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Chapter 15: Spontaneity 
 

   The hydrolysis of adenosine triphosphate, ATP, is the primary energy source for most 
cellular processes: 
 

 ATP4- + H2O → ADP3- + HPO4
2- + H+ 

 

This reaction must be spontaneous to be useful. Cells must have a supply of ATP available 
for use as an energy source. ATP is produced through the respiration of sugars in the diet or 
through photosynthesis in plants and photosynthetic bacteria. To produce ATP, the reverse of 
the above reaction must become spontaneous. This example shows that it is possible to 
control the spontaneous direction for a reaction by adjusting the reaction conditions. 
Chemical synthesis is, in general, the manipulation of conditions to achieve spontaneous 
processes for the production of the substances of interest. What changes in reaction 
conditions are necessary to reverse the spontaneous direction of the hydrolysis of ATP? 

 
   We wish to predict the direction for spontaneous change for a process and the position of 
equilibrium. Many spontaneous processes are exothermic, so a first guess for a good spontaneity 
criterion might be the internal energy or enthalpy. However, many spontaneous processes are 
endothermic, Eqs. 10.1.1-10.1.2, so internal energy or enthalpy alone will not tell us what we 
want to know. The internal energy change for a process is not always useful as a spontaneity 
criterion since all processes conserve energy, whether they are spontaneous or not. The Second 
Law of thermodynamics gives us a powerful tool for predicting the spontaneous direction for 
processes. Using the Second Law and the state of the system, we can determine if the system is 
at equilibrium and if not, the spontaneous direction for change as the system attains equilibrium. 
The Second Law states that entropy always increases for spontaneous processes in an isolated 
system. So entropy is the key to determining how far a reaction or other process will run. 

 
15.1 Isolated Systems 
 

   The composite First and Second Laws tell us that the change in internal energy for a closed 
system with PV work and chemical work is given by Eq. 14.1.4: 
 

 dU = TdS – PdV + ∑
i=1

ns

 νi µi dξ       (closed, PV & chemical work) 15.1.1 

 

where the sum is over all chemical constituents. At equilibrium, ξ is constrained to give the 
equilibrium extent of the reaction. This last equation can be solved to obtain the change in 
entropy for a closed system for any process involving PV work and chemical reactions: 
 

 dS = 
1
T dU + 

P
T dV – 

1
T ∑

i=1

ns

 νi µi dξ    (closed, PV & chemical work) 15.1.2 

 

To apply the Second Law, we must work with an isolated system, Figure 15.1.1. For an isolated 
system, dU and dV are zero. Then, according to the Second Law, dS ≥ 0 and from Eq. 15.1.2: 
 

 dS = – 
1
T ∑

i=1

ns

 νi µi dξ ≥ 0            (isolated)  15.1.3 
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where the > sign applies to a spontaneous process and the equality to a reversible, equilibrium 
process. Often as we think of processes, we think of minimizing a function to tell us the 
spontaneous direction for the process. In classical mechanics, for example, we think of 
minimizing the total energy of the system. Entropy, on the other hand is maximized. For 
convenience, to develop a criterion that is minimized for a spontaneous process, we multiply 
both sides of Eq. 15.1.3 by –T, which also changes the direction of the inequality: 
 

 ∑
i=1

ns

 νi µi dξ < 0      (isolated, spontaneous) 15.1.4 

 

For a reversible, equilibrium process: 

 ∑
i=1

ns

 νi µi dξ = 0      (isolated, reversible)  15.1.5 

 
 
 
 
 
 
 

Figure 15.1.1: A chemical reaction in an isolated system is governed by the Second Law of 
thermodynamics, dS ≥ 0. 

 
 
The direction for spontaneous change is the direction that increases the entropy of an isolated 
system, and equilibrium is achieved when the entropy is at a maximum. The form of Eqs. 15.1.2-
15.1.5 are quite central, so we should look at several examples. First, take a reaction such as a 
cis-trans isomerization: 
 

 

   cis   trans        15.1.6 
 
The isomerization of naturally occurring cis-linkages in vegetable oils to trans-linkages in the 
production of margarine is a health concern. At equilibrium, from Eq. 15.1.5, the sum is simply 
 

 ∑
i=1

ns

 νi µi dξ = µtrans dξ – µcis dξ = 0   (equilibrium)   15.1.7 

 

Because of the sign convention for νi, the result is always [Σproducts] – [Σreactants] as usual in 
thermochemistry. Dividing by dξ and adding µcis to both sides of this equation gives: 
 

 µtrans = µcis      (equilibrium)   15.1.8 
 

In other words, at equilibrium the chemical potentials of the reactants and products are equal. If 
µtrans < µcis then µtrans dξ – µcis dξ < 0  if dξ is positive. If dξ is positive, the reaction is 

→
←  

PCl5 (g) →← PCl3 (g) + Cl2 (g) 
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spontaneous in the direction as written. If µtrans > µcis to get µtrans dξ – µcis dξ < 0 then dξ must be 
negative and the spontaneous direction is in the reverse direction. Any reaction with 
stoichiometry A →← B will give the same result, Figure 15.1.2. The spontaneous direction is the 
direction that decreases the overall chemical potential. 
 

 
 
 
 
 
 
 
 
 
 
 (a)          (b) 
 

Figure 15.1.2: The spontaneous direction is from high chemical potential to low chemical 
potential. 

 
 
   Consider dissociation as a second example: 
 

 PCl5 (g) →← PCl3 (g) + Cl2 (g)        15.1.9 
 

At equilibrium: 
 µPCl3 dξ + µCl2 dξ – µPCl5 dξ = 0   (equilibrium)   15.1.10 
 

or equivalently: 
 µPCl3 + µCl2 = µPCl5     (equilibrium)   15.1.11 
 

Once again, the equilibrium state is characterized by equivalence of the chemical potentials of 
the products and reactants. For the general reaction  aA + bB →← cC + dD  the chemical potentials 
are related by 
 

 c µC + d µD = a µA + b µB    (equilibrium)   15.1.12 
 

which is the generalization of the idea that the chemical potentials of the reactants and products 
are equal at equilibrium. Because of this equality, an equilibrium reaction such as Eq. 15.1.9 is 
often written with an equal sign, instead of a double arrow: 
 

 PCl5 (g) = PCl3 (g) + Cl2 (g)        15.1.13 
 

You can use “→←” and “=” interchangeably to help remember the equivalence of the chemical 
potentials at equilibrium. 
 
15.2. Free Energy 
 

The Spontaneity Criterion at Constant Temperature and Volume is the Helmholtz Energy: Eq. 
15.1.3 is specific for an isolated system, which applies when the internal energy and volume are 
constant. However, we often work with a system at constant temperature and volume, such as a 
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constant volume calorimeter bomb or a molecular dynamics simulation at constant volume. How 
can we recast the expressions for spontaneity for isothermal circumstances? Consider a closed, 
constant volume system and its surroundings taken together as an isolated composite-system, 
Figure 15.2.3a. The system can exchange energy with the surroundings. The surroundings are 
considered to be large in extent so that the surroundings act as a constant temperature reservoir. 
Contact with the surroundings keeps the system at constant temperature. The entropy change of 
the system and surroundings add to give the total entropy of the isolated composite-system, 
 

 dStot = dS + dSsurr ≥ 0      (composite isolated) 15.2.1 
 

For the special case where the isolated system is considered to be the universe, dStot= dSuniv. We 
can use dStot and dSuniv interchangeably, depending on the example. 
 
 
 
 
 
 
 
 
 
 
 

 (a) constant T    (b) constant T and P 
 

Figure 15.2.3  The system and surroundings, taken together as a composite, are isolated. (a) 
The surroundings act as a constant temperature reservoir to keep the system temperature 
constant, T = Tsurr. (b) The surroundings also act as a constant pressure reservoir to keep the 
system pressure constant, P = Pext. Many kinds of processes can occur in such systems; a 
simple chemical reaction is shown as one specific example. 

 
 
The entropy change of the surroundings for a constant volume process is easy to calculate using 
Eq. 13.5.3. Substituting Eq. 13.5.3 into Eq. 15.2.1 gives the total entropy for the isolated 
composite-system as: 
 

 dS – 
dU
 T  ≥ 0       (closed, cst. T&V) 15.2.2 

 

We wish to develop a criterion that is minimized for a spontaneous process and also has units of 
energy, as we did for Eq. 15.1.4. Multiplying both sides of Eq. 15.2.2 by –T, which also changes 
the direction of the inequality gives: 
 

 dU – T dS  ≤ 0       (closed, cst. T&V) 15.2.3 
 

The < applies to a spontaneous process, and the equality to a reversible, equilibrium process. 
Since we suspect that this combination of terms will arise often, it is convenient to define a new 
thermodynamic potential energy function A as: 
 

 A ≡ U –TS          15.2.4 
 

A → B 
system 

surroundings surroundings 

A → B 
system 
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In general: 
 

 dA = dU – TdS – SdT         15.2.5 
 

This function, as we have seen from Eq. 15.2.3, is particularly useful for isothermal processes 
where at constant T: 
 

 dA = dU – T dS      (isothermal)  15.2.6 
 

and for an isothermal, constant volume process, the Second Law gives, from Eq. 15.2.3: 
 

 dA = dU – T dS ≤ 0      (cst. T&V)  15.2.7 
 

This new function is a state function, since U, T, and S are all state functions. A is called the 
Helmholtz free energy or just Helmholtz energy, after Hermann Ludwig Ferdinand von 
Helmholtz (1821-1894). The spontaneous direction for a process at constant T and V is one that 
minimizes the Helmholtz energy. A process is at equilibrium at constant T and V when the 
change in the Helmholtz energy is zero for the process, dA = 0. Notice that, even though the 
variables in this equation only apply to the system, that from Eq. 13.5.3, dU = – T dSsurr. So this 
equation automatically keeps track of the entropy change of the system, dS, and the entropy 
change of the surroundings: 
 

 dA =   dU – T dS                 (isothermal) 
  ↑      ↑ 
           –TdSsurr  TdS for system   (isothermal, cst. V) 15.2.8 
 

The result is that by minimizing A, we automatically maximize the total entropy. 
   We can explore the usefulness of the Helmholtz energy by substituting for dU in Eq. 15.2.5 
using Eq. 15.1.1: 
 

 dA = TdS – PdV + ∑
i=1

ns

 νi µi dξ – T dS – SdT         (closed, PV & chemical work) 15.2.9 

 

The TdS terms cancel to give: 
 

 dA = – SdT – PdV + ∑
i=1

ns

 νi µi dξ           (closed, PV &  chemical work) 15.2.10 

 

For an isothermal process, – SdT = 0. For a reversible process, P = Pext , therefore –PdV is the 
maximum expansion work for the system. At constant temperature, the right hand side of Eq. 
15.2.10 is the total maximum work available from a reversible process: 
 

 dA = dwmax       (closed, isothermal) 15.2.11 
 

Even though we have only included PV and chemical work at this point, this result is quite 
general for all forms of work. Other forms of work add terms of the form Fdx to the right side of 
Eq. 15.2.10. The Helmholtz energy is, then, particularly useful in predicting the amount of useful 
work that a process can provide. This ability explains the use of the term “free energy;” no 
energy is available without cost, but the energy is free for use, that is available for use, for our 
purposes. 
   Helmholtz energy is a good spontaneity criterion at constant T and V, Eq. 15.2.7. At constant 
temperature and volume, dT = dV = 0 and then Eq. 15.2.10 simplifies to: 
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 dA = ∑
i=1

ns

 νi µi dξ  ≤ 0    (closed, cst. T&V, chemical work) 15.2.12 

 

Therefore, at constant T and V, the Helmholtz energy focuses just on our specific area of 
interest. The < applies to a spontaneous process and the equality to a reversible, equilibrium 
process, giving that at constant T and V, the spontaneous direction for a chemical reaction is to 
minimize the Helmholtz energy and at equilibrium the chemical potentials of the reactants and 
products are equal. These results at constant T and V are parallel to Eq. 15.1.4-15.1.5, which 
apply to isolated systems. 
 
The Spontaneity Criterion at Constant Temperature and Pressure is the Gibbs Energy:  
Processes at constant temperature and pressure are more common than those at constant volume. 
Systems open to the atmosphere on the bench top or in a living cell are at constant T and P. 
Consider a closed, constant pressure system and its surroundings taken together as an isolated 
composite, Figure 15.2.3b. Contact with the surroundings act as a constant temperature and 
pressure reservoir. The entropy change of the surroundings is easy to calculate since the heat 
transfer at constant pressure is the enthalpy change, dqp = dH, and substituting Eq. 13.5.4  
into dStot = dS + dSsurr ≥ 0 gives: 
 

 dS – 
dH
 T  ≥ 0       (closed, cst. T&P) 15.2.13 

 

To develop a criterion that is minimized for a spontaneous process and also has units of energy, 
we multiply both sides of Eq. 15.2.13 by –T, which once again changes the direction of the 
inequality: 
 

 dH – T dS  ≤ 0       (closed, cst. T&P) 15.2.14 
 

The < applies to a spontaneous process, and the equality to a reversible, equilibrium process. 
Since we suspect that this combination of terms will arise often, it is convenient to define a new 
thermodynamic potential energy function G as: 
 

 G ≡ H – TS          15.2.15 
 

In general: 
 

 dG = dH – TdS – SdT         15.2.16 
 

This function, as we have seen from Eq. 15.2.14, is particularly useful for isothermal processes 
so that: 
 

 dG = dH – T dS             (isothermal) 15.2.17 
 

and for an isothermal, constant pressure process, the Second Law gives from Eq. 15.2.14: 
 

 dG = dH – T dS ≤ 0           (isothermal, cst. P) 15.2.18 
 

This new function is a state function, since H, T, and S are all state functions. G is called the 
Gibbs free energy or just Gibbs energy, after Josiah Willard Gibbs (1839-1903) who proposed 
the definition in 1876. The spontaneous direction for a process at constant T and P is one that 
minimizes the Gibbs energy. A process is at equilibrium at constant T and P when the change in 
the Gibbs energy is zero for the process, dG = 0. Notice that, even though the variables in this 
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equation only apply to the system, from Eq. 13.5.4, dH = – T dSsurr. So this equation 
automatically keeps track of the entropy change of the system, dS, and the entropy change of the 
surroundings: 
 

 dG =   dH – T dS      (isothermal) 
  ↑      ↑ 
           –TdSsurr  TdS for system    (cst. T&P) 15.2.19 
 

The result is that by minimizing G, we automatically maximize the total entropy. 
   We can explore the usefulness of the Gibbs energy by substituting for dH in Eq. 15.2.16 to get 
the total differential: 
 

 dG = dU + PdV + VdP – TdS – SdT       15.2.20 
 

and then substituting for dU from Eq. 15.1.1 for a closed system, as we did for the Helmholtz 
energy: 
 

 dG = TdS – PdV + ∑
i=1

ns

 νi µi dξ + PdV+ VdP – T dS – SdT 

          (closed, PV & chemical work) 15.2.21 
 

Cancelling terms gives: 
 

 dG = – SdT + VdP + ∑
i=1

ns

 νi µi dξ     (closed, PV & chemical work) 15.2.22 

 

At constant temperature and pressure the equation simplifies to: 
 

 dG = ∑
i=1

ns

 νi µi dξ  ≤ 0     (closed, cst. T&P, PV & chemical work) 15.2.23 

 

Our general conclusions about the spontaneity of chemical reactions follow directly, just as they 
did for the Helmholtz energy. For a spontaneous process: 
 

 dG = ∑
i=1

ns

 νi µi dξ  < 0  (spontaneous, closed, cst. T&P, PV & chemical work) 

            15.2.24 
and for a reversible, equilibrium process: 
 

 dG = ∑
i=1

ns

 νi µi dξ  = 0   (equilibrium, closed, cst. T&P, PV & chemical work) 

            15.2.25 
 

Once again, we reach the conclusion that the chemical potentials of the products and reactants 
are equal at equilibrium. But we have now shown this equality to hold at equilibrium for any 
isolated system and for closed systems for isothermal processes at constant volume or pressure. 
This result is one of the most powerful and central ideas in understanding chemical reactivity. 
We also write Eq. 15.2.24 in the equivalent form (see Section 14.3): 
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 dG = ∑
i=1

ns

  µi dni  ≤ 0   (closed, cst. T&P, PV & chemical work) 15.2.26 

 

If chemical reactions occur, it is very important to remember, however, that the dni are 
dependent variables. 
   Notice that this simple conclusion results from the application of constraints on the intensive 
and extensive variables so that the number of independent variables is decreased, see Chapter 14. 
The intensive variables T and P are constrained by contact with reservoirs. The extensive 
constraints are the specification of a closed system in an isolated composite with the 
surroundings. The constraints simplify the problem so that we can focus on the central issue of 
chemical reactivity and non-PV work. 
   Even though we have only included PV and chemical work at this point, this result is quite 
general for all forms of work. Other forms of work add additional terms in the form Fdx to the 
right side of this last equation. The Gibbs energy gives the maximum non-PV work for a process. 
The non-PV work is often defined as the net work, dwnet, with dw = –PextdV + dwnet and: 
 

 dG = dwnet,max        (closed) 15.2.27 
 

The interplay between dA and dG is important. If we are burning ethanol in an internal 
combustion engine, the work is all PV work, and dA gives the maximum work available. On the 
other hand, if we use ethanol as the fuel in a fuel cell, the electrical work is important, and dG 
gives us the maximum electrical work available. Since the combustion of ethanol creates a gas, 
the process necessarily does PV work, which diminishes the work available for generating an 
electrical current: 
 

 CH3CH2OH (l) → 2 CO2(g) + 3 H2O (l)      15.2.28 
 

Which is more efficient, internal combustion or a fuel cell? Fuel cells are not governed by the 
Carnot efficiency, so fuel cells are much more efficient than internal combustion engines overall 
even though some energy is lost as PV work. In living cells, glucose and other sugars are 
“burned” to produce chemical or electrical work. The chemical work is primarily the synthesis of 
ATP. The combustion of glucose also produces CO2 gas, which does PV work against the 
atmosphere and diminishes the useful work available to run the cell. Gibbs energy is the 
important state function to describe biochemical energetics. 
 
15.3 Gibbs Energy and Other Forms of Work 
 

   In the analysis above we used chemical work as an example of non-PV work. Any other form 
of work follows the same pattern. Remember that non-PV work can be cast in the form of a force 
multiplied by a displacement, dw = F dx. The total PV and non-PV work is then: 
 

 dw = –PextdV + F dx         15.3.1 
 

To study this system we need to simplify by setting up a constraint for the total displacement as 
in Chapter 14.3 and 14.4, Figures 14.3.1 and 14.4.1. The internal energy is then given as: 
 

 dU = TdS – PdV + FAdxA + FBdxB    (constant xtot)  15.3.2 
 

Using Eq. 15.2.20 for a closed system at constant temperature and pressure with Fx work only: 
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 dG = TdS – PdV + FAdxA + FBdxB + PdV – T dS 
        (constant xtot, cst. T&P) 15.3. 3 
 

Cancelling terms gives: 
 

 dG = FAdxA + FBdxB ≤ 0   (constant xtot, cst. T&P, Fx work) 15.3.4 
 

The displacements, dxA = – dxB, will change to decrease the Gibbs energy of the system, as we 
have seen before. Gibbs energy is a very general spontaneity criterion for processes at constant 
temperature and pressure. 
   One particularly important form of work is electrical work. As we saw in Section 14.4, 
membrane potentials are an important specific example and so are electrochemical cells. The 
internal energy for a set of ns ions is given from Eq. 7.9.9-7.9.10 as: 
 

 dU = dq – PextdV + ∑
i=1

ns

 zi F φi dni         (PV & electrical work) 15.3.5 

 

and from the combined First and Second Laws of thermodynamics: 
 

 dU = TdS – PdV + ∑
i=1

ns

 zi F φi dni       15.3.6 

 

for an ion i with charge zi in electric field φi. If chemical reactions can also occur then: 
 

 dU = TdS – PdV + ∑
i=1

ns

 µi dni + ∑
i=1

ns

 zi F φi dni      15.3.7 

 

The change in Gibbs energy for ions in the presence of an electrical field at constant temperature 
and pressure is: 
 

 dG =  ∑
i=1

ns

 µi dni + ∑
i=1

ns

 zi F φi dni      (cst. T&P) 15.3.8 

 

Since each sum is over the same set of mole amounts, we can define the electrochemical 
potential as: 
 

 µ̄i ≡ µi + zi F φi         15.3.9 
 

Then the change in Gibbs energy is 
 

 dG =  ∑
i=1

ns

 µ̄i dni          15.3.10 

 

and in a closed system at constant temperature and pressure taking into account differences in 
concentration, chemical reactions, and electric fields: 
 

 dG =  ∑
i=1

ns

 µ̄i dni  ≤ 0  (closed; cst. T&P; PV, electric, & chemical work) 15.3.11 

 

if we note that the dni are dependent if chemical reactions take place. In terms of the extent of the 
reaction: 
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 dG =  ∑
i=1

ns

 νi µ̄i dξ ≤ 0  (closed, cst. T&P; PV, electric, & chemical work) 15.3.12 

 

From this last expression, we find at equilibrium the electrochemical potentials of the products 
and reactants are equal as given by: 
 

 ∑
i=1

ns

  νi µ̄i = 0     (equilibrium, closed, cst. T&P; PV, electric, & chemical work) 

            15.3.13 
 

We will use this equation when we study electrochemistry and also membrane potentials. For 
one specific example, consider the example from Figure 14.4.2, where an ion experiences a 
difference in concentration and electric potential across a semi-permeable membrane for that ion. 
The difference in Gibbs energy for the transfer of one mole of ions is: 
 

 Na+ (outside) → Na+ (inside)        15.3.14 
 

∆G is given by the difference in electrochemical potential across the membrane, Figure 15.3.4: 
 

 ∆G  =  µ̄in – µ̄out = (µin + z+ F φin ) – (µout + z+ F φout)     15.3.15 
 
 
 
 
 
 
 
 
 
 

Figure 15.3.4: The Gibbs energy for transfer across a semi-permeable membrane. The 
membrane potential is ∆φ = φin – φout. 

 
 
The spontaneous direction for the transfer is from the side with the higher electrochemical 
potential to the side with the lower electrochemical potential. At equilibrium, ∆G  =  0 and 
µ̄in = µ̄out. Generating the membrane potential is responsible for much of the energy consumption 
of your brain. (Your brain feeds on Gibbs energy.) 
 
15.4 Applications of Helmholtz and Gibbs Energies 
 

   In this section we give some beginning examples using the Helmholtz and Gibbs energies and 
show how to relate the thermodynamic potentials to each other. The thermodynamic potentials 
can be easily related to each other through their definitions. The “thermodynamic cube” shows 
these relationships at constant temperature and pressure in an easy to remember form, Figure 
15.4.1. For example, to convert ∆U to ∆A, just add –T∆S; that is ∆A = ∆U – T∆S. To convert 
∆U to ∆H, just add P∆V; that is ∆H = ∆U + P∆V. You can also work along the diagonal: ∆G = 
∆U + P ∆V – T∆S. 

φout φin 

φ 

-70 mV 

Na+ 

0 
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Figure 15.4.1: Thermodynamic relationships at constant temperature and pressure. 
 
 
Isothermal Processes:  Helmholtz and Gibbs energies were designed to be useful for constant 
temperature processes. For a closed system with no chemical reactions for an isothermal process, 
Eq. 15.2.10 reduces to: 
 

 dA = –P dV             (closed, cst. T, PV work only) 15.4.1 
 

For an ideal gas P = nRT/V and Eq. 15.4.1 integrates to: 
 

 ∆A = – nRT ln 
V2

V1
      (ideal gas, closed, cst. T, PV work only) 15.4.2° 

 

which is also the work for an isothermal reversible process, Eq. 7.3.6. This result should not be 
surprising since ∆A = wmax and for maximum work you must choose a reversible process. 
Another equivalent approach is to start with Eq. 15.2.6, dA = dU – TdS, but for an isothermal 
process for an ideal gas dU = Cv dT = 0. Then using the change in entropy for an isothermal 
process of ideal gas, ∆S = nR ln(V2/V1), gives the same result. 
   Now consider ∆G. For a closed system with no chemical reactions for an isothermal process, 
Eq. 15.2.22 reduces to: 
 

 dG =  VdP           (closed, cst. T, PV work only) 15.4.3 
 

Using the ideal gas law, V = nRT/P, integrates to: 
 

 ∆G = nRT ln 
P2

P1
     (ideal gas, cst. T, closed, PV work only) 15.4.4° 

 

We can compare ∆A to ∆G, Eq. 15.4.2° to Eq. 15.4.4°, using that for an isothermal process in an 
ideal gas P2V2 = P1V1, or rearranging: 
 

 
P2

P1
 = 

V1

V2
       (ideal gas, cst. T) 15.4.5° 

 

Substitution of this last equation into Eq. 15.4.4° gives the net result: 
 

 ∆G = nRT ln 
P2

P1
 = nRT ln 

V1

V2
 = – nRT ln 

V2

V1
   (ideal gas, cst. T) 15.4.6° 

 

So, ∆A = ∆G for this process. Eq. 15.4.4 is one of the most commonly used equations in 
thermodynamics, and we will use it to explore chemical equilibrium and solutions. Simply stated 
the Gibbs energy for a substance increases with pressure. 

∆U 

∆H 

∆A 

∆G 

–T∆S 

+P∆V 

–T∆S 

+P∆V 
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   For a liquid or a solid, Eq. 15.4.3 can be easily integrated knowing V as a function of P. For 
small changes in pressure, the volume of a condensed phase doesn’t change much, and we can 
consider V as constant with V≈Vo, the initial volume: 
 

 ∆G =  Vo ∆P          (closed, cst. T, small ∆P) 15.4.7 
 

This approximation is at the “good” level (review Section 7.6). At the “better” level for moderate 
changes in pressure, we use Eq. 7.6.28, V = Vo – Vo κT (P – Po), with Po the initial pressure and 
integrate Eq. 15.4.3 to give: 
 

 ∆G =  Vo (P – Po) – ½ Vo κT (P – Po)
2  (closed, cst. T, moderate ∆P) 15.4.8 

 

You will prove this equation in your homework. We will work with other example processes for 
∆A and ∆G in the next chapter. 
 
 
              

Example 15.4.1: 
  Calculate the change in Gibbs energy for one mole of an ideal gas for a pressure change from 
1.00 bar to 2.00 bar at 298.2 K: 
 
 

Answer:  ∆G = nRT ln 
P2

P1
 = 1.00 mol (8.314 J mol-1 K-1) ln 

2.00
1.00 = 1.72 kJ mol-1 

The important part of this example is to note that as the gas pressure increases, the Gibbs energy 
increases. At the higher pressure the gas has the ability to do more useful work. Note also the 
units of pressure don’t affect the final result. Any doubling of the pressure gives the same ∆G: 1 
torr → 2 torr, or 10 atm → 20 atm. 
              

 
 
The Change in Helmholtz Energy with Temperature at Constant Volume:  We will return to this 
problem in the next chapter, but for now for a closed, constant volume process for ∆A we need to 
integrate Eq. 15.2.10. At constant V: 
 

 dA = – SdT             (closed, cst. V) 15.4.9 
 

If the temperature range is quite narrow so that the entropy can be considered essentially 
constant, then Eq. 15.4.9 integrates to: 
 

 ∆A = – S∆T      (closed, cst. V, small ∆T) 15.4.10 
 

However, entropy is a strong function of temperature. Eq. 13.2.29 gives the change in entropy 
for a constant volume process with an initial entropy of So at reference temperature To as: 
 

 S = So + Cv ln 
T
To

      (closed, cst. V&Cv) 15.4.11 
 

Integrating using ⌡⌠ln x dx = x ln x – x and assuming a constant heat capacity: 
 

 ∆A = –So (T-To) + Cv (T – To) – Cv (T ln T – T ln To )   (closed, cst. V&Cv) 15.4.12 
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Combining the ln terms: 
 

 ∆A = –So (T – To) + Cv (T – To) – Cv T ln 
T
To

     (closed, cst. V&Cv) 15.4.13 
 

This result is a bit complicated, but straightforward. The last two terms tend to cancel, so you 
need to keep both. 
 
The Change in Gibbs Energy with Temperature at Constant Pressure:  For a closed, constant 
pressure process with no chemical reactions, Eq. 15.2.22 reduces to dG = –SdT. If the 
temperature range is quite narrow so that the entropy can be considered essentially constant, 
then: 
 

 ∆G = – S∆T         (closed, cst. P, small ∆T) 15.4.14 
 

For broader temperature ranges, integrating Eq. 15.2.22 starting from a reference temperature To 
proceeds in the same fashion as Eq. 15.4.13: 
 

 ∆G = – So (T – To) + Cp (T – To) – Cp T ln 
T
To

   (closed, cst. P&Cp) 15.4.15 
 

This full equation is used by geochemists, oceanographers, chemical engineers, and others 
working under extreme conditions. We will find an alternate form for the temperature 
dependence of the Gibbs energy for chemical reactions in the next chapter. 
 
 
              

Example 15.4.2:  
   Calculate the change in Gibbs energy for one mole of H2 gas for an increase in temperature 
from 298.2 K to 398.2 K at 1 bar pressure. Is H2 a better fuel in a fuel cell at room temperature or 
at higher temperature? 
 
 
Answer:  The standard entropy at 298.2 K for H2 is 130.574 J K-1 mol-1 , and Cp is 28.824 J K-1 
mol-1. First use the most approximate formula, Eq. 15.4.14: 
 

 ∆G = –S∆T = – 130.574 J K-1 mol-1 (100.0 K) = -13.06 kJ mol-1 
 

Now compare with the more accurate formula, Eq. 15.4.15, that takes into account the 
temperature dependence of the entropy. Notice the first term of the more accurate formula is the 
same as we just calculated: 

 ∆G = – So (T – To) + Cp (T – To) – Cp To ln 
T
To

 

 = -13.06 kJ mol-1 + 28.824 J K-1 mol-1 (100.0 K) – 28.824 J K-1 mol-1(398.2 K) ln
398.2
298.2 

 = -13.06 kJ mol-1 + 2.88 J K-1 mol-1 – 3.32 kJ mol-1 
 = -13.50 kJ mol-1 
 

Notice that the last two terms tend to cancel making ∆G = –S∆T a better approximation than you 
might suspect. The error for the simpler formula is only 3% with a 100 K temperature range. 
Note that both formulas assume Cp is a constant. The temperature dependence of the heat 
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capacities must be taken into account for very large temperature ranges. The result for this 
problem shows numerically that the Gibbs energy for a pure substance decreases with 
temperature, since the absolute entropy for a substance is always positive. Therefore, H2 is a 
poorer fuel at the higher temperature. Another way to look at this is to remember that ∆G = ∆H –
T∆S; when the temperature increases, the weighting of the entropy term increases. The large 
favorable entropy of a gas makes the Gibbs energy more negative, increasingly so with 
temperature. A more favorable ∆G is more negative and the substance is more stable. 
 
              

 
 
Phase Transitions at Equilibrium:  Consider the Helmholtz and Gibbs energies for phase 
transitions. At the equilibrium phase transition temperature, the process is reversible and at 
constant pressure and temperature. The entropy for the phase transition, Eq. 13.3.2, is then: 
 

 ∆trS = 
∆trH
Ttr

       (equilibrium)  15.4.16 
 

and from the definition G ≡ H – TS for constant temperature: ∆G = ∆H – T∆S. The change in 
Gibbs energy is easy for this equilibrium phase transition. But, before we use Eq. 15.4.16, think 
about the final result. What should ∆G be for a reversible, constant temperature and pressure 
process? Now substituting Eq. 15.4.16 into ∆G gives: 
 

 ∆trG = ∆trH – Ttr∆trS = ∆trH – Ttr 
∆trH
Ttr

 = 0   (equilibrium)  15.4.17 
 

As expected, the change in Gibbs energy for a reversible, equilibrium process is zero at constant 
temperature and pressure. For ∆trA, the calculation is through ∆trA = ∆trU – Ttr∆trS, and assuming 
an ideal vapor ∆trH = ∆trU + ∆ngasRTtr: 
 

 ∆trA = ∆trU – Ttr∆trS = ∆trH – ∆ngas RTtr –Ttr 
∆trH
Ttr

 = – ∆ngasRTtr 

             (equilibrium, ideal vapor)         15.4.18° 
 

Once again, this result shouldn’t be too surprising, since dA = dwmax, which for ∆ngas moles of an 
ideal gas expanding against a constant pressure gives w = – P∆V = – ∆ngasRTtr. So ∆trA is just 
the work of expansion for the vapor produced in the phase transition. The vapor does work 
against the surroundings, which decreases the Helmholtz energy of the system. 
 
Chemical Reactions and Gibbs Energy:  The change in Gibbs energy is the appropriate 
spontaneity criterion for chemical reactions at constant temperature and pressure. Also note that 
∆rG = wnet, which shows that the Gibbs energy is the work available for any non-PV process, 
including pumping ions across membranes, electrochemical cells, and the work of chemical 
synthesis. Figure 15.4.1 is useful for visualizing the relationships among the thermodynamic 
potentials for chemical reactions. The key concept is that since G is a state function, Hess’s Law 
holds for Gibbs energies just as it does for enthalpies and entropies. The Gibbs energy of 
formation for a substance, ∆fG, is the Gibbs energy for the formation of one mole of product 
from the constituent elements in their standard states. For example, ∆fG° for water at 298.15 K 
is: 
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 H2 (g, 1bar) + ½ O2 (g,1bar)  → H2O (l)  ∆fG° = -237.19 kJ mol-1 15.4.19 
 

This convention for the formation reaction gives the ∆fG° for any element in its standard state as 
zero. The standard state for species in solution is an activity of 1 m. Also, ∆fG° ≡ 0 and ∆fH° ≡ 0 
for H+ ion by definition. In general from General Pattern ℘7, ∆rG° = [Σproducts] – [Σreactants], 
as we found for the for the reaction enthalpy: 

 ∆rG = ∑
i=1

ns

 νi ∆fGi         15.4.20 

 

   A few example problems are given next. The standard state thermodynamic properties for 
several biochemicals are given in Table 15.4.1. Additional ∆fG° values are given in the 
Appendix Data Section. 
 
 

Table 15.4.1 Standard Gibbs Energies of Formation and Enthalpies of Formation at 298.15 K 
and Zero Ionic Strength.1 

 

Species ∆fH° (kJ mol-1) ∆fG° (kJ mol-1) 
H+ 0 0 
ATP4- -3619.21 -2768.10 
HATP3- -3612.91 -2811.48 
ADP3- -2626.54 -1906.13 
HADP2- -2620.94 -1947.10 
HPO4

2- -1299.00 -1096.10 
H2PO4

- -1302.60 -1137.3 
H2O -285.83 -237.19 
Glucose-6-Phosphate2- -2276.44 -1763.94 
Glucose -1262.19 -915.9 

 
 

              

Example 15.4.3: 
Hydrogen is a clean burning alternative to fossil fuels. The reaction for the formation of gaseous 
water is: 
 

 H2 (g, 1bar) + ½ O2 (g,1bar)  → H2O (g, 1 bar) 
 

This reaction has a standard enthalpy change of -241.82 kJ mol-1. Calculate ∆fG° at 298.15 K for 
the reaction as written. 
 
 
Answer:  From Appendix Table 8.4.1, the absolute entropies for the reactants and products are: 
 

 H2 (g, 1bar) + ½ O2 (g,1bar)  → H2O (g, 1 bar) 
    S° 130.574   205.029    188.715 J K-1 mol-1 
 

Giving ∆rS° = [Σproducts] – [Σreactants] = 
 = [1 (188.715 J K-1 mol-1)] – [1 (130.574 J K-1 mol-1) +½ (205.029 J K-1 mol-1)] 
 ∆rS° =  -44.37 J K-1mol-1 
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Then ∆rG° = ∆rH° – T ∆rS° = -241.82 kJ mol-1 – 298.15 K (-44.37 J K-1)(1 kJ/1000 J) 
 = -228.6 kJ mol-1 
 

Hydrogen is a very good fuel. However, notice that ∆rG° provides less energy than ∆rH°, 
because the process decreases the entropy of the system. The entropy of the surroundings must 
compensate to make the process overall favorable. Another way of saying this is less energy is 
available for use in a fuel cell for making electricity than is available in an internal combustion 
engine where gas expansion is the driving force. The other problem with H2 is that energy is 
required to make it, –∆fG° = 237.19 kJ mol-1, starting from liquid water. 
 
              

Example 15.4.4: 
Is the hydrolysis of ATP spontaneous under standard conditions and 298.2 K? Is the reaction 
favored or disfavored by the enthalpy or entropy? (a) Calculate ∆rG°, ∆rH° and ∆rS°. The 
reaction is: 
 

  ATP4- + H2O → ADP3- + HPO4
2- + H+ 

 
 
Answer:  The standard state thermodynamic properties are given in Table 15.4.1: 
 

 ATP4- +  H2O    →  ADP3- +  HPO4
2- + H+      units 

∆fH° -3619.21 -285.83  -2626.54 -1299   0 kJ mol-1 

∆fG° -2768.10 -237.19  -1906.13 -1096.1   0 kJ mol-1 

 
(a)  ∆rH° = [Σproducts] – [Σreactants] = -20.5 kJ mol-1 

 ∆rG° = ∆rH° – T ∆rS° = -20.5 kJ mol-1 – 298.2 K (-79.02 J K-1 mol-1)(1 kJ/1000 J) 
 ∆rG° = 3.06 kJ mol-1 
 

 ∆rS° = 
∆rH° – ∆rG°

T  = 
(-20.5 kJ mol-1 – 3.06 kJ mol-1)(1000 J/1kJ)

298.15 K  

 ∆rS° = -79.02 J K-1 mol-1 
 

Surprisingly, the reaction is not spontaneous under these conditions. The reverse reaction, which 
is the production of ATP, is spontaneous. However, these are standard state conditions. At pH 7 
in the cell, this reaction must be spontaneous; otherwise, ATP wouldn’t be a good energy source. 
We will determine the effect of the concentration on ∆rG in Chapter 17. Then, we will more 
carefully consider the effect of pH on this reaction. The reaction as written, under standard 
conditions, is enthalpically favored and entropically disfavored. 
 
              

Example 15.4.5: 
This example explores the issue of the arbitrary reference we apply to Gibbs energy and 
enthalpies of formation as opposed to the absolute reference for entropy. Consider the 
hydrogenation of ethylene:    C2H4 (g) + H2 (g) → C2H6 (g). 
   Assume all reactants and products are at 1 bar and 298.15 K. The ∆fG° and ∆fH° of H2 is 
defined as zero, but the standard state absolute entropy for H2 is 130.59 J K-1 mol-1. Does the 
change in reference state make a difference? (a) Calculate ∆rH° and ∆rS°. From ∆rH° and ∆rS°, 
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calculate ∆rG°. (b) Calculate ∆rG° directly from tabulated ∆fG° values and compare with part (a). 
(c) Does the choice of reference for Gibbs energy and entropy make a difference? 
 
 
Answer:  The standard state thermodynamic properties are given in the Appendix Data Section: 
 

 C2H4 (g) + H2 (g) → C2H6 (g) Change for reaction 
∆fH° 52.26 0  -84.68 kJ mol-1 ∆rH° = –136.94 kJ mol-1 
S° 219.56 130.574  229.49 J K-1 mol-1 ∆rS° = –120.64 J K-1 mol-1 
∆fG° 68.15 0  -32.89 kJ mol-1 ∆rG° = –101.04 kJ mol-1 

 
where the reaction changes are as usual [Σproducts] – [Σreactants]. (a). Using the calculated 
values for ∆rH° and ∆rS°: 
 

 ∆rG° = ∆rH° – T ∆rS° = –136.94 kJ mol-1 – 298.15 K (–120.64 J K-1 mol-1)(1 kJ/1000 J) 
 ∆rG° = -100.97 kJ mol-1 
 

(b). Using tabulated Gibbs energies of formation, ∆rG° = –101.04 kJ mol-1, as shown in the table. 
The value using ∆rG° = ∆rH° – T ∆rS° and the direct value in the table agree to within 
experimental and round-off error. (c). As long as we always calculate differences, the reference 
point is arbitrary and can be different for ∆fH, ∆fG, and S. 
 
              

Example 15.4.6: 
The “octane” rating for gasoline is based on the combustion of isooctane, 2,2,4-trimethylpentane: 
 C8H18 (g) + 12½ O2 (g)  →  8 CO2 (g) + 9 H2O (g) 
 

The ∆rU°(298 K) = -5109. kJ mol-1. Calculate ∆rS° and ∆rA° for this reaction at 298.15 K. The 
absolute entropy for iso-octane is 423.2 J K-1 mol-1 (Table 8.4.2). 
 
 
Answer:  The standard state thermodynamic properties are given in Tables 8.4.1-8.4.2 in the 
Appendix Data Section. 
 C8H18 (g) +  12½ O2 (g)  →  8 CO2 (g)  +  9 H2O (g) 
   S° 423.2  205.029 213.74  188.715  J K-1 mol-1 
 

 ∆rS° = [Σproducts] – [Σreactants]  
 ∆rS° = [8 (213.74 J K-1 mol-1) + 9 (188.715 J K-1 mol-1)] –  
  [1 (423.2 J K-1 mol-1) + 12.5 (205.029 J K-1 mol-1)]  =  422.29 J K-1 mol-1 
 

Then ∆rA° = ∆rU° – T ∆rS° = –5109. kJ mol-1 – 298.15 K(422.29 J K-1 mol-1)(1 kJ/1000 J) 
 ∆rA° = –5235. kJ mol-1 
 

Notice that ∆rA° gives the maximum total work available, which in this case is more work 
available from the reaction than ∆rU°. The reason that more work is available than the internal 
energy change is that the reaction has a favorable entropy change, which adds to the total work 
that can be done by the system. The entropy change is favorable because of the larger number of 
moles of gaseous products. 
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15.5   Summary – Looking Ahead 
 

The thermodynamic potential energy functions each play an important role in accounting for 
energy transfers in chemical processes and in the environment. 
 

Internal energy change gives the heat transfer at constant volume. 
Enthalpy change gives the heat transfer at constant pressure. 
Internal energy change gives the work for an adiabatic process. 
Enthalpy change gives the maximum non-PV work for an adiabatic constant pressure process. 
Helmholtz energy change gives the maximum work at constant temperature. 
Gibbs energy change gives the maximum non-PV work at constant temperature and pressure. 

 

The spontaneity criterion for an isolated system is an increase in entropy. To apply the Second 
Law to a non-isolated system, we form an isolated composite combining the system and the 
surroundings. The entropy increases for a spontaneous process in the isolated composite. The 
surroundings act as a constant temperature and pressure reservoir. The spontaneity criterion at 
constant temperature and volume is the Helmholtz energy. The spontaneity criterion at constant 
temperature and pressure is the Gibbs energy. The thermodynamic potentials can also be used to 
determine if a system is at equilibrium. At constant temperature and volume, the Helmholtz 
energy is minimized for a system at equilibrium, and dA = 0 for an equilibrium process. At 
constant temperature and pressure, the Gibbs energy is minimized for a system at equilibrium, 
and dG = 0 for an equilibrium process. At equilibrium the electrochemical potentials of the 
products and reactants are equal as given by Σ νi µ̄i = 0. The changes in U, H, A, and G can be 
calculated for any process; however, each has a useful interpretation under specific conditions. 
   The things we wish to do involve transfers of heat and work. Thermodynamics shows the 
interrelationships that govern all physical macroscopic processes for transfers of heat and work. 
Spontaneous processes are required for useful purposes. Spontaneity is governed by an increase 
in entropy for an isolated system. The universe can be considered as an isolated system for many 
purposes. Thermodynamics provides a powerful framework that can be applied to any 
macroscopic process. The power of thermodynamics is its complete generality and the ability to 
highlight interrelationships of a system to its surroundings. In the next chapter we combine the 
concepts concerning spontaneity and equilibrium with the mathematical techniques that are 
necessary to completely characterize any thermodynamic process. In the subsequent chapters we 
apply the formalism to phase transitions, processes in solution, chemical equilibria, and 
electrochemistry. The result will be a unified and general framework for solving problems and 
for understanding the intricacies of nature. 
 
 
 

Chapter Summary 
 

1. The change in entropy for a closed system for any process involving PV work and chemical 
reactions: 

 dS = 
1
TdU + 

P
TdV – 

1
T ∑

i=1

ns

 νi µi dξ 

2. For an isolated system, entropy is a good spontaneity criterion: 
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 dS = – 
1
T ∑

i=1

ns

 νi µi dξ ≥ 0 or ∑
i=1

ns

 νi µi dξ ≥ 0  (= reversible) 

3. The Helmholtz energy is defined as A ≡ U –TS, giving  dA = dU – TdS – SdT. 
4. From the combined First and Second Laws of thermodynamics for a closed system with PV 

and chemical work: 

 dA = – SdT – PdV + ∑
i=1

ns

 νi µi dξ 

5. For a closed system at constant temperature and volume, Helmholtz energy is a good 

spontaneity criterion:  dA = ∑
i=1

ns

 νi µi dξ  ≤ 0. (= reversible) 

6. For a closed system in an isothermal process the Helmhotz energy gives the maximum work 
available:  dA = dwmax. 

7. The Gibbs energy is defined as G ≡ H – TS, giving: 

 dG = dH – TdS – SdT  =  dU + PdV + VdP – TdS – SdT 

8. From the combined First and Second Laws of thermodynamics for a closed system with PV 
and chemical work: 

 dG = – SdT + VdP + ∑
i=1

ns

 νi µi dξ 

9. For a closed system at constant temperature and pressure, Gibbs energy is a good spontaneity 

criterion:  dG = ∑
i=1

ns

 νi µi dξ  ≤ 0. (= reversible) 

10. The Gibbs energy gives the maximum non-PV work for a closed, isothermal process: 
dG = dwnet,max. 

11. Non-PV work can be cast in the form dw = F dx. The total PV and non-PV work is then: 
dw = –PextdV + F dx. For a closed system at constant temperature and pressure with Fx 
work only: dG = FAdxA + FBdxB ≤ 0, with constant xtot = xA + xB. 

12. For chemical and electrical work, dU = TdS – PdV + ∑
i=1

ns

 µi dni + ∑
i=1

ns

 zi F φi dni 

13. The change in Gibbs energy for ions in the presence of an electrical field at constant 

temperature and pressure is: dG =  ∑
i=1

ns

 µi dni + ∑
i=1

ns

 zi F φi dni 

14. The electrochemical potential is defined as: µ̄i = µi + zi F φi 

15. For a closed system at constant temperature and pressure in the presence of an electric 
potential, the change in Gibbs energy is: 

 dG =  ∑
i=1

ns

 µ̄i dni 

16. For a closed system at constant temperature and pressure taking into account differences in 
concentration, chemical reactions, and electric fields: 
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 dG =  ∑
i=1

ns

 µ̄i dni  ≤ 0 or equivalently dG =  ∑
i=1

ns

 νi µ̄i dξ ≤ 0 

17. For a closed system for an isothermal expansion of an ideal gas: 

 ∆A = – nRT ln 
V2

V1
. ∆G = nRT ln 

P2

P1
. 

18. For an isothermal process in a liquid or a solid for small changes in pressure: ∆G =  Vo ∆P. 
For moderate changes in pressure: ∆G =  Vo (P – Po) – ½ Vo κT (P – Po)

2. 

19. For small changes in temperature for a constant volume process, ∆A = – S∆T and for a 
constant pressure process: ∆G = – S∆T. 

20. Assuming a constant heat capacity, at constant volume: 

 ∆A = –So (T-To) + Cv (T – To) – Cv T ln 
T
To

 

and at constant pressure: ∆G = – So (T – To) + Cp (T – To) – Cp T ln 
T
To

 

21. For a phase transition at the equilibrium transition temperature: ∆trA  = – ∆ngasRTtr. 

22. For a chemical reaction at constant temperature and pressure: ∆rG = ∑
i=1

ns

 νi ∆fGi. 
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Problems: Spontaneity 
 

1.  The water gas shift reaction is an important process in the gasification of coal or biomass to 
produce transportation fuels: 
 

 CO (g) + H2O (g) →← CO2 (g) + H2 (g) 
 

What is the relationship among the chemical potentials for the reaction at equilibrium? 
 

2.  Some authors use “=” instead of “→
←” for chemical equations at equilibrium. For example: 

 

 ATP4- + H2O = ADP3- + HPO4
2- + H+ 

 

Why is the use of the equals sign a good idea? 
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3.  Calculate ∆fusH°, ∆fusS°, and ∆fusG° for freezing one mole of supercooled water at –10.0 °C 
and 1.00 bar pressure: 
 

 H2O (l) → H2O (s) 
 

At 273.15 K, ∆fusH° = 6.008 kJ mol-1. Assume the heat capacities are constant over the 
temperature range with Cp,m(s) = 37.66 J K-1 mol-1 and Cp,m(l) = 75.29 J K-1 mol-1. 
 

4.  Determine the energy necessary to form a peptide bond by determining ∆rG° for the 
following reaction at 298.15 K: 
 

 2 glycine → glycylglycine + H2O (l) 
 

Use the data table below. 
 

Substance ∆fH°m  (kJ mol-1) S°m (J K-1 mol-1) 
glycine -528.5 103.5 
glycylglycine -747.7 190.0 
H2O (l) -285.830 69.92 

 

5.  The enzyme pyruvate decarboxylase catalyzes the following reaction: 
 

 pyruvic acid (l) → acetaldehyde (g) +  CO2 (g) 
 

Calculate ∆rH°, ∆rS°, and ∆rG° for this reaction at 298.15 K given the following data. Is this 
process enthalpy or entropy driven? 
 

substance ∆fH°m (kJ mol-1) ∆fG°m (kJ mol-1) 
acetaldehyde (g) -166.19 -128.86 
CO2 (g) -393.509 -394.359 
pyruvic acid (l) -584.5 -463.4 

 

6.  Before glucose can be used as an energy source in your body, it must first be phosphorylated: 
 

 glucose + HPO4
-2 → glucose-6-phosphate   ∆rG°m = 16.7 kJ mol-1  ∆rH°m = 35.1 kJ mol-1 

the energy for this process is supplied by the hydrolysis of ATP: 

 ATP4- + H2O → ADP3- + HPO4
2- + H+ ∆rG°m = -31.0 kJ mol-1  ∆rH°m = -24.3 kJ mol-1 

at pH 7. The overall reaction is then: 

 glucose + ATP4- + H2O → glucose-6-phosphate + ADP3- 

Calculate the entropy change for the overall reaction at 298.2 K from the given values of ∆rG° 
and ∆rH°. Is the phosphorylation of glucose enthalpy or entropy driven? 
 

7.  Ethanol is used as an additive in gasoline to increase the octane rating and to help decrease air 
pollution. Calculate ∆rH°, ∆rS°, and ∆rG° for the combustion of ethanol at 298.2 K using 
standard data tabulations: 
 

 CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (l) 
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8.  Why can we choose the Gibbs energy of formation of an element, in its most stable state at 
1 bar pressure, as equal to zero? 
 

9.  The enthalpy change for a reaction can be endothermic or exothermic. The entropy change for 
a chemical reaction can be positive or negative. Consider the temperature dependence of the 
spontaneity of a chemical reaction at constant pressure. Assume that the sign of the reaction 
enthalpy and entropy don’t change with temperature. Under what cases, for the signs of the 
enthalpy and the entropy, is a reaction always spontaneous? Under what cases is a reaction never 
spontaneous? 
 

10.  The water gas shift reaction is an important process in the gasification of coal or biomass to 
produce transportation fuels: 
 

 CO (g) + H2O (g) →← CO2 (g) + H2 (g) 
 

What is the relationship between the Gibbs and Helmholtz reaction energy changes at constant 
pressure? Why? 
 

11.  The internal energy of combustion of iso-propyl alcohol is -2003.2 kJ mol-1 at 298.2 K and 
1.000 bar. The absolute entropy of iso-propyl alcohol is 181.1 J K-1 mol-1 at 298.2 K and 1.000 
bar. Calculate the enthalpy, Helmholtz energy, and Gibbs energy of combustion of iso-propyl 
alcohol. Treat all gases as ideal. 
 

12.  Calculate the change in Gibbs energy when one mole of an ideal gas expands isothermally 
from an initial volume of 1.00 L to a final volume of 10.0 L at 298.15 K. 
 

13.  Calculate the changes in Gibbs energy and Helmholtz energy when one mole of an ideal gas 
expands isothermally from an initial pressure of 2.00 bar to a final pressure of 1.00 bar at 
298.15 K. 
 

14.  General Chemistry texts often use a standard state pressure of 1 atm instead of 1 bar. Does 
the change in standard state make a significant difference in the tabulated values? Calculate the 
standard state Gibbs energy of formation for CO2 at P° = 1 atm, given that the 1 bar standard 
state is ∆fG°(CO2) = -394.36 kJ mol-1 at 298.15 K. 
 

15.  General Chemistry texts often use a standard state pressure of 1 atm instead of 1 bar. Does 
the change in standard state make a significant difference in the tabulated values for Gibbs 
energies of formation? Calculate the standard state Gibbs energy of formation for SO3 at P° = 
1 atm assuming ideal gas behavior, given that the 1 bar standard state is ∆fG°(SO3, P° = 1 bar) = 
-371.06 kJ mol-1 at 298.15 K. 
 

16.  Carbon dioxide plays an important role in many geochemical processes, which often occur 
at high pressure. Calculate the Gibbs energy of formation for CO2 at 50.0 bar and 298.15 K, 
relative to the constituent elements in their standard states: 
 

 C(graph) + O2 (g, 1 bar) → CO2 (g, P = 50.0 bar) 
 

Assume ideal gas behavior and ∆fG°(CO2) = -394.359 kJ mol-1 at 298.15 K. 
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17.  Carbon dioxide plays an important role in many geochemical processes, which often occur 
at high pressure. Calculate the reaction Gibbs energy at 50.0 bar and 298.2 K for: 
 

 CaCO3 (s) → CaO (s) + CO2 (g, P = 50.0 bar) 
 

One crystalline form of CaCO3 is the mineral calcite. Neglect the effect of the pressure on the 
solids and assume ideal gas behavior. 
 

18.  Derive Eq. 15.4.8, ∆G = Vo (P – Po) – ½ Vo κT (P – Po)
2, from dG = V dP for an isothermal 

process, from an initial pressure Po and a final pressure P. 
 

19.  Calculate the change in Gibbs energy for one mole of liquid benzene at 298.2 K for a change 
in pressure from 1.00 bar to 600.0 bar. The isothermal compressibility of benzene is 90.9x10-6 
bar-1 and the density is 0.8765 g/cm3. Compare the results using Eqs. 15.4.7 and 15.4.8 
 

20.  Calculate the Gibbs energy difference for one mole of water at the bottom of the Mariana 
Trench compared to 1 bar pressure, given κT = 4.587x10-10 Pa-1 at 20°C. The maximum depth of 
the trench is 10911 m (35798 ft) and the pressure is 1,086. bar (15,750 psi). Use the density of 
pure water, 0.9982 g mL-1 at 1 bar, for this problem, instead of the density of sea water. 
 

21.  Starting from ∆A = – nRT ln V2/V1 and the definition of G, in the form G ≡ A + PV, show 
that ∆G = nRT ln P2/P1  for an ideal gas in an isothermal process. 
 

22.  Reverse osmosis is the most cost effective method for seawater desalinization. However, 
reverse osmosis is energy intensive. In reverse osmosis, seawater is pressurized to 60-70 bar to 
force water to flow through a semi-permeable membrane. The work in reverse osmosis can be 
estimated using w = – P∆V, where P is the constant high pressure of the process and ∆V is the 
volume of water pushed through the membrane. Calculate the change in Helmholtz energy for 
purifying 1.00 m3 of water using reverse osmosis with an applied pressure of 65.0 bar. Give your 
results in joules and kWh (1 kWh = 3.6x106 J ). Why is the change in Helmholtz energy salient 
for water desalinization? 
 

23.  How big of an effect does an electric field have on the electrochemical potential of an ion? 
Consider a simple electrochemical cell, Zn|Zn2+||Cu2+|Cu. Assume the electric potential is 
0.500 V at the cathode. Calculate the electrochemical potential for one mole of Cu2+ ions, at 
standard state concentration, in the cathode (right-hand) compartment. In the absence of a field, 
∆fG°m for Cu2+ from standard tables is 65.49 kJ mol-1. 
 

24.  Two solutions containing K+ ions are separated by a K+ ion-selective membrane. Electrodes 
are placed in both solutions and the flow of K+ ions is monitored as a function of applied 
potential, ∆φ = φin – φout. The K+ ions cease migration across the membrane for an applied 
potential of -70.0 mV. Calculate the difference in chemical potential of the K+ ions in the two 
solutions. 
 

25.  Coastal communities may exploit the Na+ gradient between seawater and fresh river water to 
generate electricity. Calculate the electric potential available from a seawater-fresh water cell 
with a Na+ ion selectively-permeable membrane. Assume the difference in chemical potential, in 
the absence of electric fields, between seawater and fresh water is 10.5 kJ mol-1 (roughly a factor 
of 100 difference in concentration with an activity coefficient for 0.5 m NaCl of 0.680). 
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26.  The standard state Gibbs energy of formation of liquid water at 298.15 K is -237.13 kJ mol-1. 
Normally, we ignore any changes of ∆fG° with pressure for liquids and solids if the specific 
reaction is run near 1 bar of pressure. How big of an error does this make? Calculate the change 
in Gibbs energy for one mole of liquid water for a pressure change from 1.00 bar to 50.0 bar. 
 

27.  Calculate the change in Helmholtz and Gibbs energies for the vaporization of 1.00 mol of 
liquid water at 372.76 K and 1.00 bar. The enthalpy of vaporization at 372.76 K is 40.7 kJ mol-1. 
Treat water vapor as ideal. What does the difference between the Helmholtz and Gibbs energies 
tell you about the process? (The standard boiling point of water is 99.61°C or 372.76 K.) 
 

28.  Calculate the change in Gibbs energy for the vaporization of 2.00 mol of liquid water at 
372.76 K and 1.000 bar to give water vapor at 0.500 bar and the same temperature. Assume the 
vapor is ideal. (The standard boiling point of water is 99.61°C or 372.76 K.) 
 

29.  Show that for small changes in temperature the last two terms cancel in Eq. 15.4.15: 

 ∆G = – So (T – To) + Cp (T – To) – Cp T ln 
T
To

 ≈ – So (T – To) 

To prove this relationship, expand the logarithmic term in a Taylor series and keep just the first 
non-zero term. (Note: the Taylor series expansion for ln(x2/x1) ≈ x2/x1–1, for x2/x1≈ 1.) 
 

30.  Prove Eq. 15.4.15, that is ∆G = – So (T – To) + Cp (T – To) – Cp T ln 
T
To

 . 

 

31.  Calculate the standard state Gibbs energy of formation for H2S (g) at 500.0 K. Remember 
that the Gibbs energy of formation is for a chemical reaction and not just a pure substance. The 
relevant data are given in the table below. 
 

Substance at 298.15 K ∆fG° (kJ mol-1) S° (J K-1 mol-1) C°p (J K-1 mol-1) 
H2S (g) -33.4 205.8 34.23 
H2 (g)      0 130.574 28.824 
S (s, rhombic)      0 32.054 22.64 

 

32.  Calculate the standard state Gibbs energy of formation for SO2 (g) at 500.0 K. 
 

33.  Determine if the following statements are true or false. If the statement is false, describe the 
changes that are necessary to make the statement true, if possible. If the statement is true but too 
restrictive, give the more general statement. 
 

(a).  When a change in state occurs at constant pressure, the increase in the Gibbs energy of 
the system must equal the decrease in the Gibbs energy of the surroundings. 
(b).  The entropy change of the universe is a spontaneity criterion only for isolated systems. 
(c).  Gibbs energy is minimized for processes at constant temperature and pressure and no 
electrical work. 
(d).  For a chemical reaction at constant pressure, the changes in Helmholtz and Gibbs 
energies are identical if the volume of the products is identical to the volume of the reactants. 
(e).  For phase transitions, the Gibbs energy change is zero. 

 

34.  Show that the internal energy change gives the work for an adiabatic process and the 
enthalpy change gives the maximum non-PV work for an adiabatic constant pressure process. 


