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Chapter 13 Problems: Entropy and Applications 
 
1. Eqs. 13.2.10 and 13.2.15 apply for all processes for an ideal gas. Show that the two 
expressions are equivalent. 
 
 

Answer:  Starting with Eq. 13.2.15: S = Cp ln 
T2

T1
 – nR ln 

P2

P1
 

Using the ideal gas equation of state to find the pressure ratio: 
 

 
P2

P1
 = 

nRT2/V2

nRT1/V1
 = 

T2V1

T1V2
 

Substituting this ratio into the original equation gives: 
 

 S = Cp ln 
T2

T1
 – nR ln 

P2

P1
  =  Cp ln 

T2

T1
 – nR ln 

T2V1

T1V2
 

      =  Cp ln 
T2

T1
 – nR ln 

T2

T1
 – nR ln 

V1

V2
 

 

However, Cp =Cv + nR for an ideal gas: 
 

 S = Cv ln 
T2

T1
 + nR ln 

T2

T1
 – nR ln 

T2

T1
 – nR ln 

V1

V2
 

 

The middle two terms cancel. Flipping the volume ratio, ln(V1/V2) = – ln(V2/V1), gives: 
 

  S = Cv ln 
T2

T1
 + nR ln 

V2

V1
 

 
 
2. Eq. 13.2.10 applies for all processes for an ideal gas, assuming a constant heat capacity. 
However, for an adiabatic reversible process, S = 0. Does Eq. 13.2.10 give S = 0 for an 
adiabatic reversible process? 
 
 
Answer: For an adiabatic reversible process, V2T2

c = V1T1
c where c = Cv/nR, for solving for the 

volume ratio: 

 
V2

V1
 = 



T1

T2

c
= 



T1

T2

Cv/nR
 

Substitution into Eq. 13.2.10 gives: 

 S = Cv ln 
T2

T1
  + nR ln 

V2

V1
 = Cv ln 

T2

T1
  + nR ln 



T1

T2

Cv/nR
 

      =  Cv ln 
T2

T1
  + nR 

Cv

nR ln 



T1

T2
 = Cv ln 

T2

T1
  – Cv ln 



T2

T1
 = 0 
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3. Calculate the change in entropy for 1.00 mole of ideal gas that is expanded against a constant 
external pressure of 1.00 atm from an initial pressure of 10.0 atm to a final pressure of 1.00 atm. 
During this process the temperature also drops from 25.00 ºC to 0.00 ºC. The heat capacity is Cp 
= 7/2 nR. 
 
 
Answer:  Even though the expansion is irreversible, knowing the initial and final states allows us 
to construct an equivalent reversible process. Using Eq. 13.2.15 gives: 
 

 S = Cp ln 
T2

T1
 – nR ln 

P2

P1
 

 

You can think of this equation as the result of a reversible constant pressure process followed by 
a reversible isothermal process. 
 

      S =  7/2(1.00 mol)(8.314 J mol-1 K-1) ln 
273.2 K
298.2 K – (1.00 mol)(8.314 J mol-1 K-1) ln 

1.00 atm
10.0 atm 

 =  -2.548 J K-1 + 19.14 J K-1 = 16.6 J K-1 

 

Notice that we can use any pressure units for the ratio, since the units cancel out. 
 
 
4. For a closed system we know that U = q + w, U = qrev + wmax, and that a reversible process 
does maximum work on expansion and minimum work on contraction. Use these statements to 
derive the Clausius inequality. 
 
 
Answer:  Since internal energy is a state function and independent of the path for a process: 
 

 U = q + w = qrev + wmax       1 
 

Rearranging this expression to group the work terms and the heat transfer terms gives: 
 

 q – qrev = wmax – w        2 
 

Consider the expansion first. In doing comparisons, we like to arrange equations so that we are 
comparing positive quantities. In an expansion, the internal energy of the system drops and 
wmax and w are negative. Multiplying the last equation by -1 allows us to compare positive values 
for the work terms: 
 

 qrev – q = (-wmax) – (-w) > 0       3 
 

The inequality holds because a reversible process does maximum work on expansion. Adding q 
to both sides of the inequality gives: 
 

 qrev > q          4 
 

Dividing both sides of this equation by T and using the definition of the entropy, S = qrev/T 
gives the Clausius inequality: 
 

 S> 
q
T          5 
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Now consider contraction. The work terms for a contraction are positive and a reversible process 
does minimum work on contraction. Eq. 2 then becomes: 
 

 q – qrev = wmax – w < 0 or   q – qrev < 0    6 
 

Adding qrev to both sides of this inequality gives Eq. 4 again. So the derivation works for both 
expansions and contractions. 
   You may wonder why we didn’t use this derivation in this chapter. First, this derivation 
requires a rigorous proof of the statement that “a reversible process does maximum work on 
expansion and minimum work on contraction.” Secondly, the form of Eq. 13.1.8 and the concept 
of “lost work” plays an important role in the development of irreversible thermodynamics. 
 
 
5. In the section on “Temperature as an Integrating Factor” we derived Eq. 13.2.28 using Eq. 
13.2.10. Repeat the derivation of the entropy change for path 2, Eq. 13.2.28. However, this 
time start from the heat transfers directly, Eqs. 13.2.16 and 13.2.18, find dS1 and dS2. Then do 
the integrals. Note when path specific information is eliminated. 
 
 
Answer:  For path 2, we need to calculate the entropy change for each step and then add. For the 
constant pressure first step from Eq. 13.2.16: 
 

 dS1 = 
đqrev,1

T  = 
Cv

T  dT + 
P1

T  dV   (cst P, reversible, closed, ideal gas) 1 
 

Notice that both T and V change along this path. We can use the ideal gas equation of state for 
the second term, P1/T = nR/V: 
 

 S1 = 



T

Ti

 
Cv

T  dT + 



V1

V2

 
nR
V  dV      (cst. P, closed, ideal gas) 2 

 

Eq. 1 is path specific, but after substitution of P1/T = nR/V, the second term only depends on the 
initial and final states! Integrating the last equation results in: 
 

 S1 = Cv ln 
Ti

T  + nR ln 
V2

V1
        (cst. P & Cv, closed, ideal gas) 3 

 

For the second step, at constant volume, dividing Eq. 13.2.18 by T gives: 
 

 dS2 = 
dqrev,2

T  = 
Cv

T  dT     (cst V, reversible, closed) 4 
 

Integrating from Ti to back to the original temperature, T, gives: 
 

 S2 = Cv ln 
T
Ti

     (cst. V & Cv, reversible, closed) 5 
 

The total change in entropy is the sum of 3 and 5: 
 

 S = Cv ln 
Ti

T + nR ln 
V2

V1
 + Cv ln 

T
Ti

   (cst. Cv, closed, ideal gas) 6 
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However, the temperature dependent terms cancel to give: 
 

 S = nR ln 
V2

V1
       (closed, ideal gas) 7 

 

The intermediate temperature no longer appears in the equation, so the final result is path 
independent and only depends on the initial and final states. 
 
 
6.  Given the total differential for the function z(x,y): 

 dz = 
y
x dx – dy 

Show that dz is not an exact differential. The integrating factor for dz is (1/x). Define a new 
differential as df = dz/x. Show that df is exact. In other words, df is a state function. 
 
 
Answer:  Comparing the total differential dz to: 

 dz = 






z

x y
dx + 







z

y x
dy       1 

Gives: 






z

x y
 = 

y
x  and   







z

y x
 = –1      2 

 

The mixed partials are not equal: 
 

 








y





z

x y x
 = 






 y/x

y x
  = 

1
x and 









x





z

y x y
 = 






 (–1)

x y
 = 0  3 

 

So, dz is not an exact differential. However, multiplying both sides of Eq. 1 by the integrating 
factor (1/x) gives: 
 

 df = (1/x) dz = 
y
x2 dx – 

1
x dy       4 

with 






f

x y
 = 

y
x2  and   







f

y x
 = – 

1
x      5 

 

Now the mixed partials give: 

 








y





f

x y x
 = 






 y/x2

y x
  = 

1
x2 and 









x





f

y x y
 = 






 (–1/x)

x y
 = 

1
x2  6 

 

Therefore df is an exact differential and f is a state function. 
 
 
7. The lowest temperature heat capacity measurement for benzene is 3.79 K,  
where Cp = 0.051463 J K-1 mol-1. The heat capacity data for crystalline and liquid benzene in 
Figure 13.4.1 can be fit to power series expansions. Because of the complex shape of the curve, 
this fitting is best done over three temperature ranges. The breaks between the ranges are 
arbitrary and are simply chosen to get a good fit to the overall curve. There are no solid-state 
phase transitions. The enthalpy of fusion for benzene is 10.59 kJ mol-1 at the normal melting 
point of 278.6 K. Calculate the absolute entropy of benzene at 298.2 K. 
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 Table Problem 6: Approximate Heat Capacity for Solid and Liquid Benzene 

solid Cp (J K-1 mol-1) 
3.79 – 20 K Cp = 0.10321 T + 0.02431 T2 

20 – 84 K Cp = – 16.5375 + 1.3854 T – 0.00770 T2 
84 -278.6 K Cp = 38.2869 + 0.01075 T + 1.097x10-3 T2 
liquid  
278.6 – 300 K Cp = 81.228 + 0.1794 T  

 
 
Answer:  For the cubic polynomial Cp curve fits, the integrals are given by: 
 

 



T1

T2Cp
solid

T  dT = 



T1

T2a + b T + c T2

T  dT =  T1

T2 (a/T + b + c T) dT = 

           =  a (ln T|T2

T1
  +  b (T|T2

T1
  +  

c
2 (T2|T2

T1
 = 

           =  a ln 
T2

T1
   + b (T2 – T1) + 

c
2 (T2

2 – T1
2) 

 

The low temperature Debye extrapolation is covered in the text. The results of the integrals are 
given in the following table: 
 

T1 
(K) 

T2 
(K) 

a ln(T2/T1) 
J K-1 mol-1 

b (T2-T1) 
J K-1 mol-1 

c
2 (T2

2-T1
2) 

J K-1 mol-1 

A
3 (T2

3-T1
3) 

J K-1 mol-1 

total 
J K-1 mol-1 

0 3.79    0.0172 0.017 
3.79 20 0 -1.673 4.687  3.01 
20 84 -23.733 88.666 -25.626  39.31 
84 278.6 45.904 2.092 38.703  86.70 

278.6 298.2 5.501 3.502   9.00 
 

The entropy of fusion is: fusS = 
fusH
Tmelt

 = 
10.59x103J mol-1

278.6 K  = 38.01 J K-1 mol-1 
 

The total then is S298 K = 176.04 J K-1 mol-1 
The literature value is 173.3 J K-1 mol-1, which is close considering the approximations in the 
curve fitting. The coefficients from the curve fits don’t have a particular interpretation. The curve 
fits are presented only as a way to make the integrals easier to do. 
 
 
8.  Calculate the absolute entropy of methylammonium chloride at 298.15 K. There are three 
crystalline forms. For the low temperature -form, the heat capacity is 0.4209 J K-1 mol-1 at 
12.04 K. The enthalpy of the equilibrium solid-state phase transition from the  to -form is 
1.7790 kJ mol-1 at 220.4 K. The enthalpy of the equilibrium solid-state phase transition from the 
 to -form is 2.8183 kJ mol-1 at 264.5 K. All values are at standard state. The integrals of Cp/T 
for the three phases are:1 
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



12.04 K

220.4 K

 
Cp


T  dT = 93.412 




220.4 K

264.5 K

 
Cp


T  = 15.439    




264.5 K

298.15 K

 
Cp


T  = 10.690 J K-1 mol-1 

 
 
Answer:  The plan is to add the Cp/T integrals and the entropy changes for the phase transitions. 
The integral from 0 K to 12.04 K is done using the Debye relationship for the heat capacity. 
   The transition entropies for the solid-state phase transitions are: 
 

   :   trS = trH/Ttr = 1.7790 kJ mol-1(1000 J/1 kJ)/220.4 K = 8.0717 J K-1 mol-1 

 

   :   trS = trH/Ttr = 2.8183 kJ mol-1(1000 J/1 kJ)/264.5 K = 10.6552 J K-1 mol-1 
 

The Debye form for the heat capacity is Eq. 13.4.3 giving Cp = AT3
l ow = 0.4209 J K-1 mol-1 at the 

lowest experimental temperature, Tlow. The integral from 0 K is, Eq. 13.4.6: 
 

 




0 K

Tlow

 
Cp


T  dT = 0 K

TlowAT2 dT = 
AT3

l ow

3  = 
0.4209 J K-1 mol-1

3  = 0.1403 J K-1 mol-1 

 

The absolute entropy, which is also called the Third Law entropy, is the sum: 
 

     (0  12.04 K)  +  (12.04  220.4 K)   +  trS()  +  (220.4  264.5 K)  +  trS()  +  (264.5  298.15 K) 

 S298.15 K = 0.1403   +    93.412       + 8.0717  +     15.439     + 10.6552 + 10.690 J K-1 mol-1 
              = 138.41 J K-1 mol-1 
 
 
9. One mole of an ideal gas undergoes an isothermal reversible compression from an initial 
pressure of 1.00 bar to a final pressure of 10.00 bar. Calculate the change in entropy of the 
system, the surroundings, and the total entropy change. 
 
 
Answer:  For an isothermal expansion of an ideal gas, P2V2 = P1V1 or (V2/V1) = (P1/P2). For an 
isothermal expansion of an ideal gas T = Tsurr and Eq. 13.2.4 gives: 
 

 S = nR ln(V2/V1) = nR ln(P1/P2) =1 mol (8.314 J K-1 mol-1) ln (1.00/10.0) = -19.1 J K-1 
 Ssurr = –S = 19.1 J K-1 

 Stot = S + Ssurr = 0 
 
 
10. One mole of an ideal gas undergoes an isothermal expansion against a constant external 
pressure of 1.00 bar. In this process the system does 900.0 J or work from an initial volume of 
1.00 L, that is w = -900.0 J. The temperature is 298.2 K. Calculate the change in entropy of the 
system, the surroundings, and the total entropy change. 
 
 
Answer:  The work for an isothermal expansion against a constant external pressure of Pext is: 
 

 w  = –Pext V  =  –Pext (V2 – V1) 
 

Solving for the final volume gives: 
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 w =  -900.0 J = -1.00x105 Pa (V2 – 1.00 L)(1 m3/1000 L) 
 

or V2 = 10.0 L. The entropy change for the system is the same as a reversible expansion, since 
entropy is a state function and Eq. 13.2.4 again applies: 
 

 S = nR ln(V2/V1) = 1 mol (8.314 J K-1 mol-1) ln (10.0 L/1.00 L) = 19.1 J K-1 
For the surroundings we use Eq. 13.5.2: 

 Ssurr = 
qsurr

Tsurr
 = 

–q
  T 

Since U = 0 for an isothermal process in an ideal gas, q = –w = 900. J 

 Ssurr  = 
–q
  T =  

–900. J
298.2 K = -3.02 J K-1 

The entropy change of the surroundings is negative, because the surroundings transfer heat into 
the system to “pay” for the work done. Finally the total entropy is given by: 
 

 Stot = S + Ssurr = 19.1 J K-1 – 3.02 J K-1 = 16.1 J K-1 
 

The expansion is spontaneous. 
 
 
11. The volume of one mole of an ideal gas changes from 1.00 L to 2.00 L in an adiabatic 
reversible expansion. The initial temperature is 298.2 K. The gas is diatomic. Calculate the 
change in entropy of the system, the surroundings, and the total entropy change. 
 
 
Answer:  Since this is an adiabatic reversible expansion, q = qrev = 0: 

 S =  
qrev

  T  = 0 and   Ssurr  = 
–q
  T = 0 

 Stot = S + Ssurr = 0 
 

We assume an isolated composite system consisting of the system and the surroundings. A 
reversible process is not spontaneous, so S for the composite, isolated system is zero. If the 
system and surroundings are taken to be the universe, and if we assume that the universe is 
isolated, then Stot = Suniv = 0. 
 
 
12. The pressure of one mole of an ideal gas drops from 10.0 bar to 1.00 bar in an adiabatic 
expansion against a constant external pressure of 1.00 bar. The initial temperature is 298.2 K. 
Assume the gas is diatomic. Calculate the change in entropy of the system, the surroundings, and 
the total entropy change. 
 
 
Answer:  The temperature and pressure change for an adiabatic expansion so Eq. 13.2.15 must 
be used. However, the change in temperature must be calculated from U = w, Eq. x.x.x: 
 

 Cv (T2 – T1) = –Pext (V2 – V1) 
 

For a diatomic gas Cv = 5/2 nR. The volumes can be calculated using the ideal gas law: 
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 5/2 nR (T2 – T1) = –Pext 



nRT2

P2
 – 

nRT1

P1
 

 

The nR is a common factor and cancels out. Substituting in the initial conditions and the final 
pressure gives: 
 

 5/2 (T2 – 298.2 K) = –1.00 bar 



T2

1.00 bar – 
298.2 K
10.0 bar  

Simplifying: 
 5/2 T2 – 745.5 K = –T2 + 29.82 K 
 

Solving for T2 gives 221.5 K. Using Cp = Cv + nR = 7/2 nR, the entropy change is then: 
 

 S = Cp ln 
T2

T1
 – nR ln 

P2

P1
  

      = (1 mol)(8.314 J mol-1 K-1)[7/2 ln(221.5 K/298.2 K) – ln(1.00 bar/10.0 bar)] 
       = 10.5 J K-1 
 

Since q = 0, then Ssurr = 0 and Stot = S. As expected, this expansion is spontaneous. Note that 
U = w = Cv T = -1.59 kJ and H = Cp T = -2.23 kJ for this example. 
 
 
13. The pressure inside an inflated balloon filled with 1.00 mol of helium is 112.0 kPa. Assume 
the gas expands from the opening in the balloon in an adiabatic expansion. In other words, 
assume the gas expands quickly and we measure the final temperature of the gas before any 
thermal energy can be transferred from the surroundings. The initial temperature is 298.2 K. The 
atmospheric pressure is 101.3 kPa. Calculate the entropy change of the system and the 
surroundings and the entropy change of the universe. 
 
 
Answer:  To help visualize this expansion, as the helium leaves the balloon, think of the gas 
expanding inside a soap bubble. The surface of the soap bubble pushes back the atmosphere and 
work is done against the constant external ambient pressure. 
 
 
 
 
 
 
 
 
The temperature and pressure change for an adiabatic expansion so Eq. 13.2.15 must be used. 
However, the change in temperature must be calculated from U = w, Eqs. 9.8.23-9.8.24: 
 

 Cv (T2 – T1) = –Pext (V2 – V1) 
 

For a monatomic gas Cv = 3/2 nR. The volumes can be calculated using the ideal gas law: 
 

 3/2 nR (T2 – T1) = –Pext 



nRT2

P2
 – 

nRT1

P1
 

Pext 

balloon 
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The nR is a common factor and cancels out. The gas expands until the pressure of the helium is 
equal to the ambient pressure P2 = Pext. Substituting in the initial conditions and the final pressure 
gives: 
 

 3/2 (T2 – 298.2 K) = –101.3 kPa 



T2

101.3 kPa – 
298.2 K

112.0 kPa  

Simplifying: 
 3/2 T2 – 447.3 K = –T2 + 269.7 K 
 5/2 T2 = 717.0 K 
 

Solving for T2 gives 286.8 K. Using Cp = Cv + nR = 5/2 nR, the entropy change is then: 
 

 S = Cp ln 
T2

T1
 – nR ln 

P2

P1
  

      = (1 mol)(8.314 J mol-1 K-1)[5/2 ln(286.8 K/298.2 K) – ln(101.3 kPa/112.0 kPa)] 
      = (1 mol)(8.314 J mol-1 K-1)[-0.09745 + 0.1004] 
      = (1 mol)(8.314 J mol-1 K-1)[0.00295] 
       = 0.0245 J K-1 
 

The ln(101.3/112.0) term has only three significant figures; then normal significant figure rules 
give only one significant figure in the final result. Since q = 0, then Ssurr = 0 and Stot = S. As 
expected, this expansion is spontaneous. Note that U = w = Cv T = -142. J and H = Cp T = 
-237. J for this example. 
 
 
14. One mole of an ideal gas at 298.2 K triples its volume in an isothermal irreversible expansion 
against Pext = 0. Calculate the changes in entropy of the system, the surroundings, and the total 
entropy change. 
 
Answer:  The entropy change for the system is the same as a reversible expansion, since entropy 
is a state function and Eq. 13.2.4 again applies: 
 

 S = nR ln(V2/V1) = 1 mol (8.314 J K-1 mol-1) ln (3.00) = 9.13 J K-1 
 

For the surroundings we use Eq. 13.5.2: 

 Ssurr = 
qsurr

Tsurr
 = 

–q
  T 

The work for an isothermal expansion against an external pressure of zero, Pext = 0, is: 
 

 w  = –Pext V  = 0 
Since U = 0 for an isothermal process in an ideal gas, q = –w = 0 
 Ssurr  = 0 
Finally the total entropy is given by: 
 

 Stot = S + Ssurr = 9.13 J K-1 
 

The expansion is spontaneous. 
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15. Calculate the molar entropy change for the phase transition of water to water vapor at room 
temperature, 298.15K, and one atmosphere pressure. The difference in heat capacity on 
vaporization is -41.9 J K-1 mol-1. The standard enthalpy of vaporization of water at 373.15 K is 
40.7 kJ mol-1. 
 
Answer:  When the pressure is at 1 atm, we can only use Eq. 13.3.2 at the normal boiling point, 
because only at that temperature is the system in equilibrium: 
 

 vapS = 
vapH

Tb
 = 

40.7x103J mol-1

373.15 K  = 109.1 J K-1 mol-1 
 

To find the entropy change at room temperature, use Eq. 13.3.7: 
 

 trST2   =  trST1 +  trCp ln 
T2

T1
  

  = 109.1 J K-1 mol-1  + ( -41.9 J K-1 mol-1) ln 
298.15 K
373.15 K 

  = 109.1 + 9.36 J K-1 mol-1 =  118.5 J K-1 mol-1 
 
 
16. Consider the reaction: 

 pyruvic acid  acetaldehyde +  CO2 (g) 
 

(which is catalyzed by the enzyme pyruvate decarboxylase.) Calculate rS° for this reaction for 
the system and the surroundings at 298.2 K. The values in the table below are at 298.2 K. 
 

Table for Problem 2: 
 

substance fH° (kJ mol-1) S°(J K-1 mol-1) 
acetaldehyde -192.30 160.2 
CO2 -393.51 213.74 
pyruvic acid -584.5 179.5 

 
Answer:  The data are: 

 pyruvic acid  acetaldehyde +  CO2 (g) 

  fH° -584.5  -192.30 -393.51 kJ mol-1 
  S° 179.5  160.2  213.74  J K-1 mol-1 
 
 
rH° = [products] – [reactants]  
         = [1mol(-192.30 kJ mol-1) + 1 mol(-393.51 kJ mol-1)] – [1 mol(-584.5 kJ mol-1)] 
       = -1.3 kJ 
 

rS° = [products] – [reactants]  
         = [1mol(160.2 J K-1 mol-1) + 1 mol(213.74 J K-1 mol-1)] – [1 mol(179.5 J K-1 mol-1)] 
       =  194.4 J K-1 
 

which is dominated by the increase in number of moles of gas. The change in entropy for the 
surroundings is: 
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 Ssurr = 
qsurr

Tsurr
 = 

–rH
  T   =  

1.3 kJ (1000 J /1kJ)
298.2  =  4.36 J K-1 

 

which is spontaneous. 
 
 
17.  The chemical reaction that corresponds to the enthalpy of formation of urea, (NH2)2CO, is: 
 

 C (graph) + 2 H2 (g, 1 bar) + N2 (g, 1bar)  (NH2)2CO (s)      fH = -333.1 kJ mol-1 

 

Calculate the reaction entropy for the formation reaction, at standard state and at 298.15 K.  
 
 
Answer:  The formation reaction is the production of one mole of substance from the constituent 
elements in their standard states: 
 

 C (graph) + 2 H2 (g, 1 bar) + N2 (g, 1bar)  (NH2)2CO (s)      fH = -333.1 kJ mol-1 

       S   5.740  130.574 191.50    104.6        J K-1 mol-1 
 

Remember that the enthalpy is an extensive function, so the stoichiometric coefficients are 
important. The reaction enthalpy change is given by Eq. 13.6.1 at standard state: 

 rS = [products] – [reactants] = i S 
 rS = [104.6] – [5.740 + 2(130.574) + 191.50] J K-1 mol-1 = -353.79 J K-1 mol-1 
 
 
18.  (a).  The enzyme urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide: 
 

 (NH2)2CO (s) + H2O (l)    2 NH3 (g, 1 bar) + CO2 (g, 1bar) 
 

Using the data in the appendix, calculate the reaction enthalpy, at standard state and at 298.15 K. 
(b).  Consider the reaction as an isothermal process in a closed system in thermal contact with the 
surroundings acting as a constant temperature reservoir. Calculate the change in entropy for the 
surroundings and the total entropy change at 298.15 K. (See Chapter 8 Problem 2b). 
 
 
Answer:  The plan is to note that the entropy change of the surroundings is determined from the 
reaction enthalpy, since at constant pressure, qreaction = qp = rH. 
  The enthalpies of formation and absolute entropies, from Tables 8.4.1 and 8.4.2, are: 
 

  (NH2)2CO (s) + H2O (l)    2 NH3 (g, 1 bar) + CO2 (g, 1bar)     units 
 fH     -333.1  -285.830 -46.11    -393.509        kJ mol-1 
     S      104.6     69.92 192.34      213.74        J K-1 mol-1 

 

Remember that enthalpy and entropy are extensive functions, so the stoichiometric coefficients 
are important. The reaction enthalpy and entropy changes are given by Eqs. 8.4.9 and 13.6.1 at 
standard state: 

 rH = [products] – [reactants] = i fH 

 rS = [products] – [reactants] = i S 
 

(a).  The reaction entropy is: 
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 rS = [2(192.34) + 213.74] – [104.6 + 69.92] J K-1 mol-1 = 423.9 J K-1 mol-1 
 

The reaction entropy is strongly favorable because three moles of gas are produced. 
(b).  The reaction enthalpy is (see Chapter 8 Problem 2b): 
 

 rH = [2(-46.11) + (-393.509)] – [(-333.1) + (-285.83)] kJ mol-1 = 133.2 kJ mol-1 
 

The entropy change of the surroundings is given by Eq. 13.5.4: 
 

 rSsurr = –rH/T = –(133.2 kJ mol-1)(1000 J/1 kJ)/298.15 K = -446.75 J K-1 mol-1 
 

The total entropy change is: 
 

 Stot = S + Ssurr = 423.9 J K-1 mol-1 + (-446.75 J K-1 mol-1) = -22.9 J K-1 mol-1 
 

The reaction is not spontaneous at 298.15 K. Of course, enzyme catalysis won’t change the 
spontaneity. 
 
 
19.  The aging of marine aerosols produces NaHSO4 cloud condensation nuclei, CCN. The 
distribution of CCN determines the formation and reflectivity of clouds, which play an important 
role in determining the albedo of the atmosphere (see Chapter 8 Problem 3). (a). Using the data 
in the appendix, calculate the entropy change for the system and for the surroundings for the 
following reactions separately and in sum, under standard conditions and at 298.15 K. 
 

  H2S (g, 1bar) + 2 O2 (g, 1bar)  SO3 (g, 1bar) + H2O (g, 1bar) 

  SO3 (g, 1 bar) + H2O (l)  H2SO4 (l) 
  NaCl (s) + H2SO4 (l)  HCl (g, 1bar) + Na+ (ao) + HSO–

4 (ao) 
 

(b). Combine the three reactions to show the overall process. Use the combined reaction to 
calculate the overall reaction enthalpy. Compare with the result in part (a). 
 
 
Answer:  The plan is to use Hess’s Law for each reaction and then the three reactions in 
sequence. Note that both gaseous and liquid water are involved in the reactions. Use the absolute 
entropy for pure liquid H2SO4. The reaction enthalpies are given in Chapter 8 Problem 3. 
 

(a). The absolute entropies, from Table 8.4.1, combine to give the reaction entropies: 
 
  H2S (g, 1bar) + 2 O2 (g, 1bar)  SO3 (g, 1bar) + H2O (g, 1bar)        units      1 
 S: 205.8   205.029 256.76            188.715 J K-1mol-1 

 
  SO3 (g, 1 bar) +  H2O (l)    H2SO4 (l)          2 
 S: 256.76    69.92         156.904    J K-1mol-1 
 

  NaCl (s)  +  H2SO4 (l)  HCl (g, 1bar) + Na+ (ao) + HSO–
4 (ao)       3 

 S:  72.4       156.904    186.799   59.0        131.8 J K-1 mol-1 
 
Each reaction enthalpy change is given by Eq. 8.4.9: 
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 rS = [products] – [reactants] = i S 
 

For reaction 1: 
 

     rS = [188.715 + 256.76] – [205.8 + 2(205.029)] J K-1mol-1 = -170.38 J K-1 mol-1 
     rSsurr = –rH/T = –(-616.91 kJ mol-1)(1000 J/1 kJ)/298.15 K = 2069.13 J K-1 mol-1 
 

For reaction 2: 
 

     rS = [156.904] – [256.76 + 69.92] J K-1 mol-1 = -169.776 J K-1 mol-1 
     rSsurr = –rH/T = –(-132.44 J K-1 mol-1)(1000 J/1 kJ)/298.15 K = 444.131 J K-1 mol-1 
 

For reaction 3: 
 

     rS = [131.8 + 59.0 + 186.799] – [72.4 + 156.904] J K-1 mol-1 = 148.30 J K-1 mol-1 
     rSsurr = –rH/T = –(5.23 J K-1 mol-1)(1000 J/1 kJ)/298.15 K = -17.54 J K-1 mol-1 
 

The overall sequence gives: 
  rS = (-170.38) + (-169.776) + 148.30 J K-1mol-1 = -191.86 J K-1mol-1 
 rSsurr = 2069.13 + 444.131 + (-17.54) J K-1 mol-1 = 2495.72  J K-1 mol-1 
 

 (b).  We can check the results by working directly with the overall reaction. The sum of the 
three steps gives: 
 

         H2S (g) + 2O2 (g) + NaCl (s) + H2O (l)  HCl (g) + Na+(ao) + HSO–
4 (ao) + H2O (g) 

  S: 205.8     205.029     72.4        69.92       186.799     59.0        131.8          188.715  J K-1 mol-1 
 

     rS = [186.799 + 59.0 + 131.8 + 188.715] – [205.8 + 2(205.029) + 72.4 + 69.92] J K-1 mol-1 
             =  -191.86 J K-1 mol-1 
 

The combined reaction enthalpy is rH = -744.12 kJ mol-1 , giving the entropy change of the 
surroundings: 
 

 rSsurr = –rH/T = –(-744.12 kJ mol-1)(1000 J/1 kJ)/298.15 K = 2495.79 J K-1 mol-1 
 

The step-wise and combined reactions give the same result, to within round-off error. The 
combined reaction entropy is unfavorable. The overall reaction is enthalpy driven, since the 
entropy change of the surroundings is the dominant factor. 
 
 
20. Use normal mode analysis to decide whether propane or 2-methylpropane has a higher 
absolute entropy. You can use any convenient normal mode analysis program based on 
molecular mechanics or molecular orbital theory. 
 
 
Answer:  The results of a normal mode analysis using Spartan at the AM1 level is given in the 
table below. You didn’t need to get the thermodynamic analysis, but it is included for 
comparison. 
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Table: Normal Mode Analysis for Several Hydrocarbons 

Compound translation rotation vibration total literature ~ < 500 cm-1 
methane 143.3 42.8 0.4 186.6 186.26  
acetylene 149.4 45.4 2.7 197.5 200.94  
ethylene 150.3 66.4 2.4 219.1 219.56  
ethane 151.2 68.1 10.9 230.3 229.60 204 
cyclopropane 155.4 75.8 4.8 236.0 237.55  
propane 156.0 89.0 32.8 277.7 269.91 79, 190, 414(b) 
2-methylpropane 159.4 93.5 44.4 297.3 294.64 149, 191x2, 398x2, 478 
butane 159.4 96.7 45.4 301.4 310.23 103, 196, 206, 302, 473 
cyclohexane 164.0 95.2 36.8 296.0 298.19 214x2, 331, 467x2 
benzene 163.1 86.7 19.1 268.9 269.31 371x2 

 
Notice that 2-methylpropane has six low frequency normal modes, while propane has three. The 
lower the frequency of the normal mode the bigger the contribution to the entropy and heat 
capacity. From the table above, propane has the smallest frequency normal mode. However, the 
overall result for 2-methylpropane is a larger vibrational contribution to the entropy. 
   The normal modes for propane, using MOPAC are a little different: 
 

 142.40391   187.97537   412.50857 
 

The normal modes for 2-methylpropane, using MOPAC are: 
 

 144.44885   182.36068   199.92640   395.61601   398.93565   477.33557 
 

The thermodynamic analysis is at the bottom of the output for Spartan, GAMESS, Gaussian, and 
MOPAC. The thermodynamic analysis for propane from MOPAC, with the THERMO keyword, 
at 300 K is: 
 

                   CALCULATED THERMODYNAMIC PROPERTIES 
                                          * 
   TEMP. (K)   PARTITION FUNCTION   H.O.F.    ENTHALPY   HEAT CAPACITY  ENTROPY 
                                    KCAL/MOL   CAL/MOLE    CAL/K/MOL   CAL/K/MOL 
 
    300  VIB.         4.226                  1173.47287    8.68840    6.77570 
         ROT.     .200E+05                    894.267      2.981     22.664 
         INT.     .846E+05                   2067.740     11.669     29.439 
         TRA.     .286E+27                   1490.445      4.968     37.291 
         TOT.                       -24.224  3558.1849    16.6374    66.7306 
 

The thermodynamic analysis for 2-methylpropane from MOPAC at 300 K is: 
 

      CALCULATED THERMODYNAMIC PROPERTIES 
                                          * 
   TEMP. (K)   PARTITION FUNCTION   H.O.F.    ENTHALPY   HEAT CAPACITY  ENTROPY 
                                    KCAL/MOL   CAL/MOLE    CAL/K/MOL   CAL/K/MOL 
 
    300  VIB.         9.160                  1911.82988   13.87179   10.77417 
         ROT.     .517E+05                    894.267      2.981     24.547 
         INT.     .473E+06                   2806.097     16.853     35.321 
         TRA.     .433E+27                   1490.445      4.968     38.114 
         TOT.                       -29.325  4296.5419    21.8208    73.4355 

 
The vibrational frequencies for torsional modes are very sensitive to the level of the calculation. 
You will see large differences, especially for the lowest frequency normal modes, from program 
to program. However, the number of low frequency normal modes will be reproducible. There is 
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another problem with this approach. The normal mode analysis assumes that the vibrations are 
purely harmonic oscillators. We will see in the vibrational spectroscopy chapter that torsions are 
strongly anharmonic. Normal mode analysis does a poor job, quantitatively, in predicting the 
frequencies of these vibrations. For now, just counting low frequency normal modes will help 
you to visualize the vibrational contribution to the entropy. We will argue later about how to get 
good quantitative predictions. 
 
 
21. Use normal mode analysis to decide whether cyclohexane or benzene has a higher absolute 
entropy. You can use any convenient normal mode analysis program based on molecular 
mechanics or molecular orbital theory. 
 
 
Answer:  Since cyclohexane has more atoms, we would predict that cyclohexane would have the 
higher absolute entropy. The larger number of atoms predicts a greater moment of inertia for the 
molecule and thus a greater rotational contribution to the entropy. Also, remember that the 
number of normal modes for a non-linear molecule is 3N-6. So the number of vibrational normal 
modes for cyclohexane is greater, which would also predict a higher entropy. 
   Please consult the table for the last problem for the results of the normal modes analysis. 
Cyclohexane has five vibrations with low wavenumbers, while benzene has only two. Therefore, 
cyclohexane will have a higher contribution from vibrations than benzene. The three lowest 
frequency vibrations for cyclohexane are hindered ring torsions. The low frequency vibrations 
for benzene are out-of-plane C-H bending vibrations. 
 
 
22. Give an example for each of the following types of processes. Choose your examples from 
ideal gas expansions or compressions or phase transitions of pure substances. Specify the 
difference in the variable, P or T, that is responsible for the spontaneous or non-spontaneous 
direction of the process: 

(a). a spontaneous adiabatic and isothermal process, 
(b). a spontaneous isothermal process with a decrease in entropy for the system, 
(c). a non-spontaneous isothermal process with an increase in entropy for the system, 
(d). a spontaneous adiabatic process that decreases the temperature of the system. 

 
 
Answers:  (a). a spontaneous adiabatic and isothermal process: an irreversible expansion of an 
ideal gas against a vacuum. (Ideal mixing of gases is an additional example that will be covered 
in the next chapter.) The variable controlling the spontaneous direction is the pressure: Po  0 
with Pext = 0. 
 

(b). a spontaneous isothermal process with a decrease in entropy for the system: an irreversible 
compression of an ideal gas with an external pressure greater than the system pressure. The 
variable controlling the spontaneous direction is the pressure: Po  Phigh with Po < Pext. Another 
example is the liquefaction of 1 mol of a gas or freezing of 1 mol of a liquid at a temperature 
below the equilibrium phase transition temperature, at the chosen ambient pressure. A specific 
example is the freezing of water at -5C at 1 bar ambient pressure. The independent variable is 
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the number of moles of gas or liquid, respectively: dng = -1 mol or dnliq = -1 mol. The variable 
controlling the spontaneous direction is the temperature, T < T*

b or T*
f  with T = Tsurr. 

 

(c). a non-spontaneous isothermal process with an increase in entropy for the system: the 
isothermal expansion of an ideal gas against an external pressure greater than the system 
pressure. The variable controlling the spontaneous direction is the pressure: Po  Plow with Po < 
Pext giving a non-spontaneous process. Another example is the melting of 1 mol of a solid at a 
temperature below the equilibrium phase transition temperature, at the chosen ambient pressure. 
The variable controlling the spontaneous direction is the temperature, T < T*

f  with T = Tsurr. 
 

(d). a spontaneous adiabatic process that decreases the temperature of the system: an irreversible 
adiabatic expansion of an ideal gas against an external pressure less than the system pressure. 
The variable controlling the spontaneous direction is the pressure: Po  Plow with Po > Pext. For 
an adiabatic process for a phase transition, consider a phase transition in a thermos bottle. 
Melting decreases the temperature of the system for an adiabatic process. Then for a spontaneous 
adiabatic process that decreases the temperature of the system, the melting of 1 mol of a solid at 
a temperature above the equilibrium phase transition temperature is a good example. The 
variable controlling the spontaneous direction is the temperature, To  Tlow with To > T*

f. 
 
 
23.  The Clausius inequality relates the entropy changes of the system and surroundings. 
Consider an isothermal process in a closed system in thermal contact with the surroundings 
acting as a constant temperature reservoir. Use the Clausius inequality, Eq. 13.1.9, to show that 
dS > –dSsurr for a spontaneous process. 
 
 
Answer:  Consider the system and surroundings as an isolated composite. The Clausius 
inequality, Eq. 13.1.9, gives dS > đq/T. For a spontaneous isothermal process, T = Tsurr giving 
dSsurr = – đq/T. Substitution of this result for the surroundings into the right-side of the Clausius 
inequality gives, for a spontaneous isothermal process: dS > –dSsurr. 
 
 
24.  Determine if the following statements are true of false. If the statement is false, describe the 
changes that are required to make the statement true, if possible. Assume that the system and 
surroundings are an isolated composite. (Hint: three of the following statements are true.) 

(a). The heat transfer for the system is equal in magnitude and opposite in sign to the heat 
transfer for the surroundings (đq = – đqsurr). 

(b). The entropy change of the system is equal in magnitude and opposite in sign to the 
entropy change of the surroundings (dS = – dSsurr). 

(c). For a spontaneous process, the magnitude of the entropy change of the system is never 
greater than the magnitude of the entropy change of the surroundings. 

(d). Heat transfer to a system at low temperature gives a larger change in the entropy of the 
system than the transfer of the same amount of heat at high temperature. 

(e). Spontaneous processes always result in dispersal of energy to the surroundings. 

(f). The entropy of every system is zero at absolute zero. 
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(g). For a given heat transfer, the entropy change of the surroundings is independent of the 
details of the process for the system. 

(h). One mole of xenon gas at 1 bar and 298.2 K is mixed with another mole of xenon gas at 1 
bar and 298.2 K. The total entropy change of the combined systems is positive for the process. 

 
 
Answers: (a). True: heat and work are transfers of energy and so necessarily for the transfer, đq = 
– đqsurr and đw = – đwsurr. 
 

 (b). False: The entropy change for a spontaneous process is always positive for an isolated 
composite of the system and surroundings, by the Second Law, dS + dSsurr > 0. Only for a 
reversible process is dS = – dSsurr, since then đq = đqrev. 
 

 (c). False: For a spontaneous endothermic process in a closed system, the entropy change of the 
system is positive and the entropy change of the surroundings is negative. By the Second Law 
for an isolated composite of the system and the surroundings, 
dS + dSsurr > 0. To give an increase in total entropy for an endothermic process, the magnitude of 
the entropy change of the system must be greater than the magnitude of the entropy change of 
the surroundings. 
   However, to be more precise, we should use the Clausius inequality. Consider an isothermal 
process in a closed system in thermal contact with the surroundings acting as a constant 
temperature reservoir. The Clausius inequality, Eq. 13.1.9, is dS > đq/T. For a spontaneous 
isothermal process, T = Tsurr giving dSsurr = – đq/T. Substitution of the last result into the 
Clausius inequality gives for a spontaneous isothermal process: 
dS > –dSsurr. For an endothermic process, dSsurr is negative. The magnitude of dSsurr is then 
|dSsurr| = –dSsurr. To satisfy the Second Law, if the entropy change of the surroundings is negative 
then the entropy change of the system must be positive, and then |dS| = dS. The Clausius 
inequality then gives for a spontaneous endothermic process 
|dS| > |dSsurr|; the magnitude of the entropy change of the system must be greater than the 
magnitude of the entropy change of the surroundings. 
 

 (d). True: refer to Figure 13.1.1. 
 

 (e). False: By the Second Law, for an isolated composite of the system and the surroundings, dS 
+ dSsurr > 0. However, the change in entropy of the surroundings can be negative, as for an 
endothermic process, or zero, as for an adiabatic process. The total entropy change can be 
dominated by the entropy change of the system, which allows an unfavorable entropy change of 
the surroundings. A spontaneous process may or may not give an increase of the entropy of the 
surroundings. A spontaneous process may or may not result in energy dispersal to the 
surroundings. 
 

 (f). False: the entropy of all pure, perfect crystalline substances is zero at absolute zero. Residual 
entropy can be locked into a system before cooling to absolute zero. Such a system is metastable, 
being trapped into a non-zero entropy state by a kinetic barrier. 
 

 (g). True: For a given heat transfer, đq, the entropy change of the surroundings is given by dSsurr 
= – đq/Tsurr, irrespective of whether the process is reversible or irreversible. 
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(h). False: the entropy change is zero, because the xenon atoms in the two systems are 
indistinguishable. Consider the two systems as an isolated composite. The process is 
diagrammed as follows: 
 
 
 
 
 
The instant that the barrier is removed, the combined system is at equilibrium. There are no 
gradients, so no process occurs. 
 
 
25. Heat capacities are often approximated by a power series: Cp = a + b T + c T–2, for a, b, and c 
constants. Find the change in enthalpy and entropy of a substance for a constant pressure process 
with a temperature change from T1 to T2. 
 
 
Answer:  The plan is to integrate the partial derivative relationships (H/T)P = Cp and (S/T)P 
= Cp/T. For a constant heat capacity, H = Cp(T2 – T1) and S = Cp ln(T2/T1). 
   The enthalpy integral is: 
 

 H = T1

T2 Cp dT = T1

T2 ( a + b T + c T–2) dT 

       = T1

T2 a dT + T1

T2 bT dT + T1

T2 cT–2 dT 

       = a [ T |T1
T2 + 

b
2 [ T2 |T1

T2 – c [ T–1 |T1
T2 

       = a (T2– T1) + 
b
2 (T2

2 – T2
1) + c 



1

T2
 – 

1
T1

 
 

Compare this result with Chapter 7 Problem 29, which uses a different heat capacity power series 
expansion. The leading term, in both cases, agrees with the expression that assumes a constant 
heat capacity, H = Cp(T2 – T1). 
   The entropy integral is: 
 

 S = T1

T2 Cp/T dT = T1

T2 



a

T + b + c 
1
T3  dT 

       = T1

T2 
a
T dT + T1

T2 b dT + T1

T2 cT–3 dT 

       = a [ ln(T)|T1
T2 + b [ T |T1

T2 – 
c
2 [ T–2 |T1

T2 

       = a ln



T2

T1
 + b (T2 – T1) – 

c
2 






1

T2
2

 – 
1
T2

1

 

 

Compare this result with Eq. 13.2.34, which uses a different heat capacity power series 
expansion. An example from the NIST WebBook online database that uses a term in T–2 is 
carbon dioxide (g) (http://webbook.nist.gov). 
 

Xe 
1 bar 

298.2 K 

Xe 
1 bar 

298.2 K 

Xe 
1 bar 

298.2 K 
 
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26. Calculate the residual entropy at 0 K for NO, assuming random NO and ON orientations. 
 
 
Answer:  Given the two ways of orienting NO is the same as for CO and N2O, the residual 
entropy is approximated as So= R ln w = (8.314 J K-1 mol-1) ln(2) = 5.76 J K-1 mol-1. 


