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Chapter 16. Foundations of Thermodynamics 
 

Given the changes in T, S, V, P, and ni, how do we calculate the corresponding change in U, 
A, H, and G? For just one example, assume you are a diver, and that to a good degree of 
approximation you are essentially just a 70 kg mass of water. Calculate the change in Gibbs 
energy for 70 kg of water in an isothermal expansion from a pressure of 2.00 bar to a final 
pressure of 1.00 bar at a constant temperature of 298.2 K. This pressure difference 
corresponds to surfacing from a depth of 10 m. 

 
   Thermodynamics is a coherent, internally consistent, and very useful theory that allows us to 
predict the behavior of all macroscopic physical systems. In this chapter we find that there are 
amazingly few underlying principles that form the foundation for our understanding of the 
physical world, from a macroscopic viewpoint. 
 
16.1 Thermodynamic Potentials and Thermodynamic Forces 
 
Now that we have defined the free energy functions and determined their central importance, it is 
important to take a step back and consider what we have accomplished. We now have four 
important state functions that tell us about heat and work transfer. The internal energy is the heat 
transfer at constant volume, the enthalpy is the heat transfer at constant pressure, the Helmholtz 
energy is the maximum total work for a process, and the Gibbs energy is the maximum non-PV 
work for a process. U, H, A, and G are called thermodynamic potentials. These state functions 
tell us about the potential of a process to transfer heat and to do work. The idea is a 
generalization of the mechanical potential energy. U, H, A, and G tell us the potential of the 
system to do useful things. 
   There is an immediate connection between thermodynamics and classical mechanics for a 
process with no heat transfer. The change in thermodynamic internal energy is equal to the work 
done in a process when no heat is transferred, ∆U = q + w = w. The change in mechanical 
potential energy, V(x), is also equal to the work done on the system; then with no heat transfer 
∆V(x) = ∆U = w. Remember from your study of classical mechanics that there is a simple 
relationship between the potential energy for a system and the forces that act on the system. For a 
particle subject to a force, F, the change in potential energy with position is: 
 

 F = – 
dV(x)

dx            16.1.1 
 

The force is the negative of the gradient of the potential, Figure 16.1.1. Integrating Eq. 16.1.1 for 
a constant force gives the familiar relationship ∆V(x) = – F∆x. By analogy, we define the 
derivative of a thermodynamic potential against a displacement as a thermodynamic force. The 
displacement, dr, is a change in a thermodynamic variable, for example T, S, P, V, or ni. For the 
internal energy the general form of a thermodynamic force is: 
 

 F = 
∂U
∂r

           16.1.2 
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Figure 16.1.1: The change in potential energy is the work done. The work is the energy 
necessary to displace an object against a force. The force is the negative of the gradient of the 
potential. 

 
 
   The combined First and Second Laws of thermodynamics tell us something very important 
about the thermodynamic forces. For the moment, let us assume that we have a closed system 
with no chemical reactions, to keep things simpler. We know that the combined First and Second 
Laws of Thermodynamics give: 
 

 dU = TdS – PdV       (closed) 16.1.3 
 

which implies that the independent variables are S and V. The total differential of U(S,V) is also 
expressed as: 
 

 dU = 






∂U

∂S V
 dS + 







∂U

∂V S
 dV      (closed) 16.1.4 

 

Comparing Eq. 16.1.3 and Eq. 16.1.4 term by term gives: 
 

 






∂U

∂S V
 = T  







∂U

∂V S
 = – P       16.1.5 

 

These equations are in the same general form as Eq. 16.1.2, so T and P are thermodynamic 
forces. For P this not at all surprising; the pressure is defined as the force per unit area. 
Expansion work is done against the pressure as the force. To change the volume of a system, 
there must be a pressure gradient. But the same arguments can be made about the temperature. 
Entropy change corresponds to heat flow, dS = đqrev/T. To have heat flow there must be a 
temperature gradient. So by analogy, temperature is the force for heat flow; please review 
Section 13.1. 
   The concept of temperature is certainly one of the most fundamental principles in science. The 
ideal gas temperature scale is a very empirical approach to temperature, but the adoption of the 
ideal gas temperature scale is not a rigorous definition of temperature from a fundamental 
standpoint. One of the most fundamental definitions for temperature is through the 
thermodynamic force in Eq. 16.1.5, see Section 10.2. 
   The combination of P and V, couples an intensive variable and an extensive variable. The PV 
product gives the work done in a process and the PV product has units of energy. Variables 
related in this way are conjugate variables. The variables T and S are also a conjugate pair: T 
is the thermodynamic force that corresponds to the derivative of the potential energy with respect 

V(x) 

x 

F 

dx 

 • V(x) 

x 

• 
F 
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to S, the product of T and S gives the heat transferred in a process, and the TS product has units 
of energy. The conjugate pair always occurs together in fundamental equations for the 
thermodynamic potentials, for example TdS and SdT. If you like, T and S go hand-in-hand, as do 
P and V. One variable in the pair is the force to be reckoned with while the other is the change 
you want to make. 
   The thermodynamic forces are the answers to some very important questions. For example, 
how does the internal energy change with volume for an adiabatic reversible process? An 
adiabatic reversible process corresponds to a constant entropy process. We can then just integrate 
the thermodynamic force: 
 

 






∂U

∂V S
 = – P  dU = –P dV and ∆U = – ⌡⌠PdV   (adiabatic reversible) 16.1.6 

 

How does the internal energy change with a change in entropy for a constant volume process? 
This problem sounds like a tough problem at first. All we need to do is to integrate our trusty 
thermodynamic force: 
 

 






∂U

∂S V
 = T  dU = TdS and ∆U = ⌡⌠TdS  (constant V) 16.1.7 

 

We are on our way to being able to find the change in any thermodynamic potential with any 
change in variable. To make further progress we need to consider how we define the 
thermodynamic potentials, and why. 
 
16.2 Changing Independent Variables Using Legendre Transformations 
 

   Once again consider dU = TdS – PdV. This equation gives the internal energy as a function of 
independent variables S and V, that is U(S,V). S and V are the independent variables that follow 
from the application of the First and Second Laws, so they are called the “natural” variables of 
the internal energy. We have also defined: 
 

 H ≡ U + PV          16.2.1 
 A ≡ U –TS          16.2.2 
 G ≡ H –TS          16.2.3 
 

How do H, A, and G depend on T, S, P, and V? What are the thermodynamic forces for changes 
in H, A, and G? 
   Starting with enthalpy, the total differential is: 
 

 dH = dU + PdV + VdP      (closed) 16.2.4 
 

then substituting in Eq. 16.1.3 gives us: 
 

 dH = TdS – PdV + PdV + VdP     (closed) 16.2.5 
 

Cancelling terms gives: 
 

 dH = TdS + VdP       (closed) 16.2.6 
 

This equation expresses the enthalpy in terms of independent variables S and P, which are the 
natural variables for the enthalpy, H(S,P), since they are directly derived from Eq. 16.1.3. 
   For the Helmholtz energy, the total differential is: 
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 dA = dU –TdS – SdT       (closed) 16.2.7 
 

then substituting in Eq. 16.1.3 gives us: 
 

 dA = TdS – PdV –TdS – SdT      (closed) 16.2.8 
 

Cancelling terms gives, as we did in Eq. 15.2.10: 
 

 dA = – SdT – PdV       (closed) 16.2.9 
 

which corresponds to A(T,V), with T and V the natural variables. 
   For Gibbs energy: 
 

 dG = dH – TdS – SdT       (closed) 16.2.10 
 

substituting for dH from Eq. 16.2.6 gives: 
 

 dG = TdS + VdP – TdS – SdT     (closed) 16.2.11 
 

and cancelling terms, as we did in Eq. 15.2.22: 
 

 dG = – SdT + VdP       (closed) 16.2.12 
 

The independent variables implied are G(T,P), where T and P are the corresponding natural 
variables for the Gibbs energy. Notice something interesting. The natural variables for Helmholtz 
and Gibbs energies, A(T,V) and G(T,P), are just those conditions where the free energy function 
is a good spontaneity criterion. We use A as a spontaneity criterion at constant temperature and 
volume, and G at constant temperature and pressure. So the choice of T and P as the independent 
variables makes G a good spontaneity criterion at constant T and P. This observation is another 
reason why we call T and V the natural variables for the Helmholtz energy, and T and P the 
natural variables for the Gibbs energy. But how did the natural variables for G get to be T and P? 
   The natural variables for a given state function flow directly from the definition of the state 
function. Let’s look at how we define new state functions. Let the total differential of the original 
state function be given as dF(x1,x2) = f1dx1 + f2dx2, with x1 and x2 as the independent variables. 
The definitions are all in the form: 
 

 Q = F – f1x1          16.2.13 
 

where Q is the new function and f1x1is a conjugate pair of variables. This definition is called a 
Legendre transformation, which is widely used in many fields. Using the same steps as above, 
the total differential of Q is 
 

 dQ = dF – f1dx1 – x1df1        16.2.14 
 

Substituting the total differential, dF,  
 

 dQ = f1dx1 + f2dx2 – f1dx1 – x1df1       16.2.15 
 

and cancelling terms gives; 
 

 dQ = – x1df1 + f2dx2         16.2.16 
 

The net result is that the independent variables for Q(f1,x2) have been switched. The effect of the 
definition has been to switch independent variables between the f1x1 conjugate pair. Since one 
variable in a conjugate pair is intensive and the other extensive, this switch changes the 
independent variable from an extensive to an intensive variable or visa versa. Specifically, 
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starting with H(S,P), the definition G ≡ H – TS gives the natural, independent variables G(T,P). 
Why do we do this? Because, the new function, G, is the appropriate spontaneity criterion when 
we work at constant T and P. As we saw in the last chapter, at constant T and P, the use of Gibbs 
energy simplifies the system and focuses our attention on internal processes in the system, such 
as chemical reactions. 
   We now see why internal energy and enthalpy are not usually good spontaneity criteria. The 
natural variables for U are S and V. So internal energy is a good spontaneity criterion at constant 
S and V. Since adiabatic reversible processes in closed systems occur at constant entropy, there 
is no heat flow. As we mentioned above, with no heat flow the internal energy is equivalent to 
the mechanical potential energy. For example, consider the two-part system in Figure 14.3.1 
where dU = – PAdVA – PBdVB. At constant entropy and total volume, Vtot = VA + VB, and 
dU = – PAdVA – PBdVB < 0 predicts the spontaneous direction for PV work, as you used 
repeatedly in your work on classical mechanics. Additionally, the enthalpy is the appropriate 
spontaneity criterion at constant S and P. 
 
16.3 Thermodynamic Forces: May the Forces Be With You 
 

   The definitions of the thermodynamic potential energy functions provide a very useful set of 
thermodynamic forces that provide the answers to a wide variety of problems. Starting with the 
natural variables for each state function, U(S,V), H(S,P), A(T,V), and G(T,P), the total 
differentials are: 
 

 dU = 






∂U

∂S V
 dS + 







∂U

∂V S
 dV  dU =  TdS – PdV    16.3.1 

 dH = 






∂H

∂S P
 dS + 







∂H

∂P S
 dP  dH =  TdS + VdP    16.3.2 

 dA = 






∂A

∂T V
 dT + 







∂A

∂V T
 dV  dA = – SdT – PdV    16.3.3 

 dG = 






∂G

∂T P
 dT + 







∂G

∂P T
 dP  dG = – SdT + VdP    16.3.4 

 

The equations that we derived from the Legendre transforms, from Eqs. 16.2.6-16.2.12, are also 
listed again for convenience. Comparing terms, we can immediately write down a complete set 
of thermodynamic forces: 
 

 






∂U

∂S V
 = T  







∂U

∂V S
 = – P       16.3.5 

 






∂H

∂S P
 = T  







∂H

∂P S
 = V       16.3.6 

 






∂A

∂T V
 = – S  







∂A

∂V T
 = – P       16.3.7 

 






∂G

∂T P
 = – S  







∂G

∂P T
 = V       16.3.8 

 

This set of forces allows us to easily solve a wide variety of problems by direct integration. 
 
 



558 
 

              

Example 16.3.1 
Calculate the change in Helmholtz energy for one mole of an ideal gas in an isothermal 
expansion from an initial volume of 1 L to a final volume of 2 L at a temperature of 298.2 K. 
 
 
Answer:  Remember the trick we discussed earlier for relating partial derivatives to the 
conditions for a given process. The partial derivative we need gives the change in A: 
 

 






∂A

∂V T
 = ? 

 

Let’s assume for a moment that you don’t recognize this particular partial derivative. How can 
you determine if it is a thermodynamic force? First note the numerator is the change in a 
potential energy function, dA. Then note that the independent variables, V and T, are the natural 
variables for A; that is, A is a good spontaneity criterion at constant T and V. With the potential 
up top and the natural variables down below, you can recognize the derivative as the 
thermodynamic force for changes in V. Of course, we can just look up at the equations above 
and recognize that the force is –P. However, assume that you don’t have Eq. 16.3.5-16.3.8 in 
front of you. How can you get the value for the force? Using the associations in Figure 16.3.1 we 
can immediately spot that –P is the force that corresponds to changes in A, with respect to 
changes in V. The independent variable and the force are conjugate variables. 
 
 the change in A when V changes is the thermodynamic force, –P 
 

  dA = – S dT – P dV   






∂A

∂V T
 = – P 

 
  at constant T    conjugate variables 

Figure 16.3.1: Finding thermodynamic forces from the total differential. 
 
 

Then  






∂A

∂V T
 = – P  or   dA = – P dV 

can be integrated to find the final result for an ideal gas: 

 ∆A = – ⌡⌠PdV = – 
⌡

⌠

V1

V2

 
nRT
V dV  = – nRT ln (V2/V1)  (isothermal, ideal gas) 16.3.9° 

 

This result shouldn’t be surprising, since dA = dwmax, and the work for an isothermal reversible 
expansion of an ideal gas is wrev = – nRT ln (V2/V1). 
 
              

 
 
The Change in Gibbs Energy with Temperature Depends on the Enthalpy Change:  The change 
in the Gibbs energy with temperature is given by Eq. 15.4.15. However, we can derive a simpler 
version of this equation based on the thermodynamic force for the change in Gibbs energy with 
temperature in Eq. 16.3.8. First consider the partial derivative of G/T with respect to temperature 
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at constant pressure. Using the product rule and Eq. 16.3.8 for the thermodynamic force 
(∂G/∂T)P = –S, gives: 
 

 








∂






G

T
∂T P

 = G 








∂






1

T
∂T P

 + 
1
T 






∂G

∂T P
 = – 

G
T2 – 

S
T    (constant P) 16.3.10 

 

Then taking T2 as the common denominator gives: 
 

 








∂






G

T
∂T P

 = – 
G + TS

T2  = – 
H
T2      (constant P) 16.3.11 

 

where we used the definition of the Gibbs energy to find G + TS = H. This equation is called the 
Gibbs-Helmholtz equation. This result is particularly useful for chemical reactions. Remember 
from General Pattern ℘℘℘℘8, Thermodynamic Relationships for Reactions, that we can turn any 
thermodynamic relationship into a relationship for a chemical reaction by taking products minus 
reactants by inserting ∆r: 
 

 








∂







∆rG

T
∂T P

 = – 
∆rH
T2        (constant P) 16.3.12 

 

This result will be particularly useful when we consider the temperature dependence of 
equilibrium constants. Eq. 16.3.12 can be integrated by separating variables: 
 

 d






∆rG

T  = – 
∆rH
T2  dT       (constant P) 16.3.13 

 

and integrating from T1 to T2: 
 

 
⌡

⌠

∆rG(T1)/T1

∆rG(T2)/T2

 d






∆rG

T  = – 
⌡

⌠

T1

T2∆rH
T2  dT     (constant P) 16.3.14 

 

If we assume that ∆rH is constant over the temperature range, the integrals are: 
 

 
∆rG(T2)

T2
 – 

∆rG(T1)
T1

 = ∆rH 






1

T2
 – 

1
T1

     (cst. P&∆rH) 16.3.15 
 

This equation is the integrated form of the Gibbs-Helmholtz equation. This equation is also a 
quantitative statement of LeChâtelier’s Principle for the response of a chemical reaction to 
changes in temperature. Consider T1 as a fixed reference temperature. For an endothermic 
process and an increase in temperature T2, the right-hand side of Eq. 16.3.15 is negative. The 
Gibbs energy then decreases as the temperature increases as predicted by LeChâtelier’s principle. 
Notice that the right-hand side of this equation is in the same form as discussed in General 
Pattern ℘℘℘℘4. 
 
             

Example 16.3.2 
The surfaces of nitric acid hydrates are possible catalysts that accelerate the formation of the 
Antarctic ozone hole. Nitric acid hydrates also act as a sink of HNO3 vapor; HNO3 vapor 
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photolyzes to NO and NO2, which act to slow ozone destruction. The sublimation of the trihydrate 
to nitric acid and water vapor: 
 

 HNO3⋅3H2O(s) → HNO3(g) + 3 H2O(g) 
 

has a ∆subG° of 93.2 kJ mol-1 and a ∆subH° of 237. kJ mol-1 at 220. K. The temperature in the 
stratosphere ranges from about 190. K to 270. K. Calculate ∆subG° at 190. K.1,2 

 
 
Answer:  Using the integrated form of the Gibbs-Helmholtz equation, assuming a constant ∆subH° 
over the temperature range: 
 

 
∆subG°(T2)

190. K  – 
93.2 kJ mol-1

220. K  = 237. kJ mol-1 






1

190. K – 
1

220. K  

 
∆subG°(T2)

190. K  – 0.4236 kJ K-1 mol-1 = 237. kJ mol-1 (7.177x10-4 K-1) 

 ∆subG°(190 K) = 112. kJ mol-1 
 
             

 
 
The Change in Entropy with Temperature Depends on the Heat Capacity:  We used the 
definition of entropy directly in terms of heat transfer, dS = đqrev/T, to derive the temperature 
dependence of the entropy, Eqs. 13.2.28-13.2.33. However, since entropy is a fundamental state 
function, it should be possible to derive the changes in entropy directly from other state 
functions. The thermodynamic forces allow us to do just that. Consider the change in entropy 
with temperature for a constant pressure process, (∂S/∂T)P. The thermodynamic forces all 
involve a thermodynamic potential, for example (∂H/∂S)P = T. We can relate the change in 
entropy to this thermodynamic force using the chain rule: 
 

 






∂S

∂T P
 = 






∂S

∂H P
 






∂H

∂T P
       (constant P) 16.3.16 

 

Inverting the thermodynamic force (∂H/∂S)P = T gives:  
 

 






∂S

∂H P
 = 

1
T        (constant P) 16.3.17 

 

Using this thermodynamic force and the definition of Cp = (∂H/∂T)P gives: 
 

 






∂S

∂T P
 = 

Cp

T         (constant P) 16.3.18 
 

This last equation is completely general for any system and is rigorously derived directly from 
the foundations of thermodynamics. 
 
16.4 The Foundations of Thermodynamics 
 

   An easy way to appreciate the formalism that we are developing is to display the results in a 
single chart, Figure 16.4.1. We are in the middle of deriving all these relationships. The top of 
the chart lists the properties of the system. In thermodynamics, the system is described by an 
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equation of state for a gas or α and κΤ for a liquid, solid, or solution. A heat capacity, either at 
constant volume or pressure is also necessary, along with a list of any chemical reactions. This 
top section is the only part of the chart that depends on the actual system. Everything below is 
perfectly general for any closed system. However, for now, to keep things simple, assume for the 
moment that we have a closed system with no chemical reactions. We will discuss the additions 
for the case when there are chemical reactions in Section 16.6. 
 
 

Foundations of Thermodynamics 
 

PV= nRT  α = 
1
V




∂V

∂T P
  κΤ = – 

1
V




∂V

∂P T
  

α
κΤ

 = 






∂P

∂T V
 

(P + a 
n2

V2)(V – nb) = nRT   Cv = 






∂U

∂T V
  Cp = 







∂H

∂T P
 

                      

dU = dq + dw   dU =  TdS – PdV  






∂T

∂V S
  = – 







∂P

∂S V
 

H = U + PV   dH =  TdS + VdP  






∂T

∂P S
  =    







∂V

∂S P
 

A = U – TS   dA = –SdT – PdV  






∂P

∂T V
  =   







∂S

∂V T
 

G = H – TS   dG = –SdT + VdP  






∂V

∂T P
  = – 







∂S

∂P T
 

                      







∂U

∂V T
= – P + T 







∂P

∂T V
    Cp – Cv = 







P + 







∂U

∂V T
 






∂V

∂T P
 







∂H

∂P T
=V – T 







∂V

∂T P
= – µJT CP   Cp – CV = T 







∂P

∂T V
 






∂V

∂T P
 = 

α2

κΤ
 VT 

 

 T V         cst. T P         cst. T 
S 

∆S = 
⌡

⌠ 

Cp

T  dT        @ cst.P 

∆S = Cp ln T2/T1 

∆S = 
⌡

⌠ 

α
κT

 dV 

∆S = nR ln V2/V1 

∆S = –⌡⌠ αV dP 

∆S = – nR ln P2/P1 

A ∆A = – ⌡⌠ S dT      @ cst.V 

∆rAT2

T2
– 
∆rAT1

T1
 = ∆rU



1

T2
 – 

1
T1

 

∆A = – ⌡⌠ P dV 

∆A = – nRT ln V2/V1 

∆A = ⌡⌠ PVκT dP 

∆A = nRT ln P2/P1 

G ∆G = –⌡⌠ S dT       @ cst.P 

∆rGT2

T2
– 
∆rGT1

T1
 = ∆rH




1

T2
 – 

1
T1

 

∆G = – 
⌡

⌠ 

1
κT

 dV 

∆G = – nRT ln V2/V1 

∆G = ⌡⌠ V dP 

∆G = nRT ln P2/P1 

 

Figure 16.4.1: Foundations of Thermodynamics. 
 
 
   The table at the bottom of the chart diagrams many of the possible practical problems that you 
might need to do. For example, the beginning example of this chapter is to calculate the change 
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in Gibbs energy for an isothermal change in pressure. The corresponding box in the table is in 
the lower right. Example 16.3.1 corresponds to the box in the middle of the table. The top result 
in each table cell is the general result for any system, written in terms of Cp, α, and κΤ. The 
bottom part of each cell is the result for an ideal gas. Eqs. 16.3.15 and 16.3.18 are also listed in 
the table. 
   Take a moment to find the problems in the bottom table that involve thermodynamic forces. 
They should be the boxes that correspond to a thermodynamic potential and its natural variables. 
Rather than explicitly list the thermodynamic forces in the middle section of Figure 16.4.1, we 
just list the definitions of the thermodynamic potentials and the corresponding total differentials 
in terms of the natural variables. You can use the process discussed in Exercise 16.3.1 to get the 
thermodynamic forces. Unfortnately, the thermodynamic forces don’t solve all of our problems. 
To develop a perfectly general solution to any problem we need something else….. 
 
Maxwell Relations Simplify Relationships Involving the Entropy:  At this point we don’t have a 
complete set of relationships that involve the entropy. These relationships are provided by 
Maxwell relationships. Maxwell relations are based on the fact that U, H, A, and G are all state 
functions, and therefore have exact differentials. The Euler Criterion for exactness allows us to 
relate derivatives of the thermodynamic forces. The Euler Criterion is that mixed partials are 
equal, Sec. 9.1: 
 

 






∂

∂y





∂f

∂x y x
  =  







∂

∂x





∂f

∂y x y
    (df exact, f a state function) 16.4.1 

 

We can apply the Euler Criterion once for each thermodynamic potential. 
   For internal energy, the thermodynamic force for changes in entropy is the temperature, Eq. 
16.3.5. In Chapter 9.8 we derived an equation for the change in temperature for an adiabatic 
reversible expansion for an ideal gas. Can we derive a general equation that is independent of the 
substance? 
 

 






∂T

∂V S
 =  ? 

 

Note that this derivative is actually a mixed partial derivative, since we can substitute Eq. 16.3.5 
for T: 

 






∂T

∂V S
 = 






∂

∂V





∂U

∂S V S
         16.4.2 

 

The Euler criterion allows us to switch the order of differentiation (switch the constant variable, 
too).  

 






∂

∂V





∂U

∂S V S
 = 






∂

∂S





∂U

∂V S V
        16.4.3 

 

Then note from Eq. 16.3.5 that the partial derivative on the right is also a thermodynamic force, 
(∂U/∂V)S = – P, and substitution into Eq. 16.4.3 gives: 
 

 






∂

∂S





∂U

∂V S V
 = – 







∂P

∂S V
        16.4.4 

 

In Figure 16.4.2 we put these steps all together so that we can see the flow of the derivation. 
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Figure 16.4.2: Maxwell Relationship based on the internal energy. The independent variables 
switch and the thermodynamic forces switch. 

 
 
The Maxwell relationship for the enthalpy starts with dH =  TdS + VdP  and T as the 
thermodynamic force with respect to changes in S: 
 

 






∂H

∂S P
 = T          16.4.5 

 

Form the mixed partial derivative by choosing the other independent variable, P, and switch the 
order of differentiation: 
 

 






∂T

∂P S
 = 






∂

∂P





∂H

∂S P S
 = 






∂

∂S





∂H

∂P S P
 = 






∂V

∂S P
      16.4.6 

 

We will leave the derivation of the Maxwell relationship that comes from the Helmholtz energy 
as a problem at the end of the chapter. The Maxwell relationship from the Gibbs energy with 
dG = – SdT + VdP is particularly useful. Starting with – S as the thermodynamic force: 
 

 






∂G

∂T P
 = – S  







∂S

∂P T
 = – 







∂

∂P





∂G

∂T P T
 = – 







∂

∂T





∂G

∂P T P
 = – 







∂V

∂T P
 

            16.4.7 
Gathering together all the Maxwell relationships we find: 
 

 






∂T

∂V S
  = – 







∂P

∂S V
         16.4.8 

 






∂T

∂P S
  =    







∂V

∂S P
         16.4.9 

 






∂S

∂V T
 =    







∂P

∂T V
         16.4.10 

 






∂S

∂P T
 =  – 







∂V

∂T P
         16.4.11 

 

Notice the simple pattern for the variables. We didn’t derive Eq. 16.4.10, but even so it is easy to 
fill in from the pattern established by the other relationships: thermodynamic forces on top, 

dU = 






∂U

∂S V
 dS + 







∂U

∂V S
 dV 

dU   =    T    dS    –    P   dV 

Thermodynamic force Thermodynamic force 







∂T

∂V S
 = 






∂

∂V





∂U

∂S V S
  =  







∂

∂S





∂U

∂V S V
 = – 







∂P

∂S V
 

switch order 
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differentials for the natural variables on the bottom, with conjugate pairs of variables on the 
diagonals. These relationships are very powerful and will save us a lot of steps in future 
derivations. However, since they do seem so abstract, we will need to take extra care to show 
you that they are beneficial and insightful. 
 
 
              

Example 16.4.1:  Calculate ∆S for a change in volume at constant temperature for an ideal gas. 
 
 
Answer:  The Maxwell relationship that answers this question is: 

 






∂S

∂V T
 = 






∂P

∂T V
 

Substitution of the equation of state for the ideal gas, P = nRT/V gives: 

 






∂S

∂V T
 = 






∂P

∂T V
 = 






∂nRT/V

∂T V
= 

nR
V   

Multiplication of both sides of the equation by dV gives: 

 dS = 
nR
V  dV 

This equation integrates to ∆S = nR ln 
V2

V1
 

which we derived earlier, Eq. 13.2.4°. Of course, this equation is specific to an ideal gas. This 
equation is listed in the table in Figure 16.4.1. 
 
              

Example 16.4.2:  Calculate ∆S for a change in volume at constant temperature for a liquid or a 
solid. 
 
 
Answer: Using the same Maxwell relationship as Example 16.4.1 and Eq. 7.6.21 for the 
mechanical derivative gives: 
 

 






∂S

∂V T
 =  







∂P

∂T V
= 

α
κT

 
 

and multiplying by dV:  dS = 
α
κT

 dV 

and integrating:  ∆S = 
⌡

⌠ 

α
κΤ

 dV 

If α and κT are essentially constant over the volume range: ∆S = 
α
κ ∆V 

The problem for an ideal gas was solved in Eq. 13.2.4° without the Maxwell relations, however, 
this problem shows how the Maxwell relations allow us to work with real systems in a very 
general way. 
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The Maxwell relationships are particularly useful for solving problems involving the entropy. In 
particular, Eq. 16.4.10 and 16.4.11 recast a derivative involving the entropy into a derivative 
involving only the equation of state of the gas or α and κΤ, as shown in the Examples. The 
Maxwell relationships provide quite surprising results that turn out to be very useful. In fact, this 
is the strength of thermodynamics: uncovering non-obvious results that are at the same time 
perfectly general in scope. Let’s do some more examples to show the uses of the Maxwell 
relationships. 
 
16.5 Thermodynamic Equations of State 
 

   Two partial derivatives have given us some trouble for several chapters now. We wrote the 
total differentials of the internal energy and the enthalpy as: 
 

 dU = 






∂U

∂V T
dV + 







∂U

∂T V
dT        16.5.1 

 dH = 






∂H

∂P T
dP + 







∂H

∂T P
dT        16.5.2 

 

We had a hard time finding general relationships for the derivatives: 
 

 






∂U

∂V T
= ?  







∂H

∂P T
= ? 

 

Now we can see why we had troubles. The natural variables for U are S and V, while the 
independent variables in Eq. 16.5.1 are instead T and V. The natural variables for H are S and P, 
while the independent variables in Eq. 16.5.2 are T and P. Lets see if we can find general 
relationships using the natural variables. For the internal energy derivative, (∂U/∂V)T, the 
variable that is held constant, T, is the “misplaced variable”. Reviewing the partial derivative 
conversions in Figure 9.7.2, the conversion from T as the constant variable to S is through the 
total differential of U. The total differential for the internal energy, assumed a function of S and 
V, is from Eq. 16.1.3: 
 

 dU =  TdS – PdV         16.5.3 
 

Now “divide” both sides of the equation by dV at constant T to give: 
 

 






∂U

∂V T
 =  T







∂S

∂V T
 – P







∂V

∂V T
        16.5.4 

 

The last partial derivative is one, but can we simplify the entropy derivative? The Maxwell 
relationships come to the rescue. In particular using Eq. 16.4.10 (the one you are deriving in your 
homework): 
 

 






∂U

∂V T
 = – P + T 







∂P

∂T V
        16.5.5 

 

This equation is called a thermodynamic equation of state, because all the variables on the 
right are related to the equation of state for the substance (who would have guessed?). This 
equation will help us answer some long standing questions. For an ideal gas, P = nRT/V and 
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





∂P

∂T V
= 

nR
V           16.5.6° 

 

and substitution into Eq. 16.5.5 gives: 
 

 






∂U

∂V T
 = – P + 

nRT
V  = – P + P = 0       16.5.7° 

 

We guessed this result earlier from experimental information, but now we have a rigorous 
derivation of the fact that the internal pressure of an ideal gas is zero. The internal energy for an 
ideal gas is only a function of temperature. For a liquid or solid the mechanical derivative in Eq. 
16.5.5  is α/κT, Eq. 7.6.16: 
 

 






∂U

∂V T
 = – P + T 

α
κT

         16.5.8 
 

which is a general result for any system. 
   Now for the enthalpy derivative, (∂H/∂P)T, using the total differential for the enthalpy from Eq. 
16.3.2: 
 

 dH = TdS + VdP         16.5.9 
 

Dividing by dP at constant T gives: 
 

 






∂H

∂P T
= T 







∂S

∂P T
 + V







∂P

∂P T
        16.5.10 

 

and using the Maxwell relationship Eq. 16.4.11: 
 

 






∂H

∂P T
= V – T 







∂V

∂T P
         16.5.11 

 

This equation is also called a thermodynamic equation of state. The mechanical derivative is just 
Vα: 
 

 






∂H

∂P T
= V – T Vα         16.5.12 

 

Remember that we saw in Chapter 9 that this enthalpy derivative is experimentally determined 
using the Joule-Thomson coefficient: 
 

 






∂H

∂P T
=V – T







∂V

∂T P
 = – µJT Cp       16.5.13 

 

which provides a nice connection to the laboratory and really ties up some loose ends from 
previous chapters. 
   One remaining loose end is the relationship between Cp and Cv. We showed that, Eq. 9.4.7: 
 

 Cp – Cv = 






P + 







∂U

∂V T
 






∂V

∂T P
        16.5.14 

 

Substituting the thermodynamic equation of state for the internal energy derivative, Eq. 16.5.5: 
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 Cp – Cv = T






∂P

∂T V





∂V

∂T P
 = 

α2

κΤ
 VT       16.5.15 

 

Once again this result is completely general. The difference between Cp and Cv is given entirely 
in terms of the equation of state of the substance. 
 
 
              

Example 16.5.1 
Calculate the change in enthalpy for one mole of liquid water for an isothermal change in 
pressure from 1.0 bar to 10.0 bar at 298.2 K. Assume the volume and α are approximately 
constant over this pressure range. 
 
 

Answer:  Integrating Eq 16.5.12 assuming V ≈ Vo and constant α gives: 
 

 ∆H = Vo ∆P – TVoα ∆P 
 

The pure molar volume for water is (1.00 mol)(18.02 g mol-1)/0.99705 g mL-1 = 18.07 mL = 
18.07x10-6 m3. From Table 7.6.1, α = 2.57x10-4 K-1, and ∆P = (10.0–1.0 bar) = 9.0x105 Pa, then: 
 

 ∆H = (18.07x10-6 m3)(9.0x105 Pa) – 298.2 K (18.07x10-6 m3)(2.57x10-4 K-1)(9.0 x105 Pa) 
 ∆H = 16.3 J – 1.2 J = 15.1 J 
 

In other words, compared to the enthalpy of formation of water, this pressure effect is negligible. 
 
              

Example 16.5.2: 
  Show that Cp – Cv = nR for an ideal gas. 
 
Answer:  We will use Eq. 16.5.15, so we need to use the ideal gas law, P = nRT/V and V = 
nRT/P to find: 

 






∂P

∂T
V

 = 
nR
V  and    







∂V

∂T
P

 = 
nR
P  

 Cp – Cv = T






∂P

∂T
V






∂V

∂T
P

 = T 
nR
V  

nR
P  

but the first two factors combine to give P: 
 

 Cp – Cv = T






∂P

∂T
V






∂V

∂T
P

 = P 
nR
P  = nR 

 
              

 
 
16.6 Open Systems, Chemical Reactions, and Chemical Potential 
 

   The expressions in Figure 16.4.1 are for closed systems with no chemical reactions. For open 
systems we just need to add the chemical potential terms, Eq. 14.1.4: 

 dU = TdS – PdV + ∑
i=1

c
 µi dni    (PV &  chemical work) 16.6.1 



568 
 

For closed systems with chemical reactions, we can either specify that the dni are dependent 
variables or use Eq. 14.3.9: 
 

 dU = TdS – PdV + ∑
i=1

ns

 νi µi dξ   (closed, PV &  chemical work) 16.6.2 

 

The differentials for H, A, and G similarly add the chemical potential sum; for example for 
Gibbs energy, from Eq. 15.2.22: 
 

 dG = – SdT + VdP +∑
i=1

c
 µi dni    (PV &  chemical work) 16.6.3 

 

Other than these additions, no changes in Figure 16.4.1 are necessary for the thermodynamic 
forces involving T, S, V, and P and the Maxwell relationships, except that we need to specify 
constant mole amounts for the partial derivatives. For one example, Eq. 16.4.11 becomes: 
 

 






∂S

∂P T,ni

 = – 






∂V

∂T P,ni

         16.6.4 

 

So, we don’t really need a separate figure for open systems or for chemical reactions. You can 
just add the chemical potential sum when you need to; thus making a much simpler figure to 
read. However, these results do tell us something very important about the chemical potential. 
   To makes things simpler for a moment, assume a constant temperature and pressure process for 
a two component system containing components A and B. For dG from Eq. 16.6.3: 
 

 dG = µA dnA + µB dnB     (cst. T&P, chemical work) 16.6.5 
 

We can also express the total differential for G at constant temperature and pressure as: 
 

 dG = 






∂G

∂nA P,T,nB

dnA + 






∂G

∂nB P,T,nA

dnB   (cst. T&P, chemical work) 16.6.6 

 

Comparing Eq. 16.6.6 with Eq. 16.6.5 gives the chemical potentials as: 
 

 µA = 






∂G

∂nA P,T,nB

 µB = 






∂G

∂nB P,T,nA

      16.6.7 

 

Notice that these equations are in the general form of thermodynamic forces. The chemical 
potential is the thermodynamic force for the change in amounts of the components. The chemical 
potential is the driving force for chemical change, which is just what we proved in Eq. 15.2.24. 
The change in the Gibbs energy is the non-PV work available from a process, and chemical 
change requires chemical work. The chemical potential is central to our understanding of 
spontaneity and equilibrium, and will be our primary tool in the next several chapters. 
   We should also consider the general case for multiple components. Taking G as a function of 
T, P, and all the ni gives the general form of the total differential as: 
 

 dG = 






∂G

∂T P,ni

dT + 






∂G

∂P T,ni

dP +∑
i=1

c
 






∂G

∂ni P,T,nj≠i
 dni     16.6.8 

 

Comparison of terms shows with Eq. 16.6.3 that 
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





∂G

∂ni P,T,nj≠i

 = µi         16.6.9 

 

for each chemical component in an open system or each constituent in a closed system with 
chemical reactions. The set of total differentials for the state functions then become, using Eq. 
15.2.10 and Eq. 15.2.22: 
 

dU = 






∂U

∂S V,ni

dS + 






∂U

∂V S,ni

dV +∑
i=1

c
 






∂U

∂ni S,V,nj≠i

dni  dU = TdS – PdV +∑
i=1

c
 µi dni     

            16.6.10 

dH = 






∂H

∂S P,ni

dS + 






∂H

∂P S,ni

dP +∑
i=1

c
 






∂H

∂ni S,P,nj≠i

dni  dH = TdS + VdP +∑
i=1

c
 µi dni    

            16.6.11 

dA = 






∂A

∂T V,ni

dT + 






∂A

∂V T,ni

dV +∑
i=1

c
 






∂A

∂ni T,V,nj≠i

dni  dA = –SdT – PdV +∑
i=1

c
 µi dni    

            16.6.12 

dG = 






∂G

∂T P,ni

dT + 






∂G

∂P T,ni

dP +∑
i=1

c
 






∂G

∂ni P,T,nj≠i

dni  dG = –SdT + VdP +∑
i=1

c
 µi dni    

            16.6.13 
 

The differentials on the right-side of Eq. 16.6.10-16.6.13 were all derived from the combined 
First and Second Laws of thermodynamics through Legendre transformations. Comparisons of 
the coefficients for the dni terms for the left and right-side equations show that all the chemical 
potential terms are equal: 
 

 






∂U

∂ni S,V,nj≠i

 = 






∂H

∂ni S,P,nj≠i

 = 






∂A

∂ni T,V,nj≠i

 = 






∂G

∂ni P,T,nj≠i

 = µi    16.6.14 

 

In other words, when natural variables are used, the changes in the thermodynamic potentials 
with changes in mole amounts are all equal. This is a wonderful result, since it would be very 
complicated to keep track of all the different chemical potentials, otherwise. Don’t let the 
notational complexity of Eqs. 16.6.10-14 put you off. Just remember that the Gibbs energy 
change for a constant temperature and pressure process for a two component system from Eq. 
16.6.13 reduces to dG = µA dnA + µB dnB. 
   You might wonder if we need to add additional entries to Figure 16.4.1 to express the 
derivatives of the chemical potential. For example, how does the chemical potential change with 
temperature and pressure? These derivatives can be readily obtained from the thermodynamic 
forces with an additional set of Maxwell relationships. For the pressure dependence: 
 

 






∂µA

∂P T,nA,nB

 = 






∂ 

∂P





∂G

∂nA T,P,nB T,nA,nB

 = 






∂ 

∂nA





∂G

∂P T,nA,nB T,P,nB

 = 






∂V

∂nA T,P,nB

  16.6.15 

 

For a component in solution, the partial derivative of V is the partial molar volume, V–
A. We will 

discuss partial molar properties in detail in the chapter on solutions. For a pure substance, the 
volume derivative is just the pure molar volume of the substance, V*A: 
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





∂µA

∂P T,nA,nB

 = V–A (solution)  






∂µA

∂P T,nA,nB

 = V*
A (pure)  16.6.16 

 

The * superscript is used to designate a pure substance. In other words, we simply convert the 
thermodynamic force (∂G/∂P)T = V to a per mole basis. Consequently, we don’t need to include 
these additional relationships in our summary table. Similarly for the change in chemical 
potential with temperature: 
 

 






∂µA

∂T P,nA,nB

= 






∂ 

∂T





∂G

∂nA T,P,nB P,nA,nB

 = 






∂ 

∂nA





∂G

∂T P,nA,nB T,P,nB

 = – 






∂S

∂nA T,P,nB

  16.6.17 

 

For a component in solution, the partial derivative of S is the partial molar entropy, S–
A. For a 

pure substance, the entropy derivative is just the pure molar entropy of the substance: 
 

 






∂µA

∂T P,nA,nB

= S–A (solution)   






∂µA

∂T P,nA,nB

= – S*
A  (pure) 16.6.18 

 

One particularly important application of Eq. 16.4.16 is the calculation of the chemical potential 
for a pure substance as a function of the pressure for an isothermal process in a closed system. 
Integrating Eq. 16.6.16 from the standard state pressure, P°, and standard state chemical 
potential, µ

A
°(g), to a final pressure P gives: 

 

 µA – µ
A
°(g) = ⌡⌠P°

P
V *

A dP      (closed, cst. T, pure) 16.6.19 
 

Assuming the gas behaves as an ideal gas, V*
A = RT/P, the integral is: 

 

 µA = µ
A
°(g) + RT ln P/P°     (closed, cst. T, pure) 16.6.20° 

 

In other words, the chemical potential of an ideal gas increases as the pressure increases; the gas 
is able to do more useful work. The pressure dependence of the chemical potential is the 
foundation for the theories of phase transitions, solutions, and chemical equilibria. However, Eq. 
16.6.20° only applies to ideal gases. How do we calculate the chemical potential of a real gas as 
a function of pressure? 
 
16.7  Fugacity is the Chemically Effective Pressure 
 

   The pressure of an ideal gas depends only on the number of molecules in the system and is 
independent of the identity of the molecules, P = nRT/V. A mole of ideal benzene vapor is 
equivalent to a mole of ideal helium. The pressure of a real gas depends on intermolecular forces. 
The chemical potential is the available chemical work per mole for the system, which also 
depends strongly on intermolecular forces. The functional form of Eq. 16.6.20°, on the other 
hand, is particularly simple. G. N. Lewis had a particularly useful and clever idea. It would be 
most convenient to have the functional form of the chemical potential for a real gas be in the 
same form as the chemical potential of an ideal gas. By doing so, the functional form of any 
equation that we derive for an ideal gas will also apply to a real gas. To accomplish this 
simplification, Lewis defined the fugacity, f, as the “chemically effective” pressure. The fugacity 
is defined by the same functional form as Eq. 16.6.20°: 
 

 µΑ = µ°A(g) + RT ln f/P°        16.7.1 
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where f is the required value to give the exact chemical potential for the substance. The fugacity 
has units of pressure and takes into account the intermolecular forces as well as the number of 
molecules in the system. For the fugacity to be a useful concept, we also require that the fugacity 
approach the pressure in the ideal gas limit, f → P as P → 0. The “chemically effective” pressure 
should approach the measured pressure as the gas becomes ideal, and intermolecular forces 
become insignificant. To calculate the fugacity, we begin again with Eq. 16.6.19, for an 
isothermal process in a closed system. 
   Consider the system at two different pressures P and P'. The difference in chemical potential 
for an ideal gas is given by Eq. 16.6.20° evaluated at P and P': 
 

 µid
A(P) – µid

A(P') = [µ°A(g) + RT ln P/P°] – [µ°A(g) + RT ln P'/P°] 
 µid

A(P) – µid
A(P') = RT ln P/P'      (cst. T, ideal) 16.7.2° 

 

where we use the superscript “id” to remind us that the chemical potentials are for an for ideal 
gas. Alternatively, the difference in chemical potential is also given by the integral in Eq. 16.6.19 
from P' to P: 
 

 µid
A(P) – µid

A(P') = RT ln P/P' = ⌡⌠
P'

 P
 V

id
A dP    (cst. T, ideal) 16.7.3° 

 

For a real gas, we substitute the fugacity for the pressure in the logarithmic term and the volume 
is the real molar volume of the gas, VA: 
 

 µΑ(P) – µΑ(P') = RT ln f/f ' = ⌡⌠
P'

P
 VA dP     (cst. T) 16.7.4 

 

We can compare the fugacity to the pressure by subtracting Eq. 16.7.3° from Eq. 16.7.4: 
 

 RT ln f/f ' – RT ln P/P' = ⌡⌠
P'

 P
 VA dP – ⌡⌠

P'

 P
 V

id
A dP = ⌡⌠

P'

 P
 (VA–Vid

A) dP  (cst. T) 16.7.5 
 

This expression can be simplified by assuming that the lower limit P' is sufficiently low that the 
gas behaves ideally, P' → 0 then f ' → P', giving: 
 

 RT ln f/P' – RT ln P/P' = ⌡⌠
P'

 P
 (VA–Vid

A) dP    (P'→0, cst. T) 16.7.6 
 

 RT ln f/P = ⌡⌠
0

 P
 (VA–Vid

A) dP       (cst. T) 16.7.7 
 

This last equation allows the fugacity to be calculated from the equation of state of the gas, Eq. 
7.5.5, Figure 16.7.1a: 
 

 VA = z RT/P  and VidA = RT/P      16.7.8 
 

where the compressibility factor can be determined directly by experiment or expressed by the 
Virial expansion, Eq. 7.5.10. Substituting the real and ideal equations of state into Eq. 16.7.7 
gives a simple prescription for calculating the fugacity of a substance: 
 

 ln f/P = 
⌡

⌠

0

P

 
(z –1)

P  dP        (cst. T) 16.7.9 

 

This last equation can also be rewritten noting that d ln P = dP/P to give: 
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 ln f/P = ⌡⌠
0

P
 (z –1) d lnP  

 

    (a).     
 

Figure 16.7.1: (a). Equations of state for the real gas as compared to an ideal gas determine 
the fugacity. (b). The fugacity is a function of the integrated non
P = 0. (c). The Law of Corresponding States allows the estimation of the fugacity coefficient 
from the reduced temperature and pressure

 
 
Data must be available over the pressure range from zero up to the pressure of interest. The 
fugacity is a function of the integrated non
Since the fugacity is the “chemically effective” pressure, we can focus on the difference between 
the fugacity and the pressure by defining the fugacity coefficient, 
 

 f ≡ γ P    
 

At low pressures the gas approaches ideal behavior giving 
pressure. At moderate pressures, attractive forces dominate giving 
molecules are very close together and repulsive forces dominate giving 
tabulations of fugacity coefficients are available. However, for most purposes we can take 
advantage of the Law of Corresponding states to provide an adequate estimate for 
   When expressed as a function of the reduced variables, all gases follow the same equation of 
state, to a good approximation. Using the compressibility factor data from Figure 7.5.4, the 
integral in Eq. 16.7.10 can be done numerically to find good estimates for the fugacit
coefficient as a function of the reduced temperature and pressure, Figure 16.7.1c 
Appendix Data Section). Geologists, chemical engineers, and oceanographers need to use 
fugacities to solve practical problems, since they often work at high pressures.
 
 
     

Example 16.7.1: Calculating fugacity
Carbon dioxide sequestration has been suggested as a method to decrease CO
atmosphere from fossil fuel combustion. CO
liquid sorbents. Calculate the chemical potential of CO
chemical potential, at the critical temperature
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6.7.1: (a). Equations of state for the real gas as compared to an ideal gas determine 
the fugacity. (b). The fugacity is a function of the integrated non-ideality of the gas starting at

= 0. (c). The Law of Corresponding States allows the estimation of the fugacity coefficient 
from the reduced temperature and pressure (see the Appendix Data Section for 

Data must be available over the pressure range from zero up to the pressure of interest. The 
the integrated non-ideality of the gas starting at P = 0, Figure 16.

Since the fugacity is the “chemically effective” pressure, we can focus on the difference between 
the fugacity and the pressure by defining the fugacity coefficient, γ, using the expression:

      

At low pressures the gas approaches ideal behavior giving γ = 1; the fugacity is equal to the 
pressure. At moderate pressures, attractive forces dominate giving γ < 1. At high pressures, the 

ogether and repulsive forces dominate giving γ > 1. Extensive 
tabulations of fugacity coefficients are available. However, for most purposes we can take 
advantage of the Law of Corresponding states to provide an adequate estimate for 

s a function of the reduced variables, all gases follow the same equation of 
state, to a good approximation. Using the compressibility factor data from Figure 7.5.4, the 

can be done numerically to find good estimates for the fugacit
coefficient as a function of the reduced temperature and pressure, Figure 16.7.1c 

Geologists, chemical engineers, and oceanographers need to use 
fugacities to solve practical problems, since they often work at high pressures. 

      

Calculating fugacity 
Carbon dioxide sequestration has been suggested as a method to decrease CO2 release into the 
atmosphere from fossil fuel combustion. CO2 at high pressure is absorbed by a variety of solid or 

Calculate the chemical potential of CO2 at 150 bar, relative to the standard state 
at the critical temperature, 304.14 K. Use Figure 16.7.1 in the Data Section
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6.7.1: (a). Equations of state for the real gas as compared to an ideal gas determine 
ideality of the gas starting at 

= 0. (c). The Law of Corresponding States allows the estimation of the fugacity coefficient 
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ideality of the gas starting at P = 0, Figure 16.7.1b. 
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 16.7.11 
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Answer:  The critical pressure is 73.84 bar, Table 7.5.2. The given pressure corresponds to a 
reduced pressure of PR = 150 bar/73.84 bar = 2.03. Using Figure 16.7.1, the fugacity coefficient 
is approximately γ = 0.44. The chemical potential using Eqs. 16.7.1 and f ≡ γ P, Eq. 16.7.11, is: 
 

 µΑ = µ°A(g) + RT ln f/P° 
     = µ°A(g) + 8.314 J K-1 mol-1 (304.1 K)(1 kJ/1000 J) ln[0.44(150 bar)/1 bar] 
     = µ°A(g) + 10.6 kJ mol-1 
 

The chemical potential difference assuming ideal behavior, γ = 1, is 12.7 kJ mol-1. Assuming 
ideal behavior results in a 20% error. 
 
              

 
 
16.8  Gibbs Energy of Mixing 
 
   A good way to get used to chemical potentials is to calculate the Gibbs energy for a simple 
process. Consider preparing a mixture of two gases or a solution from nA moles of pure 
component A and nB moles of pure component B. As mentioned above, the chemical potential of 
a pure substance is just the Gibbs energy per mole: 
 

 µ*
i  = 







∂G∗

i

∂ni P,T,nj≠i

 and  G*
i  = ⌡⌠

0

ni µ*
i
 dni = µ*

i  ni  (pure substance) 16.8.1 

 

The left-hand side of the integrated form can be written as just G*i  because the integral is from 0 
to ni moles and the Gibbs energy at the lower endpoint is zero for zero moles. Integrating Eq. 
16.6.5, the Gibbs energy before mixing, G1, is then: 
 

 dG = µ*
A dnA + µ*

B dnB  G1 =  µ*
A

 nA+ µ*
B

 nB   (cst. T&P) 16.8.2 
 

   The chemical potentials vary with pressure or concentration. However, the general idea of the 
Gibbs energy per mole is still a useful way to think about the chemical potential in mixtures. In 
Chapter 18 we show how to determine chemical potentials in solution. Keeping this pressure and 
concentration dependence in mind, we need to integrate Eq. 16.6.5 for the formation of the 
mixture. 
    We can’t integrate dG = µA dnA + µB dnB directly, if we don’t know how the chemical 
potentials vary. However, we can use a very useful trick, integration at constant composition. 
Consider the process in Figure 16.8.1 where the two components of the mixture are added to a 
beaker simultaneously. 
 
 
 
 
 
 
 
 

Figure 16.8.1: Integration at constant composition. Since each drop of solution formed 
always has the same concentration, the chemical potentials of the components are constant. 

nB nA 
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If we add the components so that the composition of the mixture is always the same as the final 
composition, the chemical potentials of the two components will remain constant as we mix. 
(Neat trick!). The integrals: 
 

 G2 = ⌡⌠0

nA
  µA dnA  + ⌡⌠0

nB
  µB dnB     (cst. T&P) 16.8.3 

 

are now very easy to do, because the chemical potentials for each component are constants. The 
integrals then give the Gibbs energy for the mixture, G2, as: 
 

 G2 = µA nA + µB nB       (cst. T&P) 16.8.4 
 

The change in Gibbs energy for mixing, using Eqs. 16.8.4 and 16.8.2, is: 
 

 ∆mixG = G2 – G1 = µA nA + µB nB – (µ*
A

 nA + µ*
B

 nB)   (cst. T&P) 16.8.5 
 

 ∆mixG = nA(µA – µ*
A) + nB(µB – µ*

B)     (cst. T&P) 16.8.6 
 

In this equation, µA – µ*
A is the difference in chemical potential between the mixture and the pure 

substance for component A. This equation is the foundation for understanding solutions. 
However, for now, consider the mixing of two ideal gases as an example. 
 
The Mixing of Ideal Gases is Always Spontaneous:  Consider a divided container with nA moles 
of ideal gas A and nB moles of ideal gas B, at the same temperature and pressure. The total moles 
of gas is ntot = nA + nB. After the divider is removed, the gases mix to give mole fractions yA = 
nA/ntot and yB = nB/ntot at the same temperature and pressure, Figure 16.8.2a. 
 
 
 
 
 
 
 
 
 
 
 
 (a).      (b). 
 

Figure 16.8.2:  (a). Mixing of ideal gases at constant temperature and pressure is always 
spontaneous. (b). For mixing of ideal gases, ∆mixH = 0, so that ∆mixG = – T ∆mixS. 

 
 
The chemical potentials of pure A and B before mixing are given by Eq. 16.6.20°: 
 

 µ*
A = µo

A(g) + RT ln 
P
Po and µ*

B = µo
B(g) + RT ln 

P
Po         (cst. T&P) 16.8.7° 

 

The chemical potentials of A and B after mixing are given by the partial pressures, PA and PB: 
 

 µA = µo
A(g) + RT ln 

PA

Po and µB = µo
B(g) + RT ln 

PB

Po        (cst. T&P) 16.8.8° 

P,T 

yA = 
nA

nA + nB
    yB = 

nB

nA + nB
 

P,T P,T 

nA nB 

0 1 yA→ 

∆mixG 

∆mixS ∆mixS 

∆mixG 

0 
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We can compare the chemical potentials in the mixture to the pure chemical potentials by 
subtracting Eqs. 16.8.7° from Eqs. 16.8.8°: 
 

 µA – µ*
A = RT ln 

PA

Po – RT ln 
P
Po giving:     µA = µ*

A + RT ln 
PA

P 

and µB – µ*
B = RT ln 

PB

Po – RT ln 
P
Po giving:     µB = µ*

B + RT ln 
PB

P       (cst. T&P) 16.8.9° 
 

The partial pressures in the gas mixture are given from the mole fractions using Dalton’s Law of 
Partial Pressures, Eq. 2.1.10°. Substituting PA = yA P, and PB = yB P in to Eqs. 16.8.9° gives: 
 

 µA = µ*
A + RT ln yA and µB = µ*

B + RT ln yB        (cst. T&P) 16.8.10° 
 

The Gibbs energy of mixing is then obtained by substituting these last equations into Eq. 16.8.6 
and cancelling the terms for the pure chemical potentials, µ*

A and µ*
B: 

 

 ∆mixG = nA RT ln yA + nB RT ln yB          (cst. T&P) 16.8.11° 
 

We can get better insight into the mixing process by rewriting this last expression completely in 
terms of the mole fractions. Multiplying and dividing each term by ntot and factoring out the 
resulting common factor of ntotRT gives: 
 

 ∆mixG = ntotRT 






nA

ntot
 ln yA + 

nB

ntot
 ln yB           (cst. T&P) 16.8.12° 

 ∆mixG = ntotRT (yA ln yA + yB ln yB)          (cst. T&P) 16.8.13° 
 

The Gibbs energy of mixing is seen to be a function only of the numbers of molecules and the 
temperature. This result has important implications for the entropy and enthalpy of mixing. The 
entropy is the thermodynamic force for the change in Gibbs energy with temperature, Eq. 16.3.8. 
Taking the temperature derivative of Eq. 16.8.13° and noting that the mole fractions are 
independent of temperature gives: 
 

 ∆mixS = – 






∂ ∆mixG

∂T
P,nA,nB

 = – ntotR (yA ln yA + yB ln yB)       (cst. T&P) 16.8.14° 

 

The change in entropy results from the increase in translational entropy as each component 
expands from its initial volume to the final combined volume. Energy is dispersed from the 
initial small volumes to the final large volume. However, the two components must, in addition, 
be distinguishable. A and B can’t be the same substance; otherwise there is no entropy change. 
The requirement of distinguishability leads to the interpretation of Eq. 16.8.14° as the statistical 
mixing of the two gases.3 (If you covered Chapter 12, note that we also derived this last equation 
using purely statistical arguments, Eq. 12.4.19). The enthalpy of mixing can be found using Eqs. 
16.8.13°, 16.8.14°, and ∆mixG = ∆mixH – T ∆mixS: 
 

 ∆mixH = ∆mixG + T ∆mixS = 0           (cst. T&P) 16.8.15° 
 

The enthalpy of mixing of ideal gases is zero, because ideal gases have no intermolecular forces. 
The A–A, B–B, and A–B interactions are all zero. The Gibbs energy of mixing is, then, entirely 
the result of the entropy of mixing: 
 

 ∆mixG = – T ∆mixS          (cst. T&P)   16.8.16° 
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Since the logarithm of a number less than 1 is negative, the entropy of mixing from Eq. 16.2.14° 
is always positive. Then from Eq. 16.8.13°, the Gibbs energy of mixing is always negative, or 
spontaneous, for the mixing of two ideal gases, Figure 16.8.2b. If more than two components are 
mixed, Eqs. 16.8.13° and 16.8.14° are sums over each of the c components: 
 

 ∆mixS = – ntotR ∑
i=1

c

 yi ln yi         (cst. T&P)   16.8.17° 

 ∆mixG = ntotRT ∑
i=1

c

 yi ln yi         (cst. T&P)   16.8.18° 

 

We will use these results as a foundation for understanding the mixing of components to form a 
solution in Chapter 18. 
 
16.9  Summary–Looking Ahead 
 

The thermodynamic potential energy functions are good spontaneity criteria for the conditions 
that match the natural variables. The natural variables for each potential energy function are 
derived from the combined First and Second Laws of thermodynamics and Legendre 
transformations: U(S,V), H(S,P), A(T,V), and G(T,P). The foundations of thermodynamics 
provide a proscription for calculating the changes in the thermodynamic potentials for any 
process and are completely general for any system. The result is a powerful, fundamental, and 
general method for predicting the spontaneous direction for any macroscopic process. For 
example, the mixing of ideal gases is always spontaneous. For ideal gases, the Gibbs energy of 
mixing is purely entropic. In the next chapters, we use these foundations to study phase 
transitions, solutions, and chemical reactions in detail. Thermodynamics is an important tool for 
understanding the behavior of substances in solution and the effect of solute-solvent interactions 
on chemical reactivity. 
   The generality of thermodynamics is an expression of the underlying form of nature. The 
essence of thermodynamics can be summarized in just one figure, Figure 16.4.1. 
 
 
 

Chapter Summary 
 

1. The pairs of variables (P,V), (T,S), (µ,n) are conjugate variables. In a conjugate pair one 
variable is intensive and one extensive. One is an independent variable and one is a 
thermodynamic force. The product of each conjugate pair has the units of energy and 
determines the heat or work transferred for a process. 

2. The definitions of the thermodynamic potential energy functions are Legendre transformations 
that switch the role of the variables in the corresponding conjugate pair. For example in G ≡ 
H–TS, the independent variables are changed from H(S,P) to G(T,P). 

3. The natural variables for a thermodynamic potential energy function are the independent 
variables that result from the combined First and Second Laws of thermodynamics and the 
Legendre transformation specified by the definition of the function. The natural variables are 
the variables that must be constant for the potential energy function to be a good spontaneity 
criterion. 
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4. Maxwell relationships relate derivatives of the thermodynamic forces. Maxwell relationships 
are useful for simplifying problems that involve the entropy change for a process. The 
relationships are given by the fact that mixed partials are equal for state functions. 

5. The thermodynamic forces and Maxwell relations are summarized in Figure 16.4.1. 

6. The thermodynamic equations of state express changes in a thermodynamic potential energy 
function in terms of the equation of state of the substance: 

 






∂U

∂V T
 = – P + T 







∂P

∂T V
 =  – P + T 

α
κT

 
 

 






∂H

∂P T
=V – T 







∂V

∂T P
 =  V – T Vα 

7. The thermodynamic equations of state allow the calculation of Cp– Cv from the equation of 
state of the substance: 

 Cp – Cv = T






∂P

∂T V





∂V

∂T P
 = 

α2

κΤ
 VT 

8. For open systems: 

 dU = TdS – PdV +∑
i=1

c
 µi dni  dH = TdS + VdP +∑

i=1

c
 µi dni 

 dA = –SdT – PdV +∑
i=1

c
 µi dni  dG = –SdT + VdP +∑

i=1

c
 µi dni 

9. For a closed system with chemical reactions: 

 dU = TdS – PdV +∑
i=1

ns

 νi µi dξ  dH = TdS + VdP +∑
i=1

ns

 νi µi dξ 

 dA = –SdT – PdV +∑
i=1

ns

 νi µi dξ dG = –SdT + VdP +∑
i=1

ns

 νi µi dξ 

10.  The chemical potentials with respect to U, H, A, and G in terms of the corresponding set of 
natural variables are equivalent: 

 






∂U

∂ni S,V,nj≠i

 = 






∂H

∂ni S,P,nj≠i

 = 






∂A

∂ni T,V,nj≠i

 = 






∂G

∂ni P,T,nj≠i

 = µi 

11.  Maxwell relationships give the thermodynamic forces for the chemical potential: 

 






∂µA

∂P T,nA,nB

 = 






∂V

∂nA T,P,nB

  and    






∂µA

∂T P,n1,nB

 = – 






∂S

∂nA T,P,nB

 

    These equations are the per mole equivalents of the thermodynamic forces in Figure 16.4.1. 
12.  For an isothermal change in pressure for a pure substance A:    µA – µ

A
°(g) = ⌡⌠P°

P
V *

A dP  

13. For an isothermal change in pressure for an ideal gas:   µA = µ
A
°(g) + RT ln P/P°. 

14.  The fugacity is the “chemically effective” pressure, which includes the effects of 
intermolecular forces. The fugacity is defined to give the exact chemical potential of the gas: 

µΑ = µ
A
°(g) + RT ln f/P°. 

15.  The fugacity coefficient is defined to focus on the deviation from ideality of the gas: f ≡ γ P 
with γ → 1 for P → 0. 
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16.  The fugacity is calculated by integrating the non-ideality of the gas from zero pressure up to 

the pressure of interest: ln f/P = 
⌡

⌠

0

P

 (z –1) 
dP
P  = ⌡⌠

0

P
 (z –1) d lnP 

17.  At constant temperature and pressure the Gibbs energy of mixing is 
∆mixG = nA(µA – µ*

A) + nB(µB – µ*
B) 

18.  The Gibbs energy of mixing for ideal gases is entirely entropic, ∆mixG = – T ∆mixS. 

 At constant T and P:   ∆mixS = – ntotR ∑
i=1

c

 yi ln yi    ∆mixG = ntotRT ∑
i=1

c

 yi ln yi ∆mixH = 0 
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Chapter 16: Problems 
 
1.  Assume you are a diver. To a good degree of approximation, you are essentially just a 70 kg 
mass of water. Calculate the change in Gibbs energy for 70.0 kg of water in an isothermal 
expansion from a pressure of 2.00 bar to a final pressure of 1.00 bar at a constant temperature of 
298.2 K. This pressure difference corresponds to surfacing from a depth of 10 m. Start with the 
required partial derivative. 
 
2.  What is the thermodynamic force that corresponds to the change in Gibbs energy with 
temperature at constant pressure? Explain your reasoning. 
 
3.  What is the thermodynamic force that corresponds to the change in Helmholtz energy with 
volume at constant temperature? Explain your reasoning. 
 
4.  Calculate the change in Gibbs energy for one mole of ideal gas for a change in pressure from 
1.00 bar to 2.00 bar at a constant temperature of 298.2 K. Determine the partial derivative that 
relates to this problem, and integrate the result (review Section 9.7). 
 
5.  Develop a problem that is based on the partial derivative (∂A/∂V)T, and solve the problem 
(review Section 9.7). Choose an ideal gas as the system for simplicity. 
 
6.  For a given increase in volume, will diamond or liquid water give a larger increase in entropy 
at constant temperature? 
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7.  Calculate the change in chemical potential for an ideal gas for a change in pressure from 1.00 
bar to 20.0 bar at a constant temperature of 25°C. 
 
8.  The temperature dependence of the Gibbs energy of a chemical reaction is expressed as: 
 

 
∆rGT2

T2
 – 
∆rGT1

T1
  = ∆rH 







1

T2
 – 

1
T1

 
 

What would you plot on the axes of a graph to get a straight line with the slope related to ∆rH? 
How is the slope related to ∆rH? 
 
9.  Hydrogen is used as a fuel for internal combustion engines. However, the average combustion 
temperature is significantly higher than tabulated values. Calculate the standard state Gibbs 
energy of combustion of H2 at 700.0 K. 
 
10.  The Gibbs-Helmholtz expression, Eq. 16.3.15, gives the temperature dependence of the 
reaction Gibbs energy. You should remember from General Chemistry that the equilibrium 
constant for a chemical reaction is related to the reaction Gibbs energy by ∆rG° = – RT ln K. Use 
the Gibbs-Helmholtz equation to find the temperature dependence of the equilibrium constant. 
 
11.  Potassium hydrogen phthalate, KHP, is a commonly used primary standard for acid-base 
titrations. KHP is moderately soluble in water. For the reaction: KHP (s) →

← K+ (aq) + HP- (aq), 
the reaction Gibbs energy is given in the table, below, versus temperature at constant pressure.1 
Calculate the reaction enthalpy and entropy, including uncertainties. Assume the reaction 
enthalpy and entropy are not functions of temperature. 
 

T (°C) 0.6 22.0 45.0 55.0 65.0 
∆rG (kJ mol-1) 5.995 3.999 2.208 1.044 0.1591 

 
12.  Starting with the internal energy as a function of entropy and volume, give the Legendre 
transformation that defines a new function that will be a good spontaneity criterion at constant 
temperature and volume. 
 
13.  Show that Cv is not a function of volume for an ideal gas, in a closed system. 
 
14.  Calculate the change in Helmholtz energy for Vo liters of a liquid substance with isothermal 
compressibility κT when the pressure is changed from P1 to P2 at constant temperature. Start by 
proving that: 
 

 






∂A

∂P T
 = PVκT 

Then integrate assuming the volume may be considered a constant V ≈ Vo. 
 

15. Derive the Maxwell relationship that is based on the Helmholtz energy:   






∂S

∂V T
 = 






∂P

∂T V
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16.  Starting with the thermodynamic force for the change in internal energy with respect to 
entropy, prove that: 
 

 






∂S

∂T V
 = 

Cv

T  

 
17.  Show that if S is regarded as a function of T and V then, for a closed system: 

 T dS = Cv dT + T 






α

κT
 dV 

 

18.  Show for an isothermal change in pressure for a liquid or a solid, ∆S = – ⌡⌠ αV dP. 

 
19.  Pressure perturbation calorimetry has become a useful tool in studies of protein folding. In 
interpreting the effects of solvation on protein conformation and folding, the following derivative 
is centrally important. Show that: 
 

 






∂Cp

∂P T
 = – T 







∂2V

∂T2
P
 

 

20.  Show that:   






∂V

∂S P
 = 

αVT
Cp

 

 

21.  Show that:   






∂P

∂S V
 = 

α T
κT Cv

 

 
22.  Reversible adiabatic processes are constant entropy processes. Derive Eq. 9.8.12° directly 
from (∂T/∂V)S. Do this derivation in two steps. (a). Show that: 
 

 






∂T

∂V S
 = – 







∂P

∂T V
 






T

Cv 
 

 

(b). Integrate this last equation for an ideal gas from the initial state, T1 and V1, to the final state, 
T2 and V2. 
 
23.  Reversible adiabatic processes are constant entropy processes. Derive Eq. 9.8.18° directly 
from (∂T/∂P)S. Do this derivation in two steps. (a). Show that: 
 

 






∂T

∂P S
 = 






∂V

∂T P
 






T

Cp 
 

 

(b). Integrate this last equation for an ideal gas from the initial state, T1 and P1, to the final state, 
T2 and P2. 
 
24.  The heat capacity of a substance can be determined without heat flow measurements by 
determining the change in temperature of a substance with pressure at constant entropy, 
(∂T/∂P)S. Constant entropy conditions are obtained by changing the pressure rapidly, so that heat 
flow is minimal. Reversible adiabatic processes are constant entropy processes. Show that:2 
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





∂T

∂P S
 = 






∂V

∂T P
 






T

Cp 
 = 

TVα
Cp

 
 

(b). The coefficient of thermal expansion for benzene is 1.24x10-3 K-1 and the density is 
0.8765 g/cm3 at 298.15 K. The temperature of a sample of benzene increased by 0.0484 K for a 
sudden increase in pressure of 2.02 bar. Calculate the heat capacity of benzene.2 
 
25.  Consider the change in Gibbs energy for an isothermal change in pressure for a liquid or a 
solid. Assume the volume changes and that the isothermal compressibility, κT, is constant. 
(a). Show that for initial volume Vo, initial pressure Po, and final pressure P, for moderate changes 
in pressure: 
 

 ∆G = Vo (P – Po) – ½ Vo κT (P – Po)
2 

 

(b). Repeat Problem 1 with this more accurate formula, and compare the results. 
 
26. (a). Calculate the change in internal energy for one mole of liquid water for an isothermal 
decrease in volume from 1.0000 L to 0.9900 L at 298.2 K and an initial pressure of 1.00 bar. 
Assume that α and κT are approximately constant over this volume range. Note that to a good 
approximation: 
 

 P = Po – 
1

Vo κT
 (V – Vo) 

 

(b). Calculate the final pressure. 
 
27.  Calculate the change in Gibbs energy of a liquid substance with isothermal compressibility 
κT when the volume is changed from V1 to V2 at constant temperature. Start by proving that: 
 

 






∂G

∂V T
 = – 

1
κT

 

Then integrate from V1 to V2 assuming κT is constant. 
 
28.  The Gibbs-Helmholtz relationship is useful at constant pressure. Show that for constant 
volume processes: 
 

 








∂






A

T
∂T V

 = – 
U
T2 

 
29.  Rewrite Figure 9.7.1 for the partial derivatives: 
 

 






∂G

∂T V
  







∂T

∂G P
  







∂G

∂V T
  







∂G

∂T V
  







∂P

∂T G
 

 
30.  In an isothermal expansion of an ideal gas ∆U = 0. The value is not zero for a real gas. Using 
the Van der Waals equation of state, find ∆U for an isothermal expansion from V1 to V2. 
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31.  The work for the system in stretching a rubber band is wnet = – F dx, where F is the restoring 
force, F = – k x. At constant temperature and pressure, ∆G = wnet, where wnet is the non-PV work. 
Therefore, the total change in Gibbs energy for a process involving stretching a rubber band is: 
 

  dG = – S dT + V dP – F dx. 
 

 
 
 
 
 
 
 
 
(a). Under what conditions is ∆G be a good spontaneity criterion ( i.e. when what is held 
constant)?  (b). For an initial state with a stretched rubber band, x > 0, find the direction for 
spontaneous change, either dx > 0 or dx < 0, at constant temperature and pressure.  (c). Define a 
new state function:  R ≡ G + F x. What are the independent variables for R? 
 
32.  Given that dU = TdS – PdV and for an ideal gas the change in entropy is given by: 
 

 dS = 
Cv

T  dT + 
nR
V  dV 

 

show that dU = Cv dT for any process in an ideal gas. (At first it doesn’t look like 
dU = TdS – PdV will give just dU = Cv dT, does it?) 
 
33.  In Eqs. 16.6.14, the chemical potentials expressed in terms of U, H, A, and G were all shown 
to be equal based on comparing the total differential of each thermodynamic potential with the 
Legendre transformed combined First and Second Laws of thermodynamics. As an alternative 
proof, show that the chemical potentials expressed in terms of the Gibbs energy and the enthalpy 
are equal using partial derivative conversions: 
 

 µi = 






∂G

∂ni T,P,nj≠i
= 






∂H

∂ni S,P,nj≠i
 

 
34.  Calculate the entropy and Gibbs energy of mixing of 0.80 moles of N2(g) and 0.20 moles of 
O2(g) at 298.15 K. Assume the initial pure gases are at 1 bar pressure and the final total pressure 
is also at 1 bar. 
 
35.  Carbon sequestration is a strategy for ameliorating global climate change caused by the 
build-up of CO2 in the atmosphere from fossil fuel combustion. However, the separation of CO2 
from exhaust gases requires work that will necessarily decrease the efficiency of the overall 
process. Assume that the O2 in air is replaced completely by CO2 during a combustion process. 
Calculate the minimum energy per mole of CO2 at constant temperature and pressure necessary 
to separate the CO2 from the remaining N2 at 298.15 K. Assume air is 20.9 mol% O2 and 79.1 
mol% N2. Anthracite coal can be modeled as pure graphite. Compare the energy required for the 
CO2 separation to the Gibbs energy of combustion of graphite. 

dx 

x 0 

k ="stretchiness" 
 x= extension 
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36.  Find the fugacity coefficient for a gas that obeys the Virial equation of state, Eq. 7.5.10: 
z = 1 + (B(T)/RT) P. For CO2 at the critical temperature, 304.14 K, the second Virial coefficient 
is B(T) = -0.114 L mol-1. Calculate the fugacity coefficient for CO2 at 150 bar and 304.14 K, and 
compare to the result using Figure 16.7.1 (see Example 16.7.1). 
 
37.  A brief outline of carbon sequestration is given in Problem 35. One proposal for carbon 
sequestration is to pump liquid or super critical CO2 deep underground into abandoned oil wells 
that are sealed by salt domes. CO2 may be liquefied at temperatures less than the critical 
temperature and pressures greater than the critical pressure. For CO2 the critical temperature is 
304.14 K and the critical pressure is 73.843 bar. The critical pressure is the maximum vapor 
pressure for liquid CO2. At equilibrium, the chemical potential of the liquid is equal to the 
chemical potential of the vapor, µ*

CO2(l) = µCO2(g). Find the chemical potential for CO2 vapor and 
liquid at the critical point, relative to the standard state, using Figure 16.7.1. Compare your 
results to the value assuming ideal gas behavior. 
 
38.  Carbon dioxide plays an important role in many geochemical processes, which often occur 
at high pressure. Calculate the reaction Gibbs energy at 50.0 bar and 298.2 K for: 
 

 CaCO3 (s) → CaO (s) + CO2 (g, P = 50.0 bar) 
 

Approximate the fugacity coefficient using: 
 

 ln γ ≅ z – 1 ≅ (B(T)/RT) P 
 

where B(T) is the second Virial coefficient at the given temperature (see Problem 36 for the 
justification). For CO2 at 298.2 K, the second Virial coefficient is B(T) = -0.125 L mol-1. Neglect 
the effect of the pressure on the solids. Compare the results to the value assuming an ideal gas 
(Ch. 15, Problem 17). 
 
39. (Challenge Problem) Consider a one-component open system:  dU = T dS – P dV + µ dn, 
with the chemical potential given in terms of the natural variables for U by: 
 

 µ = 






∂U

∂n S,V
 

 

For practical problems we often treat the internal energy as a function of T and V, since we often 
work at constant temperature and constant volume (see Chapter 7). (a). Show using partial 
derivative conversions that: 
 

 dU =T dS – P dV + µ dn = Cv dT + 






∂U

∂V T,n
dV + 







∂U

∂n T,V
dn 

 

(b). Determine dU for a constant temperature and volume process for an open system. 
 
40. (Challenge Problem)  The molar absolute entropies of substances that are listed in reference 
tables are given by: 
 

 Sm = 






∂S

∂n T,P
 

 



584 
 

since reference tabulations assume constant temperature and pressure. Consider a single 
component system. The enthalpy change for a general process in terms of the natural variables is: 
 

 dH = T dS + V dP + µ dn 
 

The TdS term, however, is more complicated than it might first appear. Show that: 
 

 T dS = Cp dT – T 






∂V

∂T P,n
 dP + T Sm dn 

 
41. (Challenge Problem)  (a).  Starting with the result for TdS from the last problem, show that 
for a general process in an open system with one component: 
 

 dH = Cp dT + 






∂H

∂P T,n
 dP + T Sm dn + µ dn 

 

(b).  The molar enthalpies for substances that are listed in reference tables are given by: 
 

 Hm = 






∂H

∂n T,P
 

 

Show that µ = 






∂H

∂n T,P
 – T Sm 

 

(c).  Combine the expressions in parts (a) and (b) and compare to the general total differential of 
H(T,P,n). 
 

(d).  Find dH for a constant temperature and pressure process in an open system with one 
component. 
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