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Chapter 16. Foundations of Thermodynamics

Given the changesin T, S, V, P, andnow do we calculate the corresponding change in|U
A, H, and G? For just one example, assume you dieea, and that to a good degree of
approximation you are essentially just a 70 kg nodsgater. Calculate the change in Gibb
energy for 70 kg of water in an isothermal expam$iom a pressure of 2.00 bar to a final
pressure of 1.00 bar at a constant temperatur@®2X. This pressure difference
corresponds to surfacing from a depth of 10 m.

[92)

Thermodynamics is a coherent, internally comsistand very useful theory that allows us to
predict the behavior of all macroscopic physicaltegns. In this chapter we find that there are
amazingly few underlying principles that form tleaihdation for our understanding of the
physical world, from a macroscopic viewpoint.

16.1 Thermodynamic Potentials and Thermodynamic Fares

Now that we have defined the free energy functemms determined their central importance, it is
important to take a step back and consider whdtave accomplished. We now have four
important state functions that tell us about heat\aork transfer. The internal energy is the heat
transfer at constant volume, the enthalpy is tteg transfer at constant pressure, the Helmholtz
energy is the maximum total work for a process, thiedGibbs energy is the maximum non-PV
work for a process. U, H, A, and G are called tredymamic potentials. These state functions
tell us about the potential of a process to trartséat and to do work. The idea is a
generalization of the mechanical potential enetyyH, A, and G tell us the potential of the
system to do useful things.

There is an immediate connection between theymandics and classical mechanics for a
process with no heat transfer. The change in theéymamic internal energy is equal to the work
done in a process when no heat is transfexgds g + w = w. The change in mechanical
potential energyi{x), is also equal to the work done on the systien with no heat transfer
AUX) =AU = w. Remember from your study of classical meatsathat there is a simple
relationship between the potential energy for aesysand the forces that act on the system. For a
particle subject to a force, F, the change in gakanergy with position is:

dnx)
dx

The force is the negative of the gradient of theeptial, Figure 16.1.1. Integrating Eqg. 16.1.1 for
a constant force gives the familiar relationshigx) = — FAx. By analogy, we define the
derivative of a thermodynamic potential againsispldcement as a thermodynamic force. The
displacement, dr, is a change in a thermodynanriable, for example T, S, P, V, of. iror the
internal energy the general form of a thermodynéaice is:

oU

F =or 16.1.2

F=- 16.1.1
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Figure 16.1.1: The change in potential energyeswbrk done. The work is the energy
necessary to displace an object against a foraefdroe is the negative of the gradient of the
potential.

The combined First and Second Laws of thermoahyogtell us something very important
about the thermodynamic forces. For the momenydetssume that we have a closed system
with no chemical reactions, to keep things simplée. know that the combined First and Second
Laws of Thermodynamics give:

dU =TdS - PdV (closed) 16.1.3

which implies that the independent variables aam&V. The total differential of U(S,V) is also
expressed as:

oU oU
du _(GS)V ds +(0Vjs dv (closed) 16.1.4
Comparing Eq. 16.1.3 and Eq. 16.1.4 term by tenaggi
oU oU
(GS)V =T (avjs =—P 16.1.5

These equations are in the same general form ab6E2, so T and P are thermodynamic
forces. For P this not at all surprising; the puesss defined as the force per unit area.
Expansion work is done against the pressure a®tbe. To change the volume of a system,
there must be a pressure gradient. But the sanenargs can be made about the temperature.
Entropy change corresponds to heat flow, di&/T. To have heat flow there must be a
temperature gradient. So by analogy, temperatutesiforce for heat flow; please review
Section 13.1.

The concept of temperature is certainly onénefrhost fundamental principles in science. The
ideal gas temperature scale is a very empiricalagmbh to temperature, but the adoption of the
ideal gas temperature scale is not a rigorous itiefinof temperature from a fundamental
standpoint. One of the most fundamental definitimngemperature is through the
thermodynamic force in Eq. 16.1.5, see Section.10.2

The combination of P and V, couples an intengasgable and an extensive variable. The PV
product gives the work done in a process and th@mduct has units of energy. Variables
related in this way areonjugate variables The variables T and S are alscomjugate pair. T
is the thermodynamic force that corresponds taldrevative of the potential energy with respect
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to S, the product of T and S gives the heat traredién a process, and the TS product has units
of energy. The conjugate pair always occurs togethiindamental equations for the
thermodynamic potentials, for example TdS and $fyiou like, T and S go hand-in-hand, as do
P and V. One variable in the pair is the forcedadrkoned with while the other is the change
you want to make.

The thermodynamic forces are the answers to s@myeimportant questions. For example,
how does the internal energy change with volumefoadiabatic reversible process? An
adiabatic reversible process corresponds to aaainshtropy process. We can then just integrate
the thermodynamic force:

ou

(W) =-P du=-PdVv anfU = —deV (adiabatic reversible)16.1.6
S

How does the internal energy change with a chamgatropy for a constant volume process?
This problem sounds like a tough problem at fitdtwe need to do is to integrate our trusty
thermodynamic force:

(O_U) =T dUu=TdS  andU = [TdS (constantV) 16.1.7

0S)
We are on our way to being able to find the changay thermodynamic potential with any
change in variable. To make further progress wel neeonsider how we define the
thermodynamic potentials, and why.

16.2 Changing Independent Variables Using Legendréransformations

Once again consider dU = TdS — PdV. This equoaives the internal energy as a function of
independent variables S and V, that is U(S,V). &\amare the independent variables that follow
from the application of the First and Second Lasesthey are called the “natural” variables of
the internal energy. We have also defined:

H=U+PV 16.2.1
A=U-TS 16.2.2
G=H-TS 16.2.3

How do H, A, and G depend on T, S, P, and V? Whatle thermodynamic forces for changes
inH, A, and G?
Starting with enthalpy, the total differential i

dH =dU + PdV + VdP (closed) 16.2.4
then substituting in Eq. 16.1.3 gives us:

dH =TdS - PdV + PdV + VdP (closed) 16.2.5
Cancelling terms gives:

dH =TdS + VdP (closed) 16.2.6

This equation expresses the enthalpy in termsdefgandent variables S and P, which are the
natural variables for the enthalpy, H(S,P), sifegytare directly derived from Eq. 16.1.3.
For the Helmholtz energy, the total differentsal
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dA =dU -TdS — SdT (closed) 16.2.7
then substituting in Eq. 16.1.3 gives us:

dA = TdS — PdV -TdS - SdT (closed) 16.2.8
Cancelling terms gives, as we did in Eq. 15.2.10:

dA = - SdT - PdV (closed) 16.2.9

which corresponds to A(T,V), with T and V the nafurariables.
For Gibbs energy:

dG =dH - TdS — SdT (closed) 16.2.10
substituting for dH from Eq. 16.2.6 gives:

dG =TdS + VdP — TdS — SdT (closed) 16.2.11
and cancelling terms, as we did in Eq. 15.2.22:

dG = - SdT + VdP (closed) 16.2.12

The independent variables implied are G(T,P), wheaad P are the corresponding natural
variables for the Gibbs energy. Notice somethirigrasting. The natural variables for Helmholtz
and Gibbs energies, A(T,V) and G(T,P), are juss¢éhoonditions where the free energy function
is a good spontaneity criterion. We use A as atsjaity criterion at constant temperature and
volume, and G at constant temperature and presSarie choice of T and P as the independent
variables makes G a good spontaneity criteriorastant T and P. This observation is another
reason why we call T and V the natural variablegtie Helmholtz energy, and T and P the
natural variables for the Gibbs energy. But howttielnatural variables for G get to be T and P?

The natural variables for a given state funcflow directly from the definition of the state
function. Let’s look at how we define new stateditions. Let the total differential of the original
state function be given as di) = fidx; + fodx,, with x; and % as the independent variables.
The definitions are all in the form:

Q=F-ixs 16.2.13

where Q is the new function ang{is a conjugate pair of variables. This definitisrcalled a
Legendre transformation, which is widely used imgnfelds. Using the same steps as above,
the total differential of Q is

dQ = dF — fdx; — xdf; 16.2.14
Substituting the total differential, dF,

dQ = fidx; + fodx, — f1dx; — xdfy 16.2.15
and cancelling terms gives;

dQ = — xdf; + f.dx; 16.2.16

The net result is that the independent variable®ff,x,) have been switched. The effect of the
definition has been to switch independent variabkigveen the;k; conjugate pair. Since one
variable in a conjugate pair is intensive and tthepextensive, this switch changes the
independent variable from an extensive to an imtengariable or visa versa. Specifically,
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starting with H(S,P), the definition &H — TS gives the natural, independent variablek y(
Why do we do this? Because, the new function, @@sappropriate spontaneity criterion when
we work at constant T and P. As we saw in thedaapter, at constant T and P, the use of Gibbs
energy simplifies the system and focuses our attern internal processes in the system, such
as chemical reactions.

We now see why internal energy and enthalpyateisually good spontaneity criteria. The
natural variables for U are S and V. So internargn is a good spontaneity criterion at constant
S and V. Since adiabatic reversible processesed systems occur at constant entropy, there
is no heat flow. As we mentioned above, with natfleav the internal energy is equivalent to
the mechanical potential energy. For example, cenghe two-part system in Figure 14.3.1
where dU = — RdVa — RsdVg. At constant entropy and total volumeag ¥ Va + Vg, and
dU = - RdVa — RBdVg < 0 predicts the spontaneous direction for PV waskyou used
repeatedly in your work on classical mechanics.ifkaltklly, the enthalpy is the appropriate
spontaneity criterion at constant S and P.

16.3 Thermodynamic Forces: May the Forces Be With du

The definitions of the thermodynamic potentiaérgy functions provide a very useful set of
thermodynamic forces that provide the answersvitda variety of problems. Starting with the
natural variables for each state function, U(SMS,P), A(T,V), and G(T,P), the total
differentials are:

du :(g_g)\/ ds +@—\L;js dv dU = TdS - PdV 16.3.1
dH =(g—gjp ds +@—|;)S dP dH = TdS + VdP 16.3.2
dA = @_ﬁ-\)v dT +(S—CJT dv dA = - SdT - PdV 16.3.3
dG =@—$)P dT +@—§jT dP dG = — SdT + VdP 16.3.4

The equations that we derived from the Legendrestoams, from Egs. 16.2.6-16.2.12, are also
listed again for convenience. Comparing terms, areimmediately write down a complete set
of thermodynamic forces:

%), = %).=-p 16,35
(g—gjp =T (g—';)s =V 16.3.6
(g—gv =_s (S—CJT =_p 16.3.7
@_ﬂp: s @_@T _v 16.3.8

This set of forces allows us to easily solve a widgety of problems by direct integration.
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Example 16.3.1
Calculate the change in Helmholtz energy for onéemban ideal gas in an isothermal
expansion from an initial volume of 1 L to a finallume of 2 L at a temperature of 298.2 K.

Answer Remember the trick we discussed earlier fottiredgpartial derivatives to the
conditions for a given process. The partial densatve need gives the change in A:

(G—A) =7

ov)r

Let's assume for a moment that you don’t recogthieparticular partial derivative. How can
you determine if it is a thermodynamic force? Hirste the numerator is the change in a
potential energy function, dA. Then note that thdejpendent variables, V and T, are the natural
variables for A; that is, A is a good spontaneiiyecion at constant T and V. With the potential
up top and the natural variables down below, youreaognize the derivative as the
thermodynamic force for changes in V. Of course cese just look up at the equations above
and recognize that the force is —P. However, asghatg/ou don’'t have Eq. 16.3.5-16.3.8 in
front of you. How can you get the value for thec&®? Using the associations in Figure 16.3.1 we
can immediately spot that —P is the force thatesgonds to changes in A, with respect to
changes in V. The independent variable and thesfare conjugate variables.

the change in A when V changes is the thermodyn&mnce, —P
0A
dA=-SdT-PdV (GV)T__
at constant T conjugate variables

Figure 16.3.1: Finding thermodynamic forces from tibtal differential.

0A
Then (GV)T =—P or dA=-PdV
can be integrated to find the final result for deal gas:
V2nRT
AA = —deV =— anV =—nRT In (V1) (isothermal, ideal gas)16.3.9

Vi

This result shouldn’t be surprising, since dA =gdwand the work for an isothermal reversible
expansion of an ideal gas issW= — NRT In (\4/V1).

The Change in Gibbs Energy with Temperature Dependbke Enthalpy ChangeThe change

in the Gibbs energy with temperature is given by Eg4.15. However, we can derive a simpler
version of this equation based on the thermodyndonée for the change in Gibbs energy with
temperature in Eq. 16.3.8. First consider the pladrivative of G/T with respect to temperature
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at constant pressure. Using the product rule and &§.8 for the thermodynamic force
(0G/0T)p = =S, gives:

G 1
{@}P =G (G(T)]P T (an —% -2 (constant P)  16.3.10

oT oT oT T

Then taking T as the common denominator gives:

[0(%}P=_G+Ts :

3T 7 -7 (constant P) 16.3.11

where we used the definition of the Gibbs energynitd G + TS = H. This equation is called the
Gibbs-Helmholtz equation. This result is particularly useful ftwemical reactions. Remember
from General Patterril 8, Thermodynamic Relationships for Reactidhat we can turn any
thermodynamic relationship into a relationshipdarhemical reaction by taking products minus
reactants by insertindy:

e

_ AH
[ aT JP——?- (constant P) 16.3.12

This result will be particularly useful when we stater the temperature dependence of
equilibrium constants. Eq. 16.3.12 can be integrateseparating variables:

JAY AH
d( T ) —=z dT (constant P) 16.3.13
and integrating from fto Ta:
ArG(T2)/T2 A G To AH
f d( ) J ~z dT (constant P) 16.3.14
ArG(T1)/T1
If we assume thakH is constant over the temperature range, theralkegre:
AG(T) AG(Ty) (1 i’j
T, T T, =AH .- T (cst. RAH) 16.3.15

This equation is the integrated form of the Gibledriholtz equation. This equation is also a
guantitative statement of LeChatelier’'s Princiethe response of a chemical reaction to
changes in temperature. Considerl$ a fixed reference temperature. For an endotberm
process and an increase in temperatyréhe right-hand side of Eq. 16.3.15 is negativee T
Gibbs energy then decreases as the temperatueases as predicted by LeChatelier’'s principle.
Notice that the right-hand side of this equatiomithe same form as discussedseneral

PatternO 4.

Example 16.3.2
The surfaces of nitric acid hydrates are possiatalgsts that accelerate the formation of the
Antarctic ozone hole. Nitric acid hydrates alsoash sink of HN@vapor; HNQ vapor
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photolyzes to NO and NQwhich act to slow ozone destruction. The subliamabf the trihydrate
to nitric acid and water vapor:

HNGO;[3H,0(s) - HNOs(g) + 3 HO(g)

has aAs.fG° of 93.2 kJ mot and aAsH° of 237. kJ mot at 220. K. The temperature in the
stratosphere ranges from about 190. K to 270. KculateAs G° at 190. K2

Answer Using the integrated form of the Gibbs-Helmh@tmiation, assuming a constagiH°
over the temperature range:

Asuf3°(To)  93.2 kJ motl ] ( 1 1 K)
190.K ~ 220Kk = 237-kImot|355 k220,
%%2— 0.423 kJ K* mor* = 237. kJ mot (7.177x10% K™Y

AsufG°(190 K) = 112. kJ mél

The Change in Entropy with Temperature DependfierHeat Capacity We used the

definition of entropy directly in terms of heatnsder, dS =iq../T, to derive the temperature
dependence of the entropy, Egs. 13.2.28-13.2.3®eMer, since entropy is a fundamental state
function, it should be possible to derive the clenigp entropy directly from other state
functions. The thermodynamic forces allow us tgudb that. Consider the change in entropy
with temperature for a constant pressure proc@S#) )r. The thermodynamic forces all
involve a thermodynamic potential, for exampelfdS) = T. We can relate the change in
entropy to this thermodynamic force using the chaie:

0S oS\ (oH
(OTJP = (aH)p [OTJP (constant P) 16.3.16

Inverting the thermodynamic forc@H/0S) = T gives:

0S 1

(ﬁ)P =T (constant P) 16.3.17

Using this thermodynamic force and the definitiétCp= (0H/0T)p gives:

oSy C
(aT)P_T (constant P) 16.3.18

This last equation is completely general for arstey and is rigorously derived directly from
the foundations of thermodynamics.

16.4 The Foundations of Thermodynamics

An easy way to appreciate the formalism thatveedeveloping is to display the results in a
single chart, Figure 16.4.1. We are in the middldesiving all these relationships. The top of
the chart lists the properties of the system. émrtitodynamics, the system is described by an
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equation of state for a gas@mndky for a liquid, solid, or solution. A heat capacigther at
constant volume or pressure is also necessaryg &tih a list of any chemical reactions. This
top section is the only part of the chart that delseon the actual system. Everything below is
perfectly general for any closed system. Howewarnbw, to keep things simple, assume for the
moment that we have a closed system with no chémaaations. We will discuss the additions
for the case when there are chemical reactiongatic 16.6.

Foundations of Thermodynamics

1(6V 1(6V a (9
PV=nRT a=y aT)P KT=-y anT Ky (OT)V
n2 oU oH
(P + aﬁ)(v —nb) = nRT G= (OT)V Co= (OTJP
oT oP
dU = dq + dw dU = TdS — PdV (av)s “(as)v
oT oV
H=U+PV dH = TdS + VdP (OPJS = (aS)P
oP oS
A=U-TS dA = —SdT - PdV [aij = (av)T
oV oS
G=H-TS dG = -SdT + VdP (aT)p __(6P)T
ou oP U\ (3
(av); -P+ aT)V G-G= [P +(av)T [aij
oH oV oP\ (o 2
(6P)T_V =T (aT)p‘ ~HirCe G-G=T (6T)V (6T el
T V cst. T P cst. T
S s =f9T9dT @ cstP |AS =ledv AS=f avdp
T
AS =G In ToT, AS = nR In \4/Vy AS =—=nR In P,
A |[AA=—[SdT @cstV |[AA=—[PdV AA = [ PVky dP
AAr, AAn _ (1 1
T, T, AUT,T AA =—nRT In WV, AA =nRT In R/P;
G |aG=fsdT  @cstP |, __ Kidv AG=[VdP
AGr, AGr; _ H(i 1 ! AG = nRT In B/P,
T, T 2"\T, T |AG=-nRTIn VWV,

Figure 16.4.1: Foundations of Thermodynamics.

The table at the bottom of the chart diagramsyntd the possible practical problems that you
might need to do. For example, the beginning exarapthis chapter is to calculate the change
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in Gibbs energy for an isothermal change in presstine corresponding box in the table is in
the lower right. Example 16.3.1 corresponds todttve in the middle of the table. The top result
in each table cell is the general result for arstey, written in terms of LCa, andkt. The

bottom part of each cell is the result for an idgsd. Eqs. 16.3.15 and 16.3.18 are also listed in
the table.

Take a moment to find the problems in the bottabte that involve thermodynamic forces.
They should be the boxes that correspond to a th@ynamic potential and its natural variables.
Rather than explicitly list the thermodynamic fagae the middle section of Figure 16.4.1, we
just list the definitions of the thermodynamic putels and the corresponding total differentials
in terms of the natural variables. You can useptiogeess discussed in Exercise 16.3.1 to get the
thermodynamic forces. Unfortnately, the thermodyitaiorces don’t solve all of our problems.
To develop a perfectly general solution to any pgobwe need something else.....

Maxwell Relations Simplify Relationships Involvthg Entropy At this point we don’t have a
complete set of relationships that involve the @mr These relationships are provided by
Maxwell relationships. Maxwell relations are basedhe fact that U, H, A, and G are all state
functions, and therefore have exact differentiéle Euler Criterion for exactness allows us to
relate derivatives of the thermodynamic forces. Ebhker Criterion is that mixed partials are
equal, Sec. 9.1:

d(of 0 (of :
(ay OXDX = (ax(aijjy (df exact, f a state function) 16.4.1

We can apply the Euler Criterion once for eachrttoetynamic potential.

For internal energy, the thermodynamic forcectmainges in entropy is the temperature, Eq.
16.3.5. In Chapter 9.8 we derived an equationferadhange in temperature for an adiabatic
reversible expansion for an ideal gas. Can we dexigeneral equation that is independent of the
substance?

(a—T) = 2
oV)s
Note that this derivative is actually a mixed partierivative, since we can substitute Eq. 16.3.5

for T:
oT 0 (0U

The Euler criterion allows us to switch the ordedifferentiation (switch the constant variable,

t00).
0 (oU 0 (oU
(aV 5SJVJS_(6 aV)sjv 1043

Then note from Eq. 16.3.5 that the partial derixabn the right is also a thermodynamic force,
(0U/oV)s = — P, and substitution into Eq. 16.4.3 gives:

9(UY) _ (9P
(a av)sjv"(asjv 16.4.4

In Figure 16.4.2 we put these steps all togetheéhabwe can see the flow of the derivation.
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ou ou
du _(OSJV ds +(6V)s av
du = T dS - P dv

W

Thermodynamic force  Thermodynamic force

)=l = =%
oV)s \oV\0SlyJ)s ~ \aS\aV)s)y ~  \0Sh
switch order

Figure 16.4.2: Maxwell Relationship based on therimal energy. The independent variables
switch and the thermodynamic forces switch.

The Maxwell relationship for the enthalpy startshndH = TdS + VdP and T as the
thermodynamic force with respect to changes in S:

oH
(asjp =T 16.4.5
Form the mixed partial derivative by choosing thigeo independent variable, P, and switch the

order of differentiation:

9.-(250).- 3.0

We will leave the derivation of the Maxwell relatghip that comes from the Helmholtz energy
as a problem at the end of the chapter. The Maxwktionship from the Gibbs energy with
dG = — SdT + VdP is particularly useful. Startinghw S as the thermodynamic force:

Bl @8-
oTp oP/r ~ T\OP\OT o)t~ \0T\OP)r)p~ \0TJp
16.4.7
Gathering together all the Maxwell relationshipsfine:
oT oP
(avjs B _(asjv 16.4.8

o) @

oP)s ~ \as)h
0S oP
(OV)T = (GTJV 16.4.10
0S oV
o) . (2]

Notice the simple pattern for the variables. Wendiderive Eq. 16.4.10, but even so it is easy to
fill in from the pattern established by the othelationships: thermodynamic forces on top,
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differentials for the natural variables on the bott with conjugate pairs of variables on the
diagonals. These relationships are very powerfdhaifl save us a lot of steps in future
derivations. However, since they do seem so alistva@cwill need to take extra care to show
you that they are beneficial and insightful.

Example 16.4.1 CalculateAS for a change in volume at constant temperaturarfadeal gas.

Answer The Maxwell relationship that answers this guests:
v (57
V)t \aT )y
Substitution of the equation of state for the idgd, P = nRT/V gives:
v (o, 5LV
ov)y \aT)y \ oT N V
Multiplication of both sides of the equation by dwes:
nR
ds =V dv

: . \%
This equation integrates &5 = nR In\Tj

which we derived earlier, Eq. 13.2.9f course, this equation is specific to an idged. This
equation is listed in the table in Figure 16.4.1.

Example 16.4.2 CalculateAS for a change in volume at constant temperatura figuid or a
solid.

Answer Using the same Maxwell relationship as Exampld l6and Eq. 7.6.21 for the
mechanical derivative gives:

-
ov T —\aT V_ KT
and multiplying by dv:  dS % dv

. . a
and integrating: AS ZJK_T dv

. a
If a andkt are essentially constant over the volume ramgb:; AV

The problem for an ideal gas was solved in Eq..243\&ithout the Maxwell relations, however,
this problem shows how the Maxwell relations allesvto work with real systems in a very
general way.
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The Maxwell relationships are particularly usef $olving problems involving the entropy. In
particular, Eq. 16.4.10 and 16.4.11 recast a digvivénvolving the entropy into a derivative
involving only the equation of state of the gast@ndkr, as shown in the Examples. The
Maxwell relationships provide quite surprising résthat turn out to be very useful. In fact, this
is the strength of thermodynamics: uncovering nbviaus results that are at the same time
perfectly general in scope. Let’'s do some more gtesnto show the uses of the Maxwell
relationships.

16.5 Thermodynamic Equations of State

Two partial derivatives have given us some tleddr several chapters now. We wrote the
total differentials of the internal energy and émghalpy as:

ouU ouU

du _(GV)TdV + (aT)VdT 16.5.1
oH oH

dH —(aP)TdP +(0T)pdT 16.5.2

We had a hard time finding general relationshipgie derivatives:

(a—u):’? (a—H):’?
V) P

Now we can see why we had troubles. The natur@bias for U are S and V, while the
independent variables in Eq. 16.5.1 are insteaddNa The natural variables for H are S and P,
while the independent variables in Eq. 16.5.2 asad P. Lets see if we can find general
relationships using the natural variables. Forniternal energy derivativeg\J/oV), the

variable that is held constant, T, is the “misptheariable”. Reviewing the partial derivative
conversions in Figure 9.7.2, the conversion froasThe constant variable to S is through the
total differential of U. The total differential fahe internal energy, assumed a function of S and
V, is from Eq. 16.1.3:

dU = TdS - PdV 16.5.3
Now “divide” both sides of the equation by dV atstant T to give:

ouU S o\

(anT B aV)T B GVJT 16.5.4

The last partial derivative is one, but can we siipthe entropy derivative? The Maxwell
relationships come to the rescue. In particulangigigq. 16.4.10 (the one you are deriving in your
homework):

oU oP
(GV)T =—-P+ OT)V 16.5.5

This equation is calledthermodynamic equation of state because all the variables on the
right are related to the equation of state forgihlestance (who would have guessed?). This
equation will help us answer some long standingstjoies. For an ideal gas, P = nRT/V and
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0Py nR

(OT)V_ Vi 16.5.6
and substitution into Eq. 16.5.5 gives:

ouU nRT

(av)T“P*v =-P+P=0 16.5.7

We guessed this result earlier from experimenfakmation, but now we have a rigorous
derivation of the fact that the internal pressuraroideal gas is zero. The internal energy for an
ideal gas i©nly a function of temperature. For a liquid olidthe mechanical derivative in Eq.
16.5.5 isa/kt, EQ. 7.6.16:

V) _ a

(av)T =—P+ TKT 16.5.8
which is a general result for any system.

Now for the enthalpy derivativedHl/0P)r, using the total differential for the enthalpyrfrdeq.

16.3.2:

dH =TdS + vdP 16.5.9
Dividing by dP at constant T gives:

oH 0S oP

(GP)T_ T (GP)T + V(@P)T 16.5.10
and using the Maxwell relationship Eq. 16.4.11:

oH oV

(aP)T— V- T(aT)p 16.5.11

This equation is also called a thermodynamic equatf state. The mechanical derivative is just
Va:

oH
(GP)T_ V-TVa 16.5.12

Remember that we saw in Chapter 9 that this engrddpivative is experimentally determined
using the Joule-Thomson coefficient:

oH ov
(GP)T_V_ GTJP_ —I.lJTCp 16.5.13

which provides a nice connection to the laboratorg really ties up some loose ends from
previous chapters.
One remaining loose end is the relationship betwG and G. We showed that, Eq. 9.4.7:

G-c=P+(5) (&), 16.5.14

Substituting the thermodynamic equation of statelfe internal energy derivative, Eq. 16.5.5:
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P (V) _a?
Co—GC = 6T)V(6T)p = VT 16.5.15

Once again this result is completely general. Tifferénce between Cand G is given entirely
in terms of the equation of state of the substance.

Example 16.5.1

Calculate the change in enthalpy for one molefitl water for an isothermal change in
pressure from 1.0 bar to 10.0 bar at 298.2 K. Asstira volume and are approximately
constant over this pressure range.

Answer Integrating Eq 16.5.12 assuming=W, and constant gives:
AH =V, AP — TVL,a AP

The pure molar volume for water is (1.00 mol)(18g0®0l%)/0.99705 g mL* = 18.07 mL =
18.07x10°m®. From Table 7.6.1q = 2.57x10' K™, andAP = (10.0-1.0 bar) = 9.0x1@a, then:

AH = (18.07x1F m*)(9.0x10 Pa) — 298.2 K (18.07x1m*)(2.57x10* K™*)(9.0 x10 Pa)
AH=163J-12J=151

In other words, compared to the enthalpy of fororabf water, this pressure effect is negligible.

Example 16.5.2:
Show that @— G, = nR for an ideal gas.

Answer We will use Eq. 16.5.15, so we need to usedbaligas law, P = nRT/V and V =
NRT/P to find:

() IR g (24) 1R
oT) Tv a4 {aT) TP
\% P
oP\ (oV nRNR
G-G= aT)V(aT)P =TV'p
but the first two factors combine to give P:

oP\ (oV nR
G-G= 6T)V(8T)P_ Pp=nR

16.6 Open Systems, Chemical Reactions, and Chemi&adtential

The expressions in Figure 16.4.1 are for clasastiems with no chemical reactions. For open
systems we just need to add the chemical poteetias, Eq. 14.1.4:

Cc
dU =TdS - PdV ©_ y; dn (PV& chemical work) 16.6.1
i=1
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For closed systems with chemical reactions, weetilwer specify that the ¢gare dependent
variables or use Eq. 14.3.9:

Ns
dU =TdS — PdV ©_ v u; d€ (closed, P\& chemical work) 16.6.2
i=1
The differentials for H, A, and G similarly add tbleemical potential sum; for example for
Gibbs energy, from Eg. 15.2.22:

Cc
dG =—-SdT + VdP ¥ ; dn (PV & chemical work) 16.6.3
i=1
Other than these additions, no changes in Figurk 1L&re necessary for the thermodynamic
forces involving T, S, V, and P and the Maxwelbat&nships, except that we need to specify
constant mole amounts for the partial derivati¥@s.one example, Eq. 16.4.11 becomes:

0S ov
(anT,ni B _(aT)P,n 16.6.4

So, we don't really need a separate figure for agyetems or for chemical reactions. You can
just add the chemical potential sum when you negthtis making a much simpler figure to
read. However, these results do tell us sometheng mportant about the chemical potential.

To makes things simpler for a moment, assunwnatant temperature and pressure process for
a two component system containing components ABarkbr dG from Eq. 16.6.3:

dG =pa dm + g drg (cst. BP, chemical work) 16.6.5
We can also express the total differential for Gatstant temperature and pressure as:
0G 0G :
dG =(—J dm + (—) dng (cst. &P, chemical work) 16.6.6
ONaJp,T oNs/p,T,n,

Comparing Eqg. 16.6.6 with Eq. 16.6.5 gives the dbehpotentials as:

aci) (aG)
=|— =|— 16.6.7
Ha (an PT.Ng He = ong P.T,m

Notice that these equations are in the general trthermodynamic forces. The chemical
potential is the thermodynamic force for the chaingemounts of the components. The chemical
potential is the driving force for chemical changsjch is just what we proved in Eq. 15.2.24.
The change in the Gibbs energy is the non-PV weakable from a process, and chemical
change requires chemical work. The chemical pakisticentral to our understanding of
spontaneity and equilibrium, and will be our prigméwol in the next several chapters.

We should also consider the general case fotipfeicomponents. Taking G as a function of
T, P, and all thejrgives the general form of the total differential a

0G 0G € (0G
dG =(—) dT +(—j dP + (—) d 16.6.8
oT P, oP T,n; i§]:_ ani P,T,Nj#i n

Comparison of terms shows with Eq. 16.6.3 that
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G_G) —
(ani N 16.6.9

for each chemical component in an open systemabr eanstituent in a closed system with
chemical reactions. The set of total differentfalsthe state functions then become, using Eq.
15.2.10 and Eq. 15.2.22:

ouU ouU € (oU ¢
du = ( ) ds ( ) dv + (—) d dU =TdS — PdV §_ u d
OS)v oVJsn, Ei oniJsv Nz 4 Ei Hian
16.6.10
C
( ) ( ) dP + (a ) dn dH =TdS + VdP ©_ y; dn
P n| S,ni i=1 n; S,P,nizi i=1
16.6.11
C
dA = (a—A) dT + (O_A) dv + ( ) dn dA =-SdT — PdV $_ p; dn
0T vy oVt n TV -1
16.6.12
0G 0G € (0G ¢
dG :(—) dT +(—) dP + (—) d dG =-SdT +VdP &_u d
0T Jp OP/1 Ei oniJp,t Nizi n Ei H e
16.6.13

The differentials on the right-side of Eq. 16.61106.13 were all derived from the combined
First and Second Laws of thermodynamics througrebhdge transformations. Comparisons of
the coefficients for the dmerms for the left and right-side equations shioat all the chemical
potential terms are equal:

# n T II i 1 .6.1

In other words, when natural varlables are us&ﬂctfanges in the thermodynamic potentials
with changes in mole amounts are all equal. Thaswsnderful result, since it would be very
complicated to keep track of all the different cheahpotentials, otherwise. Don't let the
notational complexity of Egs. 16.6.10-14 put yoti dtist remember that the Gibbs energy
change for a constant temperature and pressuregzéar a two component system from Eq.
16.6.13 reduces to dGpm dm + Hg dng.

You might wonder if we need to add additiondties to Figure 16.4.1 to express the
derivatives of the chemical potential. For examptay does the chemical potential change with
temperature and pressure? These derivatives caaablidy obtained from the thermodynamic
forces with an additional set of Maxwell relationsh For the pressure dependence:

o) O I v B R 16615
0P )1 n,ng TP/Tnne ORI/ T nr e M/t

For a component in solution, the partial derivatf&/ is the partial molar volume, VWe will
discuss partial molar properties in detail in thamter on solutions. For a pure substance, the
volume derivative is just the pure molar volumehs substance, \/
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%j _ g : (%j _\
(aP oon VA (solution) P o = Ve (pure) 16.6.16

The" superscript is used to designate a pure substamother words, we simply convert the
thermodynamic forcedG/0P)r = V to a per mole basis. Consequently, we doredne include
these additional relationships in our summary ta®imilarly for the change in chemical
potential with temperature:

=— 16.6.17
(OT S TP, anA aT P. Mo/ T Py ONAJT P 1,

For a component in solution, the partlal derivati¥ &S is the partial molar entropy,.9-or a
pure substance, the entropy derivative is jusptive molar entropy of the substance:

(%j =5 (solution) (%) =—S (pure) 16.6.18
3T Jonn, |

One particularly important application of Eq. 188lis the calculation of the chemical potential
for a pure substance as a function of the predsuin isothermal process in a closed system.
Integrating Eqg. 16.6.16 from the standard statequne, P, and standard state chemical
potential,u7(9), to a final pressure P gives:

Ha — H12(9) =f‘;v; dP (closed, cst. T, pure) 16.6.19
Assuming the gas behaves as an ideal gas, RT/P, the integral is:
Ha = 2(g) + RT InPipo (closed, cst. T, pure) 16.6°20

In other words, the chemical potential of an idgsd increases as the pressure increases; the gas
is able to do more useful work. The pressure deparwlof the chemical potential is the
foundation for the theories of phase transitionjt®ons, and chemical equilibria. However, Eq.
16.6.20 only applies to ideal gases. How do we calculagechemical potential of a real gas as

a function of pressure?

16.7 Fugacity is the Chemically Effective Pressure

The pressure of an ideal gas depends only onutmoer of molecules in the system and is
independent of the identity of the molecules, FRT V. A mole of ideabenzene vapor is
equivalent to a mole of idehklium. The pressure of a real gas depends ommintecular forces.
The chemical potential is the available chemicatkyaer mole for the system, which also
depends strongly on intermolecular forces. Thetfonal form of Eqg. 16.6.20 on the other
hand, is particularly simple. G. N. Lewis had atjgatarly useful and clever idea. It would be
most convenient to have the functional form of¢hemical potential for a real gas be in the
same form as the chemical potential of an ideal Bgsloing so, the functional form of any
equation that we derive for an ideal gas will apply to a real gas. To accomplish this
simplification, Lewis defined thRugacity, f, as the “chemically effective” pressure. The fuyac
is defined by the same functional form as Eq. 28%.

Ha = p2(g) + RT Inf/p° 16.7.1
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wheref is the required value to give the exact chemioatmtial for the substance. The fugacity
has units of pressure and takes into account teemlecular forces as well as the number of
molecules in the system. For the fugacity to beeful concept, we also require that the fugacity
approach the pressure in the ideal gas limit,P as P- 0. The “chemically effective” pressure
should approach the measured pressure as the gasd®ideal, and intermolecular forces
become insignificant. To calculate the fugacity, vegin again with Eq. 16.6.19, for an
isothermal process in a closed system.
Consider the system at two different pressurasdP'. The difference in chemical potential

for an ideal gas is given by Eq. 16.622¥aluated at P and P

HA(P)— HA(P) =[K(9) + RT InP/p’] — [L(9) + RT InP/p7]

HE(P) - H9(P") = RT InPIp (cst. T, ideal) 16.7°2

where we use the superscrigt to remind us that the chemical potentials areafofor ideal
gas. Alternatively, the difference in chemical puial is also given by the integral in Eq. 16.6.19
from P' to P:

WE(P)-uE(P) =RT InP/p = | :v‘,i dp (cst. T, ideal) 16.7.3

For a real gas, we substitute the fugacity fortessure in the logarithmic term and the volume
is the real molar volume of the gas,:V

Ma(P)—Ha(P)=RT Infi-= [~ Vo dP (cst. T)16.7.4
We can compare the fugacity to the pressure byactbig Eq. 16.7.3from Eq. 16.7.4:
RTInfif —RT InPip = ["vadP —["VA dP =" (Va-Vy) dP (cst. T)16.7.5
P P’ P

This expression can be simplified by assumingttmaiower limit P' is sufficiently low that the
gas behaves ideally, B' O thenf' - P', giving:

RT Inf/P = RT InPlp = f: Va=Vs) dP (PL0, cst. T) 16.7.6

RTInfip=[ 0" (Va=V) dP (cst. T)16.7.7

This last equation allows the fugacity to be catedl from the equation of state of the gas, Eq.
7.5.5, Figure 16.7.1a:

Va =2z RT/P and Y=RT/P 16.7.8

where the compressibility factor can be determitieectly by experiment or expressed by the
Virial expansion, Eq. 7.5.10. Substituting the raadl ideal equations of state into Eq. 16.7.7
gives a simple prescription for calculating thedaigyy of a substance:
P
(z-1)
In f/p=f “=dp (cst. T)16.7.9
0

This last equation can also be rewritten noting ¢tha P = dP/P to give:
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Inflp=fz z-1) dnP (cst. T)16.7.10

repulsive
forces
dominate

attractive
forces
dominate

P (bar) InP P, =P/P.
(a). (b). (c).

Figure B.7.1: (a). Equations of state for the real gasoaspared to an ideal gas determr

the fugacity. (b). The fugacity is a function oétimtegrated nc-ideality of the gas starting
P=0. (c). The Law of Corresponding States allovesdghktimation of the fugacity coefficie
from the reduced temperature and pres (see the Appendix Data Section a larger plot).

Data must be available over the pressure range Zevmup to the pressure of interest.
fugacity is a function ofhe integrated nc-ideality of the gas starting at P = 0, Figure7.1b.
Since the fugacity is the “chemically effective’egsure, we can focus on the difference betv
the fugacity and the pressure by defining the fitgaoefficient,y, using the egressior

f=ypP 16.7.11

At low pressures the gas approaches ideal behgwiimg y = 1; the fugacity is equal to tt
pressure. At moderate pressures, attractive fatossnate givingy < 1. At high pressures, ti
molecules are very closegether and repulsive forces dominate givy > 1. Extensive
tabulations of fugacity coefficients are availali®wever, for most purposes we can t
advantage of the Law of Corresponding states teigeecan adequate estimate y.

When expressed @ function of the reduced variables, all gasksvicthe same equation
state, to a good approximation. Using the compbdigifactor data from Figure 7.5.4, tl
integral in Eq. 16.7.106an be done numerically to find good estimatesHerfugaciy
coefficient as a function of the reduced tempegraturd pressure, Figure 16.7(and the
Appendix Data Section{seologists, chemical engineers, and oceanograpkeersto us:
fugacities to solve practical problems, since tbftgn work at high pressur

Example 16.7.1:Calculating fugacit

Carbon dioxide sequestration has been suggestedathod to decrease | release into th
atmosphere from fossil fuel combustion. , at high pressure is absorbed by a variety of sl
liquid sorbentsCalculate the chemical potential of » at 150 barrelative to the standard stz
chemical potentiakt the critical temperaty, 304.14 K. Use Figure6l7.1 in the Data Secti.
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Answer The critical pressure is 73.84 bar, Table 7. 5% given pressure corresponds to a
reduced pressure ok 150 bar/73.84 bar = 2.03. Using Figure 16.hé& fugacity coefficient
is approximately = 0.44. The chemical potential using Eqgs. 16.Adf& y P, Eq. 16.7.11, is:

Ma = HR(Q) + RT Inf/p°
=u2(g) + 8.314 J K mol™* (304.1 K)(1 kJ/1000 J) In[0.44(150 bar)/1 bar]
=u2(g) + 10.6 kJ mot

The chemical potential difference assuming idelbb®®r,y = 1, is 12.7 kJ mdi. Assuming
ideal behavior results in a 20% error.

16.8 Gibbs Energy of Mixing

A good way to get used to chemical potentiats isalculate the Gibbs energy for a simple
process. Consider preparing a mixture of two gasassolution from g moles of pure
component A andgimoles of pure component B. As mentioned aboveghieenical potential of
a pure substance is just the Gibbs energy per mole:

* aG i * *
i :(—a 'Ej and G =fn Wi dny =i ny (pure substance) 16.8.1
NP TN 0

The left-hand side of the integrated form can bigtewr as just GGbecause the integral is from 0
to n moles and the Gibbs energy at the lower endpsin¢iio for zero moles. Integrating Eq.
16.6.5, the Gibbs energy before mixing, G then:

dG =pa dma + P dng Gi= Ha Nat Mg Ng (cst. &P)  16.8.2

The chemical potentials vary with pressure arcemtration. However, the general idea of the
Gibbs energy per mole is still a useful way to khatbout the chemical potential in mixtures. In
Chapter 18 we show how to determine chemical piatierib solution. Keeping this pressure and
concentration dependence in mind, we need to iatedtq. 16.6.5 for the formation of the
mixture.

We can’t integrate dG g dma + Y dng directly, if we don’t know how the chemical
potentials vary. However, we can use a very usefik, integration at constant composition
Consider the process in Figure 16.8.1 where thectmaponents of the mixture are added to a
beaker simultaneously.

Na N

Figure 16.8.1: Integration at constant compositiince each drop of solution formed
always has the same concentration, the chemicahpals of the components are constant.
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If we add the components so that the compositidh@mixture is always the same as the final
composition, the chemical potentials of the two poments will remain constant as we mix.
(Neat trick!). The integrals:

Gz=f2A Ua dra +f2 lg dng (cst. BRP)  16.8.3

are now very easy to do, because the chemical jtefor each component are constants. The
integrals then give the Gibbs energy for the mixt@, as:

Gy, =paNa + U N (cst. &P) 16.8.4
The change in Gibbs energy for mixing, using E¢s84 and 16.8.2, is:

AnixG = G — Gy = Pa Na + U Ng — (UA Na + Mg Ng) (cst. BRP)  16.8.5

AmixG = Ma(Ha — Ha) + Ns(Us — Hg) (cst. BP)  16.8.6

In this equationpia — Ha is the difference in chemical potential betweeanrtfixture and the pure
substance for component A. This equation is thadation for understanding solutions.
However, for now, consider the mixing of two idgakses as an example.

The Mixing of Ideal Gases is Always Spontanediensider a divided container witlh moles

of ideal gas A andgimoles of ideal gas B, at the same temperatur@eessure. The total moles
of gas is Rt = N + ng. After the divider is removed, the gases mix teegnole fractionga =
Na/Niot andys = ne/Nnye; at the same temperature and pressure, Figure246.8.

P, T P, T AmixS AmixS
Na Ng AmixG
l il
PT AmixG
__Na __ g
VATt BTt |

0 YA — 1
(a). (b).

Figure 16.8.2: (a). Mixing of ideal gases at canstemperature and pressure is always
spontaneous. (b). For mixing of ideal gagegH = 0, so that\,xG = — TAnixS.
The chemical potentials of pure A and B before nuxare given by Eq. 16.6.20
* P * P
Ha = Ha(g) + RT Inspand  pg = us(g) + RT Ins (cst. EP) 16.8.7
The chemical potentials of A and B after mixing gieen by the partial pressures, &d R:

P, P
Ha = Ha(Q) + RT |n§‘§ and s =pa(g) + RT |n;§ (cst. EP) 16.8.8
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We can compare the chemical potentials in the maxto the pure chemical potentials by
subtracting Egs. 16.87from Eqgs. 16.8.8

* P P . x P
Ma —Ha = RT Inﬁ— RT Inﬁ giving:  Ha =Ha + RT In3A
* PB P - * PB
and pg—Mg=RT Ing -RT In; giving: g =Mg + RT InF (cst. ®P) 16.8.9
The partial pressures in the gas mixture are dgik@n the mole fractions using Dalton’s Law of
Partial Pressures, Eq. 2.1?18ubstituting R =ya P, and B =yg P in to Egs. 16.8gives:

Ha=Ha+ RTInya and pg=pg+ RT Inys (cst. BP) 16.8.10

The Gibbs energy of mixing is then obtained by stlisg these last equations into Eq. 16.8.6
and cancelling the terms for the pure chemicalmi@ks, u, andpg:

DG =mRTInysa + g RT Inyg (cst. BP) 16.8.11

We can get better insight into the mixing procegsduriting this last expression completely in
terms of the mole fractions. Multiplying and dividi each term by and factoring out the
resulting common factor ofgRT gives:

0GG = neRT (& Inya 418 In yB) (cst. &P) 16.8.12
Niot Niot
DG = NoRT (Ya INya + Y& Inyg) (cst. P) 16.8.13

The Gibbs energy of mixing is seen to be a funatinly of the numbers of molecules and the
temperature. This result has important implicatifmnghe entropy and enthalpy of mixing. The
entropy is the thermodynamic force for the chamg@ibbs energy with temperature, Eq. 16.3.8.
Taking the temperature derivative of Eq. 16.8.48d noting that the mole fractions are
independent of temperature gives:
DS =— (GAGLT'XG) =—NoR (Ya INya + Y5 INYE) (cst. ®P) 16.8.14
P,m,ng

The change in entropy results from the increaseaimslational entropy as each component
expands from its initial volume to the final combdhvolume. Energy is dispersed from the
initial small volumes to the final large volume. \Mever, the two components must, in addition,
be distinguishable. A and B can’t be the same snlost otherwise there is no entropy change.
The requirement of distinguishability leads to itmterpretation of Eq. 16.8.24s the statistical
mixing of the two gase$(If you covered Chapter 12, note that we alsoveerihis last equation
using purely statistical arguments, Eq. 12.4.18 &nthalpy of mixing can be found using Egs.
16.8.13, 16.8.14, andA,,G =AH — TA,S:

AvixH = AixG + TARS =0 (cst.&P) 16.8.18

The enthalpy of mixing of ideal gases is zero, beeddeal gases have no intermolecular forces.
The A—A, B-B, and A-B interactions are all zeroeThibbs energy of mixing is, then, entirely
the result of the entropy of mixing:

AmixG =- TAmixS (CSt. EP) 16.8.16
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Since the logarithm of a number less than 1 is tegahe entropy of mixing from Eq. 16.2°14

is always positive. Then from Eg. 16.8218e Gibbs energy of mixing is always negative, or
spontaneous, for the mixing of two ideal gasesyfeid.6.8.2b. If more than two components are
mixed, Eqgs. 16.8.F3and 16.8.1%are sums over each of the c components:

C
DS =— R 2 Yi Iny; (cst. EP) 16.8.17
i=1

Cc
DG = noRT Y yi Iny; (cst. ®P) 16.8.18
i=1
We will use these results as a foundation for ustdeding the mixing of components to form a
solution in Chapter 18.

16.9 Summary-Looking Ahead

The thermodynamic potential energy functions amdggpontaneity criteria for the conditions
that match the natural variables. The natural béegfor each potential energy function are
derived from the combined First and Second Lawbk@&@modynamics and Legendre
transformations: U(S,V), H(S,P), A(T,V), and G(T.,Phe foundations of thermodynamics
provide a proscription for calculating the changethe thermodynamic potentials for any
process and are completely general for any systamresult is a powerful, fundamental, and
general method for predicting the spontaneous tilmedor any macroscopic process. For
example, the mixing of ideal gases is always spwuas. For ideal gases, the Gibbs energy of
mixing is purely entropic. In the next chapters, wse these foundations to study phase
transitions, solutions, and chemical reactionsataill Thermodynamics is an important tool for
understanding the behavior of substances in solatml the effect of solute-solvent interactions
on chemical reactivity.

The generality of thermodynamics is an expressidhe underlying form of nature. The
essence of thermodynamics can be summarized iofestigure, Figure 16.4.1.

Chapter Summary

1. The pairs of variables (P,V), (T,S)If) are conjugate variables. In a conjugate pagr on
variable is intensive and one extensive. One imd@pendent variable and one is a
thermodynamic force. The product of each conjugatehas the units of energy and
determines the heat or work transferred for a m®ce

2. The definitions of the thermodynamic potentiam gy functions are Legendre transformations
that switch the role of the variables in the cquoexling conjugate pair. For example ireG
H-TS, the independent variables are changed fragR{o G(T,P).

3. The natural variables for a thermodynamic paaéenergy function are the independent
variables that result from the combined First aadddd Laws of thermodynamics and the
Legendre transformation specified by the definitddnhe function. The natural variables are
the variables that must be constant for the paketiergy function to be a good spontaneity
criterion.
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4. Maxwell relationships relate derivatives of thermodynamic forces. Maxwell relationships
are useful for simplifying problems that involvestntropy change for a process. The
relationships are given by the fact that mixedipkrare equal for state functions.

5. The thermodynamic forces and Maxwell relatiossummarized in Figure 16.4.1.
6. The thermodynamic equations of state expressgesan a thermodynamic potential energy

function in terms of the equation of state of thbstance:
oU oP

a
(aV)T__P+ aT)v_ ~PH T

oH oV
(8P)T_V -T (6T)p =V-TW

7. The thermodynamic equations of state allow @leutation of G- C, from the equation of
state of the substance:

6P) (6V) a?
-G =M= |57 = VT
G- G =TT \oT)e " ke
8. For open systems:

C C
dU =TdS - PdV &_ u; dn dH =TdS + VdP £ y; dn
i=1 i=1
c Cc
dA =-SdT - PdV §_ u; dn dG =-SdT + VdP . u; dn
i=1 i=1
9. For a closed system with chemical reactions:
Ng Ng
dU =TdS — PdV §_v; ; d€ dH =TdS + VdP §_ v; ;i d€
i=1 i=1
Ng Ns
dA =-SdT - PdV 'E Vi Ui dE dG =-SdT + VdP 'E Vi Ui dE
i=1 i=1

10. The chemical potentials with respect to UAHand G in terms of the corresponding set of
natural variables are equivalent:

CNE
ONJs v, \OJspn, \ONryn, ONprn.

11. Maxwell relationships give the thermodynanaicés for the chemical potential:

) =y o (B2, =)
OP T nune  \ONAJT P 1, T Jp nyng ONAJT P,

These equations are the per mole equivalertteedhermodynamic forces in Figure 16.4.1.
12. For an isothermal change in pressure for a pubstance A: pa -3 (g) :fPPOV/Z dP

13. For an isothermal change in pressure for aal g&@s: pa = Py (9)+ RT In P/pO.

14. The fugacity is the “chemically effective” geeire, which includes the effects of
intermolecular forces. The fugacity is defined teeghe exact chemical potential of the gas:
Ma = 3(0) + RT Inf/pe.

15. The fugacity coefficient is defined to focustbe deviation from ideality of the gdss y P
withy - 1 for P O.
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16. The fugacity is calculated by integrating tlom-ideality of the gas from zero pressure up to
. dP
the pressure of interest: fip = f(z —1)3 = f: (z-1) dnP
0

17. At constant temperature and pressure the @bbgyy of mixing is
AmixG = M(Ha —Ha) + Ne(Hs — Ha)
18. The Gibbs energy of mixing for ideal gasesnsrely entropicA.,G = — TA.,S.

C [
Atconstant Tand PA,S=—-mR 2 YV Iny, AnG=naRT2 ViInyy, A,H=0

i=1 i=1
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Chapter 16: Problems

1. Assume you are a diver. To a good degree abappation, you are essentially just a 70 kg
mass of water. Calculate the change in Gibbs erfergg0.0 kg of water in an isothermal
expansion from a pressure of 2.00 bar to a finedgure of 1.00 bar at a constant temperature of
298.2 K. This pressure difference corresponds tiasing from a depth of 10 m. Start with the
required partial derivative.

2. What is the thermodynamic force that corresgdndhe change in Gibbs energy with
temperature at constant pressure? Explain youonaas

3. What is the thermodynamic force that corresgdndhe change in Helmholtz energy with
volume at constant temperature? Explain your raagon

4. Calculate the change in Gibbs energy for onke mbideal gas for a change in pressure from
1.00 bar to 2.00 bar at a constant temperatur€@®P2X. Determine the partial derivative that
relates to this problem, and integrate the reselti¢w Section 9.7).

5. Develop a problem that is based on the patédlative A/dV)t, and solve the problem
(review Section 9.7). Choose an ideal gas as tstesyfor simplicity.

6. For a given increase in volume, will diamondiguid water give a larger increase in entropy
at constant temperature?
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7. Calculate the change in chemical potentiabfordeal gas for a change in pressure from 1.00
bar to 20.0 bar at a constant temperature of 25°C.

8. The temperature dependence of the Gibbs enémyghemical reaction is expressed as:
ArGTz ArGTl =A (i i
T, ~ T, T T
What would you plot on the axes of a graph to gdtaight line with the slope relatedAgH?
How is the slope related QH?

9. Hydrogen is used as a fuel for internal combuastngines. However, the average combustion
temperature is significantly higher than tabulatatiies. Calculate the standard state Gibbs
energy of combustion of +at 700.0 K.

10. The Gibbs-Helmholtz expression, Eg. 16.3.Megthe temperature dependence of the
reaction Gibbs energy. You should remember frome&drChemistry that the equilibrium
constant for a chemical reaction is related toréaetion Gibbs energy lyG° = — RT In K. Use
the Gibbs-Helmholtz equation to find the tempemugpendence of the equilibrium constant.

11. Potassium hydrogen phthalate, KHP, is a confyne®ed primary standard for acid-base
titrations. KHP is moderately soluble in water. Bue reaction: KHP (s} K™ (aq) + HP (aq),

the reaction Gibbs energy is given in the tablégweversus temperature at constant pressure.
Calculate the reaction enthalpy and entropy, inolgidincertainties. Assume the reaction
enthalpy and entropy are not functions of tempeeatu

T (°C) 0.6 220 450 550 650
AG (kJ mot?) 5995 3999 2208 1.044 0.1591

12. Starting with the internal energy as a funtté entropy and volume, give the Legendre
transformation that defines a new function that &l a good spontaneity criterion at constant
temperature and volume.

13. Show that €is not a function of volume for an ideal gas, idl@sed system.

14. Calculate the change in Helmholtz energy fglitérs of a liquid substance with isothermal
compressibilitykt when the pressure is changed fromdP, at constant temperature. Start by
proving that:

0A
(aP)T = Pk

Then integrate assuming the volume may be consldemmnstant \& V.

oP

15. Derive the Maxwell relationship that is basedlie Helmholtz energy:(g—sz = (ﬁjv
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16. Starting with the thermodynamic force for éimange in internal energy with respect to
entropy, prove that:

oT)y T
17. Show that if S is regarded as a function ahd V then, for a closed system:

TdS=GQdT + T(E) dv
KT

18. Show for an isothermal change in pressura fauid or a solidAS =—f aV dP.

19. Pressure perturbation calorimetry has becooseful tool in studies of protein folding. In
interpreting the effects of solvation on proteimfmymation and folding, the following derivative
is centrally important. Show that:

2
I
oP )+ oT2 o

oV aVT
20. Show that: (aS)P = Cp

oP aT
21. Show that: (GS)V ~ % Cy

22. Reversible adiabatic processes are constopgrprocesses. Derive Eq. 9.8 Hirectly
from (0T/dV)s. Do this derivation in two steps. (a). Show that:

=&, )

oV)s™ \dT)H \Cy

(b). Integrate this last equation for an ideal fyas the initial state, Tand V4, to the final state,
T, and \a.

23. Reversible adiabatic processes are constopgrprocesses. Derive Eq. 9.8 IBrectly
from (0T/0P)s. Do this derivation in two steps. (a). Show that:

(59=(5) &)

O0P)s  \0T )p\Cp

(b). Integrate this last equation for an ideal fyas the initial state, Tand R, to the final state,
T, and B.

24. The heat capacity of a substance can be detatrwithout heat flow measurements by
determining the change in temperature of a substauttb pressure at constant entropy,
(0T/0P)s. Constant entropy conditions are obtained by cimanitne pressure rapidly, so that heat
flow is minimal. Reversible adiabatic processescarestant entropy processes. Show that:
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. -(5).6)-"
O0P)s \0T/)p\Cy) ~ Cp
(b). The coefficient of thermal expansion for bemzés 1.24x18 K™ and the density is

0.8765 g/cmat 298.15 K. The temperature of a sample of bemiresreased by 0.0484 K for a
sudden increase in pressure of 2.02 bar. Calctilateeat capacity of benzehe.

25. Consider the change in Gibbs energy for aiiémal change in pressure for a liquid or a
solid. Assume the volume changes and that theaswmidd compressibilityk, is constant.

(a). Show that for initial volume Y initial pressure § and final pressure P, for moderate changes
in pressure:

AG = Vo (P - R) =% Vo k1 (P — R)?
(b). Repeat Problem 1 with this more accurate féamand compare the results.

26. (a). Calculate the change in internal energpf@ mole of liquid water for an isothermal
decrease in volume from 1.0000 L to 0.9900 L at2%38and an initial pressure of 1.00 bar.
Assume thatt andkr are approximately constant over this volume raigge that to a good

approximation:

1
_Vo KT

P=R (V—=Vo)
(b). Calculate the final pressure.

27. Calculate the change in Gibbs energy of adigubstance with isothermal compressibility
Kt when the volume is changed from % V; at constant temperature. Start by proving that:

(O_Gj __ 1
ov T a _KT
Then integrate from Mo V, assumings is constant.

28. The Gibbs-Helmholtz relationship is usefut@tstant pressure. Show that for constant
volume processes:

4

oT
29. Rewrite Figure 9.7.1 for the partial derivagy
&, G & GG
oT \V 0G =] ov T oT \V/ oT G

30. In an isothermal expansion of an ideal&yds= 0. The value is not zero for a real gas. Using
the Van der Waals equation of state, fixid for an isothermal expansion from Y6 V..
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31. The work for the system stretching a rubber band isd= — F dx, where F is the restoring
force, F = - X. At constant temperature and pressQf@,= Whe, Where wet is the non-PV work.
Therefore, the total change in Gibbs energy foroggss involving stretching a rubber band is:

dG=-SdT +VdP - F dx.

\O) £k ="stretchiness
X= extensio
I ™
0 X

(a). Under what conditions &8G be a good spontaneity criterion ( i.e. when visateld

constant)? (b). For an initial state with a stnett rubber band, x > 0, find the direction for
spontaneous change, either dx > 0 or dx < 0, adtaahtemperature and pressure. (c). Define a
new state function: B G + F x. What are the independent variables for R?

32. Given that dU = TdS — PdV and for an idealthaschange in entropy is given by:

G - DR
ds = T dT + Vv dv
show that dU = ¢dT for anyprocess in an ideal gas. (At first it doesn’t |didde

dU = TdS — PdV will give just dU =\@IT, does it?)

33. In Egs. 16.6.14, the chemical potentials esged in terms of U, H, A, and G were all shown
to be equal based on comparing the total diffeakofieach thermodynamic potential with the
Legendre transformed combined First and Second lohtveermodynamics. As an alternative
proof, show that the chemical potentials expregséerms of the Gibbs energy and the enthalpy
are equal using partial derivative conversions:

S,
AR TP \ONJs p g

34. Calculate the entropy and Gibbs energy of mgixif 0.80 moles of p{g) and 0.20 moles of
O2(g) at 298.15 K. Assume the initial pure gasesaatebar pressure and the final total pressure
is also at 1 bar.

35. Carbon sequestration is a strategy for anagliay global climate change caused by the
build-up of CQ in the atmosphere from fossil fuel combustion. ldger, the separation of GO
from exhaust gases requires work that will necdgsdecrease the efficiency of the overall
process. Assume that the i@ air is replaced completely by G@uring a combustion process.
Calculate the minimum energy per mole of GDconstant temperature and pressure necessary
to separate the GGrom the remaining pat 298.15 K. Assume air is 20.9 mol% &nd 79.1

mol% N,. Anthracite coal can be modeled as pure grapGiepare the energy required for the
CO, separation to the Gibbs energy of combustion aplite.
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36. Find the fugacity coefficient for a gas thaegs the Virial equation of state, Eq. 7.5.10:

z =1+ (B(T)/RT) P. For Cgat the critical temperature, 304.14 K, the secdmidl coefficient

is B(T) = -0.114 L mof. Calculate the fugacity coefficient for G@t 150 bar and 304.14 K, and
compare to the result using Figure 16.7.1 (see pladb6.7.1).

37. A brief outline of carbon sequestration isegivn Problem 35. One proposal for carbon
sequestration is to pump liquid or super critic&l,@eep underground into abandoned oil wells
that are sealed by salt domes. @Qay be liquefied at temperatures less than thiealri
temperature and pressures greater than the cptieasure. For CQhe critical temperature is
304.14 K and the critical pressure is 73.843 bhe dritical pressure is the maximum vapor
pressure for liquid C® At equilibrium, the chemical potential of thedid is equal to the
chemical potential of the vaparco(l) = pcox(g). Find the chemical potential for G@apor and
liquid at the critical point, relative to the stamd state, using Figure 16.7.1. Compare your
results to the value assuming ideal gas behavior.

38. Carbon dioxide plays an important role in mgagchemical processes, which often occur
at high pressure. Calculate the reaction Gibbsggretr50.0 bar and 298.2 K for:

CaCQ (s) » CaO (s) + CQ(g, P =50.0 bar)
Approximate the fugacity coefficient using:
InyOz — 10(B(T)/RT) P

where B(T) is the second Virial coefficient at tigen temperature (see Problem 36 for the
justification). For CQat 298.2 K, the second Virial coefficient is B&')}0.125 L mof'. Neglect
the effect of the pressure on the solids. Compgeedsults to the value assuming an ideal gas
(Ch. 15, Problem 17).

39.(Challenge Problemfonsider a one-component open system: dU = TEHSW +u dn,
with the chemical potential given in terms of ttegural variables for U by:

(5
H=on SV

For practical problems we often treat the intesrargy as a function of T and V, since we often
work at constant temperature and constant voluew Chapter 7). (a). Show using partial
derivative conversions that:

U U
dU=TdS-PdVdn=GdT +(av)T,ndV + ( an)T,Vdn

(b). Determine dU for a constant temperature aridmre process for an open system.

40. (Challenge Problemn The molar absolute entropies of substancesatiedisted in reference
tables are given by:

_(9S
Sm = (GFJT,P
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since reference tabulations assume constant tetnpeend pressure. Consider a single
component system. The enthalpy change for a gepeya¢ss in terms of the natural variables is:

dH =T dS + V dP 41 dn

The TdS term, however, is more complicated thamigt first appear. Show that:

oV
TdS=GdT - T(aT)P,ndP +T $ dn

41. (Challenge Problemn (a). Starting with the result for TdS from tlast problem, show that
for a general process in an open system with ongoaent:

oH
dH = G dT +(6P)T’n dP + T $,dn +pdn

(b). The molar enthalpies for substances thalistesl in reference tables are given by:

oH
Fim = (GHJT,P

Show thaju = (%_;'jT o~ TS,

(c). Combine the expressions in parts (a) an@uid)compare to the general total differential of
H(T,P,n).

(d). Find dH for a constant temperature and presstocess in an open system with one
component.
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