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Chapter 14: Focusing on Chemical Reactivity 
 

   Hydrogen peroxide, which is used as a topical disinfectant, decomposes to give O2 gas in a 
highly exothermic reaction. This reaction is often used as a rather spectacular chemical 
demonstration: 
 

 2 H2O2 (aq) →← 2 H2O (l) + O2 (g) 
 

Hydrogen peroxide is also important in redox reactions in the environment and in biological 
processes. During this reaction many things can change: V, P, S, T, U, H, and the mole 
amounts of the reactants and products. Keeping track of all these variables can be daunting. 
How can we simplify the definition of our system to focus on chemical changes? 

 
 
   The main goal of physical chemistry is to understand chemical reactivity. Up to this point we 
have discussed entropy changes in closed systems and systems that don’t involve chemical 
reactions. Now that we have introduced entropy, we can add the effects of chemical reactions. 
We first need to discuss open systems and then systems where mole amounts change through 
chemical processes. We then need to discuss how to use constraints to focus specifically on 
chemical reactivity. 
 
14.1 Chemical Potentials Express the Change in Energy for Open Systems 
 
   The combined First and Second Laws of thermodynamics, Eq. 12.1.5, can be extended for 
open systems. For a system with two components: 
 

 dU = TdS – PdV + µ1 dn1 + µ2 dn2       14.1.1 
 

where dn1 is the change in the moles of component 1, dn2 is the change in the number of moles of 
component 2, µ1 is the chemical potential of component 1, and µ2 is the chemical potential of 
component 2. For example, to make a sugar solution component 1 is water and component 2 is 
sugar. The independent variables implied by this last equation are now U(S,V,n1,n2). For 
comparison we can also write the total differential of U as: 
 

 dU = 






∂U

∂S V,n1,n2

dS + 






∂U

∂V S,n1,n2

dV + 






∂U

∂n1 V,S,n2

dn1 + 






∂U

∂n2 V,S,n1

dn2  14.1.2 

 

Comparing Eq. 14.1.1 with Eq. 14.1.2 gives the chemical potentials as: 
 

 µ1 ≡ 






∂U

∂n1 S,V,n2

 µ2 ≡ 






∂U

∂n2 S,V,n1

      14.1.3 

 

Notice that these equations are in the general form of thermodynamic forces. In general, work is 
in the form w = F dx. Then µ1 dn1 is the chemical work for changes in the amount of component 
1. The chemical potential is the thermodynamic force for the change in the amount of the 
component. For pure substances, the chemical potential for a component is simply the internal 
energy per mole, µ1 = ∆fUm,1 and µ2 = ∆fUm,2. The chemical potential for a substance is the 
driving force for chemical change. The chemical potential is central to our understanding of 
spontaneity and equilibrium, and will be our primary tool in the next several chapters. 
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   We should also consider the general case for multiple components. Taking U as a function of 
S, V, and all the ni gives the general form of the total differential as: 
 

 dU = T dS – P dV +∑
i=1

c
 µi dni      (open)  14.1.4 

 

The sum is over all c components for the system. For the derivatives of the entropy and volume, 
all of the ni mole amounts are held constant. Comparison of terms with Eq. 14.1.2 shows that: 
 

 µi ≡ 






∂U

∂ni S,V,nj≠i

         14.1.5 

 

is the chemical potential with respect to component i. For systems with chemical work, all the 
potential energy functions in thermodynamics are derived from Eq. 14.1.4.1 The restriction of the 
sum in Eq. 14.1.4 to the components insures all the specified independent variables are 
independent of each other. 
 
14.2 The Thermodynamic Components are the Independent Set of Chemical Constituents 
 

   For Eq. 14.1.4 to accurately determine the internal energy change for a system, the variables 
used to give the changes for the process must be independent of each other. By independent, we 
mean that we can change a given variable without corresponding changes in the other variables. 
For example, for an ideal gas in a closed system we can only change two variables 
independently. If we choose P and T for example, the volume is automatically specified as V = 
nRT/P. For a closed system with no chemical reactions, we can again only choose two of S, T, P, 
and V as independent variables. For internal energy, as we have seen, the combined First and 
Second Laws lead to the choice of S and V as the independent variables. How do we specify the 
state of an open system or a system with chemical reactions? In thermodynamics, the 
components for a system and the constituents are distinct concepts. A chemical constituent is 
any chemical species found in the system. For example, for a solution of ethanol in water, 
ethanol and water are the two constituents. For a solution of sodium chloride, the constituents are 
H2O, Na+, and Cl–. The thermodynamic components of a system are a set of independent 
constituents. For the example of a solution of ethanol in water, the components are the same as 
the constituents. For a sodium chloride solution, there are two components, because the 
concentration of the Na+ ions must equal the concentration of Cl– ion as required by charge 
neutrality. The chemical components can then be chosen as the moles of H2O and the moles of 
NaCl used to make up the solution. In other words, [Na+] and [Cl–] are dependent on each other 
and cannot both be chosen as components. The number of components is also the minimum 
number of substances that must be available in the laboratory to make up the system. 
   The number of components for a system is given by the number of chemical constituents, ns, 
minus the number of distinct chemical reactions and minus any chemical constraints: 
 

 c = ns – no. of reactions – no. of chemical constraints    14.2.1 
 

Chemical constraints include charge balance and any conditions placed on the preparation of 
the system. For example, consider the reaction PCl5 

→
← PCl3 + Cl2. There are three constituents, 

PCl5, PCl3, and Cl2, giving ns =3. If a system is prepared by mixing arbitrary amounts of these 
three constituents there are two components. Any two of the constituents may be chosen as 
components and then the third can be calculated from the equilibrium expression: 
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 Kp = 
PPCl3 PCl2

PPCl5
          14.2.2 

 

Conversely, if the system is prepared from only PCl5, there is one chemical constraint. Then c = 
3 species – 1 reaction – 1 chemical constraint, resulting in only one component. In other words, 
if the system is prepared from only PCl5 then from the stoichiometry of the reaction, PPCl3 = PCl2. 
 
 
              

Example 14.2.1 
Consider a solution of solid NaH2PO4 in water. The two dissociation equilibria are: 
 

     Ka2 

  H2PO4
-   →←  HPO4

2- + H+ 
 

     Ka3 
  HPO4

2-  →←      PO4
3- + H+ 

 

Determine the constituents, the chemical components, and a possible set of chemical contraints. 
 
 
Answer:  The constituents are: Na+, H+, H2PO4

-, HPO4
2-, PO4

3-, and H2O. There are two 
components, NaH2PO4 and water. With two components, there must be two chemical 
constraints: c = 6 – 2 – 2 = 2. The charge balance is one chemical constraint: 
 

 [Na+] + [H+] = [H2PO4
-] +2 [HPO4

2-] + 3 [PO4
3-] 

 

The remaining chemical constraint can be expressed in several forms. The Na+ ion concentration 
is unchanged by the chemical reactions. The mass balances are, then: 
 

 [Na+] = [Na+]o   [H2PO4
-]o = [H2PO4

-] + [HPO4
2-] + [PO4

3-] 
 

Since NaH2PO4 is the only source of both Na+ and phosphate, [Na+]o = [H2PO4
-]o, and the second 

chemical constraint can be expressed as: 
 

 [Na+] = [H2PO4
-] +[HPO4

2-] + [PO4
3-] 

 

The reaction has six constituents, but only 2 components. 
 
              

Example 14.2.2 
Determine the number of constituents and chemical components in a solution made from 
NaH2PO4 and Na2HPO4 in water. 
 
 

Answer:  The constituents are the same as the previous example: Na+, H+, H2PO4
-, HPO4

2-, PO4
3-, 

and H2O. But there are now 3 components, NaH2PO4, Na2HPO4, and H2O. The extra component 
results because there are now two independent sources of phosphate, which introduces an 
additional variable into the mass balances: 
 

 [H2PO4
-]o + [HPO4

2-]o = [H2PO4
-] +[HPO4

2-] + [PO4
3-] 

 [Na+] = [H2PO4
-]o + 2 [HPO4

2-]o 
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14.3 Constraints Provide Focus on Chemical Reactivity 
 

   The world is complex. Figuring out how to analyze a complex system is often difficult. One of 
the most powerful contributions of thermodynamics is to provide a way to simplify a system so 
that the underlying chemical relationships can be studied. The specification of the system and its 
constraints is a critical part of a thermodynamic analysis. As in any other area of science, you 
want to keep as many variables constant as possible while still allowing the chemically important 
variables to change. Constraints are used to keep the values of variables fixed. Constraints are 
useful for simplifying systems so that we can focus our attention on chemically significant 
processes without undue complexity. There are two general types of constraints placed on 
systems. Physical constraints act as constraints for extensive variables and reservoirs act as 
constraints for intensive variables. Chemical constraints are one type of physical constraint; 
physical barriers also act as constraints. 
 

Physical Barriers Act as Constraints for Extensive Variables:   The most commonly constrained 
extensive variables are the volume, the amounts of components, and the internal energy. 
Constant volume conditions are maintained by rigid walls of a container, which is one example 
of a physical barrier. For closed systems, mass or mole amounts of components are also 
constrained by physical barriers. For a simple example of a closed system, we often use a 
perfectly sealing piston. Internal energy is constrained in an isolated system, where the physical 
barriers are thermal insulation and rigid walls. Physical constraints have an important effect on 
the variables for the system. We start by discussing volume, since volume is easiest to visualize. 
 
Constant volume: Consider a closed system with PV work as a simple example. Assume that the 
system has one thermodynamic component, for example one mole of a gas, and one phase. The 
combined First and Second Laws give the internal energy as: 
 

 dU = TdS – PdV       (closed) 14.3.1 
 

Constraining the volume sets dV = 0 and the system now has one fewer degree of freedom. This 
constrained system is now ideal for helping us understand entropy-temperature relationships. In 
other words, constraints simplify the system and help us focus on the issue at hand. 
   Now consider a system with two compartments separated by a movable barrier, Figure 14.3.1a. 
Such a system is called a composite. 
 
 
 
 
 
 
 
 
 
 

 (a)      (b) 
 

Figure 14.3.1 (a). A two-compartment system at constant total volume: dVA = – dVB. (b). A 
two-compartment system can also be drawn with system A confined in a piston. The barrier 
must be fixed by a stop, otherwise the system will attain equilibrium with PA = PB. 

constant total volume, dVtot = 0 

VA 
PA 
TA 

VB 
PB 
TB 

constant total volume, dVtot = 0 

movable barrier stop 
VA, PA,TA 

VB, PB, TB 
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For this two-compartment system, the total volume is Vtot = VA + VB with dVtot = dVA + dVB . If 
the two-compartment system is constrained to be at constant volume, then dVtot = 0 as before. 
However, a PV process can still occur. If the pressures of the two compartments are not equal, 
PA≠ PB, the barrier can move and work can be done. However, because the total volume is 
constrained: 
 

 dVtot = 0 = dVA + dVB       (cst.Vtot) 14.3.2 
 

The volumes of the subsystems are now dependent variables with 
 

 dVA = – dVB        (cst.Vtot) 14.3.3 
 

   No generality is lost if we construct the composite with system A confined in a piston and 
system B as occupying the remainder of the closed vessel, Figure 14.3.1b. The position of the 
movable barrier must be fixed with a stop to keep PA and PB different. When the stop is removed, 
the barrier moves until the system attains equilibrium with PA = PB. The barrier with the stop is 
called a temporary internal constraint. The result of removal of the temporary internal 
constraint is an irreversible, spontaneous process if the forces are imbalanced. 
 
Irreversible Processes Can Be Studied Using Thermodynamics:  We want to use 
thermodynamics to determine the spontaneous direction for the process in Figure 14.3.1. 
However, thermodynamics only applies to equilibrium systems. How can equilibrium 
thermodynamics be used to predict the outcome of an irreversible process? Let the internal 
energy of the system before the temporary internal constraint is removed be U1 and the internal 
energy after the system reaches equilibrium be U2. The change in the internal energy for the 
process is ∆U = U2 – U1. Before the removal of the constraint, the system is at equilibrium with 
PA and PB constrained and PA≠PB. After the process, the system is at equilibrium with PA = PB, 
so both endpoints for the calculation of ∆U are equilibrium systems. Not until the removal of the 
constraint is the irreversible process possible, but then ∆U is a state function and is independent 
of the path. The same arguments apply to the change in any state function for the process. 
Temporary internal constraints allow the enthalpy, entropy, and as we shall soon see the Gibbs 
energy to be calculated before and after an irreversible process, as long as the initial and final 
states are at equilibrium. 
   Constraints on composite systems have the same effect as on simple systems; the constraints 
simplify the system by decreasing the number of independent thermodynamic variables. This 
effect of constraints is particularly important for closed systems with chemical reactions, which 
we explore next. 
 
Closed Systems Have Constant Mole Amounts of Components:  Consider a one-component open 
system. For an open, one-thermodynamic-component system with PV and chemical work: 
 

 dU = TdS – PdV+ µ1 dn1        14.3.4 
 

For a closed system, dn1 = 0, and dU = TdS – PdV. A barrier of some type must be used that will 
not allow substances to pass, for example, an impermeable membrane or just a sealed flask. The 
physical barrier decreases the number of independent extensive variables. Closed systems are 
particularly important for understanding chemical equilibria. 
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Chemical Reactions in Closed Systems are Expressed in Terms of the Extent:  Now assume that a 
chemical reaction occurs in the system. To keep things simple for now, assume that the reaction 
has the stoichiometry: 
 

 A → B           14.3.5 
 

Such reactions include all isomerizations. In the strict thermodynamic sense, such a system still 
has only one component, but it now has two constituents that can interconvert through the 
chemical reaction. The total amount of the component is given by the mole balance equation, 
n1 = nA + nB, and since this is a closed system: 
 

 dn1 = 0 = dnA + dnB       (closed) 14.3.6 
 

The composition variables are now dependent with dnB = – dnA . In other words, at first you 
might suppose that closed systems are uninteresting from a chemical perspective. Instead, closed 
systems help us to simplify a system to allow us to focus on the chemical reactions. In fact, when 
we want to study a chemical reaction in the laboratory, we normally mix fixed amounts of 
reactants and then watch the reaction proceed. After the reactants are mixed we effectively close 
the system by not adding any more of the reactants or products. In other words, the system is 
closed after we prepare the system. So working with closed systems is quite natural from a 
laboratory perspective. 
   Consider the general equation for the change in internal energy for a process with PV work and 
chemical work as given by Eq. 14.1.4. For a closed system, the amounts of the various 
components are fixed and are no longer independent variables. Instead, the constituents are 
interrelated by the mole balance equations. The changes are given by dni as before, but now the i 
indexes all the constituents. These changes are related to the extent of the reaction, ξ, using the 
stoichiometric coefficients, νi. For the general reaction: 
 

 a A + b B → c C + d D           14.3.7 
 

following Eq. 3.1.4, the changes are related by: 
 

 dni = νi dξ          14.3.8 
 

Remember that νi is negative for a reactant and positive for a product. For a closed system then:1 

 

 dU = TdS – PdV + ∑
i=1

ns

 νi µi dξ           (closed, PV & chemical work) 14.3.9 

 

where the sum is over all constituents, ns. The stoichiometric coefficients are unitless, the units 
of ξ are moles, and ξ is an extensive quantity. Alternatively, Eq. 14.3.9 can be written as 
 

 dU = TdS – PdV + ∑
i=1

ns

 µi dni         (closed, PV & chemical work) 14.3.10 

 

if  it is remembered that the sum is over all constiuents, and the constitutents are all dependent 
variables according to Eq 14.3.8. If you are reading along in another text, which is a good idea, 
you will notice that the difference between Eq. 14.1.4 and Eq. 14.3.10 is often a point of 
confusion. 
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Example 14.3.1 
Determine the change in internal energy for the following reaction in terms of the change in 
extent of the reaction, dξ, for the reaction in a closed system: 
 

 PCl5 (g) →← PCl3 (g) + Cl2 (g)        14.3.11 
 
 
Answer:  dU = TdS – PdV + µPCl3 dξ + µCl2 dξ – µPCl5 dξ      14.3.12 
 
             

Example 14.3.2 
The disproportionation of hydrogen peroxide is: 
 

 2 H2O2 (aq) →← 2 H2O (g) + O2 (g)       14.3.13 
 

Determine the change in internal energy for the reaction in terms of the change in extent of the 
reaction, dξ, for a closed system. 
 
 
Answer: 
 dU = TdS – PdV + 2 µH2O dξ + µO2 dξ – 2 µH2O2 dξ      14.3.14 
 

             

 
 
Internal Constraints for Chemical Reactions:  Consider a typical chemical reaction: 
 

 A + B → C + D         14.3.15 
 

The temporary internal constraint for this reaction depends on the process that you want to study. 
The simplest case is just a barrier between two compartments, one containing pure A and the 
other containing pure B. Often, however, we wish to study the reaction beginning right after the 
reagents have mixed. The commonly applied rule is that equilibrium thermodynamics applies as 
long as the measurements are made at times longer than five times the characteristic relaxation 
times for the system. This rule suggests that after mixing the reactants, the system can be 
considered as at equilibrium with respect to temperature, pressure, and concentration gradients, 
but not at equilibrium with respect to the overall course of the chemical reaction. The time 
interval between attainment of the initial equilibrium after mixing but before any appreciable 
reaction has taken place may be quite short for some reactions. But during this interval it is 
allowable to treat the initial mixture of reactants as a metastable, non-reacting mixture for the 
purposes of calculating the reaction internal energy, entropy, and Gibbs energy changes.2 For the 
prediction of spontaneity, it is not necessary to be able to physically realize this initial state, as 
long as it is theoretically possible from a thermodynamic perspective. In other words, at ξ = 0 the 
initial state is just the mixture of reactants. Before the removal of the constraint, the system is at 
equilibrium with ξ constrained at zero. The internal energy, entropy, and Gibbs energy of this 
initial state are easy to calculate from standard tabulations. After the process, the system attains 
the equilibrium value of ξ. So both endpoints are equilibrium systems. 
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Phase Transitions are Equivalent to Chemical Reactions:  Eq. 14.3.5-10 can also be used to 
describe phase transitions. For example, for the vaporization of water in a closed system: 
 

H2O (l) →  H2O (g)         14.3.16 
 

where A applies to the liquid and B applies to the vapor: dnA = – dnB becomes 
dnvap = – dnliq. To establish the closed system, we can think of the liquid and vapor as enclosed in 
a piston or even by an imaginary soap bubble, Figure 14.3.2. The physical barrier can be 
replaced by a physical boundary like an imaginary soap bubble, as long as the boundary 
encompasses the total moles of all constituents. Chemical reactions can also be thought of as 
closed by an imaginary soap bubble. 
 
 
 
 
 
 
 
 
   H2O (l) →  H2O (g) 
 

Figure 14.3.2: Phase transitions and chemical reactions can be considered as closed systems 
and visualized as enclosed in a piston or even an imaginary bubble. These particular systems 
are at constant pressure with P = Pext = Patm.  

 
 
Intensive Variables are Constrained by Reservoirs:   Intensive variables are constrained by 
placing the system in contact with a corresponding reservoir. For example, a constant 
temperature bath is commonly used as a constant temperature reservoir in the laboratory, Figure 
14.3.3a. Exchanges of energy between the system and the bath maintain the temperature of the 
system as a constant, T = Tsurr. The system may also be held at constant pressure by contact with 
a constant pressure reservoir, Figure 14.3.3b. Placing the system in a piston is a convenient way 
to allow contact with the constant pressure reservoir. Any process open to the atmosphere is at 
constant pressure with the atmosphere acting as the constant pressure reservoir with P = Pext. 
 
 
 
 
 
 
 
 

 (a) Constant temperature reservoir  (b) Constant pressure reservoir 
 

Figure 14.3.3: (a) Constant temperature is maintained by placing the system in contact with a 
constant temperature reservoir. A constant temperature bath is a constant temperature 
reservoir, which can be considered part of the surroundings. (b) Constant pressure is 
maintained by contact with a constant pressure reservoir. 

 
 

liquid 

vapor 

liquid 

vapor 

vapor 

liquid 

imaginary bubble 

surroundings 

system 
  T, P 

Pext 

P = Pext 
Tsurr surroundings 

T = Tsurr 

system 
  T, V 
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The System and the Surroundings Form a Composite:  Consider the composite in Figure 14.3.4a. 
Assume that the part of the system that we wish to study is in system A. For example, a chemical 
reaction might occur in system A. If system B is much larger in size than system A, then system 
B can act as a constant temperature and constant pressure reservoir for system A. Under these 
circumstances, it is convenient to call system A just the “system” and to call system B the 
“surroundings,” Figure14.3.4b, as we did in Figure 12.5.1. If the composite is isolated, then we 
can apply the Second Law of thermodynamics. It doesn’t matter whether we use the “system 
A—system B” designation or the “system—surroundings” designation, the interactions are the 
same. We can also consider the universe as divided into two parts: the system and the 
surroundings. 
 

 
 
 
 
 
 
 
 
 
 
 (a)    (b) 
 

Figure 14.3.4: (a.) Isolated composites constrain the total volume, moles, and internal energy. 
(b.) The surroundings are assumed to be large in extent. 

 
 
   What makes up the surroundings? The surroundings are composed of everything not included 
in the system. If the system is held in a constant temperature bath, from the perspective of the 
system, the constant temperature bath is part of the surroundings. If an explicit constant 
temperature bath is not present, the surroundings act as a constant temperature bath, assuming 
sufficient time is allowed to establish thermal equilibrium. The key point is that transfers of 
energy to or from the surroundings do not change the temperature of the surroundings, assuming 
thermal equilibrium. The temperatures of the system and the surroundings are equalized by small 
transfers of heat, with: 
 

 đq = – đqsurr          14.3.17 
 

The contact of the system with the surroundings keeps the system at constant temperature, which 
decreases the number of independent intensive variables by one. 
   When the surroundings act as a constant pressure reservoir, Figure 14.3.3b, the pressures of the 
system and the surroundings are equalized by small changes in the volume of the system, with: 
 

 dV = – dVsurr          14.3.18 
 

This contact is a constraint that decreases the number of intensive variables by one. If the 
surroundings simultaneously act as a constant temperature and a constant pressure reservoir, the 
constraints are: T = Tsurr, P = Psurr, đq = – đqsurr, đw = – đwsurr, and  
dV = – dVsurr. 
 

VA, PA,TA 

VB, PB, TB 

Isolated dqtot = 0, dVtot = 0 

surroundings 

system 
V, P, T 

Vsurr, Psurr, Tsurr 

Isolated dqtot = 0, dVtot = 0 
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Isolated Systems Constrain the Internal Energy:  The Second Law of thermodynamics applies 
only to isolated systems. An isolated system is constrained so that no energy in the form of heat 
or work can be transferred into or from the closed system. We can make the composite in Figure 
14.3.1 isolated by insulating the walls of the constant volume container; the result is shown in 
Figure 14.3.4. The interactions are the same if we label the systems A and B, or the system and 
the surroundings. Let dUtot be the internal energy of the composite,  dUtot= dUA + dUB, or 
equivalently dUtot = dU + dUsurr. For a process in an isolated composite, dUtot = 0  from the First 
Law and:2 

 

đqA = – đqB, đwA = –đwB, dVA = –dVB, and dUA = – dUB        (isolated) 14.3.19 
 

or written in terms of the system and the surroundings: 
 

đq = – đqsurr, đw = – đwsurr, dV = – dVsurr, and dU = – dUsurr         (isolated) 14.3.20 
 

and at equilibrium: TA = TB, PA = PB,  or equivalently: T = Tsurr, P = Psurr. 
 
14.4  Other Forms of Work 
 

   In the analysis above, we used chemical work as an example of non-PV work. Any other form 
of work follows the same pattern. Remember that non-PV work can be cast in the form of a force 
multiplied by a displacement, dw = F dx. To study processes involving this kind of non-PV 
work, we need to set a constraint for the extensive variable with constant total x. Consider the 
work of extension, such as the work in stretching a spring, a rubber band, or a muscle. To help 
visualize this process, think of two springs or rubber bands attached to a movable barrier in 
analogy to the volume constraint we used in Figure 14.3.1. Such a system is diagrammed in 
Figure 14.4.1. We can apply the Second Law of thermodynamics to this system if we specify an 
isolated composite. 
 

 
 
 
 
 
 
 
 
 
 

Figure 14.4.1: The total displacement is constrained for generalized work, dx = 0, with 
dx = dxA + dxB. 

 
 
The net result is that x = xA + xB, and the constant displacement constraint gives dx = 0, with dx 
= dxA + dxB = 0. The xA and xB extensive variables are dependent with 
 

 dxB = – dxA          14.4.1 
 

In addition, conservation of energy gives: 
 

 dUtot = dUA + dUB + dUsurr        14.4.2 

surroundings 

system 
V, P, T 

Isolated đqtot = 0, dVtot = 0 

xA xB 

Vsurr, Psurr, Tsurr 
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Assuming that the volume of the combined springs is constant, no work is done on the 
surroundings, đwsurr = 0. The total work is then given as the sum for the two compartments: 
 

 đw = đwA + đwB       (constant V)  14.4.3 
 

Then đwB = – đwA. This lack of interaction with the surroundings is analogous to a closed system 
when considering chemical work. 
   This type of two-part system is convenient for studying membrane potentials; Figure 7.9.4 is 
reproduced below with an explicit realization as an isolated composite.3 We will use this isolated 
composite in the next several chapters to study membrane potentials. 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.4.2: The two-part system for transfer across a semi-permeable membrane. The 
membrane potential is ∆φ = φin – φout. The composite is isolated. 

 
 
   In the case of a neuron, the inside compartment on the right is a cell and the outside 
compartment on the left is the extracellular matrix. The extensive variable for electrical work is 
the charge. However, the charge transferred is given by the change in mole amounts, 
dqi = zi F dni, so we can use dqi or dni interchangeably as the extensive variable. The constraint is 
that the total ion concentrations are constant. For the Na+ ion, dntot(Na+) = dnin(Na+) + dnout(Na+) 
and the constriant gives dnin(Na+) = – dnout(Na+). This constraint is identical to a closed system 
for chemical reactions, except that the process is the change in concentration from one point to 
another instead of a chemical reaction: 
 

 Na+ (outside) → Na+ (inside)        14.4.4 
 

The total energy is conserved with dUtot = dUin + dUout + dUsurr, dq = dqin + dqout = – dqsurr, and 
dV = dVin + dVout = – dVsurr. At equilibrium, T = Tsurr and P = Pext. The transfer of charge or 
moles is driven by a difference in concentration and electric potential across the membrane. 
 
14.5 Summary – Looking Ahead: 
 

  Specifying a constant volume or a closed system simplifies the system by decreasing the 
number of independent extensive variables. Placing the system in contact with a constant 
temperature or pressure reservoir constrains the corresponding variable and decreases the 
number of independent intensive variables. An isolated system constrains the total volume, mole 
amounts, and total internal energy. Isolated systems provide the simplest systems that we can use 
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to study physical or chemical transformations. The universe can be considered an isolated system 
under many practical circumstances. 
   Temporary internal constraints are used to allow the calculation of the state of the system 
before the process begins. The system is at equilibrium before the internal constraint is released 
and after the process is complete. 
   A glass of water on the desktop and a chemical reaction open to the atmosphere are examples 
of constant temperature and pressure systems, if we allow sufficient time to establish equilibrium 
with the surroundings. Isothermal, constant pressure processes are the most common type of 
chemical processes, because we often work with beakers that are open to the atmosphere. Most 
importantly, living systems are at constant temperature, either at ambient temperature or at a 
carefully regulated internal temperature, and at constant pressure, if they are open to the 
atmosphere. 
 

 
 
 
 
 
 
 
 
 
 

Figure 14.5.1: Thermodynamics applies to all physical processes at equilibrium. An isolated 
composite focuses attention on the processes that occur in the system. 

 
 
   One of the strengths of thermodynamics is its generality. One way to phrase this is to note that 
nature is very “economical and efficient.” Nature doesn’t have different sets of rules for rocks, 
trees, people, and chemical reactions. All physical systems are governed by a very few laws. One 
of the difficulties of thermodynamics is that this generality can sometimes make it difficult to see 
how these laws apply to your specific system. We often draw the system as just a box, a circle, or 
a piston. The circle may represent a mass of iron, or a beaker containing a chemical reaction, or a 
cell, or a mouse. What you need to do is to fill the box or piston with your stuff, what ever 
interests you, Figure 14.5.1. Thermodynamics will then help you keep track of the flow of heat 
and work and the response of the system to changes in constraints. 
 
 
 

Chapter Summary 
 

1. The combined First and Second Laws of thermodynamics for open systems is given as: 
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3. The number of components for a system is given by: 

 c = ns – no. of reactions – no. of chemical constraints 

4. Extensive variables are constrained by physical barriers, boundaries, and any conditions 
placed on the preparation of the system. 

5. Isolated systems constrain total volume, energy, and mole amounts for each thermodynamic 
component. 

6. A constrained extensive variable may be applied to a composite. For volume in a constrained 
composite dVA = – dVB. The constrained extensive variable is converted into a dependent set 
of variables. 

7. A closed system constrains the thermodynamic components. In a closed system the 
constituents are related by the extent of any chemical reaction or the progress of a phase 
transition.:  dni = νi dξ 
For a phase transition such as vaporization:  dnvap = – dnliq 

8. A temporary internal constraint is used to allow the calculation of the state of the system 
before the process begins. 

9. The physical barrier that establishes a closed system can be an imaginary bubble that encloses 
all of the thermodynamic components of the system. 

10. Intensive variables are constrained by reservoirs. 

11. A composite may be divided into a system and the surroundings. This division is useful if the 
portion that corresponds to the surroundings is large in extent. 

12. The surroundings can act as a constant temperature and pressure reservoir: then T = Tsurr and 
P = Psurr = Pext. 

13. An isolated composite-system consisting of the system and surroundings gives: dV = –dVsurr, 
dU = –dUsurr, đq = –đqsurr, đw = –đwsurr, dni = νi dξ. With the system in contact with the 
surroundings at thermal and mechanical equilibrium,  T = Tsurr, P = Psurr. 

14. Each constraint decreases the number of independent variables by one. 

15. The system can be anything you are interested in. The thermodynamic name for your system 
is “your stuff.” 
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Problems: Focusing on Chemical Reactivity 
 

1.  Find the number of thermodynamic constituents and components for a solution of hexane and 
chloroform. Find the expression for dG for changes in the number of components in an open 
system at constant temperature and pressure. 
 
2.  Lime is made commercially through the thermal decomposition of limestone, which is 
composed primarily of calcium carbonate: 
 

 CaCO3 (s) →← CaO (s) + CO2 (g) 
 

Find the number of thermodynamic components starting with only CaCO3. In other words, 
assume that there are no other sources of CaO or CO2  other than the decomposition of CaCO3. 
 
3.  Solid ammonium chloride decomposes at high temperatures to give ammonia and hydrogen 
chloride gas: 
 

 NH4Cl (s) →← NH3 (g) + HCl (g) 
 

Find the number of components for a system prepared from only NH4Cl (s). 
 
4.  Gas phase ammonia and hydrogen chloride gas react to form solid ammonium chloride: 
 

 NH3 (g) + HCl (g) →← NH4Cl (s) 
 

(a). Find the number of components for a system prepared from arbitrary amounts of NH3 and 
HCl. (b). Find the number of components for a system prepared from equal-molar amounts of 
NH3 and HCl. 
 
5.  Consider the dissociation of the weak acid, acetic acid, in aqueous solution: 
 

 CH3COOH (aq) →← H+ (aq) + CH3COO- (aq) 
 

Find the number of constituents and thermodynamic components starting with only acetic acid 
and water. In other words, assume that there are no other sources of CH3COO- other than the 
dissociation of CH3COOH. Also, include the dissociation of water as a source of H+. Relate the 
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number of components to the number of independent chemical reactions and the number of 
chemical constraints. 
 
6.  Consider the dissociation of the weak acid, acetic acid, in aqueous solution: 
 

 CH3COOH (aq) →← H+ (aq) + CH3COO- (aq) 
 

Find the number of constituents and thermodynamic components starting with a solution 
prepared from acetic acid, sodium acetate, and water. Also, include the dissociation of water as a 
source of H+. Relate the number of components to the number of independent chemical reactions 
and the number of chemical constraints. 
 
7.  Find the number of constituents and thermodynamic components starting with a solution 
prepared from phosphoric acid, sodium hydroxide, and water. Relate the number of components 
to the number of independent chemical reactions and the number of chemical constraints. 
 
8.  Hydrogen peroxide, which is used as a topical disinfectant, decomposes to give O2 gas in a 
highly exothermic reaction. This reaction is often used as a rather spectacular chemical 
demonstration: 
 

 2 H2O2 (aq) → 2 H2O (l) + O2 (g) 
 

Hydrogen peroxide is also important in redox reactions in the environment and in biological 
processes. During this reaction many things can change: V, P, S, T, U, H, and the mole amounts 
of the reactants and products. Keeping track of all these variables can be daunting. How can we 
simplify the definition of our system so that we can focus on the chemical changes? 
 
9. For the reaction in the last problem, evaluate the change in entropy of the system, the 
surroundings, and the total change in entropy. Don’t use any specific numbers; just consider the 
appropriate equations and inequalities. Compare the results for the entropy with the results from 
the last problem for the change in internal energy. 
 
10. The decomposition of hydrogen peroxide is a spontaneous process: 
 

 2 H2O2 (aq) →← 2 H2O (l) + O2 (g) 
 

How can we use thermodynamics, which only applies to systems at equilibrium, to study this 
process? 
 
11. Consider the following chemical reaction at room temperature and in the absence of a 
catalyst: 
 

 H2 (g) + ½ O2 (g) → H2O (l) 
 

This reaction is spontaneous and therefore the process is irreversible. This reaction is in fact the 
primary source of propulsion for the space shuttle. Describe how we can apply thermodynamics 
to calculating the change in internal energy and entropy for this process when the reaction goes 
to equilibrium by an irreversible reaction. 
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12. Devise an internal constraint for an electrochemical reaction that you wish to maintain at the 
initial conditions. For example consider the reaction: 
 

 AgCl (s) + ½ H2 (g, 1 bar)  →  Ag (s) + Cl- (1 m) + H+ (1 m) 
 
13. Determine the change in internal energy for a reaction in terms of the change in extent of the 
reaction, dξ, for the reaction in a closed system: 
 

 ½ N2 (g) + 3/2 H2 (g) → NH3 (g) 
 
14. Determine the change in internal energy for a reaction in terms of the change in extent of the 
reaction, dξ, for the reaction in a closed system: 
 

 C6H12O6 (s) + 6 O2 (g) → 6 CO2 (g) + 6 H2O (l) 
 
 
15.  A 0.10 M NaCl aqueous solution is separated from pure water by a semi-permiable 
membrane. The height difference between the solution and the pure solvent is h and the 
corresponding equilibrium osmotic pressure is π. The system and the surroundings are in 
equilibrium. Assume the molar volume of the solvent in the solution is essentially the pure molar 
volume. Construct a isolated composite with this membrane system and the surroundings. 
Consider the transfer of dnA moles of solvent from the pure solvent through the membrane into 
the solution. Consider h = 0 as the reference height. Relate Pext and Tsurr with PA, PB, and T, where 
PA is the pressure at h = 0 for the pure solvent and PB is the pressure at h = 0 for the NaCl 
solution. Relate dU, đq, đw, and dV for the total composite, the surroundings, the system (A and 
B), and for the pure solvent (A) and the NaCl solution (B). 
 
 
 
 
 
 
 
 
 
 
16.  (Challenge Problem)  For the previous problem, find the PV-work, đw, for the the transfer 
of dnA moles of solvent from the pure solvent through the membrane into the NaCl solution. 
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