 17.1.13°: 
 

 ln






P2

1.00 bar = – 
3.856 x104 J mol-1

8.3145 J K-1 mol-1 




1

298.15 K – 
1

351.15 K
 = -2.3477 

 

 P2 = 0.09559 bar = 0.09434 atm = 71.7 torr 
 
 
 
              

Example 17.1.2: 
Organic chemists often use reduced pressure distillations to limit thermal degradation during the 
purification of a substance. The normal boiling point of cyclohexane is 80.7°C. Use Trouton’s 
rule to estimate the standard enthalpy of vaporization. Calculate the boiling point of cyclohexane 
if the applied pressure is 200. torr. 
 
 
Answer:  The normal boiling point corresponds to the temperature for which the vapor pressure 
equals 1 atm. Don’t forget to convert to absolute temperatures: 80.7°C = 353.85 K. From 
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Sec. 13.3, ∆vapS° = ∆vapH°/Tb ≈ 10.5 R from Trouton’s rule for unassociated liquids. Solving for 
∆vapH°: 
 

 ∆vapH° = Tb ∆vapS° ≈ 353.85 K(87.3 J K-1 mol-1) ≈ 30.9 kJ mol-1 

 

Using Eq. 17.1.13°: 
 

 ln






200. torr

760. torr  = – 
3.09x104 J mol-1

8.3145 J K-1 mol-1 




1

T2
 – 

1
353.85 K  = -1.335 

 

 T2 = 314. K = 42.°C 
 

Notice that you can use any pressure units, since the pressure enters the calculation as a ratio. 
You can check that there are three significant figures in 314. K, assuming two significant figures 
in ∆vapH°, by repeating the calculation with ∆vapH° ≈ 32. kJ mol-1 and noting the change. The 
literature value for the enthalpy of vaporization of cyclohexane is 29.97 kJ mol-1. 
 
              

Example 17.1.3: 
The vapor pressure of water at 20.00°C is 23.38 mbar. The standard boiling point of water is 
99.61°C. Calculate the enthalpy of vaporization of water, assuming a constant enthalpy over the 
temperature range. 
 
 
Answer:  The standard boiling point corresponds to the temperature for which the vapor pressure 
equals 1 bar. Don’t forget to convert to absolute temperatures: 20.00°C = 293.15 K and 99.61°C 
= 372.76 K. Using Eq. 17.1.13°: 
 

 ln






23.38 mbar

1000 mbar = – 
∆vapH°

8.3145 J K-1 mol-1 




1

293.15 K – 
1

372.76 K 

          -3.7559 = – 
∆vapH°

8.3145 J K-1 mol-1 (7.2853x10-4 K-1) 
 

 ∆vapH° = 42.86 kJ mol-1 

 

This value differs from the literature value, ∆vapH° = 42.00 kJ mol-1, because we didn’t take into 
account the non-ideality of the vapor and the temperature dependence of the enthalpy of 
vaporization. See Problems 10 and 13 for the more exact expressions. 
 
              

 
 
℘9              
General Pattern 9: Exponential Temperature Dependence dlnP/dT = ∆rH/RT2:   Eq. 17.1.10° is a 
commonly occurring form of exponential temperature dependence. An alternate way of writing 
the Clausius-Clapeyron equation in differential form is based on the identity: 
 

 
dP
P  = d ln P  since   

⌡

⌠ 

dP
P  = ∫ d ln P = ln P + c    17.1.18 

 

Substitution of this identity into Eq. 17.1.11° results in: 
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 d ln P = 
∆trHi

RT2  dT or    
d ln P

dT  = 
∆trHi

RT2        (equilibrium, ideal gas)   17.1.19° 
 

This last equation is in the same form as the Arrhenius expression for the temperature 
dependence of the rate constant, Sec. 4.4: 
 

 
d ln k

dT  = 
Ea

RT2            (cst. V)             (4.4.25) 
 

We will show in Chap. 20 that the temperature dependence of the equilibrium constant also has 
the same form: 
 

 
d ln Kp

dT  = 
∆rH°
RT2            (equilibrium)          (20.1.26) 

 

These expressions integrate to: 
 

     ln






P2

P1
 = – 

∆trHi

R  






1

T2
 – 

1
T1

            ln






kT2

kT1
 = – 

Ea

R 






1

T2
 – 

1
T1

 ln 
Kp,T2

Kp,T1

 = – 
∆rH°

R 





1

T2
 – 

1
T1

 

              (cst. ∆trHi, Ea, ∆rH°) 17.1.20 
 

This last expression is discussed in many General Chemistry texts. In addition we can note that: 
 

 
dT
T2 = – d






1

T    since   
⌡

⌠ 

dT
T2 = –

⌡

⌠ d






1

T  = – 
1
T + c    17.1.21 

 

Substitution of this identity into Eqs. 17.1.19°, 4.4.25, and 20.1.26 gives: 
 

 d ln P = – 
∆trHi

R  d





1

T   d ln k = – 
Ea

R d





1

T       d ln Kp = – 
∆rH°

R  d





1

T  17.1.22 
 

Eqs. 17.1.13°, 17.1.16°, 17.1.20, and 17.1.22 show that a plot of ln P, ln k, or ln Kp versus 1/T 
gives a straight line with slope – ∆trHi/R, –Ea/R, and –∆rH°/R, respectively. This general type of 
temperature dependence leads to General Pattern ℘4, which shows how to manipulate the 
general integrated form. 
            ℘9 
 
 
The Melting Point can Increase or Decrease with Pressure:   The coexistence curve for the solid-
liquid transition is the melting curve. The melting curve determines the change in melting point 
with applied pressure. For solid-liquid equilibrium, the change in molar volume for melting is a 
weak function of pressure. So ∆fusVm can be taken as a constant over a moderate range of 
pressures. The change in melting point is small, even for very large applied pressures. Therefore, 
to an excellent approximation, the transition enthalpy is also constant, except for extreme 
geological circumstances. Using these two approximations, the right-hand side of the Clapeyron 
equation, Eq. 17.1.8, for melting transitions for small changes in melting point is a constant. The 
infinitesimals in dP and dT can then be immediately integrated to give: 
 

 
∆P
∆T

 = 
∆fusHi

Tm ∆fusV i
      (equilibrium, moderate ∆P) 17.1.23 
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with Tm the melting point of the solid. Solving for the change in melting point gives: 
 

 ∆T = 
Tm ∆fusV i

∆fusHi
 ∆P     (equilibrium, moderate ∆P) 17.1.24 

 

Now we see why the melting curve in Figure 17.1.1 has a positive slope for most substances; for 
most substances the liquid has a higher molar volume than the solid, giving ∆fusV i = 
V i(l) – Vi(s) > 0. The phase transition is endothermic, so all the constant terms on the right of 
Eqs. 17.1.8 and 17.1.24 are positive. However, for water, bismuth, and antimony, the liquid has a 
smaller molar volume than the solid, ∆fusV i < 0 and the melting curve then has a negative slope. 
The unusual change in molar volume for water is a reflection of the extensive hydrogen bonding 
network in ice that increases the distance between the molecules. When ice melts, this hydrogen 
bonding network partially collapses, decreasing the molar volume. 
   The decrease of the melting point for ice with pressure makes ice skating possible. The skate 
blade has a very small contact area with the ice, creating a large applied pressure. The increase in 
pressure lowers the melting point, which melts some of the ice to provide a lubricating surface. 
 
 
              

Example 17.1.4: 
Calculate the contact area that is necessary to lower the melting point of ice initially at 1.000 bar 
by 2.00°C for a 70.0 kg skater. The densities of water and ice at 0.00ºC are 1.000 g cm-3 and 
0.9168 g cm-3, respectively. The enthalpy of fusion is 6.008 kJ mol-1 at 273.15 K. 
 
 
Answer:  The change in molar volume is  
 

 ∆fusV i = Vi(l) – Vi(s) = 18.02 g mol-1 (1/1.000 g cm-3 – 1/0.9168 g cm-3) 
  = -0.7278 cm3 mol-1 = -7.278x10-7 m3 mol-1 

 

Using Eq. 17.1.24: 
 

 ∆T = 
Tm ∆fusV i

∆fusHi
 ∆P = 

273.15 K (-7.278x10-7 m3 mol-1)
6.008x103 J mol-1  ∆P  

 

 ∆T = -3.309x10-8 K Pa-1 ∆P = -2.00 K 
 

 ∆P = 604.4x105 Pa 
 

The applied pressure is given by the force per unit area: 
 

 ∆P = f/A = mg/A = 70.0 kg(9.807 m s-2)/A = 604.4x105 Pa 
 A = 1.136x10-5 m2 = 1.136x10-5 m2 (1000 cm/1 m)2 = 11.36 mm2 
 

which is why skate blades have a gentle curve from front to back and are hollow ground (“|∩|”). 
 
              

 
 
   The decrease in molar volume upon melting of ice certainly plays an important role in the 
distribution of aquatic life in temperate regions. If ice was denser than liquid water, lakes would 
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freeze from the bottom up, which would force any aquatic organisms to the surface and 
subsequent exposure to harsh winter temperatures and desiccation. 
 
The Vapor Pressure of a Liquid Increases with Increasing Total Applied Pressure:   The 
Clausius-Clapeyron equation applies to a liquid under its own pure vapor pressure. Is the vapor 
pressure of a substance the same when the vapor is in the presence of other gases? In particular, 
is the vapor pressure the same when the system is open to the atmosphere? Consider the vapor 
pressure of a substance, Pβ, with a total applied pressure of P. Assume that the other components 
of the gas phase (e.g., nitrogen and oxygen) do not dissolve in the liquid. If the mole fraction of 
the substance in the vapor is yβ, then the partial vapor pressure is given by Dalton’s Law of 
partial pressures, Pβ = yβ P. As the applied pressure is increased, yβ and Pβ both increase. With a 
change in applied pressure from P to P', the change in chemical potential of the vapor and the 
liquid must be equal for the system to remain at equilibrium, Eq. 17.1.5:2 
 

 dµi(α,P',T') = dµi(β,P',T')     (equilibrium, cst. T) 17.1.25 
 

The chemical potential of the liquid is changed by the change in total pressure, dP. At constant 
temperature, from Eq. 17.1.6: 
 

 Vi(α) dP = dµi(β,P',T')      (equilibrium, cst. T) 17.1.26 
 

where Vi(α) is the molar volume of the liquid. The chemical potential of the ideal vapor is 
dependent on the partial vapor pressure above the liquid, Eq. 16.6.20°: 
 

 µi (g) = µi°(g) + RT ln Pβ/P°     (ideal vapor)           17.1.27° 
 

The change in chemical potential is given as: 
 

 dµi (g) = RT d ln Pβ      (ideal vapor)           17.1.28° 
 

Substitution of this last equation into Eq. 17.1.26 gives the dependence of the partial vapor 
pressure on applied pressure: 
 

 RT d ln Pβ = Vi(α) dP      (equilibrium, ideal vapor, cst. T)    17.1.29° 
 

Integration of this last equation from the initial vapor pressure Pβ,1 and applied pressure P1 to the 
final vapor pressure Pβ,2 and applied pressure P2, assuming that the molar volume of the liquid is 
constant, gives: 
 

 ln 
Pβ,2
Pβ,1

 = 
V i(α)
RT  (P2 – P1)     (equilibrium, ideal vapor, cst. T)    17.1.30° 

 

As the applied pressure increases, the vapor pressure increases. In effect, increasing applied 
pressure “squeezes” molecules into the vapor phase. However, the effect is not large. The molar 
volume of liquid water at 25°C is 18.0 cm3 mol-1 or 1.80x10-5 m3 mol-1. The vapor pressure of 
water at 25°C is 3.168 kPa, or 23.76 torr, Table 2.1.1. For water under its own pure vapor 
pressure, in Eq. 17.1.31° the initial pressures are P1 = Pβ,1 = 3.168x103 Pa. For water open to the 
atmosphere at P2 = 1 bar = 1.00x105 Pa, the saturated vapor pressure of water increases to 
3.170 kPa, or 23.78 torr. The pure vapor pressure of a liquid in a closed container is essentially 
identical to the saturated partial vapor pressure at atmospheric pressure in air. Significant 
changes in vapor pressure occur only at high applied pressures. 
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17.2 Second Order Transitions Have a Discontinuity in the Heat Capacity with 
Temperature 
 

   The phase transitions that we have been discussing are called first-order phase transitions 
because they have a finite transition enthalpy and change in molar volume. The Clapeyron 
equation holds for all first-order phase transitions. However, many types of phase transitions 
occur without a transition enthalpy. How do we characterize these “higher-order” phase 
transitions? 
   Consider a first-order phase transition. The presence of two phases is often discovered by 
observing a reflection from the interface between the two phases. The reflection occurs because 
the index of refraction of light in the two phases is different. When light passes from one 
medium to another with a different index of refraction, some of the light is reflected. The two 
phases have a different index of refraction because of the difference in density. The difference in 
density corresponds to a difference in molar volume, d = M/Vm. The change in molar volume 
between the phases corresponds to a discontinuity, or a sudden change, in the properties of the 
two phases. In other words, some property of the substance must have a discontinuous change 
for a phase transition to occur. 
 
First-Order Phase Transitions Have a Change in Enthalpy and Entropy:   The phase transition 
temperature corresponds to a discontinuous change in the slope of the chemical potential curve, 
Figure 17.1.1. The slopes for the two phases at a transition, from Eq. 17.1.2, are: 
 

 






∂µα

∂T P
 = – Si(α) and  







∂µβ

∂T P
 = – Si(β)    17.2.1 

 

For the equilibrium phase transition, then, the difference in slope of the chemical potential curves 
at the equilibrium temperature is given by: 
 

 






∂∆trµ

∂T P
= 






∂µβ

∂T P
– 






∂µα

∂T P
        17.2.2 

 

Substitution of Eqs. 17.2.1 into Eq. 17.2.2 gives the change in entropy for the phase transition as: 
 

 ∆trSi = – 






∂∆trµ

∂T P
       (equilibrium) 17.2.3 

 

From the entropy change for a phase transition, Eq. 13.3.2, the corresponding change in enthalpy 
for the transition is given by: 
 

 ∆trHi = Ttr ∆trSi       (equilibrium) 17.2.4 
 

The enthalpy change for the phase transition is also called the latent heat. The change in molar 
volume for the transition is similarly related to the change in slope of the chemical potential with 
respect to pressure: 
 

 ∆trV i = 






∂∆trµ

∂P T
 = 






∂µβ

∂P T
– 






∂µα

∂P T
     (equilibrium) 17.2.5 

 

The change in molar volume produces a discontinuous change in the density. 
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The Ehrenfest Criteria:   Some phase transitions occur without a discontinuous change in 
enthalpy or molar volume. Transitions in this category are called higher-order or second-order 
transitions, depending on the details of the process. Examples include the gas-liquid critical point 
and super-conducting, ferroelectric, and ferromagnetic transitions. What property of the 
substance changes discontinuously for these transitions? The temperature dependence of the 
chemical potential for a first-order transition and a second-order transition are shown 
schematically in Figure 17.2.1. The entropy versus temperature curve is given by Eq. 17.2.1 as 
the negative of the derivative of the chemical potential versus temperature. The result for a first-
order transition is a sudden increase in entropy for the phase transition. For a second-order 
transition, the chemical potential changes smoothly with temperature, with the result that the 
entropy curve shows a sudden change in slope at the transition temperature, but not a 
discontinuity.  
   The heat capacity is also related to a temperature derivative of the entropy and chemical 
potential. Using Eq. 12.2.32 and solving for the heat capacity gives: 
 

 dS = 
Cp

T  dT            Cp,i = T 






∂S

∂T P
= – T 







∂2µ

∂T2
P
   (cst. P)  17.2.6 

 

The last equality results from substitution of Eq. 17.1.2 for the entropy. Consider a first-order 
transition, Figure 17.2.1. The slope of the entropy versus temperature curve is roughly constant 
before and after the transition giving (∂S/∂T)P as a relatively constant value and a 
correspondingly slowly varying heat capacity before and after the transition. Just at the 
transition, the slope is infinite giving rise to an infinite heat capacity at the transition 
temperature. An infinite heat capacity seems surprising at first. However, for a phase transition, 
heat transfer into the system occurs without a change in temperature, so Cp = đqp/dT → ∞. For a 
second-order phase transition, the slope of the entropy versus temperature curve increases as the 
transition is approached, which in turn results in an increasing heat capacity with temperature. At 
the transition temperature, the entropy versus temperature curve has a sudden change in slope, 
resulting in a discontinuous heat capacity. Summarizing then, to detect a phase transition, some 
property of the substance must exhibit a discontinuity with temperature. For a first-order 
transition, the first derivative of the chemical potential curve is discontinuous, leading to a 
transition entropy and enthalpy. For a second-order transition, the second derivative of the 
chemical potential with temperature is discontinuous, leading to a discontinuity in the heat 
capacity. Since the second derivative is discontinuous, the resulting transition is called a second-
order transition. These expectations for the appearance of discontinuities are called the 
Ehrenfest criteria. 
   The Ehrenfest criteria are idealized requirements that are probably only met exactly by 
superconducting transitions in metallic systems. For most higher-order transitions, the heat 
capacity curve appears as a lambda-transition, as shown schematically in Figure 17.2.1. This 
type of phase transition gets its name because of the similarity of the shape of the heat capacity 
curve with the Greek letter lambda, λ. The distinguishing characteristic is the strong temperature 
dependence of the heat capacity as the substance approaches the transition. The heat capacity 
may approach a finite limiting value at the transition temperature or diverge to infinity. 
Experimental determination of the type of divergence is difficult. The phase transition 
temperature in second-order or lambda-type transitions is called the critical temperature, and 
phase transitions with second-order or lambda-type transitions are called critical phenomena. 
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Examples of lambda-transitions include the gas-liquid critical point, smectic liquid crystals (LCD 
displays), superfluid helium, binary mixture solubility (e.g., nitroethane, 3-methylpentane), 
ferromagnets (permanent magnets), ferroelectrics (microphone and acoustic guitar transducers), 
and other order-disorder transitions (thermochromic substances, which are used in color 
changing drinking straws). Lamda-transitions result from long-range cooperativity near the 
critical temperature. 
 
 

   First Order   Second Order        Lambda Transition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17.2.1: First-order transitions show a discontinuity in the first derivative of the chemical 
potential with respect to temperature or pressure. Second-order transitions show a discontinuity 
in the second derivative of the chemical potential with respect to temperature or pressure, but the 
heat capacity varies gradually near the transition temperature. Lambda transitions show a 
divergent heat capacity near the transition temperature (which may or may not go to infinity). 
 
 
Second-Order Transitions Show Pre-Transition Effects:   First-order phase transitions are 
completely cooperative. The molecules cooperate with each other in gaining new motional 
freedom; when one molecule gains motional energy then other nearby molecules find it easier to 
add motional energy. The motions of the molecules are correlated throughout the phase at the 
phase transition temperature. In a first-order phase transition all the molecules undergo the phase 
transition together, subject only to the availability of thermal energy. A pure first-order transition 
has an infinitely sharp transition. In second-order phase transitions, the formation of cooperative, 
correlated motions has a limited range. In approaching the transition temperature from below, the 
molecules begin to reorganize and to move in concert with each other. As the temperature 
approaches the critical temperature, the distance range of this cooperation increases. This 
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distance range is called the correlation length. Near the phase transition temperature, islands of 
molecules in the more mobile phase intermix with the less mobile phase. These islands of 
disorder are called domains. The domains anticipate the transition or “start the transition” early, 
which broadens the transition by pre-transition effects. The number of molecules on average in 
these disordered domains is called the cooperative unit, C.U. The larger the cooperative unit 
and correlation length, the narrower the phase transition temperature range. In the limit of 
infinite correlation length, the transition becomes first order. 
   The gas-liquid critical point is a typical example of a cooperative phase transition. The 
approach to the critical point and the corresponding increase in correlation length can be 
measured by laser light scattering, as well as by increases in the heat capacity. The formation of 
correlated domains near the critical temperature causes local changes in the index of refraction. 
Light scattering results when the correlation length approaches the wavelength of the light. The 
phase appears cloudy as the critical temperature is approached. 
 
The Nematic to Isotropic Phase Transition in Liquid Crystals is Mixed First and Second Order:   
Liquid crystalline  phases are liquid-like phases that exist between the normal isotropic-liquid 
phase and the normal crystalline solid phase. Liquid crystalline phases are liquid-like because 
they can be poured like a liquid, but they also have long-range correlated motions of the 
molecules. Liquid crystals are formed from long rod-like molecules. In liquid crystalline phases, 
the molecules tend to align along their long axes. The same effect is seen if you put pencils in a 
box in random orientations, and then shake the box. Several types of liquid crystalline phases 
exist, depending on the degrees of freedom that are limited, Figure 17.5.1. In the normal liquid 
phase, the molecular orientations and diffusion rates are isotropic (independent of direction). In 
the nematic phase the molecules tend to orient along their long axis and diffusion rates differ in 
the direction parallel and perpendicular to the long axes of the molecules. In the smectic-A phase 
the molecules align in sheets and diffusion within the sheets is much faster than between the 
sheets. In the smectic-C phase, the molecules have a net tilt within the sheets. The liquid 
crystalline phases show significant light scattering, caused by long-range correlation of the 
molecular motions. 
 
 
 
 
 
 Isotropic     Nematic     Smectic-A     Smectic-C 
 

Figure 17.5.1: Liquid Crystalline Phases. Motional degrees of freedom are lost in progressing 
from the high temperature, high entropy, isotropic liquid phase to the lower temperature 
phases. Not all liquid crystals display each phase. More ordered phases are also possible. 

 
 
   The nematic to isotropic phase transition shows pre-transition effects, caused by the long-range 
correlations, and a small transition enthalpy, Figure 17.5.2. Such phase transitions are said to be 
mixed first and second order.3,4 Liquid crystalline displays for consumer electronics are made 
from a thin film of a chiral liquid crystal in the smectic-C phase held between two plastic sheets. 
One of the plastic sheets is made from a polarizing material. 
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(a).       (b). 
 

Figure 17.5.2:  (a). p-Methoxybenzylidene-p'-n-butylaniline, MBBA, is in the nematic phase 
at room temperature. (b). The nematic to isotropic-liquid phase transition for MBBA is 
mixed first and second order. The transition shows pre-transition effects and a discontinuity 
at the critical temperature.3 

 
 
Transitions in Phospholipid Bilayers are Cooperative:   The gel to liquid-crystalline phase 
transition of phospholipid bilayers is another example of a cooperative transition. The gel to 
liquid-crystalline phase transition is also mixed first and second order. Phospholipids have 
hydrophilic headgroups and hydrophobic acyl-tails. Phospholipids spontaneously assemble into 
bilayer structures in aqueous solution in which the headgroups are on the surfaces exposed to 
water and the hydrophilic tails are directed inwards, Figure 17.5.3. Dipalmitoyl 
phosphatidylcholine is a typical phospholipid. The assembly of the bilayer is entropy driven due 
to the release of water molecules from the solvation shell of the phospholipids, as the lipids 
aggregate into the bilayer. Liposomes are produced when the phospholipid bilayer forms around 
an aqueous cavity. Liposomes are a good model system for the cell membrane. Cell membranes, 
however, also contain embedded proteins and other lipids, such as cholesterol. Liposomes are 
useful in their own right, as aids in pharmaceutical delivery and in cosmetic preparations. 
 
 

 
 
 
 
 
 
 
 

Figure 17.5.3.  Liposome formed from a phospholipid bilayer. Dipalmitoyl 
phosphatidylcholine (DPPC, 16:0 PC, dipalmitoyl lecithin). 
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   The phospholipids in the lower temperature gel state are tightly packed by Van der Waals 
forces. At the onset of the phase transition, the phospholipids cooperatively melt, Figure 17.5.4.5 
In the resulting liquid-crystalline state, the phospholipids are more loosely associated, owing to 
weakened van der Waals forces between the acyl chains, weakened polar interactions of the 
phospholipid headgroups, and a lateral expansion of the acyl chains.5-7 Much of the added energy 
is in increased chain torsional vibrations. In the DSC of synthetic phospholipids, a small peak at 
a lower temperature than the main melting peak is also seen.5-8 This small initial peak is a gel 
state to gel state molecule packing reorganization. 
 

 
Figure 17.5.4: Differential scanning calorimetry thermogram of DPPC showing pre-transition 
broadening of the gel to liquid crystalline phase transition. 

 
 
Phase-Change Data Storage Uses a First-Order Transition from Crystalline to Amorphous 
Forms:   Rewritable computer storage media, CD-RW and DVD-RW, store information by 
converting a chalcogenide between crystalline and amorphous forms by heating. The crystalline 
and amorphous forms have markedly different indexes of refraction, which can be sensed by 
scanning a laser over the recording surface. AgInSbTe is an example of a chalcogenide used in 
data storage. The chalcogenide forms a meta-stable amorphous phase when heated above the 
melting point and then rapidly cooled. Then heating the amorphous chalcogenide above a 
characteristic temperature called the crystallization point, but below the melting point, forms an 
ordered crystalline state. A pulsed, tightly focused, infrared laser produces the heating. The 
amorphous state might represent digital “1’s” and the crystalline state digital “0’s”. Amorphous 
phases are super-cooled liquids and are often called glasses. Window glass is amorphous silica 
with added calcium and sodium oxide. Phase-change chalcogenide glasses, such as Ge2Sb2Te5, 
are also used in non-volatile computer memory, which is designated PC-RAM or chalcogenide-
RAM. Ge2Sb2Te5 has markedly different electrical conductivity in its amorphous and crystalline 
forms.9 PC-RAM has lower energy requirements and is more durable than flash memory. 
 
17.3 Summary–Looking Ahead 
 

   Phase transitions minimize the chemical potential of the substance. At equilibrium, the 
chemical potential is everywhere equal. At a given pressure, the constraint of equal chemical 
potentials for two phases in contact at equilibrium fixes the phase transition temperature. Phase 
transitions result in a discontinuity in some property of the substance. First-order phase 
transitions have a discontinuity in the entropy and molar volume. The entropy change for the 
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phase transition results in an enthalpy change for the transition, ∆trS = ∆trH/Ttr. The boiling 
points and melting points of substances have a direct relationship to the intermolecular forces. 
   We need to understand phase equilibrium in pure substances before we consider the theory of 
solutions and phase transitions in multi-component systems. For example, the variation of vapor 
pressure with temperature is central in understanding distillations. The activities of the solvent 
and solute in a solution can be determined by boiling point elevation or freezing point 
depression. For another example, as we saw in Chapter 5, the interface between phases can act as 
a site of adsorption and heterogeneous catalysis. The phase transitions of water among solid ice, 
liquid water, and water vapor are the underlying phenomena determining the biogeochemical 
cycle for water. The unusual properties of water play a role in the evolution of biological 
diversity in temperate climates. In the next three chapters we consider the theory of multi-
component systems, the formation of solutions, and chemical equilibrium. 
 
 

Chapter Summary 
 

1.  The chemical potential of a pure substance is expressed in terms of molar quantities: 

 dµi = – Si dT + Vi dP 
2.  The variation of the chemical potential for a pure substance, i, with T and P are: 

 






∂µi

∂T P
 = – Si  







∂µi

∂P T
 = Vi 

3.  The slopes of the chemical potential are discontinuous at the equilibrium phase transition 
temperature for a first order phase transition: 

 






∂∆trµ

∂T P
= 






∂µβ

∂T P
– 






∂µα

∂T P
  ∆trSi = – 







∂∆trµ

∂T P
  ∆trV i = 







∂∆trµ

∂P T
 

4.  At the equilibrium phase transition temperature, the chemical potentials of the two phases are 
equal: µA(phase α,P,T) = µA(phase β,P,T), which fixes the phase transition temperature for a 
given pressure. 

5. For first-order phase transitions at equilibrium, the Clapeyron equation determines the 
coexistence curves: 

 
dP
dT = 

∆trHi

T ∆trV i
 

5.  For vaporization and sublimation at equilibrium and treating the vapor as an ideal gas, the 
Clausius-Clapeyron equation is: 

 

 
dP
P  = 

∆trHi

R T2 dT       ln
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P1
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∆trHi

R  
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1
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  P2 = P1 e
– 
∆trHi

R ( )1
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 – 
1
T1  

 d ln P = – 
∆trHi

R  d





1

T       ln P = – 
∆trHi

RT  + ln C  P = C e
– 
∆trHi

RT  

6.  The change in melting point for moderate changes in pressure is: 

 ∆T = 
Tm ∆fusV i

∆fusHi
 ∆P 
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7.  The vapor pressure of a liquid increases with increasing total applied pressure: 

 ln 
Pβ,2
Pβ,1

 = 
V i(α)
RT  (P2– P1) 

where the initial vapor pressure is Pβ,1 at applied pressure P1 and the final vapor pressure is 
Pβ,2 at applied pressure P2, and assuming the vapor is ideal and the molar volume of the liquid, 
V i(α), is constant. 

8.  The heat capacity is given by the second derivative of the chemical potential versus 
temperature: 

 Cp,i = T 






∂S

∂T P
= – T 







∂2µ

∂T2
P
 

9.  Ehrenfest criteria for phase transitions specify that, for a first-order transition, the first 
derivative of the chemical potential curve is discontinuous, leading to a transition entropy and 
enthalpy. For a second-order transition, the second derivative of the chemical potential with 
temperature is discontinuous, leading to a discontinuity in the heat capacity. 

10.  For most higher-order transitions, the heat capacity curve appears as a lambda-transition, 
giving a strong temperature dependence of the heat capacity as the substance approaches the 
transition. 

11.  The phase transition temperature in second-order or lambda-type transitions is called the 
critical temperature, and phase transitions with second-order or lambda-type behavior are 
called critical phenomena. 

12.  First-order phase transitions are completely cooperative. In second-order phase transitions, 
the formation of cooperative, correlated motions has a limited range. The distance range for 
the correlation is called the correlation length. 

13.  Near the phase transition temperature, domains in the more mobile phase intermix with the 
less mobile phase. The domains anticipate the transition, which broadens the transition by 
pre-transition effects. The size of the domains is given by the correlation length. 

14.  The lambda transition at the gas-liquid critical point is studied using laser light scattering. 

15.  Liquid crystalline phases are liquid-like phases that exist between the normal isotropic-liquid 
phase and the crystalline solid phase and have long-range correlated motions of the 
molecules. Cheese is a liquid crystalline material. 

16.  The nematic to isotropic-liquid transition in liquid crystals and the gel to liquid crystal 
transitions in phospholipid bilayers are mixed first and second order. 

 
General Pattern 9: Exponential Temperature Dependence dlnP/dT = ∆rH/RT2:   Using the 
alternate forms for the differentials: 
 

 
dP
P  = d ln P  

dT
T2 = – d






1

T  
 

the temperature dependence of the vapor pressure, the sublimation pressure, the rate constant in 
chemical kinetics and the thermodynamic equilibrium constant have the same general form: 
 

 
d ln P

dT  = 
∆trHi

RT2           
d ln k

dT  = 
Ea

RT2  
d ln Kp

dT  = 
∆rH°
RT2   (equilibrium) 
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          d ln P = – 
∆trHi

R  d





1

T          d ln k = – 
Ea

R d





1

T   d ln Kp = – 
∆rH°

R  d





1

T  

These expressions integrate for constant ∆trHm, Ea, and ∆rH° to: 
 

    ln
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General Pattern ℘4 is a continuation of this general pattern. 
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Problems: Phase Transitions in Pure Substances 
 

1.  Prove that the dependence of the freezing point on the pressure for a pure substance for large 
changes in pressure is given by: 
 

 T = Tm e
∆P ∆fusV i/∆fusHi 

 
2.  Calculate the change in the melting point for water ice for an increase in pressure of 10.00 bar 
starting from the melting point at 1.00 bar. The densities of water and ice at 0.00ºC are 1.000 g 
cm-3 and 0.917 g cm-3, respectively. The enthalpy of fusion is 6.008 kJ mol-1 at 273.15 K. 
 
3.  The vapor pressure of acetone is 0.377 bar at 30.0°C and 0.817 bar at 50.0°C. Calculate (a) 
the enthalpy of vaporization of acetone and (b) the normal boiling point. 
 
4.  The normal boiling point of methanol is 64.05°C. The vapor pressure of methanol at 20.00°C 
is 0.1530 bar. Calculate the enthalpy of vaporization of methanol. 
 
5.  The vapor pressure of solid CsI at several temperatures is given in the following table. 
Calculate the enthalpy of sublimation of CsI. 
 

T (K) 767.2 801.8 816.3 830.3 846.8 
P/10-6 (bar) 2.03 7.45 12.5 20.5 36.4 

 
6.  The vapor pressure of ethanol as a function of temperature is given in the table below. 
Determine the enthalpy of vaporization of ethanol. Calculate the standard boiling point of 
ethanol. 
 

T (°C) -2.3 19.0 34.9 63.5 78.4 
Pvap (mbar) 13.3 53.3 133.3 533.3 1013. 
Pvap (mm Hg) 10.0 40.0 100.0 400.0 760.0 
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7.  The vapor pressure of benzoic acid is 0.133 bar at 186.2°C and 0.533 bar at 227.0°C. 
Calculate the standard boiling point. 
 
8.  For methanol, the enthalpy of fusion is 3.215 kJ mol-1 and the volume change on melting is 
2.75 mL mol-1 at the standard melting point of 175.59 K.1 The enthalpy of vaporization is 35.21 
kJ mol-1 at the standard boiling point of 337.8 K. Estimate the triple point temperature and 
pressure for methanol. Assume constant transition enthalpies over the temperature range. [Hint: 
you may use the Goal Seek option in Excel.] 
 
9.  The sublimation pressure versus temperature of ammonia is ln P = 23.03 – 3754./T. The 
vapor pressure of liquid ammonia is ln P = 19.49 – 3063./T. (a)  Find the enthalpy of sublimation 
and the enthalpy of vaporization. (b).  Calculate the triple point for ammonia. (c).  Find the 
enthalpy of fusion at the triple point.2 
 
10.  Integrate the differential form of the Clausius-Clapeyron equation: 
 

 d lnP = 
∆trHi

RT2  dT 
 

from an initial temperature of To to a final temperature of T. In this equation T is the equilibrium 
phase transition temperature at the given pressure. Assume the phase transition has a molar 
enthalpy change given by: 
 

 ∆trHi,T = ∆trHi,To + ∆trCp,i (T – To) 
 

where ∆trCp,m is the change in heat capacity for the phase transition, which is assumed to be a 
constant. Show that the result is: 
 

 ln






P
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∆trHi,To

R  






1

T – 
1
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 + 
∆trCp,i

R  ln






T
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 + 

∆trCp,iTo

R  






1

T – 
1
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11.  Reference handbooks sometimes list the vapor pressure of liquids in the form: 
 

 ln P = A – 
B
T  – C ln T + D T 

 

Show that the result from the last problem can be rewritten in this form. Use General Pattern 
℘4: Exponential Temperature Dependence as a guide. 
 
12.  Long’s Peak in the Colorado Rocky Mountains is 3962. m high. What is the boiling point of 
water at this altitude? Assume a constant temperature of 20.0°C (see Problem 1.15) and the 
pressure at sea level is 1.00 atm. The enthalpy of vaporization of water is 42.00 kJ mol-1. 
 
13.  For non-ideal gases, from Eq. 7.5.2, PV = z nRT. Find the corresponding integrated form of 
the Clausius-Clapeyron equation for liquid-vapor or solid-vapor equilibrium. In other words, 
correct Eq. 17.1.13° for vapor non-ideality. Assume z and ∆trHm are constant over the 
temperature range for the integration. 
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14.  Calculate the vapor pressure of methanol at 20.0°C under a total ambient pressure of 
10.0 bar of air. The vapor pressure of methanol at 20.00°C is 0.1530 bar, under its own vapor 
pressure. 
 
15.  Particulates released from volcanic eruptions can be a significant source of heavy metals in 
the environment. The magma under a volcano is at high temperature and total pressure. Under 
these circumstances, normally non-volatile substances can have a significant vapor pressure. 
NaCl and heavy metal chlorides are found in the vapor phase at high total pressure as volatile 
molecular species. The concentration of Pb in the minerals formed from the vapor phase in a 
volcano is much higher than in the original magma. At high pressure, the vapor above a magma 
is non-ideal and the fugacity must be used. Eq. 17.1.30 assumes the vapor behaves as an ideal 
gas. Let Pβ,o be the vapor pressure of the pure liquid under its pure vapor pressure. Assume the 
pure vapor pressure at the given temperature is sufficiently small that the pure vapor is ideal, 
giving fβ,o = Pβ,o. Show that the fugacity of the vapor, fβ, in equilibrium with the pure liquid at the 
elevated total pressure, P, is then: 
 

 ln 
fβ

Pβ,o
 = 

V i(α)
RT  (P – Pβ,o) 

 
16.  Redraw Figure 17.1.1 for water. 
 
17.  Some property needs to be discontinuous to observe a phase transition. What property is 
discontinuous in a pure Ehrenfest second-order phase transition? 
 
18.  Find the difference in slope across the melting transition for the chemical potential versus 
temperature curve, (∂∆trµ/∂T)P , at standard pressure. 
 
 
 
 
 
 
 
 
19.  Draw the chemical potential versus pressure curves for the solid, liquid, and vapor phases of 
a pure substance, at constant temperature. Assume that Vi(s) < Vi(l).  Describe the process that 
occurs at the intersection of the chemical potential curves. 
 
20.  (a). Sketch the chemical potential curves versus temperature for the solid, liquid, and vapor 
phases of substance at a constant pressure below the triple point and (b) for a substance at the 
triple point pressure. 
 
21.  If first-order phase transitions are “completely cooperative,” how can two-phase systems 
exist at equilibrium? For example, how can ice and liquid water coexist at equilibrium at the 
equilibrium phase transition temperature? 
 

solid liquid 





∂∆trµ

∂T
P
 

µ 

T Tm 
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22.  Use the concept of correlation length and domain size to explain why the heat capacity of a 
substance increases as the temperature increases to the critical point. 
 
23.  The monoclinic and orthorhombic unit cells are illustrated, below. The unit cell lengths for 
both unit cells are all different, a ≠ b ≠ c. The orthorhombic unit cell has all 90° angles between 
the unit cell directions, α = β = γ = 90°. The monoclinic unit cell has one angle not equal to 90°, 
α = γ = 90°, β. 
 
 
 
 
 
 
 
  Monoclinic  Orthorhombic 
 
Methanol crystallizes into long hydrogen-bonded chains. There are two crystalline forms. Crystal 
II has a monoclinic unit cell and is the low temperature form. Crystal I has an orthorhombic unit 
cell and is the high temperature form. The difference is a small displacement of the hydrogen-
bonded chains in the direction perpendicular to the direction of the chains. The solid-solid phase 
transition temperature is 157.4 K at 1 atm. The transition was reported to be second-order. 
Carlson and Westrum redetermined the heat capacity of very pure methanol samples to 
determine the thermodynamic parameters for the phase transition, Figure P17.1.1 Crystal I 
readily super-cools, so heat capacity data for this phase is available below the equilibrium phase 
transition temperature. Is the transition first or second order? 
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Figure P17.1: Heat capacity data for 99.98 mol% methanol near the solid-solid phase 
transition at 157.4 K. 

 
24.  NiCl2 has a solid-state magnetic phase transition at 52 K. The low temperature phase is anti-
ferromagnetic, and the high temperature phase is paramagnetic. Antiferromagnetic phases are an 
ordered lattice of unpaired electrons that alternate spin-up and spin-down. In the absence of an 
external magnetic field, paramagnetic phases also have an equal, or nearly equal, number of 
electrons spin-up and spin-down, distributed at random. The paramagnetic phase is at higher 
entropy at a given finite temperature. A plot of the heat capacity as a function of temperature is 
shown below.3 Characterize this solid-state phase transition. 
 

90° 

a 

b 

c 

a 

b 

c 
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antiferromagnetic:  ↑↓↑↓↑↓↑↓↑↓↑↓↑↓ 
 
ferromagnetic:         ↑↑↑↑↑↓↑↑↑↑↑↑↑↑ 
 
paramagnetic:          ↑↓↑↑↑↓↓↑↓↓↑↓↑↓ 

 
 
 
Literature Cited: 
 

1.  H. G. Carlson, E. F. Westrum, Jr., “Methanol: heat capacity, enthalpies of transition and 
melting, and thermodynamic properties from 5-300K,” J. Chem. Phys., 1971, 54, 1464-1471. 

2.  F. C. Andrews, Thermodynamics: Principles and Applications, Wiley-Interscience, New 
York, NY, 1971. Problem 25.13. 

3.  R. H. Busey, W. F. Giauque, “The Heat Capacity of Anhydrous NiCl2 from 15 to 300 K. The 
Antiferromagnetic Anomaly near 52 K. Entropy and Free Energy,” J. Am. Chem. Soc., 1953, 
75, 4443. 

1.75

2.25

2.75

3.25

40 50 60

Cp/R

T (K)


