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Chapter 16: Foundation of Thermodynamics Problems 
 
1.  Assume you are a diver. To a good degree of approximation, you are essentially just a 70 kg 
mass of water. Calculate the change in Gibbs energy for 70.0 kg of water in an isothermal 
expansion from a pressure of 2.00 bar to a final pressure of 1.00 bar at a constant temperature of 
298.2 K. This pressure difference corresponds to surfacing from a depth of 10 m. Start with the 
required partial derivative. 
 
 
Answer:  The required partial derivative is (G/P)T. This partial derivative is a thermodynamic 
force, (G/P)T = V, which integrates to give G =  V dP. This expression is given in the last 
column of the table in Figure 16.4.1. For small changes in pressure, we can consider V  Vo, 
where Vo is the initial volume. To calculate G in joules, we must find Vo in m3 and P in Pa, 
with 1 bar = 1x105 Pa: 
 

 Vo = 70.0x103 g(1 mL/0.99705 g)(1 m3/1x106 mL) = 0.07021 m3 
 

 G = Vo P 
       = 0.07021 m3 (1.00 bar – 2.00 bar)(1x105 Pa/1 bar) 
       = -7021. J = -7.02 kJ 
 

Given the large amount of water representing the diver, this is a small change in Gibbs energy. 
The effect of small pressure changes on the Gibbs energy of a condensed phase is often less than 
the experimental uncertainty in the Gibbs energy. See also Chapter 15 Problem 14. 
 
 
2.  What is the thermodynamic force that corresponds to the change in Gibbs energy with 
temperature at constant pressure? Explain your reasoning. 
 
Answer:  The partial derivative that corresponds to the thermodynamic force for changes in 
temperature at constant pressure is: 

 






G

T P
 = ? 

 

We can get this force by comparing with the total differentials for the Gibbs energy, Eq. 16.3.4: 
 

 dG = 






G

T P
 dT +  







G

P T
 dP 

            
 dG = – SdT      +     VdP 
 

Alternatively, we can use the process outlined in Figure 16.3.1: 
 

       change in G when T changes is the thermodynamic force, –S 
 

  dG = – S dT + V dP    giving:    






G

T P
 = – S 

 

    at constant P 
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3.  What is the thermodynamic force that corresponds to the change in Helmholtz energy with 
volume at constant temperature? Explain your reasoning. 
 
 
Answer:  The partial derivative that corresponds to the thermodynamic force for changes in 
volume at constant temperature is: 

 






A

V T
 = ? 

 

We can get this force by comparing the total differentials for the Helmholtz energy, Eq. 16.3.3: 
 

 dA = 






A

T V
 dT +  







A

V T
 dV 

            
 dA = – SdT      –     PdV 
 

Alternatively, we can use the process outlined in Figure 16.3.1: 
 

           change in A      when V changes is the thermodynamic force, –P 
 

  dA = – S dT – P dV    giving:    






A

V T
 = – P 

 

   at constant T 
 
 
4.  Calculate the change in Gibbs energy for one mole of ideal gas for a change in pressure from 
1.00 bar to 2.00 bar at a constant temperature of 298.2 K. Determine the partial derivative that 
relates to this problem, and integrate the result (review Section 9.7). 
 
 
Answer:  The required partial derivative is (G/P)T. This expression is given in the last column 
of the table in Figure 16.4.1. However, for practice, let’s review the process. In (G/P)T, the 
dependent variable is a thermodynamic potential. The independent variables are the natural 
variables for the thermodynamic potential, G(T,P). This partial derivative is then a 
thermodynamic force. The force is given by comparing the total differentials in general form and 
the form given by the Legendre transformation of the combined First and Second Laws: 
 

 dG = 






G

T P
 dT +  







G

P T
 dP   giving:   







G

P T
 = V 

            
 dG = – SdT      +     VdP 
 

Integrating gives G =  V dP. For an ideal gas V = nRT/P and: 
 

 G =  nRT/P dP = nRT ln P2/P1 

       = 1.00 mol(8.3145 J K-1 mol-1)(298.2 K)(1 kJ/1000 J) ln(2.00 bar/1.00 bar) = 1.72 kJ 
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5.  Develop a problem that is based on the partial derivative (A/V)T, and solve the problem 
(review Section 9.7). Choose an ideal gas as the system for simplicity. 
 
 
Answer:  For one example, calculate the change in Helmholtz energy for one mole of an ideal gas 
for an isothermal expansion from 1.00 L to 2.00 L at 298.2 K. 
   The required partial derivative is a thermodynamic force, (A/V)T = – P, which for an ideal 
gas integrates to give Eq. 16.3.9 (see also Figure 16.4.1): 
 

 A = – nRT ln V2/V1 

      = – 1.00 mol(8.3145 J K-1mol-1)(298.2 K)(1 kJ/1000 J) ln(2.00 L/1.00 L) = -1.72 kJ 
 
 
6.  For a given increase in volume, will diamond or liquid water give a larger increase in entropy 
at constant temperature? 
 
 
Answer:  Consulting Figure 16.4.1, note that S =  /T dV = /T V, assuming constant  
and T. For diamond and liquid water, respectively, from Table 7.6.1: 
 

 diamond:  /T = 0.030x10-4 K-1/0.185x10-6 bar-1 = 16.2 bar K-1 
 water:       /T = 2.57x10-4 K-1/45.3x10-6 bar-1 = 5.67 bar K-1 
 

Diamond will give a larger increase in entropy than water for equal changes in volume. 
 
 
7.  Calculate the change in chemical potential for an ideal gas for a change in pressure from 1.00 
bar to 20.0 bar at a constant temperature of 25°C. 
 
 
Answer:  Using Eq. 16.6.20 with the reference pressure at 1 bar, P = 1.00 bar: 

 1 = 
1
 +  RT ln 

P
P 

gives the change: 

 1 – 
1
 =  RT ln 

P
P = 8.314 J K-1 mol-1(298.15 K) ln(20.0/1.00) 

  = 7.426 J K-1 mol-1 = 7.43 kJ mol-1 
 

where the subscript for 1 indicates component 1. Alternatively and equivalently, for a single 
component you can integrate Eq. 16.6.16 directly: 
 

 








P T
 = V*

A      (pure substance) 

 

with V*
A = RT/P for an ideal gas: 
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  = 2 – 1 = 

1

2 d = 



P1

P2

 
RT
P  dP 

 

where 1 is the chemical potential of the initial state and 2 is the chemical potential of the final 
state: 
 

  = RT ln 



P2

P1
 

 

This equation is analogous to Eq. 15.4.4, G = nRT ln(P2/P1), for one mole of substance. 
 
 
8.  The temperature dependence of the Gibbs energy of a chemical reaction is expressed as: 
 

 
∆rGT2

T2
 – 

∆rGT1

T1
  = ∆rH 



1

T2
 – 

1
T1

 
 

What would you plot on the axes of a graph to get a straight line with the slope related to ∆rH? 
How is the slope related to ∆rH? 
 
 
Answer:  This equation is the Gibbs-Helmholtz equation, Eq. 16.3.15. A graph of rG/T versus 
1/T for a chemical reaction gives a straight line with slope = ∆rH, assuming the reaction enthalpy 
is constant over the temperature range. An endothermic reaction will give a positive slope and an 
exothermic reaction a negative slope. 
 
 
 
 
 
 
 
 
 
 
 
 
Rearranging the Gibbs-Helmholtz equation into direct straight-line form gives: 
 

 
∆rGT2

T2
  =  

∆rH
T2

 + 






∆rGT1

T1
 – 

∆rH
T1

 with the intercept =  






∆rGT1

T1
 – 

∆rH
T1

 

 
 
9.  Hydrogen is used as a fuel for internal combustion engines. However, the average combustion 
temperature is significantly higher than tabulated values. Calculate the standard state Gibbs 
energy of combustion of H2 at 700.0 K. 
 
 

slope = rH 

rG
T  

1/T 

 
 

 

 

 
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Answer:  The plan is to use the Gibbs-Helmholtz equation, Eq. 16.3.15, to find the reaction 
Gibbs energy at the higher temperature from the tabulated value at 298.2 K. The Gibbs energy of 
combustion of H2 is equivalent to the Gibbs energy of formation of H2O, which at high 
temperatures is water vapor. 
   The combustion reaction is the formation reaction, which at 298.15 K gives: 
 

 H2 (g, 1bar) + ½ O2 (g, 1bar)  H2O (g, 1bar) fG = -228.57 kJ mol-1 
        fH = -241.82 kJ mol-1 
 

Using the Gibbs-Helmholtz equation applied to reaction Gibbs energies, Eq. 16.3.15, gives: 
 

      
∆rGT2

T2
 – 

∆rGT1

T1
  = ∆rH 



1

T2
 – 

1
T1

 

      
∆rGT2

700.0 K – 
-228.57 kJ mol-1

298.15 K  = -241.82 kJ mol-1 



1

700.0 K – 
1

298.15 K  

      
∆rGT2

700.0 K + 0.766628 kJ mol-1 K-1= -241.82 kJ mol-1 (-1.9254x10-3 K-1) = 0.46561 kJ mol-1 K-1 

      
∆rGT2

700.0 K = -0.30102 kJ mol-1 K-1 

      ∆rGT2 = -210.7 kJ mol-1 
 

The combustion of H2 at high temperatures provides less energy than at room temperature, as 
predicted by LeChâtelier’s Principle and the exothermic rH. For the (1/T2 – 1/T1) term, 
remember to keep at least one extra significant figure to avoid round-off error. 
 
 
10.  The Gibbs-Helmholtz expression, Eq. 16.3.15, gives the temperature dependence of the 
reaction Gibbs energy. You should remember from General Chemistry that the equilibrium 
constant for a chemical reaction is related to the reaction Gibbs energy by rG = – RT ln K. Use 
the Gibbs-Helmholtz equation to find the temperature dependence of the equilibrium constant. 
 
 
Answer:  Solving rG = – RT ln K  for ln K gives: 
 

 ln K = – rG/RT 
 

Dividing the Gibbs-Helmholtz equation by – R and specifying standard state pressure gives: 
 

 
∆rGT2

– RT2
 – 

∆rGT1

– RT1
  = 

∆rH
– R  



1

T2
 – 

1
T1

 
 

Substituting in ln Keq = – rG/RT at both temperatures gives: 
 

 ln KT2 – ln KT1 = – 
∆rH

R  



1

T2
 – 

1
T1

 

 ln



KT2

KT1
 = – 

∆rH
R  



1

T2
 – 

1
T1

 
 

where rH is evaluated at the average temperature. This equation is found in most General 
Chemistry texts. 
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11.  Potassium hydrogen phthalate, KHP, is a commonly used primary standard for acid-base 
titrations. KHP is moderately soluble in water. For the reaction: KHP (s)  K+ (aq) + HP- (aq), 
the reaction Gibbs energy is given in the table, below, versus temperature at constant pressure.1 
Calculate the reaction enthalpy and entropy, including uncertainties. Assume the reaction 
enthalpy and entropy are not functions of temperature. 
 

T (°C) 0.6 22.0 45.0 55.0 65.0 
rG (kJ mol-1) 5.995 3.999 2.208 1.044 0.1591 

 
 
Answer:  The plan is to use the thermodynamic force (rG/T)P = – rS and the Gibbs-
Helmholtz expression, Eq. 16.3.15, with suitable linear plots to extract the thermodynamic 
parameters from the slopes. 
   A spreadsheet was written to plot rG versus T and also rG/T versus 1/T, as required by the 
Gibbs-Helmholtz expression, Eq. 16.3.15. 
 
 

T (C) T (K) rG (kJ mol-1) 1/T (K-1) rG/T (J K-1 mol-1) 
0.6 273.75 5.995 0.003653 218.993 
22 295.15 3.999 0.003388 135.496 
45 318.15 2.208 0.003143 69.402 
55 328.15 1.044 0.003047 31.822 
65 338.15 0.1591 0.002957 4.704 

 
rG vs. T 

slope -0.089782 30.57353 intercept 
 0.00254 0.791182 ± 
r2 0.99761 0.132461 st.dev. y 
F 1249.86 3 dof 
ssreg 21.930 0.052638 ssresid 

 

 

 

y = -0.0898x + 30.574
R² = 0.9976

0

1

2

3

4

5

6

7

270 290 310 330 350


rG

 (k
J m

ol
-1

)

T (K)
 

 
 

rG/T vs.  1/T 
slope 30529.3 -89.63895 intercept 
 7389.73 2.39990 ± 
r2 0.99825 0.417286 st.dev. y 
F 1706.78 3 dof 
ssreg 297.197 0.522383 ssresid 

 
 

 

 

y = 30529x - 89.639
R² = 0.9982

0

5

10

15

20

25

0.0028 0.003 0.0032 0.0034 0.0036 0.0038


rG

/T
 (J

 K
-1

m
ol

-1
)

1/T (K-1)
 

 
The slope of rG versus T is –rS giving:  rS = 89.8  2.5 J K-1 mol-1 
The slope of rG/T versus 1/T gives:   rH = 30.53  0.74 kJ mol-1 
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12.  Starting with the internal energy as a function of entropy and volume, give the Legendre 
transformation that defines a new function that will be a good spontaneity criterion at constant 
temperature and volume. 
 
 
Answer:  Consider the case with PV and chemical work. The natural variables for internal energy 
are S, V, and the mole amounts: 

 dU = T dS – P dV+
i=1

c

 i dni 

The Legendre transformation must be defined to switch the role of T and S to obtain a good 
spontaneity criterion at constant temperature: 
 

 A  U – TS 
 

so that dA has natural variables T and V. To show that the natural variables of the new 
thermodynamic potential are T, V and the mole amounts, the total differential is given by: 
 

 dA = dU – T dS – S dT 
 

and substituting for dU gives: 
 

 dA = T dS – P dV+
i=1

c

 i dni – T dS – S dT = – S dT – P dV+
i=1

c

 i dni 

 

At constant T and V the first two terms vanish giving: 
 

 dA = 
i=1

c

 i dni 

 

which focuses our attention of the chemical work. For a spontaneous process at constant T and 
V, dA < 0, thus minimizing A. 
 
 
13.  Show that Cv is not a function of volume for an ideal gas, in a closed system. 
 
 

Answer:  In other words show that, for a closed system:  






Cv

V T
= 0 

The definition of the constant volume heat capacity is: 
 

 Cv = 






U

T V
 

 

Substitution into the partial derivative with respect to V, above, gives: 
 

 






Cv

V T
 = 









V





U

T V T
  =  









T





U

V T V
 

 

The order of differentiation can be reversed because U is a state function, just as we did for the 
Maxwell relationships. For an ideal gas, (U/V)T = 0, giving: 
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





Cv

V T
 = 0 

 

In other words Cv is not a function of volume. 
 
 
14.  Calculate the change in Helmholtz energy for Vo liters of a liquid substance with isothermal 
compressibility T when the pressure is changed from P1 to P2 at constant temperature. Start by 
proving that: 
 

 






A

P T
 = PVT 

Then integrate assuming the volume may be considered a constant V  Vo. 
 
 

Answer:  Start with the desired partial derivative: 






A

P T
 = ? 

We note that the natural variables for Helmholtz energy are V and T, not the given independent 
variables P and T. The “misplaced variable,” in the sense discussed in Section 9.7, is the 
derivative with respect to P in the denominator. Using the chain rule then gives: 
 

 






A

P T
 = 







A

V T
 






V

P T
 

 

The first partial derivative on the right of the equality is the thermodynamic force, Eq. 16.3.7, 
(A/V)T = – P. The second partial is given from the definition of the isothermal compressibility: 
 

 






V

P T
 = – VT 

 

which upon substitution gives: 






A

P T
 = 







A

V T
 






V

P T
 = – P(– VT) = PVT 

This expression may be integrated after separating variables: 
 

 dA = PVT dP 
 

Assuming T is constant and the volume change is small for moderate changes in pressure, V  
Vo, gives: 
 

 A = P1

 P2 P Vo T dP = 
VoT

2  (P2
2 – P1

2) 

 
The Helmholtz energy for a substance increases with an increase in pressure. 
 
 

15. Derive the Maxwell relationship that is based on the Helmholtz energy:   






S

V T
 = 







P

T V
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Answer:  The independent variables for this relationship are V and T. The thermodynamic 
potential that has natural variables V and T is the Helmholtz energy, Eq. 16.3.3. In analogy with 
Figure 16.4.2, the general form of the total differential and the Legendre transformed First and 
Second Laws are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16.  Starting with the thermodynamic force for the change in internal energy with respect to 
entropy, prove that: 
 

 



∂S

∂T V
 = 

Cv

T  

 
 
Answer:  The thermodynamic force for the change in internal energy with respect to entropy is:  
 

 



∂U

∂S V
 = T  or inverting:  



∂S

∂U V
 = 

1
T 

 

We can use the chain rule for the desired partial derivative with respect to temperature: 
 

 



∂S

∂T V
 = 



∂S

∂U V
 



∂U

∂T V
 

 

Using the thermodynamic force and the definition of Cv, Eq. 7.8.7, gives: 
 

 



∂S

∂T V
 = 

Cv

T  

 

No approximations are made in this derivation. The equation holds for real gases, ideal gases, 
liquids, and solids. 
 
 
17.  Show that if S is regarded as a function of T and V then, for a closed system: 

 T dS = Cv dT + T 








T
 dV 

 

dA   = 






A

T V
 dT + 







A

V T
 dV 

dA   =  – S    dT  –   P   dV 

Thermodynamic force Thermodynamic force 







S

V T
 = – 









V





A

T V T
  = – 









T





A

V T V
 =  







P

T V
 

switch order 



10 
 

 
Answer:  Consider S(T,V), giving the total differential: 
 

 dS = 



∂S

∂T V
 dT + 



∂S

∂V T
 dV       1 

 

We can use the chain rule for the partial derivative with respect to temperature (Problem 14): 
 

 



∂S

∂T V
 = 



∂S

∂U V
 



∂U

∂T V
        2 

 

Notice that the thermodynamic force is:  
 

 



∂U

∂S V
 = T  or inverting:  



∂S

∂U V
 = 

1
T    3 

 

Using this thermodynamic force and the definition of Cv gives: 
 

 



∂S

∂T V
 = 

Cv

T          4 
 

Note that the partial derivative in Eq. 1 with respect to V is a Maxwell relationship, Eq. 16.4.10, 
which using Eq. 7.6.21 gives 
 

 






S

V T
 = 







P

T V
 = 









T
        5 

 

Substituting Eqs. 4 and 5 into Eq. 1 gives: 
 

 dS =   
Cv

T  dT +  








T
 dV       6 

 

Finally, multiplying both sides of this last equation by T gives the final result: 
 

 T dS = Cv dT + T 








T
 dV       7 

 
 

18.  Show for an isothermal change in pressure for a liquid or a solid, S = –  V dP. 

 
 
Answer:  The change in entropy for a change in pressure at constant temperature is given by the 
partial derivative: 
 

 



∂S

∂P T
 = ? 

 

We can recognize this partial derivative as the Maxwell Relationship that is derived from the 
Gibbs energy, Eq. 16.4.11, since T and P are the independent variables: 
 

 






S

P T
 = – 







V

T P
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The right-hand side is given by the thermal expansion coefficient, Eq. 7.6.13, in the form 
(V/T)P = V : 
 

 






S

P T
 =  – V  

 

Separating variables and integrating gives S = –  V dP 

 
 
19.  Pressure perturbation calorimetry has become a useful tool in studies of protein folding. In 
interpreting the effects of solvation on protein conformation and folding, the following derivative 
is centrally important. Show that: 
 

 






Cp

P T
 = – T 







2V

T2
P
 

 
 
Answer:  Substituting from the definition of Cp = (H/T)P and switching the order of 
diffentiation: 
 

 






Cp

P T
 = 









P





H

T P T
 = 









T





H

P T P
 

 

We can reverse the order of differentiation, since enthalpy is a state function. Using the 
thermodynamic equation of state, Eq. 16.5.11, for (H/P)T gives: 
 

 






Cp

P T
 = 









T



V – T 



∂V

∂T P P
 

 

Using the product rule gives the temperature derivatives as: 
 

 






Cp

P T
 = 







V

T P
 – T 



∂2V

∂T2
P
 – 






V

T P
 






T

T P
 

 

The first and the last terms on the right cancel giving the final result: 
 

 






Cp

P T
 =  – T 



∂2V

∂T2
P
 

 

This equation is very useful for understanding solute-solvent interactions, because changes in 
volume are easy to visualize. 
 
 

20.  Show that:   



∂V

∂S P
 = 

VT
Cp

 

 
 
Answer:  Starting with the partial derivative: 
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 



∂V

∂S P
 = ?         1 

 

Which variable is the “misplaced” variable in this partial derivative? Consider the definitions of 
 and T, Eqs. 7.6.13 and 7.6.14, respectively: 
 

  = 
1
V 






V

T P
 and T = – 

1
V 






V

P T
     2 

 

These relationships suggest the “misplaced” variable in Eq. 1 is the derivative with respect to S 
in the denominator. Referring to Figure 9.7.2, the suggestion is to use the chain rule: 
 

 



∂V

∂S P
 = 



∂V

∂T P
 



∂T

∂S P
        3 

 

The first partial derivative on the right is given by the thermal expansion coefficient: 
 

 (V/T)P = V         4 
 

The second partial derivative in Eq. 3 can be inverted to find a more familiar form, Eq. 16.3.18: 
 

 






S

T P
 = 

Cp

T  or inverting: 



∂T

∂S P
 = 

T
Cp

     5 

 

Substituting Eqs. 4 and 5 into Eq. 3 gives the final result: 
 

 



∂V

∂S P
 = 

VT
Cp

         6 

 

This partial derivative is important because it is the result of the Maxwell relationship based on 
the enthalpy, Eq. 16.4.9. The Maxwell relationship and Eq. 6 allow the derivative involving the 
entropy to be expressed entirely in terms of a heat capacity and . 
 

Method 2:  Like many derivations in thermodynamics, this relationship can be derived in several 
ways. An alternative and equivalent derivation is based on the Maxwell Relationships. Returning 
to Eq. 1, one quick place to look for partial derivatives involving the entropy is a Maxwell 
Relationship. This partial derivative is given by the Maxwell Relationship that is derived from 
the enthalpy, which has natural variables S and P, Eq. 16.4.9: 
 

 






V

S P
 = 







T

P S
         7 

 

At first this relationship doesn’t look like it helps much, because we don’t often work with 
processes at constant entropy. The “misplaced” variable is the constant entropy. We need to use 
the Euler chain relationship. Writing the total differential of the entropy in terms of independent 
variables T and P gives: 
 

 dS = 0 = 






S

T P
 dT + 







S

P T
 dP       8 

 

Solving for (T/P)S gives: 
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





T

P S
 = – 







S

P T







S

T P

        9 

 

The partial derivative in the numerator is related through the Maxwell Relationship, Eq. 16.4.11, 
to the thermal expansion coefficient, 
 

 






S

P T
 = – 







V

T P
 = – V       10 

 

and the partial derivative in the denominator is given by Eq. 16.3.18: 
 

 






S

T P
 = 

Cp

T          11 

 

Substituting Eqs. 9-11 into Eq. 7 gives: 
 

 






V

S P
 = 







T

P S
 = – 

( )– V





Cp

T

 = 
VT
Cp

      12 

 

This equation allows the change in volume for a constant pressure process to be calculated from 
the change in entropy or the change in temperature for an adiabatic reversible process from the 
change in pressure. 
 
 

21.  Show that:   



∂P

∂S V
 = 

 T
T Cv

 

 
 
Answer:  Starting with the partial derivative: 
 

 



∂P

∂S V
 = ?         1 

 

Which variable is the “misplaced” variable in this partial derivative? Consider the definitions of 
 and T, Eqs. 7.6.13 and 7.6.14, respectively and Eq. 7.6.16: 
 

  = 
1
V 






V

T P
  T = – 

1
V 






V

P T
       and 







P

T V
 = 


T

  2 
 

These relationships suggest the “misplaced” variable in Eq. 1 is the derivative with respect to S 
in the denominator. Referring to Figure 9.7.2, the suggestion is to use the chain rule: 
 

 



∂P

∂S V
 = 



∂P

∂T V
 



∂T

∂S V
        3 

 

The first partial derivative on the right of the equality is given by Eq. 7.6.16. The second partial 
derivative in Eq. 3 can be inverted to find a more familiar form (see Problem 14 and Problem 15  
Eqs. 2-4): 
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





S

T V
 = 

Cv

T  or inverting: 



∂T

∂S V
 = 

T
Cv

     4 

 

Substituting /T and Eq. 4 into Eq. 3 gives the final result: 
 

 



∂P

∂S V
 = 

 T
T Cv

         5 

 

This partial derivative is important because it is the result of the Maxwell relationship based on 
the internal energy, Eq. 16.4.8. The Maxwell relationship and Eq. 5 allow the derivative 
involving the entropy to be expressed entirely in terms of a heat capacity, , and T. 
 
 
22.  Reversible adiabatic processes are constant entropy processes. Derive Eq. 9.8.12 directly 
from (T/V)S. Do this derivation in two steps. (a). Show that: 
 

 



∂T

∂V S
 = – 



∂P

∂T V
 



T

Cv 
 

 

(b). Integrate this last equation for an ideal gas from the initial state, T1 and V1, to the final state, 
T2 and V2. 
 
 
Answer:  The plan is to note that partial derivatives involving entropy can often be simplified 
using a Maxwell relationship. 
   The Maxwell relation based on the internal energy, Eq. 16.4.8, relates the required partial 
derivative to a derivative with respect to the entropy: 
 

 



∂T

∂V S
 = – 



∂P

∂S V
 

 

Using Eqs. 1-5 in the last problem gives the required partial derivative as: 
 

 



∂T

∂V S
 = – 



∂P

∂S V
 = – 



∂P

∂T V
 



∂T

∂S V
 = – 



∂P

∂T V
 



T

Cv 
 

 

(b).  For an ideal gas, P = nRT/V giving (P/T)V = nR/V: 
 

 



∂T

∂V S
 = – 



nR

V  



T

Cv 
 

 

Separating variables gives: 
 

 Cv 
dT
T  = – nR 

dV
V  and integrating: Cv T1

T2 
dT
T  = – nR V1

V2 
dV
V  

 

 Cv ln 
T2

T1
 = – nR ln 

V2

V1
       (9.8.12) 

 

Eq. 9.8.12 was originally derived using explicit consideration of the heat and work transfers. 
The derivation in this problem more clearly shows the relationship of the overall changes to the 
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constancy of the entropy for the process. Since entropy is a state function, the overall process can 
be broken into the sum of a constant volume process and a constant temperature process, with 
the same initial and final conditions. The first term in Eq. 9.8.12 is the change in entropy for a 
constant volume process and the second term is the negative of the change in entropy for an 
isothermal process in an ideal gas. The two changes are equal in magnitude and opposite in sign 
so that the overall change in entropy is zero. 
 
 
23.  Reversible adiabatic processes are constant entropy processes. Derive Eq. 9.8.18 directly 
from (T/P)S. Do this derivation in two steps. (a). Show that: 
 

 



∂T

∂P S
 = 



∂V

∂T P
 



T

Cp 
 

 

(b). Integrate this last equation for an ideal gas from the initial state, T1 and P1, to the final state, 
T2 and P2. 
 
 
Answer:  The plan is to note that partial derivatives involving entropy can often be simplified 
using a Maxwell relationship. 
   The Maxwell relation based on the enthalpy, Eq. 16.4.9, relates the required partial derivative 
to a derivative with respect to the entropy: 
 

 



∂T

∂P S
 = 



∂V

∂S P
 

 

Using Problem 20, Eqs. 1-5, gives the required partial derivative as: 
 

 



∂T

∂P S
 = 



∂V

∂S P
 = 



∂V

∂T P
 



∂T

∂S P
 = 



∂V

∂T P
 



T

Cp 
 

 

(b).  For an ideal gas, V = nRT/P giving (V/T)P = nR/P: 
 

 



∂T

∂P S
 = 



nR

P  



T

Cp 
 

Separating variables gives: 
 

 Cp 
dT
T  = nR 

dP
P   and integrating: Cp T1

T2 
dT
T  = nR P1

P2 
dP
P  

 

 Cp ln 
T2

T1
 = nR ln 

P2

P1
       (9.8.18) 

 

Eq. 9.8.18 was originally derived using the change in enthalpy for the process. The derivation in 
this problem more clearly shows the relationship of the overall changes to the constancy of the 
entropy for the process. Since entropy is a state function, the overall process can be broken into 
the sum of a constant pressure process and a constant temperature process, with the same initial 
and final conditions. The first term in Eq. 9.8.18 is the change in entropy for a constant pressure 
process and the second term is the negative of the change in entropy for an isothermal process in 
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an ideal gas. The two changes are equal in magnitude and opposite in sign so that the overall 
change in entropy is zero. 
 
 
24.  The heat capacity of a substance can be determined without heat flow measurements by 
determining the change in temperature of a substance with pressure at constant entropy, 
(T/P)S. Constant entropy conditions are obtained by changing the pressure rapidly, so that heat 
flow is minimal. Reversible adiabatic processes are constant entropy processes. Show that:2 

 

 



∂T

∂P S
 = 



∂V

∂T P
 



T

Cp 
 = 

TV
Cp

 
 

(b). The coefficient of thermal expansion for benzene is 1.24x10-3 K-1 and the density is 
0.8765 g/cm3 at 298.15 K. The temperature of a sample of benzene increased by 0.0484 K for a 
sudden increase in pressure of 2.02 bar. Calculate the heat capacity of benzene.2 
 
 
Answer:  The plan is to note that partial derivatives involving entropy can often be simplified 
using a Maxwell relationship. 
(a).  The Maxwell relation based on the enthalpy, Eq. 16.4.9, relates the required partial 
derivative to a derivative with respect to the entropy: 
 

 



∂T

∂P S
 = 



∂V

∂S P
 

 

Using Problem 20, Eqs. 1-6, gives the required partial derivative as: 
 

 



∂T

∂P S
 = 



∂V

∂S P
 = 



∂V

∂T P
 



∂T

∂S P
 = 



∂V

∂T P
 



T

Cp 
 = 

TV
Cp

 
 

(b).  The heat capacity is usually expressed as a molar value; the molar volume of benzene is: 
 

 Vo = 1 mol(78.11 g mol−1)(1 m3/1x106 cm3)/0.8765 g cm-3 = 8.912x10-5 m3 
 

Substituting the required values and solving for Cp gives: 
 

 



∂T

∂P S
 = 

0.0484 K
2.02x105Pa = 

TV
Cp

 = 
298.15 K(8.912x10-5 m3)(1.24x10-3 K-1)

Cp
 

 Cp = 137.5 J K-1 mol-1 
 

This expression shows the importance of the Maxwell relationships in their ability to uncover 
relationships among important system properties. This relationship is also important in modeling 
the mechanism of impulse welding techniques. In impulse welding, two dissimilar metals are 
accelerated towards each other by an explosion, an intense magnetic field pulse, or a laser pulse. 
The impact creates a large pressure, up to 1x109 Pa, that plastically deforms and heats the 
materials. For example, explosion welding is necessary to fabricate components of high field 
magnet dewars for NMR. 
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25.  Consider the change in Gibbs energy for an isothermal change in pressure for a liquid or a 
solid. Assume the volume changes and that the isothermal compressibility, T, is constant. 
(a). Show that for initial volume Vo, initial pressure Po, and final pressure P, for moderate changes 
in pressure: 
 

 G = Vo (P – Po) – ½ Vo T (P – Po)2 
 

(b). Repeat Problem 1 with this more accurate formula, and compare the results. 
 
 
Answer:  (a). The plan is to integrate Eq. 7.6.9 for small changes in pressure (see Problem 7.11) 
and then use the volume as a function of pressure in G =  V dP (see Problem 1, above, in 
comparision). 
   Reviewing Problem 7.11, integrating dV = –V T dP from Vo, Po to V, P gives: 
 

 Vo

V
dV = – Po

P
V T dP 

For small changes in pressure, we can approximate the volume in the integrand as V  Vo: 
 

 V – Vo =  – Po

P
Vo T dP = – Vo T (P – Po)  and V = Vo – Vo T (P – Po) 

 

Using this last expression for the volume as a function of pressure in G =  V dP gives: 
 

 G = Po

P
 [Vo – Vo T (P – Po)] dP = Po

P
 Vo dP – Po

P
 Vo T (P – Po) dP 

       = Vo (P – Po) – ½ Vo T (P – Po)2|PPo
 

       = Vo (P – Po) – ½ Vo T (P – Po)2 – ½ Vo T (Po – Po)2 
       = Vo (P – Po) – ½ Vo T (P – Po)2 
 

(b).  The second term in the last expressions is a correction term for the approximate formula that 
was derived in Problem 1. Using Table 7.6.1, T = 4.53x10-5 bar-1 = 4.53x10-10 Pa-1 for water: 
 

 G = 0.07021 m3 (-1.00x105 Pa) – ½(0.07021 m3)(4.53x10-10 Pa-1)(-1.00x105 Pa)2 
       = -7021. J – 0.32 J = -7.02 kJ 
 

The correction is negligible for small changes in pressure, but important for work under extreme 
conditions in geochemistry and chemical engineering. 
 
 
26. (a). Calculate the change in internal energy for one mole of liquid water for an isothermal 
decrease in volume from 1.0000 L to 0.9900 L at 298.2 K and an initial pressure of 1.00 bar. 
Assume that  and T are approximately constant over this volume range. Note that to a good 
approximation: 
 

 P = Po – 
1

Vo T
 (V – Vo) 

 

(b). Calculate the final pressure. 
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Answer:  The plan is to follow Example 16.5.1, but using the thermodynamic equation of state 
for the change in internal energy with respect to volume, Eq. 16.5.8: 
 

 






U

V T
 = – P + T 


T

 

   Substituting for P and integrating Eq 16.5.8 gives: 
 

 U = – Vo

V
 P dV + Vo

V
 T 


T

 dV =  – Vo

V
 Po dV  + Vo

V
 

1
Vo T

 (V – Vo) dV + Vo

V
 T 


T

 dV 
 

Given that  and T are assumed constant over this volume range, for an isothermal process: 
 

 U = – Po V + 
1

2 Vo T
 (V – Vo)2 + T 


T

 V 
 

The pure molar volume for water at 25C is (1.00 mol)(18.02 g mol-1)/0.99705 g mL-1 = 18.07 
mL = 18.07x10-6 m3. From Table 7.6.1 and using 1 bar = 1x105 Pa,  = 2.57x10-4 K-1, T = 
4.53x10-5 bar-1 = 4.53x10-10 Pa-1, V = (1.0000 – 0.9900 L) = -0.0100 L = -1.00x10-5 m3, giving: 
 

 U = – 1.00x105 Pa(-1.00x105 m3) + 
1

2(1.00x10-3 m3)(4.53x10-10 Pa-1) (-1.00x10-5 m3)2 + 

  298.2 K 
2.57x10-4 K-1

4.53x10-10 Pa-1 (-1.0x10-5 m3) 
 

 U = 1.00 J + 110.4 J – 1691 J = -1.58x103 J = -1.58 kJ 
 

The first two terms are the PV work for the compression, which increases the internal energy. 
The third term is the change in internal energy caused by the change in entropy with respect to 
volume. As the volume decreases the entropy decreases, especially with respect to the 
intermolecular forces, which correspondingly decreases the internal energy by TdS. 
 

(b). The final pressure is: 

 P = Po – 
1

Vo T
 (V – Vo) = 1.00x10-5 Pa – 

1
1.00x10-3 m3(4.53x10-10 Pa-1) (-1.00x105 m3) 

 P = 2.2175x107 Pa = 222. bar 
 

The compression requires a large increase in pressure, comparable to the increase in pressure 
generated while ice skating. 
 
 
27.  Calculate the change in Gibbs energy of a liquid substance with isothermal compressibility 
T when the volume is changed from V1 to V2 at constant temperature. Start by proving that: 
 

 






G

V T
 = – 

1
T

 

Then integrate from V1 to V2 assuming T is constant. 
 
 
Answer:  The plan is to note that since the natural variables for G are P and T, the “misplaced” 
variable is V as the independent variable in the denominator. 
   Reference to Figure 9.7.1 suggests using the chain rule: 
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





G

V T
 = 







G

P T
 






P

V T
 

 

The partial (G/P)T is the thermodynamic force, (G/P)T  =V. From the definition of the 
isothermal compressibility, Eq. 7.6.9: 
 

 T = – 



1

V 





V

P T
 or inverting: 







P

V T
 = 





1

VT
 

 

Substituting this last result and the thermodynamic force gives: 
 

 






G

V T
 = V 





1

VT
 = – 

1
T

 

 

This expression is listed in the table Figure 16.4.1. Integration for constant T gives: 
G = – (1/T) V. 
 
 
28.  The Gibbs-Helmholtz relationship is useful at constant pressure. Show that for constant 
volume processes: 
 

 












A

T
T V

 = – 
U
T2 

 
 
Answer:  The plan is to follow Eqs. 16.3.9-16.3.10, but for constant volume processes. 
   Consider A/T as the product (A)(1/T) and use the product rule:  
 

 












A

T
T V

 = A 












1

T
T V

 + 
1
T 






A

T V
 = – 

A
T2 + 

1
T 






A

T V
 

 

Using Eq. 16.3.7 for the thermodynamic force, (A/T)V = – S, gives: 
 

 = – 
A
T2 – 

S
T 

 

Then taking T2 as the common denominator gives: 
 

 












A

T
T V

 = – 
(A + TS)

T2  

 

The definition of the Helmholtz energy is A  U – TS. Rearrangement of the definition gives 
A + TS = U, which upon substitution simplifies to: 
 

 












A

T
T V

 = – 
U
T2 
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29.  Rewrite Figure 9.7.1 for the partial derivatives: 
 

 






G

T V
  







T

G P
  







G

V T
  







G

T V
  







P

T G
 

 
 
Answer:  The plan is to rewrite Figure 9.7.1 using the same five partial derivative conversion 
techniques, , T, and the thermodynamic forces, Eqs. 16.3.7 and 16.3.8: 
 

 






A

T V
 = – S  







G

P T
 = V and  







G

T P
 = – S 

 

The conversion for (G/V)T is given in Problem 24. The partial derivative conversions are 
shown below: 
 







G

T V
= 






A

T V
 + 






P

T V
V = –S + V/T 

 

         






T

G P
 = 

1







G

T P

 = – 
1
S 

 

      G  A + PV 
 

           definition     invert 
   misplaced numerator        misplaced numerator 
 

 

            






G

T V
     







T

G P
 

 

   






G

V T
  







G

T V
      







P

T G
 

 

   misplaced denominator         misplaced constant variable misplaced constant variable 
 chain rule        total differential, dG    total differential, dG = 0 
 

    






G

V T
 = 







G

P T
 






P

V T
 

     






G

V T
 = V 





1

VT
 

                = – 
1
T

 

dG = 






G

T P
dT + 







G

P T
dP 

 







G

T V
= 






G

T P
 + 






G

P T





P

T V
 

 

          = – S + V/T 

dG = 






G

T P
dT + 







G

P T
dP = 0 

        






G

T P
 + 






G

P T





P

T G
= 0 

 

   






P

T G
= 

– 






G

T P

  






G

P T

 = 
S
V 

 

Figure P29.1:  Partial Derivative Conversion. Partial derivative manipulations to convert 
unknown partial derivatives to those involving Cv, Cp, , and T. 

 
The last example, using the Euler chain relationship, is used with equilibrium phase transitions of 
pure substances. For a phase transition at equilibrium, trG = 0 and then the change in pressure 
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necessary for the system to remain at equilibrium for a change in temperature is given using 
General Pattern  8: 
 

 






P

T G
 = 

trS
trV

        (17.1.7) 
 

where trS is the entropy change for the phase transition and trV is the change in molar volume. 
This last result gives Eq. 17.1.7, which is one form of the famous Clapeyron equation. 
 
 
30.  In an isothermal expansion of an ideal gas U = 0. The value is not zero for a real gas. Using 
the Van der Waals equation of state, find U for an isothermal expansion from V1 to V2. 
 
 
Answer:  The plan is to integrate the thermodynamic equation of state, Eq. 16.5.5: 
 

 






U

V T
  = – P + T 







P

T V
       1 

 

   The Van der Waals equation of state, Eq. 7.5.1, rearranges to give: 
 

 P = 
nRT

(V–nb) – a 
n2

V2        2 
 

The mechanical derivative is: 
 

 






P

T V
 = 

nR
(V–nb)        3 

 

Using this partial derivative and the Van der Waals equation, Eq. 2, to substitute for P into the 
thermodynamic equation of state, Eq. 3, gives: 
 

 






U

V T
 = – 

nRT
(V–nb) + 

an2

V2  + T 
nR

(V–nb)  =  
an2

V2      4 

 

We can now separate variables and integrate: 
 

 dU = 
an2

V2  dV  giving:  U1

U2 dU = 



V1

V2

 
an2

V2  dV   5 

 

Using 

 

1
x2 dx = – 

1
x  gives: 

 

 U = – a n2 



1

V2
 – 

1
V1

        6 
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31.  The work for the system in stretching a rubber band is wnet = – F dx, where F is the restoring 
force, F = – k x. At constant temperature and pressure, G = wnet, where wnet is the non-PV work. 
Therefore, the total change in Gibbs energy for a process involving stretching a rubber band is: 
 

  dG = – S dT + V dP – F dx. 
 

 
 
 
 
 
 
 
 
(a). Under what conditions is G be a good spontaneity criterion ( i.e. when what is held 
constant)?  (b). For an initial state with a stretched rubber band, x > 0, find the direction for 
spontaneous change, either dx > 0 or dx < 0, at constant temperature and pressure.  (c). Define a 
new state function:  R  G + F x. What are the independent variables for R? 
 
 
Answer:  (a). G is a good spontaneity criterion at constant T and P. Setting T and P as constant 
gives dG = – F dx, which focuses attention on the work of extension. 
(b).  For a spontaneous process at constant T and P, dG = – F dx < 0. Substituting in the force, 
F = – k x, gives: 
 

 dG = k x dx < 0 
 

For an initial stretched state with x > 0, then dx < 0 to make dG negative overall. With dx < 0 the 
rubber band relaxes toward x = 0, the equilibrium position, as expected. 
 (c).  This definition is a Legendre transformation. Taking the total differential using the product 
rule gives: 
 

 dR = dG + F dx + x dF 
 

Substituting in for dG gives: 
 

 dR = – S dT + V dP – F dx + F dx + x dF 
 

Canceling terms gives: 
 

 dR = – S dT + V dP + x dF 
 

The independent variables are T, P, and F. This function would be useful for systems that have 
extension work with a constant force and then some other form of work, in addition. The 
additional work might be chemical work, for example in a muscle. 
 
 
32.  Given that dU = TdS – PdV and for an ideal gas the change in entropy is given by: 
 

 dS = 
Cv

T  dT + 
nR
V  dV 

 

dx 

x 0 

k ="stretchiness" 
 x= extension 
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show that dU = Cv dT for any process in an ideal gas. (At first it doesn’t look like 
dU = TdS – PdV will give just dU = Cv dT, does it?) 
 
 
Answer:  Substituting for dS into the combined First and Second Laws gives: 
 

 dU = TdS – PdV = T 



Cv

T  dT + 
nR
V  dV  – PdV 

 dU = Cv dT + 
nRT

V  dV – PdV 
 

However, for an ideal gas  P = nRT/V and the last two terms cancel: 
 

 dU = Cv dT + 
nRT

V  dV – 
nRT

V  dV = Cv dT 
 

The only restriction we have placed on this equation is that the system is an ideal gas. 
 
 
33.  In Eqs. 16.6.14, the chemical potentials expressed in terms of U, H, A, and G were all shown 
to be equal based on comparing the total differential of each thermodynamic potential with the 
Legendre transformed combined First and Second Laws of thermodynamics. As an alternative 
proof, show that the chemical potentials expressed in terms of the Gibbs energy and the enthalpy 
are equal using partial derivative conversions: 
 

 i = 






G

ni T,P,nji
= 






H

ni S,P,nji
 

 
 
Answer:  The plan is to relate dG and dH using the definition of the Gibbs energy, G  H – TS. 
In other words, treat the G in the numerator as “misplaced.” 
   No generality will be lost if we consider only a single component, but the notation will be 
simplified. Substituting the definition of the Gibbs energy gives: 
 

 






G

n T,P
 = 







H

n T,P
 – T 







S

n T,P
       1 

 

Considering (H/n)T,P, the natural variables for H are S and P, not the given independent 
variables T and P. We can treat the constant T as the “misplaced” variable. Consulting Figure 
9.7.2, we need to work through the total differential of the enthalpy expressed as a function of 
independent variables, S, P, and n: 
 

 dH = 






H

S P,n
dS + 







H

P T,n
dP + 







H

n S,P
dn     2 

 

Dividing by dn at constant T and P gives the desired enthalpy derivative. With dP = 0 and using 
the fact that (H/S)P,n is a thermodynamic force, (H/S)P,n = T: 
 

 






H

n T,P
 = 







H

S P,n





S

n T,P
 + 







H

n S,P
 = T 







S

n T,P
 + 







H

n S,P
   3 
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Substitution of Eq. 3 into Eq. 1 gives the desired result after cancellation: 
 

 






G

n T,P
 = T 







S

n T,P
 + 







H

n S,P
 – T 







S

n T,P
 = 







H

n S,P
    4 

 

The other equalities of the chemical potentials, in terms of the corresponding natural variables in 
Eqs. 16.6.14, can be proved in an analogous fashion. 
 
 
34.  Calculate the entropy and Gibbs energy of mixing of 0.80 moles of N2(g) and 0.20 moles of 
O2(g) at 298.15 K. Assume the initial pure gases are at 1 bar pressure and the final total pressure 
is also at 1 bar. 
 
 
Answer:  Using Eqs. 18.2.9 and 18.2.10: 
 

 mixS = – ntotR 
i=1

ns

 yi ln yi = – 1.00 mol(8.3145 J K-1 mol-1)[0.80 ln 0.80 + 0.20 ln 0.20] 

         = 4.16 J K-1 

 

 mixG = – T mixS = – 298.15 K(4.16 J K-1)(1 kJ/1000 J) = -1.24 kJ mol-1 

 
 
35.  Carbon sequestration is a strategy for ameliorating global climate change caused by the 
build-up of CO2 in the atmosphere from fossil fuel combustion. However, the separation of CO2 
from exhaust gases requires work that will necessarily decrease the efficiency of the overall 
process. Assume that the O2 in air is replaced completely by CO2 during a combustion process. 
Calculate the minimum energy per mole of CO2 at constant temperature and pressure necessary 
to separate the CO2 from the remaining N2 at 298.15 K. Assume air is 20.9 mol% O2 and 79.1 
mol% N2. Anthracite coal can be modeled as pure graphite. Compare the energy required for the 
CO2 separation to the Gibbs energy of combustion of graphite. 
 
 
Answer:  For one total mole of air as a feed gas for a fossil fuel based power plant or automobile, 
assuming complete conversion of the O2 to CO2 gives a final exhaust gas that is 20.9 mol% CO2 
and 79.1 mol% N2. The negative of the Gibbs energy of mixing is the minimum work necessary 
to separate the CO2 from the N2: 
 

 mixG = ntotRT 
i=1

ns

 yi ln yi 

          = 1.00 mol(8.3145 J K-1 mol-1)(298.15 K)[0.209 ln 0.209 + 0.791 ln 0.791] 
          = -1.271 kJ 
 

Per mole of CO2 produced:  mixGm(CO2) = -1.271 kJ/0.209 mol = -6.08 kJ mol-1 of CO2. 
 

The energy required to separate the CO2 and N2 is then +6.08 kJ mol-1. The separation is likely to 
be facilitated using a ceramic membrane based on a zeolite-type molecular sieve material. The 
Gibbs energy of combustion of carbon graphite, by comparison, yields: 
 



Chapter 16 Foundations of Thermodynamics  25 

 C(graph) + O2 (g, 1 bar)  CO2 (g, 1 bar)  fG298 K  = -394.36 kJ mol-1 

 

The Gibbs energy of combustion of graphite is equivalent to the Gibbs energy of formation of 
CO2. The separation requires at least 1.5% of the energy produced by the combustion. The 
energy lost in separating CO2 from the exhaust stream is minimal under ideal conditions. 
However, the CO2 produced is at low pressure, 1 bar, and must be liquefied or otherwise 
compacted for disposal. 
 
 
36.  Find the fugacity coefficient for a gas that obeys the Virial equation of state, Eq. 7.5.10: 
z = 1 + (B(T)/RT) P. For CO2 at the critical temperature, 304.14 K, the second Virial coefficient 
is B(T) = -0.114 L mol-1. Calculate the fugacity coefficient for CO2 at 150 bar and 304.14 K, and 
compare to the result using Figure 16.7.1 (see Example 16.7.1). 
 
 
Answer:  The plan is to use Eq. 16.7.9 with the given Virial polynomial expansion for the 
compressibility factor. 
   Substituting the Virial expansion through the second Virial coefficient into Eq. 16.7.9 gives the 
integral as: 
 

 ln f/P = 



0

P

 
(z –1)

P  dP = 



0

P

 
B(T)
RT  dP = 

B(T)
RT  P 

 

With f =  P, then f/P = . For the given conditions: 
 

 ln  = 
-0.114 L mol-1

0.083145 bar L K-1 mol-1 304.14 K 150 bar = -0.6762 

  = 0.509 
 

The reduced temperature is TR = T/Tc = 1 and the reduced pressure is PR = P/Pc. The critical 
pressure for CO2 is 73.843 bar, giving PR = 150 bar/73.843 bar = 2.03. Reading the fugacity 
coefficient from Figure 16.7.1 gives   0.43. Our result of  = 0.509 is sufficiently close given 
that only the second Virial coefficient term was retained in this approximation. Notice when only 
the second Virial coefficient term is retained that ln  = z – 1. 
 
 
37.  A brief outline of carbon sequestration is given in Problem 32. One proposal for carbon 
sequestration is to pump liquid or super critical CO2 deep underground into abandoned oil wells 
that are sealed by salt domes. CO2 may be liquefied at temperatures less than the critical 
temperature and pressures greater than the critical pressure. For CO2 the critical temperature is 
304.14 K and the critical pressure is 73.843 bar. The critical pressure is the maximum vapor 
pressure for liquid CO2. At equilibrium, the chemical potential of the liquid is equal to the 
chemical potential of the vapor, *

CO2(l) = CO2(g). Find the chemical potential for CO2 vapor and 
liquid at the critical point, relative to the standard state, using Figure 16.7.1. Compare your 
results to the value assuming ideal gas behavior. 
 
 



26 
 

Answer:  Reading the fugacity coefficient from Figure 16.7.1 gives   0.666 for TR = 1.00 and 
PR = 1.00. Using Eq. 16.7.1 the chemical potential is given by: 
 

      for real CO2: 

  = A(g) + RT ln f/P = A(g) + RT ln P/P 
      = A(g) + 8.3145 J K-1 mol-1(304.14 K)(1 kJ/1000 J) ln[0.666(73.843 bar)/1 bar] 
      = A(g) + 9.85 kJ mol-1       (real) 
 

      for ideal CO2: 

  = A(g) + RT ln P/P = A(g) + 10.88 kJ mol-1    (ideal) 
 

Attractive intermolecular forces decrease the chemical potential of the real vapor and liquid as 
compared to the ideal vapor. Notice that in this problem we have not calculated the PV work 
necessary to condense CO2. However, we can use the fugacity coefficient as a general indication 
of the importance of intermolecular forces. 
 
 
38.  Carbon dioxide plays an important role in many geochemical processes, which often occur 
at high pressure. Calculate the reaction Gibbs energy at 50.0 bar and 298.2 K for: 
 

 CaCO3 (s)  CaO (s) + CO2 (g, P = 50.0 bar) 
 

Approximate the fugacity coefficient using: 
 

 ln   z – 1  (B(T)/RT) P 
 

where B(T) is the second Virial coefficient at the given temperature (see Problem 36 for the 
justification). For CO2 at 298.2 K, the second Virial coefficient is B(T) = -0.125 L mol-1. Neglect 
the effect of the pressure on the solids. Compare the results to the value assuming an ideal gas 
(Ch. 15, Problem 17). 
 
 
Answer:  Under standard state conditions: 
 

  CaCO3 (s)    CaO (s)    +  CO2 (g, P = 1 bar) 
         fG      -1128.8  -604.03 -394.36 kJ mol-1 
 

 rG  = 
i=1

ns

 ifG = [products] – [reactants] 

           = [(-394.36) + (-604.03)] – [-1128.8] kJ mol-1 = 130.41 kJ mol-1 
 

The Gibbs energy of each gaseous reactant and product is then adjusted for the new pressure: 
 

 rG = rG +  i RT ln fi/P    (i for gases only) 
 

The i are the stoichiometric coefficients for each gaseous reactant and product, with i negative 
for reactants. (See Chapter 20 for more information on non-standard state reaction Gibbs 
energies). For this reaction CO2 = 1 is the only gas: 
 

 rG = rG + RT ln f/P 
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For the given conditions: 
 

 ln  = 
-0.125 L mol-1

0.083145 bar L K-1 mol-1 298.15 K 50 bar = -0.2521 

  = 0.777 
 

 rG = rG + RT ln (0.777)(50.0 bar)/1 bar 

        = 130.41 kJ mol-1 + 8.3145 J K-1 mol-1(1 kJ/1000 J)(298.15 K) ln 38.86 
        = 130.41 kJ mol-1 + 9.07 kJ mol-1 = 139.48 kJ mol-1 
 

The value assuming  = 1 is 140.11 kJ mol-1, as given in Ch. 15, Problem 17. 
 
 
39. (Challenge Problem) Consider a one-component open system:  dU = T dS – P dV +  dn, 
with the chemical potential given in terms of the natural variables for U by: 
 

  = 






U

n S,V
 

 

For practical problems we often treat the internal energy as a function of T and V, since we often 
work at constant temperature and constant volume (see Chapter 7). (a). Show using partial 
derivative conversions that: 
 

 dU =T dS – P dV +  dn = Cv dT + 






U

V T,n
dV + 







U

n T,V
dn 

 

(b). Determine dU for a constant temperature and volume process for an open system. 
 
 
Answer:  The plan is to find TdS and dn for an open system in terms of T, V, and n, and then 
substitute into dU =T dS – P dV +  dn. 
   Consider, first,  dn. The chemical potential is given in terms of the natural variables, 
U(S,V, n), by: 
 

 dU = 






U

S V,n
dS + 







U

V S,n
dV + 







U

n S,V
dn      1 

 

Dividing by dn at constant T and V gives the molar internal energy at constant temperature and 
volume: 
 

 






U

n T,V
 = 







U

S V,n
 






S

n T,V
 + 







U

n S,V
      2 

 

The internal energy derivative with respect to entropy is the thermodynamic force, 
(U/S)V,n = T. The last term, (U/n)S,V, is the chemical potential, . Solving for the chemical 
potential gives: 
 

  = 






U

n T,V
 – T 







S

n T,V
        3 
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We next need to find TdS, starting from the total differential of S in terms of T, V, and n: 
 

 dS = 






S

T V,n
dT + 







S

V T,n
 dV + 







S

n T,V
dn      4 

 

Note that the entropy change includes terms from the temperature change, the volume change, 
and the change in number of moles of substance. Note that (S/T)V,n = Cv/T. We can also use 
the Maxwell relationship, Eq. 16.4.10, (S/V)T,n = (P/T)V,n. Then, TdS is given by: 
 

 T dS = Cv dT + T 






P

T V,n
dV + T 







S

n T,V
dn      5 

 

Substituting Eqs. 3 and 5 into dU = T dS – P dV +  dn gives: 
 

 dU = Cv dT + T 






P

T V,n
dV + T 







S

n T,V
dn – P dV + 







U

n T,V
dn – T 







S

n T,V
 dn   6 

 

 dU = Cv dT + T 






P

T V,n
dV – P dV + 







U

n T,V
dn     7 

 

Distributing out the common factor of dV gives: 
 

 dU = CvdT + 








 – P + T 






P

T V,n
 dV + 







U

n T,V
dn     8 

 

The term in brackets is the thermodynamic equation of state for the internal energy, (U/V)T,n, 
Eq. 16.5.5: 
 

 dU = Cv dT + 






U

V T,n
dV + 







U

n T,V
dn      9 

 

This derivation shows that dU = T dS – P dV +  dn and Eq. 9 are consistent and can be derived 
from each other. The derivation of Eqs. 4 and 5 show that both the TdS and the  dn terms 
depend on the change in number of moles of the substance. 
 

(b). At constant temperature and volume, Eq. 9 reduces to: 
 

 dU = 






U

n T,V
dn      (cst. T&V)  10 

 

where the partial derivative is the well-known molar internal energy of the substance. For a 
chemical reaction, the molar internal energy of the products minus the reactants gives the 
conventional rU. 
 
 
40. (Challenge Problem)  The molar absolute entropies of substances that are listed in reference 
tables are given by: 
 

 Sm = 






S

n T,P
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since reference tabulations assume constant temperature and pressure. Consider a single 
component system. The enthalpy change for a general process in terms of the natural variables is: 
 

 dH = T dS + V dP +  dn 
 

The TdS term, however, is more complicated than it might first appear. Show that: 
 

 T dS = Cp dT – T 






V

T P,n
 dP + T Sm dn 

 
 
Answer:  The plan is to write the total differential of S as a function of T, P, and n, and then use a 
Maxwell Relationship for one of the entropy derivatives. 
   Starting from the total differential of the entropy in terms of T, P, and n: 
 

 dS = 






S

T P,n
dT + 







S

P T,n
 dP + 







S

n T,P
dn     1 

 

Note that (S/T)P,n = Cp/T. We can also use the Maxwell relationship, Eq. 16.4.11, 
(S/P)T,n = – (V/T)P,n and the definition of the molar entropy, (S/n)T,P = Sm. Substituting 
these values into Eq. 1 gives TdS as: 
 

 T dS = Cp dT – T 






V

T P,n
 dP + T Sm dn     2 

 

which can also be expressed as: 
 

 T dS = Cp dT – TV dP + T Sm dn      3 
 

Eqs. 2 and 3 show that both the TdS and  dn terms depend on the change in number of moles of 
the substance. 
 
 
41. (Challenge Problem)  (a).  Starting with the result for TdS from the last problem, show that 
for a general process in an open system with one component: 
 

 dH = Cp dT + 






H

P T,n
 dP + T Sm dn +  dn 

 

(b).  The molar enthalpies for substances that are listed in reference tables are given by: 
 

 Hm = 






H

n T,P
 

 

Show that  = 






H

n T,P
 – T Sm 

 

(c).  Combine the expressions in parts (a) and (b) and compare to the general total differential of 
H(T,P,n). 
 

(d).  Find dH for a constant temperature and pressure process in an open system with one 
component. 
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Answer:  (a).  Substituting Eq. 2 from the last problem into dH = T dS + V dP +  dn  gives: 
 

 dH = Cp dT – T 






V

T P,n
 dP + T Sm dn + V dP +  dn 

 

Factoring out the common factor of dP gives: 
 

 dH = Cp dT + 








V – T 






V

T P,n
 dP + T Sm dn +  dn 

 

The term in brackets is the thermodynamic equation of state for the enthalpy, (H/P)T,n, Eq. 
16.5.11: 
 

 dH = Cp dT + 






H

P T,n
 dP + T Sm dn +  dn 

 

(b).  The chemical potential, based on the enthalpy is given by Eq. 16.6.14 as: 
 

  = 






H

n S,P
 

 

since the natural variables for H are S and P. The conventional molar enthalpy of a substance 
listed in reference tables, (H/n)T,P, is at constant T and P, however. The “misplaced” variable 
is the constant T. To find the conventional molar enthalpy, we work from the total differential of 
H with respect to the natural variables: 
 

 dH = 






H

S P,n
 dS + 







H

P S,n
 dP + 







H

n S,P
dn 

 

Dividing by dn at constant T and P gives the conventional molar enthalpy: 
 

 






H

n T,P
 = 







H

S P,n
 






S

n T,P
 + 







H

n S,P
 

 

The first partial on the right of the equality is the thermodynamic force, (H/S)P,n = T. The 
entropy derivative is the conventional molar entropy Sm. The last term is the chemical potential. 
Solving for the chemical potential gives: 
 

  = 






H

n T,P
 – T Sm 

 

This last expression can also be written as  = Hm – T Sm, as expected from the definition, 
G  H – TS. This expression was also proved in Problem 33, Eq. 1 or Eq. 3. 
 

(c).  Combining this last expression for the chemical potential with dH from part (a) gives: 
 

 dH = Cp dT + 






H

P T,n
 dP + T Sm dn + 







H

n T,P
 dn – T Sm dn 

 dH = Cp dT + 






H

P T,n
 dP + 







H

n T,P
 dn 
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Substituting the definition of Cp  (H/T)P,n back into this last expression gives: 
 

 dH = 






H

T P,n
 dT + 







H

P T,n
 dP + 







H

n T,P
 dn 

 

This result, which was derived from dH = T dS + V dP +  dn, is the general total differential of 
the enthalpy with respect to independent variables T, P and n. This equality shows that dH 
derived from H(S,P,n) and H(T,P,n) are equivalent, as they must be. 
 

(d).  At constant T and P, dH reduces to: 
 

 dH =






H

n T,P
 dn = Hm dn 

 

where (H/n)T,P  Hm is the conventional molar enthalpy of the substance as found in standard 
reference tables. While these results are intuitive and expected, the interpretation of the TdS term 
in dH = T dS + V dP +  dn and the relationship to the constant temperature and pressure molar 
enthalpy is a common source of confusion, even for experienced physical chemists. 
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